

Lappeenranta University of Technology

Department of Information Technology

DYNAMIC RUNTIME VARIATION AND BRANDING OF S60
SOFTWARE

Supervisors Professor Jari Porras and M.Sc. Erik Simko

Instructor M.Sc. Jani Nurminen

Lappeenranta, 23.4.2007

Jere Antikainen

Notkokatu 1 B 7

FIN - 53850 Lappeenranta

Finland

ABSTRACT

Author: Antikainen, Jere

Subject: Dynamic Runtime Variation and Branding in S60 Software

Department: Information Technology

Year: 2007

Place: Lappeenranta

Master’s Thesis. Lappeenranta University of Technology. 51 pages, 23

figures, 2 tables, and 2 appendices.

Supervisor: Professor Jari Porras

Keywords: Symbian, S60, branding, variation of software

This thesis studies ways of branding and variation of S60 software

dynamically during run-time. S60 is a platform used by several phone

manufacturers and their phones are used by numerous operators.

Operators want to differentiate a phone or selected applications on the

phone using their own brand. This brings a need for a way of branding a

whole phone or some of its applications. Some applications may need to

change their variation depending for example on a used service provider.

Also the variant data may need to be shared between several applications

or modules. The work introduces Symbian operating system and S60

platform and considers the challenges and restrictions that platform

security and data caging of Symbian operating system bring to variation of

software and sharing variant data between several applications. Already

existing methods are also considered as the basis of the thesis. The work

includes a presentation of a project where an implementation was created

for branding an S60 application dynamically, and for sharing its branded

data with other applications.

TIIVISTELMÄ

Tekijä: Antikainen, Jere

Nimi: Dynamic Runtime Variation and Branding in S60 Software

Osasto: Tietotekniikan Osasto

Vuosi: 2007

Paikka: Lappeenranta

Diplomityö. Lappeenrannan teknillinen korkeakoulu. 51 sivua, 23 kuvaa, 2

taulukkoa ja 2 liitettä.

Tarkastaja: Professori Jari Porras

Hakusanat: Symbian, S60, brändäys, ohjelmistojen muuntelu

Diplomityössä tutkitaan keinoja brändätä ja varioida S60-ohjelmistoja

dynaamisesti ja ajonaikaisesti. S60 on kehitysalusta, jota käyttävät useat

puhelinvalmistajat ja heidän puhelimiaan käyttävät lukuisat eri operaattorit.

Operaattorit haluavat puhelimiensa tai osan puhelimen sovelluksista

erottuvan kilpailijoista heidän omalla brändillään ja tämän takia täytyy olla

keinot joko koko puhelimen, tai valittujen sovellusten brändäykselle. Osa

sovelluksista saatetaan haluta vaihtavan käytettyä brändiä sen käyttämien

resurssien, kuten verkkopalvelimen, mukaan. Variointidataa tulee myös

pystyä jakamaan eri sovellusten tai sovellusten osien kesken. Työssä

esitellään Symbian käyttöjärjestelmä ja S60 kehitysympäristö, sekä

pohditaan Symbianin turvallisuuskäytäntöjen tuomia haasteita

variointidatan jakamiseen eri sovellusten välillä. Olemassaolevia

variointitapoja tutkitaan työn mahdolliseksi pohjaksi. Työ sisältää esittelyn

projektista, jossa kehitettiin erään S60 sovelluksen dynaaminen

brändäystoteutus, joka myös mahdollistaa variointidatan jakamisen eri

sovellusten kanssa.

PREFACE
I would like to thank SYSOPENDIGIA for giving me the idea and

inspiration for this thesis. I would especially like to thank my former project

manager Jari Hakulinen for creating the opportunity to write this thesis in

the first place, and the rest of the project team for ideas and support

during the implementation phase. But most of all I want to thank my

instructor Jani Nurminen for having the patience to guide me through this

process, and for great comments and guidance during the writing. Last but

not least, special thanks to Kaisa for giving me the motivation to finally

graduate.

TABLE OF CONTENTS

1 INTRODUCTION ..1
1.1 Branding...3

1.1.1 Branding in General ...4
1.1.2 Branding of Software ...6

1.2 Objectives ..7
1.3 Structure of the Work ...7

2 SYMBIAN OS ...8
2.1 Platform Security ..8
2.2 Client/Server Framework ..17
2.3 Database..19

3 VARIATION OF SOFTWARE IN S60...22
3.1 Static Variation of Software ..23

3.1.1 Resource Files ..24
3.1.2 Feature Flags ..26
3.1.3 Feature Discovery API...26

3.2 Dynamic Variation of Software ...27
3.2.1 Skinning ...27
3.2.2 Local Variation ..28
3.2.3 Variation Based on Used Service Provider28

3.3 The Limitations in Current Variation Techniques29

4 BRANDING SERVER..31
4.1 Requirements..31
4.2 Prototyping ..32

4.2.1 Resource File Based Prototype ...32
4.2.2 Database Based Prototype ...33
4.2.3 Client/Server Framework Based Prototype......................................33
4.2.4 Performance Measurements ..34
4.2.5 Results from Prototyping ...36

4.3 Variant Data Definition...36
4.3.1 Text Element ...38
4.3.2 Integer Element ..39
4.3.3 Buffer Element ..39
4.3.4 File Element ..39
4.3.5 Bitmap Element ..40
4.3.6 Structure Element...40

4.4 Data Storage ...41
4.5 Architecture ...42

4.5.1 The Client ..42
4.5.2 The Server ...43
4.5.3 Relations to Outside Components ...45

4.6 Installation System ...45
4.7 Results ...46

4.8 Further Development ...48

5 CONCLUSIONS ...50

REFERENCES ...52

APPENDIX 1: SYSTEM CAPABILITIES OF SYMBIAN OS56

APPENDIX 2: AN EXAMPLE OF A BRAND DEFINITION XML-FILE...............58

LIST OF FIGURES
Figure 1: The 4P-model 5

Figure 2: Symbian OS software layers [12] 9

Figure 3: The TCB and TCE [11] 10

Figure 4: Capability confirmation query during software installation [4] 12

Figure 5: Symbian Signed process [14] 15

Figure 6: Client/Server framework in Symbian OS [18] 18

Figure 7: Relationship of a message package and a descriptor class [14] 19

Figure 8: S60 high level architecture [16] 22

Figure 9: File types and tools used for resource compilation process [3] 24

Figure 10: Example of skins 27

Figure 11: Fetch times per item from a database 34

Figure 12: Fetch times for a client/server and a resource file prototypes 35

Figure 13: The XML structure of brand data definition 38

Figure 14: XML definition of a text element 39

Figure 15: XML definition of an integer element 39

Figure 16: XML definition of a buffer element 39

Figure 17: XML definition of a file element 40

Figure 18: XML definition of a bitmap element 40

Figure 19: XML definition of a structure element 41

Figure 20: Brand data folder 41

Figure 21: Class diagram of the client 43

Figure 22: Class diagram of the server 44

Figure 23: Logical module relations 45

LIST OF TABLES

Table 1: User capabilities in Symbian OS Platform Security 12

Table 2: The protected directory structure [14] 16

ABBREVIATIONS

2G, 2.5G, 3G Mobile Communication Generations

AIF Application Information File
API Application Programming Interface

CONE Symbian OS Control Environment

DBMS Database Management System

DMA Direct Memory Access

DLL Dynamic Link Library

GUI Graphical User Interface

IPC Inter-Process Communication

IPSec IP Security Architecture

IrDA Infrared Data Association

ITC Inter-Thread Communication

OS Operating System

PIM Personal Information Management

ROM Read Only Memory

SID Secure ID of an Application in Symbian OS

SSL Secure Sockets Layer

TCB Trusted Computing Base

TCE Trusted Computing Environment

TLS Transport Layer Security

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

WAP Wireless Access Protocol

XML Extended Markup Language

1

1 INTRODUCTION

In the smartphone industry the products of a phone manufacturer are used

by several operators. For operators it is essential to their business to bring

forward their own brand in the applications of a phone, because building

brand recognition amongst the consumers is one of the key factors in

building a brand. [1] This brings challenges to the phone manufacturers,

since creating the software for the smartphone is time consuming and

expensive. Customizing the software for each operator is possible, but this

can complicate the version control and configuration management of the

software a lot which may lead to problems with the quality of the software

and delays in the software development. [2]

In Symbian Operating System (OS) there is also a built-in system of

having some of the appearance, behaviour and functionality of

applications stored externally of the application executable. This system is

the usage of resource files which are separate text files written in a

Symbian OS-specific resource language. Resource files are compiled into

a binary file format which then can be loaded and read by applications.

Resource files make it possible for information to be loaded only when it is

actually needed and they can be changed and recompiled without the

need to recompile the main program. Resource files are used for example

in localizing applications for different languages. [3]

There are, however, some problems in using resource files as a tool for

branding an application. Backwards compatibility of the resource files is

hard to maintain because resource files are compiled in a way that the

order of the resource definitions is decisive. That means that adding

definitions for newer versions and maintaining compatibility with older

versions becomes a tedious task over time. Also, having several resource

2

files active at the same time for one application is not possible, so any

application which needs to have several different brands active at one

time, for example in different views, would require continuous loading and

unloading of resource files. The sharing of brand data with different

applications is also problematic with resource files. If the branded resource

files were to be shared between applications, they would have to be

available in a public directory, available for reading to any application. [4]

This would probably not be desirable by operators, since branding data

usually includes copyrighted material which could be easily copied from a

public directory.

There are also other methods for customizing the UI of the S60

smartphone, for example skin support [5]. With skins it’s fairly easy to

change the graphics of the whole phone or just a single application, but

skins cannot be used for customizing the functionality of an application

since skin support is only about customizing graphics. Also, there can only

be one skin active at one time, so if for example two applications need to

change their skin depending on the situation, or have two different sets of

skins active at the same time, then this becomes a problem. And also the

user of the phone can change the used skin of the phone at any time, so

the phone is not branded permanently, which might not be the best choice

for the operators who want their brand to be visible all the time on their

device.

There are also methods of varying only the functionality of the software.

The term varying (e.g. variant, variating etc.) in this work refers to the

process of altering the appearance or functionality of software. Variating

can be either static or dynamic. The variation methods which require the

software or some parts of it to be recompiled are so-called static methods.

3

Dynamic variation can be performed during run-time of the software

without the need to recompile the software.

A component called central repository [6] provides an API to allow one or

more clients to open repositories, and to provision and retrieve information

from those repositories. By having some functionality flags defined in the

central repository, the varying can be dynamic but having a centralized

method for varying the UI and the functionality of the software dynamically

while the software is running would make branding the phone a lot less

complex and time consuming process.

1.1 Branding

The word brand comes from an ancient Norwegian word “brandr” which

means burning. Brands have been used for hundreds of years to

distinguish products from another producer’s similar products. The first

real brand is said to be born on an island of Greece long before the birth of

Christ. At that time a good oil lamp was a lamp which lasted longer than

other lamps. When buying a lamp it was impossible to tell which lamp was

better than others.

According to the legend oil lamp producers on one island were able to

produce lamps which lasted much longer than other lamps because the

quality of clay on the island was superior. They started to mark their lamps

with their symbol and the merchants selling their lamps started to get

bigger profits for the lamps when word started to get around that those

lamps lasted longer. Even though the legend does not tell the name of the

product, the first brand in the world was born. [7]

4

1.1.1 Branding in General

The term brand is ambiguous. Brands are not only physical products or

services. A brand may also be a company, such as Nokia, an event, or a

person such as Björn Borg. A brand is the additional value a consumer is

willing to pay for a product compared to a generic product which fulfills the

same purpose. [7]

A brand signals a consumer about the origin of the product and protects

both the consumer and the producer from competitors who are trying to

offer similar products. The elements, such as name, logo, or symbol,

which help recognising, noticing and remembering a trademark can be

called elements of a brand. But a brand should not be considered only as

a name or a symbol; the concept extends beyond the external features of

a commodity. A brand consists of all the positive and negative

impressions, which accumulate over time, about the product, distribution

chain, staff and communication. So a brand is not just a symbol which

differentiates a product, but it’s all that a consumer thinks when seeing the

symbol. [8]

Building a brand starts from the background factors; goals, market

researches, and identity. Once the elements are chosen, image and

reputation of the brand are created. Creating a brand cannot start without

there being something that is built into a brand. A product has to have

some distinguishing feature which can be advertised to the consumers.

[7] In case of mobile software, the distinguishing features can be the

appearance of the applications or small features and usability issues in

them. [9]

Advertising has to be able to affect emotions since it helps people to

remember the information. If the information is too confusing the mind

5

easily ignores it totally. Especially, if the information given in an

advertisement is new in addition to being confusing, the image of the

advertisement fades very quickly. Information has best chances of getting

through when it can be attached to something previously known and

concrete. [7] Advertisement has an important role in building a brand.

Quality of advertisement is very important; according to research the

quality of an advertisement is four or five times more important than the

amount of money spent in advertisement. [10]

Marketing is used to bring a new brand into the knowledge of consumers.

The goal is not, however, creating something new, but rather enhancing

the existing image. The 4P-model created by Philip Kotler [7] breaks the

marketing basics down into four segments – a so called marketing mix:

product, price, promotion and place. Product is the most important of

these since it is concrete and visible. The most critical is price since if the

price does not meet the consumers’ vision of the value of the product; he

will easily go for the competitor’s product. Promotion is all the actions of a

company, with which it strives to promote the product to the desired

customers. The last segment, place, consists of distribution channels,

coverage area, and transportation. Figure 1 depicts the 4P-model.

Figure 1: The 4P-model

6

A successful brand product has a higher price than similar non-branded

products, but even so the consumers are willing to buy the brand product.

Price is one of the values a brand has to have. If the price is lowered the

brand starts to go downhill towards the generic commodities. This tells,

that in a modern consumer society, a name and image alone don’t sell; a

product has to have a status which a high price brings along with it. [7]

Brand recognition starts with a consumer remembering having heard of

the brand or seen the brand name or logo, or even connecting the brand

into the right product group. Real signs of brand recognition are a large

scale advertisement of the brand, the brand having been on the market for

a long time, easy availability of the brand product, and that the brand is

successful. A good slogan, a distinguishing melody, or a successful use of

a symbol as a logo can be decisive elements in building brand recognition,

because they are all easier to remember than just words. Also well built

media publicity may work well in building brand recognition, even better

than advertisements. A paid advertisement comes from the company, but

an image given by the media origins form outside the company. [7]

1.1.2 Branding of Software

Branding of software is quite a new thing. Its history is analogous with the

general history of branding; it has been introduced with a sort of mass

production of software. The smartphone industry is probably the first

industry starting to mass produce software in this way. One generic

commodity, e.g. an application, is turned into different products, with the

similar kind of functionality just by branding it. For example a generic

instant messaging application is branded with different operator’s graphics

and features and it suddenly is a totally different product than the same

application with a different set of graphics and branded features.

7

Branding software is basically just like branding any other product; the

same rules apply to software as well. The software being branded is

differentiated from the competitors by graphics, features, and functionality.

The difference in branding software is on the technical side – how to

enable software to be branded. [9]

1.2 Objectives

The objective of this thesis is to study methods of varying S60 software

dynamically during runtime to enable flexible ways of branding a complete

S60 smartphone or some of its applications. It would be ideal to be able to

use some of the existing software variation methods provided by the S60

Platform, but the study should not be limited to them. The thesis also

presents a project where an implementation was created for branding an

S60 application and for sharing its branded data with other applications.

1.3 Structure of the Work

The Symbian OS and some of its aspects which are more closely related

to this thesis are overviewed in Chapter 2. Chapter 3 describes the S60 UI

framework and the methods of varying software in S60 applications and

the limitations of those methods. The implementation described in Chapter

4 is the practical part related to this thesis. Chapter 5 considers the results

of the project and draws conclusions of the whole study.

8

2 SYMBIAN OS

Symbian OS, produced by Symbian Ltd, is an advanced, open operating

system licensed by the leading mobile phone manufacturers in the world.

It is designed for the specific requirements of advanced 2G, 2.5G and 3G

mobile communication devices. It combines the power of an integrated

applications environment with mobile telephony, bringing advanced data

services to the mass market. Symbian OS was developed from EPOC by

Psion Software and it runs exclusively on ARM processors. Symbian OS is

structured like many desktop operating systems with pre-emptive

multitasking, multithreading, and memory protection. The major advantage

of Symbian OS in smartphones is that it was designed for handheld

devices. [11]

Different phone manufacturers require very different kind of mobile

phones. The Symbian OS allows its licensees to modify the user interface

part to suit the needs of each one. Figure 2 shows the Symbian OS

software layers. The kernel part of the Symbian OS supports multi-

threading and the core kernel library includes support for all features that

are essential for the operation system such as timers, direct memory

access (DMA) engines, interrupt controllers, and universal asynchronous

receiver/transmitter (UART) serial ports. [12]

2.1 Platform Security

Symbian OS introduced the concept of platform security in version 9.1.

Platform security is a defence mechanism against malicious or badly

implemented code. It is a fundamental concept addressing the security

and integrity of data and applications on a smartphone. There is a need to

prevent badly implemented applications from doing unwanted things on

9

the phone, while still enabling an open environment for third party

applications.

Figure 2: Symbian OS software layers [12]

This prevention is done by determining the trust level of applications

before installation and after that ensuring that the installed applications

cannot perform unwanted actions after their installation to the phone. [13]

The security subsystem also enables data confidentiality, integrity and

authentication by providing support for secure communications protocols,

such as Transport Layer Security (TLS), Secure Sockets Layer (SSL), and

IP Security Architecture (IPSec). It provides also support for authenticating

installed software using digital signatures.

10

A so-called Trusted Computing Base (TCB) consists of the kernel, file

server, and software installer. All components of TCB have unrestricted

access to the all the resources of the device. TCB is responsible for

maintaining the integrity of the device, and applying the fundamental

platform security rules. Outside this core, other system components

require access to some sensitive system resources, but not to all. The

Trusted Computing Environment (TCE) consists of these key operating

system components which protect the resources of the device against

misuse. Figure 3 depicts the TCB and TCE.

Figure 3: The TCB and TCE [11]

The main concern the platform security is trying to address is preventing

unauthorized access to the user data and system services. As the users of

smartphones use their phones as calendars and diaries it is imperative

that the user’s data is protected from being accessed by malicious

software or corrupted by poorly implemented applications. As for system

services the most important part to secure is the kernel executive itself. All

other system resources, e.g. the telephony server, are used through user-

side servers.

11

The access control to system services is done through the use of so-called

capabilities. Capabilities are access tokens which correspond to

permissions to undertake sensitive actions or groups of actions, or to

access sensitive system resources. When an application is installed on the

phone, it is granted a set of capabilities. These capabilities are managed

by the kernel of the operating system and after the software is installed,

they can no longer be changed. Capabilities are used for two things, they

define permissions and limits for application’s access, but they also

represent the level of trust the application has. [14]

Capabilities are used to verify the level of trust when linking static libraries

or loading dynamic link libraries. A process always gets the capabilities of

the executable file and those capabilities will never change during

execution. A library can be loaded dynamically into a process only if the

library has equal or higher capabilities than the loading process has, since

for a library the given capabilities express the level of trust it has. But even

if the library has more capabilities than the process it is loaded to, it can

only perform operations according to the capabilities of the process.

Capabilities can be divided into two groups: basic capabilities and

extended capabilities. Basic capabilities are capabilities that can be given

by the user. Basic capabilities are confirmed from the user during software

installation and are available until the software is uninstalled. Figure 4

shows the confirmation query shown to the user during software

installation. Table 1 lists the user capabilities that can be granted to

applications. [14]

12

Figure 4: Capability confirmation query during software installation [4]

Table 1: User capabilities in Symbian OS Platform Security

NetworkServices Grants access to remote services without any

restriction on its physical location. Typically, this

location is unknown to the phone user. Also such

services may incur cost for the phone user. This

typically implies routed protocols. Voice calls, SMS,

internet services are good examples of such network

services. They are supported by GSM, CDMA and all

IP transport protocols including Bluetooth profiles over

IP.

LocalServices Grants access to remote services in the close vicinity

of the phone. The location of the remote service is

well-known to the phone user. In most cases, such

services will not incur cost for the phone user. This

typically implies a non-routed protocol. An application

with this capability can normally send or receive

13

information through Serial port, USB, IR and point-to-

point Bluetooth profiles. Examples of services are IR

beaming with the user's PC, Bluetooth gaming, and file

transfer.

ReadUserData Grants read access to data belonging to the phone

user. This capability supports the confidentiality of user

data. Todo-list, Contacts, messages and calendar data

are always seen as user confidential data. For other

content types such as images or sounds, it may

depend on the context, and ultimately be up to the

application owning the data to define.

WriteUserData Grants write access to user data. This capability

supports the management of the integrity of user data.

Note that this capability is not necessarily symmetric

with ReadUserData. For instance, one may wish to

prevent rogue applications from deleting music tracks

but may not wish to restrict read access to them.

Location Grants access to the live location of the device. This

capability supports the management of user’s privacy

regarding the phone location. Location information

protected by this capability can include map co-

ordinates and street address, but not regional or

national scale information.

UserEnvironment Grants access to live confidential information about the

user and his/her immediate environment. This

capability also protects the user's privacy. Examples

are audio, picture and video recording, and biometrics

(such as blood pressure) recording.

14

Extended capabilities are more powerful capabilities that allow software to

do more complicated tasks. These extended capabilities can only be

granted to Symbian Signed software. Symbian Signed is a process

launched by Symbian to verify and supply Public Key Infrastructure

security model based signatures and certificates for application suppliers’

software. Figure 5 shows the procedure for applying for Symbian Signed

status. [14] See APPENDIX 1: System capabilities of Symbian OS for a list

of system capabilities which are only granted to system services.

Capabilities are also used to verify permissions when using inter-process

communication (IPC) or using a service provided by a server. IPC is

designed for message delivery over process boundaries, which are also

memory management boundaries. Kernel is responsible for memory

management and message delivery and that makes it a secure and

reliable way for processes to communicate.

In Symbian OS, every executable has its own Secure Identifier (SID). SID

is used to identify the running process launched from the executable and it

is stored in the executable binary itself. [14] There are different ways to

implement the authentication in IPC. Client capabilities can be checked

either run-time or build-time. Servers can also authenticate their clients

based on their SIDs, but neither Platform security nor the client/server

framework forces this: every server can decide whether or not to request

capabilities from its clients. The clients have more limited options

available: the server is usually authenticated by name. [14]

15

Figure 5: Symbian Signed process [14]

Platform security also includes a feature called data caging which is meant

to protect both application executable file and data files. There are

predefined directories into which certain file types, such as executables

and resources, are stored and only applications with powerful enough

capabilities can access these directories. Data caging also allows

applications on Symbian OS device to have private data, which is not

accessible by other applications, in a so-called private directory. This

directory exists for each executable on the phone memory. The private

directory can only be accessed by the executable; only the executable

containing the right SID can access the private folder assigned to it. Table

2 describes the protected directory structure.

16

Table 2: The protected directory structure [14]

\Sys Directory which holds system-critical files and

executables. This directory can only be modified by

the Kernel, File Server, or Software Installer

components of the platform.

\Sys\bin Directory containing all the executables. This is the

only directory where native C++ software can be run

from.

\Resource Directory which holds read-only resource files

potentially shared by all applications. Only the

Software Installer component can modify these files.

\Private A process-specific directory that is identified by a SID

of a process. Only processes with the same SID can

access the directory.

All other directories in the system are not protected by data caging, which

means that also unsigned applications without any capabilities have full

access to them. [14]

As branding data usually is something the operators want to protect

against unauthorized access, the private directory is a perfect place for

storing data securely. However, the access restriction of this folder brings

difficulties into sharing the branded data with other applications and so a

separate process granting authorized access to the data would be ideal for

this approach.

17

2.2 Client/Server Framework

Symbian OS client/server framework allows programs to offer services to

multiple other programs. Many important Symbian OS system APIs use

the client/server framework to provide services to client program: for

example, the Window Server, File Server, Messaging and ETel.

Client/server framework has four key concepts: server, session, sub-

session and message. A server is a separate executable which is run in its

own process. It provides services to other processes through a client

interface API which is contained in a separate DLL. Interaction between a

client and a server is done with a message-passing protocol, which means

that there are no direct pointers between them, leaving the integrity of the

server and its resources untouched by clients.

Communication between a client and a server is managed by inter-thread

communication (ITC). There is no pure IPC in Symbian OS, as the kernel

ensures that ITC messages are delivered to corresponding threads, even

over process boundaries. It is important to realize that message delivery is

an unreliable method, since messages may be lost if the server’s message

slots are full.

A session is the logical communication channel between a client and a

server. A session can be reserved for a single client thread or shared

between several. A server-side implementation defines how client

messages should be handled. A sub-session is an efficient refinement of a

session when a client wants multiple simultaneous uses of a server. For

example, with the File Server, each opened file is handled through a

separate sub-session. Figure 6 shows the basic structure of the

Client/Server framework in Symbian OS.

18

Figure 6: Client/Server framework in Symbian OS [18]

A message is a data structure passed between the client and the server

through the session. It contains a code specifying the client request type

and four 32-bit data parameters. The parameters can be pure number

information or a pointer to a client-side descriptor. Decoding of the

parameters is known only by the server and its clients.

All data which does not fit into the provided integers must be represented

as a descriptor, and an address of a package object (TPckg) containing

the descriptor is delivered within the message. The server then uses safe

inter-thread read and write functions to access the provided descriptor.

Figure 7 shows the relationship of the descriptor class (TDesC) and the

message package class (TPckg). [14]

19

Figure 7: Relationship of a message package and a descriptor class [14]

2.3 Database

“Symbian OS DBMS provides features for creating and maintaining

databases, and implements reliable and secure data access to these

databases via both native and SQL calls. These calls are supported

by a transaction/rollback mechanism that ensures that either all data

is written or none at all.” [15]

There are two implementations provided by Symbian OS: a small and

relatively lightweight client-side implementation and larger scale

client/server implementation. DBMS uses basic Symbian OS features such

as File Server, Permanent File Stores, and Streams. RDbStoreDatabase-

API provides an interface to create and open a database exclusively,

meaning that the database access is not shared. The operations to this

database are done directly to a file. RDbStoreDatabase-API is only for

client-side access. RDbNamedDatabase-API provides an interface for

creating and opening a database which is identified by name and format.

20

This API can be used either as client-side or shared client/server

database.

Symbian OS DBMS provides a server facility that allows multiple clients to

access the same database at the same time. A transaction mechanism

makes sure that only one client at a time can change data. The API has

two key concepts, DBMS server session and database change notifier.

The DBMS server session provided by RDbs allows databases to be

shared by multiple clients with read/write access. Database clients can

request notifications of events, such as transactions committed or rolled

back, through RDbNotifier. [15]

The abstract base class RDbDatabase provides the transaction support. A

transaction may be started explicitly, but if it is not, then all updates are

made inside an automatic transaction which is started by the database

itself. Automatically transactions are also committed by the database, but

explicitly started transactions must be either committed or rolled back; that

is, either permanently changing the current database state or restoring the

previous state. [15]

The transaction mechanism does not provide isolation between clients. If

one client is updating the database within a transaction, any other client

can see the changes as they are made. This means that if a client is

reading two different rows from the database, it is possible that the second

row is changed in between the read operations, resulting in an

“inconsistent read”. This can be prevented by using a read-lock. A read-

lock is done via enclosing the individual read operations within a

transaction. Requesting a read-lock in the database fails if any other client

has a write-lock to the database. Other clients with read-lock will not affect

the completion of this request. [15]

21

As the shared database uses the Symbian OS client/server framework,

the database can be protected against unauthorized access with platform

security. The access to the database can be restricted to a number of

SIDs and so only the defined applications can read from and/or write to

the database. This enables a secure way of sharing variant data between

several applications if branding would be implemented using DBMS. There

were however some doubts about the performance of the DBMS,

especially with large amounts of data. This was verified with prototyping in

the pre-study phase of the project and as a result DBMS was not chosen

as the basis of the implementation. See Chapter 4.2 about the prototyping.

22

3 Variation of Software in S60

The S60 Platform (previously known as Series 60 User Interface) is a

platform for mobile phones which use Symbian OS. The S60 platform is a

complete smartphone software package that provides a mandatory base

of technology implementations. It is developed mainly by Nokia and it is

currently amongst the leading smartphone platforms in the world. Figure 8

shows the high level architecture of S60 Platform.

Figure 8: S60 high level architecture [16]

The S60 Platform offers a wide range of platform services and application

services. Platform services are the fundamental services offered by the

platform. [16] These include:

• Application framework services, which are the basic capabilities for

launching applications and server processes

23

• UI framework services, which provide the concrete look and feel for

UI components and handling UI events

• Location services, which allow the S60 platform to be aware of the

location of the device

• Web-based services, which provide services to establish

connections and interact with web-based services such as

browsing, file download, and messaging

• Multimedia services, which offer the capabilities to play audio and

video as well as support for streaming and speech recognition

• Communication services, which offer support for local and wide

area communications, including Bluetooth, WLAN and voice calls

The application services provide the basic functionality for applications.

[16] The application services include:

• Personal information management (PIM) services, which provide

the fundamental features of PIM, such as contacts, task

management, and calendar

• Messaging application services, which offer support for different

messaging features including short messages, multimedia

messages, e-mail, and instant messaging

• Browser application services, which provide the services for web

content viewing, and video and audio rendering

3.1 Static Variation of Software

Static variation methods in S60 can include for example resource files,

feature flags and the feature discovery API. All of these methods require

24

parts of the software to be recompiled when changes in the variant data

are to be taken into use.

3.1.1 Resource Files

The Symbian OS resource file system is a way of storing some of the

application’s appearance and functionality externally to the main body of

the program. A resource file is a text file which is compiled into a binary file

format using a Symbian OS resource compiler. The resource files can be

compiled independently without the need to recompile the main program.

There are two types of resources in Symbian OS: resource files (.rss) and

application information files (.aif). Figure 9 shows the file types and tools

used for resource compilation process. [3]

Figure 9: File types and tools used for resource compilation process [3]

25

An application information file defines the application behaviour in the

system and resource files define behaviour within an application. When a

resource file is compiled the output is an .rsc file. To access the resource

in an application code an .rsg file containing indexes to the resource file is

included using the #include directive of C++. The resource index file is

automatically created by the resource compiler. [3]

As the index file is created every time the resource file is compiled, it is

imperative that the ordering of the existing resource definitions is

maintained if the resource file is expanded, or the source compatibility with

older versions of the software is lost. This is because the old version of the

software uses the old index file for loading resource items. If a newer

version of the resource is introduced in such a way that the indexing of the

items has changed for the part which is used by the older version of the

software, then loading items using the old indexes will result in loading

wrong types of items, e.g. reading a structure from the resource file when

trying to read a string, leading into weird behaviour of the software and

most likely crashing.

Although resource files can be used for varying both the UI and the

behaviour of an application there is a limitation to the system; there can be

only one resource file active at one time for an application. Multiple

resource files can of course be used for an application by loading and

unloading them when needed, but this can eat up much of the processor

time of the system if multiple resource files are needed constantly.

Resource files are counted here as static variation of software since

changing data in resource files requires the resource file to be compiled

again into the binary file format before the changed data can be used by

the applications.

26

3.1.2 Feature Flags

The software functionality can be varied by flagging some of its code so

that some parts of the code are only compiled if a feature flag has a

certain value. The code to compile is therefore selected at compile time

and cannot be changed unless the code is recompiled.

Using feature flags can be problematic for version controlling and

testability of the software. If there are several feature flags, then all the

possible combinations of the flags should be tested. Increasing the

number of flags increases the time needed for testing exponentially. Also

when making changes, e.g. fixing bugs in the software, each part enclosed

within a feature flag has to be carefully considered to make sure that the

change is included in all possible feature flag combinations. [17]

3.1.3 Feature Discovery API

One varying mechanism used in S60 software is a centralized component,

Feature Discovery API, which provides flag values to applications. These

flag values are then used to determine programmatically which optional

features are present on the devices executing the application. For

example saving data to a memory card is only possible if memory card

access is supported by the system. However this is not dynamic variation

as such, since flag values can only be changed in the ROM-image

creation phase. Using Feature Discovery API brings the same challenges

to testing as feature flags.

27

3.2 Dynamic Variation of Software

Dynamic variation of software means that the variant data can be changed

dynamically and not only at compile time. In S60 platform this can include

for example the use of skinning, local variation, or the varying of

applications based on a used service provider.

3.2.1 Skinning

Skinning is a method of varying the UI of applications on the phone. It

defines bitmaps and icons that are shown on the phone, but it cannot be

used for varying functionality of the software. Also skins can be changed

by the user and they affect the whole phone when they are active. So for

example some applications that would require their appearance to be

different according to the service provider they were using, e.g. an instant

messaging program having different looks when connected to different

servers would be impossible to implement with skins. Figure 10 shows an

example of how skins can change the appearance of the application shell

of the phone.

Figure 10: Example of skins

28

3.2.2 Local Variation

Symbian OS’s central repository can be used to store functionality flags

and the value of the flags can be changed dynamically. Central repository

is basically a key/value-pair system and one of the biggest limitations of

this system is that the keys need to be pre-defined. Also, central repository

cannot be used for storing large amounts of data or for example files or

bitmaps. [14] Local variation has the same problems with version

controlling and testing as using feature flags.

3.2.3 Variation Based on Used Service Provider

Some applications vary their functionality according to parameters they get

from a service provider they are using, for example a messaging server to

which an instant messaging application is connected to. However, storing

large amounts of data would require storage space from the network

resource and sharing this data between different processes might not be

practical as either every process would need to have a connection to the

server, or there would have to be some kind of sharing framework

implemented.

Also, fault tolerance of this kind of solution is limited; what to do when the

network resource is not available? All in all using this kind of variation

method has very limited use. The best way to implement this method

would be to use it as semi-static variation method – meaning that the

parameters needed from the network resource are pre-defined locally and

they are just taken into use when connected to the service provider in

question. However this makes this method very similar to using the

Feature Discovery API.

29

Just as local variation, this method for varying software requires basically

flagging the code and this brings again the same problems with testing

and version controlling as using feature flags.

3.3 The Limitations in Current Variation Techniques

All of the varying methods described above have their advantages, but

they also have their limitations. Also, comprehensive branding of software

requires using several of those methods together. And even when

combining all of the existing variation methods, it is very hard to create a

solution for branding software with all the features a branding solution

should have, e.g. ensuring backwards compatibility with earlier versions,

support for multiple clients with several sets of branding data active at the

same time, and support for skinning. See Chapter 4.1 for requirements set

for the branding solution implemented in the practical part of this work.

Using resource files for branding provides one mechanism for branding

the user interface and functionality of the software, but maintaining

compatibility with older versions of the software can prove difficult.

Compile time feature flags and the Feature Discovery API can be used for

branding features and functionality, but they both require recompiling parts

of the software when changes to the brand data are made. And both of

these methods bring challenges to testing and version controlling of the

software.

Skinning is a good way of branding the user interface, but it cannot be

used for branding features or functionality of the software. With skinning it

is also difficult to brand single applications and the user has a possibility to

turn off the branding. Local variation and varying the software based on

used network resource are feasible ways of branding features and

30

functionality, but they cannot really be used for user interface branding.

And they also bring challenges to testing and version controlling.

31

4 BRANDING SERVER

This Chapter presents a project for creating a solution for branding a

single S60 application. The project consisted from several phases; pre-

study including prototyping, design, implementation, testing, and

documentation including writing of this thesis. There was a legacy system

for branding the application preceding this project, but it could not fulfil all

the requirements that the platform security and the S60 platform set for

branding.

4.1 Requirements

The requirement for this project was to design and implement a solution
for branding an S60 application. The solution would have to include a
way of defining the branded data, installing it on the phone ROM,

updating the branded data that already exists on the phone, support for

language variation, and also a simple API for using the data. There

was also a need to have several instances of a single brand and also

several different brands active at the same time. The solution would also

have to be implemented in a way that backwards compatibility with older

versions of the clients using the data would be easy to maintain.

Support for skinning framework of S60 Platform was also one

requirement. The rules for loading bitmaps when skinning is used are:

• If the requested bitmap is varied in the brand, then the bitmap from

the brand is loaded

• If the bitmap is not varied in the brand, then the bitmap is loaded

from the used skin, if it is available there

• Else the default bitmap is used

32

It has to also be taken into consideration that files may need to be varied

according to the language as well.

4.2 Prototyping

As a part of a pre-study for this project there was a prototyping phase. A

performance analysis was conducted with the prototypes and the results

were reflected against the other requirements set for the project. Three

types of prototypes were created; a resource file based prototype,

database based prototype, and client/server framework based
prototype. The prototypes are described in more detail in the following

chapters.

4.2.1 Resource File Based Prototype

This prototype was a quite simple implementation of a DLL which used

Symbian OS resource files as the variant data. The used variant data can

be changed by changing the resource file in use. There were however

clear limitations in this architecture with the requirements set to the project.

Expanding the variant data is quite challenging since the resource file

index is created every time the resource is compiled. That means that if

the indexing was to change, every client would have to be recompiled to

prevent use of wrong indexes. Using wrong indexes in fetching data would

most likely result in crashing the client.

Also, updating the variant data which is in use by clients is also quite

difficult. In order to install new resource files while the data is in use would

require unloading the resource file, and the availability of the data would

not be continuous. Having several brands active at the same time for one

33

client would also result in performance issues, since one client loading

data from different brands would require constant loading and unloading of

resource files.

From a security point of view having this kind of architecture would be

problematic, since there is no way to limit the access to the data as the

resource files that are shared would have to be in a public folder.

4.2.2 Database Based Prototype

In this prototype the variant data is stored in a relational database. Clear

benefits are well defined APIs for fetching the data, security through

limiting the access by capabilities or SIDs, easy data updating and support

for multiple clients simultaneously. Also using a database enables to a

client access to several brands’ data with no delays when changing the

used brand.

However the performance of Symbian OS DMBS is not great, especially

when using large databases as seen in Figure 11. Fetch times per item

start to grow linearly when growing the database table size and even when

fetching several items at a time the fetch time per item is still very high.

4.2.3 Client/Server Framework Based Prototype

In this prototype, the data is stored in a binary file, which is used by the

server. The client API, implemented as a separate DLL, provides methods

for reading the data. The Symbian OS client/server framework is used for

message passing and it provides means for controlling the access to the

server.

34

There are clear advantages in using this architecture. The security aspect

is taken care of by the framework itself, the brand data is accessible from

several different client processes simultaneously and, as seen in Figure

12, the fetch time per item is not very high, especially when fetching

multiple items at a time.

4.2.4 Performance Measurements

Performance of the prototypes was measured by having several different

sized sets of brand data. Each prototype was used to fetch items in sets of

1, 50 and 200 items per fetch operation from each set of brand data. The

fetch times per item were calculated from the results.

Fetch time per item

0

20

40

60

80

100

120

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Database table size

Fe
tc

h
tim

e
pe

r i
te

m
 in

 m
ill

is
ec

on
ds

Fetched 1 item per operation
Fetched 50 items per operation
Fetched 200 items per operation

Figure 11: Fetch times per item from a database

35

Figure 11 shows the measurements for the database prototype. It is

clearly seen from the results that the fetch times per item grow linearly in

relation to the database table size. Also, the overhead caused by the

DBMS for each fetch operation is quite high, since even when fetching

several items in one operation the fetch time for single item is not

particularly low.

In Figure 12 there are measurements for the client/server prototype and

for the resource file based prototype. The fetch times per item in the

resource file based prototype do not vary when fetching more items at a

time, since the fetch operations are still separate read operations from the

resource file, even though for the client application the API provides a way

of fetching several items at a time.

Fetch time per item

0

2

4

6

8

10

12

1 50 100 150 200

Fetched items per operation

Fe
tc

h
tim

e
pe

r i
te

m
 in

 m
ill

is
ec

on
ds

Fetch time with client/server

Fetch time from resource file

Figure 12: Fetch times for a client/server and a resource file prototypes

36

For the client/server prototype the fetch times per item are lower when

fetching more items at a time. This is due to the slow startup of the server

process and the time it takes for the processor for context switches

between client and server processes for each client/server-operation.

4.2.5 Results from Prototyping

The results of performance measurements and other features of the

different prototype architectures were reflected against the requirements

set for the project. As a result the client/server prototype was selected as

the base for the implementation of the project. The clear benefits are the

inherent security of the client/server framework, the capability to handle

multiple clients simultaneously, and the relatively low fetching times of the

brand data items.

4.3 Variant Data Definition

For branding of the software to be possible, there has to be a way for the

operators to define the variant data. XML was chosen as the format of

data definition, as it enables having structured data definitions. There are

also readily available parsers for XML in S60 Platform. Also it would be

quite easy to implement a tool for generating the XML data definitions or

even to modify existing tools used in customizing other parts of the phone

software into producing the new XML data definitions. As the XML

structures are not verified in the implementation by using an XML schema,

37

but rather during parsing, an XML schema for the data definitions was not

created in this project.

The first step in designing the data definitions was to decide what kind of

data structures were needed for branding and what kind of identifiers and

other parameters the data needs. In this implementation, one set of brand

data is thought to be for a single application. Of course this does not limit

several applications for using the same set of data, but generally the set of

brand data needs an identifier and it is in this case the application

identifier.

The application identifier is a string identifying the logical owner of the set

of brand data. As one single application can have several different sets of

brand data, the brand data needs also an identifier for the brand itself.

Also as the requirements define that the brand data has to be language

variated the set of brand data needs an identifier for the language variant.

For versioning of the data there also has to be a version id.

For single brand data items two identifiers are needed. The identifier for

the item itself is needed so that the item can be fetched. Also the type of

the item has to be defined.

Figure 13 shows the structure of a brand data definition. Within one XML-

file there can be several different brand definitions each enclosed within

their own <brand> tags. Within the brand definition there are the general

identifiers and brand element definitions.

38

Figure 13: The XML structure of brand data definition

In this implementation there are six separate data types defined for the

brand data items. The element value can be a single data item or it can be

a structure defining more complex data.

An example brand data file can be seen in APPENDIX 2: An example of a

brand definition XML-file. The XML-file defines a brand with a simple

integer-type element and a more complex list-type element, containing an

integer-type element, text-type element, file-type element, and a bitmap

type element. It is worth noticing how the bitmap element is linked to the

file element with the tag <bitmap_file_id>. That means that the bitmap-

element can be loaded from that particular file.

4.3.1 Text Element

Text type element is a simple id-value pair as seen in Figure 14. Text

element data is treated as 16-bit data in the Branding Server and it has to

be UTF-8 encoded. The reason for differentiating 16-bit text element data

and 8-bit buffer element data is that in Symbian OS all user input is usually

handled as 16-bit since 8 bits are not enough to hold all Unicode

characters.

39

Figure 14: XML definition of a text element

4.3.2 Integer Element

Integer type element is also a simple id-value pair.

Figure 15: XML definition of an integer element

4.3.3 Buffer Element

A buffer element is very similar to the text element. The only difference is

that the buffer element is treated as 8-bit data within the Branding Server.

The data itself can be anything, simple 8-bit text or even binary data.

Figure 16: XML definition of a buffer element

4.3.4 File Element

The file element has a more complex structure as its value. The value is a

path to the file from where the Branding Server can copy the file when

installing the brand data. The handling of the file element in the client side

API is described in Chapter 4.1.

40

Figure 17: XML definition of a file element

4.3.5 Bitmap Element

The bitmap element is not a simple element. The value is a structure of

five different values. For a bitmap element to be used as a brand element

in Branding Server there has to be a branded file element installed to the

server. So the first data element in the bitmap element value is the

identifier of the file element installed to the server. The two following data

elements are the bitmap identifier and bitmap mask identifier used for

loading the bitmap from the file. The two last data elements are used for

skinning support. The major and minor skin identifiers are used for loading

the bitmap from a skin, if one is used.

Figure 18: XML definition of a bitmap element

4.3.6 Structure Element

A structure element is a complex structure, which can hold any number of

any type of elements, even other structures. This element type enables

branding of virtually any kind of data, especially lists of data.

41

Figure 19: XML definition of a structure element

4.4 Data Storage

The data storage is the internal representation of the data structures

described in Chapter 4.3. A server has a directory structure under its

private folder. There are separate directories for each application and

under each application’s directory there are directories for the brands for

that application. Each language variant of a single brand is stored in a

binary format file under those directories. The files included in the brand

are stored under a separate folder under the folder of the brand. The

folder structure is shown in Figure 20.

Figure 20: Brand data folder

Branding Server includes a versioning system which enables continuous

usage of the brand data even when newer versions of the data are

updated into the server. Brand data is contained in a single binary format

file. If there are no clients using the data when an update of the data is

installed the newer version simply replaces the old file. But if the file is in

42

use by some client, a temporary file of a similar format is created and the

client(s) using the data are informed that there is a newer version of the

brand data available. Each client can then decide whether to take the

newer version into use or not. The temporary data file will persist in the

system until the old version is no longer in use, and then it will replace the

old version.

There can be several temporary files, each representing a version of the

data. If new clients start using the brand data while there are temporary

files, the newest version of the data will be automatically selected.

Whenever an older version is no longer in use it will be replaced by the

newest version.

4.5 Architecture

This chapter describes the architecture of the Branding Server. There are

two main components in the architecture; the server which contains most

of the functionality of the Branding Server, and the client which is the

implementation of the interface provided by the server.

4.5.1 The Client

In the client the main parts are four abstract interfaces and their

implementations, a factory class which is used for creating the interfaces

and the client implementation responsible for the communication between

the client and server using the client/server framework. The class

hierarchy of the client can be seen in Figure 21.

MBSAccess is the abstract interface, implemented in CBSAccess, for

accessing brand data. It has separate methods for fetching each of the

43

element types described in Chapter 4.3, a method for fetching several

brand data elements at a time, and methods for registering and

unregistering an observer for brand data updates. The observer, which

uses the Observer-pattern [19], has to implement the abstract interface

MBSBrandChangeObserver. MBSUpdater, implemented by CBSUpdater,

is an interface used for updating the brand data. It can be used to install a

new brand and update or replace an existing brand. MBSElement,

implemented by CBSElement, represents the brand data elements within

the Branding Server. RBSClient is the client implementation responsible

for message passing between the client and the server.

MBSAccess
(from Cl ient)

<<Interface>>
CBSFactory

(from Cl ient)

<<Interface>>

Server

CBSElement

MBSUpdater
(from Cl ient)

<<Interface>>

CBSServer
(from Server)

CBSAccess
(from Cl ient)

MBSElement
<<Interface>>

CBSUpdater
(from Cl ient)RBSClient

(from Cl ient)

MBSBrandChange
Observer

<<Interface>>

Figure 21: Class diagram of the client

4.5.2 The Server

CBSServer is the server implementation. It is responsible for creating a

session for each client and for communication between the sessions. Most

of the functionality of the server is contained in CBSSession, which is

44

responsible for handling the messages sent by the client. For each client

there is an instance of CBSSession. CBSBrandHandler is the handle to

the brand data for each session. It is used for fetching the data from the

actual binary format file.

CBSElement

CBSInstallHandler
(from Server)

CBSServer
(from Server)

CBSSession
(from Server)

1..*1..*

CBSBrandHandler
(from Server)

CBSStorage
(from Server)

MBSElement
<<Interface>>

CBSIbyWriter
(from Server)

CBSStorageManager
(from Server)

Figure 22: Class diagram of the server

All data elements are handled as instances of MBSElement, just like in the

client. CBSStorageManager is responsible for handling the versioning of

the brand data files and it uses CBSStorage to represent the brand data

files. For installing and updating the brand data there is CBSInstallHandler

and CBSIbyWriter, which is only used in ROM image creation phase for

writing IBY files needed to install the data files into the ROM image. The

class hierarchy of the client can be seen in Figure 22.

45

4.5.3 Relations to Outside Components

The key relationships between the Branding Server and the components

in its environment are shown in Figure 23. The client uses Symbian OS

control environment (CONE), and AknSkins and AknBitmaps from Avkon

for bitmap skinning support. Avkon is a user interface layer provided by

S60 platform for the underlying Symbian OS application. [20] The server

uses file store from Symbian OS for the storage handling of the brand data

files.

Client application context

Branding server context

AVKON

Symbian OS

AknSkins AknBitmaps

CONEFile store

Client application

MBSAccess
(from Client)

MBSUpdater
(from Client)

CBSAccess
(from Cl ient)

CBSUpdater
(from Client)

RBSClient
(from Cl ient)

CBSBrandHandler
(from Server)

CBSServer
(from Server)

CBSSession
(from Server)CBSStorageManager

(from Server)

Figure 23: Logical module relations

4.6 Installation System

The installation system has two separate parts: the importing tool for

creating brand data files from the XML, and the IBY-files for importing the

data files into the ROM-image, and the installer tool which is used for

46

installing brand data on the phone with SIS-packages. SIS-packages are

software installation packages used by the Symbian OS.

The importing tool is used in the building phase of the software. It consists

of an XML-parser, a client which uses the the MBSUpdater-interface for

importing the data, and an IBY-file writer. The XML-parser parses the

brand data definition XML-files into internal data structures and then uses

the updater API of the Branding Server to convert the data into the binary

data files. Once the data files are created, the IBY-writer writes the IBY-

files needed for importing the data files into the ROM-image. The IBY-files

need to be included in the client application’s own IBY-file.

The installer tool handles the SIS-package installation and uninstallation of

the brand data on the phone. The SIS-package copies the XML-files into

the import-folder of the installer from where the installer parses them. The

installer then uses the MBSUpdater-interface to install the data into the

Branding Server. When the SIS-package is uninstalled, the installer uses

the same interface to delete the brand data from the Branding Server. The

installer can also be used for updating existing sets of brand data. The

update can include changed values of the existing data elements or totally

new elements.

4.7 Results

As the results of the project there is a working implementation of the

Branding Server. Even though it was created for a specific application, it is

generic enough to be used by any application with any type of brand data.

Due to reasons outside the scope of the project, the integration of the

Branding Server to the application it was implemented for was not

47

conducted during the project. However, having tested the APIs and

integrating the implementation into test applications, we can safely say

that the requirements set for the project were met in a satisfactory level.

Branding Server enables branding an S60 application and sharing the

brand data of the application with other applications. The server supports
multiple clients using the same brand data simultaneously and also

multiple clients using multiple sets of brand data in the same fashion. The

implementation provides a way of defining the brand data in a user

friendly format, tools for installing the data in the ROM-image, and for

updating existing data on the phone. The server also guarantees

backwards compatibility of the data with old clients if the brand element

ids are not reused, meaning that if any id within a set of brand data always

represents the same data there will be no data compatibility issues. Also,

by having separate methods in the API for fetching each type of brand

data elements, it is not possible for clients to crash trying to load wrong

type of data elements, since if the id being fetched is representing a

different type of data than what the fetch method is meant to be used for,

the method will simply return an error code.

The Branding Server also enables language variation of all brand data,

including files and bitmaps. It also provides support for skinning the

bitmap elements and it follows the rules for bitmap loading listed in the

requirements in Chapter 4.1. It should be noted that as the skinning

support of S60 platform requires the control environment of the Symbian

OS application framework to work, then skinning support of Branding

Server will not work if the client-side of the Branding Server is run in a

process which does not have access to the control environment of the

operating system. Generally all UI applications have access to the control

environment and regular executables do not. If the Branding Server API

48

methods for fetching bitmaps are used in a process with no access to the

control environment, they return the original bitmap and do not even try to

fetch the skinned bitmap. But if the control environment is available, the

bitmap is searched from the active skin, if so required.

4.8 Further Development

The current version of Branding Server is just the first delivery of it. It

provides the basic functionality for branding, but is missing some of the

features originally planned for it. Several helper methods were planned for

the MBSElement-interface, e.g. an iterator for easy browsing through the

items of a list type element. Also it was planned that the installing system

of the Branding Server would be integrated into the tool which is used for

customizing a ROM-image. As an alternative to this approach, an own tool

could be implemented for the XML-data creation.

A caching solution and indexing of the file storage were planned for the

server side, but they were both dropped from the project due to schedule

pressures. Caching fetched items into memory might make the memory

consumption too high, but indexing the file storage and then caching the

index locations of fetched identifiers might bring considerable performance

improvements, especially if the client using the Branding Server loads the

same identifiers repeatedly.

In the long term, development plan could be to make the architecture of

the server part totally different. An ECOM-plugin [21] based server, where

each set of brand data would be a plugin to the server, could be the

direction to go to. ECOM is a client/server architecture which provides

services for handling plugins. Using this architecture might make data

importing and installation a bit more complicated operation, having to

49

compile the plugin for each set of brand data, but it could help make the

versioning and updating the data easier.

50

5 CONCLUSIONS

The purpose of this thesis was to find a way for branding an S60

application or possibly even the whole phone with all the software in it.

The work introduced the Symbian Operating System and the S60 Platform

along with some of the ways it provides for varying software. Some

aspects of branding in general were also briefly introduced. The practical

part of the thesis was a project that presented a solution for branding an

S60 application and even comprehensive branding of the whole phone.

There is a growing need for branding applications on S60 phones. Existing

methods of varying the software provided by the platform are not enough

to cope with the requirements for branding and with the limitations set by

Symbian platform security. New solutions of varying both the graphics and

functionality of the software are needed. These solutions have to be easy

to use and they have to enable easy installation of the variant data into the

ROM image so that neither developing the software nor installing the ROM

image into the phones on the production lines would be slowed down.

Defining the branding data in XML-format enables existing tools for

customizing the phone software to be easily modified to produce the new

data definitions. Installation system, which at the same time produces the

branding data files to be installed into the ROM-image and the needed

IBY-files to enable the installation, is a clear benefit. And as this

installation system can be integrated into the build tool chain of the

platform, it makes the brand data creation and installation automatic with

no need for manual installation of SIS-packages or other ways of installing

software after ROM-image flashing.

51

Using the client/server framework solves the problems with sharing the

brand data between applications and it also provides security through the

capability-based access control. Client/server framework does add some

overhead to the data fetching, mostly due to the amount of processor time

the context switching between client and server processes requires, but

with good design of the client application using the server, e.g. fetching

multiple items with the operation, this can be reduced.

REFERENCES

[1] Marcus, A., Branding 101, Interactions 11, 5 (Sep. 2004), 14-

21, 2004, DOI= http://doi.acm.org/10.1145/1015530.1015539

[2] Jézéquel, J., Reifying Variants in Configuration Management,

ACM Trans. Softw. Eng. Methodol. 8, 3 (Jul. 1999), 284-295,

1999, DOI= http://doi.acm.org/10.1145/310663.310668

[3] Digia, Inc.: Programming for the Series 60 platform and

Symbian OS, Johan Wiley and sons Ltd., 2002

[4] Nokia Corporation: S60 Platorm: Symbian Platform Security

FAQ, Version 2.0, 2006, [Internet], available:

http://www.forum.nokia.com/info/sw.nokia.com/id/81cc0db0-

6b3b-4510-b108-

802d6215363a/S60_Platform_Symbian_Platform_Security_F

AQ_v2_0_en.pdf.html [referenced 20.03.2007]

[5] Nokia Corporation: Series 60 Developer Platform: Application

UI Customization, Version 1.0, 2004, [Internet], available

http://www.forum.nokia.com/info/sw.nokia.com/id/9bb2a055-

9599-42fe-b2ae-

b2e8dd0e878c/Series_60_DP_App_UI_Customization_v1_0_

en.pdf.html [referenced 20.03.2007]

[6] Nokia Corporation: S60 Platform: System Initiated Events,

Version 2.1, 2006, [Internet], available

http://www.forum.nokia.com/info/sw.nokia.com/id/904fbab3-

f692-42fb-adb8-

c169301ed0fc/S60_Platform_System_Initiated_Events_v2_1_

en.pdf.html [referenced 20.03.2007]

[7] Laakso, H. & Kauppakari Oy, Brandit kilpailuetuna, miten

rakennan ja kehitän tuotemerkkiä. Gummeruksen kirjapaino

Oy, 1999, ISBN 952-14-0088-9

[8] Klein, N.: No Logo, tähtäimessä brandivaltiaat, WS Bookwell

Oy, 2001, ISBN 951-0-26275-7

[9] Rondeau, D. B., For mobile applications, branding is

experience, Commun. ACM 48, 7 (Jul. 2005), 61-66, 2005,

DOI= http://doi.acm.org/10.1145/1070838.1070867

[10] Aaker, D. A. & Joachimsthaler, E., Brandien johtaminen, WS

Bookwell Oy, 2000, ISBN 978-951-0-24994-9
[11] Symbian Ltd.: Symbian OS Version 9.1 Product description,

Revision 1.1, 2005, [Internet], available

http://www.symbian.com/symbianos/releases/v91/functionalde

scription.html [referenced 20.03.2007]

[12] Timo Rouvinen, Dynamic application development in Symbian

OS, M.Sc. thesis, Lappeenranta University of Technology,

2004
[13] Symbian Ltd.: Symbian OS v9 Security Architecture, Revision

2.0, 2005, [Internet], available

http://www.symbian.com/Developer/techlib/v9.1docs/doc_sour

ce/guide/N10022/SGL.SM0007.013_Rev2.0_Symbian_OS_S

ecurity_Architecture.doc [referenced 20.03.2007]

[14] Nokia corporation: Symbian OS: Overview To Security,

Version 1.1, 2006, [Internet], available

http://www.forum.nokia.com/info/sw.nokia.com/id/5e713b29-

fe0e-488d-8fc6-

b4dd1950f3c2/Symbian_OS_Overview_To_Security_v1_1_en

.pdf.html [referenced 20.03.2007]

[15] Nokia Corporation: S60 Platform: Using DBMS APIs, Version

2.0, 2006, [Internet], available

http://forum.nokia.com/info/sw.nokia.com/id/e0a66f34-092a-

4a52-8003-

6bbc3aa83c8f/S60_Platform_Using_DBMS_APIs_v2_0_en.pd

f.html [referenced 20.03.2007]

[16] Nokia Corporation: S60 Platform: Introductory Guide, Version

1.2, 2006, [Internet], available

http://www.forum.nokia.com/info/sw.nokia.com/id/b8613f0a-

21c2-4dff-a828-

d1bc9c4987c9/S60_Platform_Introductory_Guide_v1_2_en.p

df.html [referenced 20.03.2007]

[17] Kolb, R. and Muthig, D, Making Testing Product Lines More

Efficient by Improving the Testability of Product Line

Architectures, In Proceedings of the ISSTA 2006 Workshop

on Role of Software Architecture For Testing and Analysis

(Portland, Maine, July 17 - 20, 2006). ROSATEA '06. ACM

Press, New York, NY, 22-27. DOI=

http://doi.acm.org/10.1145/1147249.1147252

[18] Tasker, M. et al.: Professional Symbian Programming: Mobile

Solutions on the EPOC platform, Wrox Press Ltd., 2000, ISBN

1-861003-03-X
 [19] Gamma, E. et al: Design Patterns: Elements of Reusable

Object-Oriented Software, Addison Wesley Professional,

1995, ISBN 0-201-63361-2

[20] Nokia Corporation: S60 Platform: Application Framework

Handbook, Version 2.0, 2006, [Internet], available

http://www.forum.nokia.com/info/sw.nokia.com/id/8cc94f4a-

cbd9-4f82-b4d1-

790b7569733e/S60_Platform_Application_Framework_Handb

ook_v2_0_en.pdf.html [referenced 25.3.2007]

[21] Nokia Corporation: S60 Platform: Ecom Plug-in Architecture,

Version 2.0, 2007, [Internet], available

http://www.forum.nokia.com/info/sw.nokia.com/id/53a369e8-

14c7-4f52-9731-577db4e0d303/S60_Platform_ECom_Plug-

in_Architecture_v2_0_en.pdf.html [referenced 23.3.2007]

APPENDIX 1: System capabilities of Symbian OS

Tcb Used by the Trusted Computing Base only, it gives

access to the location where executables are stored

and therefore they can change their capabilities. Only

the Symbian OS kernel, the file server (including the

loader), and the software installer are granted this

privilege.

CommDD Grants direct access to all communication device

drivers, including phone baseband software.

PowerMgmt Grants the right to kill any process in the system, to

switch the machine into standby state, wake it up again

or power it down completely.

MultimediaDD Grants direct access to all multimedia device drivers.

ReadDeviceData Grants read access to device, network operator, and

phone manufacturer confidential settings or data.

WriteDeviceData Grants write access to settings that control the

behaviour of the device.

Drm Grants access to digital rights-protected content.

TrustedUI Grants the right to create a trusted UI session, and

therefore to display dialogs in a secure UI environment.

ProtServ Grants the right to a server to register within the

protected name space – to limit scope for malware to

spoof sensitive system servers.

DiskAdmin Grants access to disk administration operations that

affect more than one file or one directory (or overall

filesystem integrity/behaviour, etc).

NetworkControl Grants the right to modify or access network protocol

controls, in a way that might affect more than one client

application or transport connection / session.

AllFiles Grants read access to entire file system. Grants write

access to other processes' private directories.

SwEvent Grants the right to generate software key & pen events

and to capture any of them regardless of the

foreground status of the application.

SurroundingsDD Grants access to device drivers that provide input

information about the surroundings of the device.

APPENDIX 2: An example of a brand definition XML-file

<?xml version="1.0" encoding="ISO-8859-1"?>
<branding>
 <brand>
 <application_id>
 APP_ID
 </application_id>
 <brand_id>
 BRAND_ID
 </brand_id>
 <brand_language_id>
 99
 </brand_language_id>
 <brand_version>
 1
 </brand_version>
 <element type="integer" id="integer1">
 <element_value>
 10
 </element_value>
 </element>
 <element type="list" id="list1">
 <element_value>
 <element type="integer" id="int1">
 <element_value>
 12345
 </element_value>
 </element>
 <element type="text" id="text1">
 <element_value>
 example-text
 </element_value>
 </element>
 <element type="file" id="file1">
 <element_value>
 <file_name>c:\test-file.mbm</file_name>
 </element_value>
 </element>
 <element type="bitmap" id="bitmap1">
 <element_value>

<bitmap_file_id> file1</bitmap_file_id>
 <bitmap_id> 1234</bitmap_id>
 <mask_id> 1234</mask_id>
 <skin_id_major> 1234</skin_id_major>
 <skin_id_minor> 1234</skin_id_minor>
 </element_value>
 </element>
 </element_value>
 </element>
 </brand>
</branding>

