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Hydraulic cylinders and motors are commonly used in actuator systems of mobile machines and industrial applications. Hydraulic
actuators have the ability to offer large amounts of energy density. To analyze the dynamic behavior of a hydraulic actuator system,
the hydraulic circuit is generally divided into volumes in which pressure is assumed to be equally distributed. Pressure within
these volumes can be predicted by employing first order differential equations. To achieve an accurate numerical presentation of
a hydraulic circuit, pressures within very small volumes must often be calculated. The small volumes involved in the hydraulic
circuits make the models numerically stiff and consequently a very small integration time step is required. In this paper, singular
perturbation theory, which can be applied to problems in which a small value appears with singularity effects, is implemented as a
computationally-efficient method for modeling hydraulic circuits. The implementation is performed in two stages: derivation of the
perturbed equations; and modification of their effects. It is shown that usage of a perturbation theory based approach alleviates
problems associated with small volumes in hydraulic system modeling and substantially enhances computational efficiency, thus
facilitating real-time simulation.

Index Terms—Hydraulic system, Runge-Kutta integration, Perturbation theory, Boundary-layers stability analysis, Time and
frequency responses.

I. INTRODUCTION

PRODUCTS and machinery in the mechanical and elec-
tromechanical industry, such as mobile machines, are

complex devices and their development requires knowledge
of different areas of technology, including applied mechanics,
and the operation of actuation and control systems. The various
subsystems involved in a mechanical device interact closely.
The actuators are mounted on the mechanism and produce
forces acting on the mechanism, which are converted into the
constrained motion of the original system of bodies.

In product development, hydraulic actuators and associated
hydraulic circuits are often designed with the help of computer
simulation. To this end, lumped fluid theory can be used
to form differential equations for volumes where pressure
is assumed to be equally distributed. In practice, the usage
of lumped fluid theory leads to a situation in which small
volumes exist in the locations of the pressure calculations.
This model has been used frequently in literature [1], [2],
[3] as well as the commercial packages such as AMESim
to model various hydraulic components as mentioned in [4].
However, several challenging issues in computational time and
stability remains for simulation of hydraulic circuit itself and
its controller. For instance, Ref. [1] has indicated that a large
value of bulk modulus can easily overwhelm the effects of
controller parameters if there is a poor controller design.

Bowns and Wangs [5] reported that there is a difficulty
in simulation of hydraulic pipe systems with small volumes.
They noticed that if volumes of one or several pipes are
small, the required simulation time steps become very small.

Manuscript received xxx; revised xxx. Corresponding author: Mehran Kiani
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To overcome this problem, they proposed iterative models,
however, these iterative methods are computationally costly
and similar to applying small time steps in the integration.

Piche and Ellman [6] also noticed that different volumes are
difficult to solve forward in time, because the corresponding
ordinary differential equations of the model are numerically
stiff. They investigated the accuracy and numerical stability of
different two-stage semi-implicit Runge-Kutta methods. They
used the time step of 2ms in all simulations and proposed that
L-stable is the best-suited approach for the application under
investigation. Borutzky et al. [7] proposed an empirically-
obtained polynomial function for the orifice volumetric flow
rate which has a smooth transition between laminar and
turbulent flow regimes. With this approach, singularities can
be avoided when the pressure difference approaches zero.

From the modeling point of view, a mechanical system
actuated by hydraulics behaves differently at small and large
time scales. In hydraulic circuit modeling where the large
bulk modulus is divided into small volumes, small time scales
will appear. This small time scale increases the computational
costs of simulations. As reported by Pfeiffer and Borchsenius
[8], the high computational costs are mainly due to the
mathematical representation of the hydraulic systems used in
the simulations, which are non-linear, first order differential
equations.

Esque et al. [9] studied the real-time simulation of a
hydraulic crane using an L-stable Rosenbrock integration
scheme. They remarked that the maximum time step of inte-
gration is imposed by stability and computational time criteria.
Based on these two factors, they selected the time step as
0.1ms in their application.

To overcome the stiffness of the hydraulic equations, the
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time step can be reduced. To this end, some values as small
as 0.001ms have been reported [10]. The problem gets more
difficult if the hydraulic circuit is coupled with a mechanical
system. There are two common approaches for dealing with
a system of a combined mechanical model and hydraulic
circuits. The first is called the unified approach [11], [12],
in which the hydraulic equations and equations for the me-
chanical system are combined as a single system in which
the integration scheme and the time step are identical in
both subsystems. In the multi-rate integration approach [13],
[14], different time steps are used for the mechanical system
and hydraulics. The multi-rate integration method can be
computationally less costly as the hydraulic simulation usually
needs the smaller time step [15].

Ylinen et al. [16] have developed a monolithic algorithm
in which the hydraulic system is coupled with the mechanical
system. The whole system is solved with a single step Crank
Nicolson scheme (trapezoidal rule). They used a time step of
1ms for the coupled system. However, the predictor-corrector
used in their work would double the computational cost.

Bauchau, and Liu [17] used a multi-integration algorithm
to solve a finite element based mechanical system coupled
with hydraulic equations. They used a time step of 0.1ms for
the structural dynamics analysis, and a four step Runge-Kutta
integrator with a time step 48 times smaller than the structural
solver in the hydraulic integration.

Naya et al. [18] compared the unified and co-integration
approaches. They noted that the unified scheme is computa-
tionally 20 percent more costly than the simplified simulation
that considers only the mechanical system. However, they
suggested use of the simplified simulation only when the
computational efficiency has priority, because the response
of this approach shows many oscillations around the correct
answers. It is important to note that these oscillations make it
difficult to use this method for many applications, especially
for real-time applications. In their study, the utilized time step
was 10ms for the unified scheme, 0.2ms for a co-integration
scheme with a forward Euler integrator, and 5ms for a co-
integration scheme with a trapezoidal integrator.

In summary, the behavior of hydraulic circuits resembles
some other engineering systems that suffer from numerical
stiffness [19]. Accordingly, from the mathematical point of
view, singular perturbation theory and, practically, Tikhonovs
theorem may be considered permissible as an approach to
address numerical problems in such systems.

The objective of this paper is to investigate application of
the singular perturbation theory to remove the singularities
and numerical difficulties associated with simulation of hy-
draulic systems. The response of a typical hydraulic system is
investigated before and after applying the perturbation theory
based calculations to find out how, and to what extent, use
of the theory is able to improve the numerical efficiency of
formulations associated to the hydraulic model. The paper
is organized as follows. Section II describes the hydraulic
formulation, which is followed by a brief introduction to
singular perturbation theory in section III. The numerical
model of the hydraulic system is explained in section IV,
where the mathematical equations are first described and the

perturbation method then applied to handle singularity. Results
are presented and discussed in section V. The final section
gives a brief summary and presents conclusions.

II. HYDRAULIC FORMULATION

The theory of lumped fluids is often used in modeling of
hydraulic systems. In the lumped fluid theory, the hydraulic
circuit is divided into volumes in which the pressure is
assumed to be evenly distributed. Differential equations are
formed for the volumes with which the pressure of the system
at a certain time can be solved directly or indirectly. Different
volumes are assumed to be separated by throttling through
which the fluid can flow. The directional, pressure and flow
control valves as well as long pipelines used in real systems
are replaced by throttles that control the flow rate between the
different volumes.

The pressure in a volume of the hydraulic circuit can be
calculated using differential equation as follows [20]:

dp

dt
=
Be
V

(Qin −Qout −
dV

dt
) (1)

where p is the pressure, Be is the effective bulk modulus, V
is the volume, Qin and Qout are the incoming and outgoing
volumetric flow rates, and dV/dt is the time rate changes of
volume V . The effective bulk modulus represents the bulk
modulus of the fluid by taking into account the effects of the
flexibility of the container and dissolved air [21].

Fig. 1: The hydraulic circuit studied.
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TABLE I: The set values for different quantities.

AA/m
2 AB/m

2 Bi/Pa(Bulk modulus) V1/m3 V2/m3 V3/m3 P0/Pa(Pump pres.)
0.0122718 0.084234 70000.0

√
Pi 0.0061359 0.042117 0.005 107

CC CPV Fload/N(External force) CTV m/kg C P4/Pa(Tank pres.)
5× 10−5 10−7 −5000 8× 10−8 50.0 10−4 2× 105

TABLE II: The flow rate relations used in the calculations.

U < −C −C < U < C U > C

QA −ẋAA −ẋAA −ẋAA

QB ẋAB ẋAB ẋAB

QC CC

√
P1 − P3Step(P3 − P1) CC

√
|P1 − P3|Step(P3 − P1) CC

√
P3 − P1Step(P3 − P1)

QD UCPV

√
P0 − P2Step(P2 − P0) 0 UCTV

√
P2 − P4Step(P4 − P2)

QE UCTV

√
P3 − P4Step(P3 − P4) 0 UCPV

√
P0 − P3Step(P0 − P3)

The volumetric turbulent flow rate Qt in a throttle can be
written as [7]:

Qt = CdAt

√
2(P3 − P1)

ρ
(2)

where Cd is the discharge coefficient, P1 and P3 are pressures
at both sides of throttle valve, At is the cross-sectional area of
the valve, and ρ is the density of the fluid, and. In this study,
the volumetric flow rate is described using semi-empirical
methods in which the parameters of the valve can be obtained
from measurements [22].

A hydraulic cylinder can be modeled based on its dimen-
sions and the input pressures. The model of the cylinder can be
formed based on a diagram as shown in Fig. 1. The hydraulic
cylinder volume is related to the cylinder stroke as:

Vin = xAA (3a)
Vout = (l − x)AB (3b)

where AA and AB are the surface area of the front side of the
piston, and the area of the rod side of the piston, respectively,
and l is the maximum stroke length. The volumetric flow rates
produced based on the piston motion can be written as:

Qin = ẋAA (4)

Qout = −ẋAB (5)

The force Fs produced by the cylinder can be written as:

Fs = P1AA − P2AB + Fload − Fµ (6)

where Fload is the load force, Fµ is the friction force, and P1

and P2 are the pressure values in the cylinder chambers.

III. SINGULAR PERTURBATION THEORY

In this section, the concept of singular perturbation theory is
briefly introduced. Considering the state variables of [φ,ψ], the
singular system can be represented by the following relations:

φ̇ = f(φ, ψ, t, ε) φ(t0) = ζ(ε) (7a)

ψ̇ = g(φ, ψ, t, ε) ψ(t0) = ξ(ε) (7b)

where φ ∈ Rm and ψ ∈ Rn, and ε is an infinitesimal
parameter.

The quasi-steady state model of the above system is [23]:

φ̇ = f(φ, h(t, φ), t, ε) (8a)
ψ̄(t) = h(t, φ̄) (8b)

Note that the dot represents the time derivative, and the
overbar indicates the perturbed variables. Based on Tikhonovs
theorem [24] in singular perturbation theory, Wang et al.
[25] stated the following strategy. Assume the functions f ,
g to be smooth enough, and the boundary-layers model is
exponentially stable. Also, assume the reduced-order system
(Eq. 8a) is exponentially stable, and has unique solutions on a
convex set. Then, a positive constant ε∗ can be found in a way
that for every 0 < ε < ε∗, the system (Eq. 7) has a unique
solution for [t,∞), and φ(t, ε) − φ̄(t) = O(ε). Moreover,
for any given tb > t0, there is 0 < ε < ε∗ which satisfies
ψ(t, ε)−h(t, φ̄) = O(ε) , and holds uniformly for t ∈ [tb,∞)
[25], [26], [27].

In other words, it is possible to reduce the system of
equations (7) into equations (8) while maintaining the accuracy
as the corresponding errors on the response of system (8) are
in the order of O(ε). This theory is applied to remove the
singularities associated with the hydraulic systems.

IV. NUMERICAL MODEL OF THE HYDRAULIC SYSTEM

In this section, the hydraulic circuit illustrated in Fig. 1 is
introduced. First, in section IV-A, the mathematical model of
the system is presented, then perturbation theory is applied to
the system in section IV-B.

A. Mathematical model of the system

In this section, the hydraulic system with two valves illus-
trated in Fig. 1 is modeled. The governing equations are first
presented, followed by development of the model in the state
space when the control signal is greater than C, i.e., U > C.

1) Physical model
Here, the mathematical formulation of the hydraulic circuit

is presented. All constant parameters used are summarized in
Table I. The governing equations can be written as:

Ṗ1 =
B1

V1
(QA +QC) (9)
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Ṗ2 =
B2

V2
(QB +QD) (10)

Ṗ3 =
B2

V2
(QE −QC) (11)

ẍ =
1

m
(P1AA − P2Ab) +

Fload
m

(12)

where, Bi represents the bulk modulus, and Vi is the volumes
for i = 1, 2, 3. The relations of volumetric flow rates are
obtained as presented in Table II in which pressures are
embedded. Note that there are several parameters apperaing
in this table which their values are presented in Table I. The
Step function used in Table II is defined in Appendix A.

Assuming an ideal directional valve (where the flow, friction
and pressure forces have no effect on the valve spool position),
U represents the position of the spool whose model is given
in Appendix A. Hence, there are three positions for a 4/3
directional valve (4 ways, and 3 positions), which are identified
with parameter C.

2) State-space representation
If the hydraulic system is represented in the state space,

the calculations associated with the boundary layers stability
analysis, presented in section IV-B1, will be simpler and
more efficient. The state variables for the problem under
investigation are defined in Table III.

TABLE III: State Variables.
X1 =

√
P3 − P1 X3 =

√
P0 − P3

X2 =
√
P2 − P4 X4 =

√
ẋ

The first state equation, i.e. Eq. (13), can be derived by
getting derivative of first state variable X1 and considering
Eqs. (9)-(12). The final form of state equations can be obtained
as:

2X1Ẋ1 =
B1

V1
AAX

2
4 +

B3

V3
UCPVX3

−(
B1

V1
+
B3

V3
)CCX1

(13)

2X2Ẋ2 =
B2

V2
ABX

2
4 +

B2

V2
UCTVX2 − Ṗ4 (14)

2X3Ẋ3 = −B3

V3
ABX

2
4 +

B3

V3
UCCX1 + Ṗ0 (15)

2X4Ẋ4 = −AA
m
X2

1 −
AA
m
X2

3 −
AB
m
X2

2 +
Fload
m

+
AA
m
P0 −

AB
m
P4

(16)

These equations introduce a multi-input multi-output non-
linear system with the nonlinearities in the form of polynomial
terms. If the control signal is negative, the state variables are
defined as given in Table III. However, the governing equations
will be different from Eqs. (13)-(16).

B. Perturbation theory applied to mathematical equations

In this section, the perturbation theory is applied to the
hydraulic system. As mentioned in section II, perturbation
theory is applied to the desired equation. Equations (9) to (11)
can be rewritten as:

εṖ1 = (QA +QC) (17)

εṖ2 = (QB +QD) (18)

εṖ3 = (QE −QC) (19)

where ε is determined by the small volume divided by the
effective bulk modulus, which is lowered by the entrained
air [17], [28]. It is often observed when a hydraulic system
is turned on after a period of shutdown, which allows air
to collect in the system. However, it can be assumed that
the effective bulk modulus is a constant or changes slowly
under normal working conditions since the entrained air in
the system has a relatively stable level [25].

1) Boundary layers stability analysis
The small values for some parameters appearing in the

governing differential equations are important. If the small
parameters are set to zero, and the differential equations are
then solved, the results could differ from the exact solution of
the differential equations containing the small parameter. In
some systems, these two solutions are the same; such systems
are usually called as regular systems. However, if the two
solutions differ, the system is referred as a singular system.

In singular systems, two distinct solutions are obtained if the
mathematical limits are calculated by approaching the small
parameter to zero before and after solving the equations.

In these systems, the infinitesimal parameter is multiplied
by the highest derivative term which usually makes a rapid
variation in the small time scales [28]. This region is known
as the boundary layer, whose stability puts forward a criterion
for using singular perturbation theory.

To this end, the following variables are defined:

y1 , P1 − P̄1 = − 1

C2
C

(C2
CX

2
1 −A2

AX
4
4 ) (20)

y2 , P2 − P̄2 = − 1

UC2
TV

(U2C2
TVX

2
2 −A2

BX
4
4 ) (21)

y3 , P3 − P̄3 =
X2

1 − αX2
3

1 + α
(22)

where, the overbar represents the perturbed variable. Taking
the derivative of Eq. (20) gives:

εẏ1 = ε
dy1

dt
=
dy1

dτ
= εṖ1 − εP̄1 (23)

Using Eq. (17), the following relation can be achieved when
ε −→ 0:

dy1

dτ
= εṖ1 = CCX1 −AAX2

4 (24)

On the other hand,

−C2
Cy1 = (C2

CX
2
1 −A2

AX
4
4 ) = (CCX1 −AAX2

4 )

×(CCX1 +AAX
2
4 )

(25)



TRANSACTIONS ON MECHATRONICS 5

If (CCX1 − AAX2
4 ) > 0, and (CCX1 + AAX

2
4 ) > 1 then

−C2
Cy1 > (CCX1 −AAX2

4 ), so:

0 <
dy1

dτ
< −C2

Cy1 (26)

Assuming y1 = BeAt:

0 < BA < −C2
CB (27)

As a result, B must be negative, so A will be negative too.
Now, if (CCX1 −AAX2

4 ) < 0, and (CCX1 +AAX
2
4 ) > 1

then −C2
Cy1 < (CCX1 −AAX2

4 ), and,

−C2
Cy1 <

dy1

dτ
< 0 (28)

Again, assuming y1 = BeAt leads to:

−C2
CB < BA < 0 (29)

Here, B must be positive; hence, A will be negative. In this
problem, following (CCX1 +AAX

2
4 ) > 1 holds. However, it

can be demonstrated mathematically that for the condition of
0 < (CCX1 +AAX

2
4 ) < 1, the boundary layers model of Eq.

(20) is exponentially stable.
The time derivative of Eq. (21) yields:

εẏ2 = ε
dy2

dt
=
dy2

dτ
= εṖ2 − εP̄2 (30)

Using Eq. (18) when ε −→ 0 the following relation can be
obtained:

dy2

dτ
= εṖ2 = UCTVX2 +ABX

2
4 (31)

On the other hand:

UC2
TV y2 = (U2C2

TVX
2
2 −A2

BX
4
4 ) = (UCTVX2

−ABX2
4 )(UCTV X2 +ABX

2
4 )

(32)

If (UCTV X2−ABX2
4 ) > 1, then U2C2

TV y2 > (UCTV X2 +
ABX

2
4 ), so:

0 <
dy2

dτ
< U2C2

TV y2 (33)

Assuming y1 = BeAt provides:

0 < BA < U2C2
TVB (34)

where B must be positive, and consequently, A will be
positive, too. Thus, for this condition, the boundary layers of
Eq. (21) are not exponentially stable. For other conditions, it
can be shown that the boundary layers model is stable.

By following the same procedure, it can proved that the
boundary layers of Eq. (22) is exponentially stable. So, the
only concern in this analysis is associated with Eq. (21), which
is not partially stable. The results of this analysis are used
in section V, where the results of the perturbed equation are
discussed.

Based on the boundary layers stability analysis of the
system, it is obtained that Eqs. (17) and (19) have no chal-
lenges with applying perturbation theory for control signal
U > C. It should be noted that the boundary layers stability
analysis is performed if the control signal is less than C,
i.e., U < −C. By taking a similar approach as mentioned
above, it can be found that the boundary layers of Eq. (17)

are not unconditionally stable, thus perturbation theory cannot
be applied.

In summary, it is shown that perturbation theory can only
be applied to Eq. (19). This equation satisfies all necessary
conditions mentioned in singular perturbation theory. In order
to confirm this analysis, the theory was also applied to Eqs.
(17) and (18), and it was observed that the algorithm became
unstable.

2) Perturbation theory applied to P3

Here, perturbation theory is applied to Eq. (19). So, by
putting the corresponding equation off, and considering it as ψ
(see section III), other state variables are considered as φ. Ac-
cording to the analysis in section III, the reduced system with
the accuracy of O(ε) can be used. After applying perturbation
theory to the system, Eq. (19) will change. Accordingly, the
perturbed equation for U > C will be:

P3 =
P1 + αpP0

1 + αp
(35)

where αp = (UCPV

CC
)2, and in the state space:

X3 =
X1√
αp

(36)

The above equation (Eq. 35) will be used instead of Eq.
(19). The response of the perturbed equation is close to the
original equation except for small time scales.

On the other hand, for U < −C:

P3 =
P1 + αTP4

1 + αT
(37)

where αp = (UCTV

CC
)2. Also, when −C < U < C, the

Tikhonovs theorem results in P3 = P1.
An important note that must be made here is the effect of

the perturbed equation on the other circuit variables. In other
words, P̄3 will be involved in other relations such as Eq. (17).
In this equation, εṖ1 = (QA +QC), in which

QC = CC
√
P3 − P1Step(P3 − P1) (38)

for U > C. So, there is a small error between ∆P = P3−P1,
and ∆P̄ = P̄3 − P̄1. Thus, it is necessary to modify Q̄C
(volumetric flow rate in perturbed system). This modification
is done by introducing a parameter multiplied by the perturbed
volumetric flow rate known as a correction factor. So, consid-
ering Q̄C to be

Q̄C = λCC
√
P̄3 − P̄1Step(P̄3 − P̄1) (39)

for U > C, it is rewritten as

Q̄C = λCC

√
αp

1 + αp

√
P0 − P̄1Step(∆P̄ ), (40)

using Eq. (35). On the other hand,

dQ̄C = λ2C2
C

αp
1 + αp

Step2(∆P̄ ) + Q̄C
dStep(∆P̄ )

Step(∆P̄ )
(41)

where ∆P̄ = P̄3 − P̄1. Next,

QC = CC
√
P3 − P1Step(P3 − P1) (42)
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and,

dQC =
C2
C

2QC
(dP3−dP1)Step2(∆P )+QC

dStep(∆P )

Step(∆P )
(43)

Assuming Q̄C = QC , and dP̄1 = dP1, and by equating
dQ̄C = dQC , allows

λ2C2
C

αp
1 + αp

dP̄1

2Q̄C
Step2(∆P̄ ) + Q̄C

dStep(∆P̄ )

Step(∆P̄ )
=

C2
C

2QC
(dP3 − dP1)Step2(∆P ) +QC

dStep(∆P )

Step(∆P )

(44)

to be obtained.
Considering ∆P = ∆P̄ + σ, it can be shown that

dStep(∆P )

Step(∆P )
− dStep(∆P̄ )

Step(∆P̄ )
∼=
{

0 ∆P̄ 6= 0
−σ ∆P̄ = 0

(45)

As a result,

λ2 αp
1 + αp

dP̄1
∼= (dP3 − dP1). (46)

Thus, to find the value of λ, a relation between dP3, and dP1

needs to be identified. Considering Eq. (17) and (19), we have

ε1dP1

ε2dP3
=
QA +QC
QE −QC

=
1

γ
(47)

when the velocity is equal to zero. Therefore, dP3 =
γ ε1ε3 dP1 = γ V1

V3
dP1. Finally, λ2 αp

1+αp
dP̄1

∼= (γ V1

V3
− 1)dP1,

and

λ ∼=

√
αp

1 + αp
(γ
V1

V3
− 1) (48)

This is an estimation of the parameters affecting λ. As this
relation shows, the correction factor depends on the volumes
V1, and V3, in addition to αp. Therefore, by knowing the
values of V1, V3, and αp and estimating the constant value
of γ for one scenario, then we can use the algorithm for other
scenarios.

V. RESULTS AND DISCUSSION

In this section, the results of the introduced hydraulic
modelling approach are shown. The results also shed a light on
the origin of difficulties associated with efficient computing.
In addition, it is demonstrated how perturbation theory can
help to overcome these problems and the conditions needed
for its use.

Figure 2a shows the response of the hydraulic system
under investigation in the time domain for the volume of
V3 = 10−4m3.The system is solved using the Runge-Kutta
numerical integration algorithm with a fixed time step of
10−4sec. As Fig. 2a indicates, the time response is not accept-
able. The parameters and initial values of integration used in
the simulation are tabulated in Table I. In Fig. 2b, the volume
used in the calculations is increased to V3 = 5×10−3m3 where
the time step is increased to 10−3sec. The results demonstrate
that the same problem of stability remains, as shown in Fig.
2a.

Figure 2c reveals how the results can take an anticipated
trend when V3 = 5 × 10−3m3 and the time step is 10−4sec.

(a)

(b)

(c)

Fig. 2: Response of the original system for different conditions
a) V3 = 10−4m3, time step = 10−4sec b) V3 = 5×10−3m3,
time step = 10−3sec, and c) V3 = 5×10−3m3, time step =
10−4sec.
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Comparing Figs. 2a and 2c, it can be concluded that the
volume decrease of V3 by 50 times leads to the failure in
the integration of the system. On the other hand, comparing
Figs. 2b and 2c, it can be seen that all conditions are same
but the time step size is greater by one order of magnitude
in Fig. 2b than in Fig. 2c. These results in Fig. 2 indicate
that the selection of suitable values for time step size and
the volume can directly affect the stability of the solution.
As small volumes occur in many applications, the choice of
smaller time steps may lead to a slower computational process.

As mentioned above, a stable integration requires the time
step to decrease as the volume reduces. When volume size
approaches zero, the integration will eventually fail. This prob-
lem can be resolved by employing the singular perturbation
theory.

Figure 3 depicts the pressures in both sides of the piston
(point 1 in Fig. 3a, and point 2 in Fig. 3b) as a function of
time. These values are for a perturbed system without any

(a)

(b)

Fig. 3: Response of the perturbed system without volumetric
flow rate modification with the time step of 10−3sec.

additional corrections and calculations. In other words, only
Eqs. 35 and 37 are used instead of Eq. 19. Comparing Fig. 3a
and Fig. 2c reveals that the results of the perturbed system do
not match the results of the original system with a lower time
step. Therefore, applying the perturbation theory alone is not
enough to obtain reasonable results.

As mentioned in section IV, and demonstrated in Fig. 3,
the errors associated with the volumetric flow rate QC are
responsible for this inconsistency. Fig. 4 presents the volu-
metric flow rate QC in different systems, namely the original
system, the perturbed system, and the perturbed system with
modifications. From the figure, it can be noted that there
is significant difference between the volumetric flow rate of
the original system and the perturbed system, which requires
modification of the perturbed system as mentioned in Sec.
IV-B2.

The modification is performed by introducing a correction
factor λ, which is multiplied by the volumetric flow rate. The
correction factor is estimated as λ ∼= 1+αp

αp
(γ V1

V3
− 1) for U >

C (see section IV-B2). For instance, by setting parameters as
V3 = 2.45 × 10−3m3, V3 = 5 × 10−3m3 and by calculating
αp = (UCPV /Cc)

2 = 2.56 × 10−4using the values given
in Table A1, and assuming γ = 49, the correction factor is
obtained as λ = 300. According to Fig. 4, results based on the
modified volumetric flow rate QC agree with original system.
Therefore, the modified volumetric flow rate relation needs to
be used to get acceptable results. It is important in terms of
realistic results, however, that the volume V3 is accounted for.
This volume can be treated with the modification done on the
volume flow rate, for which reason the modification done on
the volumetric flow rate is essential.

Fig. 4: Volumetric flow rate QC for different systems: solid
black line for the original system with V3 = 10−4m3 and time
step of 10−4sec; dashed blue line for perturbed system without
modification with time step of 10−3sec; and pointed brown line
for perturbed system with volumetric flow rate modification with
time step of 10−3sec and γ = 49.
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(a) (b)

(c) (d)

Fig. 5: Response of the original (black solid line) and perturbed system with volumetric flow rate modification (blue dash line).
Variation of a) P1, b) P2, c) P3, and d) x with time. The original system corresponds to V3 = 5× 10−3m3 and time step of
10−4sec, and the perturbed system to the time step of 10−3sec and γ = 49 .

Figure 5 shows the results of the perturbed system with the
modified volumetric flow rate (blue dash line) and the results
of the original system (black solid line). Figures 5a-5d present
the variations of P1, P2, P3, and x with time, respectively.
Within the first second, the valve spool position is placed in the
mid-position, where it does not let the oil flow. Both pressures
and piston position remain fixed. In the next stage of time, i.e.,
1 < t < 2sec the valve piston is placed at the left position,
and pressures P1 and P3 approach the pump pressure. As a
result, the piston is pushed to the right. In the next stage of
time, i.e., 2 < t < 3sec, the valve spool position is brought
back to the middle position. However, the pressures on both
sides of the piston with the external load are balanced by the
same magnitudes as in the previous stage of 1 < t < 2sec,
and thus the piston position remains fixed during this stage.
In the next stage, i.e., 3 < t < 4 sec the valve spool goes to

the right position, and consequently the pressures P1 are P3

are decreased near to the tank pressure. So, as Fig. 5d shows,
the piston goes back to the left.

Figure 5 compares the response of the modified system
based on perturbation theory against the original system in
which the used time step is 10 times smaller than the one used
in the modified system. As can be seen, the perturbed system
agrees well with the original system. As mentioned before,
the accuracy of the modeling based on perturbation mostly
depends on the modification done for the volumetric flow
rate. This explains the small difference in piston displacement
within 8 < t < 9sec. As a conclusion, the more accurate the
volumetric flow rate modification, the closer is the response to
the original system. It should be noted that the original system
uses the time step of 10−4sec while the perturbed system is
solved with the time step of 10−3sec. It was observed that
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this time step could be increased up to 0.003sec without any
stability problem.

The frequency responses of the original and perturbed
system with and without volumetric flow rate correction are
illustrated in Figs. 6a-6c. In this figure, the normalized Fourier
transform of the volumetric flow rate in the time domain is
displayed versus frequency. In Figs. 6a and 6c, a peak occurs
at the frequency of 0.25 Hz, which is the frequency of the
piston. However, Fig. 6b does not display any peak at that
frequency. Thus, it can be claimed that the volumetric flow
rate modification reproduces same frequencies in the original
and the perturbed systems.

VI. CONCLUSION

In this paper, the singular perturbation theory is imple-
mented as an alternative way for modeling hydraulic circuits
with small volumes. First, this technique was applied to the
system to show that all necessary conditions, especially the
stability of boundary-layers model, were satisfied. Then, the
perturbed equations were derived and implemented in other
relations affected by this theory such as the volumetric flow
rate in the studied case. It was shown that small volume V3

has a significant effect on the results and must be kept in
the modeling formulation. The small volume is omitted when
applying perturbation theory based approach; it is however
involved in the modified relation. The presented perturbation
theory can speed up computation by allowing the use of larger
time steps while maintaining accuracy in both the time and
frequency spaces, which makes it suitable for application in
real-time simulations. Future studies will be devoted to the
application of this method in other hydraulic systems with
different configurations as well as systems combined of several
smaller systems.

APPENDIX A

The step function used in the simulation is presented in the
relation (A1):
Step =

1 ∆P > 105

1− 2(3 + ∆P−105

105 )(∆P−105

2×105 )2 −105 < ∆P < 105

−1 −105 < ∆P
(A1)

The spool position can be modeled using the following
relation:

U̇ =
Uin − U

τ
(A2)

where, Uin is an input equal to 10, and τ has a value of 0.1.
So, the solution of the above equation, gives U .
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(a)

(b)

(c)

Fig. 6: Normalized Fourier transform of volumetric flow rate
versus frequency: a) original system with V3 = 5 × 10−3m3

and time step of 10−4sec; b) perturbed system without volu-
metric flow rate modification with time step of 10−3sec; and c)
perturbed system with volumetric flow rate modification with
time step of 10−3sec and γ = 49.
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