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Distortional buckling of X-joints made of square hollow cross section beams: 

Theoretical energy-based model 

Timo Björk*, Antti Ahola, Niko Tuominen 

 

ABSTRACT 

Current design codes do not consider distortional buckling failure modes, which can occur 

in the chord member of a tubular X-joint loaded axially by brace members. In this study, the 

critical load for distortional buckling is established based on the energy method and a beam 

on elastic foundation (BEF) approach. In the theoretical model, the capacity is created by 

elastic bending of the chord faces in their own planes and elastic bending of the cross section 

as a frame structure. The theoretical capacity of an X-joint is compared with numerical 

results obtained by finite element analyses (FEA). Some discrepancy is found between the 

theoretical model and numerical analysis, with the theoretical model slightly 

underestimating the load carrying capacity. Experimental tests show that an X-joint can be 

prone to distortional buckling failure mode. However, detailed scrutiny of distortional 

buckling failure in X-joints is only legitimate for joints made of high strength steel (HSS), 

because other failure mechanisms are more critical when conventional steels are used. 

Nevertheless, designers of X-joints with rectangular hollow section (RHS) members should 

be aware of this potential failure mode. 

 

Keywords: tubular X-joints; rectangular hollow section; stability; ultimate capacity; 

distortional buckling 
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1 INTRODUCTION 

X-joints are typical structural details in tubular structures made of rectangular hollow 

sections (RHS) of the type illustrated in Fig. 1. Such joints are subjected to compression 

loading, and the capacity of the joint can be calculated according to Eurocode 3 (EC3) [1,2] 

or CIDECT design recommendations [3]. Figs 2a and 2b illustrate typical failure modes of 

joints with equal chord and brace width (b1 = b0). However, it is also theoretically possible 

that the web buckling does not occur symmetrically but asymmetrically, as illustrated in Fig. 

2c, and the cross section of the chord member consequently distorts. 

 

 

Fig. 1. Typical tubular structure with X-joints which can be subjected to axial compressive 

loading. 

 

Fig. 2. Typical failure modes of compressed X-joints: a) chord flange failure, b) chord web 

symmetric buckling, and c) distortional buckling of chord member. B = brace member and 

C = chord member. 
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Distortion of a box cross section has been analyzed widely in the literature [4–11] but only 

to a limited extent from the stability point of view. Respectively, stability and ultimate 

capacity of RHS joints have been comprehensively analyzed [12–21] in terms of chord 

flange failure, chord web buckling and buckling of a brace member. In these papers, 

however, distortional buckling of a chord member was not investigated, or received little 

attention, since the studies mainly focused on RHS joints made of low strength steel, where 

the aforementioned failure mechanisms are more critical. Recently, Chen et al. [22] 

identified distortional buckling failure of a chord member in experimental tests carried out 

with axially compressed thin-walled RHS T- and X-joints, although this failure mechanism 

was not within the scope of the paper in general. 

When tubular joints made of ultra-high strength steel (UHSS) are used, capacity to withstand 

chord flange yielding and chord web buckling failure modes increases and, as a consequence, 

distortional buckling of a chord member can become a critical mechanism. In this paper, a 

theoretical model for distortional buckling of tubular X-joints is formulated. The model is 

based on ideal elastic material behavior, and the results obtained by the theoretical model 

are compared with eigenvalues obtained by FEA. The criticality of distortional buckling 

mode against other failure mechanisms is evaluated and discussed. 

 

2 THEORETICAL MODEL 

The ideal elastic failure mechanism of a system that consists of two brace and chord 

members is illustrated in Fig. 3. All joint members are assumed to have rectangular hollow 

cross sections and the chord member has in this case a square hollow cross section (SHS) 

with nominal dimension b0 × b0 × t and without corner rounding. Henceforth in this paper, 

the term “SHS” is used to describe the chord member, although the fabrication process of 
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the hollow section can be either forming or welding. The X-joint is prepared with pure 

single-bevel butt welds and the weld has thus no geometrical influence on the general joint 

behavior. However, welds have a significant local boundary effect on the chord flanges, 

which prevent the free deformation of the flanges in the line of welds. However, this local 

irregularity is ignored in this simplified analyses. The welding is assumed to have not such 

a metallurgical effect on the material properties, which could affect the ideal-elastic capacity 

of the joint. The center line of the wall thickness is used as the calculation dimension, i.e. b 

= b0 - t. The brace members are pin-ended at the loading ends but free to move in the direction 

of the loading. The chord member is only fixed in the joint area. The loss of stability does 

not occur by the free distortion mode of a chord member but the brace members control the 

cross section deformation of the chord member in the joint area. 

 

Fig. 3. Distortional failure mechanisms and dimensions in the compressed X-joint, upper 

half of the mechanism is illustrated on the right side figure. 
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If the axial rigidity of the brace members is assumed to be large compared to the other terms, 

the axial deformation at the end of the brace members, δ, consists of the rigid body 

movement of the brace member and the deformation of the chord. Consequently, the 

potential energy of the system is [23]: 

 2 2 (1 cos ) (1 cos )
2

b
V F F L  

 
       

 
. (1) 

 

Because the bifurcation occurs by small lateral displacement, also the angles (, ψ) are small, 

and Eq. (1) can be re-formulated: 

 
2 2

2

0

1 2
2

2 2 2

b
V F L F w

L b

    
        

  
. (2) 

The axial force F is the only external loading of the system and w0 is the asymmetric lateral 

displacement due to the chord deformation. The other geometrical symbols are given in Fig. 

3. 

 

The deformed joint is loaded, in addition to the compression force F, by a horizontal couple 

force Fh, as illustrated in Fig. 4. This couple force can be divided into pure torsional and 

distortional loadings. Consequently, the chord corner deformation consists of torsional (wt 

= vt) and distortional (wd = vd) components. Because in this case the chord member is not 

supported outside the joint area, the torsional forces (Fig. 4b) are in equilibrium with the 

bending moment and shear force of the brace members. However, the effects of these brace 

loadings on the deformation of the joint and on the strain energy of the system can be 

ignored. Moreover, as the Bredt’s torsion moment occurs only at the joint area of the chord 

member and outside the joint, only the distortional components exist (Fig. 4c). 
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Fig. 4. a) Forces and deformation of chord cross section consist of b) Bredt’s torsion and c) 

distortion. 

 

The matching of deformations in the brace and chord corners introduces the following 

requirement: 

 
2

b
v w

L
 . (3) 

Furthermore, the following Eqs. are valid in the joint area: 

       
2 2 2

d t t t d d

b b b
v v v w v w v w w w

L L L
          (4) 

 

2
t d d d

b
w w w w w w

L
      

(5) 

 2

4
d d

L b
w v w

L


   

(6) 

 2

4
t t

L b
w v w

L


  . 

(7) 

The linear elastic strain energy due to the distortion of the chord member is: 

 

2 2
2 2 23 3 2 2

2 2 3

0 0 0 0

1 12(1 )
4 4 16

2 12 12 2

b

d d s
d

d w d v mEtb Etb
U dx dx ds dx

dx dx Et


  

 
      
        
        

    , (8) 

 

where E is Young’s modulus, ν is Poisson’s ratio and d2/dx2 denotes the second derivative 

of the horizontal and vertical displacements (wd, vd) of the faces (and corners) of the distorted 
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cross section, respectively. The two first terms represent the bending of flanges and webs 

about their major axis when the corners of the cross sections are assumed to be idealized 

hinges as illustrated in Fig. 5. The strain energy involved in twisting of the cross section 

faces is neglected, because the elastic torsional constant (bt3/3) is fractional compared to the 

elastic bending resistance of the plate (b3t/12). 

 

Fig. 5. Distortional warping of the cross section with the hinged corners. 

 

Because the longitudinal displacement u for the flange and web is equal in the corners of the 

cross section and the distortional displacement functions are equal for asymmetric SHS 

deformations, the second derivatives for horizontal and vertical deformations are also equal, 

and the two first terms can be merged, giving: 

 

2
2 23 2 2

2 3

0 0 0

1 12(1 )
8 16

2 12 2

b

d s
d

d w mEtb
U dx ds dx

dx Et


 

 
    
     
      

   . (9) 

 

The second term in Eq. (9) represents the transverse bending moment ms of the flanges and 

webs about their minor axis as seen in Fig. 6. This term considers the real corner stiffness 
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and this deformation is required for having continuous displacements along the cross section 

perimeter.  

 

Fig. 6. Distortion of cross section as a frame structure and moments in flange and web of the 

cross section. 

 

The corners of the box section remain rectangular in shape and consequently: 

 
2 2 2 1 1

2

d d d d dw v w v w
w

b b b b b L
   

  
         

 
. (10) 

In the corner, the transverse moment ms = m0 is: 

 
   

3 3

0 2 2 2

6

12 1 1
d

Et Et
m w

b b


 
 

 
. (11) 

The transverse moment distribution ms along the local cross section coordinate s is: 

 

 
 

3

0 2 3

22

1

d
s

Et ws
m m s

b b
 


. (12) 

The strain energy contained in the frame moment ms can now be calculated as follows: 

 

   

2 2 6 2 2 62 2
2 2

2 2
2 6 2 3

0 0
2 1 24 1

b b

s d
d

m E t w E t
ds s ds w

b b 
 

 
   (13) 
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In addition to the distortion, strain energy also exists due to the twisting of the chord member, 

as shown in Fig. 4. Thus: 

 

22 2

2 2 2

0 0

1
4 4

2

t t t
t

GI dw EI d w
U dx dx

b dx b dx



    
     

    
  , (14) 

where G is shear modulus, and It and I are torsional and warping constants of the chord 

member, respectively. In this case, the chord is free to rotate along its longitudinal axis and, 

consequently, the first and second derivative of twisting angle are zero, and thus Ut = 0. 

Additionally, the primary torsional warping constant of a SHS is zero, if the effect of 

potential corner radius is ignored as found out by Rubin [24]. The secondary torsional 

warping constant is numerically insignificant (= t3b3/36). However, in the general case, the 

total strain energy stored in the torsion of cross section, consisting of free torsion and 

primary- and secondary torsional warping and distortional warping, must be considered. In 

this case the total energy  contained in distortional buckling of the X-joint is: 

 
 

2
23 3

2 2

0 2 2 3

0 0

1 2 8

3 1

d
d t d

d wEtb Et
V U U F w dx w dx

L b dx b




 
  

             
  . (15) 

Total energy of the system is in equilibrium when  = 0. The distortional buckling of the X-

joint can be analyzed based on the beam on elastic foundation (BEF) theory presented by 

Timoshenko [25]. Consequently, the distortional displacement for an infinite beam loaded 

by concentrated load Fh/2 is: 

  sin cos
4

xh
d

F
w e x x

k


    (16) 

and the second derivative thus is: 

  
2 3

2
cos sin

2

xd hd w F
e x x

dx k


   . (17) 

Fig. 7 shows the relative distribution of the distortional displacement and the second 

derivative as a function of x (without constant factors). 
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Fig. 7. Distribution of distortional deformation and its second derivative. 

 

The elastic foundation stiffness factor k can be defined from Eq. (11): 

 
 

3

0 2 24 2 1

h
d

F b Et
m w

b
 


 (18) 

 

 

3

2 3

4
    

2 1

h
d d

F Et
w kw

b
 


 

(19) 

 

 

3

2 3

4
    

1

Et
k

b



. 

(20) 

The characteristic parameter  is [26]:   

  

2

43 2 64

12
      

1
4

12

k t

b t b
E




 


. 
(21) 

The total horizontal displacement at the joint (x = 0) can be obtained from Eqs. (5) and (16): 

 
0 ,0

4

2 2

h
d

FL L
w w

L b L b k


 

 
. (22) 

By substituting Eqs (16), (17) and (20) into (15) and considering the trigonometrical 

equivalences, the critical load can be defined: 

  
 

 
3 4 2

2 2

2 3

0 0

2 1 sin 2 1 sin 2
12 2 1

x x

cr

b b t
F bEt e x dx e x dx

L b

 
 



 

 
  
      

    
  . (23) 
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The integrations can be carried out analytically obtaining the result [27]: 

 

 

 
 

3 3
2

2
2

2 3

sin 2 cos 2 2
048

2

sin 2 cos 2 2
08 1

x

cr

x

b
e x x

b
F bEt

tL
e x x

b






 

 
 





 
    

              
  

. (24) 

Substituting the integration limits, the critical load of the joint is given: 

 
 

3 3 2

2 3

3
2     

48 8 1
cr

b b t
F bEt

L b



 

  
    

    

. (25) 

However, the theoretical treatment neglects the local effect of the joint. The local behavior 

of the joint is very complex but its effect on the load capacity can be estimated by a simplified 

model of the joint. For the purposes of simplification, the distortion deformation wd is 

assumed to be constant over the joint length h and also its second derivative is assumed also 

to be constant (which is slightly in conflict with the previous statement), as illustrated in Fig. 

8. 

 

Fig. 8. A simplified model to consider the local effect of joint. 

 

The additional strain energy at the joint area can be considered using Eqs. (9), (13), (16) and 

(17). The linear elastic distortional buckling load of the X-joint is: 
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  
 

 
3 3 2

2 3
2 1 2 3 2

48 8 1
cr

b b t
F bEt h h

L b


 

 

  
      

    

 (26) 

3 NUMERICAL SIMULATIONS 

3.1 FE-model 

The X-joint described in Section 2 was analyzed numerically using the Abaqus 2016 

program. The geometries and cross section classes of analyzed profiles are shown in Table 

1. The cross section classes of RHS depend on the steel grade and slenderness ratio of the 

flat part in the chord web.  

 

Table 1. Analyzed cross sections of X-joint with equal brace and chord members. 

Section SHS 
X-joint 

b0/t 

Ratio 

c/t0 

Classification of the steel section according to EN 1993-1-1 

Steel grade and fy / Rp0.2 [MPa] 

235 275 355 460 550 ≥690 

100 × 3 33.3 29.3 1 1 2 2 4 4 

150 × 3 50 46 4 4 4 4 4 4 

150 × 4 37.5 33.5 2 2 3 4 4 4 

150 × 5 30 26 1 1 1 2 3 4 

200 × 6 33.3 29.3 1 1 2 3 4 4 

Limit ≤ 35 ε: 1 0.924 0.814 0.715 0.654 ≤0.584 

EN 1993-1-8 [1], 

Table 7.8 

EN 1993-1-1 [28], Table 5.2:  
Class 1: c/t ≤ 33ε; Class 2: c/t ≤ 38ε: Class 3: c/t ≤ 42ε with ε = (235 MPa / fy)1/2 

For SHS, EN 10219-2 [29]:  
c = b0 – 2r0 or c = b0 – 2(t0+ri) with ro = 2t0 and ri = t0 for t0 ≤ 6 m; with ro = 2.5t0 

and ri = 1.5t0 for 6 mm < t0 ≤ 10 mm or with ro = 3t0 and ri = 2t0 for t0 > 10 mm 

 

The boundary conditions and applied loads were modeled to be identical with the idealized 

theoretical model. The element model used is presented in Fig. 9. The element type was 

linear quadrilateral plate elements (S4R). The element size was set as 10 mm x 10 mm in 

each model. A seed load of 1 N was applied in the center of the brace section and the edges 

of the brace sections were coupled with the center of the sections using a kinematic coupling 

constraint. The models were defined as a mid-surface model. Young’s modulus and 

Poisson’s ratio of 210 GPa and 0.3 were used, respectively. 
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Fig. 9. Geometry of a FE-model. 

 

No weld was modeled, and the joint was completely fixed around the brace member 

perimeter, which makes the joint area stiffer than the theoretical model.  Both eigenvalue 

and nonlinear analyses were carried out. 

 

3.2 Eigenvalue analyses 

All cases were calculated using brace lengths L =250 to 2000 mm with 250 mm as step 

length for the four different SHS dimensions. The cross sections and obtained eigenvalue 

results are presented in Fig. 10. 
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Fig. 10. Results from the FEA and analytical results. 

 

Fig. 11 illustrates joint behavior in the distortional buckling mode. The rigid body rotation 

of the chord member induced by Bredt’s torsional moment is clearly seen at the free edges 

of the chord member.  Furthermore, the oscillation effect of distortion in the longitudinal 

direction of the chord member can also be seen in Fig. 11. 

 

 

Fig. 11. Set of cross section deformations of chord member through the joint area. 

 

3.3 Nonlinear analyses 

Nonlinear analyses for an X-joint made of ultra-high strength steel were carried out to find 

out the criticality of this failure mechanism compared to other potential modes, see Fig. 2. 
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An X-joint with dimensions of 150 × 150 × 5 [mm] was chosen for these analyses since a 

corresponding experimental test result was available (see Section 4). The element type and 

size were similar to those used in the eigenvalue analyses, but geometrically and materially 

nonlinear analyses (GMNA) were nevertheless carried out. The same values were used for 

Young’s modulus and Poisson’s ratio as in the eigenvalue analyses. Bi-linear material 

properties were applied based on information given by the tube manufacturer, see Table 2. 

 

The X-joint was analyzed with three different angular misalignments of the brace member, 

γ = 0, 1° and 2°. The chord length was 1000 mm and the brace length 850 mm, resulting in 

a total length of 1850 mm, see Fig. 12. The obtained ultimate loads Fu and the failure modes 

of the analyses are presented in Table 2. The force-displacement curves of the geometrically 

and materially nonlinear analyses (GMNAs) are shown in Fig. 13 with the experimental 

curve (Section 4). 

 

Table 2. Material properties and results of nonlinear analysis of X-joints with equal brace 

and chord members with SHS 150 × 150 × 5. Strain value corresponds with fu. 

Case 
ID 

Yield 
strength 

fy 
[MPa] 

Ultimate 
Strength 

fu 
[MPa] 

 Strain 
[-] 

Misalignment 
of the brace 
γ [degree] 

Ultimate 
load 

Fu [kN] 
Failure mode 

1    0 1302 Chord web buckling 

2 1080 1299 0.089 1 1005 Distortional buckling 

3    2 901 Distortional buckling 

 

Based on these preliminary investigations, it becomes clear that distortional buckling is a 

more critical failure mode for high-strength steels than mild steels, because compressed X-

joints made of low or mild steels are prone to global yielding rather than distortional 

buckling. 
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4 EXPERIMENTAL TESTS 

Experimental tests specific to distortional buckling of the chord member were not carried 

out within this study. However, a test with an X-joint made of 150 × 150 × 5 mm S960MC 

RHS showed the susceptibility of such joints to distortional buckling, as can be seen in Fig. 

12.  

 

 

Fig. 12. Distortion of X-joint after unloading of the applied compression load. 

 

The final failure mode found in the test was elastic web buckling, but there was clearly 

interaction with the distortional mode. The load-displacement curves of the test and GMNAs 

are presented in Fig. 13. 
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Fig. 13. Force-displacement curves for X-joints made of 150 × 150 × 5 S960 CFSHS in 

comparison with the curves obtained by the FEA. 

 

Although the brace members were nominally pin-ended, in practice there was remarkable 

friction, providing extra support at the ends of the brace members. It was not the initial aim 

of the test to study distortional buckling, rather other failure modes were expected. In light 

of the outcome of the test, in future tests, the brace members will be longer and real pin-

ended fixing will be used. According to the analytical model, Eq. (26), the critical load for 

this joint is 1087 kN while the ultimate capacity was 800 kN in the test. 

 

5 DISCUSSION 

5.1 Geometrical parameters 

The analytical model demonstrates the effects of essential geometrical parameters on the 

load carrying capacity of the joint. The wall thickness t has, of course, a clear and important 

role in the load carrying capacity. The dimension b has two conflicting effects. Extending 

the outer dimensions of the cross section increases the bending resistance of the chord faces 

in their own plane but weakens the out-of-plane bending stiffness; b3 appears in both terms, 

see Eq. (25). The brace length L has relatively small influence on the capacity. 
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The selected boundary condition at the ends of the chord member can be called into question. 

However, the use of free ends is reasonable since it is the natural boundary condition for the 

case of adjacent similar joints, as illustrated in Fig. 1. Likewise, pin end fixing of the brace 

member is a natural boundary condition if the brace length L is half of the distance between 

adjacent chord members. 

 

It is quite interesting to note from Fig. 7 that the bending moments (= second derivative of 

the displacement) of the chord faces the decrease quicker than the distortional displacement. 

From Eq. (16) the first zero-level passing should occur for the tested X-joint at distance x: 

arctan( 1) 3
sin cos 0    965 mm

4
x x x


 

 


      . 

The chord was not long enough to reach this situation freely. The moment reaches its first 

zero-level at a distance of 322 mm. Hence, the distortion affects the chord quite significantly. 

 

5.2 Comparison with FEA 

The analytical model underestimates the load carrying capacity compared to numerical 

results obtained by FEA. One reason for the difference can be the complicated joint area, 

which is stiffer in the FEA than the theoretical model. The joint can be modified in the FEA 

and laboratory tests to correspond better to the theoretical model by creating a gap between 

the brace and chord members at the chord flange area. This would demonstrate the role of 

local boundary conditions to the distortional capacity of the joint. The bending moment of 

the brace members could be included in the theoretical model, but this addition would lead 

to overestimation of the role of the brace length and complicate the analyses. Longer brace 

member are more flexible, allowing Bredt’s rotation to occur more easily in the joint. 
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Neglect of brace members may be one reason why the FEA results deviate from the 

analytical capacities. In order to improve the accuracy of this analysis, more sophisticated 

type of elements should be used as proposed for e.g. by van der Vegte [30], particularly in 

the case of nonlinear analyses. The effect of element type on the ideal elastic buckling 

capacity, tested in one of the analyzed geometries, was approximately 2%. 

 

5.3 Validity 

The design codes generally assume elastoplastic failure or buckling to determinate governing 

failure modes for the design. For a design of SHS-X-joints, the range of validity is limited 

to side slenderness ratios b/t  35 and the elastic-plastic cross sections of class 1 to 2 (for 

chord generally and for braces under compression only) for steel grades up to S460 (with 

further restrictions and currently under discussion up to S700).  The restrictions usually 

prevent other, non-plastic failure modes, which are not covered in the design codes. 

However, if cross sections are beyond the range on validity, and especially with high- and 

ultra-high strength steels, distortional buckling should be considered. However, assessment 

of design load for distortional buckling needs more numerical and experimental 

investigations over a wide range of geometrical and material parameters. Li [31] investigated 

different types of tubular joints in a master’s thesis and assessed validations for web- and 

distortional buckling as shown in Fig. 14. 

 



21 

 

 

Fig. 14. Local buckling and distortion buckling eigenvalues of SHS 150 × t. DB = 

distortional buckling and LB = local web buckling of chord member [29]. 

 

Furthermore, the role of geometrical imperfection is essential. The effects of initial distortion 

of the chord member and asymmetric axial and angular misalignments between brace and 

chord members are an important consideration in validation of this failure mode. Preliminary 

effects of angular misalignment on the load carrying capacity of an X-joint can be seen in 

Fig. 13. It should , however, be noted that with normal joint geometries, distortional buckling 

need only be considered when high strength steels are used because similar joints made of 

low strength or mild steel will fail by elastoplastic failure and buckling mechanisms. Tubular 

joints made of high- or ultra-high strength steel have hitherto not been widely used, which 

is probably the reason why such failures have not occurred or been reported in practice. 

However, Chen et al. [22] conducted tests for X-joints made of 50 × 50 × 1.1 mm SUS304 

stainless steel RHS (fy = 375 MPa and fu = 575 MPa) with equal brace and chord widths, i.e. 

b0 = b1, and found distortional buckling of chord member to be a potential failure mode for 

tubular joints. It appears that the tubular structures made of high strength steels can be prone 

to a distortional buckling mode that can be ignored in the case of low strength steels.  
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5.4 Future work 

Future work will focus on the validation of this failure mode by carrying out experimental 

tests and nonlinear FEA. In both methods, the real material model and effect of 

imperfections, such as presented in design codes [28,29], on the ultimate capacity will be 

considered. In addition, the competitive distortional failure modes, considering different 

joint configurations, will be under theoretical investigation.  

 

6 CONCLUSIONS 

In this study, a theoretical model for distortional buckling was presented. Based on the 

results, the following conclusions can be drawn: 

 Distortional buckling can theoretically be a critical mode and it should thus be 

considered during design. 

 The theoretical model provides a good overview of the geometrical effects on the 

ideal elastic capacity of X-joint distortional buckling. 

 The FEA results match theoretical models quite well; however, the current 

theoretical model seems to underestimate the capacity slightly. 

 A method to deduce design capacity from ideal elastic capacity is still lacking. 

 Potential distortional buckling deserves attention when using high strength steel.  

 Extension of the presented theory to a wider range of applications and further 

experimental tests are required. 
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