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Vehicle handling systems are used to assist drivers in keeping proper control of the vehicle 

in hazardous situations. They take input from various sensors about the vehicle and road 

conditions and correcting them accordingly. Current research in this field involve the 

prediction of tire-road forces which is an important parameter needed for these vehicle 

handling systems. One of the methods used to predict these forces is the design of a virtual 

sensor that uses actual sensors to measure certain parameters combined with a mathematical 

model to derive the values for the desired forces. A multibody bicycle model to estimate tire-

road forces is proposed in this research work. The four-rigid-body Whipple model has been 

used with appropriate selection of coordinates and frames. Kinematic analysis has been 

performed to obtain the velocities and accelerations of the bicycle. Inverse dynamic analysis 

has been performed by taking geometric coordinate inputs from the rider’s actions on the 

bicycle. These inputs were fed into the equations of motion to obtain the Lagrange 

multipliers which showed the values of the reaction forces acting on the tire along with the 

driving forces. 

 

The estimated tire-road forces match the expected behavior according to the rider’s actions 

and the bicycle can be seen simulating an accurate representation of the real motion. 

Experimental validation of the tire-forces was initially within the scope of the work. 

However, due to the inability to measure lateral forces with the current setup it has been 

moved to the future scope of this topic. The future scope also includes elimination of some 

assumptions in the model such as zero-slip and point-contact between wheels and ground. 

The addition of a dynamic observer following the expansion of the model to a four-wheel 

model has also been discussed as a future scope. The multibody bicycle model provides a 

good starting point for developing accurate and inexpensive virtual sensors for tire-force 

estimation suitable for application in vehicle handling and stability systems.   
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1 INTRODUCTION 

 

 

Today vehicles are growing rapidly in numbers. Numerous types of vehicles suitable for 

many different terrains are being developed. The greater challenges in vehicle design these 

days are safety, stability and motion-control. ABS (Anti-lock Braking System), TCS 

(Traction Control System), ESP (Electronic Stability Program) and TPMS (Tire-Pressure 

Monitoring System) are some of the systems used to ensure proper control of vehicles. The 

prime focus is on driver assistance systems to ensure safety and improve ride quality.  

 

Driver assistance systems aim to improve safety of vehicles by reducing the burden on 

drivers. Features like collision avoidance, cruise control, automated lane keeping and safety 

event recorders are provided in these systems. Stability control systems function in 

hazardous conditions to avoid loss of control of vehicles. They stop vehicles from drifting, 

spinning, skidding and rolling over. Figure 1 shows how a vehicle behaves differently with 

the same steering input on roads with different friction coefficient. Due to the curvature of 

the road the lateral forces experienced by the vehicle will be different in each case resulting 

in spinning or skidding. This kind of mishap is avoided using yaw stability control. Ride 

quality can also be improved by implementing control systems in the vehicle's suspension 

which compensate the destabilizing forces. (Rajamani, 2014, pp. 1-11.) 

 

 

Figure 1. A vehicle behaves differently with the same steering input on roads with different 

friction coefficient (mod. Rajamani, 2014, p. 3). 
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These vehicle handling control systems achieve traction control, anti-slip control and yaw 

stability by taking inputs from various sensors in the vehicle and correcting anomalies faster 

than the human driver. Of these inputs the most important ones are wheel velocity, 

acceleration, yaw rate, steering angle and tire-road forces. Knowledge of forces acting on 

vehicles is required to determine their dynamic behavior. Many properties and variables such 

as road profile and tire-road friction have to be known to calculate these forces. With the use 

of various sensors to record these parameters the control systems can get accurate data and 

improve the safety and ride quality of the vehicle. 

 

1.1 Background 

Yaw control systems have been implemented in commercial vehicles since 1995 with the 

Mercedes ESP, closely followed by the Cadillac Stabilitrak system in 1996. They use sensors 

detecting steering position, wheel speeds, lateral acceleration, yaw rate and pressure sensors 

to find the difference between the path intended by the driver and the actual yaw rate and 

make the necessary corrections with differential braking (Ghoneim et al., 2000, pp. 124-

144). Chevrolet developed its vehicle dynamic control system called C5 Corvette Active 

Handling in 1998. The system uses steering sensor, lateral acceleration sensor, yaw rate 

sensor, hydraulic modulator valve, differential pressure switch for the brake system and 

brake pressure transducer. While the steering and speed sensors help determine the desired 

rate of yaw, the sensor detecting lateral acceleration helps in surface estimation and bank 

angle compensation (Hoffman and Rizzo, 1998, pp. 1-3).  

 

Honda introduced the VSA (Vehicle Stability Assist) to the market in 1998. It was designed 

to predict impending loss of tire grip by monitoring the longitudinal and lateral accelerations, 

individual wheel speed, rate of steering and yaw. Using this sensed data it estimates the 

lateral forces, lateral acceleration, coefficient of tire-road friction and tire side-slip angles as 

shown in Figure 2 (Kin et al., 2003, pp. 71-79). BMW (Bavarian Motor Works) also 

introduced the DSC (Driving Stability Control) system to its 5-series in 1998. It creates a 

simulation model of the vehicle based on sensors monitoring speed of wheels, steering rate, 

lateral forces, yaw and pressure. Difference of actual behavior of the vehicle compared to 

the simulation model indicates understeering or oversteering which the DSC corrects 

(Leffler et al., 1998, pp. 1-3). 
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Figure 2. Honda VSA basic estimation logic (mod. Kin et al., 2003, p. 73). 

 

In 2001, BMW launched the Dynamic Drive in its 7-series. It is an active stabilizer bar 

system which prevents the vehicle from rolling in a corner in addition to yaw stabilization. 

Sensors are integrated to the Dynamic Drive's hydraulic valve block. They include lateral 

acceleration and steering angle sensors which are fed into a dynamic observer. The observer 

then predicts the stabilizing torque to be applied by the stabilizer bar on the suspension to 

counter the vehicle's rolling tendency (Strassberger and Guldner, 2004, pp. 28-29). 

 

As the trend in these commercialized control systems suggest, there is a shift from feedback 

control using sensors to prediction and control using simulations in these systems. The 

reason for that is higher accuracy and economical design. One of the key parameters to 

control stability while cornering is the tire-road force in lateral direction which simulation 

models can estimated. When a dynamic observer is added to the simulation model higher 

accuracy levels can be achieved in the estimation of lateral forces. There is a growing trend 

in research in this field as shown in Figure 3 which plots the number of research documents 

with the keywords "tire-force" and "estimation" from 1992 to 2018 found in the Scopus 
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database (Scopus, 2018). Figure 4 shows that most of these documents are conference papers 

and journal articles. 

 

 

Figure 3. Number of research documents with the keywords "tire-force" and "estimation" 

from 1992 to 2018 found in Scopus database (Scopus, 2018). 

 

 

Figure 4. Type of research documents with the keywords "tire-force" and "estimation" from 

1992 to 2018 found in Scopus database (Scopus, 2018). 
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Simulation models are developed by mathematically describing the dynamic vehicle motion 

with minimal input parameters. This motion is governed by equations of motion which are 

derived without prior knowledge of the tire and road conditions, vehicle parameters or even 

the driving forces. Only the geometric parameters of the vehicle which can be recorded with 

simple and inexpensive sensors are required for such models (Rajamani, 2014, pp. 1-11). 

Models with low complexity, like two-wheeled bicycle models can also be used as a starting 

point to develop kinematic models of complex vehicles. Wang and Qi (2001, pp. 3320-3325) 

use a "Bicycle model" to derive the kinematic model of a vehicle steered by four wheels and 

develop an algorithm to plan its trajectory. These advantages of simulation based predictive 

models have made them the highlight of ongoing research in the field of vehicle handling 

systems. 

 

1.2 Recent works 

Mathematical models used to determine tire-road forces have been a topic of extensive 

research for a long time. Bakker et al. (1987, pp. 190-204) mathematically represented the 

behavior of vehicle tires while cornering and braking. While the presented formula gives 

accurate side force, brake force and self-aligning torque characteristics, it requires many 

coefficients describing tire-road conditions to be measured. A TCS was designed by Lee and 

Tomizuka (2003, pp. 37-47) for longitudinal control considering the tire-road conditions 

explicitly. It was verified by a simulation model of a vehicle assuming the bicycle model 

(dynamics assumed to be identical on both sides of the vehicle) where experimental data 

from Bakker et al. (1987, pp. 190-204) was used in the tire models. The simulation used in 

Lee and Tomizuka (2003, pp. 37-47) is based on many assumptions and its accuracy is highly 

dependent on the tire model. Ono et al. (2003, pp. 1361-1370) proposed a friction force 

estimation method between the tire and road by estimating extended brake stiffness from the 

wheel velocities. The method was experimentally verified. Boukattaya et al. (2018, pp. 1-

28) achieved external force estimation of a mobile non-holonomic manipulator using only 

measurements of position and velocity from simple encoders. They developed an adaptive 

law for external force estimation using which trajectory control of the manipulator can also 

be achieved. A real-time estimator of vehicle velocity based on wheel velocity measurements 

and motor torque was developed by Nam et al. (2015, pp. 6820-6840) as part of a wheel slip 

control system. It uses a driving forces observer. Sanjurjo et al. (2018, pp. 210-228) 
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combined multibody simulations and indirect extended Kalman filters to develop state and 

force observers. These observers were implemented on multibody models of three and four 

bar mechanisms using position, velocity and acceleration sensors. 

 

There has been a steady growth in the use of observers, especially Kalman filters (Grewal et 

al., 1995, p. 1983), on multibody models of vehicles to derive tire-road forces. Ray (1995, 

pp. 117-124) implemented the extended Kalman filter in the estimation of lateral and 

longitudinal tire-forces and histories of state on a vehicle model having nine degrees of 

freedom without knowing the tire parameters or road properties. The Bicycle model as 

shown in Figure 5 was adopted for the four wheel vehicle neglecting roll of the vehicle and 

sensors like accelerometers, tachometers and rate gyroscopes were used. On application of 

the estimation method on a simulated braking system using simple slip control the Kalman 

filter appeared to be very effective in tire force estimation (Ray, 1995, pp. 117-124). Ray 

(1997, pp. 1819-1833) used extended Kalman-Bucy filter on a vehicle model having eight 

degree of freedom mounted with sensors estimating friction coefficient of the road, motion 

and tire-road forces on a surface of asphalt. In this method it is not required to know the road 

characteristics or even tire-force model beforehand. Verification of the method was done by 

comparison between simulation and field test data (Ray, 1997, pp. 1819-1833). Baffet et al. 

(2009, pp. 1255-1264) created an observer of sliding mode to calculate tire-road forces using 

which cornering stiffness and sideslip angle are estimated by an extended Kalman filter. The 

vehicle dynamic model is based on the bicycle model. The lateral and longitudinal 

acceleration, steering angle, yaw rate and angular velocities of the wheels are taken from 

sensors. A car with Correvit sensors for velocity and sideslip angle measurement and 

dynamometric hubs for actual force measurements was used to gather experimental data to 

compare with the estimations obtained. The results displayed the potential of two-block 

estimations - first block estimating tire-forces and second block using the forces in an 

adaptive tire-force model to estimate sideslip angles (Baffet et al., 2009, pp. 1255-1264). 

Doumiati et al. (2009, pp. 4804-4809) proposed and compared two observers using 

unscented Kalman filter and extended Kalman filter. The observers estimate lateral tire-road 

forces and sideslip angle. The experimental car's ABS system provided the lateral and 

longitudinal acceleration, steering angle, yaw rate, suspension deflection and angular 

velocities of the wheels as inputs to the dynamic model. Actual values of lateral tire-road 

forces and sideslip angle taken from Correvit sensors and dynamometric hubs validated the 
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observer estimations and showed the potential of observers to replace expensive sensors 

(Doumiati et al., 2009, pp. 4804-4809). Cho et al. (2010, pp. 638-649) developed an 

estimation strategy for lateral and longitudinal tire-road forces using a simplified wheel 

dynamics model in combination with a random-walk Kalman filter. Sensor measurements 

required in the model include brake pressure, wheel velocities, yaw rate, lateral and 

longitudinal acceleration. The steps involved are subsequent estimations of vertical tire-road 

force, shaft torque, longitudinal and lateral tire-road force and finally combined tire-force. 

Implementation of this estimator on a unified chassis control system showed good 

performance in simulation (Cho et al., 2010, pp. 638-649). 

 

 

Figure 5. Bicycle model adopted from four wheel model by assuming two wheels on the 

yaw plane (mod. Ray, 1995, p. 118). 

 

Researches have also been conducted to determine the practical use of force sensors in 

combination with observers and multibody models in commercial vehicles for tire-force 

estimation. Nam et al. (2012, pp. 1972-1985) and Nam et al. (2013, pp. 988-1000) developed 

novel methods of sideslip angle estimation that used a bicycle model for a four wheeled 

vehicle and a lateral force sensor called the Multisensing Hub (MSHub) invented by NSK 

(Nippon Seikō Kabushiki-gaisha) Ltd (NSK Ltd, 2014, pp. 21-22). While the method used 
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by Nam et al. (2012, pp. 1972-1985) also estimates the tire cornering stiffness and uses an 

extended Kalman filter technique, the method used by Nam et al. (2013, pp. 988-1000) also 

estimates roll angle and is based on the algorithm of recursive least squares combined with 

Kalman filter. The MSHub is a compact and low-cost sensor which calculates radial and 

axial loads by sensing the wheel revolution speeds. These sensor-based estimation methods 

performed better when compared to kinematics-based methods (Nam et al., 2012, pp. 1972-

1985). However, the feasibility of these sensor-based models have not been elaborately 

analyzed in these studies. 

 

Many other models have been developed aiming to achieve higher levels of accuracy of tire-

force estimations or targeting specific types of vehicles. Rezaeian et al. (2015, pp. 2231-

2241) proposed a tire-force estimator that is robust against variations in vehicle mass using 

unscented Kalman filter and extended random-walk Kalman filter. One observer for each 

wheel is used in the model which also estimates vehicle mass. This kind of estimator would 

be useful in transportation vehicles like trucks. Here again the vehicle was reduced to a 

bicycle model with sensor inputs of acceleration in all directions, driving and braking torque, 

wheel angular velocity and pitch, roll and yaw rates. The estimator was validated by 

performing critical maneuvers exciting lateral dynamics of an experimental vehicle with 

sensors. Errors between measured and estimated values of lateral tire-forces ranged from 

7.2% to 13.54% (Rezaeian et al., 2015, pp. 2231-2241). The novel method proposed by Jung 

and Choi (2018, pp. 2934-2944) focuses on tire-force estimations of all-wheel-drive vehicles 

simultaneously reflecting both slipping rates and clutch lockup. A bicycle model was used 

for the dynamics with a interacting multiple model filter. The model uses inputs like 

accelerations, torques and angular velocities of the wheels provided by the CAN (controller 

area network) bus of the vehicle. The proposed method was compared with a single model 

Kalman filter estimator and was proved to be robust against sensor noise (Jung and Choi, 

2018, pp. 2934-2944). 

 

The methods of tire-force estimation studied in the literature can be grouped into three 

categories – tire-force models that use road characteristics and tire parameters, simulation 

models in combination with state and force observers and sensor-based models in 

combination with state and force observers. Figure 6 outlines the basic structure of these 

methods. Determination of the accuracy of these methods would require an in-depth 
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analysis. However, methods using road and tire parameters have the obvious disadvantage 

of difficulty in measurement of the parameters while sensor-based models pose feasibility 

issues in commercialized vehicles. The use of simulations with observers comes out as the 

most appropriate alternative due to their capability to serve as virtual sensors. A virtual 

sensor measures an immeasurable quantity by feeding available measured quantities into a 

dynamic system model forming a closed loop observer (Doumiati et al., 2009, pp. 4804-

4809). The efficacy of these observers or virtual sensors depend highly on the accuracy of 

the system model. 

 

 

Figure 6. Basic structure of different tire-force estimation methods. 

 

In most of the simulation models referred above, four wheeled vehicles have been simplified 

into the bicycle model which brings both front wheels and both rear wheels into the yaw 

plane as one front wheel and one rear wheel. This model often includes assumptions like 

neglect of the roll motion which is crucial to four wheeled vehicle dynamics. Multibody 

models of actual bicycles, however, can include many dynamic properties for accurate 

simulation and the development of these models have been going on for over a century 

making current models highly evolved and realistic. The Whipple (1899, pp. 312-321) model 

which consists of four rigid bodies connected by three revolute joints – the front wheel, the 

handlebar, the rear frame and the rear wheel – is most commonly used in works related to 
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bicycle dynamics (Figure 7). Schwab et al. (2005, pp. 511-521) derived the linearized 

equations of motion of a bicycle using the Whipple model at high speed ranges to establish 

a benchmark. Limitations of this benchmark model were pointed out by Sharp (2008, pp. 1-

24) showing the loss of certain dynamic properties in the benchmark model due to its 

simplification. Dao and Chen (2012, pp. 853-868) used parameters from another benchmark 

model developed by Meijaard et al. (2007, pp. 1955-1982) representing a more realistic 

bicycle suitable for measuring dynamic data to design a non-linear dynamic model. In 2013 

Schwab and Meijaard (2013, pp. 1059-1090) tracked the numerous extensions to the 

Whipple model over the past decade aimed at correcting the rigid-rider bicycle model. The 

review noted the use of inverse dynamics in the development of controllers with state 

observers that can predict the vehicle's future motion based on current states (Schwab and 

Meijaard, 2013, pp. 1059-1090). 

 

 

Figure 7. Bodies in the Whipple bicycle model (Schwab et al., 2012, p. 1974). 

 

1.3 Motivation 

Since their conception, vehicle handling and stability systems like ESC have been expected 

to reduce a high percentage of road accidents. Real-life crash report data collected since their 

commercialization have outdone these expectations. Aga and Okada (2003, p. 7) observed 

the reduction of the rate of accidents in vehicles equipped with VSC by 35% for accidents 

involving single cars and by 30% for automobiles having head-on collisions in Japan. Dang 

(2004, p. 4) analyzed crash data from five states in the USA (United States of America) to 

evaluate the reduction caused by ESC in crashes involving single vehicle passenger cars as 
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35%, crashes involving single vehicle SUVs (Sports Utility Vehicle) as 67%, fatal crashes 

involving single vehicle passenger cars as 30% and fatal crashes involving single vehicle 

SUVs as 63%. Crash data of various car models equipped with ESC in Sweden was studied 

by Lie et al. (2004, pp. 37-41) who estimated the effectiveness of the ESC between 20% and 

40% and again by Lie et al. (2006, pp. 38-43) re-estimating the range as 13% to 35%. Both 

studies emphasize the positive effects of the ESC on icy road surfaces. 

 

Data recorded by the National Highway Traffic Safety Administration shows an increase of 

5.6% in the number of fatalities resulting from vehicle crashes in the USA from the year 

2015 to 2016 (National Highway Traffic Safety Administration, 2018, pp. 1-11). This is 

lower than the 7.2% increase of crashes from 2014 to 2015 (National Highway Traffic Safety 

Administration, 2016, pp. 1-11). So even though the number of accidents each year is 

increasing still, vehicle handling systems play a key role in reducing the percentage increase. 

The faster we improve these systems, the closer we get to actually decreasing the accident 

rate per year. This indicates the pressing need to develop enhanced tire-force estimation 

models that can help driver assistance systems in creating a safer road traffic environment. 

 

1.4 Objectives 

The objective of this study is to create a multibody model of a bicycle which for accurate 

estimation of tire-road forces using a minimal set of sensors. The objective also includes 

validation of this multibody bicycle model using an experimental bicycle equipped with 

sensors measuring the actual tire-road forces. 

 

The evident success of vehicle handling system is attributed to highly effective control 

algorithms and good quality data collection from sensors. Advancements in current stability 

systems can be achieved by making modifications in the control algorithms, building 

accurate dynamic models and by designing an observer that can reduce measurement errors 

to the maximum extent possible. This research work focuses on the second, that is, building 

an accurate dynamic model which can estimate tire-road forces of a vehicle on its own. 

 

1.5 Research questions 

Accuracy of tire-force estimations given by the multibody bicycle model will depend on how 

realistically the model is able to simulate the motion of the bicycle. As seen in the literature 
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review, many efforts have been put into improving the mathematical modeling of the bicycle 

dynamics so that a real human rider driving the bicycle can be mimicked. The method of 

designing the multibody system used in this research work involves the steps of coordinate 

selection, constraint modeling, kinematic analysis and finally the derivation of the equations 

of motion using inverse dynamic analysis. The solution of equations of motion can be 

obtained using different methods. Intricacies in each of these steps fine-tune the model 

towards a more realistic simulation of the system. 

 

Therefore, to ensure that the model proposed by this research fulfills the objectives, the 

following research questions should be answered: 

 

 What are the constraints that define the system? 

 What is the number of degrees of freedom of the system?  

 Why should inverse dynamics be used to derive the equations of motion of the 

bicycle?  

 What is the physical interpretation of the Lagrange multipliers? 

 

Answers to these questions will help the step by step formulation of a multibody bicycle 

model that can generate accurate estimations of the tire-road forces. This brings forward the 

main research question: Does the proposed bicycle model provide a starting point for four-

wheel vehicle tire-force estimators that could be feasible for application in commercialized 

vehicle handling systems? 

 

1.6 Scope 

The ultimate application of this research work is in vehicle handling systems used in four 

wheeled vehicles. However, the scope of this study only includes the development of a 

multibody bicycle model. Recent works reflect the common reduction of four wheeled 

vehicle models to the bicycle model for simplicity. The model devised in this study should 

serve as a starting point for a holistic four wheel vehicle tire-force estimator that may include 

an observer for error reduction. So the simulation of a realistic bicycle that can move in all 

directions, steer and lean as a rider may choose to sufficiently defines the scope. 
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Also included in the scope is the subsequent validation of the model by comparing estimated 

values of tire-road forces with actual forces experienced by the experimental bike setup. 
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2 BICYCLE MULTIBODY MODELING AND EXPERIMENTATION METHODS  

 

 

A step by step approach should always be taken while creating a multibody model. Figure 8 

shows the detailed steps taken in this research to model the bicycle. First the equations of 

motions are to be derived with the steps of coordinate selection, constraint definition, 

kinematic analysis and dynamic analysis. A numerical example of a three-dimensional disk 

rolling-without-slipping is to be solved first to ensure proper understanding of the holonomic 

and non-holonomic constraints related to rolling-without-slipping. Forward dynamics is to 

be applied to the rolling disk but the bicycle model requires inverse dynamics. The 

experimental bicycle is to be driven to obtain experimental data needed for inverse 

dynamics. Solution of the equations of motion would yield Lagrange multipliers which are 

to be carefully interpreted to identify the reaction force estimations. The experiment would 

also record the actual tire-force measurements which are to be compared with the reaction 

force estimations in order to validate the multibody model. 

 

 

Figure 8. Method used in this research work to model the bicycle. 
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2.1 Numerical Example: Three-dimensional disk rolling-without-slipping 

The system (Figure 9) consists of a thin disk which can roll over a smooth three-dimensional 

surface. It is a rigid body of infinitesimally thin cross-section of mass 𝑚𝑑𝑖𝑠𝑘, radius 𝑟𝑑𝑖𝑠𝑘 

with gravitational force 𝑔 acting in downward direction. It is rolling in the ⟨𝑋𝑌⟩  global 

plane.  

 

 

Figure 9. Three-dimensional disk rolling-without-slipping system and the coordinate 

systems selected. 

 

All positions and orientations have been described with reference to the global coordinate 

frame ⟨𝑋 𝑌 𝑍⟩. ⟨𝑋̅𝐴 𝑌̅𝐴 𝑍̅𝐴⟩ is the body frame of reference located at the disk’s center of mass 

with 𝑍̅𝐴 axis normal to the surface of the disk. The origin of ⟨𝑋̅𝐴 𝑌̅𝐴 𝑍̅𝐴⟩  is located at position 

𝑹𝐴𝑑𝑖𝑠𝑘
 in the global frame and 𝑨𝑑𝑖𝑠𝑘 is its rotation matrix. The coordinates together form the 

vector 𝒒𝑑𝑖𝑠𝑘 (Shabana, 2013, pp. 85-156): 

 

𝒒𝑑𝑖𝑠𝑘 = [𝑅𝐴𝑋𝑑𝑖𝑠𝑘
 𝑅𝐴𝑌𝑑𝑖𝑠𝑘  𝑅𝐴𝑍𝑑𝑖𝑠𝑘

𝜙𝑑𝑖𝑠𝑘 𝜃𝑑𝑖𝑠𝑘 𝜓𝑑𝑖𝑠𝑘]𝑇                  (1) 

 

where 𝑅𝐴𝑋𝑑𝑖𝑠𝑘
, 𝑅𝐴𝑌𝑑𝑖𝑠𝑘

 and 𝑅𝐴𝑍𝑑𝑖𝑠𝑘
 describe the Cartesian coordinates of the disk’s center 

of mass, 𝜙𝑑𝑖𝑠𝑘 is the angle of rotation of the disk’s body frame about the X-axis, 𝜃𝑑𝑖𝑠𝑘 is the 

angle of rotation of the disk’s body frame about the Y-axis, and 𝜓𝑑𝑖𝑠𝑘 is the angle of rotation 

of the disk’s body frame about the Y-axis. 
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The coordinates must satisfy a set of kinematic constraints. This system is subjected to three 

types of constraints – the contact constraint, which ensures that the disk always has a contact 

point with the ground, the rolling-without-slipping constraints, which ensure that the disk 

rolls without slipping, and the mobility constraint which ensures the forward motion of the 

disk. 

 

The position of any random point on the disk can be described in the body frame as (Shabana, 

2013, pp. 85-156): 

 

𝑼𝑝𝑑𝑖𝑠𝑘 = [ 𝑟𝑑𝑖𝑠𝑘 cos (𝜓𝑑𝑖𝑠𝑘) 0 −𝑟𝑑𝑖𝑠𝑘 sin (𝜓𝑑𝑖𝑠𝑘) ]𝑇                             (2) 

 

The global position of this point is given by (Shabana, 2013, pp. 85-156): 

 

𝒓𝑝𝑑𝑖𝑠𝑘 = 𝒒𝑑𝑖𝑠𝑘 + 𝑨𝑑𝑖𝑠𝑘𝑼𝑝𝑑𝑖𝑠𝑘                                                                              (3) 

 

For the point N (Figure 10) to maintain constant contact with the ground a holonomic contact 

constraint is required given by: 

 

𝐶1𝑑𝑖𝑠𝑘: [𝒓𝑝𝑑𝑖𝑠𝑘]
𝑍

= 0                                                                                                   (4) 

 

where the subscript Z denotes the third component of the vector. 
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Figure 10. Position of point of contact N between disk and ground. 

 

A rheonomic mobility constraint imposes the forward motion of the disk: 

 

𝐶2𝑑𝑖𝑠𝑘: 𝜓̇𝑑𝑖𝑠𝑘 −
𝑉𝑑𝑖𝑠𝑘

𝑟𝑑𝑖𝑠𝑘
𝑡 = 0                                                                                          (5) 

 

where t is time and 𝑉𝑑𝑖𝑠𝑘 is the forward velocity of the disk. 

 

The rolling-without-slipping constraints are the non-holonomic constraints that guarantee 

that distance covered by point N (Figure 10) while rolling must be equal to the distance 

covered by center of mass which is the condition of no slip. This constraint applies to 

velocities in both X and Y direction for which the constraints can be described as: 

 

𝐶𝑛ℎ1𝑑𝑖𝑠𝑘: 𝑅̇𝐴𝑋𝑑𝑖𝑠𝑘
− 𝑟𝑑𝑖𝑠𝑘𝜓̇𝑑𝑖𝑠𝑘 cos(𝜙𝑑𝑖𝑠𝑘) = 0                                               (6) 

 

𝐶𝑛ℎ2𝑑𝑖𝑠𝑘: 𝑅̇𝐴𝑌𝑑𝑖𝑠𝑘
− 𝑟𝑑𝑖𝑠𝑘𝜓̇𝑑𝑖𝑠𝑘 sin(𝜙𝑑𝑖𝑠𝑘) = 0                                                 (7) 

 

Therefore, for the disk the holonomic constraints vector 𝑪𝑑𝑖𝑠𝑘 and the non-holonomic 

constraints vector 𝑪𝑛ℎ𝑑𝑖𝑠𝑘 are as follows: 
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𝑪𝑑𝑖𝑠𝑘 = [
𝑅𝐴𝑍𝑑𝑖𝑠𝑘−

𝑟𝑑𝑖𝑠𝑘 sin(𝜃𝑑𝑖𝑠𝑘)

2
−

𝑟𝑑𝑖𝑠𝑘 sin(2𝜓𝑑𝑖𝑠𝑘+𝜃𝑑𝑖𝑠𝑘)

2

𝜓̇𝑑𝑖𝑠𝑘−
𝑉𝑑𝑖𝑠𝑘
𝑟𝑑𝑖𝑠𝑘

𝑡
] = 0                                  (8) 

 

𝑪𝑛ℎ𝑑𝑖𝑠𝑘 = [
𝑅̇𝐴𝑋𝑑𝑖𝑠𝑘−𝑟𝑑𝑖𝑠𝑘𝜓̇𝑑𝑖𝑠𝑘 cos(𝜙𝑑𝑖𝑠𝑘)

𝑅̇𝐴𝑌𝑑𝑖𝑠𝑘−𝑟𝑑𝑖𝑠𝑘𝜓̇𝑑𝑖𝑠𝑘 sin(𝜙𝑑𝑖𝑠𝑘)
] = 0                                                  (9) 

 

Six coordinates in vector 𝒒𝑑𝑖𝑠𝑘 describe the disk. Since there are two non-holonomic and 

two holonomic constraints the disk now has two degrees of freedom. The Jacobian matrix is 

obtained as: 

 

𝑪𝒒𝑑𝑖𝑠𝑘 =
𝜕𝑪𝑑𝑖𝑠𝑘

𝜕𝒒𝑑𝑖𝑠𝑘
=

[
0 0 0 0 1                                       0

0 0 1 0 𝑟𝑑𝑖𝑠𝑘 cos(2𝜓𝑑𝑖𝑠𝑘 + 𝜃𝑑𝑖𝑠𝑘) −
𝑟𝑑𝑖𝑠𝑘 cos(𝜃𝑑𝑖𝑠𝑘)

2
−

𝑟𝑑𝑖𝑠𝑘 cos(2𝜓𝑑𝑖𝑠𝑘+𝜃𝑑𝑖𝑠𝑘)

2

] = 0          (10) 

 

Baumgarte stabilization factors 𝛼𝐵 and 𝛽𝐵 were in the derivation of the equations of motion 

as Lagrange equations of the first kind (Goldstein, 2011, pp. 16-22) as follows: 

 

[
𝑴𝑑𝑖𝑠𝑘 𝑪𝒒𝑑𝑖𝑠𝑘

𝑇

𝑪𝒒𝑑𝑖𝑠𝑘 0
] [

𝒒̈𝑑𝑖𝑠𝑘

𝝀𝑑𝑖𝑠𝑘
] = [

𝑸𝑒𝑑𝑖𝑠𝑘 + 𝑸𝑣𝑑𝑖𝑠𝑘

𝑸𝑐𝑑𝑖𝑠𝑘
]                                                (11) 

 

where 𝑴𝑑𝑖𝑠𝑘 is the mass matrix of the disk, 𝝀𝑑𝑖𝑠𝑘 is the Lagrange multiplier for the disk, 

𝑸𝑐𝑑𝑖𝑠𝑘 is the product of the Jacobian matrix and accelerations of the disk, 𝑸𝑒𝑑𝑖𝑠𝑘 is the vector 

of generalized externally applied forces and 𝑸𝑣𝑑𝑖𝑠𝑘 is the quadratic velocity vector. The disk 

was simulated in MATLAB by introducing an initial velocity and a steering angle to check 

if the realistic behavior of a single wheel pushed to roll on a flat surface is simulated. 

 

2.2 Multibody model of the bicycle 

Escalona and Recuero (2012, pp. 383-402) designed a teaching course for multibody 

dynamics using a bicycle model simulation for engineering students. The Whipple bicycle 

multibody structure was used in which the body frame orientation and location were 

described by a minimal set of relative coordinates. Two holonomic constraints were used to 

describe the contact between the ground and the wheels. Four non-holonomic constraints 

described the condition of rolling-without-slipping for the wheels. The bicycle was driven 
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by a mobility constraint. Lagrange equations of the first kind (Goldstein, 2011, pp. 16-22)  

were used to derive the equations of motion as DAE (differential algebraic equations) and 

the system was subsequently transformed into an ODE (ordinary differential equation) 

system using the lean and steering angles as the independent coordinates. The model was 

successfully used to develop a real-time simulator used for educational purposes (Escalona 

and Recuero, 2012, pp. 383-402). 

 

As a continuation of the Escalona and Recuero (2012, pp. 383-402) multibody bicycle 

dynamics course model Escalona et al. (2018, pp. 1-23) extended the symbolic 

implementation of the Whipple model to kinematic simulation and inverse dynamic 

simulation. Instrumentation was described for the validation of the model created by 

Escalona and Recuero (2012, pp. 383-402) and further, the lean angle, the steering angle and 

the rolling angle of the rear wheel were experimentally measured to perform inverse dynamic 

simulations. The experimental results validated the simulations in some respects while in 

other respects they did not agree (Escalona et al., 2018, pp. 1-23). 

 

The Escalona et al. (2018, pp. 1-23) model of the bicycle was used as a basis for this research 

work. The developed model consists of a series of nine coordinates fulfilling a set of 

kinematic constraints. These coordinates include both dependent generalized and non-

generalized coordinates. These coordinates and constraint equations help derive the 

equations of motion in the form of DAE. As the model includes holonomic constraints, 

Lagrange equations of the first kind (Goldstein, 2011, pp. 16-22) are used such that the 

reaction forces can be interpreted from the Lagrange multipliers.  

 

2.3 Coordinate selection 

The four bodies in the model are the rear wheel (body i=2), the rear frame and rider (body 

i=3), the steering assembly (body i=4) and the front wheel (body i=5). The mass of each 

body i is 𝑚𝑖. Radius of the wheels is R. The wheels are of infinitesimally thin cross-section 

and are assumed to be rolling-without-slipping (Escalona and Recuero, 2012, pp. 383-402).  

 

The arbitrary positioning of the bicycle is shown in Figure 11. ⟨𝑋 𝑌 𝑍⟩ is the global frame of 

reference. Intermediate frames ⟨𝑥𝑖1 𝑦𝑖1 𝑧𝑖1⟩  and ⟨𝑥𝑖2 𝑦𝑖2 𝑧𝑖2⟩ are used to define the bicycle 

frame. The Z axis of the global frame ⟨𝑋 𝑌 𝑍⟩ is turned by angle 𝜙 to get intermediate frame 
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⟨𝑥𝑖1 𝑦𝑖1 𝑧𝑖1⟩. So axis 𝑥𝑖1 makes angle 𝜙 with axis X. The 𝑥𝑖1 axis of the first intermediate 

frame ⟨𝑥𝑖1 𝑦𝑖1 𝑧𝑖1⟩ is turned by angle 𝜃 to get the second intermediate frame 

⟨𝑥𝑖2 𝑦𝑖2 𝑧𝑖2⟩ which is located at the point of contact of the rear wheel with the ground C. So 

axis 𝑧𝑖2 makes angle 𝜃 with axis 𝑧𝑖1. Each body's own frame located at its respective center 

of mass 𝑮𝑖 at distance 𝒓̅𝐺𝑖
 from each other, is defined as ⟨𝑥𝑖  𝑦𝑖 𝑧𝑖⟩  where i is the body 

number. The 𝑦𝑖2 axis of the second intermediate frame ⟨𝑥𝑖2 𝑦𝑖2 𝑧𝑖2⟩  is turned by angle 𝜓 to 

get the body frame of the rear wheel ⟨𝑥2 𝑦2 𝑧2⟩ . So axis 𝑧2 makes angle 𝜓 with axis 𝑧𝑖2. The 

𝑦2 axis of the rear wheel body frame ⟨𝑥2 𝑦2 𝑧2⟩ is turned by angle 𝛽 to get the body frame 

of the rear frame and rider ⟨𝑥3 𝑦3 𝑧3⟩ . So axis 𝑧3 makes angle 𝛽 with axis 𝑧2. The 𝑧3 axis of 

the rear frame and rider body frame ⟨𝑥3 𝑦3 𝑧3⟩ is turned by angle 𝛾 to get the body frame of 

the steering assembly ⟨𝑥4 𝑦4 𝑧4⟩. So axis 𝑥4 makes angle 𝛾 with axis 𝑥3. The 𝑦4 axis of the 

steering assembly frame ⟨𝑥4 𝑦4 𝑧4⟩ is turned by angle 𝜖 to get the body frame of the front 

wheel ⟨𝑥5 𝑦5 𝑧5⟩. So axis 𝑥5 makes angle 𝜖 with axis 𝑥4. (Escalona and Recuero, 2012, pp. 

383-402) 

 

Figure 11. Description of bicycle model coordinates and frames (mod. Escalona and 

Recuero, 2012, p. 386). 
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The coordinates of the point of contact between the rear wheel and the ground and the angles 

by which the frames have been turned describe the global position and orientation of the 

bicycle. The selected coordinates are grouped together in the vector (Escalona et al., 2018, 

pp. 1-23):  

 

𝒒 = [𝑥𝐶  𝑦𝐶   𝜙 𝜃 𝜓 𝛽 𝛾 𝜖 𝜉]𝑇                                                      (12) 

 

Where 𝜖 is the front wheel rolling angle, 𝛾 is the steering angle, 𝛽 is the rear frame pitch 

angle, 𝜓 is the rear wheel rolling angle (pitch), 𝜃 is the lean (roll) angle, 𝜙 is the heading 

(yaw) angle, 𝑥𝐶 and 𝑦𝐶 describe the global position of point C in the ⟨𝑋𝑌⟩ plane and 𝜉 is the 

angle made by the radius containing point D (contact point between the front wheel and the 

ground) with the x-axis of the front wheel body frame (𝑥5).  

 

While all the other selected angles in the vector q represent rotations about the body frame 

axes as shown in Figure 11, 𝜉 is not a Cartesian coordinate defined with respect to any of 

the reference frames. It is defined with respect to a geometric feature which is the point of 

contact between the ground and the front wheel D. This makes 𝜉 a non-generalized parameter 

essential for the contact modelling of the bicycle wheels. This can be understood from the 

contact modelling implementation of Shabana and Sany (2001, pp. 183-204) in a multibody 

algorithm that can used for any general purpose. It highlights the necessity of mixed set 

containing both generalized and non-generalized coordinates in formulating the kinematic 

constraints that describe the contact between two surfaces. Only by solving this mixed set 

can the contact points be known during online simulation (Shabana and Sany, 2001, pp. 183-

204). 

 

The contact point D is unknown prior to performing positional analysis to the whole bicycle 

system making the parameter 𝜉 an unknown function of time. The position of the contact 

point D can be predicted after solving the coupled set of generalized coordinates and non-

generalized parameter given in vector q. Therefore, the parameter 𝜉 is a non-generalized 

parameter with no associated inertia forces. The geometric parameter 𝜉 and the system's 

generalized coordinates will be used to formulate the contact constraints. 
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2.4 Constraints 

The bicycle system is bound by three types of kinematic constraints - the contact constraints 

which ensure a contact point between the front wheel and the ground always, the rolling-

without-slipping constraints which ensure that both wheels roll without slipping on the 

ground, and the mobility constraint that guarantees forward velocity of the bicycle to be 

approximately constant always. 

 

The contact constraints are based on two conditions. First, the location of the point of contact 

on the wheel should be at the same spatial location as the point of contact on the ground. 

Second, the tangent at the point of contact of the wheel should be parallel to that at the point 

of contact on the ground. The coordinate selection ensures that these conditions are satisfied 

by the rear wheel (Escalona and Recuero, 2012, pp. 383-402). The position of any random 

point P on the front wheel is given by (Escalona and Recuero, 2012, pp. 383-402): 

 

𝒓̅5
𝑃 = [ 𝑅 cos (𝜉) 0 −𝑅 sin (𝜉) ]𝑇                                                           (13) 

 

where 𝜉 ∈ [0, 2π]  

 

The tangent vector at point P is given by (Escalona and Recuero, 2012, pp. 383-402): 

 

𝒕5
𝑃 =

𝜕𝒓̅5
𝑃

𝜕𝜉
= [ 𝑅 sin (𝜉) 0 −𝑅 cos (𝜉) ]𝑇                                                   (14) 

 

where 𝜉 ∈ [0, 2π] 

 

Therefore, the position and tangent vectors can be obtained as (Escalona and Recuero, 2012, 

pp. 383-402): 

 

𝒓𝑃(𝜉) = 𝒓𝐺5
+ 𝑨5𝒓̅5

𝑃                                                                                              (15) 

𝒕𝑃(𝜉) = 𝑨5𝒕5
𝑃                                                                                                    (16) 

 

where 𝜉 ∈ [0, 2π] 
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As the wheel is of infinitesimally thin cross-section the contact constraints at point of contact 

D can be written as: 

 

𝐶𝑐𝑜𝑛
1: [𝒓𝐷(𝒒, 𝜉)]𝑍 = 0                                                                                         (17) 

𝐶𝑐𝑜𝑛
2: [𝒕𝐷(𝒒, 𝜉)]𝑍 = 0                                                                                          (18) 

𝑪𝑐𝑜𝑛(𝒒) = 0                                                                                                       (19) 

 

where the subscript Z indicates the vectors’ third components. 

 

The contact constraints are scleronomic as there is no explicit appearance of time, and also 

holonomic because of no appearance of generalized velocities. 

 

The rolling-without-slipping constraints are based on the condition that the contact-point 

velocity must be zero. The rear wheel velocity is given by (Escalona and Recuero, 2012, pp. 

383-402): 

 

𝒗𝑐 = 𝒗𝐺2
+ 𝝎2 ∧ 𝒓𝐺2𝐶                                                                                    (20) 

 

where 𝒗𝑐 is the velocity of contact point C, 𝒗𝐺2
 is the velocity of center of mass of the rear 

wheel G2, 𝝎2 is the rear wheel angular velocity and 𝒓𝐺2𝐶 is the position of point C in the 

body frame of the rear wheel given by (Escalona and Recuero, 2012, pp. 383-402): 

 

𝒓𝐺2𝐶 = 𝑨𝑖2[0 0 −𝑅]𝑇                                                                                 (21) 

 

On evaluating the velocity 𝒗𝑐 we get (Escalona and Recuero, 2012, pp. 383-402): 

 

𝒗𝑐 = [
𝑥̇𝐶 − 𝑅 cos(𝜙)𝜓̇

𝑦̇𝐶 − 𝑅 sin(𝜙)𝜓̇
0

]                                                                                    (22) 

 

Therefore, for the rear wheel (body i= 2) the rolling-without-slipping constraints can be 

obtained as: 
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𝐶𝑟𝑤𝑠
1: 𝑥̇𝐶 − 𝑅 cos(𝜙)𝜓̇ = 0                                                                             (23) 

𝐶𝑟𝑤𝑠
2: 𝑦̇𝐶 − 𝑅 sin(𝜙)𝜓̇ = 0                                                                            (24) 

𝑪𝑟𝑤𝑠,2(𝒒, 𝒒̇) = 0                                                                                             (25) 

 

Similarly, for the front wheel (body i= 5) the rolling-without-slipping constraints can also 

be obtained using velocity of point D 𝒗𝐷 as: 

 

𝐶𝑟𝑤𝑠
3: [𝒗𝐷]𝑋 = 0                                                                                             (26) 

𝐶𝑟𝑤𝑠
4: [𝒗𝐷]𝑌 = 0                                                                                              (27) 

𝑪𝑟𝑤𝑠,5(𝒒, 𝒒̇) = 0                                                                                             (28) 

 

The rolling-without-slipping constraints are are non-integrable functions of 𝒒 and 𝒒̇ so they 

are non-holonomic. 

 

The Jacobian of the rolling-without-slipping constraints is (Escalona and Recuero, 2012, pp. 

383-402): 

 

𝑩𝑖 =
𝜕𝑪𝑟𝑤𝑠,𝑖

𝜕𝒒̇
                                                                                                      (29) 

 

where i=2,3,4,5. 

 

For the rear wheel (body i=2) the Jacobian of the rolling-without-slipping constraints can be 

evaluated as (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑩2 = [
1 0 0
0 1 0

0 −𝑅 cos(𝜙) 0
0 −𝑅 sin(𝜙) 0

0 0 0
0 0 0

]                                         (30) 

 

Now, the bicycle model is described using nine selected coordinates and subjected to six 

constraints. Therefore, the system has 9-6=3 degrees of freedom. 

 

The direct or forward dynamic analysis, without the use of experimental data, can now be 

performed using these constraints. But for the bicycle to be moving forward in this direct 



36 

 

dynamic simulation there needs to be a constraint that drives the bicycle forward. To 

establish this driving forward of the bicycle a mobility constraint containing forward velocity 

V has been imposed on the bicycle. This constraint can be written as (Escalona and Recuero, 

2012, pp. 383-402): 

 

𝜓̇ −
𝑉

𝑅
𝑡 = 0                                                                                                      (31) 

𝑪𝑚𝑜𝑏(𝑞, 𝑡) = 0                                                                                                (32) 

 

The mobility constraint is a rheonomic constraint because of explicit appearance of time. 

Later, when the dynamic coordinates driving the bicycle are experimentally obtained this 

constraint will be modified accordingly. 

 

The total set of constraints can be expressed as (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑪(𝒒, 𝒒̇, 𝑡) = [

𝑪𝑐𝑜𝑛(𝒒)
𝑪𝑟𝑤𝑠(𝒒, 𝒒̇)

𝑪𝑚𝑜𝑏(𝒒, 𝑡)

]                                                                                (33) 

 

2.5 Kinematics 

Based on the selected coordinates, each body frame’s position and orientation are obtained 

in the global frame as (Escalona et al., 2018, pp. 1-23): 

 

𝑹𝑖 = 𝑹𝑖(𝒒)                                                                                                         (34) 

𝑨𝑖 = 𝑨𝑖(𝒒)                                                                                                         (35) 

where i=2,3,4,5. 

 

The position of the center of gravity of the rear wheel (body i=2) is (Escalona and Recuero, 

2012, pp. 383-402): 

 

𝑹𝐺2

2 = 𝒓𝐶 + 𝑨𝑖2𝒓̅𝐺2

𝑖2 = [
𝑥𝐶

𝑦𝐶

0
] + [

sin(𝜙) sin(𝜃)

− cos(𝜙) sin(𝜃)
cos(𝜃)

] 𝑅                                              (36) 
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 The Jacobian matrices are symbolically computed as (Escalona et al., 2018, pp. 1-23): 

 

𝑯𝑖 =
𝜕𝑹𝑖

𝜕𝒒
                                                                                                              (37) 

𝑮̅𝑖 =
𝜕𝝎̅𝑖

𝜕𝒒̇
                                                                                                              (38) 

 

 where 𝝎̅ is the angular velocity vector and i=2, 3, 4, 5. 

 

Jacobian matrix of the rear wheel’s (body i=2) center of gravity’s position 𝑹𝐺2

2  with respect 

to q is given by (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑯2 = [
1 0 𝑅 cos(𝜙) sin(𝜃)

0 1 𝑅 sin(𝜙) sin(𝜃)
0 0 0

𝑅 sin(𝜙) cos(𝜃) 0 0

−𝑅 cos(𝜙) cos(𝜃) 0 0

−𝑅 sin(𝜃) 0 0

0 0 0
0 0 0
0 0 0

]            (39) 

 

Jacobian matrix of the orientation of the rear wheel (body i=2) with respect to q is given by 

(Escalona and Recuero, 2012, pp. 383-402): 

 

𝑮̅2 = [

0 0 − cos(𝜃) sin(𝜓)
0 0 sin(𝜃)

0 0 cos(𝜃) sin(𝜓)

sin(𝜓) 0 0
0 1 0

sin(𝜓) 0 0

0 0 0
0 0 0
0 0 0

]                       (40) 

 

The absolute velocity and angular velocity vectors are found as (Escalona et al., 2018, pp. 

1-23): 

 

𝒗𝐺
𝑖 = 𝑯𝑖(𝒒)𝒒̇                                                                                                     (41) 

𝝎̅𝐺
𝑖 = 𝑮̅𝑖(𝒒)𝒒̇                                                                                                     (42) 

 

 where i=2, 3, 4, 5. 

 

The velocity of the rear wheel’s (body i=2) center of gravity is given by the time derivative 

of (36) (Escalona and Recuero, 2012, pp. 383-402): 

 



38 

 

𝒗𝐺
2 = 𝑯2(𝒒)𝒒̇ = [

𝑥̇𝐶

𝑦̇𝐶

0

] + [

cos(𝜙) sin(𝜃) 𝜙̇ + sin(𝜙) cos(𝜃) 𝜃̇

sin(𝜙) sin(𝜃) 𝜙̇ − cos(𝜙) cos(𝜃) 𝜃̇

−sin(𝜃) 𝜃̇

] 𝑅                  (43) 

 

The Jacobian matrices obtained from these are (Escalona et al., 2018, pp. 1-23): 

 

𝒉𝑖 =
𝜕𝒗𝐺

𝑖

𝜕𝒒
                                                                                                              (44) 

𝒈̅𝑖 =
𝜕𝝎̅𝑖

𝜕𝒒
                                                                                                              (45) 

 

 where i=2, 3, 4, 5. 

 

The accelerations are found similarly as (Escalona et al., 2018, pp. 1-23): 

 

𝒂𝐺
𝑖 = 𝑯𝑖(𝒒)𝒒̈ + 𝒉𝑖(𝒒)𝒒̇                                                                                         (46) 

𝜶̅𝑖 = 𝑮̅𝑖(𝒒)𝒒̈ + 𝒈̅𝑖(𝒒)𝒒̇                                                                                                         (47) 

 

where i=2, 3, 4, 5. 

 

2.6 Dynamics 

For deriving the bicycle’s equations of motion first its kinetic energy, the vector of 

generalized gravity forces, the vector of generalized external forces, the generalized inertia 

forces and the quadratic velocity vector have to be computed. 

 

The sum of the bicycle's translational kinetic energy and rotational kinetic energy gives its 

total kinetic energy (Shabana, 2013, pp. 85-156): 

 

𝑇 = ∑
1

2
[𝑚𝑖(𝒗𝐺𝑖

)𝑇𝒗𝐺𝑖
+ (𝝎̅𝑖)𝑇 𝑰̅𝑖𝝎̅𝑖]5

𝑛=2                                                              (48) 

 

where 𝑚𝑖 is the mass and 𝐼 𝑖̅ is the inertia of each body. Substituting 𝑣𝐺𝑖
 and 𝜔̅𝑖 from (41) 

and (42) we obtain the kinetic energy in compact form as (Escalona and Recuero, 2012, pp. 

383-402): 
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𝑇 =
1

2
𝒒̇𝑇𝑴𝒒̇                                                                                                        (49) 

 

where M is the mass matrix given by (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑴 = ∑ [𝑚𝑖𝑯𝑖𝑇
𝑯𝑖 + 𝑮̅𝑖𝑇

𝑰𝑖𝑮̅𝑖]5
𝑛=2                                                                     (50) 

 

The vector of generalized external forces can be written as (Escalona and Recuero, 2012, pp. 

383-402): 

 

𝑸𝑒𝑥𝑡 = [𝐹𝑥𝐶 𝐹𝑦𝐶 𝑀𝜙 𝑀𝜃 𝑀𝜓 𝑀𝛽 𝑀𝛾 𝑀𝜖 𝑀𝜉]                             (51) 

 

where each element is the force or moment associated with a specific coordinate denoted in 

the subscript. Here 𝑀𝜉 = 0 as 𝜉 is a non-generalized coordinate which does not contribute 

to the velocities of the bicycle (Escalona and Recuero, 2012, pp. 383-402). 

 

The virtual power of the gravity forces is derived to obtain the vector of generalized gravity 

forces. The virtual magnitude of this power is given by (Escalona and Recuero, 2012, pp. 

383-402): 

 

𝑊̇𝑔𝑟𝑎𝑣
∗ = ∑ 𝑷𝑖𝑇

𝒗𝐺𝑖

∗5
𝑛=2 = (∑ 𝑷𝑖𝑇

𝑯𝑖5
𝑛=2 ) 𝒒̇                                                                 (52) 

 

where the superscript * indicates virtual magnitude and 𝑃𝑖 is the weight vector of body i 

given by (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑷𝑖 = [0 0 −𝑚𝑖𝑔]                                                                                         (53) 

 

Therefore, the vector of generalized gravity forces is obtained as (Escalona and Recuero, 

2012, pp. 383-402): 

 

𝑸𝑔𝑟𝑎𝑣 = (∑ 𝑯𝑖𝑇
𝑷𝑖5

𝑛=2 )                                                                                       (54) 
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The generalized inertia forces can be obtained by (Escalona and Recuero, 2012, pp. 383-

402): 

 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝒒̇
) = 𝑴𝒒̈ + 𝑴̇𝒒̇                                                                                                (55) 

 

𝜕𝑇

𝜕𝒒
=

1

2

𝜕(𝑴𝒒̇)

𝜕𝒒
𝒒̇                                                                                                             (56) 

 

The inertia forces comprise of forces quadratic with respect to the system velocities and 

those that are proportional to the system accelerations. This quadratic velocity vector is 

expressed as (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑸𝑣 = −𝑴̇𝒒̇ +
1

2

𝜕(𝑴𝒒̇)

𝜕𝒒
𝒒̇                                                                                       (57) 

 

The bicycle’s equations of motion are derived in the form of Lagrange equations of the first 

kind (Goldstein, 2011, pp. 16-22) as (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝒒̇
) −

𝜕𝑇

𝜕𝒒
+ 𝑫ℎ

𝑇𝝀 = 𝑸𝑣 + 𝑸𝑔𝑟𝑎𝑣 + 𝑸𝑒𝑥𝑡                                                      (58) 

 

where 𝑫ℎ is the Jacobian of the holonomic constraints and 𝝀 is the vector of Lagrange 

multipliers. 

 

When the vectors are substituted in the above equation, the equations of motion becomes 

(Escalona and Recuero, 2012, pp. 383-402): 

 

𝑴𝒒̈ + 𝑫ℎ
𝑇𝝀 = 𝑸𝑣 + 𝑸𝑔𝑟𝑎𝑣 + 𝑸𝑒𝑥𝑡                                                                            (59) 

 

2.7 Reaction forces 

The second term in the equation of motion indicates the vector of generalized reaction forces 

𝑸𝑟𝑒𝑎𝑐 which appears in the system because of the constraints. The Lagrange multipliers are 

used to calculate this vector and to indicate the reaction forces while the Jacobian of all the 
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constraints indicates the location and orientation of all the reaction forces. The Jacobian of 

all the constraints is given by (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑫ℎ = [

𝑪𝒒
𝑐𝑜𝑛

𝑪𝒒
𝑟𝑤𝑠

𝑪𝒒
𝑚𝑜𝑏

]                                                                                                        (60) 

 

Using the Jacobian matrix 𝑫ℎ and the Lagrange multipliers, the vector of generalized 

reaction forces can be evaluated as (Escalona and Recuero, 2012, pp. 383-402): 

 

𝑸𝑟𝑒𝑎𝑐 = −𝑫ℎ
𝑇𝝀                                                                                                    (61) 

 

2.8 Experimental setup 

The model is validated by a bicycle equipped with sensors to gather data that was used by 

Escalona et al. (2018, pp. 1-23). The sensors are used to track the actions taken by the cyclist 

and measure the actual tire-road forces. Therefore, the main objectives of the experiments 

are to gather sensor data for inverse dynamic analysis and to validate the obtained reaction 

forces experimentally. The experimental setup is shown in Figure 12. 
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Figure 12. Bicycle experimental setup. 

 

The coordinates that need to be measured from the experiment are the steering angle 𝛾, the 

rear frame rolling angle 𝜓 and the lean angle 𝜃, which together form the dynamic coordinates 

of the system. To measure these angles during the bike ride data-acquisition system 

consisting of an Arduino Due board, a Raspberry Pi 3 computer and some sensors has been 

installed in the bicycle. Communication between the data-acquisition system and the user or 

“client” is through Wi-Fi. The data is then processed by the “client” and a visualization of 

the bicycle motion is created on a laptop or smartphone. The setup also includes an IMU 

(Inertial Measurement Unit). It consisting of a three axis digital accelerometer and gyroscope 

to measure the acceleration and angular velocity of the rear frame. The specifications of all 

the sensors are given below in Table 1. (Escalona et al., 2018, pp. 1-23.) 
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Table 1. Sensor specifications (Escalona et al., 2018, pp. 13). 

Sensor Model Name Range Measures 

IMU BMI160 

- Selectable angular velocity 

range ±125, ±250, ±500, 

±1000, ±2000°/s 

- Selectable accelerations range 

±2, ±4, ±8, ±16 g  

Accelerations 

and angular 

velocity 

Inclinometer G-NSDOG2-001 Range ±20°  Lean angle θ 

Encoders 
LPD3806-

600BM-G5-24G 
2400 pulses/rev 

Rolling angle ψ 

and steering 

angle γ 

 

The rolling angle is measured by the rotary encoder in the rear wheel and the steering angle 

is measured by the one in the steering assembly. This results in the measured rolling angle 

ψ being affected by the rear frame pitch angle β. However, as ψ is a large angle and β is 

changing slightly, the measured angle ψ is considered to be a good estimate. (Escalona et 

al., 2018, pp. 1-23.) 

 

The Arduino board is connected to all the sensors. The Raspberry Pi 3 is required for data 

sampling critical to time and communication with smart phone or laptops through Wi-Fi. 

The other quantities to be measured from the experiments are the actual tire-road forces. For 

the force measurements, the bike has been equipped with four strain gauges on the front 

wheel fork to measure these forces. (Escalona et al., 2018, pp. 1-23.) 

 

2.9 Inverse dynamic analysis 

From the experiments, the steering angle, the lean angle and the rolling angle of the rear 

wheel at every time step are recorded as the cyclist rides the bike. These angles are the 

dynamic coordinates obtained from the experiment which describe the cyclists actions. 

Earlier, for the forward dynamics the mobility constraint had been defined by imposing an 

approximately constant forward velocity on the bicycle. With the help of the experimental 

data the mobility constraint can now be redefined to take into account the cyclist's actions 

and create an inverse dynamic simulation mimicking the exact movements in the experiment. 

The mobility constraint can now be rewritten as (Escalona et al., 2018, pp. 1-23): 
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𝑪𝑚𝑜𝑏(𝒒, 𝑡) = [
𝜃
𝜓
𝛾

] − [
𝜃𝑒𝑥𝑝

𝜓𝑒𝑥𝑝

𝛾𝑒𝑥𝑝
] = 0                                                                           (62) 

 

where 𝜃𝑒𝑥𝑝is the experimental lean angle, 𝜓𝑒𝑥𝑝 is the experimental rolling angle of the rear 

wheel and 𝛾𝑒𝑥𝑝 is the experimental steering angle.  

 

Nine coordinates now described the bicycle which is subjected to nine constraints (two 

holonomic constraints, four non-holonomic constraints and three mobility constraints). This 

gives the system 9-9=0 degrees of freedom. The simulation model’s time step must match 

the sampling period of the sensors. As the mobility constraint is time dependent, its time 

derivative can be augmented with the Jacobian of the other constraints as (Escalona et al., 

2018, pp. 1-23): 

 

[

𝑪𝒒
𝑐𝑜𝑛

𝑪𝒒
𝑟𝑤𝑠

𝑪𝒒
𝑚𝑜𝑏

] 𝒒̇ + [
0
0

𝑪𝑡
𝑚𝑜𝑏

] = 𝑫ℎ𝒒̇ + 𝑬 = 0                                                                  (63) 

 

where 𝑫ℎ is the coordinate-dependent term, E is the time dependent term and the time 

derivative of the mobility constraint is given by (Escalona et al., 2018, pp. 1-23): 

 

𝑪𝑡
𝑚𝑜𝑏 = [

𝜃̇𝑒𝑥𝑝

𝜓̇𝑒𝑥𝑝

𝛾̇𝑒𝑥𝑝

]                                                                                                 (64) 

 

The equation of motion (59) can now be written as (Escalona et al., 2018, pp. 1-23): 

 

[
𝑴 𝑫ℎ

𝑇

𝑫ℎ 0
] [

𝒒̈
𝝀

] = [
𝑸𝑣 + 𝑸𝑔𝑟𝑎𝑣 + 𝑸𝑒𝑥𝑡

−𝑫ℎ𝒒̇̇ − 𝑬̇
]                                                                 (65) 

 

2.10  Understanding the Lagrange multipliers 

On solving the equation of motion (65) using MATLAB the vector Lagrange multipliers can 

be obtained. The first Lagrange multiplier 𝜆1 is associated with the first contact constraint. 
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its physical interpretation is the normal contact force acting on the front wheel in opposite 

direction. There are no Lagrange multipliers for the rear wheel normal forces as there are no 

constraints associated with it (Escalona et al., 2018, pp. 1-23). The second Lagrange 

multiplier is always zero as it is associated to the tangential displacement of the front wheel 

(Schwab, 2014, pp. 22-27). Lagrange multipliers 𝜆3, 𝜆4, 𝜆5 and 𝜆6 are related to the non-

holonomic rolling-without-slipping constraints. They indicate the components of the lateral 

and longitudinal contact forces acting on the wheels. Lagrange multipliers 𝜆7, 𝜆8 and 𝜆9 

associated with the mobility constraints can be interpreted as the generalized forces required 

to drive the respective movements in opposite direction (Escalona et al., 2018, pp. 1-23). 

The contact forces can now be compared to the actual forces obtained from strain gauges in 

the experimental measurements to validate them. (Escalona et al., 2018, pp. 1-23.)  
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3 SIMULATION RESULTS AND ANALYSIS 

 

 

The complete modeling method explained in the previous chapter was implemented in 

MATLAB to simulate the bicycle and obtain the Lagrange multipliers. Before that the 

numerical example of the simple rolling disk problem was tried out using the same method. 

The rolling disk was simulated using forward dynamics. But for the bicycle simulation the 

experimental bike was driven to obtain the variables required for inverse dynamic simulation 

and thereafter, the Lagrange multipliers were interpreted as the associated forces. 

 

3.1 Simulation of disk rolling-without-slipping 

The single-disk system was simulated by using the derived equations of motion as shown in 

Figure 13 with the parameters given in Table 2. 

 

 

Figure 13. Simulation of rolling disk. 
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Table 2. Rolling disk simulation parameters. 

Radius of disk, r 0.5 m 

Mass of disk, m 10 kg 

Acceleration due to gravity, g 9.81 m/s2 

Forward velocity, V 20 m/s 

Baumgarte stabilization factor, 𝛼𝐵 1 

Baumgarte stabilization factor, 𝛽𝐵 1 

 

The trajectory of the disk when plotted for a span of 5 seconds is shown in Figure 14. 

 

 

Figure 14. Trajectory of rolling disk. 

 

The disk is seen to be rolling in the simulation on the ⟨𝑋𝑌⟩ plane according to the given 

variables. The disk rolls forward, steers slightly left and eventually falls face flat on the 

ground. The results give an accurate description of the behavior of the disk comparable to a 

coin rolled on the surface of a table. This example shows that systems with a combination 

of holonomic and non-holonomic constraints can be realistically modeled using this method. 
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3.2 Sensor calibration 

The sensors in the bicycle experimental setup were first calibrated. The calibration steps of 

the inclinometer was programmed into the Arduino Due board. It was done by tilting the 

bike in all directions to the maximum extent while the program collected the maximum 

angles to calibrate the sensors. The rotary encoders were also calibrated through the Arduino 

program using the minimum and maximum sensor readings. The calibration of the strain 

gauges was more complex. Calibration needed to be done for forces in all three directions - 

normal, lateral and longitudinal. The tire-forces in lateral direction are of prime focus. 

Therefore the contact-point between the front wheel and the ground was first marked. Then 

the bicycle fork was disassembled out of the bicycle frame and supported on a vice 

horizontally. Various known loads were hung at the marked wheel-ground point of contact 

as shown in Figure 15. The readings for four strain gauges (front left, rear left, front right, 

rear right) were taken for loads ranging from 0-70.9N. The wheel was held horizontally and 

loaded – once with right side up and once with left side up. Each load (objects of different 

weights) was loaded and unloaded a few times for different sets of same load readings 

(loading and unloading cases). 20 samples were taken for every reading corresponding to 

each load. 

 

 

Figure 15. Strain gauge calibration setup. 

 

The plot of readings from the front left strain gauge against applied loads when the right side 

of the wheel was facing up is shown in Figure 16. Ideally the plot should be stepped, 

increasing/decreasing with each load. Although the overall slope can be seen as 

increasing/decreasing in some of the plots it is not increasing/decreasing with every different 
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load. Plots for the other gauges show similar results. So it can be said that the readings are 

not accurate. In some cases lower loads display higher readings and vice versa. Precision is 

low as there are large variations in readings for same load. The gauge is not sensitive enough 

as there is small difference in readings for different loads.  

 

 

Figure 16. Front left strain gauge readings plotted against applied loads. 

 

Figure 17 shows a more detailed plot of the 20 samples taken for the front left gauge in the 

first set of loading when the right side of the wheel was facing up. It is evident from the plot 

that the readings for different loads are overlapping with each other heavily. There is too 

much noise in the signal to get steady values for each load that could be differentiated from 

one another. 

 

 

Figure 17. Plot of the 20 samples taken for the front left gauge in the first set of loading 

when the right side of the wheel was facing up. 
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The reason behind these erroneous readings is the position and alignment of the strain gauges 

which are optimal for normal force readings. The gauges are also capable of measuring 

longitudinal forces with proper amplification. But they have no sensitivity in the direction 

of the lateral forces. Since the most important values to be measured for this study are the 

lateral forces, more strain gauges are required with proper placement so that even small 

values of forces can be measured in the lateral direction. Assuming the fork as a cantilever 

beam, the value of strain at the bottom of the steerer tube where the fork splits was calculated 

for a load of 70.9N. This is the location where the bending moment will be maximum and 

result in maximum strain. The value came out to be 4.67E-7 which is an extremely small 

value. While it is within the measurable range of the strain gauges, one-fifth of the output 

signal from the analog to digital converter for this small a value is expected to be noise. This 

would result in unreliable results again. Therefore, simply placing new strain gauges would 

not solve the calibration problem. Some modifications need to be made to the bicycle fork 

to reduce the stiffness and maximize the measurable strain.  

 

The modifications planned for the fork are shown in Figure 18. The steerer tube is to be cut 

right above the fork blades. A rectangular block is to be welded into the steerer tube joining 

the cut parts. Strain gauges are to be installed on the sides of this block to obtain better 

readings. However, these modifications have been moved out of the scope of this research 

work. As the most important lateral tire-forces cannot be measured the forces estimated by 

the inverse dynamic simulation will not be validated. The estimations will be analyzed to 

understand if they are realistic. 
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Figure 18. Modification plan for bicycle fork. The original fork is on the left and the 

proposed modified fork is on the right. 

 

3.3 Inverse dynamic simulation 

To obtain the dynamic coordinates of the bicycle for inverse dynamic simulation the bicycle 

was taken for a ride during which data from the rotary encoders and the inclinometer were 

recorded. This experimental data was obtained from Escalona et al. (2018, pp. 1-23). The 

IMU data was not used since its purpose is only to validate the kinematic analysis which is 

not within the scope of this study.  

 

Figure 19 shows the trajectory of the contact-point between the ground and the rear wheel 

on the ⟨𝑋𝑌⟩  plane. As reflected by the plot, the bicycle was driven straight for a short while 

and then turned slightly left. The rider then makes a sharp U-turn towards the left. Then, 

after going straight for a short while the rider again takes a sharp U-turn towards the left and 

stops. 
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Figure 19. Trajectory of the contact-point between the ground and the rear wheel labelled 

with corresponding time. 

 

The rider and bicycle model was simulated for this ride using inverse dynamic analysis with 

the obtained angles of lean, roll and steer. Acting as the driving actions taken by the rider 

these inputs yield the position of the whole bicycle model for the whole ride. The rider starts 

out on a straight path and turns slightly left at time 12 seconds. He then takes a U-turn from 

time 17 to 21 seconds. At time 26 seconds he slows down for a second U-turn which starts 

at time 28 and ends at 33 seconds. After that he brakes and stops the bike at time 37 seconds. 

This was seen in the form of an animation an image of which at time 19 seconds is shown in 

Figure 20. The simulation looks realistic and is an accurate reproduction of the path taken 

by the rider. The animation shows the rider going straight and making two sharp U-turns as 

corroborated by the rear wheel trajectory. 
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Figure 20. Image of bicycle ride simulation taken at time 19 seconds when the rider is taking 

the first U-turn. 

 

3.4 Driving forces 

The Lagrange multiplier 𝜆9 represents the driving forces associated with the mobility 

constraint for steering angle. This means that 𝜆9  gives the values for steering torque. Figure 

21 shows the plot for steering torque over time. From the beginning of the ride to time 17 

seconds the steering torque fluctuates around zero due to natural wobbling of the steering 

assembly for stability. It rises after that as the bicycle turns left up to 9Nm until time 21 

seconds following which the rider takes a straight path again. Consequently, the fluctuation 

about zero reappears until at time 28 seconds the rider makes a U-turn again raising the 
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steering torque to 7Nm. This shows that the behavior of the steering torque simulated by the 

model accurately represents the rider's behavior. 

 

 

Figure 21. Plot of steering torque over time. 

 

The Lagrange multiplier 𝜆8  represents the driving forces associated with the mobility 

constraint for the rear wheel roll angle. This implies that 𝜆8 indicates values for pedaling 

torque. Figure 22 shows the plot for pedaling torque over time. It is difficult to speculate the 

behavior of pedaling torque applied by the rider by knowing the path alone. However, the 

small spike in the torque at the beginning of the ride clearly indicates the torque applied to 

start the bike. For the most part the pedaling toque is positive, because of the rider's need to 

pedal to keep the bike running. When the rider takes the first U-turn at time 17 seconds a 

sudden and brief drop in the pedaling torque is noticed as the rider slows down for the turn. 

Again at time 26 seconds the pedaling torque starts dropping as the rider slows down for the 

second U-turn. Towards the end of the ride at time 33 seconds there is an even sharper drop 

due to braking torque following which there is slight pedaling and braking again. This is due 

to the rider pressing the brakes twice to stop the bike. 
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Figure 22. Plot of pedaling torque over time. 

 

The Lagrange multiplier 𝜆7 represents the forces associated with the mobility constraint for 

the rear wheel lean angle. This implies that 𝜆7 indicates the values for leaning torque. 

Escalona et al. (2018, pp. 1-23) consider this Lagrange multiplier to be proof that this bicycle 

model is not an accurate representation of the real ride because the model cannot describe 

relative leaning between the rider and the bicycle frame and so 𝜆7 cannot depict the leaning 

torque. However, Kooijman et al. (2011, pp. 339-342) have investigated the reasons for 

stability of a bicycle noting that leaning can induce steering in a bike and how riders often 

use leaning as a way to steer when riding hands-free. This indicates possible application of 

leaning torque by the rider to balance the bike by inducing steering. Since the application of 

leaning torque by the rider cannot be characterized by taking note of the path or even by 

experimental measures, the estimated leaning torques have no meaning in this study. 

 

3.5 Tire-road forces 

The Lagrange multipliers 𝜆1, 𝜆3, 𝜆4, 𝜆5 and 𝜆6 give us the values of the tire-road forces. The 

reaction forces acting on the tire of any vehicle are shown in Figure 23. The estimation of 

these forces for the bicycle is the main result of this research work. 
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Figure 23. Reaction forces acting on the tire (mod. Rajamani, 2014, p. 356). 

 

The Lagrange multiplier 𝜆1 is associated with the first contact constraint applied to the front 

wheel which represents the tire-force at the front wheel in normal direction. Figure 24 shows 

the plot of this normal-tire force with time. The force fluctuates around 200N indicating the 

part of the weight of the cyclist and bike that is borne by the front wheel. The U-turns have 

been taken from time 17 to 21 seconds and from time 28 to 33 seconds. During these U-turns 

the rider slows the bike down. The rider also applies the brake at the end of the ride at time 

33 seconds to stop the bike. The normal tire forces can be seen to rise during these U-turns 

and again more sharply at the end of ride. These increases in the normal tire-forces relate to 

braking situations when greater portion of the load is shifted to the front wheel. 
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Figure 24. Plot of normal tire-force at the front wheel over time. 

 

The longitudinal tire-forces acting on the rear wheel are given by 𝜆3 and those acting on the 

front wheel are given by 𝜆5 as these Lagrange multipliers are related to the rolling-without-

slipping constraints. They have been plotted against time in Figure 25. The longitudinal 

forces depend on the tire-road friction coefficient, normal tire-force and the longitudinal slip 

ratio (Rajamani, 2014, pp. 1-11). As this model is based on rolling-without-slipping 

constraints with no change in the experimental ride surface friction, the longitudinal forces 

are dependent on the normal forces alone. This is reflected in the obtained plot as the 

longitudinal forces fluctuate around zero while the path is straight and rise or fall when the 

rider takes U-turns which is the time when the normal forces rise due to braking. The U-

turns are depicted in the longitudinal force plot as successive rise and fall or vice versa for 

each U-turn. This is because the forces are obtained in the global frame and as the rider takes 

a U-turn the direction of the longitudinal forces become opposite. 
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Figure 25. Plot of the front and rear wheel longitudinal tire-forces over time. 

 

The Lagrange multipliers 𝜆4 and 𝜆6 represent the rear wheel lateral tire-forces and the front 

wheel lateral tire-forces, respectively as these Lagrange multipliers are related to the rolling-

without-slipping constraints. Figure 26 shows the plot of these forces against time. The 

lateral forces experienced by both wheels are similar except for a spike in the rear wheel 

lateral force towards the end of the ride. This is an effect of the braking torque experienced 

in the form of lateral force by the rear wheel due to braking in the turning position. The 

remaining plot shows the fluctuation about zero for the straight path during which there is 

no lateral force because the rolling-without-slipping constraints eliminate the sideslip 

phenomenon. Even in the experiment there is no sideslip expected as the tire-road conditions 

are not slippery. During the U-turn the lateral tire-forces rise and fall or vice versa due to 

centrifugal and Coriolis forces. There is an additional drop before the second U-turn starting 

at time 26 seconds induced by the slight steering before the U-turn as seen in the rear wheel 

trajectory (Figure 19). The U-turns are described by a combination of rise and fall in the 

magnitude of the Lagrange multipliers because just like the longitudinal forces, the lateral 

forces are also obtained in the global frame resulting in a sign change during U-turns. 
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Figure 26. Plot of front and rear wheel lateral tire-forces over time. 
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4 DISCUSSION 

 

 

A multibody bicycle model has been used in this research work to estimate the tire-forces 

through Lagrange multipliers obtained from inverse dynamic analysis. The bicycle model 

was designed using rolling-without-slipping constraints and is meant to provide a starting 

point for simulation models of four-wheeled vehicles that can estimate tire-forces for vehicle 

handling and stability systems. 

 

The results obtained with this model are the driving forces and the tire-road forces. The 

driving forces comprise of the steering torque, pedaling torque and the leaning torque. Both 

steering torque and pedaling torque accurately represent the rider's actions. However, the 

interpretation of the leaning torque is unclear. The tire-road forces are the most important 

results of this study. The only factor affecting the longitudinal forces is the normal tire-force 

and their behavior correspond to each other. The lateral tire-forces also relate to the turning 

of the bicycle and is sensitive to cornering in even small curvatures. These tangential forces, 

however, do not account for the effects of slipping and as the model is designed for rolling-

without-slipping. 

 

The tire-road forces obtained in this study are highly relevant to stability systems for 

bicycles. Such systems are useful for electric bikes, bikes for elderly people and other 

advanced bicycle applications. Good estimations have been achieved with simple and 

inexpensive sensors, making this a viable option for commercial application. The additional 

results of driving forces can also be useful as they provide information that the riders might 

be interested in. 

 

Some of the assumptions made in the model, though, reduce its applicability to vehicle 

handling systems. The first such assumption is the knife-edge wheel that makes point contact 

with the ground. In a realistic tire model, especially car tires, there is a whole patch of area 

that makes contact with the ground. A surface contact model is required to make this model 

more realistic. The second assumption is the lack of slipping phenomenon. In a realistic 

vehicle, the slipping is an important factor in the variation of tire-forces and a major cause 

of stability issues which calls for stability control systems. By making the assumption of 
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rolling-without-slipping the efficacy of the model during slipping of the wheels cannot be 

analyzed. Experimental validation, which was initially planned within the scope of this 

research, was not performed because of which the level of accuracy achieved by the model 

could not be judged. 

 

Although there are some shortcomings of this model, the main objective of this study, which 

was to create a multibody model of a bicycle which can accurately estimate the tire-road 

forces using a minimal set of sensors, has been achieved. The results and analysis reveal how 

the patterns of tire-road forces estimated co-relate to the factors affecting them. The sensors 

used were the most basic compared to sensors used in current commercialized systems and 

research work in this area. This bicycle model is definitely a starting point for developing 

more complex and realistic models of four-wheeled vehicles that can eventually be applied 

to commercial vehicle handling systems. 

 

In the future, the tire-force estimations made by this bicycle model must be experimentally 

validated by modifying the bicycle to get accurate and precise strain gauge readings. The 

assumptions in the model should be removed for a more realistic simulation. This primarily 

includes replacing the rolling-without-slipping constraints with constraints accounting for 

sideslip and longitudinal slip. Another important aspect is to introduce a surface contact 

model instead of point contact using voluminous wheels so as it to make it resemble four-

wheeled vehicles more. After making these modification to the simulation model, it should 

be experimentally verified by riding the bicycle on roads having variable road friction. The 

robustness of the model against changes in tire-road parameters is an important factor in this 

topic of research. Once a bicycle model that simulates realistic behavior of the bike using 

just the minimal set of sensors as used here against varying outside parameters is developed 

it has to be expanded into a four-wheel vehicle model. An observer using Kalman filter can 

then be combined with it to act as a virtual sensor. Therefore, the future scope of this research 

work can be listed as follows: 

 

1. Experimental validation of tire-force estimations of current model. 

2. Development of a more realistic model by including slip phenomenon. 

3. Developing tire surface contact model for resemblance to four-wheel vehicle tires. 

4. Experimental validation with varying road conditions 
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5. Expansion of the model to a four-wheeled vehicle. 

6. Addition of a dynamic observer to the vehicle model. 

 

Accurately estimating the tire-road forces through a multibody vehicle model taking inputs 

from sensors measuring just the geometrical parameters would be of great scientific 

contribution. It will eliminate the necessity of the numerous sensors used in cars currently 

and make vehicle handling systems available on non-luxury car models. By making vehicle 

safety systems more affordable the accident rates can be reduced considerably.  
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5 CONCLUSION 

 

 

This study is about the development of a multibody bicycle model that can estimate the tire-

road forces. One of the main parameters required by vehicle stability control systems these 

days is the lateral tire-force. Many control systems are available currently in luxury cars but 

they use expensive sensors or require prior knowledge of tire and road conditions. This 

research work aimed at building an accurate dynamic model of a bicycle which can estimate 

tire-road forces of a vehicle using a minimal set of sensors. The bicycle was chosen instead 

of a four wheeled model as it is a simpler vehicle with many dynamic properties. The main 

research question was whether the proposed bicycle model can provide a starting point for 

four-wheel vehicle tire-force estimators that could be feasible for application in 

commercialized vehicle handling systems or not.  

 

The numerical example of a three dimensional rolling disk was first simulated. It showed 

that the selected method produces realistic simulations of non-holonomic systems. The 

bicycle model’s equations of motion were then derived. The bicycle model was simulated 

using inverse dynamic analysis taking the rider’s actions as input for the model. This 

involved the usage of only an inclinometer and two rotary encoders. The Lagrange 

multipliers obtained from the solution of the equations of motion were interpreted as the 

driving and the reaction forces. Their plots showed that the patterns of the obtained forces 

represent the accurate behavior of the bicycle. 

 

These results have demonstrated that this bicycle model could be expanded into a four-

wheeled model which would be suitable for commercial use in control systems used in 

vehicles due to the minimal requirement of sensors and realistic results. Experimental 

validation of the tire-force estimates were removed from the scope of the research as the 

installed strain gauges could not measure the most important lateral forces. Modifications to 

the experimental setup have been suggested to obtain the measurements necessary for 

complete validation. 

 

The validation is the immediate topic for future research following which some of the 

assumptions in the current model need to be removed for a more realistic simulation 
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appropriate for four-wheeled vehicles. After these enhancements in the model it should be 

validated against varying road conditions after which a four-wheeled model can be 

developed. The addition of a Kalman filter based dynamic observer to the model has also 

been discussed in this research work as a future scope. 
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