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Uusiutuvaa dieseliä voidaan jalostaa sellunkeitossa syntyvästä jäännöstuotteesta, 

mäntyöljystä. Tämän diplomityön kirjallisessa osassa tehtiin kirjallisuus tutkimus 

erilaisista online-analysaattoreita, jotka voitaisiin sovittaa mäntyöljyn 

esikäsittelyprosessiin. Tarkoituksena on analysoida mäntyöljykomponenttien ja 

epäpuhtauksien määrää. Tutkimuksen perusteella analysaattoriksi valittiin lähi-

infrapuna spektroskooppi (NIR). Kokeellisessa osassa erilaisia mäntyöljynäytteitä 

analysoitiin laboratoriossa lähi-infrapuna spektroskoopilla.  

Mäntyöljykomponenteille luotiin NIR kalibrointimallit laboratorion 

referenssimittausten perusteella. Validointimittausten perusteella mallit eivät 

kuitenkaan olleet täysin paikkansapitäviä, mutta vesipitoisuuden, hartsihappojen, 

rasvahappojen ja happoluvun kalibrointi näyttää olevan mahdollista. 

Ongelmallisimpia kalibrointeja olivat neutraaliaine- ja saippuanumerokalibroinnit. 

Kaikkien mallien ongelmat johtuvat todennäköisesti liian pienestä kalibrointialueesta 

ja mahdollisesta mallien ylimallinnuksesta. Lisäksi työssä tutkittiin näytteen 

lämpötilan vaikutusta mittaustulokseen sekä heijastavuus- ja transmittanssi-

menetelmiä verrattiin keskenään.   
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Abstract 

Online analysis of wood extractives  
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Renewable diesel can be refined from the residual product of Kraft pulping, tall oil. In 

the theoretical part of this master’s thesis, a literature review was conducted on various 

online analyzers that could be adapted to the tall oil preprocessing. The purpose to 

analyze the amount of tall oil components and impurities. Based on the study, a near-

infrared spectroscope was selected as the analyzer. In the experimental part, different 

tall oil samples were analyzed in the laboratory by near-infrared spectroscopy. 

 

NIR calibration models were created for tall oil components based on reference 

measurements. Based on the validation measurements, the models were not 

completely accurate, but calibration seems possible for water content, resin acid, fatty 

acid and acid number. Most problems occurred with neutral substances and residual 

soap number.  The problems of the models are probably due to the too small calibration 

range and possible overfitting of the models. In addition, the effect of sample 

temperature to the measurement results was studied, and reflectance and transmittance 

methods were compared.  
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1. Introduction 

 

With the decline of fossil fuel resources, the use of renewable biofuels has increased. 

Biofuels offer a more sustainable future and they produce lower greenhouse gas 

emissions than fossil fuels, that contributes to climate change. According to the EU 

directive RED II, in its member states 14% of the energy consumed by road or rail 

transport, must be renewable energy by the year 2030. Of those 14%, 3.5% should be 

advanced biofuels, Finland plans that by the year 2030, 30% of fuels used in road and 

rail transport in Finland would be biofuels, from where 10% should be accounted by 

advanced biofuels.  Finnish forest industry company UPM produces renewable diesel 

and renewable naphtha in Lapppeenranta biorefinery, that is made from crude tall oil 

(CTO), that is an advanced biofuel resource. [UPM] [European commission] [Voegele, 

2019] 

CTO is a residue from Kraft pulp production. It is a dark brow liquid, that is viscous 

and foul smelling before refining. Typical chemical composition of CTO is 38-53 w-

% of fatty acids, 38-53 w-% of rosin acids and 6,5-20 w-% of neutral unsaponifiable 

compounds and some impurities, such as water, soap and metals. As CTO is not a main 

product, but a residue, it doesn’t have any quality guidelines and its composition 

varies. The CTO composition changes based on different wood species, growing 

regions, season of the year and other extraneous aspects like wood storage and pulping. 

In addition to these aspects, CTO quality can also be changed when it is transported 

and stored. [Aro&Fatehi,2017] 

The changes in CTO produce a challenge for the refining process. The changes in the 

quality of the CTO can be fast and changes elsewhere in the process need to be made 

in according to the composition parameters. At the moment, the component parameters 

and impurities are measured in the laboratory a few times a day. However, as the 

changes in the CTO composition can occur in hours or minutes, this is not enough. 

Online analysis could be the answer to produce measurements in real time in order to 

improve process automatization and control, adjust product quality and improve yield. 

In this thesis online analysis equipment were researched and compared, in effort to 

choose the right analyzer for the process in question. For the experimental part near 
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infrared spectroscopy was chosen, and samples were analyzed in the laboratory to 

construct calibration models for crude tall oil and purified tall oil. Samples were 

measured with two methods, reflectance and transmittance methods. With 

transmittance method samples were measured in three different temperatures to see 

the effect of temperature in the sample spectra and its effect on the models. Lastly 

purified tall oil samples were collected daily for 45 days to see the trend of the process.  

1.1  Production process 

 

In this section the production process from Kraft pulping to renewable diesel is 

generally described, just to serve as a background. More detail will be put in the pre-

treatment process part. More detailed description of other process parts has been done 

previously by Leivo (2018) and Halme (2019) in their master’s thesis on related 

subjects.  

CTO production process starts at the Kraft pulp mill. The flowsheet of the production 

process is presented in Figure 1.  In pulp production wood chips are treated with 

cooking liquor containing sodium hydroxide and sodium sulfide to dissolve the lignin. 

Wood extractives such as resin acid, fatty acid, neutral and oxidized substances react 

with the cooking liquor, and after the cooking stage the residual cooking liquor that is 

now black liquor is separated from the pulp during washing. The weak black liquor is 

concentrated by evaporation. When the solid content rises during the evaporation in 

the now strong black liquor, a layer of soap called crude sulphate soap (CSS) forms to 

the surface of the liquor. CSS is removed and turned into CTO by acidulation process 

with sulfuric acid. [Peters&Stojcheva,2017] [Hase et all. 2003] In Figure 2.  CTO’s 

part of the pulping process is shown. 
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Figure 1. Flow sheet of CTO production from wood to CTO. Modified from Prokkola 

et all.  

 

Figure 2. Amount of CTO from wood.  ©UPM. [Mannonen, 2014] 

CTO is then stored to tanks before transportation from the pulp mill and before feeding 

it to the biorefinery. As the CTO is acidic, the storage tanks and transportation tanks 
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used must be lined with acid resistant material, as the CTO may be corrosive to the 

tank walls otherwise. For example, in some cases the train carriages that are used to 

transfer the CTO, are not acid resistant, and excess iron dissolves into the CTO due to 

the corrosion of the carriage walls. Iron can cause problems later in the hydrotreatment 

if not removed [Arora et all., 2018]. 

Around 48 truckloads of CTO are collected into one storage tank from multiple 

suppliers and from different pulping processes. During the time in the tank, some 

components like water and water-soluble impurities and some solid particles settle at 

the bottom of the tank. This decreases the amount of water in the CTO that is fed into 

the pretreatment, as the tank is not emptied from the bottom. However, the composition 

of CTO and its quality varies between separate tanks and sometimes even inside one 

tank if mixing is not proper. [Vilonen, K.,2020] 

Pretreatment of CTO consists evaporation steps.  In the pretreatment steps impurities 

such as water, solid particles, metals and salts are removed. The pretreatment steps 

produce purified feed stock, the light fraction that consists of gasses, turpentine, light 

hydrocarbons and water and the residue fraction that consists of heavy hydrocarbons 

that have 30 or more carbon atoms, pitch and most impurities like metals are removed 

here. The purified feed stock contains mainly fatty acids, resin acids and neutral 

components such as sterols and stanols. The flowsheet of different feeds is shown in 

Figure 3. [Mannonen, 2014] [FI 126029B] [Kotoneva, J., 2020] 

In the evaporation system two or more components are separated from each other, by 

utilizing the differences of vapor pressure of the components. The evaporation is done 

in vacuum, in order to improve evaporation at lower temperatures. By creating multi 

step evaporation, it is possible to accomplish the evaporation in a controlled and 

effective manner that leaves small amount of residue. In the pretreatment multi step 

evaporation, the evaporators can be either the same or different type evaporators. 

Evaporators using thin fill evaporation technique are suitable for the pretreatment of 

CTO. Such evaporators include thin film evaporators (TFE), short path evaporators, 

falling film evaporators and plate molecular stills. The evaporators operate in 

conditions between range 0,1-100 mbar and 50-450℃. [FI 126029B] 
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Figure 3. Flowsheet of different feeds and residues in pretreatment. E1-E4 are different 

evaporation steps. Feed 1 is untreated CTO. PTO is purified tall oil, from where the 

light fraction and residue fraction have been removed from. The light fraction contains 

gases, light hydrocarbons and water. The residue fraction contains hydrocarbons with 

more than 30 carbons in the chemical structure. Modified from [FI 126029B].  

In Figure 4 below, the flow sheet of the process is represented from unpurified CTO 

to renewable diesel. After the pre-treatment, purified tall oil (PTO) is fed to 

hydrotreatment, where the chemical structure is modified with the addition of 

hydrogen in the presence of a catalyst to produce hydrocarbons. In fractioning, co-

products (water, hydrogen sulfide and other uncondensable gasses), from the 

hydrotreatment are removed. The remaining liquid can be distilled into renewable 

diesel. [Mannonen, 2014] [Bezergianni et all., 2013] [Perego et all.,2012] [FI 

126029B] 

E1. E2. E3. E4. 

Pretreatment Hydrotreatment 

Feed 1 
PTO 

Light fraction 

residue fraction 
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Figure 4. Simplistic flowsheet of CTO to renewable diesel. [Mannonen, 2014] ©UPM 

1.2 components and impurities of CTO 

 

The amount of wood extractives and its three main components vary widely, 

depending on the wood species, growth site (climate), soil quality and season of the 

year. The composition of the CTO also changes due to wood storage and transport of 

wood and CTO. In Figure 5, variation of monthly soap recovery average is shown.  

[Laxen et all.2008] In Table I, the differences in component constituents between 

different wood species are shown. [Norlin, 2012] CTO composes from fatty acids 

(TOFA), resin acids (TOR) and from neutral unsaponifiable compounds and some 

impurities. [Aro&Fatehi,2017] In Table II, the composition of CTO depending on the 

growth place is shown. [Gullichsen et all, 1999] 
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Figure 5. Seasonal variation of soap recovery. Modified from [Laxen et all.2008] 

Table I. Primary components of CTO in different wood species. [Norlin, 2012] 

Wood species extractives % Fatty acids, 

 kg/t wood 

Rosin acids,  

kg/t wood 

unsaponifiables, 

kg/t wood 

Pine ≈ 3 15-20 5-10 2-5 

Spruce ≈ 1 4-8 1-2 1-3 

Birch ≈ 2 12-18  5-10 

 

Table II. Composition of CTO depending on the growth site. The wood used in the 

USA and Canada columns are pine when Scandinavian example is from the use of 

wood mix of pine and spruce.  [Gullichsen et all, 1999] 

 Southeastern USA Northern USA and 

Canada 

Scandinavia 

Acid number 165 135 132 

saponification 

number 

172 166 142 

Resin acids, % 40 30 23 

Fatty acids, % 52 55 57 
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The fatty acids in tall oil are usually mostly oleic, linoleic and linolenic acids, with 

smaller amount of pinolenic, palmitic and other fatty acids that are contained in wood. 

In Figure 6, chemical structures of oleic and linoleic fatty acids contained in CTO are 

presented. [Hase et all., 2003]  

The most important resin acids in CTO are abietic, dehydroabietic, palustric, pimaric, 

levopimaric and neoabietic acid, but CTO includes smaller amounts of other resin 

acids as well. In Figure 6, the chemical structure of abietic acid and palustric acid in 

CTO are presented. [Hase et all., 2003] 

 

Figure 6. The chemical structures of fatty acids and resin acids in CTO. Fatty acids are 

presented on the upper row, and resin acids on the lower row.  

Neutral components in CTO are also called unsaponifiables, because they do not turn 

into soap in alkaline hydrolysis during the Kraft pulping. This fraction consists mostly 

of sterols, different alcohols, aldehydes, hydrocarbons, and turpentenes, but it can also 

have small amounts of other components.  [Wang et all. 2001][Vikström et all. 2005] 

Some neutral components, like the main phytosterol in tall oil, β-sitosterol, could be 

further processed and used in medicine, cosmetic or food applications. β-sitosterol is 

oleic acid linoleic acid 

abietic acid palustric acid 



17 
 

 
 

an antioxidant, that has anti-inflammatory and antibacterial actions, it has also been 

found to lower cholesterol and inhibit the growth of tumors as well as renew and 

moisturize skin. [Wang et all., 2005] Chemical structures of some neutral components 

in CTO are presented in Figure 7.  

 

Figure 7. The chemical structures of neutral components in CTO. [Vikström et all. 

2005] 

CTO also contains some impurities, that need to be removed in the pretreatment. Such 

impurities are water, soap residue, residual metals, salts, sulphates, solid particles, 

sodium, phosphorous and silicon. [FI 126029B]   

Water percentage in the CTO varies from 0% to 10%, but the desirable amount is less 

than 2%. Some of the water content in the CTO settles in the storage tanks, so it doesn’t 

reach the pretreatment step. Water that is left is removed in the first pretreatment step 

in the light fraction with turpentine. [Vilonen, K., 2020] [FI 126029B]   

Some impurities are left from the Kraft pulping process, where black liquor cooking 

and tall oil soap acidulation process. These are for example sodium, sulphate and 

calcium compounds. Only a small amount of silicon is in the wood material itself, but 

the majority of silicon in the CTO comes from the pulp mill where it is used as an 

antifoaming agent. Some soap can also be present in the CTO as a residue from the 

acidulating process. The amount of soap residue can be minimized by adding more 

acid, but this can lead to excess of sulfuric acid that increases corrosion risk, which 

can be problematic for example in transportation. [Vilonen, K., 2020] [Wansbrough et 

all. 2008] 

As some metal and mineral impurities come from the production process, some come 

from the wood and others, like iron dissolves into the CTO due to corrosion in the 
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storage and transportation carriages.  Minerals like phosphorous appears in the wood 

itself as it is vital nutrient for plants like nitrate. Metals like sodium and potassium are 

also present in the wood itself. [Arora et all., 2018] [Kotoneva, J., 2020] 

Solid particles are usually precipitants from the process. Lignin is a component present 

in the wood. In the alkaline Kraft pulping lignin produces sodium lignite in the tall oil 

soap, and after the acidulation process, the lignin precipitates. Cellulose or 

hemicellulose can be present in CTO as fibers. Compounds can also precipitate as 

salts, for example when calcium ions, that are present in the soap form calcium sulfate, 

when introduced to sulfate ions from the acidulation process. [Wansbrough et all. 

2008] 

2. Online analysis 

 

Online analyzers are analyzing equipment that are connected to a process, where they 

conduct automatic sampling for part of the flow, analyze said sample and return it to 

the flow. Online analyzers report the collected data to the operator in real time. 

[AAVOS International] In this chapter different analysis equipment is studied, in an 

effort to find suitable online analysis for the process. The analyzers are studied keeping 

the process in question in mind, thus not all related theory behind the method is 

explained, mostly basic working principles, and applications. The equipment would 

be installed on multiple points in the process. Places for online analyzers are shown in 

Figure 8 below. The places are before and after the storage tanks, possibly between the 

evaporators and after the pretreatment step.  
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Figure 8. Green blocks represent the possible points of measurement for the online 

analyzers in the process.  

Because the analyzers will be in different places, they will have some differences in 

the operating conditions, for example changes in temperatures, which can be 

problematic for the analyzers. The wanted measurements from the process by the 

online analyzer are at least water content, acid value and the concentrations of 

impurities. Preferably also the detection of lignin and fiber structures.  

Chemical compounds and functional groups present in CTO that could be used to 

identify compounds or determine the amount of said compounds in the samples are: 

COOH, C-H, C=C, O-H, -O-CH3, aromatics, N-H, S-H and complex metals. 

2.1 NIRS 

 

Near infra-red spectroscopy (NIRS) is based on the absorption of electromagnetic 

radiation in the near infrared wavelength region from 780 to 2500 nm (13300 to 4000 

cm-1). NIRS uses molecular overtones and combination vibrations in the said region 

to identify compounds, as energy absorbance is specific to chemical bonds. Functional 

groups and bonds like C-H, O-H, N-H, S-H C=O, =C-H, COOH and aromatic C-H are 

strong NIR absorbers, and thus easy to detect. [Bart, 2006] Metals can also be detected, 

Light fraction 

Residue fraction 

CTO storage Pretreatment Hydrotreatment 

CTO 

PTO 
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if they are in complex form with organic molecules that contain C-H, N-H or O-H 

bonds, as pure metals do not absorb in the NIR spectra region. [Nomngongo et all., 

2016] 

 The equipment principle is similar to other spectroscopy methods, where a light from 

controlled source is being directed at the sample where it is reflected at diffraction 

grading and forward to detectors. Figure 9 shows a simplified principle of NIRS, note 

that this is only one way of constructing NIRS equipment, as there are many ways to 

do this. Depending on the need, the detector can be programmed to use different 

measurement modes, depending whether the energy is reflected, transmitted or 

absorbed when the NIR radiation interacts with the sample. Most common 

measurement modes are transmittance, interactance, transflectance, diffuse 

transmittance and diffuse reflectance. These modes are presented in Figure 10. The 

choice of the measurement method is mostly affected by the chemical characteristics 

of the sample, for example, the phase (solid, liquid or gas), translucency and size of 

particles in the sample. NIRS is a widely used technology in different fields, for 

example in pharmacy, medical applications, dairy, agriculture, astrology, wood and 

forestry and petroleum industry applications. [Balabin et all. 2011][Bart et all. 2013] 

[Prieto et all. 2017][Roberts et all. 2018]  

 

Figure 9. Simplified working principle of 

NIRS. NIR radiation is directed at the 

sample, the reflected radiation is then 

collected to the diffraction grating, which 

splits the radiation into constituent 

wavelengths. These wavelengths are then 

detected and transferred into a computer. 

Modified from [Buchi]  
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Figure 10. Most used measurement modes in NIR spectroscopy. a) transmittance, b) 

transflectance, c) diffuse reflectance, d) interactance and e) diffuse transmittance.  

Modified from [Pasquini, 2003] 

NIRS can be used for quantitative measurements (component concentrations) as well 

as qualitative measurements (the identification of components) and it can determine 

chemical and physical product properties. It is a rapid analysis method, where the 

measurements can be done within one minute or less per sample. It doesn’t need 

sample preparation and is does not destruct the sample and there is no chemical waste 

or additional chemical costs. There is no fixed sample size and multiple results can be 

obtained from the same measurement data. [Bart et all., 2013] As NIRS can be used to 

measure a wide array of properties, equipment manufactures provide custom designed 

applications, to suit different needs. Some physical and chemical product properties 

reportedly measured are: density, viscosity, flash point, cloud point, color, 

transparency, total acid number, molecular weight, identification of raw material, 

composition determination, concentrations of organic and inorganic components, 

content of volatile components and water content. [Bart et all.,2013] 

Even if NIRS has a wide range of advantages, it does have some disadvantages as well 

that need to be taken into account. NIRS is a secondary method, which means it needs 

calibration against reference methods, and all in all it needs robust calibration, as each 
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component needs its own calibration for each type of sample analyzed. The samples 

should also be in controlled temperature.  [Bart et all., 2013] However, even if NIRS 

can’t give specific about the sample components without thorough calibration, changes 

in the spectra can be used as indicative information for example with water content 

levels. 

2.1.1 NIRS instrumentation 

 

When assembling an NIR spectrometer, it is important to keep in mind the end 

application, as different instrumentation in NIRS can affect the end result. The price 

of the equipment also depends on the instruments used. [Pasquini, 2013] There are five 

basic sections in any commercial NIR spectrometer: 1. sample compartment, 2. light 

source, 3. Light wave selection system, 4. detector, and 5. signal processor. [Agelet et 

all. 2010] Example instrumentation from these sections are presented below.  

In laboratory, if working with reflectance methods no sample compartment is needed, 

and if working with transmittance, open silica and quartz sample compartments can be 

used, as they are transparent to NIR light. In online analysis sample compartments are 

not necessarily needed, depending on the type of the sample. Free flowing liquid 

samples can be analyzed with flow through cells, but extremely viscous liquids should 

be analyzed with the diffuse reflectance method.  NIR light can travel through glass 

without losing much of its signal integrity. Fiber optics can also be used, if the sample 

is far from the source, or if the sampling is done by immersion in liquid. [Agelet et all. 

2010] [Bart, 2006] 

Most commonly used light sources in NIR are the tungsten halogen lamp, LED and 

SLD. The most popular is the tungsten halogen lamp, which wavelength emission 

ranges from 320 to 2500 nm. LED (light emitting diode) has low price and power 

consumption, it is small in size but has a long lifetime. LEDs are usually used in small 

NIR equipment that are used the laboratory environment. LED can produce radiation 

with a narrow band width of 30-50 nm, but it can be centered in any wavelength of the 

spectral region. One instrument can also utilize multiple LEDs set in different 

wavelengths or they can be used to produce a polychromatic source, whose radiation 
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is dispersed by using monochromator devices such as gratings or filter optics. SLDs 

(superluminiscent light-emitting diodes, acronym SLED can be used, but it is also used 

for surface-emitting LEDs.) are semiconductor tunable diode lasers. It is powerful and 

bright like a laser diode, but smaller in size and cheaper, and it can be adjusted to 

narrow or wide band width within the NIR wavelength range.  [Agelet et all., 2010] 

[Pasquini, 2013] 

Wavelength selectors collect the energy from the sample and feed the wanted 

wavelengths to the detector. Wavelengths can be selected by filters. The simplest 

filters work by absorbing all wavelengths, but the one that is of interest. These filters 

can be arranged in a wheel, that allows selection of multiple wavelengths. Some filters, 

like acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF) can 

create several wavelengths, thus don’t need mechanical devices to switch the filter 

used. Dispersive type instruments use a prism or grating to collects the energy from 

the sample. presented in Figure 9. Grating usually is the most low-cost option when 

compared with more modern technologies. Like [Agelet et all., 2010] [Pasquini, 2013] 

Detectors transform the light energy from the wavelength selectors into electric signal, 

which can be transformed into digital data that can be processed by the computer. 

Detectors are selected based on the wavelength region to be covered. Most used 

detectors are silicon (Si) detectors, lead sulfide (PbS) detectors, indium gallium 

arsenide (InGaAs) detectors or charged coupled devices (CCD). Silicon is the most 

common detector material in the 400 to 1100 nm range. Si detectors are stable, fast, 

sensitive to low light intensity and low cost. PbS and InGaAs are used in higher 

wavelength regions and they can be used together in the same instrument. Multiple 

InGaAs and CCDs detectors can be set in photodiode array (PDA) spectrographs in 

groups, to achieve faster measurements. CCDs have higher signal sensitivity and 

resolution than InGaAs detectors, while InGaAs detectors in PDA have higher signal 

precision and higher signal-to-noise ratio than CCDs in PDA. [Agelet et all., 2010]  

NIRS can also use Fourier transform (FT) mathematical technique, that makes the 

NIRS faster, more sensitive and precise with lower background noise. The FT-NIR’s 

working principle differs from the traditional NIR slightly. FT-NIR uses 

polychromatic light instead of monochromatic light, which is then directed to a beam 
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splitter that produces an interferogram, that shows the intensity of light as a function 

of time. The interferogram is then transferred to actual spectra by Fourier 

transformation. [Chmielarz et all., 2019] The FT-NIR can be seen as the updated 

version of the traditional NIRS.  

NIRS offers a rapid and cost-effective online analysis, but to get analytical data from 

the spectra, multivariate data analysis methods should be applied. NIR spectra contain 

vast amounts of information about the physical and chemical properties of molecules, 

but the weak NIR bands can be wide and overlapping. [Bart, 2006] Thus chemometrics 

should be applied. This means using methods like for example, partial least squares 

(PLS), K-nearest neighbors (KNN) or/and principal components regression (PCR) to 

analyze the digitized spectra data. [Balabin et all. 2011]  

2.2 Online HPLC 

 

High performance liquid chromatography (HPLC) is an analytical technique that can 

be used to separate, identify, and quantify components in organic and inorganic 

mixtures. In HPLC, a pump feeds the solvent through a column in high pressures up 

to 400 atm. This makes the HPLC a much faster method than other column 

chromatography methods. The high pressure also allows the column to use much 

smaller particle size packing material, that are usually silica or polymers. The smaller 

particle size in packing material means higher surface area for interactions between 

the stationary phase and mobile liquid phase, which results for example in better 

separation of components in mixture. The principle of liquid chromatography is that 

different components have different degrees of interaction with the stationary 

absorption phase, thus they have different elution rates and can be separated from each 

other as they flow out of the column. Basic flowsheet of HPLC is presented in Figure 

11. [Koester, 2016]  
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Figure 11. Basic flowsheet of HPLC equipment. Modified from [Koester, 2016] 

There are a few limitations to the sample for the use of HPLC. The sample must 

dissolve completely to the solvent chosen. The sample can’t react with the solvent and 

a suitable detector must be found. [Jaarinen et all., 2005] 

If there are solid particles in the mixture, that do not dilute to the solvent, the sample 

can be filtered before feeding the eluent to the column. Pre-columns are also 

recommended, as they capture the non-dissolved particles, that could otherwise end up 

in the analytical column. This prolongs the life of the analytical column and the pre-

column can be changed when necessary. The condition of the analytical column should 

be measured during use by measuring the plate number with a suitable testing liquid. 

The plate number is first tested for a clean column and at regular intervals. Fouling of 

the column can be seen as the decrease of the plate number. [Jaarinen et all., 2005] 

Depending on the sample, the packing material, type of chromatography and detector 

should be chosen. Packing material is chosen depending on the pH of the eluent 

(limited between 2-8 with most packing materials), eluent and sample (no 

precipitation, or other unwanted reactions can occur) and the type of the 

chromatography.  Chromatography type can be for example normal-phase 

chromatography, reverse-phase chromatography or ion exchange chromatography. 

Normal-phase chromatography is the first kind of HPLC that was developed, thus it is 

named normal-phase, but reverse-phase chromatography is most commonly used 

HPLC type. There are also numerous detector types, UV-VIS-, fluorescence-, 

electrochemical conductivity-, IR-, and differential refractive index detector to name 
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a few. The detectors are selected based on the needed selectivity and sensitivity. 

[Jaarinen et all., 2005] [Higson, 2004] 

Eluents are usually a mixture of two or more solutions whose ratios need to be 

optimized right in order to get the components to separate from one another. The type 

of the chromatography usually determines the type of eluent used. For example, in 

reverse-phase chromatography, the stationary phase is nonpolar, thus the eluent needs 

to be polar. Here an example of eluent is a combination of water and methanol. In 

reverse-phase chromatography, the most polar components elute first. In normal-phase 

chromatography, the situation is reverse, as the stationary phase is polar, thus the 

eluent must be nonpolar, here hexane and its mixtures can be used as eluents. The 

viscosity of the eluent effects the retention time in the column, the smaller the 

viscosity, the smaller is the backpressure caused by the stationary phase is. [Jaarinen 

et all., 2005]  

When the composition of the sample stays constant, and only one type of solvent can 

be used, it is called isocratic elution. Sometimes, the polarity of the sample components 

changes so drastically, that the eluent that is used for some components, cannot 

separate the others out of the column in a sensible time. In these situations, the eluent 

composition can be changed in intervals to get all of the sample components to elute 

and separated. This is called gradient elution. [Jaarinen et all., 2005] [ChromAcademy] 

According to literature, HPLC can identify and quantify metal ions, [Yang et all., 

2003] the fatty acids and resin acids of tall oil [Murray et all., 1981], water content 

[Stevens et all., 1987] and lignin [Ungureanu et all., 2009] but to determine all of these 

at one go can produce problems for selecting a suitable detector, eluent and stationary 

phase. It should also be noted that the literature examples mentioned most have studied 

pure substances, and CTO is very complex substance.  HPLC provides fast results, but 

in online applications, when sampling straight from the product stream, it must be 

made sure that sample temperature and pressure are not damaging to the sampler or 

analyzer instruments. [Dionex, 2002] Some disadvantages of HPLC are the cost, that 

accumulates from the equipment itself, solvents used, hazardous waste management 

and replacement of columns from time to time. It is also a complex method and 

coelution of similar components can happen. [Burdick, 2018] 
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2.3 Low field NMR 

 

Nuclear magnetic resolution (NMR) spectroscopy is used to identify and quantify 

components in a mixture, and it is the only method that can also identify the three-

dimensional chemical structure of components. For NMR to work, the studied nuclei 

need to have a spin. Nucleus has a spin when it has an uneven number of nuclear 

particles. The most common types of NMR spectroscopy are the proton (1H-NMR) 

and carbon 13-isotope (13C-NMR), but it can be done with all nuclei that possess spin, 

for example 15N and 31P. [Myllyviita, 2019]  

NMR is based on the interactions with the magnetic moment of the atom nucleus and 

an outer magnetic field. The magnetic moment of the nucleus is determined by the 

nuclear spin and magnetogyric ratio. [Reichenbächer et all., 2012] When the sample is 

placed in external magnetic field, its nuclei can align either with or opposed to the 

external magnetic field. When radio frequency in emitted to the nuclei, their 

orientation is reversed. This is known as resonance condition. When the spin returns 

to its base level, the energy is released at the same frequency as it was absorbed by the 

nuclei. This energy is then detected, and the signal can be processed into NMR spectra. 

[chemquide] Figure 12 shows the basic principle of NMR.  

 

Figure 12. simplified basic principle of NMR.  
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NMR spectrum shows the chemical sift of the atoms, signal intensity and signal 

distribution. Chemical sift indicates the nuclei resonance frequency compared with a 

standard sample in a magnetic field. The signal intensity shows the number of the 

nuclei of the same kind in the sample, and signal distribution gives information of 

other nuclei nearby and the chemical structure of the molecule. [Solunetti] [Myllyviita, 

2019] For smaller molecules, the spectra are usually very simple to interpret, but big 

and complex molecules can cause problems like spectral overlapping. In these 

situations, measurements in higher magnetic field can reduce overlapping or 2D- 

measurements may help to get more information about the bonds between nuclei. 

Sometimes chemometric methods are needed to gain information about the spectra. 

[Martonen, 2019] 

For proper measurement and to interpret the spectra properly, it is good to understand 

the theory behind the method. For the purpose of this thesis, I shall not go into full 

detail, but there is a lot of literature explaining it all. For example, Edwards (2009), 

Rule et all., (2006) and Günther (2013) to mention a few.  

As NMR equipment is usually very large and costly, low field NMR can offer smaller 

and less expensive equipment, that is often used online for process control. Low field 

NMR uses permanent magnets, with the typical strength of 0,5-1 T (10-60 MHz) do 

not require much maintenance. [Blümich,2005] [Nordon et all., 2002] Low-field NMR 

has lower sensitivity and resolution than high-field NMR. In low magnetic fields, peak 

overlapping is common and multivariate regression models, like PLS, can be used to 

get information from the spectra. In online NMR applications, the process temperature 

and pressure can be handled by choosing suitable flow NMR probes and sampling 

equipment. [Zientek et all., 2016] Low field NMR can detect acid concentrations based 

on the chemical shift of the acid/water signal, which comes from the exchangeable 

proton of acid and water. [Nordon et all., 2002] Water can also be detected in different 

physical and chemical environments. [Thybring et all., 2017] LF-NMR can be used in 

various stages of the process, to show the changes in sample composition. [Nordon et 

all., 2002] 
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2.4. XRF 

 

There are many x-ray analyzer methods like x-ray fluorescence (XRF), x-ray 

diffraction (XRD) and x-ray transmittance (XRT), that can be used as an online 

analysis method. These methods can be used in quantitative and qualitative 

measurements, identification, detection, quality and process control. XRF provides the 

elemental analysis of a sample when XRD gives the compound analysis of minerals. 

XRD and XRF can be used together. [911 metallurgist] [Baensch, 2014] XRT detects 

mostly metals, thus can hardly detect organic materials. [Huang et all., 2019] As XRF 

is the recommended method for biofuel products, it is the focus of this chapter. 

XRF is a non-destructive analysis method, that can analyze liquid, solid and gas 

samples and does not produce any waste. For sample preparation, the XRF method 

only acquires the homogenization of the sample, as the analysis happens mostly on the 

sample surface. XRF can analyze concentrations from 0.0001 % to 100%. [Laine-

Ylijoki et all., 2003a] 

In XRF, x-ray radiation is directed to an atom, where it can remove an electron from 

the innermost electron shell. In the pursuit of the minimum energy state, the atom fills 

the inner shell with an electron from the outer shells. This process emits an energy in 

the x-ray region, that is specific to each element. This energy can then be detected, and 

the atom identified, the intensity of the signal determines the concentration of the same 

element in a sample. [Laine-Ylijoki et all., 2003a] This mechanism is presented in 

Figure 13.  

 

Figure 13. XRF mechanisms modified from [Laine-Ylijoki et all., 2003a] 
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XRF are usually classified to wavelength dispersion XRF (WDXRF) or energy 

dispersion XRF (EDXRF) based on the energy detection method.  WDXRF physically 

separates the emitted x-rays according to their wavelengths, when EDXRF directly 

measures the different x-ray energies emitted from the sample. WDXRF is mostly used 

in laboratory settings, as EDXRF is usually used in field portable XRF (FPXRF) 

equipment. [Kalnicky et all., 2001] Compared with WDXRF, EDXRF is cheaper and 

smaller in size, but their resolution is weaker. The typical detectable atomic weight 

range for EDXRF is from sodium to uranium. [Laine-Ylijoki et all., 2003b] 

FTPXRF are small in size, user friendly and don’t require specific expertise to be used. 

FPXRF can use either isotope sources or x-ray tubes for radiation sources, the x-ray 

tubes are becoming more popular, as they increase radiation power, decrease 

measurement time (5-15s) and are safer to use than isotope sources, as isotopes can 

release toxic radiation into the environment, if not properly capsuled. When using x-

ray radiation, there is a lot of safety regulation to be followed.  With isotope sources, 

the measurement time is 30-100s. [Laine-Ylijoki et all., 2003b] [Laine-Ylijoki et all., 

2003a] Some disadvantages of the isotope sources are that they emit radiation at 

certain energy levels, thus they only excite atoms at certain atomic number range. No 

isotope alone is enough to excite the whole atomic number range. Also, with radiation 

isotopes, the half-lives determine the chancing of the isotope source as their intensity 

decreases. The half-lifes of isotopes can vary from 270 days (Co-57) to 470 years (Am-

241). [Kalnicky et all., 2001].  

There are a few different detectors used in XRF equipment, that vary in resolution, 

speed and analyte sensitivity. The most common types of detectors are the gas flow 

proportional detector, scintillation detector and the solid-state semiconductor detector, 

from which the latter is most commonly used in FPXRF because of the best resolution. 

Some detectors may require liquid nitrogen as coolant or other electronic cooling. 

[Kalnicky et all. 2001] 

For the quantitative analysis of oil and liquid samples, robust calibration is required in 

the beginning, some things to consider during calibration are detector resolution, the 

sample matrix, accuracy of calibration standards and sample homogeneity. The 

detectors have varying resolution and some element combinations can be impossible 
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to calibrate due to detector limitations. It is important to choose the right detector for 

the process in question. The sample matrix can interfere with the measurement of the 

target element. The percentages of substances in a liquid sample that cannot be 

measured, for example N, C and O, should not affect the accuracy of XRF. However, 

in the case that other elements do interfere, it is usually possible to correct this in 

calibration. [Kalnicky et all., 2001] [Gazulla et all., 2013] The online equipment is 

customizable for different types of process conditions (the temperature, pressure, 

viscosity etc.) In the online equipment, the sample flows to a sample cell, where it is 

analyzed by XRF, and released back to the process. The x-ray passes through a thin 

window before hitting the sample. The window material is selected based on the 

elements measured from the sample. [Rigagu] [Hombre] [Malvern Panalytical] 

3. Analyzer comparison  

 

In this chapter, the online analyzers studied before are compared with one another on 

cost, possible problems in process, maintenance needs and analysis abilities to find a 

suitable equipment. Few process examples for each technique are collected from 

literature.  

3.1 Process examples 

 

As previously mentioned, NIRS works in a variety of fields. One example is in dairy 

industry, where Nûñez-Sanchez et all. (2016) determined the fatty acid profile in goat 

milk. Analysis was done with liquid milk in transflectance mode and with dried milk 

in reflectance mode. Transflectance gave similar or better results than reflectance. This 

was a favorable outcome, as analyzing liquid milk with accurate results keeps the 

analysis fast and the sample doesn’t need any pretreatment.  

There are multiple reports about the use of NIR and multivariate regression methods 

in order to predict the quality parameters of biodiesel. Some parameters analyzed were 

the oxidative stability index, acid number, water content, iodine number and the w% 

of different oils from different feedstocks (palm, rapeseed and soybean oil) in a 

mixture. Multiple multivariate methods were used for the quality analysis of NIR 
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spectra and to create calibration models between analytical reference data and NIR 

spectra. [Baptista et all., 2008] [de Lira et all., 2010] 

Murray et all., (1981) studied the qualitative and quantitative analysis of tall oil fatty 

and resin acids with HPLC. The experiments were done in the laboratory conditions 

with distilled and filtered samples. For the qualitative analysis it was found that resin 

acids need different solvent composition than fatty acids to separate in the column. 

Different ratios of tetrahydrofuran, acetonitrile and water were used as solvents. For 

the quantitative analysis of certain acid components (abietic and oleic) calibration 

curves were constructed to measure the amount of said components in a mixture. In 

quantitative analysis, the peak area is related to the percentage of the components in a 

mixture, but for some components, for example linoleic and palmitic acids in the fatty 

acid mixture, the peaks can overlap, leading to the need for chemometric methods.  

Ungureanu et all. (2009) used HPLC to characterize wheat straw lignin, and to analyze 

difference between the unmodified lignin and hydroxymethylated lignin. Lignin is a 

chemically active macromolecular compound, due to phenolic and aliphatic hydroxyl 

functional groups, found in plants and wood structures. The hydroxymethylation 

contributed to changes in the lignin molecular structure, allowing lignin to be used in 

more effective practical applications. This change in the molecular structure by 

hydroxymethylation was proven with multiple analysis methods, including HPLC. The 

HPLC analysis occurred in laboratory conditions, with both samples the solvent was a 

mixture of water, methanol and acetic acid. It could be seen in the resulting spectra 

that the unmodified lignin gave only one peak, as the modified lignin gave two. This 

proved the changes in lignin polymolecularity as a result of different functionalization 

of the lignin fractions or of the occurrence of some condensation reactions. 

Low field 1H-NMR has been used to analyze light, medium and heavy petroleum 

fractions, that include substances like phenols, carboxylic acid, alcohols and others. 

Determined analyses were the refractive index, viscosity, density and total acid 

number. Results were seen to have correlations with the standard reference methods, 

so LF-NMR was recommended for the quality control of petroleum fractions, as it is 

non-destructive and a fast analysis method. [Barbosa et all., 2013] 
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Silva et all. (2012) studied low field 1H-NMR on crude oil-water biphasic mixtures. 

Two series of samples with different water content were made. First series was with 

oil and pure water and in the second series 360 ppm aqueous solution of Mn2+ was 

used. Hydrogen is present in both, water and oil, but there is a difference in the two 

substances 1H- nuclei relaxation behavior, which is the distinguishing factor. With the 

first series, there was a big difference in the 1H-nuclei relaxation behavior, so the 

quantities of different phases were easy to detect straight from the spectra. With the 

second series it was found that the concentration of paramagnetic ions accelerated the 

relaxation of 1H-nuclei in the water rich phase, so that the corresponding T2 (spin-spin 

relaxation) values were in the same range as the values of the oil. In this case PLS 

regression was used to help calculate the water content from the spectra data.  

XRF can be used to determine metals and minerals in oil and petrochemicals. Zajac et 

all., (2015) analyzed heavy metals in used oil. Simultaneous multicomponent analysis 

in the hydrocarbon matrix was performed with high definition XRF (HDXRF). 

HDXRF was able to detect high (1389 mg/kg of Zn) and low (0,14 mg/kg of Ni) 

concentrations of chosen metals. XRF was comparable to other metal detection 

methods like atomic absorption spectrometry (AAS) and inductively coupled plasma-

optical spectrometry (ICP-OS) and had the advantage of being nondestructive and 

didn’t require any sample preparation.  

3.2 Analyzer comparison 

 

Analyzers are compared in tables III and IV. In table III analyzers are compared based 

on their ability to carry out the measurements wanted for CTO. The fiber is thought to 

consist of cellulose and hemicellulose or other similar substances that could be left 

from the pulping. For the determination of lignin and fiber with LF-NMR, there are 

multiple reports to determine these substances in high field NMR, however, none could 

be found for low-field applications after extensive search, so it could be possible, but 

could also be that these are too large molecules for low field applications.   

In Table IV the analyzers are compared based on disadvantages and problems that 

could occur in the process. It should be noted that only problems that distinguish and 
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are specific for the said analyzer are mentioned, not basic or annual maintenance that 

most equipment has by default and is usually provided by the manufacturer. The cost 

is not specifically defined for these analyzers, but any chemical addition, waste 

treatment or frequent equipment part change adds up the cost. Based on the literature 

study and tables III and IV, NIRS is chosen as an online analysis method to be further 

tested.  

Table III. Comparison of analysis methods based on wanted measurements. 

[Nomngongo et all., 2016] [Bart et all.,2013] [Li et all., 2015]  [Yang et all., 2003] 

[Murray et all., 1981], [Stevens et all., 1987] [Ungureanu et all., 2009] [Laine-Ylijoki 

et all., 2003b] [Thybring et all., 2017] [Nordon et all., 2002] 

 NIRS HPLC LF-NMR XRF 

Acid number/ acid content x x x  

Water content  x x x  

Metal/mineral impurities x x x x 

Lignin x x   

fiber  x x   

 

Table IV. Disadvantages and possible problems of the analysis equipment. [Jaarinen 

et all., 2005] [Burdick, 2018] [Zientek et all., 2016] [Kalnicky et all., 2001] 

[Romañach, 2010] [Laine-Ylijoki et all., 2003b] 

 NIRS HPLC LF-NMR XRF 

dangers/ 

waste/ toxins 

- liquid waste - possible 

radiation if 

isotopes are 

used 

chemical 

addition 

- solvent 

chemicals 

- - 
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maintenance/ 

calibration 

issues 

Secondary 

method, 

samples and 

components 

need to be 

individually 

calibrated and 

checked with 

reference 

methods. 

Filters, column 

or/and 

precolumn 

must be 

changed from 

time to time. 

- Renewal of 

radiation 

source 

depending on 

the type used. 

other 

problems 

Relies on 

chemometrics.  

May have 

problems of 

analyzing trace 

substances less 

than 1% in a 

sample. 

If any 

undissolved 

particles are 

present, 

without 

filtering, risk 

of column 

fouling.  

As CTO is so 

complex, 

eluting and 

detecting all 

components at 

the same time 

can be 

problematic. 

Complex 

molecules may 

be problematic 

to detect in 

low magnetic 

fields. 

Detectable 

atomic weight 

ranges from 

sodium to 

uranium.  

 

4. Mathematical methods and methodology in modeling online NIR 
 

Multivariate methods for analysis, monitoring and diagnosis of process operating 

performance are becoming more important, because of the large amount of data 
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collected in an online process. With multivariate methods, the aim is to maximize the 

amount of information, and at the same time reduce the information in to a more easily 

interpreted form. Some main objectives of multivariate models are data reduction, 

grouping and classification of observations and modeling of relationships between 

variables. For NIR data, multivariate methods are accepted as standard methods due 

to their ability to handle cross correlated variables, such as wavenumbers in spectra. 

[Cordella, 2012] [Kourti et all., 1994] Methods applied in this thesis are principal 

component analysis (PCA) and partial least squares (PLS) regression. 

In different parts of this chapter, some examples are made to visualize pretreatment of 

the data, PCA and PLS, using NIR-spectral data from a set of 21 samples of CTO. This 

dataset is referred to as CTO21 in the text. Matlab software is being used to treat the 

data.  

4.1 Pretreatment of spectra 

4.1.1 Scaling for multivariate models 

 

Before using the models, the raw data usually needs to be pretreated into a suitable 

form. Most common pretreatment methods are autoscaling and centering. In centering, 

the variables are moved around the origin. Since all latent variables (PCA and PLS 

components) are always fitted via origin in direction of dominating variance, the first 

latent variable would be drawn from the origin to means of values, unless variables are 

centered. This would be an unnecessary component. Centering is done by calculating 

the mean value of the data samples and subtracting that value from the data points. 

This is pictured in Figure 14.  [Teppola et all., 1997] [Eriksson et all., 2001] 

In autoscaling, the variables are scaled into unit variance, where the value gotten from 

centering, is divided with the standard deviation of the data. Autoscaling to unit 

variance is done with data that has variables that have widely different numerical 

values and/or are in different units, like height (m) and weight (kg), or in spectral data, 

baseline variation and peaks with different heights and variation range. Autoscaling 

removes the effect of the absolute values, this ensures that each variable has an equal 

opportunity to affect the model. This is visualized in Figure 15. Variance of the original 



37 
 

 
 

variable equals to its weight or importance in all least squares fitting procedures. The 

importance of each variable can be adjusted via its variance. When variables have 

equal variances, the method handles them equally, and extracts from variable matrix 

the systematic variation unbiased by the variances. When handling spectra, the small 

peaks often hold the most interesting phenomena although the high peaks tend to 

dominate the variation. Furthermore, the narrow high peaks are often the most unstable 

ones. Autoscaling might also increase noise due to scaling baseline, but that is seldom 

reported as a problem. Thus, autoscaling is often applied in NIR based model. [Teppola 

et all., 1997] [Eriksson et all.,2001] 

 

Figure 14. Centering. Line fitted via origin.The variable averages are calculated from 

the data and then subtracted from the data, this moves the data in a way that the average 

of the data is moved to the origin. Modified from [Eriksson et all, 2001] 
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Figure 15. Autoscaling. The columns represent variables with different measured data 

and the horizontal line in each column represents the mean value of that data. Prior to 

pretreatment, the variables have different lengths and different mean values. After unit 

variance scaling, the variables all have identical lengths, but the mean values are still 

different. After mean centering, the variables all have equal length and their mean 

value is zero. Modified from [Eriksson et all., 2001] 

Normalization of data is similar to scaling and standardization. In normalization 

variables are scaled to have values between 0 and 1.  In standardization, a mean value 

is subtracted from data, and the data is divided by standard deviation. This creates 

variables with mean of 0 and standard deviation of 1. Standardization is usually used 

when the algorithm used makes assumptions about the distribution of data, like linear 

regression. Normalization on the other hand, is used when the algorithm used does not 

make assumptions of the distribution of data, for example KNN. [Lakshmanan, 2019] 

When using spectral data, baseline correction is an important pretreatment step.  In 

spectrum signal, can cause uneven amplitude sifts across the wavenumber range and 

lead to bad results. These sifts in amplitude can be caused by phenomenona like 

fluorescence, phosphorescence and black body radiation, and they should be 

compensated before any further analysis. The effect of baseline correction is shown in 

Figure 16. There are multiple ways to do this step, and the algorithm used should be 
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variance 
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Mean 
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chosen based on the spectral data. Manual baseline correction relies mostly on user 

expertise, noise level and the characteristic of the baseline, thus it has some room for 

error, and is not always completely accurate. In process application, the analysis 

program usually has automatic baseline correction algorithm in use. In figure 16, the 

baseline correction has been done manually, using 3rd degree polynomial fitting. [Qian 

et all., 2017] 

 

Figure 16.  a: spectral data of CTO21 samples that has not been baseline corrected. b: 

one sample spectrum that is fitted 3rd degree polynomial line. Where the polynomial 

line hits the spectrum, are the spots that are set to go via zero when the baseline is 

removed. c: the same data as in figure a, but with the baseline removed. d: spectral 

data with real wavelength values in x-axis. 

In Figure 16a, the spectrum is shown as whole, in figure b, noisy spectra from the 

beginning and end has been cut, As can be seen from Figures 16a, b and c, the real 

wavenumber values are not shown as default. The range goes from 0 to 1251 they are 

a. b. 

c. d. 
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the numbers of measurement points. These values represent the wavenumber values 

from 9299 to 4478 cm-1. Real wavenumber values are shown in figure 16d.  

4.2 Monitoring process and quality of spectra 

 4.2.1 PCA theory 

 

A large dataset consists of multiple samples and possibly of hundreds of variables, 

which can make it hard to interpret. Each variable ads a new dimension to the analysis, 

and if there is more than 3 dimensions in a dataset, the visualization becomes 

impossible. Principal component analysis (PCA) is an analysis tool that is used to 

reduce the number of dimensions, without the loss of information and variance, by 

creating new variables, principal components. If there was a dataset that had a hundred 

variables, PCA tries to compress that information down to fewer principal 

components. The first principal component should explain most of the data, by finding 

correlated variables and the second should explain the residual variance as good as 

possible. The different principal components are perpendicular to each other, and thus 

not correlated with each other. This is visualized in Figure 17. After choosing the 

principal components that explain most of the data, the rest can be discarded without 

losing too much information. Choosing to use too many principal components usually 

just weaken the model’s prediction abilities, as the last principal components typically 

represent only noise. [Jolliffe et all., 2016] [Zhang et all., 2017] [Mujunen et all., 1997] 

[Teppola et all., 1997] 

Optimal number of principal components can be chosen with many different methods, 

for example with cross-validation, proportion of variance accounted for and 

eigenvalue-one criterion. In cross-validation, some of the samples are left out from the 

calibration sequence and for these samples PRESS (predicted residual sum of squares) 

value is calculated as a function of the number of principal components. The optimal 

number of principal components is when this value is at minimum. Proportion of 

variance accounted for -method, retains a component, if it accounts for specified 

percentage of variance in the data set. For example, it can be decided to retain all 

components, that account for at least 5% or 10% of the total variance. This percentage 
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can be calculated by dividing the eigenvalue of a component by total eigenvalues of 

the correlation matrix. Eigenvalues represent the amount of variance that is accounted 

for by a given component. In the eigenvalue-one criteria, any component that has 

eigenvalue larger than one, is taken into the model. If the eigenvalue of a component 

is larger than one, the component is accounting for greater amount of variance than 

had been contributed by one variable. Thus, if the eigenvalue is less than one, the 

component accounts for less variance than one variable.  [Mujunen et all., 1997] 

[Teppola et all., 1997] [O’Rourke et all., 2013] 

 

 

Figure 17. Creation of principal components. a) pretreated data in multidimension b) 

First principal component explains as much of the variation as possible c) second 

principal component explains the rest d) the principal components create new axis for 

the data. 

Analysis data is first collected in a matrix X, that has n lines and p columns. Each line 

corresponds with an observation, what in this case would be an individual NIR 

spectrum of one sample. Each column corresponds to a variable. Typically, this data 

matrix is huge and multidimensional. In PCA this matrix is represented with equation 
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(1), that has much smaller matrices T and P to represent the original matrix. [Cordella, 

2012] 

 

𝑋 = 𝑇𝑃′ + 𝐸     (1) 

 

Where X matrix 

 T  scores 

 P’ loadings 

 E  residual noise 

4.2.2 PCA in process monitoring  

 

As can be seen from Figure 16, it is nearly impossible to gain specific information or 

asses the similarities of the samples from the raw spectra without any additional 

analysis. For this reason, different monitoring charts can be used in to identify 

abnormalities and follow the process trend, to ease the routine monitoring of the 

process. With warning limits, spectral areas that are abnormal to the process can be 

identified, and thus the reason for the warning can be indirectly identified.  

4.2.3 Score and loading plots 

 

The scores correspond to observations, aka the samples, and the loadings correspond 

to variables. Both of these are calculated for one principal component at a time. Scores 

are new coordinates of the original observations projected on the principal component 

axis. Loadings tell the orientation of the principal component axis in the original 

variable space. The larger the loading, the more significant the variable is for the 

formation of the principal component. The score and loading plots can be used to 

visualize the data, to see for example the nature of the variation, variable correlations 

for the principal components and the grouping of the samples. [Mujunen et all.,1997]  
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In Figure 18, the 1st and 2nd principal component scores of CTO21 are presented. If 

these samples were taken in continuous process, the trend of the process could be seen 

here. Plotting the scores one PC at a time doesn’t tell much else from the process 

though.  In Figure 19 the scores of PCs 1 and 2 plotted against each other are presented 

with 95% and 99% confidence lines. This figure tells us much more. As can be seen, 

there are no outliers in the data that would go outside of the confidence ellipses. In the 

right-side figure groups are outlined. Same groups can be seen in Table V. It can be 

seen that samples in these groups have similar qualities. Samples in Table V are 

arranged by increasing resin acid value.  

 

Figure 18. Score plots of PC1 and PC2 of CTO21 samples. 

 

Figure 19. Scores of PC1 and PC2 plotted against each other. Sample groups presented 

in the right side.  
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Table V. Samples in groups. Samples are arranged by increasing resin acid number

 

In this dataset, loadings represent the wavenumbers where measurements were taken. 

In Figure 20, a loading plot is presented. In figure 21, two biplots of loadings and 

scores are presented. On the left side, all loadings are presented, and on the right side 

for clarity only some loadings are presented.  

In the loadings plot, the farther away from the plot origin the variable is, the stronger 

the impact it has on the model. In figure 21, we can see that the three variables that are 

furthest away from the Origo, represent the biggest peak in the spectra. Also, variables 

that have similar information are close to each other, like variables 1050 and 1100. 

The variable 900 is further away from these two, so these two peaks do not present the 

same information, yet they are side by side in the spectra.  When variables are on 

opposite sides of the plot, they are inversely correlated, meaning when other increases 

the other decreases. [Eriksson et all., 2001] 

 

Figure 20. Loadings. 
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Figure 21. Biplot of scores and loadings. Scores correspond to the samples and 

loadings correspond to wavenumbers. On the left, all 1251 loadings are presented, and 

on the right, only some are presented for clarity. 

When number of PCs is relatively low (2-3), visualization of the process can be easily 

done with PCA scores and loadings plots to identify sample groups and show variation. 

But examples presented here only visualize the principal components 1 and 2. With 

this dataset, there are five principal components in total, that each give different plots, 

thus controlling the process this way becomes impossible in routine use.  In routine 

process control, multivariate statistical process control (MSPC) charts are needed.  

4.2.4 Multivariate statistical process control charts  

  

Product quality often depends on several variables, that occur simultaneously. Thus, 

measuring just one or two variables does not give a comprehensive image of the 

product. Multivariate statistical process control (MSPC) charts can be used in process 

control, to visualize the process in real time with ease, and to indicate any malfunctions 

in the process. Any number of variables can be controlled two charts, Hotelling’s T2 

and squared prediction error of X SPEx (sometimes called Q statistic). Note, that these 

charts need to be used simultaneously. 

 The T2-value can be used to visualize the systematic variation of each sample within 

the model. It tells how far from the center of the model the object is. If the T2 plot is 
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made for a stable and good process situation, when the T2-value for an object is small, 

the process works as planned. High SPEx values indicate of (new) variation unfamiliar 

to model – in process modeling this could be for example due to change in raw 

material, process units, malfunctioning of instrument, etc.  

T2 and SPEx plots are mostly used to detect disturbances and malfunctions in the 

process. After the malfunctions in the process are detected, a more precise 

investigation can be conducted to detect the reason for the malfunction. [Mujunen et 

all., 1997] [Kohonen, 2009] [Kourti et all., 1994]  

In Figure 22, T2 and SPEx MSPC charts can be seen for the CTO21 data. In Figure 22, 

we can see that according to the T2 chart the process is under control, but the SPEx 

chart indicates abnormalities in sample 16. From the contributions chart in Figure 23, 

the variables, in this case the wavenumbers, that affect the abnormalities can be seen 

in the contributions chart. If it is known, what quality parameter the wavenumber area 

represents, the reason for the abnormality can be detected.  

 

 

Figure 22. T2 and SPEx MSPC charts of the data. Here the dashed line represents the 

95% confidence limit, the 95% SPEx limit is 0.0408063 and the T2 limit is 17.8209. 

The confidence limit values could be changed manually to better fit the process in 

hand, or they could be statistically calculated as they are here.   
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Figure 23. T2 and SPEx contribution charts for sample 16. The red dotted line 

represents the confidence limits, and the blue line the contributions for each variable. 

In the SPEx contribution chart the sample 16 goes over the confidence limits in 

multiple spots, which causes the sample to cross the MSPC SPEx chart limit. 

4.3 Predictive models with PLS 

4.3.1 PLS theory 

 

Partial least squares regression is an extension of the PCA method, but as PCA is an 

analysis for one matrix X, PLS models collinearity of two matrices X and Y. The X 

matrix includes the observable variables, e.g. spectra and the Y matrix consists of 

response variables, in this case the concentrations to be modeled. In PLS, X and Y are 

first modeled with PCA type model, and then the solution in the X block is rotated so 

that covariance between X and Y is maximized. Covariance indicates the direction of 

the linear relationship between the variables. In the case that data is autoscaled, the 

correlation between X and Y is maximized. Correlation values are standardized and 

indicate the strength and direction of the linear relationship between the variables. The 

matrix equation for X is the same matrix as in PCA equation (1) and the matrix for Y 

can be written as equation (2).  
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𝑌 = 𝑈𝑄′ + 𝐹   (2) 

Where  U  scores 

 Q’ loadings 

 F residuals 

In PLS the components are rotated so, that the correlation between scores T and U is 

maximized. The geometrical model of this phenomena is presented in Figure 24. 

[Mujunen et all., 1997] [Mujunen et all., 1996] [Saha, 2018] 

 

 

Figure 24. The geometrical interpretation of PLS. Modified from [ Mujunen et all., 

1997] 

In rotation, a new matrix W (variable weight matrix) is formed. It describes how the 

original X variables affect each PLS component. It can also be applied in calculating 

the regression coefficients of the model. PLS is a regression model and regression 

coefficients can be applied in a similar way to any other regression models. Regression 

coefficient can be calculated based on equation (3). [Kohonen, 2009] 
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𝑏𝑃𝐿𝑆 = 𝑊(𝑃′𝑊)−1𝑄   (3) 

 

Where bPLS correlation coefficient  

 W weight matrix 

 P loadings of X 

 Q loadings of Y 

 

To demonstrate PLS with a simplified example, we can study a set of different wines 

and analyze them in the lab. The lab results can include sugar content, alcohol content 

and acidity. These values and variables are placed in the predictor matrix X. Matrix Y 

can consist of depending variables of how well the wine goes with meat or dessert or 

what the price for the wine is. With PLS, we can use the matrix X to predict the matrix 

Y and detect that e.g. wines with a larger sugar content are collinear with dessert wines. 

Or that the price of the wine is correlated on the alcohol content. [Abdi, 2007] In the 

case of CTO, we can use water content as an example. Here the NIR-spectra would 

consist of the X matrix, while Y matrix would consist of water content in CTO that 

would be predicted based on the NIR-spectra.  

4.3.2 PLS in process modeling 

 

The goal of PLS process modeling is usually to produce precise estimates for the 

present time (t (0)), or predictions for near future (t (+1, +5)). PLS method can be 

applied as a modeling tool for calibration of laboratory models in research and 

development (R&D) or as a daily routine tool. In this thesis the most common 

applications are in focus. However, there are various advanced PLS based modeling 

strategies. Some of these are shortly presented in Table VI.  
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Table VI. Advanced PLS based modeling strategies.  

Method Short description Reference 

Non-linear PLS In some cases, the data can have nonlinear 

behavior, and linear approaches to model the 

data does not work. Mild nonlinearity can be 

attempted to be modeled linearly by adding a 

few extra latent variables. Or nonlinear 

modeling methods can be applied. There are 

multiple PLS based models for nonlinearity, 

here only a few are mentioned. Mild 

nonlinearities can be modeled by quadratic 

polynomial PLS, where polynomial is fitted 

between the score vectors of X and Y. 

Moderate nonlinearity requires higher-order 

polynomials and can be modeled with 

methods like neural networks PLS and spline-

PLS. Severe nonlinearity can make the data 

look discontinuous and clustered and can’t be 

modeled by a single continuous model.  

[Eriksson et all., 

2001] 

[Kohonen, 

2009] 

PLS path 

modeling 

In a production process with multiple units 

and process variables, the importance and 

effect of these units and variables to the 

outcome product, its quality and production 

cost can be estimated with PLS path model 

(PLS-PM). PLS-PM gives an estimate of the 

end product or cost, based on the raw 

material, that changes and becomes more 

accurate when the product moves through 

each unit in the production process. PLS-PM 

highlights the connections between 

production units, variables and latent 

variables, to show their effect to the product, 

[van Kollenburg 

et all., 2020] 
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and indicate what parts of the process should 

be controlled firmly, are there important 

variables that could have otherwise been 

deemed uninformative and what action to 

take when something goes wrong. 

multiblock PLS Related to PLS regression, but instead of one 

concentrated data matrix X, one obtains 

model parameters for multiple individual data 

blocks X1, X2...Xi that are all used to predict 

Y. The blocks can be divided by the type of 

the variable or according to the part of the 

process. It is meaningful to combine the data 

blocks to obtain a reliable prediction model. 

This method also provides information on 

how much each block Xi contributes to 

prediction of Y.  

 [Baum et all., 

2019] 

[Kohonen et all., 

2008] 

[Kohonen, 

2009] 

Priority PLS Like in multiblock PLS, the data is in 

different blocks Xi, but instead of modeling 

all the data simultaneously, in priority PLS 

the blocks are treated in series. Each variable 

is given a priority number of 1,2,3 etc. First 

the variables with priority 1 are modeled, and 

all other variables have their weight set to 

zero. When modeling is done to priority 1 

variables to a satisfying end, the second set of 

variables with priority 2 are introduced, and 

all other variables are once again weighed to 

zero. This is done until all the variables have 

been included. Priority PLS can help 

assessing the importance of variables. It can 

be done when modeling is being studied in 

the light of groups of variables. 

[Kohonen et all., 

2008] 

[Kohonen, 

2009] 
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N-way PLS A multidimensional PLS model with 3 or 

more dimensions used. For example: object × 

variable × time. In the case of online NIR, 

spectra from multiple instruments before and 

after process unit could be placed in the same 

matrix. Decomposing the spectra with an N-

way model gives additional information of 

the chemical system and reactions. 

[Stordrange et 

all.,2004] 

 

4.3.3 Stationary or dynamic model  

 

Creating a model usually starts in a laboratory with a stationary model, where 

calibration samples with certain variation range are chosen, and the product qualities 

are modeled based on the reference values. This gives information on what can be 

modeled e.g. with NIR spectra. A model based on calibration data is not reliable 

outside the variation range of the calibration samples. In industrial processes, the 

quality of the product measured usually tends to change a lot along time, whether due 

to product change, raw material change, cleaning or fouling of measurements 

instruments etc. Due to these changes it is not recommended to use a single stationary 

model for a long period of time. This is why its dynamic models are often used in 

continuous industrial processes and a strategy for routine process monitoring and 

validation should be created, to ensure the accuracy of the measurements and 

estimates. [Kohonen, 2009] 

There are multiple ways to construct a dynamic model, and it is highly dependent on 

the case, which type of model should be used. Dynamic model approach also holds 

some risks, that should be considered. The models created can be local or global. Being 

local means that the model is more concentrated at the present time and forgets its 

history at some point. Global model on the other hand saves its history for longer.  If 

the model has a short history it gives a good estimate on the near future, this method 

is also recommended if the process is constantly changing, as it would require a huge 

effort to remember all the possible situations, and with long history the model could 
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become slow. If on the other hand the process only has a few different product types, 

it would be useful for the model to be more global and remember the previous products 

and learn new products as they come along. It is possible to create a model that updates 

automatically, or a model can also have a constant stationary component to it and an 

updating part. In all cases, it is highly important to validate the reference values and 

spectra used for the calibration update, to ensure the data is valid before it is used. This 

can be done for example with MSPC charts. [Kohonen, 2009] 

 Visualization of changes in dynamic PLS model (and process) can be via regression 

coefficients. In Figure 25 regression coefficients from a stationary model and a 

dynamic model are shown for comparison and to indicate the importance of a dynamic 

model in a continuous process. In figure 25a spectra for NIR diesel measurements used 

to model viscosity index from a continuous production process is presented. In Figure 

25b regression coefficients from the data for a stationary model is shown. Regression 

coefficients indicate the effect of each variable for the model. Regression coefficients 

can be positive or negative. Here if the value is positive, increase on those parts means 

higher viscosity, and if it is negative, further decrease here means lower viscosity.  

When updating regression coefficients are drawn, it gives and in-sight to process 

dynamics in timewise. Figure 25d illustrates regression coefficients drawn as a pseudo 

color plot. Time axis is the vertical axis and variables, or wavenumbers are in the 

horizontal axis. For the dynamic model, only a short range of the variables is selected 

to show here, this selection is from variable 170 to 250, marked by two vertical lines 

in Figure 25a. Figure 25c, illustrates the same regression coefficients as Figure 25d, 

but they are visualized as a colormap on spectra.  It can be seen from the color plots 

that the effect of the variables changes over time. There are time periods when this 

spectral range has had no effect on viscosity. Coefficients near zero are marked with 

light blue as shown with the color bar (Fig 25d). There are short time periods when 

certain wavelengths or small peaks have affected positively or negatively to viscosity 

of the product. These are marked with yellowish or dark blue colors. 
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Figure 25a) Diesel spectra used to model viscosity index. b) Regression coefficients 

for stationary model. c) Dynamic model regression coefficients  changing over time 

illustrated as a colormap on spectra of variables170-250. d) Same information as in 

figure c, but illustrated as pseudo color plot.  

In Figure 26a, a stationary PLS model is presented for the same diesel data that in 

Figure 25, here the. In the Figure 26 the blue lines represent the real process and red 

lines represent the predictions, from here it is clear that a single stationary model does 

not predict the process properly to a satisfactory end. In Figure 26b, the same stationary 

model is used, with one exception. Here more history is added to the model as the last 

measured Y reference value (at time t-1) is added to the X variables and more weight 

is added to it. This makes the models predictions better, but they are still lagging.  

 

a. 

b. 

c. 

d. 
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Figure 26. a) Single stationary PLS model used for modeling viscosity index for 

continuous diesel process. b) Same stationary model, with Y(t-1) included in X. Blue 

line represents the real process, red line represents the predictions.  

In Figure 27 a dynamic model is presented. Like in Figure 26b, here also the last 

weighted measured reference values Y(t-1) is added to X variables. The dynamic 

updates the PLS model after predetermined number of steps. In Figure 27 multiple 

images are presented with different number of steps. The smaller the number of steps, 

more accurate the model is.  

a. b.  
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Figure 27. Dynamic model for continuous diesel production process, with different 

number of steps between PLS models. a) 5 steps b)10 steps c)15 steps and d) 20 steps. 

Smaller the number of steps in each PLS, the better the prediction.  

 

4.4 Complexity of models 

 

It is always possible to get a 100% fit with a PLS model, but to make sure the model 

is not overfitted the model needs to be validated. Good regression model must have a 

high predictive capability achieved with the minimum number of latent variables. This 

assures the model is not overfitting. The complexity of the model equals to the amount 

of PLS components. There are many methods for interpreting the model fit and 

considering the optimal number of latent variables used in the model. Some methods 

are mentioned here.  However, any method does not compare to the usage of external 

data set for validation of the model. [Kohonen, 2009] 

c. 

a. b. 

d. 
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Inner validation with cross-validation is a standard procedure in PLS model validation. 

It is a leave-one-out type validation, where part of the calibration samples is left out 

from modeling and estimated based on the others. This is repeated until all samples 

are left out and predicted once and only once. Prediction errors of the samples left out 

are combined as a sum of squares (PRESS). The cross-validation is then repeated after 

introducing a new latent variable at a time. At each step, the PRESS value is calculated, 

and the optimal number of latent variables can be found from minimal PRESS. PRESS 

can be calculated with equation 4. Other ways to interpret the fit of the model is to 

calculate the root mean square error of cross-validation RMSECV or goodness of fit 

in cross validation Q2 and fir of model R2-value. In RMSECV the optimal amount of 

PLS components is also at the minimum value. RMSECV is calculated with equation 

5. The R2- value indicates good model when the value is close to 100%. The fit of 

model is sometimes deemed un-informational, as it can be greatly affected by a simple 

sample. [Kohonen, 2009] 

 

𝑃𝑅𝐸𝑆𝑆 =  ∑ (𝑦𝑖̂ − 𝑦𝑖)
2𝑁

𝑖=1      (4) 

 

Where  N  number of samples 

 ŷ predicted response values 

 y response values 

 

𝑅𝑀𝑆𝐸𝐶𝑉 = √
𝑃𝑅𝐸𝑆𝑆

𝑁
     (5) 

 

𝑅2 = 1 −
∑ (𝑦𝑖̂−𝑦𝑖)2𝑁

𝑖=1  

∑ (𝑦𝑖−𝑦𝑖̅)2𝑁
𝑖=1  

     (6) 

 

Where  ̅y mean value of response values 
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The fit of model needs to also be assessed visually. Kohonen (2009) gives a visual 

example of different types of results of modeling with R2 values in his dissertation. 

The image is presented in Figure 28.  

Figure 28. Different types of results from modeling showing R2 values. Figures A and 

B represent the most common situations. A) near perfect fit B) model with lots of 

dispersion. C) R2 worsened by a single sample. D) unsuccessful model with good R2 

value. [Kohonen, 2009]  
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EXPERIMENTAL PART 

 

In this part of the thesis, some experiments are made in the laboratory with Thermo Fisher 

Antaris II NIR- analyzer. Two different measurement methods, reflectance, and 

transmittance were used for method comparison. For the transmittance method, samples 

in three different temperatures were measured. Calibration was made with a variety of 

CTO and PTO samples, and the calibrations were validated with an external validation 

set.  

5. Analysis of CTO and PTO with NIR  

 5.1.1 Variable and sample selection 

 

In modeling, there is always a change that variation is modeled instead of the real 

phenomena. Unnecessary data can lead to erroneous results or weaken modeling power.  

Uncorrelated variables or faulty samples should be removed. With spectral data, together 

with improvement in fit, initial variable selection can be done with a priori knowledge 

since there are listed tables of spectral regions and corresponding response available. 

[Kohonen, 2009] One such table is presented in Figure 29. These kinds of figures can 

usually work as guidelines, not exact rules, as peaks can shift depending on substance and 

its temperature. [Bono, 2014] 
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Figure 29. Absorption bands in the near-infrared [Bono, 2014] 

In the calibration, spectral ranges were chosen for each component variable according to 

steps mentioned above. Calibration samples were selected to best represent the normal 

variability of the concentration values of the variables.  

5.1.2 Spectra derivatives and smoothing 

 

In spectroscopy, 1st, or higher order derivates of absorbance with respect to wavelength 

can be used to improve accuracy of quantification in the presence of interference caused 

by a broad absorbing component, matrix or scattering.  In this thesis zero, first and second 

order derivatives are used, spectra for these derivatives are illustrated in Figure 30 by 

Owen (1995) for a Gaussian band. The 1st order derivative starts and finishes at zero, and 

it also passes through zero point at the maximum point of the zero-order absorbance band. 

The 2nd order derivative is a negative band with a minimum point at the maximum point 

of the original zero-order band. It also has two positive satellite bands on both sides of 

the main band. The first order derivative removes the spectral baseline, and the second 
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order derivative also removes the linear trend. An undesired effect of derivatization of 

spectra is that the signal-to noise ratio decreases when higher orders of derivates are used. 

This can be reduced by using smoothing filters, such as Savitzky- Golay filter or Norris 

derivate filter. [Owen, 1995] [Rinnan et all., 2009] 

 

Figure 30. Zero order derivative, 1st derivative and 2nd derivative spectra [Owen, 1995] 

In the Savitzky-Golay filter a polynomial is fitted in a symmetric window on the raw data. 

After calculating the parameters for this polynomial, a derivative estimate for the center 

point can be found analytically for derivative of wanted order (Figure 31a). This operation 

is then applied to all spectra points sequentially. The window size (number of points used 

to calculate the polynomial) and degree of the polynomial need to be decided. The order 

of the derivative can’t be higher than the degree of the polynomial. For example, third 

degree polynomial can be used up to third-order derivative. Too high degree of smoothing 

can also distort the derivative spectrum. [Rinnan et all., 2009] [Owen,1995] 

Norris derivative filter is developed to reduce the decreasing the signal-to-noise ratio. In 

smoothing an average of given number of points (smoothing window centered around the 

measurement point) is calculated. For the 1st order derivation, the difference between two 

smoothed values with a given gap size between them is taken, and for 2nd order derivative, 

the smoothed value at the current measurement point is taken twice and a smoothed value 

at gap distance on either side is taken. An illustration of the Norris derivative filter is 

given for the 1st order derivative in Figure 31b. [Rinnan et all., 2009] 
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Figure 31. a.) Principle of Savitzky-Golay filer with a seven-point smoothing window 

and a second-degree polynomial. b.) Principle of Norris derivative filter with a 7-point 

smoothing window and a gap size of three. Modified from [Rinnan et all., 2009] 

5.2 Calibration of CTO and PTO with reflectance method 

Different calibration models were made for CTO and PTO, as CTOs composition changes 

as it transitions to PTO and there are noticeable differences in the spectra. This is shown 

in Figure 32. There is a lot of noise in the original spectra, especially in the PTO spectra, 

this was fixed by using more smoothing.  

 

Figure 32. Spectra of PTO (red) and CTO (blue) 

raw data 

1st derivative 

E
stim

atio
n

 

o
f d

eriv
ate

 

Wavenumber 

A
b

so
rb

an
ce 

A
b

so
rb

an
ce 

Wavenumber 

a. b. 

1st derivative 

raw data 

average 

gap 

size 



63 
 

 
 

The calibration models were checked with PRESS chart and RMSEC value and validated 

with an external validation set. The optimal RMSEC value is below 1 and the optimal 

shape of the PRESS curve is descending curve that levels out in the end. Measurement 

errors for the laboratory measurements are shown in Table VII, these values need to be 

taken into consideration when assessing the validation results. The calibration range for 

PTO and CTO measurements are also presented in Table VII. Validation results are only 

valid within the validation range. For neutral substances and fatty acids, the measurement 

error is assessed to be the similar to resin acids. As acid number and resin acids are 

analyzed in the laboratory and fatty acids and neutral substances are calculated from their 

subtraction. The measurement error is especially significant in the residual soap and water 

content measurements. 

Table VII. Measurement error for the reference methods and calibration ranges for CTO 

and PTO calibrations for the NIR reflectance method. 

component CTO calibration range 

Min-Max 

PTO calibration range 

Min-Max 

Measurement error 

of the reference 

method with 95% 

confidence  

Resin acid 9.50–37.80 24.20–29.30 ±1.8 % 

Acid number 110.90–158.70 145.80–154.90 ±1.03 % 

Neutral 

substances 

26.00–44.00 19.90–25.10 ~±1.8 % 

Fatty acid 42.80–56.00 49.50–53.20 ~±1.8 % 

Residual soap 0.00–0.62 - ± 21.1 % 

Water content 0.25–5.07 - ± 30.52 % 

 

5.2.1 CTO calibration 

 

Calibration was done for all components individually using same set of calibration 

samples, but different settings based on the component. In Table VIII. settings and 

wavenumber range values used to calibrate each component are showed.  
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Table VIII. settings used in CTO calibration for different components 

component Wavenumber 

range, cm-1 

derivative smoothing 

Acid number 8916-6023 2nd No smoothing 

Resin acid 8852-6055 1st Savitzky-Golay 

Data points: 7 

Polynomial order 3 

Neutral substances 8916-6600 2nd Savitzky-Golay 

Data points: 7 

Polynomial order 3 

Fatty acid 7793-4995 1st No smoothing 

Soap number 8897-4995 2nd Savitzky-Golay 

Data points: 7 

Polynomial order 3 

water 5455-4754 

7689-6298 

2nd Norris derivative filter, 

Segment length 5,  

gap between segments 1 

 

The calibration was checked to be good based on the RMSEC value, the difference chart, 

and the PRESS chart. Outliers were detected based on the difference chart and removed. 

In Figure 33. on the left side the calibration charts for acid number is shown before any 

outliers were removed.  Total number of samples in the calibration was 86, these same 

samples was used for all components. On the right-side same calibration is shown, but 

with 7 outliers removed. The ideal PRESS curve is descending curve that levels down in 

the end. The number of PCs can be determined based on the PRESS value, either when 

the value is at its minimum, or the decrease in the value is no longer statistically 

significant. In some cases, it is better to choose the amount of PC’s in the model based on 

the latter rule, to avoid possible overfitting of the model. The optimal difference value 

was told to be equal or less than 10% of the value range of the samples. In the case of 

acid number, the values ranged from 110,90 mg/KOH/g to 158,7 mg/KOH/g. There is a 
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difference of 47,8 mg/KOH/g between these values, and 10% from this value is 4,78. The 

difference can be either negative or positive. All calibration models were made with same 

principal. Charts for all components are shown in Appendix I.  

 

Figure 33. Calibration charts for reflectance method CTO acid number before removing 

outliers on the left side, and after removing outliers on the right side.  

5.2.2 Calibration of metal and mineral salts  

 

Calibration of impurities such as metal and mineral compounds was attempted but it 

proved to be unsuccessful. There is little certain knowledge of the bonds and substances 

these minerals are connected to. They are mostly expected to be connected to a carbonyl 

group -COOX, but the concentrations are believed to be too small to show in the NIR 

spectra.  

For most of the minerals it was possible to create calibration models with good correlation 

coefficient, RMSEC and PRESS values, but the validation showed the calibration was 

overfitted and false. In Figure 34. calibration charts for silicon and potassium are 

presented. There are no reference method measurement error values available for metals. 

In Table IX a few validation results are shown. Regardless of efforts, the models could 
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not be bettered. After the modeling failed for reflectance method CTO samples, 

calibration of metals and mineral was not tried on PTO samples, as they have even lower 

concentrations of metals. Metals were not also done with the transmittance method.  

 

Figure 34. Calibration charts for silicon on the left side, and for potassium on the right 

side.  

Table IX. Validation results for reflectance method CTO silicon and potassium samples  

Reflectance CTO validation silicon, mg/kg 

Sample ID 
Reference 

value 
NIR measurement Difference % 

20-11114 16.6 45.58 -174.58 

20-11540 4.76 23.41 -391.81 

20-11545 42.3 24.15 42.91 

20-11803 17.8 32.2 -80.90 

20-11816 33.4 24.57 26.44 

Reflectance CTO validation potassium, mg/kg 

Sample ID 
Reference 

value 
NIR measurement Difference % 

20-11114 6.4 11.15 -74.22 

20-11540 13 7.68 40.92 

20-11545 13 9.31 28.39 

20-11803 3.4 12.02 -253.53 
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20-11816 20 9.97 50.15 

 

The difference values are similar to residual soap number results. For the same reasons 

as the metals, the calibration of residual soap was also mostly unsuccessful. The chemical 

structure of soap is combined of a long carbon chain and a carbonyl group that has a metal 

(usually natrium) attached to it instead of a hydrogen. As with metals, the amount of 

residual soap is too small to be detected behind other resin and fatty acids that make up 

most of the CTO. The residual soap calibration was still done for transmittance and 

reflectance method. 

5.2.3 PTO calibration  

 

PTO calibrations were made with same principals as CTO calibrations. Charts for all 

calibrations are in Appendix I.  The settings used in PTO calibrations are shown in Table 

X. The number of samples used for the calibration before removing any outliers was 16. 

The minimum number of samples used in calibration for one component is 11.  

Table X. values used in PTO calibration for different components 

Component Wavenumber 

range, cm-1 

Derivative Smoothing 

Resin acid 8763-6055 2nd Savitzky-Golay 

Datapoints: 15 

polynomial order: 3 

Acid number 8916-6023 2nd Savitzky-Golay 

Datapoints: 15 

polynomial order: 3 

Fatty acid 7463-5465 2nd Savitzky-Golay 

Datapoints: 15 

polynomial order: 3 

Neutral substances 8802-6753 2nd Savitzky-Golay 

Datapoints: 15 

polynomial order: 3 
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5.3 CTO and PTO validation for reflection method 
 

All validations are done with an external validation set. The samples chosen are similar 

to the ones used in calibration and inside the calibration range. The validation samples 

are also analyzed with the laboratory reference methods, and the NIR results are 

compared to the laboratory results to see whether the calibration was successful. For 

reliable results, the number of validation samples should be and is at least ¼ of the number 

of calibration samples.  

5.3.1 CTO validation 

 

Validation for the CTO and PTO calibration was done with external validation set. The 

results of CTO validation for each component are presented in Figure 35. Here the blue 

line represents the line where the samples should place based on the laboratory 

measurement results. The yellow blocks represent the validation samples measured with 

NIR. From the charts it is clear that some validations have a lot of errors. Some samples 

are outliers with many components, and some are outliers in one and fine in others, no 

sample was under the measurement error limit with all components.  
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Figure 35. CTO validations for different components. Blue line represents the line where 

the samples should place based on laboratory results, yellow blocks represent the samples 

measured with NIR. 

 In Table XI some of the validation result values are shown, to better showcase the results 

in Figure 35.  Results from all samples are in Appendix II. Positive note was made with 

resin acids, as the NIR measurement values were, despite some difference, in similar 

range to the reference value, as when the reference value was small the NIR value was 
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small and so on. In resin acids the calibration range was the largest and could include 

such variation.  

Table XI. CTO validation results. Results from all samples are in Appendix II.  

CTO validation resin acid, W-% 

Sample 

number 

Sample ID Reference 

value 

NIR measurement Difference 

% 

8 20-03335 3.7 4.92 -32.97 

18 20-03931 24.8 26.41 -6.49 

23 20-04213 22.4 22.78 -1.70 

45 20-11814 35.30 34.03 3.60 

CTO validation acid number, mg/KOH/g 

Sample 

number 

Sample ID Reference 

value 

NIR measurement Difference 

% 

8 20-03335 101.9 126.97 -24.60 

18 20-03931 132.2 139.14 -5.25 

23 20-04213 134.3 130.28 2.99 

45 20-11814 154.30 144.19 6.55 

CTO validation neutral substances, W-% 

Sample 

number 

Sample ID Reference 

value 

NIR measurement Difference 

% 

8 20-03335 48.6 40.81 16.03 

18 20-03931 31.9 30.55 4.23 

23 20-04213 31.0 31.91 -2.94 

45 20-11814 20.10 26.84 -33.53 

CTO validation fatty acids, W-% 

Sample 

number 

Sample ID Reference 

value 

NIR measurement Difference 

% 

8 20-03335 47.7 51.20 -7.34 

18 20-03931 43.3 45.45 -4.97 

23 20-04213 46.6 46.43 0.37 

45 20-11814 44.60 45.16 -1.26 

CTO validation residual soap 

Sample 

number 

Sample ID Reference 

value 

NIR measurement Difference 

% 

8 20-03335 0.14 0.16 -14.29 

18 20-03931 1.32 0.19 85.61 

23 20-04213 0.10 0.14 -40.00 

45 20-11814 0.10 0.21 -110.00 

CTO validation water content, W-% 

Sample 

number 

Sample ID Reference 

value 

NIR measurement Difference 

% 

8 20-03335 2.29 1.77 22.71 

18 20-03931 1.21 1.45 -19.84 
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23 20-04213 1.41 1.71 -21.28 

45 20-11814 0.65 0.16 75.39 

 

In Table XII. percentages of reflectance CTO samples with different difference 

percentages. The samples were checked with a Matlab PCA model to find any abnormal 

samples that could explain some of the results. The T2 and SPEx charts for the baseline 

corrected spectra are shown in Figure 36. Based on these charts, sample 21 should be 

automatically removed. Sample 15 and 33 should be checked. These samples do not solve 

all the problems in the validation results as there are many more samples with problematic 

results. This could mean the calibration model is faulty and can be overfitted. 

Table XII. Percentages of reflectance CTO samples with different difference percentage. 

Reference method measurement error for resin acid, neutral substances and fatty acids is 

1,8%. For acid number the value is 1,03%, for residual soap 21,1% and for water content 

the value is 30,52%. 

Difference % resin 

acid, 

% 

Acid 

number, 

%  

Neutral 

substances, 

% 

Fatty 

acids, 

%  

Difference 

% 

residual 

soap, %  
Difference 

% 

Water, 

% 

≤ Reference 

method 

measurement 

error  

18.37 4.08 12.24 22.45 ≤ 21,1% 17.39 ≤ 30,52% 71.43 

≤ 5 % 48.98 48.98 38.78 61.22 ≤ 25 % 17.39 ≤ 35 % 75.51 

≤ 10 % 71.43 83.67 69.39 93.88 ≤ 30 % 17.39 ≤ 40 % 83.67 

 

 

Figure 36. T2 and SPEx charts for CTO validation samples. Two PCs was used. The 

95% SPEx confidence limit is 0.0797207 and the 95 T2 confidence limit is 8.79029.  
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5.3.2 PTO validation 

 

Like the CTO validation results the validation results for PTO reflectance method did 

have some errors in them, which is probably mostly due to overfitting. With reflectance 

method, the spectra of PTO were noisy (Figure 37) and they required a lot of smoothing, 

this may be the reason for overfitting. The results of validation are presented in Table 

XIII and Figure 38. In table XIII only some of the validation results are shown. All results 

are shown in appendix II.   

 

 

Figure 37. Noisy PTO spectra. Note that the image does not display the whole spectra. 
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Figure 38. Reflectance method validation results for PTO samples for different 

components. Blue dotted line represents the real laboratory values and yellow blocks 

represent the validation results of same samples.  

Table XIII. Values for PTO validation samples for reflectance method. Unlike in CTO 

validation, the NIR measurement gives similar values to all samples, even though there 

is more variation in the reference values. Values for all 14 PTO validation samples are 

presented in appendix II. 

PTO validation resin acid, W-%     

Sample 

number 

Sample ID Reference 

value 

NIR 

measurement 

Difference % 

1 20-10954 28.1 25.97 7.58 

2 20-12099 24.1 26.01 -7.93 

3 20-12068 26.5 26.66 -0.60 

4 20-11981 26.2 26.33 -0.50 

14 20-11165 25.5 26.44 -3.69 

PTO validation acid number, mg/KOH/g     

Sample 

number 

Sample ID Reference 

value 

NIR 

measurement 

Difference % 

1 20-10954 155.6 153.24 1.52 
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2 20-12099 155.2 152.17 1.95 

3 20-12068 158.1 153.43 2.95 

4 20-11981 157.8 153.30 2.85 

14 20-11165 144.7 153.75 -6.25 

PTO validation neutral substances, W-%     

Sample 

number 

Sample ID Reference 

value 

NIR 

measurement 

Difference % 

1 20-10954 19.9 21.06 -5.83 

2 20-12099 20.4 21.95 -7.60 

3 20-12068 18.8 21.07 -12.07 

4 20-11981 18.9 21.12 -11.75 

14 20-11165 25.6 20.64 19.38 

PTO validation fatty acid, W-%     

Sample 

number 

Sample ID Reference 

value 

NIR 

measurement 

Difference % 

1 20-10954 52 51.41 1.14 

2 20-12099 55.5 51.52 7.17 

3 20-12068 54.7 51.68 5.52 

4 20-11981 54.9 51.6 6.01 

14 20-11165 48.9 51.7 -5.73 

 

As it can be seen from Figure 38 and table XIII there are some samples have very large 

difference between the reference value measured in the laboratory and the value measured 

with the NIR. In Table XIV, the sample percentages at different difference percentages is 

shown. Measurement errors for reference methods were presented in Table VII   

Validation spectra were checked with Matlab to find out if any samples were pointed out 

as outliers by MSPC charts. T2 and SPEx charts for reflection PTO validation samples 

are presented in Figure 39.  If both charts show same samples outside the limits, the results 

of PLS model should not be believed to be correct. If only one chart shows samples 

outside its limits, the sample should be checked but not automatically deleted. In process 

singular outlier samples are not alarming, but if several consecutive samples go over the 

95% confidence limits, there is a problem in the process that needs to be fixed or the 

model needs to be updated. Outliers found in the Figure 39 MSPC charts do not explain 

most of the samples that have larger difference percentage, so there is reason to believe 

that the calibration models are overfitted. 

Table XV. Percentage of samples with different difference percentages. The reference 

method measurement error for resin acid, neutral substances and fatty acids are 1,8% and 

for acid number the value is 1,03%. 



75 
 

 
 

Difference % Resin acid, 

% 

Acid 

number, % 

Neutral 

substances, 

% 

Fatty acids, % 

≤ Reference method 

measurement error 21.4 57.1 14.3 42.9 

≤ 5 % 85.7 92.9 57.1 64.3 

≤ 10 % 100 100 71.4 100 

 

 

Figure 39. MSPC charts with 2 PC’s used for reflectance PTO validation samples.  

6. Analysis of CTO and PTO with NIR transmittance method 

 

With the transmittance method, the samples were measured with 1ml cuvette and in three 

different temperatures, to see whether the temperature affects the results. The reference 

measurements are done in room temperature in the laboratory and in the process the 

analysis would be done with hot sample with the online analyzer. Individual calibration 

models were done to all three temperatures (28 ̊C, 40 ̊C and 60 ̊C). With transmittance 

method, daily PTO and CTO samples were used in analysis. The composition variation 

within these samples is much smaller compared to samples used with the reflectance 

method. These samples were selected, and fewer samples were analyzed than in 

reflectance method because of the limited number of single use cuvettes available.  In this 

chapter the effect of temperature is examined, and transmittance and reflectance method 

results are compared to each other.  
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6.1 Calibration of CTO and PTO with transmittance method 

 

In Figure 40. The spectra of CTO and PTO is presented. With transmittance, the CTO 

and PTO spectra are similar to each other and neither are especially noisy. There are large 

peaks in the wavenumber range 6000-4000. Peaks with high absorbance over 3 were not 

used in calibration. Before removing outliers, 15 samples were used in CTO calibration 

and 17 samples were used in PTO calibration. Other than that, the calibration was done 

similarly to the reflectance calibrations.  

 

Figure 40. CTO and PTO spectra measured with transmittance method in 28 ̊C. Red 

spectra is CTO sample; blue is the PTO sample.  

In Table XVI calibration range and other calibration settings are shown for CTO. Settings 

for PTO are shown in Table XVII. From the Tables it can be seen that the settings were 

different for different temperatures when calibrating one component. This is not ideal. If 

the models are trustworthy as they are now, this could mean the models for the actual 

process need to be tested and made in the temperature they are going to be tested in the 

process, in the case the models are premade in the laboratory before implementing them 

to the online analyzer.  

Table XVI. Transmittance PTO calibration settings. 

Component Temperature Calibration 

range CTO 

Wavenumber 

range CTO 

derivative smoothing 

Acid number 28 ̊C 137,8-142,9 8704-6037 2nd   Norris Derivative filter 

Segment length: 5 

Gap between segments: 1 

40 ̊C 137,8-142,9 8852-5997 2nd  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 3 
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60 ̊C 137,8-142,9 8852-5997 2nd  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 3 

Resin acid 28 ̊C 23,1-28,6 8780-6607 2nd  Norris Derivative filter 

Segment length: 5 

Gap between segments: 1 

40 ̊C 23,1-26,6 8780-6011 1st  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 2 

60 ̊C 23,1-26,8 8780-6011 1st  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 3 

Neutral 

substances 

28 ̊C 26,4-29,7 8812-5999 

5754-4516 

2nd  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 2 

40 ̊C 26,4-29,1 8812-5999 

5754-4516 

2nd  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 2 

60 ̊C 26,4-29,0 8812-5999 

5754-4516 

1st  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 3 

Fatty acids 28 ̊C 46,1-48,2 8812-6081 2nd  Savitzky-Golay 

Datapoints: 9 

Polynomial order: 2 

40 ̊C 45,9-48,1 8812-6594 1st  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 2 

60 ̊C 46,1-48,1 8812-6024 1st  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 3 

Residual 

soap 

28 ̊C 0,07-0,16 8806-6011 2nd  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 2 

40 ̊C 0,07-0,16 8806-6011 2nd  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 2 

60 ̊C 0,07-0,16 8806-6011 2nd  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 2 

Water 

content 

28 ̊C 0,66-0,86 7507-6582 

5442-4789 

2nd  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 2 

40 ̊C 0,53-0,88 7507-6582 

5442-4789 

1st  Savitzky-Golay 

Datapoints: 5 

Polynomial order: 2 

60 ̊C 0,66-0,88 7507-6582 

5442-4789 

1st Savitzky-Golay 

Datapoints: 5 

Polynomial order: 3 

 

Table XVII. Transmittance PTO calibration settings. 

Component Temperature Calibration 

range PTO 

Wavenumber 

range PTO 

derivative smoothing 

Acid number 28 ̊C 151,3-

156,0 

8704-6037 1st  Savitzky-Golay 

Datapoints: 5 

Polynomial order: 2 
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40 149,9-

156,0 

8704-6037 1st  Savitzky-Golay 

Datapoints: 7 

Polynomial order: 3 

60 149,9-

156,0 

8704-6037 1st  Savitzky-Golay 

Datapoints: 11 

Polynomial order: 2 

Resin acid 28 25,2-29,3 8780-6607 2nd  Norris Derivative filter 

Segment length: 5 

Gap between segments: 1 

40 ̊C 25,2- 

29,3 

8780-6607 2nd  Norris Derivative filter 

Segment length: 5 

Gap between segments: 1 

60 25,2- 

29,3 

8780-6607 2nd  Norris Derivative filter 

Segment length: 5 

Gap between segments: 1 

Neutral 

substances 
28 19,7-22,2 8812-5999 

5754-1516 

1st Savitzky-Golay 

Datapoints: 11 

Polynomial order: 2 

40 19,7-23,0 8812-5999 

5754-1516 

2nd  Savitzky-Golay 

Datapoints: 9 

Polynomial order: 3 

60 19,7-21-7 

 

8812-5999 

5754-1516 

1st  Savitzky-Golay 

Datapoints: 9 

Polynomial order: 2 

Fatty acids 28 49,5-53,8 8812-6081 2nd  Norris Derivative filter 

Segment length: 5 

Gap between segments: 1 

40 49,5-53,1 8812-6081 1st  Norris Derivative filter 

Segment length: 5 

Gap between segments: 1 

60 49,5-53,1 8812-5999 2nd  Norris Derivative filter 

Segment length: 5 

Gap between segments: 2 

6.2 Validation of CTO and PTO with transmittance method 

 

Validation charts for CTO are presented in Figure 41. and for PTO in Figure 42. All 

temperatures are presented in same chart for all components. Specific validation result 

values are in Appendix II. In the CTO acid number validation, there was a calibration 

model or analyzer error, that resulted only four validation samples to be analyzed. The 

samples could be measured for all other components. More samples could not be analyzed 

to replace these samples, as there was limited amount of single use cuvettes available.  
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Figure 41. Transmittance CTO validation charts 
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Figure 42. Transmittance PTO validation charts. In resin acid validation at 40C only four 

calibration samples were analyzed due to analysis errors.  

Percentages of CTO and PTO samples at different temperatures with different difference 

percentages are presented in Table XVIII for CTO and Table XIX for PTO. Based on 

these tables there seems to not be any significant difference between the temperatures. 

Most likely the differences here from the calibration model errors, and not due to 

temperature.   
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Table XVIII. Percentages of transmittance CTO validation samples with different 

difference percentage. With acid number at 40C, due to analyzer or model error only 4 

validation samples could be analyzed.  

Difference % Resin acids, % Acid number, % Neutral 

substances, % 

Fatty acids,% 

temperature 28 40 60 28 40 60 28 40 60 28 40 60 

≤ Reference 

method 

measurement 

error  

0.0 66.7 33.3 77.8 50.0 77.8 77.8 55.6 55.6 66.7 66.7 77.8 

≤ 5 % 44.4 100 100 100 100 100 100 100 100 100 100 100 

≤ 10 % 88.9 100 100 100 100 100 100 100 100 100 100 100 

Difference % Residual soap Difference %  Water content, % 

temperature 28 40 60 temperature 28 40 60 

≤ Reference 

method 

measurement 

error  

44.4 55.6 55.6 

≤ Reference 

method 

measurement 

error  

100 100 100 

≤ 25 % 44.4 55.6 55.6 ≤ 35 % 100 100 100 

≤ 30 % 77.8 55.6 55.6 ≤ 40 % 100 100 100 

 

Table XIX. Percentage of transmittance PTO validation samples with different difference 

percentage.  

Difference % Resin acids, % Acid number, % Neutral 

substances, % 

Fatty acids, % 

temperature 28 40 60 28 40 60 28 40 60 28 40 60 

≤ Reference 

method 

measurement 

error  

55.5  11.1 

 

77.8 

 

77.8 55.6 66.7 44.4 0 11.1 66.7 55.6 77.8 

≤ 5 % 66.7  44.4 

 

100 

 

100 100 100 77.8 88.9 88.9 88.9 100 100 

≤ 10 % 100  66.7 

 

100 100 100 100 100 88.9 100 100 100 100 

 

The validation samples were checked with PCA model in Matlab to find abnormal 

samples. In Figure 43. MSPC charts for CTO validation are presented. In the top row all 

calibration and validation CTO samples are presented. From the samples that go over the 

limit only sample 54 is validation sample. The bottom row are only the validation samples 

are drawn.  
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Figure 43. MSPC charts for transmittance CTO validation. In top row are all calibration 

and validation samples and in bottom row only the validation samples are checked. For 

the top row the 95% SPEx confidence limit is 1.29851 and the 95% T2 confidence limit 

is 21.0226. For the bottom row the values are 0.297754 and 20.9514 respectively. 

In Figure 44. MSPC charts for PTO validation samples are presented. In top row all 

calibration and validation PTO samples are presented. Here samples after 48 are 

validation samples, so only samples 55,58 and 67 are abnormal validation samples. Then 

all validation samples at different temperatures were checked and are presented in the 

bottom row. Here sample 7 is the same as sample 55 and sample 19 is the same as sample 

67.  
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Figure 44. MSPC charts for transmittance PTO validation. In top row are all calibration 

and validation samples and in bottom row only the validation samples are checked. For 

the top row the 95% SPEx confidence limit is 1.29851 and the 95% T2 confidence limit 

is 21.0226. For the bottom row the values are 0.199882 and 22.8738 respectively.  

 

6.3 Effect of temperature 

 

As could be seen from the Tables XVIII and XIX, there is not a big difference between 

the temperatures on the validation results. The difference in the results is most likely due 

to the calibration models and not the temperatures. This indicates that the reference values 

are reliable to use even if the NIR sample is analyzed hot in the process.  In Figure 45. a 

few samples in different temperatures are presented to show that there is not a huge 

difference in the sample spectra regardless of the temperature. It should also be kept in 

mind that peaks with absorbance over 3 was not used in calibration.  
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Figure 45. Top: PTO sample spectra at different temperatures. Bottom: CTO sample 

spectra at different temperatures. Note that large spikes with absorbance value over 3 are 

not used in calibration. 

6.4 Comparison to reflectance method 

 

Apart with the obvious shape difference in the spectra with the two methods, with 

reflectance method, the PTO spectra was noisy and with transmittance CTO and PTO 

spectra were more similar to each other. 

When comparing the two methods, the samples from transmittance validation are used. 

In Table XX and XXI the percentages of these validation samples measured with 

reflection method with different difference percentage are presented. When comparing 

these tables to Tables XII and XV, it seems transmittance method is equal or better at all 

temperatures, except for PTO neutral substances. where temperatures 40C and 60C get 

worse results. At the moment this would mean the transmittance method was overall more 

accurate. It would however be recommendable to do more measurements and even redo 

the models, so they were always reliable.  

Table XX. Percentages of CTO validation samples with different difference percentages. 

Same samples as in transmittance method are used to compare the two methods to each 

other.  
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Difference 

% 

resin 

acid, 

% 

Acid 

number, 

% 

Neutral 

substances, 

% 

Fatty 

acids, 

% 

Differen

ce % 

residual 

soap, % 

Difference 

% 

Water, 

% 

≤ Reference 

method 

measurement 

error 

0 12.5 12.5 50 ≤ 21,1% 25 ≤ 30,52% 87.5 

≤ 5 % 37.5 75 37.5 87.5 ≤ 25 % 25 ≤ 35 % 100 

≤ 10 % 62.5 100 87.5 100 ≤ 30 % 37.5 ≤ 40 % 100 

 

Table XXI. Percentages of PTO validation samples with different difference percentages. 

Same samples as in transmittance method are used to compare the two methods to each 

other.  

Difference % Resin acid, 

% 

Acid 

number, % 

Neutral 

substances, 

% 

Fatty acids, % 

≤ Reference method 

measurement error 22.2 77.8 44.4 33.3 

≤ 5 % 75 100 88.9 100 

≤ 10 % 100 100 100 100 

 

7. tracking the daily PTO process 

 

PTO samples were collected almost daily, that show the development of the process as a 

function of time. The samples were measured with the reflectance method. The data has 

been normalized between 0 and 1 with 3 principal components used in the PCA modeling. 

The differences in the samples can be detected by drawing the PCA scores one PC at a 

time (Figure 46) or following the T2 MSPC chart.  
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Figure 46. Scores (top row) for all 3 principal components one at a time and loadings 

(bottom row) for each PC. Note the change in axis values. It is hard to interpret this plot 

to detect abnormalities in the process.  

Using the T2 chart is easier, as it shows all the PC’s at a time (Figure 47).  The chart 

shows the process leveling out after the 15th sample, and spike back again in the 45th 

sample. It could be assumed that during that gap the process works as it should There are 

a variety of possible reasons for some samples to go over the limit. The abnormalities 

may be in the sample quality, process, or analyzer. Reference values and spectra for 

samples selected based on Figure 47. are shown in Table XXII and Figure 50, to try to 

find the reason for these abnormalities.  
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Figure 47. T2 chart for PTO process. After the 15th sample the process levels out and that 

can be interpret as the normal process situation when both the analyzer and process work 

properly.  

In Figure 48. contributions for sample 15 are drawn. The red dotted line represents the 

confidence limits. This is shown as an example that the outlier sample contributions go 

over the limit at almost all variables.  

 

Figure 48. T2 contributions of sample 15. The blue line represents the sample and the red 

dotted line represent the minimum and maximum confidence limits. It can be seen the 

sample crosses the limits in almost every variable. 
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In Figure 49a, the spectra of PTO samples are drawn with baseline correction, and in 

Figure 49b, is the same data normalized between 0 and 1. In these images a lot of variation 

can be seen between the spectra. In Figure 49c the samples from 28 to 44 are drawn and 

can be seen to be a lot more similar to each other. In Figure 49d, the samples from 28 to 

44 are drawn and normalized between 0 and 1.  

 

Figure 49a. Spectra for all 45 PTO samples with background correction. b. Spectra for all 

45 PTO samples with background correction and normalization between 0 and 1. c. 

Spectra for samples 28-44 with background correction. d. Spectra for samples 28-44 with 

background correction and normalization between 0 and 1. Samples 28 to 44 represent a 

leveled part of the process, and the spectra can be a lot more similar with each other.  

Some samples and their reference values are shown in Table XXII. Half of the samples 

go over the limit (marked with red in Table) and some stay under the limit (marked with 

green in Table). Based on these values it is impossible to pinpoint one clear reason why 

some samples go over the limit and why some stay under it. In Figure x. spectra of 

samples are shown to try to find differences that could explain the abnormalities. 

a. b. 

c. d. 
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Table XXII. Samples that go over the 95% limit marked with red (2,5,14,15,45). Samples 

that stay under the limit marked with green (10,26,34,35,42). From the values in the table 

we can’t see any clear reason why some samples go over the limit and some don’t. 

sample no. sample ID Resin acids Acid number Neutral substances  Fatty acids  

2 20-09731 25 149.5 23.2 51.8 

5 20-09846 24.3 150.9 22.5 53.2 

14 20-10536 28.7 154.8 20.3 51 

15 20-10626 28.7 159 18.2 53.1 

45 20-13450 24 149 23.5 52.5 

10 20-10267 27.5 151.1 22.2 50.3 

26 20-11588 25.7 152.5 21.7 52.6 

34 20-12099 24.1 155.2 20.4 55.5 

35 20-12807 18.9 145.9 25.4 55.7 

42 20-13313 24.2 151.3 22.3 53.5 

 

In Figure 50a, all ten sample spectra from Table XXII are drawn. Spectra does have some 

variance, but other than sample 45 (red), it is hard to tell whether the samples are under 

or over the limit. The sample 45 is also very noisy, compared to all other sample spectra.  

In Figure 50b. only the bad sample spectra that goes over the limit are drawn. Comparing 

this image to Figure 50c, where only samples that stay under the limit are drawn, it can 

be seen that the bad spectra has a lot more variance within themselves, and the good 

spectra are lot more similar to each other. In Figure 50d, two bad samples and two good 

samples are drawn. In addition to the difference in the absorbance values, there is a 

difference in the spectra in the 5500-4500 cm-1 wavenumber range. Based on this and 

the fact that the good samples were randomly selected, it could be assumed that the reason 

for the bad samples was the sample components.  
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Figure 50a. all 10 samples from Table XXII. b. samples that go over the limit. c. samples 

that stay under the limit. d. two bad samples and two good samples.  

 

a. 

b. 

c. 

d. 
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One PCA model was made where the ‘normal’ spectra, aka samples from 28 to 44 were 

used to form the PCA model, where all samples are below the 95% confidence limit. The 

model was then tested with the original sample set of 45 samples.  In Figure 51, T2 and 

SPEx charts are shown for the test set. As can be excepted, most of the test samples are 

outside the 95% confidence limit, but the ‘normal’ samples from 28 to 44 that the model 

was based on, stay under the confidence limits. Note that the SPEx chart has a logarithmic 

scale, so that the confidence limit is easier to see. When comparing this model to the 

original model (Figure 47.) it is clear that the calibration data and the pretreatment of the 

spectra can largely affect the outcome of the model.  

 

Figure 51. T2 and SPEx charts for the test set. Model was calibrated with ‘normal’ samples 

from 28 to 44 and original data was used to test the model. In the SPEx chart logarithmic 

scale is used for the Y-axis, so that the confidence limit is easier to see. Two PCs were 

used. The 95% confidence limit for T2 is 7.8573 and for SPEx 0,0596924. 

8. Conclusions 

 

Out of all the equipment researched and compared NIR seemed to have most advantages 

and less disadvantages. As NIR is a secondary method, the results rely largely on the 

accuracy of the reference methods and the mathematics of the model. Based on the 

validation results, the models were most likely little overfitted and could not be trusted as 

is. During the calibration and validation, it became clear that settings used in calibration, 

spectra preprocessing, variable and sample selection had a big impact on the outcome of 

the calibration. In future and before implementing an actual online instrument to the 

process, the models need more processing. 
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The models were made with very small calibration value range, which can make the 

models very local. The largest variation in values was in reflectance method resin acid 

with CTO samples. Even if the NIR and reference results had a large difference with some 

samples, the results were still in the same value range. In the validation charts the NIR 

measurement result differences from the reference values look more severe than they are, 

as the value range is so small. Based on all measurements, it seems possible to calibrate 

all components, while keeping in mind the reference method measurement errors.  

With the reflectance method the PTO models seemed to be more accurate, but it is 

important to note that the PTO samples were lot more consistent to each other, and CTO 

samples were collected from different sources with a lot more variation in the 

composition. Less PTO samples were also included in the calibration, as there was less 

PTO samples available at the time. In the future, more samples should be included in the 

calibration. With transmittance method, both PTO and CTO calibrations were mostly 

equally accurate. Reflectance and Transmittance methods were compared to each other 

using the same set of validation samples. In the case the models are assumed reliable, 

transmittance method would be more accurate method. This would, however, need more 

analysis done with the transmittance method, as there was limited amount of single use 

cuvettes available. In the case transmittance method would be used in the online analyzer, 

the correct light path length should be established, as it could bring the large peaks present 

in the transmittance method spectra down. 

With the transmittance method the samples were analyzed in three different temperatures. 

When checking the spectra with Matlab MSPC charts, most samples were below the 95% 

confidence limit, despite the temperature they were analyzed. The calibration models for 

the components at different temperatures could not however be made with same settings 

for some reason. But when the settings were optimized for temperatures, all components 

could be calibrated with the same reference values.  

In the future, the models would need more processing, and if possible, more unison 

settings for all components would be good. The calibration samples would need to have 

a wider calibration range to include all the variation of the process. A dynamic model 

could also be constructed and tested for the process.  
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APPENDIX I. Calibration charts     

 

Figure 1. Reflectance CTO resin acid calibration charts 

 

Figure 2. Reflectance CTO acid number calibration charts 

 

Figure 3. Reflectance CTO neutral substances calibration chart 
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Figure 4. Reflectance CTO fatty acid calibration charts 

 

Figure 5. Reflectance CTO residual soap calibration charts 

 

Figure 6. Reflectance CTO water content calibration charts
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Figure 7. Reflectance PTO resin acid calibration charts 

 

Figure 8. Reflectance PTO acid number calibration charts 
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Figure 9. Reflectance PTO neutral substances calibration charts 

 

Figure 10. Reflectance PTO fatty acids calibration charts. 
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CTO transmittance calibration charts 

 

 

 

 

 

 

 

 

 

Figure 11. Transmittance CTO Acid number calibration charts 
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Figure 12.  Transmittance CTO resin acid calibration charts.
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Figure 13. Transmittance CTO neutral substances calibration charts
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Figure 14. Transmittance CTO fatty acids calibration charts 
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Figure 15. Transmittance CTO residual soap calibration charts
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Figure 16. Transmittance CTO water content calibration charts. 
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Calibration charts for transmittance PTO 

 

Figure 17. Transmittance PTO acid number calibration charts
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Figure 18. Transmittance PTO resin acid calibration charts
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Figure 19. Transmittance PTO neutral substances calibration charts.
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Figure 20. Transmittance PTO fatty acids calibration charts.
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APPENDIX II Validation results    

Reflectance CTO validation results 

Table I. Reflectance CTO resin acid validation results. 

CTO validation Resin acid, W-% 

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference 

% 

1 20-03328 15.1 15.53 -2.85 

2 20-03329 15.2 15.96 -5.00 

3 20-03330 14.7 16.51 -12.31 

4 20-03331 15.4 15.67 -1.75 

5 20-03332 14.8 16.03 -8.31 

6 20-03333 14.6 14.43 1.16 

7 20-03334 14.3 15.29 -6.92 

8 20-03335 3.7 4.92 -32.97 

9 20-03336 3.4 4.39 -29.12 

10 20-03340 15.1 15.27 -1.13 

11 20-03341 14.4 16.04 -11.39 

12 20-03342 14.1 14.99 -6.31 

13 20-03643 15.0 14.6 2.67 

14 20-03916 26.9 29.74 -10.56 

15 20-03917 10.6 10.68 -0.75 

16 20-03918 22.3 22.51 -0.94 

17 20-03930 19.1 22.05 -15.45 

18 20-03931 24.8 26.41 -6.49 

19 20-04061 4.0 5.96 -49.00 

20 20-04062 14.6 17.58 -20.41 

21 20-04149 27.5 24.28 11.71 

22 20-04150 20.4 21.5 -5.39 

23 20-04213 22.4 22.78 -1.70 

24 20-04214 23.6 24.32 -3.05 

25 20-04216 27.0 29.14 -7.93 

26 20-04217 25.3 21.39 15.45 

27 20-04218 19.1 22.17 -16.07 

28 20-04219 26.3 28.05 -6.65 

29 20-04220 23.1 24.43 -5.76 

30 20-04221 24.4 25.58 -4.84 

31 20-11111 23.7 22.69 4.26 

32 20-11112 11.7 10.77 7.95 

33 20-11114 26.9 27.08 -0.67 

34 20-11540 24.1 21.29 11.66 

35 20-11541 25.4 28.36 -11.65 

36 20-11542 24.5 24.87 -1.51 

37 20-11545 13.1 12.54 4.27 
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38 20-11546 21.1 21.55 -2.13 

39 20-11548 14.8 15.46 -4.46 

40 20-11801 28.60 27.09 5.28 

41 20-11803 12.10 10.98 9.26 

42 20-11811 20.10 20.78 -3.38 

43 20-11812 20.00 15.97 20.15 

44 20-11813 14.30 10.85 24.13 

45 20-11814 35.30 34.03 3.60 

46 20-11816 20.3 19.52 3.84 

47 20-A00515 23.3 25.75 -10.52 

48 20-A01108 25.20 25.07 0.52 

49 20-A01145 27.70 28.82 -4.04 

Table II. reflectance CTO acid number validation results 

CTO validation acid number, mg/KOH/g 

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference 

% 

1 20-03328 121.1 131.06 -8.22 

2 20-03329 121.0 126.17 -4.27 

3 20-03330 120.9 127.81 -5.72 

4 20-03331 123.3 126.96 -2.97 

5 20-03332 121.6 131.15 -7.85 

6 20-03333 121.5 129.46 -6.55 

7 20-03334 120.8 130.31 -7.87 

8 20-03335 101.9 126.97 -24.60 

9 20-03336 105.6 125.63 -18.97 

10 20-03340 121.7 124.62 -2.40 

11 20-03341 121.7 130.90 -7.56 

12 20-03342 122.4 130.89 -6.94 

13 20-03643 112.6 128.69 -14.29 

14 20-03916 148.3 140.56 5.22 

15 20-03917 130.4 125.41 3.83 

16 20-03918 136.6 132.69 2.86 

17 20-03930 122.7 138.81 -13.13 

18 20-03931 132.2 139.14 -5.25 

19 20-04061 103.6 131.08 -26.53 

20 20-04062 110.9 127.47 -14.94 

21 20-04149 136.0 131.81 3.08 

22 20-04150 133.4 136.31 -2.18 

23 20-04213 134.3 130.28 2.99 

24 20-04214 129.1 137.82 -6.75 

25 20-04216 149.2 137.81 7.63 

26 20-04217 137.7 124.85 9.33 

27 20-04218 121.6 126.99 -4.43 
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28 20-04219 139.3 138.37 0.67 

29 20-04220 132.7 139.88 -5.41 

30 20-04221 140.3 134.6 4.06 

31 20-11111 138.9 141.3 -1.73 

32 20-11112 131.3 127.44 2.94 

33 20-11114 139.1 140.7 -1.15 

34 20-11540 137.1 134.74 1.72 

35 20-11541 136.8 140.41 -2.64 

36 20-11542 133.6 135.64 -1.53 

37 20-11545 133.3 127.89 4.06 

38 20-11546 134.4 132.51 1.41 

39 20-11548 119.3 133.02 -11.50 

40 20-11801 142.80 133.12 6.78 

41 20-11803 115.50 131.30 -13.68 

42 20-11811 135.80 132.42 2.49 

43 20-11812 140.40 127.72 9.03 

44 20-11813 136.70 127.57 6.68 

45 20-11814 154.30 144.19 6.55 

46 20-11816 134.7 134 0.52 

47 20-A00515 129.8 135.26 -4.21 

48 20-A01108 131.90 135.62 -2.82 

49 20-A01145 138.70 140.56 -1.34 

 

Table III. reflectance CTO neutral substances validation results. 

CTO validation neutral substances, W-% 

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference 

% 

1 20-03328 38.1 39.06 -2.52 

2 20-03329 38.2 38.69 -1.28 

3 20-03330 38.2 38.69 -1.28 

4 20-03331 37.0 39.39 -6.46 

5 20-03332 37.9 39.79 -4.99 

6 20-03333 38.0 40.44 -6.42 

7 20-03334 38.4 38.54 -0.36 

8 20-03335 48.6 40.81 16.03 

9 20-03336 46.7 41.97 10.13 

10 20-03340 37.8 39.26 -3.86 

11 20-03341 37.9 35.99 5.04 

12 20-03342 37.6 38.09 -1.30 

13 20-03643 42.4 37.23 12.19 

14 20-03916 23.7 29.68 -25.23 

15 20-03917 33.7 33.7 0.00 
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Table. IV. Reflectance CTO fatty acids validation results.  

CTO validation fatty acids, W-% 

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference 

% 

1 20-03328 46.8 48.78 -4.23 

2 20-03329 46.6 48.62 -4.33 

3 20-03330 47.1 49.23 -4.52 

4 20-03331 47.6 48.90 -2.73 

5 20-03332 47.3 48.10 -1.69 

16 20-03918 29.9 31.62 -5.75 

17 20-03930 37.1 36.12 2.64 

18 20-03931 31.9 30.55 4.23 

19 20-04061 47.7 39 18.24 

20 20-04062 43.3 39.54 8.68 

21 20-04149 29.8 34.89 -17.08 

22 20-04150 31.6 29.27 7.37 

23 20-04213 31.0 31.91 -2.94 

24 20-04214 33.5 32.82 2.03 

25 20-04216 23.2 29.81 -28.49 

26 20-04217 29.1 32.84 -12.85 

27 20-04218 37.6 37.55 0.13 

28 20-04219 28.2 31.84 -12.91 

29 20-04220 31.8 34.62 -8.87 

30 20-04221 27.9 28.56 -2.37 

31 20-11111 28.6 31.83 -11.29 

32 20-11112 33.2 34.42 -3.67 

33 20-11114 28.3 31.12 -9.96 

34 20-11540 29.5 30.48 -3.32 

35 20-11541 29.5 30.39 -3.02 

36 20-11542 31.2 30.15 3.37 

37 20-11545 32.1 30.46 5.11 

38 20-11546 31 29.13 6.03 

39 20-11548 39 32.8 15.90 

40 20-11801 26.30 31.15 -18.44 

41 20-11803 41.10 37.78 8.08 

42 20-11811 30.40 32.94 -8.36 

43 20-11812 28.10 31.71 -12.85 

44 20-11813 30.30 32.35 -6.77 

45 20-11814 20.10 26.84 -33.53 

46 20-11816 30.9 29.82 3.50 

47 20-A00515 33.2 28.67 13.64 

48 20-A01108 32.00 29.93 6.47 

49 20-A01145 28.40 32.59 -14.75 
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6 20-03333 47.4 48.82 -3.00 

7 20-03334 47.3 49.09 -3.78 

8 20-03335 47.7 51.20 -7.34 

9 20-03336 49.9 52.79 -5.79 

10 20-03340 47.1 48.55 -3.08 

11 20-03341 47.7 48.42 -1.51 

12 20-03342 48.3 48.72 -0.87 

13 20-03643 42.6 48.02 -12.72 

14 20-03916 49.4 46.41 6.05 

15 20-03917 55.7 54.74 1.72 

16 20-03918 47.8 47.96 -0.33 

17 20-03930 43.8 45.66 -4.25 

18 20-03931 43.3 45.45 -4.97 

19 20-04061 48.3 52.33 -8.34 

20 20-04062 42.1 48.57 -15.37 

21 20-04149 42.7 47.24 -10.63 

22 20-04150 48.0 48.93 -1.94 

23 20-04213 46.6 46.43 0.36 

24 20-04214 42.9 46.04 -7.32 

25 20-04216 49.8 45.55 8.53 

26 20-04217 45.6 50.09 -9.85 

27 20-04218 43.3 46.9 -8.31 

28 20-04219 45.5 45.92 -0.92 

29 20-04220 45.1 48.06 -6.56 

30 20-04221 47.7 45.63 4.34 

31 20-11111 47.7 46.64 2.22 

32 20-11112 55.1 52.3 5.08 

33 20-11114 44.8 47.14 -5.22 

34 20-11540 46.4 49.43 -6.53 

35 20-11541 45.1 46.26 -2.57 

36 20-11542 44.3 46.13 -4.13 

37 20-11545 54.8 52.6 4.01 

38 20-11546 47.9 48.71 -1.69 

39 20-11548 46.2 49.36 -6.84 

40 20-11801 45.10 46.00 -2.00 

41 20-11803 46.80 49.52 -5.81 

42 20-11811 49.50 47.40 4.24 

43 20-11812 51.90 50.60 2.50 

44 20-11813 55.40 53.67 3.12 

45 20-11814 44.60 45.16 -1.26 

46 20-11816 48.8 48.27 1.09 

47 20-A00515 43.5 45.74 -5.15 

48 20-A01108 42.80 46.02 -7.52 

49 20-A01145 43.90 44.61 -1.62 
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Table V. Reflectance CTO residual soap validation results. 

CTO validation residual soap 

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference 

% 

1 20-03328 0.06 0.08 -33.33 

2 20-03329 0.13 0.06 53.85 

3 20-03330 0.09 -0.01 111.11 

4 20-03331 0.11 0.05 54.55 

5 20-03332 0.11 0.04 63.64 

6 20-03333 0.12 0.00 100.00 

7 20-03334 0.05 0.07 -40.00 

8 20-03335 0.14 0.16 -14.29 

9 20-03336 0.19 0.08 57.89 

10 20-03340 0.02 0.07 -250.00 

11 20-03341 0.02 0.04 -100.00 

12 20-03342 0.02 0.09 -350.00 

13 20-03643 0.01 -0.03 400.00 

14 20-03916 0.17 0.14 17.65 

15 20-03917 0.17 0.2 -17.65 

16 20-03918 0.12 0.14 -16.67 

17 20-03930 0.32 -0.04 112.50 

18 20-03931 1.32 0.19 85.61 

19 20-04061 0.12 0.04 66.67 

20 20-04062 0.08 -0.02 125.00 

21 20-04149 0.44 0.03 93.18 

22 20-04150 0.64 0.2 68.75 

23 20-04213 0.10 0.14 -40.00 

24 20-04214 1.06 0.15 85.85 

25 20-04216 0.20 0.13 35.00 

26 20-04217 0.21 0.08 61.90 

27 20-04218 0.32 0.22 31.25 

28 20-04219 0.00 0.05 - 

29 20-04220 0.79 0.17 78.48 

30 20-04221 0.04 0.14 -250.00 

31 20-11111 0.06 0.19 -216.67 

32 20-11112 0.11 0.07 36.36 

33 20-11114 0.19 0.17 10.53 

34 20-11540 0.13 0.15 -15.38 

35 20-11541 0.22 0.15 31.82 

36 20-11542 0 0.11 - 

37 20-11545 0.07 0.17 -142.86 

38 20-11546 0.15 0.06 60.00 

39 20-11548 0.04 0.07 -75.00 

40 20-11801 0.02 0.12 -500.00 

41 20-11803 0.04 0.04 0.00 
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42 20-11811 0.27 0.22 18.52 

43 20-11812 0.20 0.08 60.00 

44 20-11813 0.12 0.25 -108.33 

45 20-11814 0.10 0.21 -110.00 

46 20-11816 0.47 0.12 74.47 

47 20-A00515 0.00 0.08 - 

48 20-A01108 0.01 0.15 -1400.00 

49 20-A01145 0.11 0.15 -36.36 

 

CTO validation water content,W-% 

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference 

% 

1 20-03328 1.99 2.07 -4.02 

2 20-03329 1.79 1.89 -5.59 

3 20-03330 3.45 3.80 -10.14 

4 20-03331 2.70 2.59 4.07 

5 20-03332 1.69 1.81 -7.10 

6 20-03333 1.76 1.73 1.70 

7 20-03334 1.77 1.90 -7.34 

8 20-03335 2.29 1.77 22.71 

9 20-03336 1.71 1.80 -5.26 

10 20-03340 1.80 1.80 0.00 

11 20-03341 1.72 1.71 0.58 

12 20-03342 1.84 1.80 2.17 

13 20-03643 1.61 1.73 -7.45 

14 20-03916 0.97 1.21 -24.74 

15 20-03917 0.33 -0.2 160.61 

16 20-03918 1.54 1.82 -18.18 

17 20-03930 0.93 1.28 -37.63 

18 20-03931 1.21 1.45 -19.83 

19 20-04061 1.86 1.69 9.14 

20 20-04062 1.27 1.22 3.94 

21 20-04149 5.96 6.48 -8.72 

22 20-04150 0.32 0.07 78.13 

23 20-04213 1.41 1.71 -21.28 

24 20-04214 1.50 1.66 -10.67 

25 20-04216 0.94 1.02 -8.51 

26 20-04217 0.38 0.37 2.63 

27 20-04218 0.93 0.86 7.53 

28 20-04219 1.74 1.82 -4.60 

29 20-04220 0.36 0.18 50.00 

30 20-04221 0.93 1.39 -49.46 

31 20-11111 0.97 1.35 -39.18 



 

  APPENDIX II (8/14) 

 
  

 
 

32 20-11112 0.57 0.36 36.84 

33 20-11114 0.7 1.11 -58.57 

34 20-11540 0.28 0.28 0.00 

35 20-11541 0.63 0.8 -26.98 

36 20-11542 1.53 1.51 1.31 

37 20-11545 0.57 0.61 -7.02 

38 20-11546 1.03 1.15 -11.65 

39 20-11548 0.91 0.81 10.99 

40 20-11801 1.05 1.30 -23.81 

41 20-11803 1.01 0.74 26.73 

42 20-11811 0.79 0.96 -21.52 

43 20-11812 0.45 0.15 66.67 

44 20-11813 0.43 0.06 86.05 

45 20-11814 0.65 0.16 75.38 

46 20-11816 1.11 0.75 32.43 

47 20-A00515 0.91 1 -9.89 

48 20-A01108 0.95 0.61 35.79 

49 20-A01145 0.84 0.78 7.14 

Reflectance PTO validation results  

Table VI. Reflectance PTO resin acid validation results. 

PTO validation Resin acid, W-%     

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference % 

1 20-10954 28.1 25.97 7.580 

2 20-12099 24.1 26.01 -7.925 

3 20-12068 26.5 26.66 -0.604 
4 20-11981 26.2 26.33 -0.496 

5 20-11903 25.8 26.95 -4.457 

6 20-11830 25.5 26.41 -3.569 

7 20-11631 26.2 26.39 -0.725 

8 20-11607 25.8 26.33 -2.054 

9 20-11588 25.7 26.18 -1.868 

10 20-11565 25.8 26.5 -2.713 

11 20-11497 26.1 26.64 -2.069 

12 20-11434 25.9 27.07 -4.517 

13 20-11350 26.2 27.28 -4.122 

14 20-11165 25.5 26.44 -3.686 

 

PTO validation Acid number, mg/KOH/g     

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference % 
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1 20-10954 155.6 153.24 1.517 

2 20-12099 155.2 152.17 1.952 

3 20-12068 158.1 153.43 2.954 
4 20-11981 157.8 153.3 2.852 

5 20-11903 157.6 152.62 3.160 

6 20-11830 152.9 153.03 -0.085 

7 20-11631 151.3 152.29 -0.654 

8 20-11607 152.7 153.8 -0.720 

9 20-11588 152.5 152 0.328 

10 20-11565 151.9 152.73 -0.546 

11 20-11497 152.9 152.76 0.092 

12 20-11434 153.6 154.76 -0.755 

13 20-11350 152.2 153.55 -0.887 

14 20-11165 144.7 153.75 -6.254 

 

Table VII. reflectance PTO neutral substances validation results. 

PTO validation Neutral substances, W-%     

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference % 

1 20-10954 19.9 21.06 -5.829 

2 20-12099 20.4 21.95 -7.598 

3 20-12068 18.8 21.07 -12.074 
4 20-11981 18.9 21.12 -11.746 

5 20-11903 19.1 21.05 -10.209 

6 20-11830 21.5 21 2.326 

7 20-11631 22.2 21.84 1.622 

8 20-11607 21.5 21.18 1.488 

9 20-11588 21.7 22.17 -2.166 

10 20-11565 21.9 21.4 2.283 

11 20-11497 21.4 21.32 0.374 

12 20-11434 21.1 20.15 4.502 

13 20-11350 21.7 20.64 4.885 

14 20-11165 25.6 20.64 19.375 

Table. VII. Reflectance PTO fatty acid validation results.  

PTO validation Fatty acid, W-%     

Sample 

number 

Sample ID Laboratory 

measurement 

NIR measurement Difference % 

1 20-10954 52 51.41 1.135 

2 20-12099 55.5 51.52 7.171 

3 20-12068 54.7 51.68 5.521 
4 20-11981 54.9 51.6 6.011 

5 20-11903 55.1 51.21 7.060 



 

  APPENDIX II (10/14) 

 
  

 
 

6 20-11830 53.0 51.56 2.717 

7 20-11631 51.6 51.97 -0.717 

8 20-11607 52.7 52.7 0.000 

9 20-11588 52.6 51.65 1.806 

10 20-11565 52.3 51.47 1.587 

11 20-11497 52.5 51.84 1.257 

12 20-11434 53 51.44 2.943 

13 20-11350 52.1 51.52 1.113 

14 20-11165 48.9 51.7 -5.726 

Table VIII. Transmittance CTO resin acid and acid number validation results. 

Transmittance CTO resin acid and acid number validation results. 

Sample 

number 

Sample ID-

temperature 
Resin acid, W-% Acid number, mg/KOH/g  

  Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

1 20-10303-28 25.6 26.76 -4.52 138.5 139.430 -0.67 

2 20-10303-40 25.6 25.14 1.81 138.5 - - 

3 20-10303-60 25.6 25.65 -0.18 138.5 141.027 -1.83 

16 20-10464-28 25.6 27.50 -7.42 141.5 140.3 0.85 

17 20-10464-40 25.6 25.60 0.00 141.5 139.12 1.68 

18 20-10464-60 25.6 25.69 -0.35 141.5 141.28 0.16 

19 20-10539-28 26.5 28.47 -7.43 141.4 140.48 0.65 

20 20-10539-40 26.5 25.70 3.02 141.4 139.96 1.02 

21 20-10539-60 26.5 25.39 4.19 141.4 142.41 -0.71 

4 20-11568-28 23.4 25.69 -9.80 136.7 137.04 -0.25 

5 20-11568-40 23.4 23.84 -1.89 136.7 - - 

6 20-11568-60 23.4 24.43 -4.39 136.7 138.54 -1.35 

25 20-11632-28 23.8 27.80 -16.81 136.3 135.9 0.29 

26 20-11632-40 23.8 23.79 0.042 136.3 137.19 -0.65 

27 20-11632-60 23.8 24.62 -3.45 136.3 136.74 -0.32 

7 20-11832-28 23.2 24.05 -3.68 137.5 136.68 0.60 

8 20-11832-40 23.2 23.39 -0.82 137.5 - - 

9 20-11832-60 23.2 23.82 -2.69 137.5 137.16 0.25 

10 20-11904-28 23.1 23.58 -2.09 138.9 136.62 1.64 

11 20-11904-40 23.1 23.50 -1.74 138.9 - - 

12 20-11904-60 23.1 23.85 -3.26 138.9 137.70 0.87 

13 20-11984-28 23.3 24.70 -6.00 137.7 136.55 0.84 

14 20-11984-40 23.3 23.49 -0.83 137.7 - - 

15 20-11984-60 23.3 24.00 -3.01 137.7 137.96 -0.19 

22 20-12069-28 23.5 24.93 -6.09 137.7 135.64 1.50 

23 20-12069-40 23.5 23.45 0.21 137.7 136.01 1.23 

24 20-12069-60 23.5 23.25 1.06 137.7 137.76 -0.04 
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Table IX. Transmittance CTO neutral substances and fatty acids validation results 

Transmittance CTO neutral substances and fatty acids validation results. 

Sample 

number 

Sample ID-

temperature  

Neutral substances, W-% Fatty acids, W-% 

    
Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

1 20-10303-28 28.7 28.69 0.03 45.70 47.30 -3.49 

2 20-10303-40 28.7 28.69 0.04 45.70 47.50 -3.93 

3 20-10303-60 28.7 27.57 3.93 45.70 47.22 -3.33 

16 20-10464-28 27.2 27.59 -1.43 47.20 47.25 -0.11 

17 20-10464-40 27.2 28.53 -4.89 47.20 46.99 0.44 

18 20-10464-60 27.2 27.16 0.15 47.20 47.30 -0.21 

19 20-10539-28 27.2 27.74 -1.99 46.30 46.81 -1.10 

20 20-10539-40 27.2 28.28 -3.97 46.30 46.74 -0.95 

21 20-10539-60 27.2 27.46 -0.96 46.30 47.88 -3.41 

4 20-11568-28 29.7 29.69 0.04 46.90 47.73 -1.78 

5 20-11568-40 29.7 29.36 1.15 46.90 47.99 -2.32 

6 20-11568-60 29.7 28.27 4.80 46.90 47.29 -0.84 

25 20-11632-28 29.9 29.76 0.47 46.30 47.61 -2.83 

26 20-11632-40 29.9 29.43 1.57 46.30 47.46 -2.51 

27 20-11632-60 29.9 28.29 5.38 46.30 46.18 0.26 

7 20-11832-28 29.4 29.44 -0.15 47.40 47.41 -0.02 

8 20-11832-40 29.4 29.35 0.18 47.40 47.92 -1.09 

9 20-11832-60 29.4 28.57 2.81 47.40 47.15 0.54 

10 20-11904-28 28.7 28.65 0.16 48.20 48.18 0.05 

11 20-11904-40 28.7 29.31 -2.11 48.20 48.40 -0.41 

12 20-11904-60 28.7 28.46 0.84 48.20 47.63 1.18 

13 20-11984-28 29.3 29.27 0.09 47.40 47.40 0.00 

14 20-11984-40 29.3 29.50 -0.69 47.40 47.76 -0.77 

15 20-11984-60 29.3 28.88 1.43 47.40 47.18 0.46 

22 20-12069-28 29.2 29.87 -2.29 47.30 48.36 -2.24 

23 20-12069-40 29.2 29.80 -2.06 47.30 47.61 -0.66 

24 20-12069-60 29.2 28.89 1.06 47.30 47.69 -0.82 
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Table X. Transmittance CTO residual soap and water content validation results. 

Transmittance CTO resin acid and acid number validation results. 

Sample 

number 

Sample ID-

temperature  

Residual soap  Water content, W-% 

    
Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

1 20-10303-28 0.14 0.15 -7.14 0.74 0.79 -6.76 

2 20-10303-40 0.14 0.14 -2.86 0.74 0.74 0.14 

3 20-10303-60 0.14 0.15 -5.71 0.74 0.75 -1.22 

16 20-10464-28 0.14 0.15 -7.14 0.73 0.74 -1.37 

17 20-10464-40 0.14 0.15 -7.14 0.73 0.68 6.85 

18 20-10464-60 0.14 0.15 -7.14 0.73 0.69 5.48 

19 20-10539-28 0.19 0.16 15.79 0.69 0.77 -11.59 

20 20-10539-40 0.19 0.15 21.05 0.69 0.65 5.80 

21 20-10539-60 0.19 0.15 21.05 0.69 0.69 0.00 

4 20-11568-28 0.10 0.10 0.00 0.73 0.76 -4.11 

5 20-11568-40 0.10 0.10 -1.00 0.73 0.73 0.55 

6 20-11568-60 0.10 0.09 6.00 0.73 0.73 0.68 

25 20-11632-28 0.10 0.10 0.00 0.80 0.68 15.00 

26 20-11632-40 0.10 0.10 0.00 0.80 0.69 13.75 

27 20-11632-60 0.10 0.08 20.00 0.80 0.75 6.25 

7 20-11832-28 0.11 0.08 27.27 0.69 0.81 -17.39 

8 20-11832-40 0.11 0.08 31.82 0.69 0.70 -1.45 

9 20-11832-60 0.11 0.07 37.27 0.69 0.76 -10.43 

10 20-11904-28 0.28 0.08 71.43 0.83 0.82 1.20 

11 20-11904-40 0.28 0.08 71.79 0.83 0.62 25.66 

12 20-11904-60 0.28 0.07 75.36 0.83 0.65 22.17 

13 20-11984-28 0.11 0.08 27.27 0.77 0.79 -2.60 

14 20-11984-40 0.11 0.08 30.91 0.77 0.76 1.56 

15 20-11984-60 0.11 0.07 34.55 0.77 0.76 1.56 

22 20-12069-28 0.11 0.07 36.36 0.73 0.65 10.96 

23 20-12069-40 0.11 0.07 36.36 0.73 0.70 4.11 

24 20-12069-60 0.11 0.06 45.45 0.73 0.75 -2.74 
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Table XI. Transmittance PTO resin acid and acid number validation results. 

Transmittance PTO resin acid and acid number validation results. 

Sample 

number 

Sample ID-

temperature 
Resin acid, W-% Acid number, mg/KOH/g  

  Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

25 20-10536-P28 28.70 26.81 6.59 154.80 151.60 2.07 

26 20-10536-P40 28.70 26.28 8.43 154.80 150.40 2.84 

27 20-10536-P60 28.70 28.53 0.59 154.80 153.06 1.12 

1 20-11565-P28  25.80 25.40 1.54 151.90 151.36 0.35 

2 20-11565-P40 25.80 24.78 3.94 151.90 150.98 0.61 

3 20-11565-P60 25.80 25.84 -0.17 151.90 153.21 -0.86 

4 20-11588-P28 25.70 25.33 1.42 152.50 151.71 0.52 

5 20-11588-P40 25.70 25.92 -0.84 152.50 151.64 0.56 

6 20-11588-P60 25.70 25.24 1.78 152.50 153.62 -0.74 

7 20-11607-P28 25.80 26.17 -1.45 152.70 154.16 -0.95 

8 20-11607-P40 25.80 24.92 3.41 152.70 152.71 0.00 

9 20-11607-P60 25.80 26.06 -0.99 152.70 153.12 -0.28 

10 20-11631-P28 26.20 26.20 0.01 151.30 152.81 -1.00 

11 20-11631-P40 26.20 24.48 6.56 151.30 151.17 0.09 

12 20-11631-P60 26.20 26.05 0.59 151.30 151.89 -0.39 

16 20-11720-P28 26.00 25.17 3.19 154.20 152.13 1.34 

17 20-11720-P40 26.00 23.14 11.00 154.20 146.57 4.95 

18 20-11720-P60 26.00 25.51 1.88 154.20 150.98 2.09 

13 20-11830-P28 25.50 25.05 1.77 152.90 152.44 0.30 

14 20-11830-P40 25.50 24.33 4.59 152.90 151.45 0.95 

15 20-11830-P60 25.50 25.70 -0.80 152.90 151.63 0.83 

19 20-13021-P28 23.90 22.39 6.32 151.20 150.42 0.52 

20 20-13021-P40 23.90 21.18 11.38 151.20 144.03 4.74 

21 20-13021-P60 23.90 23.34 2.34 151.20 148.84 1.56 

22 20-13105-P28 23.90 22.19 7.15 150.30 150.51 -0.14 

23 20-13105-P40 23.90 20.91 12.51 150.30 143.82 4.31 

24 20-13105-P60 23.90 23.77 0.54 150.30 149.89 0.27 
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TableXII. Transmittance PTO neutral substances and fatty acids validation results. 

Transmittance PTO neutral substances and fatty acids validation results. 

Sample 

number 

Sample ID-

temperature  

Neutral substances, W-% Fatty acids, W-% 

    
Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

Laboratory 

measurement 

NIR 

measurement 

Difference, 

% 

25 20-10536-P28 20.30 20.39 -0.44 51.00 51.07 -0.14 

26 20-10536-P40 20.30 22.22 -9.46 51.00 48.69 4.53 

27 20-10536-P60 20.30 21.24 -4.63 51.00 52.15 -2.25 

1 20-11565-P28  21.90 21.51 1.79 52.30 52.43 -0.26 

2 20-11565-P40 21.90 22.66 -3.48 52.30 51.81 0.94 

3 20-11565-P60 21.90 21.46 2.03 52.30 52.62 -0.62 

4 20-11588-P28 21.70 20.98 3.33 52.60 52.73 -0.24 

5 20-11588-P40 21.70 22.74 -4.78 52.60 51.76 1.60 

6 20-11588-P60 21.70 21.20 2.31 52.60 52.76 -0.30 

7 20-11607-P28 21.50 20.04 6.77 52.70 53.30 -1.14 

8 20-11607-P40 21.50 22.55 -4.87 52.70 52.59 0.20 

9 20-11607-P60 21.50 21.10 1.86 52.70 53.10 -0.75 

10 20-11631-P28 22.20 20.72 6.68 51.60 52.44 -1.63 

11 20-11631-P40 22.20 22.67 -2.10 51.60 51.59 0.02 

12 20-11631-P60 22.20 21.72 2.18 51.60 52.41 -1.57 

16 20-11720-P28 20.80 21.51 -3.41 53.20 54.16 -1.80 

17 20-11720-P40 20.80 22.23 -6.88 53.20 51.09 3.97 

18 20-11720-P60 20.80 21.24 -2.12 53.20 53.74 -1.02 

13 20-11830-P28 21.50 21.04 2.15 53.00 53.79 -1.49 

14 20-11830-P40 21.50 21.95 -2.10 53.00 53.14 -0.27 

15 20-11830-P60 21.50 21.50 0.01 53.00 53.55 -1.03 

19 20-13021-P28 22.40 22.54 -0.63 53.70 56.26 -4.77 

20 20-13021-P40 22.40 24.86 -10.98 53.70 51.27 4.53 

21 20-13021-P60 22.40 21.29 4.96 53.70 54.10 -0.74 

22 20-13105-P28 22.90 22.65 1.09 53.20 56.39 -6.00 

23 20-13105-P40 22.90 24.97 -9.04 53.20 52.02 2.22 

24 20-13105-P60 22.90 21.09 7.90 53.20 54.62 -2.67 

 

 

 

 

 

 

 


