
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Laboratory of Applied Mathematics

Antti Solonen

Monte Carlo Methods in Parameter Estimation

of Nonlinear Models

The topic of this Master’s thesis was approved by the department council of the

Department of Information Technology on 15 November 2006.

The examiners of the thesis were Professor Heikki Haario andPhD Tuomo Kauranne.

The thesis was supervised by Professor Heikki Haario.

Lappeenranta, December 7, 2006

Antti Solonen

Tervahaudankatu 1 A 17

53850 Lappeenranta

+358 400 734378

antti.solonen@lut.fi

ABSTRACT

Lappeenranta University of Technology
Department of Information Technology

Antti Solonen

Monte Carlo Methods in Parameter Estimation of Nonlinear Models

Master’s Thesis

2006

112 pages, 40 figures, 4 tables and 1 appendix

Examiners: Professor Heikki Haario

PhD Tuomo Kauranne

Keywords: Monte Carlo, MCMC, Predictive Inference, Population Monte Carlo, Chem-
ical Kinetics

One of the main tasks in statistical analysis of mathematical models is the estimation of
the unknown parameters in the models. In this thesis we are interested, instead of single
estimates, in the distributions of the unknown parameters and numerical methods suitable
for forming them, especially in cases where the model is nonlinear with respect to the
parameters.

From different numerical methods the Markov Chain Monte Carlo (MCMC) methods are
especially emphasized. These computationally intensive methods have become popular in
statistical analysis during the last decades, mainly due toincreased computational power.
The theory of both Markov Chains and Monte Carlo simulationsis presented to the extent
that is needed in justifying the MCMC methods. From the recently developed methods
especially the adaptive MCMC methods are discussed. The approach of the thesis is
practical and thus different issues related to the implementation of the MCMC methods
are emphasized.

The empirical part of the work consists of five example modelsthat are studied using the
methods discussed in the theoretical part. The models describe chemical reactions and are
given as ordinary differential equation systems. The models are collected from chemists
in Lappeenranta University of Technology (Lappeenranta, Finland) and Åbo Akademi
(Turku, Finland).

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto
Tietotekniikan osasto

Antti Solonen

Monte Carlo -menetelmät epälineaaristen mallien parametrien estimoinnissa

Diplomityö

2006

112 sivua, 40 kuvaa, 4 taulukkoa ja 1 liite

Tarkastajat: Professori Heikki Haario

FT Tuomo Kauranne

Hakusanat: Monte Carlo, MCMC, Prediktiiviset jakaumat, Populaatio Monte Carlo,
Kemiallinen kinetiikka

Keywords: Monte Carlo, MCMC, Predictive Inference, Population Monte Carlo, Che-
mical Kinetics

Yksi keskeisimmistä tehtävistä matemaattisten mallien tilastollisessa analyysissä on mal-
lien tuntemattomien parametrien estimointi. Tässä diplomityössä ollaan kiinnostuneita
tuntemattomien parametrien jakaumista ja niiden muodostamiseen sopivista numeerisista
menetelmistä, etenkin tapauksissa, joissa malli on epälineaarinen parametrien suhteen.

Erilaisten numeeristen menetelmien osalta pääpaino on Markovin ketju Monte Carlo -
menetelmissä (MCMC). Nämä laskentaintensiiviset menetelmät ovat viime aikoina kas-
vattaneet suosiotaan lähinnä kasvaneen laskentatehon vuoksi. Sekä Markovin ketjujen että
Monte Carlo -simuloinnin teoriaa on esitelty työssä siinä määrin, että menetelmien toimi-
vuus saadaan perusteltua. Viime aikoina kehitetyistä menetelmistä tarkastellaan etenkin
adaptiivisia MCMC menetelmiä. Työn lähestymistapa on käytännönläheinen ja erilaisia
MCMC -menetelmien toteutukseen liittyviä asioita korostetaan.

Työn empiirisessä osuudessa tarkastellaan viiden esimerkkimallin tuntemattomien para-
metrien jakaumaa käyttäen hyväksi teoriaosassa esitettyjä menetelmiä. Mallit kuvaavat
kemiallisia reaktioita ja kuvataan tavallisina differentiaaliyhtälöryhminä. Mallit on kerät-
ty kemisteiltä Lappeenrannan teknillisestä yliopistostaja Åbo Akademista, Turusta.

PREFACE

This work is done as part of the Finnish Center of Excellence for Inverse Problems Research.
The work is funded by the Academy of Finland. I want to thank the Academy of Finland and
the laboratory of applied mathematics at Lappeenranta University of Technology for making this
learning experience possible.

I wish to thank the supervisor of the thesis, Professor Heikki Haario, for giving valuable com-
ments and guidance, and Tuomo Kauranne for examining the thesis. In addition, acknowledgment
belongs to Marko Laine from Helsinki University for helpingin technical issues. From the labo-
ratory of applied mathematics at Lappeenranta University of technology I especially thank Tapio
Leppälampi for cooperation and brainstorming. Timo Haakana, Arto Laari and Markku Kuosa
from the department of chemical engineering (LUT), and Johan Wärnå from the Process Che-
mistry Centre (Åbo Akademi), deserve acknowledgment for providing data and models for the
empirical part of the thesis.

I thank my family for support and financial security throughout the studying period - and before. I
am grateful also to my friends, especially among Piimäkassiand AIESEC Saimaa, for making my
studies at Lappeenranta unforgettable. I especially thankMaiju Kansanen for making sure that the
difference between working hours and leisure time has been statistically significant.

ALKUSANAT

Tämä diplomityö on tehty osana Suomen Akatemian Inversio-ongelmien huippuyksikköohjelmaa.
Haluan kiittää Suomen Akatemiaa ja Lappeenrannan Teknillisen Yliopiston sovelletun matematii-
kan laitosta tämän oppimiskokemuksen mahdollistamisesta.

Haluan kiittää työn ohjaajaa, Professori Heikki Haariota,arvokkaista kommenteista ja ohjaukses-
ta, sekä Tuomo Kaurannetta työn tarkastamisesta. Myös Marko Laineelle Helsingin Yliopistos-
ta kuuluu kiitos teknisissä asioissa auttamisesta. Lappeenrannan teknillisen yliopiston sovelletun
matematiikan laitokselta erityiskiitokset Tapio Leppälammelle yhteistyöstä ja aivoriihistä. Kii-
tän Timo Haakanaa, Arto Laaria ja Markku Kuosaa LTY:n kemiantekniikan osastolta, sekä Johan
Wärnåta Process Chemistry Centeristä (Åbo Akademi) datan ja mallien työstämisestä diplomityön
empiiriseen osaan.

Kiitän perhettäni tuesta ja taloudellisen turvallisuudentakaamisesta koko opiskeluajan - ja sitä
ennenkin. Kiitokset myös ystäville, etenkin Piimäkassille ja AIESEC Saimaan jäsenille, joiden
ansiosta opiskeluaika Lappeenrannassa ei tule koskaan unohtumaan. Kiitän erityisesti Maiju Kan-
sasta, jonka ansiosta työtuntien ja vapaa-ajan välinen eroon ollut tilastollisesti merkitsevä.

7. joulukuuta 2006

Contents

1 Introduction 8

1.1 Outline . 8

1.2 Approach and Methodology .. . 9

1.3 Research Questions .. . 10

2 Bayesian Inference in Parameter Estimation 12

2.1 Linear vs. Nonlinear Models 12

2.2 Bayesian vs. Frequentist Framework 12

2.3 Bayes’ Rule . 13

2.3.1 Prior Distributions .. 15

2.3.2 Likelihood in Parameter Estimation 15

2.3.3 Point Estimates . 16

2.3.4 Example: Coin Tossing .17

3 Monte Carlo Methods 19

3.1 Sample Generation .. 19

3.1.1 Traditional Methods .19

3.1.2 Accept-Reject Methods .. 21

3.1.3 Bootstrapping . 22

3.2 Monte Carlo Integration 23

3.2.1 Uniform Sampling - Crude MC . 23

3.2.2 Non-uniform Sampling .24

3.2.3 Hit and Miss Strategies .. 26

3.2.4 Importance Sampling .26

3.3 Convergence of MC estimates 29

3.3.1 Laws of Large Numbers . 30

3.3.2 Central Limit Theorem .31

4 Markov Chain Monte Carlo Methods 33

4.1 Markov Chains . 33

4.2 Metropolis-Hastings Algorithm 37

4.3 Metropolis-Hastings as a Markov Chain 38

4.4 Single Component Metropolis-Hastings 41

4.5 Gibbs Sampling .42

5 On Implementing MCMC 43

5.1 Proposal Distribution 43

5.2 Initializing MCMC .. 45

5.3 Burn-In and Practicalities 48

5.4 Convergence Diagnostics and Chain Length 49

5.5 MCMC Results and Visualization 53

5.5.1 Marginal Distributions .. . 53

5.5.2 Predictive Inference .. 60

5.6 Sampling the Error Variance 63

6 Adaptive MCMC Algorithms 67

6.1 Adaptive Proposal and Adaptive Metropolis 67

6.1.1 Adaptation Interval .. 71

2

6.1.2 Greedy Start . 72

6.1.3 Initial Covariance .. 72

6.1.4 Updating the Proposal Covariance 73

6.2 Single Component Adaptive Metropolis 74

6.3 Delayed Rejection Adaptive Metropolis 75

7 Population Monte Carlo 76

7.1 PMC algorithm . 77

7.2 Example . 80

8 Developing MC Methodology 82

9 Case Examples 84

9.1 Model Types and Data .84

9.2 Simple Example Model .. 87

9.2.1 Optimizing the Temperature Profile 88

9.3 Creation of Phloroglucinol 90

9.3.1 Model Description . 90

9.3.2 MCMC Results . 90

9.4 Esterification of Neonpentyl Glycol with Propionic Acid. 95

9.4.1 Model Description . 95

9.4.2 MCMC Results . 96

9.5 Esterification Processes 99

9.5.1 Model Description . 99

9.5.2 MCMC Results . 100

3

9.6 Sitosterol Hydrogenation Process 103

9.6.1 MCMC Results . 103

10 Conclusions 107

References 109

Appendices 113

VOCABULARY

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MAP Maximum a Posteriori

ML Maximum Likelihood

MLE Maximum Likelihood Estimate

iid Independent and Identically Distributed (random variables)

LLN Laws of Large Numbers

CLT Central Limit Theorem

PDF Probability Density Function

CDF Cumulative Density Function

MH Metropolis-Hastings Algorithm

SC Single Component Metropolis-Hastings Algorithm

LSQ Least Squares

MSE Mean Square Error

RSS Residual Sum of Squares

AP Adaptive Proposal Algorithm

AM Adaptive Metropolis Algorithm

SCAM Single Component Adaptive Metropolis Algorithm

DR Delayed Rejection Method

DRAM Delayed Rejection Adaptive Metropolis Algorithm

PMC Population Monte Carlo

GMM Gaussian Mixture Models

ODE Ordinary Differential Equation

SMC Sequential Monte Carlo

SIS Sequential Importance Sampling

SIR Sequential Importance Resampling

EM Expectation-Maximization Algorithm

NOTATIONS

General

θ Unknown parameters

y Measurements

ǫ Measurement errors

X Desing matrix

f(x; θ) Model with knownx and unknown parametersθ

p(θ;y) Joint probability distribution ofθ andy

p(y|θ) Likelihood

πpr(θ) Prior

π(θ|y) Posterior

pǫ PDF for errorǫ

Ep(x)(f(x)) Expectation off(x) underp(x)

µ Expectation

σ2 Variance

s2 Sample variance

C Covariance

P (”prop”) Probability thatproposition holds

X Sample mean of vectorX

SSθ Sum of squares with parametersθ

J Jacobian matrix

H Hessian matrix

Distributions

U(a, b) Uniform distribution in the interval(a, b)

N(µ, C) Normal distribution with meanµ and covarianceC

log−N(µ, C) Log-Normal distribution with meanµ and covarianceC

Inv-χ2(n, S2) Scaled inverseχ2 distribution with parametersn andS2

Γ−1(a, b) Inverse Gamma distribution with parametersa andb

Monte Carlo Methods

Î Monte Carlo estimate for integralI

q(x) Envelope function in Accept-Reject method

g(x) Importance function (distribution) in importance sampling

w Importance weights

Markov Chains

λ(si) Distribution for the initial statesi of a Markov Process

π∗ Stationary distribution of a Markov Process

P Transition probability matrix

Pn Transition probability matrix for n steps

MCMC and PMC

q(.|θ) Proposal distribution at pointθ

R(k) k:th order autocorrelation

d(x) Kernel density estimate atx

K(x) Kernel function atx

iq Interquartile range of samples

7

1 Introduction

During the last few decades there has been a revolution in applying methods based on

random sampling to problems of statistical analysis. This is mainly due to increased com-

putational power. In practice this development has led to increased applicability of Monte

Carlo (MC) methodology. Especially Markov Chain Monte Carlo (MCMC) methods have

become applicable and widely used in statistical analysis of mathematical models.

This work discusses the methods meant for an important task in statistical analysis of

mathematical models - the estimation of unknown parametersand their distributions in

models, based on measured data. The case of parameter estimation in nonlinearmodels

is especially under investigation. In this case, some numerical methods have to be applied

- in this work we concentrate on Monte Carlo methods that are based on random sampling.

In addition, the most important theoretical and practical concepts behind the methods are

discussed, in order to give the reader a comprehensive, yet practical view of the methods.

Thus, the problem in the work is not merely to give fixed, in some sense optimal values

for the unknown parameters in the models, but to estimate also thedistribution of the

parameters. This leads to a Bayesian problem formulation where the unknown quantities

in the models are thought to be random variables with certaindistributions.

In this section the outline of the thesis is shortly presented, together with a description

of the research approach and methodology. The most important research questions are

presented in an explicit way to give a clear and concrete image of the goals of the thesis.

1.1 Outline

The thesis begins by introducing the basic idea of the Bayesian framework, together with

the Bayes’ rule (chapter 2). The basic theories behind MonteCarlo sampling methods are

discussed in chapter 3 and the usage of MC methodology is justified. In particular, some

MC sampling methods are introduced, including Accept-Reject methods and variance

reduction methods such as importance sampling. In chapter 4, the essential theories about

Markov Chains are presented to the extent that is needed to explain how the MCMC

methods work. In addition, the basic MCMC methods are explained together with issues

related to the implementation of the algorithms (chapter 5). The visualization of the output

of the methods is especially taken into consideration.

8

Besides the basic MCMC methods based on the Metropolis and Gibbs algorithms, some

new, recently developed versions of the algorithms are discussed in chapter 6. In partic-

ular, different adaptive MCMC methods are presented, together with conclusions about

how they should be used and in which cases they are most useful. In addition, an alter-

native MC method, the Population Monte Carlo (PMC), is discussed in chapter 7. The

foundation of the method, importance sampling, is presented in chapter 3.

Some development ideas and directions for future research are discussed in chapter 8 in

a subjective manner. The ideas presented are based on observations made when working

with the different methods.

The empirical part of the thesis (chapter 9) consists of five example models gathered from

research groups in Lappeenranta University of Technology and Åbo Akademi. The pre-

sented methods are applied to these problems that are currently under research. The goal

is on one hand to produce new information related to the models, such as uncertainties,

parameter identifiability and correlations. On the other hand the work attempts to spread

the methodology and tools to the researches utilizing statistical analysis in modeling. The

case examples concentrate on different chemical reaction models and parameter estima-

tion in them.

1.2 Approach and Methodology

The goal of the thesis is to provide the reader with a clear, yet practical view about some

numerical methods available for evaluating the distribution of unknown parameters in

nonlinear models. The bases of the methods are investigatedtheoretically, but the main

emphasis of the work is on algorithms and implementation issues. The goal is that the

reader is able to implement the methods after reading this thesis. That is, a major part

of the proofs and theoretical background of the methods leans on references to literature

sources. The strongly applying approach is chosen because of the lack of literature re-

lated to implementing the algorithms. The algorithms are presented in pseudo-code and

platform-specific details are not addressed.

The work is done in a comparative manner. That is, one algorithm (Metropolis-Hastings)

is considered to be the "standard" procedure, against whichother methods are mirrored

and to which new modifications are presented. On the other hand, two different fun-

damental approaches to the problem are presented: the MCMC methodology based on

9

Metropolis-type accept-reject rules and methods based on iterative importance sampling

procedures.

The thesis is also a case-study - the methods are applied to one type of real life applica-

tions; ordinary differential equation systems describingchemical reactions. The goal is

to show that the algorithms work in real applications and that they are relatively easy to

implement. The collaboration with the chemical engineering groups is intended to lead to

more wide application of the methods.

In practice the work is done by building simple implementations for the methods using

theMATLABsoftware. In addition, a numerical software calledModestis used to produce

the final output related to the case example models.

1.3 Research Questions

First of all, after the problem is formulated, it is essential to know how it can be expressed

mathematically. This problem is handled in the work (section 2) through the Bayesian

framework, the use of which has to be justified as well. As concrete research questions:

• How can the distribution of the unknown parameters of a nonlinear model be rep-

resented mathematically?

– Why is the Bayesian approach chosen and how does it differ from the classical

Frequentist framework?

As mentioned, the emphasis of the work is in the MCMC methods.The description of

these requires, however, some basic concepts related to both Monte Carlo and Markov

Chain theory. Thus, answers for the following questions aresought in chapters 3 and 4:

• What do we mean by Monte Carlo methods and why do they produce correct re-

sults?

• How can the MCMC methods be justified from the Markov Chain point of view?

The main research question is related to the MCMC methods themselves (chapter 5). The

practical approach of the work is expressed by the followingset of questions:

10

• How can we form the distribution of the unknown parameters innonlinear models

using MCMC methods?

– What kind of methods exist for the task?

– What do we have to consider when we want to implement the methods?

– How can we efficiently illustrate the results visually?

– What kind of random sampling methods do we need to implement the MCMC

methods? How do these work?

An important part of the thesis is the demonstration of some of the recently developed

versions of the MCMC methods and alternatives to them (chapters 6 and 7). In addition,

one of the goals of the work is to come up with some ideas to improve the methods

(chapter 8). These raise the following questions:

• What kind of improvements have been introduced lately to thestandard MCMC

algorithms?

– What kind of cases are these algorithms suitable for?

• How does Population Monte Carlo (PMC) work and how does it differ from MCMC?

• How could we develop the methods further?

The purpose of the empirical part is to put the methods into action and apply the methods

to a certain set of specific problems. That is, we ask

• How can the methods be applied to ODE models?

• What kind of new information related to the example models dothe methods pro-

duce?

11

2 Bayesian Inference in Parameter Estimation

The general form of a nonlinear model is presented in equation (2.1). The model con-

sists of measurementsy, known quantitiesx (constants, control variables etc.), unknown

parametersθ and measurement errorǫ:

y = f(x; θ) + ǫ. (2.1)

The problem is to estimate the unknown parametersθ based on the measurementsy ([1],

[2]). In this work a group of numerical methods for solving the problem, based on random

sampling, are presented in the framework of Bayesian theory. That is, the error and the

unknown parameters in the model are random variables and have a distribution - they are

not thought to have a single "correct" value, but different possible values, others being

more probable than the others.

2.1 Linear vs. Nonlinear Models

The model is said to be linear with respect to its unknown parametersθ if it can be writ-

ten asy = f(X)θ, where the matrixX includes the design (input) variables. For linear

models, exact analytic formulas exist for creating statistics (estimates and approxima-

tions about their precision) about the unknown parameters (see Appendix 1 for the basic

formulas in linear case).

For nonlinear models, no exact theory exists for estimates of unknown parameters and

for their distribution and accuracy. That is, numerical methods are needed in both find-

ing the best estimate (nonlinear optimization task) and evaluating the distribution of the

parameters. The emphasis of the work is on estimating the distribution of parameters of

nonlinearmodels.

2.2 Bayesian vs. Frequentist Framework

In statistical analysis there are two major approaches to inference - the Frequentist and

the Bayesian approach. In general, the goal in statistical inference is to make conclusions

about a phenomenon based on observed data. In the Frequentist framework the obser-

vations made in the past are analyzed with a created model andthe result is regarded

12

as confidence about the state of the real world. That is, we assume that the phenomenon

modeled has statistical stability: the probabilities are defined as frequencies with which an

event occurs if the experiment is run many times. An event with probabilityp is thought

to occurpn times if the experiment is repeatedn times.

In the Bayesian approach the interpretation of probabilityis subjective. The belief quan-

tified before is updated to present belief through new observed data. In the Bayesian

framework the probability is never just a frequency (singlevalue), but a distribution of

possible values. In the previous example the frequencypn can have different values of

which other are more probable than the others - for every claim a probability can be as-

signed that tells how strong our belief about the claim is. That is, the Bayesian inference

is based on assigning degrees of beliefs for different events.

A common task in statistical analysis is the estimation of the unknown model parameters.

The Frequentist approach relies on estimators derived fromdifferent data sets (experi-

ments) and a specific sampling distribution of the estimators. In the Bayesian approach

the solution encompasses various possible parameter values. Therefore, the Bayesian ap-

proach is by nature suitable for modeling uncertainty in themodel parameters and model

predictions.

The Bayesian approach is based onprior andlikelihooddistributions of parameters. The

prior distribution includes our beliefs about the problem beforehand, whereas the likeli-

hood represents the probabilities of observing a certain set of parameter values. The prior

and the likelihood are updated to a posterior distribution,which represents the actual pa-

rameter distribution conditioned on the observed data, through the Bayesian rule (section

2.3). [3], [4], [5]

2.3 Bayes’ Rule

As stated above, the Bayesian solution to the parameter estimation task is the posterior

distribution of the parameters, which is the conditional probability distribution of the

unknown parameters given the observed data. That is, we are interested in the distribution

with probability density functionπ(θ|y) whereθ denotes the unknown parameter values

andy contains the observations.

To defineπ(θ|y) we assume that there is a joint probability density functionp(θ;y) that

gives the probability for every combination of parameters and data. In the Bayesian frame-

13

work this function is expressed as

p(θ;y) = p(y|θ)πpr(θ), (2.2)

whereπpr(θ) is the prior distribution that describes our prior knowledge of the parameters.

Herep(y|θ) is the likelihood function that gives the probability for receiving datay if we

have parameter valueθ. In order to receive the posterior probability density function the

joint probability has to be normalized so that the probabilities sum to value 1. This scaling

factor is the density function of all possible measurements, pY (y). The posterior density

can now be written in a form of the Bayesian Rule ([6], [1]):

π(θ|y) =
p(y|θ)πpr(θ)

pY (y)
(2.3)

which is analogous to the Bayesian rule from the elementary probability calculus for two

random variablesA andB:

P (A|B) =
P (A ∩ B)

P (B)
=

P (B|A)P (A)

P (B)
. (2.4)

The scaling factor (the marginal density of observations) can be calculated as the sum (in-

tegral) over all possible joint probabilities. That is, theBayesian formula can be expressed

with

π(θ|y) =
p(y|θ)πpr(θ)

∫

Rd p(y|θ)πpr(θ)dθ
. (2.5)

A simple analytical example of parameter estimation in the Bayesian framework is pre-

sented in chapter 2.3.4.

The tricky part in implementing Bayesian inference in practice is the normalizing con-

stant that requires integration over an often high-dimensional space. This integral is sel-

dom possible to calculate analytically. Deterministic methods based on the discretiza-

tion of the space may not be feasible because of large computational complexity due to

high dimension. This problem can be tackled, for example, with Monte Carlo integration

methods (see chapter 3) or with Markov Chain Monte Carlo methods (see chapters 4-6)

in which the need for computing these difficult integrals vanishes.

Before moving into Monte Carlo integration and MCMC methodsin parameter estima-

tion, we take a closer look on the role of prior and likelihooddistributions from the point

of view of parameter estimation.

14

2.3.1 Prior Distributions

As mentioned, the prior distribution describes our previous (a priori) knowledge about the

unknown parameters in the model. With properly selecting the prior distribution we can

emphasize the parameters that we know to be more probable than the others. The problem

of selecting the prior distribution is not comprehensivelyaddressed here.

If we do not have any a priori knowledge about the parameters,an uninformative prior

can be used. This is the case in all practical examples and implementations in this thesis.

That is, we stateπpr(θ) = 1. If we have limits for the parameters, we can assign a uniform

prior for the parameters in the feasible interval. [6]

For informative priors it is often useful to use so called conjugate priors. This means that

both the prior and the posterior come from the same family of distributions. Conjugate

priors can be found, for example, for exponential and Gaussian (normal) distributions.

The conjugate priors are discussed for example in [3].

2.3.2 Likelihood in Parameter Estimation

As said, in the Bayesian framework the errorǫ in (2.1) is distributed according to some

distribution that has some probability density function (PDF), saypǫ. If we assume that the

measurement error is independent ofθ, it can be shown ([2]) that the difference between

the measurements and predicted values is distributed in thesame way as the error. That

is, the likelihood can be written as

p(y|θ) = pǫ(y − f(x; θ)). (2.6)

If we assume that the measurement noise is Gaussian with meanzero and covariance

C, that is,ǫ ∼ N(0, C), the likelihood can also be written as the Gaussian PDF for the

difference between measurements and observations ([2]):

p(y|θ) =
1

(2π)n/2(det C)1/2
e−0.5(y−f(x;θ))T C−1(y−f(x;θ)). (2.7)

Especially, if we assume that the error termsǫi = yi − f(xi; θ) (measurement error for

measurementi) are independent and normally distributed, that isǫi ∼ N(0, σ2) andǫ ∼

15

N(0, σ2I), the likelihood for a certain measurement gets the form

p(yi|θ) =
1

(2πσ2)1/2
e−0.5σ−2(yi−f(xi;θ))2 . (2.8)

Since the error terms are assumed to be independent, the combined likelihood of all the

measurements can be written as a product

p(y|θ) =
n
∏

i=1

p(yi|θ) =
1

(2πσ2)n/2
e−0.5σ−2SSθ (2.9)

whereSSθ =
∑

i (yi − f(xi, θ))
2. This is the basis of the practical implementations in

this thesis. Note that if measurement errors in different points are not identically dis-

tributed or if correlations between error terms exist, the PDF has to be written in full form

(equation 2.7).

When using an uninformative priorπpr(θ) = 1, also the posterior is known up to the

normalizing constant (integral). That is,

π(θ|y) ∝ p(y|θ). (2.10)

2.3.3 Point Estimates

We are often interested, besides in the shape of the posterior distribution, in getting some

values that in some sense represent the posterior distribution. We can take the "most

probable" value of the posterior density that leads tomaximum a posteriorivalue (MAP):

θ̂MAP = max
θ

π(θ|y). (2.11)

For the MAP estimate we normally use the unnormalized posterior π(θ|y) ∝ p(y|θ)πpr(θ),

since it is simple to evaluate and results to the same estimate. [6], [7]

Now

θ̂MAP = max
θ

p(y|θ)p(θ). (2.12)

If we use the non informative prior, the task of finding the MAPreduces to finding the

Maximum Likelihood (ML). The estimate is normally abbreviated as MLE (Maximum

16

Likelihood Estimate) [7]:

θ̂ML = MLE = max
θ

p(y|θ). (2.13)

In practice maximizing the likelihood is equivalent to maximizing the log-likelihood func-

tion Llog = log(p(y|θ)), which is the same as minimizing− log(p(y|θ)). This results in

the following target function:

−Llog = − log(p(y|θ)) =

n
∑

i=1

0.5σ−2(yi − f(xi; θ))
2 + 0.5n log(2πσ2). (2.14)

This kind of objective function is often chosen, because it is easier to optimize than the

likelihood itself. Also some optimization routines are especially designed for objective

functions that contain sums of squares. In addition, the optimization routines often assume

that the objective function is to be minimized and that is whythe minus sign is used.

2.3.4 Example: Coin Tossing

To illustrate the Bayesian Framework a simple analytical example of coin tossing is pre-

sented here (adopted from [4]). LetYi represent the result obtained from the i:th toss

of a coin so thatYi = 0 means tails andYi = 1 heads. We are now interested in the

probability of getting heads in a series of tosses. Letθ denote the probability of receiv-

ing heads. Now we can write the probability of observing a particular series of tosses

y = (y1, ..., yN) conditioned on the probabilityθ:

P (y1, ..., yN |θ) =
∏

θyi(1 − θ)1−yi = θ
P

yi(1 − θ)1−
P

yi = θN1(1 − θ)N0 (2.15)

whereN1 is the number of heads in the observations andN0 number of tails. This is the

likelihood of receiving a particular series of heads and tails, supposing that the probability

for receiving heads isθ. That is, the likelihood contains the information about howwell

various parameter valuesθ ∈ [0, 1] are able to explain the observed data.

The maximum likelihood estimate is taken as the value that maximizes the log-likelihood

function

Llog(θ) = log(θN1(1 − θ)N0) = N1 log (θ) + N0 log (1 − θ). (2.16)

The maximum likelihood estimate iŝθML = N1

N
, which is the same as the estimate from

the Frequentist framework.

17

If we select a non-informative prior (see section 2.3.1) fordifferent valuesθ, meaning

that we consider all values for the "true"θ in the interval[0, 1] equally possible, we can

formulate the posterior density with the Bayes’ rule as follows:

π(θ|y) = P (θ|y1, ..., yN) =
θN1(1 − θ)N0

∫ 1

0
θN1(1 − θ)N0dθ

=
(N + 1)!

N0!N1!
θN1(1 − θ)N0 . (2.17)

Here the integral in the denominator is analytically derived using the beta integral (see

[8]). The development of the posterior density function in aseries of throws is illustrated

in figure 2.1.

0 0.5 1
0

1

2

1 heads, 0 tails
0 0.5 1

0

1

2

3

3 heads, 2 tails
0 0.5 1

0

1

2

3

5 heads, 6 tails

0 0.5 1
0

2

4

11 heads, 10 tails
0 0.5 1

0

2

4

6

19 heads, 20 tails
0 0.5 1

0

5

10

50 heads, 50 tails

Figure 2.1: The development of the posterior in a set of throws. Note that we get a result
even withN = 1, when the Frequentist estimate would give either probability 1 or 0.

18

3 Monte Carlo Methods

The termMonte Carlo(MC) method is normally expressed in a very general way - MC

methods are stochastic methods; methods that involve sampling random numbers from

probability distributions to investigate a certain problem. The Monte Carlo methods are

mainly meant for solving two kinds of problems that often arise in statistical analysis.

MC methods provide a way to generate samples from a given probability distribution. On

the other hand they give a solution to the problem of estimating expectations of functions

under some distribution and thus calculating numerical approximations for integrals.

In this section we consider the mathematical background of Monte Carlo methods, ex-

plaining why Monte Carlo methods work in the problems statedabove and how accurate

they are. In addition to the fundamental theory of simulation, we introduce some basic

MC methods. The section begins with a short introduction to algorithms for creating

random samples from different probability distributions -algorithms that are needed to

implement Monte Carlo methods. The theory is based on [6], [9], [10] and [11].

3.1 Sample Generation

A major issue in statistics is the ability to create samples from a given probability distribu-

tion. In the Bayesian framework, we want to create samples from the posterior density in

order to examine the correlation and accuracy of model parameters and predictions. The

Monte Carlo based methods rely on the possibility of creating random variables from ar-

bitrary and possibly complex distributions. In this section the basic methodology of sam-

pling from different distributions, in particular the normal distribution, is first discussed.

Then, a different type of numerical sampling method (Accept-Reject), is presented. We

assume here that we are able to sample from the uniform distributionU [0, 1] and we do

not address how this is done in practice.

3.1.1 Traditional Methods

If we know the cumulative distribution function (CDF) of thedistribution we want to

sample from, we can use the Inverse Transform method (Inverse CDF method) to produce

samples from the target distribution. The inverse CDF method is based on the fact that a

19

random variableF−1(u), whereu is sampled from the uniform distributionU [0, 1] has the

distributionF . That is, random points are "shot" from the y-axis to the CDF curve and the

corresponding points in the x-axis are regarded as iid samples from the target distribution

(see figure 3.1). [6], [8]

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Finv(u)

u

Figure 3.1: Inverse CDF method for producing samples from the exponential distribution
with F = 1 − e−x andF−1 = −ln(1 − u).

The inverse CDF method assumes that the CDF is known. This might be difficult or

impossible to calculate analytically, however. In this case an empirical CDF function can

be formed by calculating the CDFF in pointsx = (x1, ...xn) and interpolating a point

from interval[xi−1, xi] that satisfiesxi−1 < F (u) < xi.

In many applications, including MCMC as formulated in this thesis, it is essential that

we can produce samples from Gaussian distributions. Producing random samplesx from

a univariate GaussianN(µ, σ2) can be simply generated byx = µ + zσ, wherez ∼
N(0, I) (which means thatzi ∼ N(0, 1)). For a multivariate GaussianN(µ, C) (C is the

covariance matrix) direct sampling meansx = µ + Rz whereC = RT R and thus the

matrixR = C1/2 can be formed via the Cholesky decomposition. Here we assumeagain

that we are able to generate samples fromN(0, 1). In general, the algorithm for creating

x ∼ N(µ, C) goes as follows.

• ComputeC1/2 using the Cholesky decomposition

• Generatez ∼ N(0, I)

• Calculatex = µ + C1/2
z

20

To show that the method works correctly, we need the equalityCov(Ay) = AT Cov(y)A.

This gives

Cov(x) = Cov(C1/2
z)

= (C1/2)T I(C1/2)

= C.

3.1.2 Accept-Reject Methods

For many distributions it is difficult or impossible to do direct sampling with an inverse

transform or enough points for reliable empirical CDF are not available. Sometimes the

distribution cannot even be presented in a usable form to usethe traditional methods in-

troduced in the previous chapter. The selection of methods called Accept-Reject methods

only require that we know the analytical form of the target density up to a multiplica-

tive constant. This is the case in sampling from the posterior distribution in the Bayesian

framework.

The fundamental theorem of simulation([6]) forms the basis of Accept-Reject sampling

methods. Let us consider, for simplicity, a one-dimensional setting where we have a

densityf(x), which is bounded in the interval[a, b] so thatf(x) < M for all x ∈ [a, b]

and which fulfills
∫ b

a
f(x)dx = 1. To create random samples from this density we can

"shoot" random points(X, U) to a rectangular areax ∈ [a, b] andf(x) ∈ [0, M]. The

points fulfilling U < f(X) are regarded as samples from a distribution with densityf(x)

based on theorem 3.1 ([6]).

Theorem 3.1 (Fundamental Theorem of Simulation)

SimulatingX ∼ f(x) is equivalent to simulating(X, U) ∼ U{(x, u) : 0 < u < f(x)}.

The Accept-Reject method produces samples from a distribution p(x) using an envelope

functionq(x) that satisfiesp(x) ≤ Mq(x), whereM < ∞. Assuming that we can sample

from q(x), the Accept-Reject algorithm for producing one sample fromdistribution with

densityp(x) goes as follows

1. Generate a candidate pointX from proposal function that has unnormalized density

q(x) and generateU from U [0, 1].

21

2. AcceptX as a sample of a distribution (with unnormalized densityf(x)) if U ≤
f(X)/Mq(X). If accepted, end the algorithm. Otherwise go to step 1.

The Accept-Reject method, illustrated in figure 3.2, has some limitations. The efficiency

of the algorithm depends on how close the proposal distribution is to the distribution

from which one wants samples. The constantM often has to be quite large so that the

inequality is fulfilled over the whole space, especially with large dimensions. This leads

to low acceptance probabilities:P (x accepted) = P (U < p(x)
Mq(x)

) = 1/M . [6], [8], [12]

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5
Target Function
Envelope Function
Accepted
Rejected

Figure 3.2: Accept-Reject demonstration. Sampling from function p(x) =
e−0.5x2

(sin2(x) + 0.3) using the envelope functionq(x) = 1.5e−0.5x2
. 40 points accepted,

60 rejected.

3.1.3 Bootstrapping

In this thesis we are interested in ways to investigate how the distributions of the unknown

parameters in a general nonlinear model (equation 2.1) behave. The simplest idea to

produce samples from the distribution of the parameters is to add random noise to the

data and, at each step, do the LSQ fit and regard the different parameter values as a sample

from the posterior distribution. This does not work, however, if the added noise is different

from the actual measurement noise. Often we do not know the measurement noise, and

each iteration would require a possibly time consuming optimization step, which makes

the utilization of the method doubtful. [13]

22

Bootstrapping is a sample generation method in which we use different combinations of

the existing data, with which the estimation is done in an iterative manner. In bootstrap-

ping, a sampling with replacement procedure is carried out:if we haven measurements

for design variablesX and response variablesY , n new indexesJ are randomly chosen

from indexesI = (1, ..., n). Then, the original data (XI ,YI) is replaced with (XJ ,YJ) and

the fitting is done again to get a new sample from the posteriordistribution of the param-

eters. In this work, the bootstrapping method and sampling with replacement is needed in

the Population Monte Carlo scheme in chapter 7.

3.2 Monte Carlo Integration

The problem of finding expectations is equivalent to integration, since if we can decom-

pose the integrand, sayh(x), into a product of a functionf(x) and a probability density

functionp(x), the definite integral can be written as

I =

∫

h(x)dx =

∫

f(x)p(x)dx = Ep(x)[f(x)]. (3.1)

That is, if we can estimate the expectation, we are provided with an estimate for the inte-

gral as well. In this section different methods for calculating the integral numerically us-

ing a random sampling (Monte Carlo) approach are discussed.A general one-dimensional

definite integralI =
∫ b

a
h(x)dx =

∫ b

a
f(x)p(x)dx is considered in the examples, for sim-

plicity.

3.2.1 Uniform Sampling - Crude MC

The simplest way to calculate the integral numerically is touse Riemann sums, where

the integration interval is divided inton parts of lengths∆xi (i = 1...n). The integral

estimate can be calculated with

Î =
n
∑

i=1

h(xi)∆xi. (3.2)

This kind of numerical integration is often done in a deterministic manner by dividing

the interval into parts of equal length. That is,∆xi = ∆x = (b − a)/n for all i. This

gives the classical formulâI = (b − a)/n
∑n

i=1 h(xi). The simplest Monte Carlo version

of the Riemann sum idea is to take the points in which the division is done randomly

23

from the uniform distribution:xi ∼ U [a, b]. This is sometimes referred to ascrude MC.

The approach is, however, often ineffective, because all the parts of the integrand are

considered to be equally important with respect to the valueof the integral. The Monte

Carlo approach in this case also adds some computational complexity, since the function

value has to be multiplied with a different∆x in each term of the sum.

3.2.2 Non-uniform Sampling

If the integrand consists of a product of a function and a probability density function

(equation 3.1), the power of the Monte Carlo approach is seenmore clearly. The Monte

Carlo estimate can be derived using random variables(x1, ..., xn) drawn from the distri-

bution with densityp(x). The Monte Carlo estimate for the integral is now

Î =
1

n

n
∑

i=1

f(xi). (3.3)

Using the product notation, we are not limited to sampling from the uniform distribu-

tion. If there is a representationf(x)p(x) for h(x) so, that the functionp(x) includes

the "important" parts of the integrandh(x) (where the value of the integrand is high),

the efficiency of the method is improved when compared with the traditional Riemannian

approach. The improvement in efficiency is illustrated in the example below.

Example. Let us consider an indefinite integral

I =

∫ ∞

−∞

e−x2/2
(

sin2 6x + 3 cos2 x sin2 4x + 1
)

.

We notice that the integral is given as a product, where the first term is the (unnormalized)

density function of the standard normal distribution with mean 0 and variance 1. The

density and the integrand are plotted in figure 3.3.

Now we produce the integral estimate in two different ways. The first one (̂I1) is done

by selecting points from a uniform distribution,xi ∼ U [−4, 4], since we see that the in-

tegrand is close to zero at|x| = 4. Then equation (3.2) is used to produce the estimate.

The second estimate (Î2) is produced by takingxi ∼ N(0, 1). Since the density is un-

normalized, the final result has to be corrected by the inverse of the normalizing constant,√
2π. We can see that the unnormalized density takes into accountthe important points

of the integrand, points close tox = 0. The development of the integral estimate with a

24

different number of sampled points is represented in figure 3.4.

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5
p(x)
h(x)

Figure 3.3: Integrandh(x) = f(x)p(x) and (unnormalized) densityp(x). The density
captures the important parts of the integrand.

0 50 100 150 200
0

2

4

6

8

10

M
C

 w
ith

 u
ni

fo
rm

 p
(x

)

0 50 100 150 200
0

2

4

6

8

10

number of sampled points

M
C

 w
ith

 n
or

m
al

 p
(x

)

Figure 3.4: Development of estimatesÎ1 (crude MC) andÎ2 with respect to increasing
sample size.̂I2 seems to converge faster to the correct value.

Note that the integrandf(x)p(x) and the effectiveness of the simple Monte Carlo ap-

proach is strongly dependent on the densityp(x). Often the integrand is not represented

in the product notation, or the distribution with density functionp(x) might be difficult

to sample from and the distribution might not cover the important parts of the integrand.

The integrand can, however, be written in a form of a product of a function andany prob-

ability density, that has the desired properties. This idea, called importance sampling, is

presented in section 3.2.4.

25

3.2.3 Hit and Miss Strategies

A simple way to evaluate integrals of a positive functionh(x) is to use a similar kind

of approach as in Accept-Reject methods for producing random variables from different

distributions. Suppose that we have functionMq(x) that satisfiesMq(x) > p(x) for all

x and we are able to producen samples{xi} from the distribution with PDFq(x). Then,

for each sampled point we can produce samplesyi from U [0, Mq(xi)]. That is, we have

points{xi, yi} "under" the curveMq(x). Now we can simply calculate the number of

points satisfyingyi < h(xi). If Mq(x) is chosen so that its integralIq is easy to calculate,

the estimate for the original integralI can be calculated as a ratiôI = m/n · Iq. That is,

the Accept-Reject idea can also be used to evaluate integrals.

The simplest way to use this idea to calculate one dimensional integrals of positive func-

tions is to takeq(x) to be a constant large enough. Now we can producen samples

{xi, yi} inside the "box"a < x < b, 0 < y < M and see which pointsyi satisfy

yi < h(xi) (altogetherm points) and simply calculate the integral estimate as a ratio

Î = m/n · Iq = m/n · (b − a)K. This is often inefficient, since the area of the box can

be large compared to the integral, and many points have to be created to get a reliable

estimate.

The "hit and miss" simulation idea can be generalized to manysituations - the idea is sim-

ply to generate many samples, see which of them satisfy a desired property and calculate

ratios. An example of calculating tail probabilities for a normal distribution using this

type of simulation is given in section 3.2.4.

3.2.4 Importance Sampling

As seen in section 3.3, the error given by crude Monte Carlo integration converges quite

slowly to the true integral value, namely with rate1/
√

n. One of the most popular tech-

niques to reduce the variance of the estimate is importance sampling. The theory is based

on [6], [4], [7] and [14].

In crude MC method the random points with which the integral is estimated are often

drawn from a uniform distribution. That is, every point in the integral is considered

equally important with respect to the value of the integral.In addition, the densityp(x) in

the integrand (equation 3.1) can be difficult to sample from.In importance sampling one

26

tries to generate more points from the important regions of the target function that govern

the value of the integral, that is, where the integrand has large values.

In importance sampling a densityg(x) is introduced. This function roughly estimates the

function h(x) = f(x)p(x) in equation (3.1). We can rewrite the integral and the MC

estimate as follows

∫ b

a

f(x)p(x)dx =

∫ b

a

f(x)
p(x)

g(x)
g(x)dx ≃ 1

n

n
∑

i=1

f(xi)
p(xi)

g(xi)
=

1

n

n
∑

i=1

f(xi)w(xi).

(3.4)

Here the pointsxi are drawn from the distribution withg(x) as PDF. That is, we "force"

the integrand into a desired product form and by introducingthe additional densityg(x)

we can decide the distribution from which we sample when the integral is estimated. The

functiong(x) is sometimes referred to asimportance function, andw(x) as importance

weight. Theg(x) is chosen so that it somehow mimics the target distribution and that it

is easy to sample from. The importance function should capture in particular the peaks

of the target distribution, and be positive where the targetdistribution is positive. The

analogy to the crude MC method (section 3.2.1) is that with importance sampling we

choose the density respect to which the expectation (integral) is calculated. Numerically,

the importance functiong(x) in equation (3.4) has the same role asp(x) in equation (3.1).

Two examples are now given to illustrate the importance sampling approach. The first one

compares the importance function to taking points uniformly from the integration interval.

The second example illustrates the effectiveness of importance sampling compared to the

hit and miss strategy.

Example. To illustrate importance sampling in comparison to crude Monte Carlo inte-

gration, let us consider the simple integralI =
∫ 1

0
x1.6e−x. As importance function we

choose for exampleg(x) = 2.6x1.6 from which we can sample using the inverse CDF

method. The cumulative distribution function for the importance function isG(x) = x2.6

and the inverse CDF functionG−1(x) = x−2.6. Figure 3.5 shows the integrand and the

importance function. We see that the importance function weights the points more near

the upper bound, where the integrand has its largest values.Figure 3.6 presents the con-

vergence of crude MC and importance sampling with respect tothe sample size in this

simple example.

Example. Let us consider a task of calculating the probabilityP (X > M) whereX ∼
N(0, 1) andM is large so that the probability to be calculated is small.

The basic Monte Carlo approach would be to to sample numbers fromN(0, 1) and calcu-

27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

integrand
importance function

Figure 3.5: Integrandx1.6e−x and importance functiong(x) = 2.6x1.6.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.18

0.185

0.19

0.195

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.185

0.19

0.195

0.2

Figure 3.6: Crude MC (up) and importance sampling (down). Importance sampling con-
verges much faster for this example and gives smaller variance.

late the ratio of points satisfyingX > M . The estimatêI1 is produced this way. The task

is equivalent to calculating the integral of the gaussian PDF from M to ∞, but since we

know that the integral from−∞ to ∞ is 1, we can use the simple hit and miss strategy

(Monte Carlo simulation).

The estimatêI2 is produced by importance sampling with importance function g(x) =

e−(x−M) wherex > M , which represents the exponential distribution. That is, we empha-

size the important area (the tail of the distribution). The CDF is nowG(x) = 1−e−(x−M)

and the inverse of the CDF isG−1(x) = M − ln (1 − x). The inverse CDF method (sec-

28

tion 3.1.1) is used to produce samples from the importance density. Now we calculate the

Monte Carlo estimate for the integral

I2 =

∫ ∞

M

h(x)dx =

∫ ∞

M

h(x)

g(x)
g(x)dx ≈

n
∑

i=1

h(xi)

g(xi)

where pointsxi are taken from the exponential distribution with PDF given by g(x). The

two approaches withM = 4.5 are compared in figure 3.7. One can see that the hit and

miss approach that is based on ratios does not work in cases, where the ratio is very low

compared to the number of samples.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5
x 10

−5

H
it

an
d

M
is

s

0 1 2 3 4 5 6 7 8 9 10

x 10
4

3.3

3.35

3.4

3.45

3.5
x 10

−6

Number of samples

Im
po

rt
an

ce
 S

am
pl

in
g

Figure 3.7: Computing the tail probability of a standard normal distribution with hit miss
and importance sampling. The blue line represents the correct value.

Many variations and generalizations of the importance sampling idea exist. One group of

such methods consists of iterative or sequential importance sampling methods. Another

popular method that has been under research recently, is thepopulation Monte Carlo

(PMC), which is an iterative approach to importance sampling. PMC is shortly reviewed

in chapter 7.

3.3 Convergence of MC estimates

How can we be sure that the Monte Carlo estimate of an integralconverges to the right

value as the number of samples generated approaches infinity? How fast is the method

29

converging to the right value and how accurate the estimate approximately is when a cer-

tain number of samples are produced? These questions are addressed in this section with

two important theorems related to random sampling methods:Laws of Large Numbers

and Central Limit Theorem.

3.3.1 Laws of Large Numbers

Roughly speaking, the Laws of Large Numbers (LLN) essentially say, that if we have a

sequence of random numbers generated from the same distribution, the average of them

gets arbitrary close to the expectation of their common distribution, when the length of

the sequence approaches infinity. Normally, in probabilitytheory, two formulations for

the laws are given: the Weak Law of Large Numbers (WLLN) and the Strong Law of

Large Numbers (SLLN). Here the laws are presented with a short proof for the weak law,

and their relevance in justifying MC methodology is explained.

Theorem 3.2 (Weak Law of Large Numbers)LetX1, ..., Xn be a sequence of iid random

variables with meanµ and finite varianceσ2. Then the sample average

Xn =
X1 + X2 + ... + Xn

n

converges in probability to the common meanµ.

Proof. As stated in Appendix 1, the convergence in probability of a random variableXn

to µ means that for any numberǫ > 0

lim
n→∞

P (|Xn − µ| < ǫ) = 1.

The Chebyshev inequality for random variables ([8]) statesthat for a random variableXn

P (|Xn − µ| ≥ ǫ) ≤ V ar(Xn)

ǫ2
.

Now we haveV ar(Xi) = σ2 for all i andCov(Xi, Xj) = 0 for all (i, j). Thus

V ar(Xi + Xj) = V ar(Xi) + V ar(Xj) + 2Cov(Xi, Xj) = V ar(Xi) + V ar(Xj).

30

Thus, since we know thatV ar(aX) = a2V ar(X) ([8]), we get

V ar(Xn) = V ar((X1 + ... + Xn)/n)

=
1

n2
(V ar(X1) + ... + V ar(Xn))

= σ2/n.

Using the Chebyshev inequality we can write

P (|Xn − µ| < ǫ) = 1 − P (|Xn − µ| ≥ ǫ) ≥ 1 − σ2

nǫ2
→ 1 as n → ∞

which completes the proof.

Theorem 3.3 (Strong Law of Large Numbers)Let X1, ..., Xn be a collection of iid ran-

dom variables with meanµ andXn their sample average. Then

P
(

lim
n→∞

Xn = µ
)

= 1. (3.5)

That is, the sample average convergesalmost surely to the common meanµ.

The stochastic termsalmost surely, convergence in distributionandconvergence in prob-

ability used in the theorems are explained in more detail in Appendix1.

We can see that the integral estimateÎ given by equation (3.3) is a sample average of iid

samples(f(x1), ..., f(xn)) that have a common expectationµ = Ep(x)[f(x)] = I. Thus,

if we consider the Laws of Large Numbers, we can see thatÎ → I whenn → ∞. That

is, the Monte Carlo estimate converges to the correct value of the integral with increasing

sample size. The law is the justification of Monte Carlo basedsimulation methodology

(see [6]).

3.3.2 Central Limit Theorem

In estimation tasks it is crucial to know how accurate the estimate is. In basic Monte Carlo

estimation we can use the Central Limit Theorem to study the rate of convergence in MC

methods. [11], [15]

31

Theorem 3.4 (Central Limit Theorem)LetX1, ..., Xn be a collection of iid random vari-

ables with meanµ, finite varianceσ2 and sample meanXn. Then

Xn − µ

σ/
√

n
→ N(0, 1).

The CLT tells that the average ofany iid random variables convergesin distribution to

the Normal distribution with meanµ and varianceσ2/n. That is, the error of the estimate

follows the distributionN(0, σ2/n). This means that the error decreases at raten−1/2.

Note that the error does not depend on the dimension of the integral, which justifies the

usage of MC methods in high dimensional integrals. The computation time with deter-

ministic numerical integration methods based on discretization increases rapidly when

the dimension increases. MC integration can produce estimates of higher dimensional

integrals with less computation.

To observe the error in MC methods, it is possible to construct a confidence interval for

the estimateXn, since we know that with largen the distribution of the error is Gaussian.

The confidence interval with risk levelα can be written as

[Xn − zσ√
n

, Xn +
zσ√

n
] (3.6)

where z is the point where the cumulative density function ofN(0, 1) gets value1−α/2.

For more on confidence intervals, refer to Appendix 1.

With Monte Carlo methods it is sometimes possible to approximate the normalizing con-

stant in the Bayesian Rule in equation (2.5). MC methods workin more complex and

high-dimensional integrals than traditional deterministic methods. When the integrals get

very complex the MC methods also run into trouble, however.

The convergence rate of the basic MC method (sometimes referred to ascrude MC) is

relatively slow with respect ton - for one additional significant digit of accuracy one needs

approximately 100 times more samples. Therefore it is necessary to employ some vari-

ance reduction techniques to improve the crude MC method. These include for example

stratified sampling, antithetic variates and importance sampling (section 3.2.4).

32

4 Markov Chain Monte Carlo Methods

In Bayesian analysis for unknown parameters in mathematical models we are often inter-

ested in forming the posterior distribution for the parameters. Since this is rarely possible

to do analytically, we are satisfied with a number samples from the posterior distribu-

tion of the model parameters. To achieve this by applying theBayes’ rule (equation 2.5)

one has to integrate over the whole parameter space to calculate the normalizing constant

for the posterior density. A numerical approximation can beachieved through Monte

Carlo integration methods (see chapter 3). Especially in high-dimensional cases, how-

ever, these methods might be problematic. In this chapter Markov Chain Monte Carlo

(MCMC) methods are introduced. With MCMC methods, the posterior distribution can

be evaluated without having to worry about the problematic normalizing constant of the

Bayes’ rule.

The chapter begins by introducing the basic theory of MarkovChains needed in analyzing

and justifying MCMC methods and their convergence to the right target distribution (pos-

terior). Then, the basic MCMC method, the Metropolis-Hastings algorithm, is discussed.

4.1 Markov Chains

The idea behind the MCMC methods is to create a certain type ofMarkov Chain that

represents the posterior distribution. In this section thebasic concepts related to Markov

Chains, in the case of a finite state space, and the way they areused in MCMC methods

are discussed. For more detailed description related to basics about stochastic processes

and Markov Chains, refer to [9], [2] and [4].

A Markov Process is a certain type of discrete time stochastic process. A Markov Chain

is a series of states created by a Markov Process. Assume thatwe have a series of ran-

dom variables,(X(0), X(1), ...). This series is a Markov Chain (produced by a Markov

Process), if the value ofX(t+1) only depends on the value of the previous stateX(t).

Formally

P (X(t+1) = st+1|X(0) = s0, X
(1) = s1, ..., X

(t) = st) = P (X(t+1) = st+1|X(t) = st)

(4.1)

wheresi denotes the state of the chain at "time"i.

33

Let us look at a Markov Process{X(t), t = 0, 1, 2, ...} that has a finite state space (for

simplicity) S (sayk possible states) and the states assume values fromR
d. That is,S =

{s1, s2, ..., sk}. A state space here means the set of all possible values obtained by the

process. We can define an initial distribution (state) as a vectorλ(si) = P (X0 = si).

If the state space is discrete, we can define a transition probability matrixP = [pij], where

pij denotes the probability of moving from statesi to statesj, thuspij = P (X(t+1) =

sj|X(t) = si). The transition probability matrix, also referred to as theMarkov Kernel,

does not change over time and thus produces atime homogeneous Markov Chain. Note

that
∑

j pij = 1 for all i. Now, the initial distribution can be updated to produce thenext

state of the process by multiplying the initial state with the transition probability matrix

and summing over all possible initial statesλ:

P (x2 = sj) =
∑

i

λ(si)pij.

The process continues in a similar manner.

We can also define probabilitiesp(n)
ij , that stand for moving from statesi to statesj using

exactlyn steps. Formally

p
(n)
ij = P (X(m+n) = sj|X(m) = si). (4.2)

The Chapman-Kolmogorov equations define the transition probabilities for an arbitrary

number of steps. If we definePn as the k-step transition matrix, we have

Pn+m = PnPm (4.3)

and

Pn = P n. (4.4)

Let πj(t) denote the probability that we are at statej andπ(t) = {πj(t), j = 1, ..., k}
probabilities for all states at timet. That is,πj(t) = P (Xt = sj). Then, using equation

(4.4) we can write

π(t) = λPt = λP t. (4.5)

The Markov Chain has reached itsstationary distribution, π∗, if applying the transition

kernel to current state leads to the same state:

π∗P = π∗. (4.6)

34

Let π∗
j denote the probability for statesj in the stationary distribution. With this nota-

tion, stationarity means
∑

i π
∗
i pij = π∗

j . That is, the stationary distribution is the left

eigenvector of the transition probability matrixP , that has the eigenvalue 1.

A Markov Chain is said to beirreducible, if, when starting from any starting pointx0,

any point is reachable with positive probability with a finite number of steps. That is, the

Markov Kernel of an irreducible Markov Process allows free moves all over the state space

- all the statescommunicatewith each other - the states are "stochastically connected".

Formally,p(n)
ij > 0 for all states for somen.

Another Markov Chain property needed in MCMC theory is theperiodicityof a chain. A

Markov Chain is said to beperiodicif there are parts of the state space that the process can

visit only at regular time intervals. If the chain is not periodic, it is said to beaperiodic.

Formally, the chain is aperiodic, ifgcd{n|p(n)
ij > 0} = 1 (gcd stands for greatest common

divisor).

A statesi in a Markov Chain is said to berecurrent, if the probability of returning tosi is

1. That is, we return to the state surely at some time. In addition, if the expectation of the

return time is finite, the state is said to bepositive recurrent.

Let us assume that a stationary distributionπ∗ exists. If, regardless of the initial distribu-

tion, the distribution ofXn approachesπ∗ asn → ∞, theπ∗ is called thelimiting distri-

butionof the Markov Process. In this case, the Markov Process has aunique stationary

distribution, which means that the process will end up to the same stationary distribution

independent of the initial distributionλ. In this case the chain is calledergodic.

The Markov Chain is said to bereversiblewith respect to a distributionπ∗, if the so called

detailed balancecondition holds. That is,

pjkπ
∗
j = pkjπ

∗
k. (4.7)

If a transition kernel that satisfies the detailed balance isfound, the process has a stationary

distribution. That is, reversibility implies stationarity, since

∑

j

pjkπ
∗
j =

∑

j

pkjπ
∗
k = π∗

k

∑

j

pkj = π∗
k

and thusπ∗P = π∗. The detailed balance condition is often used to show that the process

with a certain transition kernel results in a stationary distribution. If, in addition, one

35

can show that the process is irreducible and aperiodic, there exists a unique stationary

distribution.

In Markov Chains Monte Carlo methods the idea is to create a Markov Chain using ran-

dom sampling so that the created chain has the posterior distribution as its unique sta-

tionary distribution (limiting distribution). That is, the MCMC methods produce ergodic

Markov Chains. In section 4.2 the most basic methods of achieving this, the Metropo-

lis algorithm and its generalization (Metropolis-Hastings algorithm), are introduced. In

chapter 4.3 it is shown that the detailed balance condition holds for the Markov process

created by the Metropolis algorithm.

Definition A Markov Chain Monte Carlo (MCMC) method for the simulation of a distri-

butionf is any method producing an ergodic Markov Chain whose stationary distribution

is f .

The SLLN and CLT theorems (theorem 3.3 and theorem 3.4) also hold with certain as-

sumptions when producing a set of correlated samples using MCMC. That is, a subset

of an ergodic Markov Chain can be regarded as a set of iid random variables, when the

MCMC algorithm has been run long enough. That is, the MCMC estimate of the av-

erage of the chain converges to the "true" mean of the distribution - the sampled values

asymptotically approach their correct values:

f̂n =
1

n

n
∑

i=1

f(Xi) ≈
∫

Rd

f(x)π(dx). (4.8)

The convergence theorems can be written from the perspective of Markov Chains as fol-

lows ([15]).

Theorem 4.1 (SLLN for Markov Chains)Suppose{Xj}∞j=1 is ergodic with stationary

distributionπ. Then, iff is real andπ|f | bounded,f̂n → fπ with probability 1.

Theorem 4.2 (CLT for Markov Chains)Suppose that the assumptions in theorem 4.1

hold. Then there exists a real numberσ2(f) so that

√
n(f̂n − fπ) → N(0, σ2(f))

in distribution, independent of the initial state.

36

That is, if the transition kernel in the MCMC method is definedso that it produces an

ergodic Markov Chain, the most important convergence laws hold and the produced chain,

when run long enough, can be regarded as a set of samples from the target distribution

in spite of the Markovian nature of the method. The CLT implies that the sample path

averages of the target functionf converges towards a Gaussian distribution, and thus

provides a measure of the variability of the created states whenn is large. For proofs,

generalizations and more detailed examination on Markov Chain theory behind MCMC,

also in general state space, refer to [2] and [1], for example.

4.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm prescribes a simple transition kernel to produce

a markov chain that has invariant distributionπ(θ) that can be regarded as a sample from

π(θ). The MH algorithm is based on accept-reject methodology: a new candidate pointθ∗

is created from a proposal distributionq(.|θ) that contains the probabilities for receiving

a certain candidate point given the previous valueθ. The Metropolis-Hastings algorithm

ca be written as follows:

1. Initialization

• Choose a starting pointθ0

• Setθold = θ0

• SetChain(1) = θ0 andi = 2

2. Choose a new candidate from the proposal distribution:θ∗ ∼ q(.|θold)

3. Accept the candidate with probability

α = min (1,
π(θ∗)q(θold|θ∗)
π(θold)q(θ∗|θold)

) (4.9)

• If accepted setChain(i) = θ∗ andθold = θ∗

• If rejected setChain(i) = θold

4. Seti = i + 1 and go to 2

If we assume a symmetric proposal distribution, that is,q(θ∗|θold) = q(θold|θ∗), we get

a special case of the MH algorithm called the Metropolis algorithm that was introduced

37

earlier (1953) by Nicholas Metropolis in [16]. For additional representations of the algo-

rithm, refer to [6], [1], [9] or [3].

Note here that if we use the Bayesian framework we know the posterior densityπ(θ) up

to a normalizing constant. We see that in equation (4.9) the constant cancels out. If we

assume a standard nonlinear model (y = f(x; θ)+ǫ) with Gaussian noise (ǫ ∼ N(0, σ2I))

and a non-informative priorπpr(θ) = 1, we can write the acceptance probability for the

Metropolis algorithm as follows:

α = min (1,
π(θ∗)

π(θold)
) = min (1,

p(y|θ∗)
p(y|θold)

) = min (1, e−0.5σ−2(SSθ∗−SSθold
)). (4.10)

This is a practical form of the acceptance rule and it is the basis of the implementations of

different MCMC methods in this work. The third step (acceptance step) of the algorithm

can now be written in a more practical way as follows

3. ComputeSSθ∗ andSSθold
. Accept the candidate if

SSθ∗ < SSθold
or if u < e−0.5σ−2(SSθ∗−SSθold)

whereu is a random number generated fromU [0, 1].

Many modifications of the basic MCMC based on the Metropolis-Hastings algorithm have

been developed. The promising family of adaptive methods isdiscussed in chapter 6. In

addition, several aspects have to be considered when using MCMC in practice, as well as

when evaluating the convergence of the algorithms. These issues are addressed in chapter

5.

4.3 Metropolis-Hastings as a Markov Chain

Why does the Metropolis-Hastings algorithm work - how can weshow that it produces

a Markov Chain with a stationary distributionπ(θ)? Here the detailed balance condi-

tion (equation 4.7) is considered, which is a sufficient (notnecessary) condition for the

existence of a unique stationary distribution with a desired probability density function.

The detailed balance condition can be shown to hold for the transition kernel produced

by the MH algorithm as presented below. In [2] it is shown in detail, that the metropolis

kernel with some simple proposal distributions, such as Gaussian with fixed covariance,

centered at the previous point, produces a Markov Chain thathas the necessary ergodicity

properties.

38

The goal is to form the transition kernelP = [pij] for the MH algorithm that describes

the probabilities of moving from statesi to statesj. Then we need to show that for the

transition kernel the DB condition holds, that isπ(si)pij = π(sj)pji. The transition kernel

can be formed in the following way:

pij = P (moving from si to sj) = P (proposing sj)P (accepting sj)

= q(sj|si)α(si, sj) = q(sj|si) min (1,
π(sj)q(si|sj)

π(si)q(sj|si)
).

Thus,

π(si)pij = π(si)q(sj |si) min (1,
π(sj)q(si|sj)

π(si)q(sj|si)
)

= min (π(si)q(sj|si), π(sj)q(si|sj))

= π(sj)q(si|sj) min (
π(si)q(sj|si)

π(sj)q(si|sj)
, 1)

= π(sj)pji.

That is, based on the detailed balance condition, the Metropolis Hastings algorithm pro-

duces a transition rule with which the chain has a stationarydistribution.

In the case of a discrete state space, the transition probability kernel produced by the

Metropolis-Hastings algorithm can be defined as

pij = q(sj|si) min (1,
π(sj)q(si|sj)

π(si)q(sj|si)
), (i 6= j)

pii = 1 −
∑

j 6=i

pij

which satisfies the detailed balance condition.

Another way to justify that the Metropolis algorithm leads to a certain stationary distribu-

tion is to examine the situation, where we have two arbitrarymembers of the state space,

saysa andsb, so thatπ(sb) ≥ π(sa). Let us assume that at timet − 1, we have a draw

from the posterior:st−1 ∼ π. Now we can show that we can always make an exact move

with the Metropolis kernel between two arbitrary states andthe probability of movement

is the same in both directions.

First, let us consider the situation, where we move fromsa to sb. That is, we examine the

39

probability that we are at statesa at timet − 1 and at statesb at timet:

P (st = sb; st−1 = sa) = P (st−1 = sa)P (st = sb|st−1 = sa)

= π(sa)q(sb|sa)α(sa, sb)

= π(sa)q(sb|sa)

because for a move upwards the point is always accepted (α = 1).

For the movesb → sa, we get

P (st = sa; st−1 = sb) = π(sb)q(sa|sb)α(sb, sa)

= π(sb)q(sa|sb)
π(sa)

π(sb)

= π(sa)q(sb|sa)

for a symmetric proposalq(x|y) = q(y|x), as is the case in the Metropolis algorithm.

That is, we see thatP (st = sb; st−1 = sa) = P (st = sa; st−1 = sb) for any sa andsb

belonging to the state space. This implies thatπ(st−1) = π(st) and thatπ is the stationary

distribution of the process. A similar calculation can be carried through for the more

general Metropolis-Hastings kernel, whereq(x|y) 6= q(y|x) is allowed. Essentially, the

idea is based on stationarity caused by reversibility, thatis characterized with the detailed

balance equation.

The detailed balance condition presented above only quarantees that the created stochastic

process has a stationary distribution. For exact investigations about whether the MCMC

methods have the ability to converge towards the desired stationary distribution, the terms

geometric ergodicityanduniform ergodicityare often used. It can be shown, using the

definition of the so calledcoefficient of ergodicity, that if the created chain is uniformly

ergodic, the strong law of large numbers holds and the methodconverges to the stationary

distribution. In addition, it can be shown that the Metropolis-Hastings algorithm with a

Gaussian proposal distribution (used in this work) createsa uniformly ergodic Markov

chain. See [2] and [17] for proofs and convergence calculations.

40

4.4 Single Component Metropolis-Hastings

In the Metropolis-Hastings algorithm presented in section4.2, all components of the chain

(values for unknown parameters) are updated at the same time. In practice, when using a

Gaussian proposal, this means sampling from a multivariateGaussian distribution. In the

Single Component Metropolis Hastingsalgorithm (SC), presented in the original paper

by Metropolis et.al. ([16]), the chain is updated componentby component. Thus,θi
t

represents thet:th sampled value for componenti.

That is, the parameter vector is divided into components andone iteration of the algo-

rithm containsp steps wherep is the length of the parameter vector. This leads top

different conditional proposal distributions andp different acceptance probabilities. The

proposal distribution for componenti at iterationt can be univariate Normal distribution

with center at the previously sampled pointθi
t−1 and some fixed varianceσ2

i . That is,

qi
t ∼ N(θi

t−1, σ
2
i). In the acceptance probability calculation the posteriorsare used. The

difference to MH is that when sampling componenti, all previously sampled components

(1, ..., i − 1) from the same iteration are used in evaluating the posterior. That is, at it-

erationt, the posterior is made one-dimensional by fixing components(1, ..., i − 1) with

values obtained from iterationt and componentsi + 1, ..., n with values obtained from

iterationt − 1.

This makes SC appealing in high-dimensional cases, becausethe proposal distributions

stay simple and they are easy to sample from. The SC algorithmis shortly presented

below (replace steps 2-3 in the Metropolis-Hastings algorithm in section 4.2). See [9] and

[2] for more on the topic.

For i = 1 to p (number of parameters)

• Sampleθ∗i ∼ qi
t (wheret represents the index of the sample)

• Accept with probability

α = min

(

1,
π(θ1

t , ..., θ
i−1
t , θ∗i , θ

i+1
t−1, ..., θ

n
t−1)

π(θ1
t , ..., θ

i−1
t , θi

t−1, θ
i+1
t−1, ..., θ

n
t−1)

)

– If accepted setθi
t = θ∗i

– Else setθi
t = θi

i−1

41

All methods using one-dimensional proposals and componentby component updating

of the chain, including SC, Gibbs sampling (section 4.5) andSCAM (section 6.2), may

suffer from poor mixing if the parameters are correlated. This is natural, since the corre-

lations are not taken into account in one-dimensional proposal distributions, whereas the

covariance matrix in multivariate Gaussian contains this information. That is, the path

in pairwise scatter plots produced with SC contains only paths parallel to the coordinate

axes - the algorithm can move only along a coordinate axis.

One way to go around the problem of unknown correlations is torotate the proposal dis-

tribution at some predefined steps. This can be done by calculating the covariance matrix

of the chain created so far and computing the principal components of the covariance ma-

trix. These directions can be used as sampling directions inthe SCAM algorithm. See

appendix 1 for more details. [18]

4.5 Gibbs Sampling

Gibbs sampling is a modification of the SC algorithm and it is widely used in different ap-

plications. In the Gibbs algorithm the sampling is also donecomponent by component us-

ing one dimensional full conditional posterior distributionsπ(θi|θ1, ..., θi−1, θi+1, ..., θp).

Gibbs sampling assumes that these conditional distributions are known, which means that

all other components than the one to be sampled are fixed. In Gibbs sampling the created

points are always accepted. Gibbs algorithm can be used whenthe conditional distribu-

tions can be found easily and are easy to sample from. The algorithm is presented below.

[3]

For j = 1 to p (number of parameters)

• Sampleθi
j ∼ π(θi|θ1, ..., θi−1, θi+1, ..., θp)

• SetChaini(j) = θi
j

The construction of the one-dimensional conditional distributions might, however, be

complicated. If the conditional distributions are not known in analytical form, an em-

pirical distribution can be created by evaluating the target distributionπ(θ) with respect

to a given coordinate a number of times. After that, the inverse CDF method (section

3.1.1) can be applied. This requires several iterations, however. [13]

42

5 On Implementing MCMC

Several issues related to implementing the MCMC methods in practice are discussed here.

First, the question of choosing the proposal and tuning its parameters to form an effective

proposal distribution is taken into consideration. We try to find ways to assure that the

sampling really covers as much of the parameter space as possible.

Secondly, the convergence problem related to MCMC results is introduced: how can we

be sure that the method has actually converged so that we can rely that the produced chain

is a representative sample of the posterior distribution. This problem is the target of a

large amount of current research and the goal here is to present some of the ideas for

convergence diagnostics.

Finally, some other practical issues related to implementing MCMC are discussed. These

include using a burn-in period, thinning the chain and the possibility of running multiple

parallel chains.

5.1 Proposal Distribution

The MH algorithm itself is very simple. However, the performance of the algorithm is

dependent on how we choose the proposal distributionq(.|θold). The proposal distribution

has a large effect on themixing of the chain, which means how well the samples are

spread over the parameter space and its important parts. It is clear that with too wide

a proposal distribution many of the candidate points are rejected and the chain "stays

still" for long periods and the target distribution is reached slowly. Then again, when

the proposal distribution is too narrow, the acceptance ratio is high but a representative

sample of the target distribution is achieved slowly. The term mixing and the effect of the

width of the proposal are illustrated in figure 5.1. [2]

There are two basic ways of constructing the proposal distribution. In the first approach

we choose a fixed proposalq(.|θold) = q(θ) that is independent of the previous state

(parameter values). This is called Independent Metropolis-Hastings and it is very similar

to the Accept-Reject algorithm presented in chapter 3.1.2.

A more practical approach takes the previously simulated value into account when the

proposal is formed. That is, we perform a local search for newcandidate points at the

43

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.7

0.8

0.9

1

Figure 5.1: Example of a chain of one parameter started with LSQ-optimized parameter
values. The upper picture tells that the proposal is too wide- the chain stays still for
long periods. The lowest picture presents narrow proposal -the samples don’t seem to
converge well. The chain in the middle is well mixed. For thischain the MSE was used
to calculate the covariance of the proposal.

neighborhood of the current value. This is why this algorithm, called the Random Walk

Metropolis algorithm, is in some sources referred to as Local Metropolis, whereas the

previous approach sometimes goes with the name Global Metropolis. The Random Walk

approach is less dependent on the form of the proposal distribution in relation to the

form of the target distribution. It is also more practical since we can use a standard,

easy-to-sample proposal distribution, for example a Gaussian distribution centered at the

current point. Here we regard the Random Walk Metropolis-Hastings as the basic MCMC

algorithm used in different case examples in chapter 9. The Random Walk Metropolis-

Hastings algorithm with a Gaussian proposal distribution is presented below.

1. Initialization

• Chooseθ0, setθold = θ0

• Choose covarianceC

• ChooseN (chain length) and seti = 1.

2. Acceptance Step (Metropolis Step)

44

• Sampleθnew from N(θold, C) andu from U [0, 1]

• CalculateSSold andSSnew

• If SSθnew
< SSθold

or u < e−0.5σ−2(SSθnew−SSθold) setθi = θnew. Otherwise set

θi = θold

3. If i < M seti = i + 1 and go to step 1. Otherwise stop the algorithm.

In the algorithm the proposal "width" parameter is the covarianceC of the Gaussian

proposal distribution, or variance in a one-dimensional case. The problem in choosing the

proposal distribution then turns into the problem of tuningthe covariance matrix so that

the sampling is efficient. Traditionally this is done by choosing a fixed covariance by hand

by the modeler using some approximation or "trial and error"strategy. Recently some new

data-driven modifications to the basic Metropolis algorithm have been introduced in order

to update the covariance matrix as the algorithm proceeds (chapter 6).

Note that the created Markov Process has a stationary distribution, since the detailed bal-

ance condition holds. In addition, the stationary distribution is unique, since the random

walk process clearly is irreducible - the probability of moving from any point to any other

point is always positive. Since the process is random, it lacks all periodic behavior and is

thus also aperiodic.

5.2 Initializing MCMC

If we use the Random Walk Metropolis algorithm with a Gaussian proposal distribution,

we have to come up with a guess for the Covariance MatrixC. Also for the convergence

rate it is useful to choose the starting pointθ0 correctly.

In the MCMC implementations in this work the starting point is chosen to be the point

that suits the data in an optimal way in LSQ sense. That is, with a general nonlinear model

(i denotes the measurement index)

θ0 = min
θ

n
∑

i=1

(yi − f(xi, θ))
2.

This leads to a nonlinear optimization task (to a nonlinear LSQ problem to be precise).

These can be solved with many methods introduced for examplein [19]. In unconstrained

nonlinear optimization the polytope search method is one ofthe most popular, since one

45

does not need gradients or Hessians. Specifically for nonlinear LSQ, the Levenberg-

Marquardt method is probably the most popular. The optimization task can be handled

with standard optimization routines found in different scientific computing environments.

The covariance of the Gaussian proposal can be chosen by trial and error. Often, however,

it is useful to use the covariance approximation obtained from linearization. That is,

the model is linearized and then the formula from linear theory, Ĉ = σ2(XT X)−1 (see

appendix 1 for proof), is used. The linearization is based onTaylor expansion around the

estimated point :

l(θ) = l(θ̂) + ∇l(θ̂)(θ − θ̂) +
1

2
(θ − θ̂)T H(θ − θ̂) + ... (5.1)

whereH is the Hessian matrix containing the second order derivatives (see Appendix 1).

When we consider the LSQ function

l(θ) =
n
∑

i=1

(f(xi, θ) − yi)
2

we get expressions for the derivatives atθ = θ̂:

∂l(θ̂)

∂θi
= 2

n
∑

k=1

∂f(xk, θ̂)

∂θi
(f(xk, θ̂) − yk),

∂2l(θ̂)

∂θi∂θj

= 2
n
∑

k=1

(

∂2f(xk, θ̂)

∂θi∂θj

(f(xk, θ̂) − yi) +
∂f(xk, θ̂)

∂θi

∂f(xk, θ̂)

∂θj

)

.

Since the residuals (f(xk, θ̂) − yk) are relatively small (the LSQ has been optimized with

an optimization routine to produce the estimateθ̂), we can omit them and write an ap-

proximation for the Hessian matrix as follows:

Hij ≈ 2
n
∑

k=1

∂f(xk, θ̂)

∂θi

∂f(xk, θ̂)

∂θi
.

In matrix form, H ≈ 2JT J , whereJ is the Jacobian matrix calculated atθ̂, containing

the first order derivatives (see Appendix 1).

When we insert the approximation to the truncated Taylor expansion (first three terms),

we get

l(θ) ≈ l(θ̂) + (θ − θ̂)T JT J(θ − θ̂) (5.2)

46

because∇l(θ̂) ≈ 0 at the LSQ optimum.

In linear case (see appendix 1), whenX denotes the design matrix, we have

l(θ) = (Xθ − y)T (Xθ − y) = θT XT Xθ − θT XT
y − y

T Xθ + y
T
y (5.3)

which can be written as a quadratic form containing(θ − θ̂):

l(θ) = (θ − θ̂)T XT X(θ − θ̂) + D (5.4)

whereD is independent ofθ. Substitutingθ = θ̂ yieldsD = l(θ̂) and

l(θ) = l(θ̂) + (θ − θ̂)T XT X(θ − θ̂) (5.5)

where is the estimate from the linear theory (see Appendix 1).

Thus, comparing equations (5.2) and (5.5), we see that the Jacobian matrixJ assumes

the role of the design matrixX in the linear formulas, and the covariance approximation,

when the assumptionCov(y) = σ2I is made, gives

C = Cov(θ̂) ≈ σ2(JT J)−1.

Here the varianceσ2 could be calculated from replicated measurements. This is not often

possible, however. We can use the residuals of the fit to estimate the variance, based on

the assumption that measurement error is about equal to residuals. [13]

σ2 ≈ σ2
MSE =

RSS

n − p
=

∑n
i=1 (yi − f(xi, θ))

2

n − p
(5.6)

The JacobianJ might be difficult to calculate analytically so we often needa numerical

approximation for it, calculated using finite differences.

Finally, the basic Random Walk Metropolis algorithm can be given in pseudo code, from

which it is straightforward to implement with a number of programming techniques.

1. (Initialization)

• ChooseNsimu

• Setθ1 = minθ

∑n
i=1 (yi − f(xi, θ))

2 (Use some optimization routine)

47

• CalculateMSE = RSS/(n−p) wheren is the number of measurements and

p the length ofθ

• SetSSold = SSθ1

• Calculate JacobianJ (numerically or analytically)

• CalculateC = (JT J)−1 ∗ MSE

• CalculateR so thatC = RT R (Cholesky decomposition)

2. (Simulation Loop)

• For i = 2 to Nsimu

– Samplez = {zi}, i = 1...p wherezi ∼ N(0, 1)

– Setθnew = θold + Rz

– Sampleuα from U [0, 1]

– CalculateSSnew

– Calculateα = min (1, e−0.5σ−2(SSnew−SSold))

– If uα < α

∗ Setθi = θnew

∗ Setθold = θnew

∗ SSold = SSnew

– Else

∗ Setθi = θold

– Endif

• Endfor

Note that the model might have more than one response components that are observed

(every measurementyi is a vector). In this case the calculation of the sum of squares also

leads into a vector. The finalSS -value can be calculated as the sum of the components.

5.3 Burn-In and Practicalities

In the beginning of MCMC sampling there may be a period beforethe algorithm con-

verges to the correct distribution and starts producing samples from it. The length of the

initial period depends on the shape of the target distribution and the initial valuesθ0. The

48

period in which the chain has not yet converged must be discarded in order to avoid un-

representative, "false" samples. This period is called theburn-in period. In practice one

might give the length of the burn-in period as input to the algorithm, for example 1000

iterations. During the burn-in period the parameter valuesare not saved into the chain

structure. [2]

How long should the burn-in period be? Some ways to detect convergence and end the

burn-in period are introduced in section 5.4. The most simple way is to run the MCMC

algorithm a few times with different starting values and visually see where the parameter

values converge to some equilibrium and thus base the lengthof the burn-in period on

these observations.

One typical option to form the chain is to run a single long run, discard the burn-in period

and regard the rest as a sample from the target distribution.Here, however, the samples

are not independent, since the sampling is based on a Markov Process and correlation

between consecutive members in the chain exists. To reduce the correlation of the samples

it is possible to perform thinning, which means saving only everyn:th point of the chain.

The level of independence can be studied in many ways, of which some are explained in

section 5.4.

Other strategies for MCMC sampling include making several medium-length parallel

MCMC runs. Here, however, we might run into convergence problems, if the algorithm

does not converge fast enough. If we make every parallel chain long, we end up with

issues of computational complexity. The task of running parallel MCMC runs would

therefore be an interesting application of parallel computing - the parallelization of the

problem is quite straightforward. That is, if we have an effective parallel computing envi-

ronment (a cluster for example), we might be able to run parallel chains with no significant

increase in computational time.

The extreme strategy would be to make a large number of short MCMC runs from dif-

ferent (random) initial values and record only the final state of every run. In this work,

however, the strategy of one, sufficiently long run is used.

5.4 Convergence Diagnostics and Chain Length

A difficult question in MCMC methods is whether the created chain is long enough so that

it has reached its invariant distribution. Another issue that needs consideration is whether

49

the algorithm has covered the target distribution sufficiently.

How can the sufficient chain length be assessed in MCMC methods? The methods that

address this issue belong to the field of MCMC convergence diagnostics. Convergence di-

agnostics here means statistical analysis done in order to asses convergence of the MCMC

algorithm. A nice review about the methods currently available in MCMC convergence

diagnostics can be found from [20]. Some of the methods are briefly discussed here.

The convergence assessment issue is difficult in MCMC algorithms, because the rate of

convergence vary depending on the algorithm used and the target distribution. It is stated

in [20] that it is not possible to construct effective analytical estimates for the convergence

rate and accuracy of MCMC algorithms. That is, we cannot get any analytical formula

or stopping criteria for the algorithm, that would uniquelydetermine the run length. The

MCMC algorithms can be falsified, but not verified - we can never be totally sure that the

sample created is a comprehensive representation of the posterior distribution. Conver-

gence diagnostics are methods for making educated guesses about the convergence of the

algorithms.

The methods for assessing convergence can be roughly divided into categories. The most

simple and straightforward methods seem to be based on monitoring the created chain

visually or with some statistical tools. These methods are quite easy to implement and

do not cause a lot of extra computational complexity. That iswhy these methods are

discussed here in more detail than other, more formal methods.

The most obvious method for assessing convergence in MCMC isthe visual study of

the marginal paths. That is, one can plot every column of the chain separately for every

parameter versus the index of the row in question. From marginal chain paths one can

see where the values start to converge to a certain level. Thelargest initial period of the

marginal paths, where the chain seems not to have converged,can be regarded as the

minimum length for the burn-in period. This is illustrated (for an example task presented

in section sec:boxo) in figure 5.2. [2]

The sum of squares values given by every sampled parameter vector can also be studied to

get information about the movement of the algorithm. The range in which the SS-values

vary should stay about constant when the algorithm has converged.

A popular approach to diagnose convergence is to run a numberof parallel chains with

very dispersed starting values. Again one can visually study the period, after which the

50

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5
K1mean

0 100 200 300 400 500 600 700 800 900 1000
−0.02

0

0.02
E1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
K2mean

0 100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1
E2

Figure 5.2: Marginal paths for a kinetic model (see section 9.2 for model description). It
seems that the first two parameters converge quite fast to their marginal stationary distri-
butions, whereas for the last two the convergence takes 300-400 steps. Thus, the burn-in
period should be at least 400 here.

chains start to agree. For visual study one can use the marginal paths, for example. It is

also possible to compare the parallel chains using some similarity measure, as explained

in [20].

The most simple statistics normally calculated from the MCMC steps is the acceptance

ratio, that is the percentage of points accepted until a certain number of steps. Some ranges

for "optimal" acceptance ratio are suggested in literature, but since the optimal acceptance

ratio is dependent on the shape of the posterior distribution, it is difficult to construct any

generally applicable rules concerning the acceptance ratio. However, a value between

0.1 and 0.5 is normally regarded to be satisfactory. Monitoring the acceptance ratio and

tuning the proposal distribution according to it is one of the simplest ways to improve

the convergence of the MCMC methods. If the acceptance ratioseems too low, a smaller

proposal distribution can be tried, for example by scaling the covariance of the Gaussian

proposal down, and vice versa for too high acceptance ratios.

The correlation between states that are close to each other causes bias in the estimates

based on the produced chain. That is, when assessing if the chain really is a set of iid

samples from the target distribution, one can use the information about the correlations

51

between members in the chain. This is normally done with autocorrelation functions

(from time series theory), that give the correlation between two components in the chain

that arek iterations away from each other. That is, thekth order autocorrelationR(k) is

R(k) =

∑N−k
i=1 (θi − θ̂)(θi+k − θ̂)
∑N

i=1 (θi − θ̂)2
=

Cov(θi, θi+k)

V ar(θi)
(5.7)

whereθi is the marginal distribution of parameteri in the MCMC chain. Usually low

autocorrelation means fast convergence. In addition, one might want to plotR(k) against

k that should show geometric decay. Using autocorrelations in converge diagnostics is

illustrated in figure 5.3.

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

k

R
(k

)

Figure 5.3: An autocorrelation plot for the first parameter in the kinetic model explained
in section 9.2. The plot shows clear decay so the chain has probably converged when it
comes to this parameter. In addition, if we take every 100th component from the chain,
we can regard the thinned chain as a set of independent samples.

Another graphical method that appears in the literature is the CUSUM method. In this

method the cumulative sums of the marginal distributions are calculated and plotted

against the number of terms used in the sum, and the smoothness of the plot is inves-

tigated. [20]

In addition, some formal statistical tests have been developed to test the convergence of

the MCMC algorithm. In the Geweke method, for example, the chain (burn-in discarded)

is split into separate peaces and these are compared with a similarity test. [20]

A bit analogously with the Geweke method, one can calculate so called "batch means"

from the chain. In this method, the precision of the sample mean is estimated by dividing

the chain into small parts, "batches". The mean values of thebatches are then calculated

52

and the variance of the means is estimated. When using this method, one has to make sure

that the individual batches are long enough so the sample means are satisfactory estimates

for the true means. In addition, one has to use a sufficient number of batches to get a good

estimate for the variance. In literature, 20 different batches are suggested. [2]

5.5 MCMC Results and Visualization

The visualization of results is an important issue when making inference based on MCMC

simulations. What kind of plots can we produce to present thenew information, brought

by MCMC, to the modeler? This question is discussed here.

Traditional regression analysis gives fixed values for unknown parameters and prediction

curves. MCMC methods are based on random sampling and resultin empirical distribu-

tions for unknown parameters. Moreover, it is possible to sample also values for model

prediction at different points and construct a distribution also for the response curves of

the model, that are called herepredictive distributions.

Because MCMC results in empirical distributions, it is possible to derive information

related to uncertainties in unknown parameters (identifiability) and in model predictions.

In addition, pairwise examination of different parametersin the chain gives information

about how the parameters correlate, which may lead to model refinement, for example.

5.5.1 Marginal Distributions

The MCMC methods produce samples from ann-dimensional posterior distribution of

unknown parameters. The distribution of any subset of the parameter vector can be de-

rived directly from the chain by choosing the values sampledfor the parameters in ques-

tion.

The most obvious plots that can be produced from the MCMC chain are the one-dimensional

marginal distributions for each parameter. For estimatingthe density of the marginal dis-

tribution one can use some kind of non-parametric density estimation mechanism, for

example histograms and kernel density estimators. The histogram approach for one-

dimensional density estimation is illustrated in figure 5.4.

53

Figure 5.4: Histograms for unknown parameters from the model described in section 9.2.
The drawback of using histograms is that many points are needed to produce a smooth
plot. This plot was created with the Metropolis algorithm with chain length 250000.

One might also want to calculate some kind of confidence intervals for one-dimensional

marginal distributions that approximately include some percentile (1 − α) of the distri-

bution mass. For samples of one parameter this is easy to do bysorting the sampled

parameter values and approximating where the cumulative sum of the values reaches per-

centilesα/2 and (1 − α/2). The following table is created from the chain as in figure 5.4

with α = 0.05. Table 1 shows the LSQ estimate, the empirical median of the chain and

the empirical limits for the confidence interval.

Table 1: Least squares estimates and empirical confidence limits.

LSQ 0.5 α/2 1 − α/2
θ1 0.9264 0.9308 0.8024 1.1311
θ2 0.1080 0.1073 0.0815 0.1350

It is also common in MCMC analysis to plot the sampled points pairwise for every pos-

sible parameter pair, to reveal correlations between parameters (figure 5.5). In this case,

one might want to construct a confidence region, that would approximately include a

certain percentile of the two-dimensional marginal distribution mass. One could use the

histogram approach in two dimensions as well by assigning a grid on the axes and see

how many points fall into each box in the grid. Below some additional approaches for

estimating the (1 − α) level based on the sampled points are discussed.

One-dimensional marginal plots reveal problems in the identifiability of different pa-

rameters. The two-dimensional plots can reveal correlations and show that the ratio of

two parameters is well identified, but the parameters themselves are not (a line in two-

dimensional plots). For some models it may be useful to plot also three-dimensional

54

marginal distributions, which might reveal a plane-like behaviour between three parame-

ters, that could not be visualized with lower dimensional plots.

0

0.005

0.01

0.015

0.02

2

1

0.5 0.6 0.7 0.8 0.9

0.16

0.18

0.2

0.22

0.24
3

0 0.005 0.01 0.015 0.02

2

Figure 5.5: Sampled parameter values plotted pairwise for the example model described
in section 9.2.

Kernel Density Estimation

For one-dimensional density plots and two-dimensional scatter plots the density in a de-

sired point can be estimated using a sum of kernel functions at every data point. That is,

in a one-dimensional case, in pointx we estimate the densityd(x) with

d(x) =
n
∑

i=1

K

(

x − xi

h

)

(5.8)

where the data pointsxi are the sampled parameter values, in the MCMC context. Usually

the kernel functionK is the PDF of some well known distribution, like Gaussian. The pa-

rameterh is the "bandwidth", which describes the width (variance) ofthe kernel function

- the bigger the parameter is, the smoother plots we get, since every point spreads wider

to the neighborhood. Normally a rule of thumb (introduced in[21]) for h is used and we

take

h = 1.06n−1/5 min (s, iq/1.34) (5.9)

wheres is the standard deviation andiq the interquartile range (see Appendix 1) of the

samples.

For the pairwise scatter plots the PDF of a bivariate Gaussian distributionN(x1, x2, σ1, σ2, ρ)

(for representation, see for example [8]) can be used as a kernel function, with some val-

ues given to variances (σ1 andσ2) and correlationρ. In the bivariate case the variances

55

can be calculated using a rule of thumb as follows (see [21]).

σ1 = 1.06n−1/6 min (s1, iq1/1.34)

σ2 = 1.06n−1/6 min (s2, iq2/1.34) (5.10)

wheres1, s2 (standard deviations),iq1 andiq2 (interquartile ranges) are calculated from

the samples. For more on kernel density estimation, refer to[21].

The kernel density approach is illustrated in figure 5.6 for both pairwise scatter plot and

one-dimensional marginal distributions. The kernel method is applied to one-dimensional

parameter plots to get a smooth-looking PDF for the parameters. In two-dimensional

density estimation, a grid is set on the axes and the density is estimated at each point.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2

1

Figure 5.6: A scatter plot of a parameter pair with confidenceregions based on kernel
densities. 1D marginal distributions, also produced by thekernel method, are combined
with the scatter plot.

Confidence Regions Using Gaussian Mixture Models

Another idea to form confidence regions is to use Gaussian Mixture models. A Gaussian

Mixture model is a distribution with the PDF defined as a weighted sum of a number, say

Nc, of Gaussian PDFs. That is

p(x|µ, Σ) =

Nc
∑

i=1

wipi(x|µi, Σi) (5.11)

56

where
∑c

i=1 wi = 1, which means that
∫

p(x|µ, Σ)dx = 1. That is, the model is formed

from multivariate Gaussian "components" with meansµi and covariancesΣi.

The MCMC chains can be analyzed and represented in differentways using GMM. A

Gaussian mixture model can be fitted to the produced chain. Especially, for plotting

purposes, a number of bivariate Gaussian components can be fitted to the pairwise data

of the chain. Then, the contours (ellipses) of a certain desired confidence level (1 − α)

can be plotted. These can be graphically combined to produced an estimate of the overall

(1 − α) confidence region. This"combined GMM ellipses" approach is illustrated in

figure 5.7.

Figure 5.7: A scatter plot of a parameter pair with confidenceregions based on a Gaus-
sian Mixture Model. The confidence regions for the components of the mixture are first
computed and the contours are combined.

The fitting of the GMM can be done, for example, using the Expectation-Maximization

(EM) algorithm (see for example [6]). The fitting for the datasetx = (x1, ..., xn) goes,

in principle, as follows.

1. Generate an initial guess for the parametersµ0 = (µ
(1)
0 , ..., µ

(c)
0) andΣ0 = (Σ

(1)
0 , ..., Σ

(c)
0)

for c different components. Seti = 0.

2. (a) Calculate the posterior probabilities (weights)w(j) and normalized versions

ŵ(j) for each component (j = 1...c) and for each point using the PDFs of the

components

w(j) = p(x|µ(j)
i , Σ

(j)
i)

ŵ(j) =
w(j)

∑n
k=1 w

(j)
k

(b) Calculate new means, covariances and weights for the Gaussian components

57

as expectations

µ
(j)
i+1 =

n
∑

k=1

ŵ
(j)
k xk

Σ
(j)
i+1 =

n
∑

k=1

ŵ
(j)
k (xk − µj

i+1)(xk − µj
i+1)

T

w
(j)
i+1 =

1

n

n
∑

k=1

w
(j)
k

3. If the desired precision is achieved, stop. Otherwise seti = i + 1 and go to step 2.

A good initial guess for the parameters can be calculated, for example, using some clus-

tering algorithm, such as K-means (see for example [22]).

The plotting mechanism based on the graphical combination of the confidence ellipses of

the components of a fitted GMM is suitable for certain situations. Sometimes, however,

the plots produced are angular: the points where two ellipses intersect produce sharp

corners to the plots, as seen in figure 5.8. In addition, a lot of manual tuning is needed

related to the number of fitted Gaussian components. Some ideas on how to automatically

detect the "optimal" number of components exist, for example in [23].

−0.01

0

0.01

0.02

2

1

0.6 0.8 1

0.16
0.18

0.2
0.22
0.24

3

−0.01 0 0.01 0.02

2

Figure 5.8: Scatter plots of parameter pairs with confidenceregions based on a Gaussian
Mixture Model. The points of intersection result in angularplots.

Another way to use the fitted Gaussian Mixture Model to two-dimensional density estima-

tion and confidence region plots is to pick the direction of the Gaussian kernel function

58

(correlationρ) in a certain point according to the component in the mixturemodel that

the point belongs to. This"GMM-directed kernel density estimation" produces bet-

ter density estimates and more accurate confidence regions in the pairwise scatter plots -

especially in cases where the shape of the marginal distribution alters a lot.

In practice the directed kernel density estimation works asthe kernel density estimation

with a fixed covariance (variances and correlation in 2D case), with the exception that we

now choose the correlation for the bivariate Gaussian kernel separately for every point

using the covariance matrix of the corresponding GMM component. The GMM compo-

nent that the point belongs to is decided by checking which weighted component gives

the largest density (PDF value) to the point. That is, we choose the component for point

x with

i∗ = max
i

wipi(x|µi, Σi) (5.12)

Example. Let us concider the two-dimensional version of a "banana shaped" target dis-

tribution, introduced in [24]. That is, the PDF of the targetdistribution is defined by

fb = f ◦ φb(x), wheref is the PDF of a bivariate Gaussian distributionN(0, C) with

C = diag(100, 1) (contours are ellipses with one axis 10 times the size of the other). The

twisting effect is brought to the target by definingφb(x) = (x1, x2 + bx
2
1 − 100b). The

greater the parameterb is, the more twisted the target is. Here the valueb = 0.1 is used.

In figure 5.9 the directed approach is compared to the kernel density estimation with a

fixed kernel, using 5000 points sampled from the target distribution with PDFfb.

The computational complexity of the EM-algorithm is often quite high, especially when

it comes to large data sets as is the case in analyzing MCMC output. Some new, faster

versions of the EM-algorithm, designed especially for large datasets, have been proposed

lately for example in [25]. These algorithms are to be testedfor MCMC purposes in the

future.

Due to the difficulties in the GMM approach for plotting confidence regions, the kernel

density estimation approach with a fixed kernel function is used in this work as the basic

way of forming confidence regions. However, if the kernel density approach does not

work, the GMM-based approach can be tried. Gaussian mixturemodels are also useful in

other aspects of MCMC analysis, some of which are listed below.

• Compression of the MCMC chain - a long chain can be expressed with few param-

eters (weights, means and covariances of the components)

59

• Producing new data - it is possible to sample new data from themixture model,

which is approximately distributed as the points sampled with MCMC

• New statistics from the chain - the correlations in the component Gaussians reveal

the structure of the correlations in the model parameters

−30 −20 −10 0 10 20 30

−60

−50

−40

−30

−20

−10

0

10

20

Fixed kernel density

−30 −20 −10 0 10 20 30

−60

−50

−40

−30

−20

−10

0

10

GMM−directed kernel density

Figure 5.9: Density estimation of a twisted, thin distribution using 5000 sampled points.
The left figure is produced by using a fixed kernel function, whereρ is taken as the corre-
lation coefficient calculated from the points. The right figure is produced by choosingρ
separately for every point using a fitted Gaussian mixture model with 6 components.

5.5.2 Predictive Inference

The accuracy of the response of the model can also be evaluated through MCMC methods.

That is, we are not limited the model parametersθ - we can, in fact, make inference about

any functionf(θ). The function can also be the model itself. If we calculate the model

response values with different parameter values produced by MCMC methods, we get the

so calledpredictive distributions. These model prediction curves and their distribution

are, in fact, often more interesting than the distributionsof the parameters.

In practice, this results in curves that represent the distributions of the model prediction

and observations (see figure 5.10).

60

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

A

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

time

B

Figure 5.10: Predictive distribution for the response components for the example model
described in section 9.2.

The confidence interval marked with darker gray in figure 5.10is produced simply by

calculating the response curves with the parameter values given in the sampled chain for

given time points (the ODE systems that describe chemical reactions are time dependent),

for example. This results in a sample of response values in different time points. That

is, values for given time points are calculated using the model with the parameters in the

MCMC chain. With the samples it is possible to create an empirical confidence interval

for every time point. The1 − α confidence intervals for model prediction curves can be

formed as follows.

1. Generate MCMC chain for unknown parameters

2. Calculate the model prediction for (a thinned part) the chain in order to create a

chain for the model prediction.

3. Calculate the confidence interval for the prediction values separately for every time

point

(a) Sort the values

61

(b) Take theα/2 and1 − α/2 empirical percentile of the samples (through inter-

polation)

4. Plot the limits for every (time) point

Of course the production of response samples does not have tobe a separate procedure

like presented above - the samples can be calculated in MCMC iterations after sampling

new values to the chain. The response values could be saved, for example, in every 100th

step.

The uncertainty of new observations can be modeled by adding"noise" to the calculated

model prediction values. The added noise depends on the error variance (or covariance)

of the measurements. The error can be assumed to be constant (some approximation) or

it can also be sampled when the MCMC chain is constructed. Theconfidence intervals

for the noisy predictions (lighter gray in figure 5.10) can beformed as stated above. The

error sampling schemes are discussed further in section 5.6. In practice, the confidence

area created by adding noise to the sampled prediction curves means, roughly speaking,

the area from which observations (present and the ones yet tocome) can be expected to

found with a certain probability.

Different Ways to Model the Measurement Error

In figure 5.10 the noisy predictions, that form the lighter gray area, were formed by adding

normally distributed noise (ǫ ∼ N(0, σ2I)) to the model predictions given by the param-

eters in the MCMC chain. That is,ynoisy = ypred + ǫ. When the predictionypred gets

close to zero, as happens with responseA in figure 5.10, the noisy predictions might get

negative values and thus allow negative observations sinceǫ > ypred. This happens, be-

cause the size of the measurement error is assumed to be constant between consecutive

measurements, whereas in practice the measurement error issmaller when the values of

the responses get small.

In figure 5.10 this problem is handled by cutting the negativenoisy prediction area away

from the plot and allowing onlyynoisy ≥ 0. An alternative way to model the noise struc-

ture is to calculate
√

ynoisy =
√

ypred + ǫ, which givesynoisy = (
√

ypred + ǫ)2 and thus all

noisy predictions are positive. This magnifies the error a little, but is suitable for certain

situations. When this kind of approach is used, the sum of squares in the likelihood in

the MCMC run (equation 2.9) has to be calculated in the corresponding manner: here

SSθ =
∑

i (
√

yi −
√

f(xi, θ))
2.

62

A third way to add the error to the model predictions, so that the noisy predictions are

all positive, is to assume that the noise is multiplicative and lognormal. That is,ǫLOG ∼
Log − N(0, σ2I) which means thatǫ = log (ǫLOG) ∼ N(0, σ2I). Now we can calculate

log (ynoisy) = log (ypred) + ǫ which givesynoisy = ypred exp (ǫ) ≥ 0. In this case the

likelihood is calculated usingSSθ =
∑

i (log yi − log f(xi, θ))
2.

In figure 5.11 the "squared error" and "multiplicative lognormal error" approaches are

demonstrated. For the demonstrations, data was created forthe squared error case with

Ydata =
(√

Ymodel + ǫ
)2

and for the lognormal case withYdata = Ymodel exp (ǫ). For the

first component (A) the noise was created withǫ1 ∼ N(0, 0.05) and forB with ǫ2 ∼
N(0, 0.1).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

A
 (

sq
ua

re
d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

time

A
 (

lo
gn

or
m

)

Figure 5.11: Predictive distribution plots for response componentA of the model intro-
duced in 9.2. The "squared error" approach is presented above and the "lognormal" case
below. With these approaches no negative, "non-physical" predictions are simulated.

5.6 Sampling the Error Variance

In the algorithms presented in this work, the measurement error is modeled asǫ ∼
N(0, σ2I), and the Gaussian likelihood is constructed using this assumption. The er-

ror varianceσ2 is assumed to be known and it stays constant during the MCMC run. Note

that the error variance might differ between different observed response components.

63

Normally, however, the error variance is not exactly known and an approximation has

to be calculated using the measurements. If replicated measurements from observation

points are available, the error variance can simply be estimated as the sample variance

calculated from the replicated measurements. When this is not the case, the error variance

can be approximated from the data using the classical formula (equation 5.6).

The error variance can also be regarded as a variable - we can let the variance "float" and

sample it along with the unknown model parameters. In this section, one such sampling

mechanism, based on a conjugate prior and Gibbs sampling, ispresented. The presenta-

tion is based on [3].

We know, assuming a non-biased "perfect" model, that the error terms (ǫi = yi−f(xi; θ))

are distributed the same way as the error. If we assume that the error is normally dis-

tributed, we can write an expression for the conditional probability distribution of param-

eters and measurements with a given variance:

p((θ, y)|σ2) ∝ (σ2)−n/2 exp (− 1

2σ2

n
∑

i=1

ǫ2
i)

= (σ2)−n/2 exp (− 1

2σ2
SSθ).

We are interested in the posterior distribution of the errorvariance,p(σ2|(θ, y)). Using the

Bayesian notation, we can writep(σ2|(θ, y)) ∝ p(σ2)p((θ, y)|σ2) wherep(σ2) represents

the prior density for the variance.

How can we assign the prior for the variance so that the posterior distribution is some

known distribution, from which we can produce samples efficiently? If we use conju-

gate priors (section 2.3.1), the posterior has the same formas the prior. For the normal

distribution with unknown variance, the conjugate prior isthe inverse Gammadistribu-

tion, which can be rewritten (with different parameterization) to the form of thescaled

inverseχ2 distribution (Inv-χ2(n, S2)), that has the following PDF form withn degrees

of freedom and scale parameterS2:

p(x) ∝ x−(n/2+1)e−(nS2)/2x (5.13)

which is equivalent to theinverse Gammadistribution (Γ−1(α, β)) with parametersα and

β, that has the PDF

p(x) ∝ x−(α+1)e−β/x. (5.14)

64

It can be easily seen, that the likelihood function above assumes the form of the PDF of

the Inv-χ2(n, S2) distribution (and thus inverse Gamma), ifσ2 is regarded as the variable

andθ constant. That is, when we multiply the prior and the likelihood, they get a similar

form, with different parameters.

Now we assign a conjugate prior to the variance from the scaled inverse-χ2 (inverse

Gamma) asσ2 ∼ Inv − χ2(n0, σ
2
0). The resulting posterior density is

p(σ2|(θ, y)) ∝ p(σ2)p((θ, y)|σ2)

∝
(

σ2
)−(n0/2+1)

exp

(−n0S
2
0

2σ2

)

(

σ2
)−n/2

exp

(−SSθ

2σ2

)

=
(

σ2
)−((n0+n)/2+1)

exp

(

− 1

2σ2

(

n0S
2
0 + SSθ

)

)

.

That is, using the inverse Gamma, we can write the posterior distribution for the variance

as

σ2|(θ, y) ∼ Γ−1

(

n0 + n

2
,
n0S

2
0 + SSθ

2

)

= Γ−1(a, b). (5.15)

In practice, the Gamma distribution is more convenient for sampling, since many scien-

tific computing environments include the functions to sample from it. We can use the

relationship between Gamma and Inverse Gamma distributions and calculate the variance

with σ2 = 1/γ whereγ ∼ Γ(a, b−1). This can be done, because ifX ∼ Γ−1(a, b) then

Y = 1/X ∼ Γ(a, 1/b).

When the result is coupled with a MCMC sampling algorithm forthe parameters, we

arrive at a Gibbs sampling procedure (see section 4.5). Thatis, we assign some initial

value for the model parameters (usually the LSQ optimum), and then sample the variance

from the conditional distribution as described above. In the next MCMC step we use the

sampled variance and thus calculate a newθ conditional onσ2, which we use to sample a

newσ2. The sampling procedure adds only one step to the MCMC algorithms, after the

acceptance step.

The parametern0 in the prior distribution can be thought to represent the number of ob-

servations equivalent to the information given by the prior. TheS2
0 represents the average

squared deviation of the observations [3]. In practice,n0 = 1 andS2
0 = MSE (see equa-

tion 5.6) are often chosen in this work. The parametern0 is often chosen to be small (such

as 1 or 0.01 or 0.001), which is an attempt to make the prior uninformative, as explained

in [26]. If we choosen0 = 0, the effect ofS2
0 vanishes, but sinceSSθ can be close to 0, we

often need some kind of prior and prefer a small number forn0. On the other hand, also

65

informative versions of the prior can be used, if we have somekind of a priori knowledge

about the behavior ofσ2.

If the error is modeled to be multivariate Gaussian with somecovariance matrix, the

conjugate prior distribution for the covariance is Inverse-Wishart. That is, also the error

covariance matrix can be sampled at each MCMC step, if we do not want to make the

assumptionC = σ2I. In this case we allow the different response components to have

correlated errors. For more information about error modeling, see [3] and [27].

66

6 Adaptive MCMC Algorithms

In the basic MCMC method based on random walk Metropolis-Hastings (see section 4.2)

the problem is how to choose the proposal distribution so that the algorithm converges

as fast as possible. This normally requires a lot of manual tuning of the proposal. When

using a Gaussian proposal, the problem is to find a suitable covariance matrix for the

proposal.

Adaptive MCMC methods use the history of the iterative process (the chain created so

far) to update the proposal distribution during the computation. Several algorithms are re-

cently introduced, using a bit different adaptation schemes to update the covariance matrix

of a Gaussian proposal distribution. The Adaptive Proposal(AP) and Adaptive Metropo-

lis (AM) algorithms are discussed in the next section. Afterthat, some further methods,

called DRAM (Delayed Rejection Adaptive Metropolis) and SCAM (Single Component

Adaptive Metropolis) are presented. No convergence and ergodicity investigations are

made here, for them refer to the original papers ([28],[18]). The goal is to present the

algorithms in a practical form from which they are straightforward to implement.

It is clear that the adaptive algorithms lead to a stochasticprocess that is not Markovian,

because the dependence on the history reaches further back than to the previous state. For

some of the methods, however, it can be shown that the algorithm has appropriate ergod-

icity properties so that it generates samples correctly from the invariant target distribution.

The adaptive algorithms mentioned above are based on updating the covariance matrix

of a Gaussian proposal distribution. That is, both the widthand the orientation of the

proposal distribution are updated iteratively.

6.1 Adaptive Proposal and Adaptive Metropolis

The Adaptive Proposal (AP) and Adaptive Metropolis (AM) algorithms were introduced

in [24] and [29]. The only difference is that in AP the covariance of the Gaussian pro-

posal distribution is calculated using a fixed number of previous states, whereas in AM

an increasing part of the whole chain calculated so far is used in the adaptation. Both of

the algorithms are based on updating the covariance of a Gaussian proposal, as calculated

from the sampled chain. A danger of adaptive schemes is that they may lead to incorrect

convergence, since the process is not Markovian anymore andthe standard ergodicity re-

67

sults do not apply. Indeed, this is the situation with AP, while the authors could prove the

ergodicity of the AM algorithm ([29]).

The adaptive methods simply add one step to the simulation loop of the basic MCMC

algorithm. If we look for example the algorithm presented insection 4.2, we can add an

"adaptation step" to the algorithm after the "acceptance step" (the if-structure):

• Do Adaptation

– CalculateCt+1

– CalculateR so thatCt+1 = RT R

How is the new covariance matrixCt+1 calculated? Let us suppose here that we are at

time t in the algorithm and we already have created chain(X0, X1, ..., Xt). The proposal

distribution is now Gaussian with mean at the current stateXt and covarianceCt+1. For

the AP algorithm we use a fixed history length, sayl, and put

Ct+1 = sdCov(Xt−l, ..., Xt), when t > t0. (6.1)

In the AM algorithm we use the whole history of the chain, and the adaptation rule can

be defined as

Ct+1 = sdCov(X0, ..., Xt), when t > t0 (6.2)

wheret0 is the initial period after which the adaptation is begun. When t < t0 we can

use a fixed initial covarianceC0. The constantsd is a scaling parameter that depends only

on the dimension of the parameter space. In practical implementations we use a rule of

thumb for the scaling parameter, introduced in [30]:sd = 2.42/d. This can be shown

to optimize (in some sense) the mixing properties of the random Metropolis walk when

using Gaussian target and proposal distributions. [29]

The adaptation process can be "thinned", which means that the adaptation is done after

a certain period - during a number of steps we use a fixed, previously adapter proposal,

after which we do adaptation again. The covariance is calculated using the formula for

the empirical covariance matrix (see Appendix 1). This, however, requires a lot of com-

putation if we do it every time we perform adaptation. In chapter 6.1.4 some ways to

update the covariance recursively, based on the values fromthe previous adaptation step,

are presented.

The Adaptive Metropolis algorithm is compared to the MH algorithm in the next example.

68

Example. Let us consider a situation, where we have unknown parameters θ = [a, b] and

model responsey and we have to form the distribution of the parameters. We define the

likelihood for the parameters so that the parametera has to be close toy. In addition,

we know a priori that the parameterb has to be very close toa2. That is, we define the

likelihood as

p(y|(a, b)) = exp (−100(b − a2)2) exp (−(a − y)2) = exp (−100(b − a2)2 − (a − y)2).

The negative log-likelihood function− ln(p(y|(a, b))) = 100(b − a2)2 + (a − y)2 re-

minds theRosenbrockfunction, which is often used as a benchmark function for different

optimization routines. That is, the distribution of the parameters here follows the Rosen-

brock function, which has a rather difficult shape, which makes the tuning of the proposal

distribution for MCMC sampling more difficult.

In the example we sety = 1. Both normal Metropolis MCMC and AM are run with

different Gaussian proposal distributions with mean at thecurrent point. A fixed covari-

ance of formC0 = σ2

k
I is used for the Metropolis MCMC and for the AM before the first

adaptation. In figure 6.1, several runs of length 5000 are run, with different values for

the scaling parameterk. By alteringk we change the size of the fixed Gaussian proposal

distribution. The acceptance rate and the scatter plots areexamined to make conclusions

about the performance of the different approaches.

From figure 6.1 one can see that the performance of Metropolisalgorithm is very sensitive

to the proposal covariance. With AM we get reasonable results and better coverage of the

posterior distribution, even if the initial covariance wasnot too well chosen. If the initial

proposal is too large, AM can run into problems related to singularity - the covariance is

calculated from a set of replicates of a single points. In thecases where the algorithm does

not move in the beginning, we might try a larger adaptation interval and scale the initial

proposal covariance so that it becomes smaller. Some tricksto overcome difficulties in

AM are discussed in section 6.1.2. In section 6.3 the DRAM algorithm, that helps to get

the sampler "moving", is discussed.

The AM algorithm seems to work especially well with stronglycorrelated distributions.

This seems natural, since the proposal distribution adaptsto the rapidly changing behavior

of the posterior. The algorithm has been tested to work up to 200-dimensional problems

([29]). When the dimension gets higher, the AM requires increasingly long simulations.

Another adaptive method, designed especially for high dimensional problems, is intro-

duced in the section 6.2.

69

Figure 6.1: The scatter plots in the left column were produced by Metropolis MCMC and
the right ones with AM. Hereσ2 = 0.1. Adaptation interval for the right column was
200 and scaling parameter was 1, 10 and 1000 for each row respectively. The dark black
contour line represents the area where the posterior probability (Rosenbrock function) is
high.

70

6.1.1 Adaptation Interval

How should the adaptation in AM be done? One must make sure that the chain produces

enough diverse points during the adaptation interval so that the covariance matrix can be

calculated. This is especially important in the beginning.Because of problems related to

singularity the adaptation interval is normally taken to bequite large. In general, the more

the chain moves in the beginning, the smaller the adaptationinterval can be. Adaptation

intervals ranging from 50 to 1000 are used in the empirical part of this work.

The effect of cutting down the adaptation interval can be normally seen in better mixing

and in higher acceptance ratio. It depends on the case, however, how strong the effect of

adaptation is. To illustrate the effect, the development ofacceptance ratio in the AM run

is plotted in figure 6.2 for 3 example models discussed in chapter 9. One can see, that the

difference compared to standard MH depends strongly on the case.

0 2000 4000
0

5

10

15

20

25

30

35

40

45

50

iteration

ac
ce

pt
an

ce
 r

at
io

0
50
100
200
500

0 2000 4000
0

5

10

15

20

25

30

35

40

45

50

iteration

0
50
100
200
500

0 2000 4000
0

5

10

15

20

25

30

35

40

45

50

iteration

0
50
100
200
500

Figure 6.2: The development of acceptance ratio with different adaptation intervals for 3
models found from chapter 9. For the first model from the left,the adaptation intervals
50 and 100 seem to provide best results. For the second model,the adaptation interval
100 seems to result in higher acceptance ratio, whereas the efficiency of the plain MH is
quite poor. In the third picture, the adaptation does not have a significant effect on the
acceptance ratio.

71

6.1.2 Greedy Start

A pitfall in using Adaptive Metropolis is the possible slow start of the algorithm. If the

algorithm stays still for a long time in the beginning of the run, the covariance calculated

from the sampled points will become singular and the algorithm will fail. This is why the

adaptation interval is normally chosen to be quite large - there has to be some movement

in the beginning in order to get a reasonable covariance matrix. For later iterations a

smaller adaptation interval could be used (the adaptation could be done more frequently).

One idea would be to alter the adaptation interval as the algorithm proceeds, so that in

the later iterations the adaptation would be done more often. In addition, a separate larger

adaptation interval can be used for the burn-in period.

One way to make sure that the covariance matrix will not become singular is to apply a

greedy startprocedure. In greedy start, the proposal distribution (covariance matrix) is

updated using only the accepted states for a short initial period. That is, all the points

from which the covariance is calculated differ from each other. [29]

If the algorithm does not move or the acceptance ratio is too low, it is because the proposal

distribution is too wide. One way to speed up the algorithm isto "shrink" the proposal

distribution by multiplying the width parameter (variance/ covariance in Gaussian pro-

posals) by some scaling factor. On the contrary, if the acceptance ratio is too high, scaling

upwards works as well. [29]

6.1.3 Initial Covariance

An additional implementation issue related to AM is the roleof the initial covariance

of the proposal distribution. In the initialization step some kind of initial covariance is

formed, typically based on MSE and linearization as explained in chapter 5.2, for ex-

ample. When the first adaptation is calculated, how is the initial covariance taken into

account?

One possibility is to totally discard the initial covariance and merely calculate the first

adapted covariance from the sampled points. Another, perhaps more efficient way is to

take the initially fitted covariance into account as well. This can be done, for example,

by interpreting the initial covariance as if it had been calculated from a number of points,

sayn points, after which the first covarianceC1 can be calculated using the recursive

72

formula. Basically this means that with different choices for n the initial covariance can

be weighted - if largen is chosen, we trust the initial covariance more. In addition, several

AM chains may be calculated, with initial covariance taken as the final covariance of the

previous run. [29]

6.1.4 Updating the Proposal Covariance

In the adaptation step, the new proposal covarianceCt+k (wherek is the adaptation in-

terval) can be calculated simply by applying the empirical covariance formula (appendix

1) to the whole chain(X0, ..., Xt+k−1). However, when the chain lengths get very long,

the calculation of the covariance becomes a large computational burden. Here we dis-

cuss the option of updating the covariance recursively, using the covariance, mean and

sampled points calculated during the last adaptation interval. That is, we try to find the

functionf so thatCt+k = f(Ct, Xt, XNew) whereX t is the mean of(X0, ..., Xt−1) and

Xnew = (Xt, Xt+1, ..., Xt+k−1) includes the new sampled points.

Let us consider a situation where we have sampled points(X0, ..., Xt). Then, as stated in

[29], using the formula for the empirical covariance matrix, we can write the next covari-

anceCt+1 using the previous covarianceCt = Cov(X0, ..., Xt−1) and the new sampled

pointXt as follows:

Ct+1 =
t − 1

t
Ct +

sd

t
(tXt−1Xt−1

T − (t + 1)XtX
T

t + XtX
T
t). (6.3)

The meanX t can also be calculated recursively using the previous meanXt−1. The

formula for updating the mean is derived below.

Xt =
X0 + X1 + ... + Xt

t + 1

=
t

t + 1

X0 + X1 + ... + Xt

t
+

Xt

t + 1

=
t

t + 1
X t−1 +

Xt

t + 1

= X t−1 +
t

t + 1
(Xt − X t−1). (6.4)

Finally, the recursive formula for calculatingCt+k, found by continuing the one-step iter-

ation (equation 6.3), is given as

73

Ct+k = t−1
t+k−1

Ct + sd(
t

t+k−1
X t−1X

T

t−1 − t+k
t+k−1

X t+k−1X
T

t+k−1

+ 1
t+k−1

XnewXT
new).

(6.5)

In addition, a formula for the k-step update for the mean,X t+k−1, that is needed in the

k-step covariance update above, can be written by extendingthe one-step mean update

formula (equation 6.4):

X t+k−1 =
t

t + k
Xt−1 +

1

t + k

t+k−1
∑

i=t

Xi. (6.6)

The covariance update using the k-step formula (equation 6.5) directly results in shorter

and possibly faster code implementations. However, this approach might lead to numer-

ical difficulties such as inaccuracies and number overflows,since the formula contains

matrix multiplications where the cells might have very large values. Thus, in practice, it

is safe and advisable to use the one-step update formula (equation 6.3) iterativelyk times

to produceCt+k from Ct.

Formulas (6.3) and (6.4) also show how the AM algorithm approaches MH whent → ∞,

sinceCt+1 → Ct and X t → X t−1. That is, the proposal converges towards a fixed

distribution. The proof of ergodicity of the AM algorithm isalso based on this fact (see

[29]).

6.2 Single Component Adaptive Metropolis

The idea of adaptation can also be applied to the SC algorithmpresented in section 4.4.

In Single Component Adaptive Metropolis (SCAM), the one-dimensional Gaussian pro-

posal distributions used in SC are adapted individually as in AM. The algorithm is similar

to SC, with the exception that for each componentX i
t the candidate point is generated

from distributionN(X i
t−1, c

i
t) where varianceci

t is updated for each component using the

adaptation rule

ci
t = sV ar(X i

0, ..., X
i
t−1). (6.7)

As in AM, the adaptation is only applied after an initial period, before which the variances

for the conditional proposals for components are kept fixed.The scaling parameters is in

practical implementations chosen as in AM and is therefores = 2.4 (dimensiond = 1).

Again, to avoid computational costs, a recursive formula for updating the variances can be

74

formulated. [18] The SCAM algorithm performs well in high-dimensional cases where

there is no strong correlation between the parameters. It seems to work well also in

some cases with strong correlation, but not in always. In general, truly high-dimensional

problems still require more research.

6.3 Delayed Rejection Adaptive Metropolis

The Delayed Rejection algorithm (DR), introduced in [28], is a modification of the stan-

dard Metropolis-Hastings algorithm that has been proved toimprove the efficiency of

MCMC estimators. The idea in DR is that in case of rejection inthe acceptance step we

propose another move instead of storing the old parameter values in the chain. The accep-

tance probability of this "second stage" acceptance step ischosen so that the reversibility

conditions of the chain are preserved and thus the chain stays ergodic. The second stage

move depends on the current position and on the point that hasbeen rejected in previous

stage. The delayed rejection mechanism can be extended to any number of stages. More

on DR can be found from [31] and [32].

Delayed Rejection Adaptive Metropolis (DRAM) combines adaptation to the DR pro-

cedure. Here, after every AM step done with an adapted covarianceCt, DR is applied

upon rejection so that for stagei the proposal covarianceC = Ci
t . The covariance at DR

stagei can be computed for example simply by scaling the covarianceproduced by the

AM-step: Ci
t = γiCt, wherei = 1...m. Herem is the number of DR stages applied for

every rejected point. The purpose of the algorithm is to guarantee that at least one of the

proposals is chosen sufficiently. Other second stage moves can be designed as well.

The DRAM algorithm improves the efficiency compared to standard MCMC and AM ap-

proaches especially, when the initial point is badly chosenand the parameters are not well

identifiable. In addition, if the algorithms have difficulties in getting themselves moving

(the acceptance ratio is very low), the DRAM algorithm, withsecond stage moves scaled

down, can provide help. In easier cases, the algorithm does not perform significantly

better than AM, for example.

In the empirical part of the work, for most of the models, the AM algorithm was able to

produce a sufficient sample from the posterior. In one case, however, the acceptance ratio

stayed very low with AM, whereas DRAM seemed to produce a morecomprehensive

sample from the posterior (see section 9.6).

75

7 Population Monte Carlo

In MCMC sampling algorithms presented in chapters 4 and 6, one point from the posterior

distribution is sampled at each iteration. The convergenceof the algorithms is ensured

through the ergodicity theorems. In addition, no general stopping rules can be formed

and the convergence is assured by different visual methods.

In Population Monte Carlo (PMC) methods we produce, at each iteration, a sample of

sizen from the target (posterior) distributionπ. In addition, every sample created gives

an unbiased estimator of the mean of the target. That is, the algorithm can be stopped

at any time, only the accuracy of the estimator improves along the iterations. The user

does not have to worry about either dependencies that are dueto the Markovian nature of

MCMC or convergence of the algorithm. PMC can also, if well designed, be a little faster

than standard MCMC algorithms.

The PMC method that has been under research recently, suitable for sampling from the

posterior of the Bayesian framework, is based on iterative replication of the importance

sampling procedure discussed in section 3.2.4. The background of the method is in the

family of Sequential Monte Carlo(SMC) methods, also referred to asParticle Filters,

that are primarily designed for dynamical models, that can be described as a discrete time

series by

xt+1 = f(xt, vt) = f(xt) + vt (7.1)

yt = h(xt, et) = h(xt) + et (7.2)

wherevt andet are noise signals. In the second equations, the additive noise assumption

is made.

The most simple iterative importance sampling methods usedfor dynamical models are

the Sequential Importance Re-sampling (SIR) and the Sequential Importance Sampling

algorithms. More about SMC methods for dynamical models canbe found from [33],

[14], [34] and [35].

The methods can, however, be modified to work also in the case of a static target dis-

tribution and static unknown parameter values, as is the case in the formulation of the

problems in this work. Especially PMC methods are developedto utilize iterative impor-

tance sampling in parameter estimation of static models.

76

The purpose of this chapter is to introduce the backgrounds for the PMC approach and

present a simple algorithm for the method. Since this work concentrates mainly on

MCMC, the PMC method is just presented as a promising alternative for tasks that need

sampling. The approach is theoretical and only a simple example is used to demonstrate

PMC in practice. The theoretical investigation related to PMC is based mainly on [36],

[37] and [38].

7.1 PMC algorithm

The PMC method is quite close to the SIR method - actually PMC can be thought as a

re-formulation of SIR for static models. In literature the PMC is often described as a

competitor to MCMC methods. However, the PMC and MCMC methods are not that

different in nature - they both are based on sampling from a "wrong" distribution; in

MCMC we sample from the proposal distribution and in PMC we use the importance

function. In addition, MCMC steps can be used as a part of the PMC algorithm (and vice

versa) as discussed later in this section.

Let us consider a samplex(t) = (x
(t)
1 , ..., x

(t)
n) that is created at iterationt. In MCMC, the

next samplex(t+1) would be created from a proposalq(.|x(t)). The usage of the "wrong"

distribution is justified with the ergodic theorem. In PMC we, instead, make a correction

to the "wrong" distribution at each step using importance weighting (see chapter 3.2.4 for

details).

If we have, at iterationt, sampled the components ofx(t) from the importance distributions

git(x
(t)
i), the importance weights can be defined as

w
(t)
i =

π(x
(t)
i)

git(x
(t)
i)

(7.3)

wherei = 1, ..., n. That is, in PMC the importance function may depend on the index

of the samplei and iteration indext, a bit analogously with Single Component MH and

Gibbs Sampling. We can, of course, define a "global" importance functiongt = git, that

would be analogous with the proposal distribution in the Metropolis-Hastings algorithm

presented in chapter 4.2. It can be shown that the dependencyon bothi andt does not

affect the validity of the importance sampling scheme.

Since the posterior distribution is only known up to a normalizing constant (π(x) =

77

π(x|y) = Kf(y|x)πpr(x)), we get unnormalized weights by usingπ(x) = f(y|x)πpr(x)

in equation (7.3). In the PMC algorithm we need the normalized weightsŵ
(t)
i so that

∑n
i=1 ŵ

(t)
i = 1, which can be done with

ŵ
(t)
i =

w
(t)
i

∑n
i=1 w

(t)
i

. (7.4)

Now, the PMC algorithm for producing a sampleX(t) = (X
(t)
1 , ..., X

(t)
n) can be written in

pseudo-code as follows [6].

1. Fort = 1, ..., N

(a) Fori = 1, ..., n

• Select importance functiongit

• Generatex(t)
i ∼ git

• Calculatew(t)
i using (7.3)

(b) Endfor

(c) Calculateŵ(t)
i using (7.4)

(d) Re-samplen samples fromx(t) with replacement according tôw(t)
i to produce

X(t).

In the re-sampling step, a re-sampling with replacement is conducted. Sampling with

replacement here means basically the same as in Bootstrap methods (section 3.1.3) for

creating new samples from existing data: random indexes arechosen. The previous in-

dexes are replaced with the created ones, that can contain replicas of different points. In

the PMC algorithm, the re-sampling is done according to the weights that different parti-

cles (sampled points) have. That is, particles with large weights are replicated and moved

to the next generation of particles more likely than the particles with small weights. The

approach is a bit analogous with the selection process in evolutionary algorithms. In prac-

tice, the re-sampling can be done (for example) by constructing an empirical CDF from

the weights and using the inverse CDF method (see section 3.1.1).

Here we note that the importance functions calculated at each step may depend on previ-

ous importance samples. That is, the algorithm can be described as an adaptive iterated

importance sampling. It can be shown, however, that the adaptation of the importance

78

function does not affect the correctness of the algorithm. That is, adaptive schemes for

updating the importance weights can be designed with less restrictions. In the case of

adaptive MCMC algorithms, thorough ergodicity calculations have to be carried through

in order to justify the method that is no longer Markovian. This kind of flexibility in im-

portance function design can also be calculated as one of theadvantages of PMC when

compared with MCMC.

How can the importance functionsgit be formed? One idea is to use some distributions

that are easy to sample from and that are centered at the previous pointX(t−1), for exam-

ple Gaussian distributions. If separate importance functions are defined for each compo-

nent, the importance functiongit can be for example a normal distributionN(X
(t−1)
i , σ

(t)
i)

whereσ
(t)
i is calculated from the previously sampled points(X

(1)
i , ..., X

(t−1)
i). In addi-

tion, different scales for the importance distribution canbe chosen according to the perfor-

mance of previous proposal distributionsqi(t−1). The performance measure for a certain

importance function can be, for example, the number of re-sampled points that differ from

each other. On the other hand, if a global importance function gt = git is used, the im-

portance function can be, for example, a multivariate Gaussian distributionN(x(t), C(t))

where covarianceC(t) is calculated from the previously created sample or from thewhole

past. The former approach is analogous with the SCAM method and the latter with the

AP and AM methods from the adaptive MCMC methodology presented in chapter 6. The

SCAM-style PMC is, at least intuitively, promising also in high-dimensional scenarios.

One problem of the re-sampling step in the algorithm is that the sample produced by re-

sampling with replacement might contain many replicationsof the same point. One idea

to increase the diversity of the created sample, introducedin [39], is to use a standard

MCMC step after the re-sampling. That is, new sampleY (t) is produced fromX(t) in

every iteration with a simple MCMC step to make the points differ from each other. In

this way the PMC and MCMC methods can be coupled.

The simplest way to utilize the PMC idea in standard MCMC algorithms with Gaussian

proposal distributions is to make the center point of the importance distribution move with

MCMC using standard Metropolis-Hastings acceptance rules, and at each step producen

samples from the importance distribution with the resampling step. That is, the location

of the importance distribution is defined by the MCMC method,but the sampling itself

relies on PMC. This kind of approach leads toPMCMC (Population MCMC) algorithms,

and can improve the efficiency of the standard MCMC, where only one point is accepted

or rejected at each step.

79

7.2 Example

Here, a simple example of PMC in the context of parameter estimation in the Bayesian

framework (the general problem in this work) is presented. Let us consider a simple

model with 2 unknown parameters:

y = b1(1 − e−b2x) + ǫ (7.5)

where data is created withǫ ∼ N(0, 0.022) andb = (1, 0.1). The PMC algorithm was run

so that the mean and the covariance of the Gaussian importance distribution was updated

at each iteration using the sampled points (in AM style). 500points were created at each

iteration and 10 iterations were made. The initial covariance was calculated from the data

using the approximation from section 5.2. The Jacobian was calculated analytically. The

scatter plot of the parameters is presented in figure 7.1.

The results seem to be somewhat similar and the maximum likelihood estimate for the

point is close to the true values. The plot produced by MCMC ispresented in figure 7.2.

It shows similar behavior for the posterior distribution ofthe parameters. That is, the

PMC algorithm is here successfully applied to a simple parameter estimation task. Thus,

PMC is relatively simple to implement. Also, as mentioned, the adaptive schemes can be

designed more loosely, since we do not have to deal with ergodicity conditions.

80

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

b1

b2

PMC, 10 iterations, 500 points at each iteration

Figure 7.1: Population Monte Carlo with an adaptive importance distribution.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

b2

MCMC run, chain length 5000, no adaptation

b1

Figure 7.2: MCMC run for the example model

81

8 Developing MC Methodology

In this chapter, some aspects and ideas related to the futureresearch among Monte Carlo

methods in parameter estimation tasks are discussed. The purpose is merely to propose

some ideas and directions for future development that came up when working with the

methods. The ideas are related to sampling the error structure, forming new, effective

proposal distributions and designing Population Monte Carlo schemes.

In MCMC methodology, a crucial question is the modeling of the error structure. Espe-

cially, when using a Gaussian error, the error variance can be sampled using conjugate

priors, as briefly introduced in section 5.6. If the measurement errors are not independent

and identically distributed (ǫ ∼ N(0, σ2I)), we should sample theerror covariance, that

can be done using a conjugate priors as well. This kind of sampling schemes are one area

of potential development in MCMC methods.

The choise of the proposal distribution is essential when itcomes to the efficiency and the-

oretical correctness of the algorithms. In the PMC approach, a good importance function

seems to be an even more crucial issue. That is, one directionof development is to find

new, effective proposal (importance) distributions. In particular, one could use, instead of

one Gaussian distribution, a mixture of multiple Gaussians. A Gaussian mixture model

(GMM) can be fitted to a data set, which allows the mixture proposal to adapt. At least

intuitively a mixture proposal would be more efficient than asingle Gaussian, at least

in strongly "twisted" cases. A limiting factor in using a mixture model can be the addi-

tional computational burden. This can be helped if the previous classification information

(GMM fit) can be used to construct the next fit in a recursive manner, as in updating the

covariance in adaptive methods (chapter 6).

Another issue, worth looking into, might be different Principal Component Analysis tools

for nonlinear cases. The information about principal components might be of great help

when constructing the proposal distribution.

More effective proposal distribution could potentially beformed also using some informa-

tion directly received from the model. For example, when approximating the covariance

of the proposal using the inverse Hessian instead of the Jacobian approximation, we could

get the inverse Hessian directly from a quasi-Newton style optimization algorithm such

as BFGS.

82

Population Monte Carlo offers an interesting alternative to MCMC. And, as mentioned

in chapter 7, it offers more freedom in designing adaptive importance distributions. The

adaptive PMC algorithms might be an interesting field for future research. Also the PMC

and MCMC can be coupled in many ways, for example MCMC can be used in diversify-

ing the PMC sample after re-sampling. In addition, the "center points" for the importance

distribution can be sought using MCMC - in this approach the only difference to MCMC

methods would be multiple points created at each step with the re-sampling procedure.

When it comes to adaptive methods, one of the tuning parameters is the adaptation in-

terval, which is normally kept quite large (100-200). The interval is kept large partly

because in a bigger interval the algorithm most likely movesat least a little, which makes

the adaptation (calculation of the covariance) possible. One idea would be not to keep the

adaptation interval constant. We could do the adaptation based on the information about

the movement of the algorithm. We could perform the adaptation, when a certain amount

of new points are accepted. In this approach the adaptation interval would be bigger in

the beginning and smaller in the end - and it would require less tuning from the user since

the adaptation interval would not have to be defined explicitly.

83

9 Case Examples

This section includes the empirical part of the work. Here, afew models from the field of

chemical reaction kinetics are presented and the distributions of the unknown parameters

are formed with MCMC methods. Results are visualized with the methods presented in

the theoretical part. The models are currently under research in Åbo Akademi (Turku,

Finland) and in Lappeenranta University of Technology (Lappeenranta, Finland). First, a

simple example model from chemical kinetics is presented. This model is used in some

illustrations in the theoretical part of the work.

For solving the parameter estimation tasks in the case examples, two techniques are used.

For MH, AM and DRAM solutions, theMODESTstatistical software is used. The soft-

ware and its MCMC tool are programmed using Fortran and mathematics librariesLA-

PACKandBLAS. On the other hand, for plotting purposes and for different modifications

of the Metropolis and AM algorithms, the MATLAB software is used.

The emphasis of the theoretical part is on questions raised by the MCMC -type statistical

analysis of the models, not on the actual chemistry behind the models and what the results

mean from the chemical point of view. The latter part is left for the modelers themselves.

Most of the models are run with both Metropolis algorithm (section 4.2) and Adaptive

Metropolis (section 6.1) in order to compare the methods andsee if AM provides better

results than the Metropolis algorithm. In two models, the DRAM algorithm is used.

9.1 Model Types and Data

The empirical part of this work concentrates on mechanisticmathematical models that

describe chemical reactions. The general mechanistic model can be written as follows.

s = f(x, θ, c) (9.1)

y = g(s) (9.2)

wheres is thestateof the system with certain values for design variablesx, unknown

parametersθ and constantsc. The functionf represents the model. The observation

functiong denotes the relation between the states given by the model and the quantities

observed (measured) by the modeler.

84

In so calledexplicit algebraicmodels the states can be explicitly calculated by substitution

from the formulas = f(x, θ, c). This is the most simple case and no numerical solvers

are needed to compute the states with different values for design variables.

The models describing chemical reactions are often ODE-systems, in which the concen-

trations of certain substances change in time. In ODE modelsthe states are presented at

each time point in the form
ds

dt
= f(s,x, θ, c) (9.3)

In addition, some initial conditions(0) = s0 is given. In order to obtain the state at each

time point, the ODE has to be solved, which can be done analytically, or, in most cases,

with a numerical solver. The models in this chapter are described as ODE systems. The

solvers used in these models areODESSAin the FORTRAN framework andode45in

MATLAB.

If the model is described as a system of differential equations that contain derivatives

with respect to several variables, we end up to Partial Differential Equations (PDE). Nor-

mally PDE models include time and space variables. The PDEs can be transformed into

ODE systems with discretization methods, for example. Often the computation time for

function evaluations, and thus MCMC methods, rise.

The measurement data is often given as manybatches(data sets). The model can include

so calledlocal variablesthat are constant within data sets but may differ between them,

for example temperature. In addition, somecontrol variables, that also change within the

batches, may exist.

All in all, the model data is given inNset batches. A batchk hasNobs(k) observations

and each observationj hasNresp(j, k) measured response components. That is, we have

measurementsyijk wherei is the index of the response component in observationj in

batchk. If ypijk
denotes the corresponding model prediction, the LSQ function to be

minimized can be calculated as a sum over all batches, all observations and all response

components as follows:

LSQ(θ) =
Nset
∑

k=1

Nobs(k)
∑

j=1

Nresp(j,k)
∑

i=1

(yijk − ypijk
)2. (9.4)

In table 2 below, the models dealt with in this chapter are summarized. For each model,

the model type, the MCMC algorithm used, the dimension and the number of observed

85

responses, are listed.

Table 2: Example model types, algorithms used and number of unknown parameters and
observed responses.

Name Section Model Algorithm Dim Resp
Example Model 9.2 ODE (2 components) MH/AM 4 2
Phloroglucinol 9.3 ODE (3 components) AM 7 3
Propionic Acid 9.4 ODE (6 components) AM 7 4
Esterification 9.5 ODE (4 components) AM 5 1
Sitosterol 9.6 ODE (14 components) DRAM 22 11

Thus, the number of unknown parameters in the models range from 4 to 22. In most

of the cases, the AM algorithm gave good results, and the parameters were identified

well. In one case (sitosterol), due to the complex nature of the posterior distribution, the

acceptance ratio was very low with MH and AM, and the DRAM algorithm was used to

get the sampler moving. In this case there were also problemsin the identifiability of

some parameters.

In the "difficult" cases with many unknown parameters and ODEcomponents, the com-

putational time was significantly larger than that of the simpler models; the computation

of a sufficiently long MCMC chain could take about one day whenusing a standard work-

station. In a very complicated model with a very large numberof unknown parameters, a

more powerful computing environment would be required.

86

9.2 Simple Example Model

This model is used for illustration purposes in previous chapters. The model describes

a simple one-way chemical reaction, whereA is transformed intoB with some speed

described by rate parameterk1, andB is disappearing with ratek2. That is, the reaction

can be written as

A →k1 B →k2

which means that the model can be defined as an ODE system as follows

dA

dt
= −k1A

dB

dt
= k1A − k2B

wherek1 andk2 are reaction rates. The temperature dependency of the reaction rate is

expressed in chemical kinetics using the Arrhenius’ law, inwhich

k1 = kmean
1 e−E1z (9.5)

k2 = kmean
2 e−E2z (9.6)

z = 1/R(1/T − 1/Tmean). (9.7)

The frequency factorskmean
i denote the "average" reaction rate is some "average" temper-

atureTmean. R is the general gas constant andE1 andE2 denote the activation energies for

the reaction. The estimated parameters here areθ = (kmean
1 , E1, k

mean
1 , E2). T denotes

the temperature in which the measurements are made (a local variable).

To illustrate the general notation given in chapter 9.1, thestates and the observation func-

tion can be defined as

s(1) = A

s(2) = B

g(s) = s.

That is, we observe both components of the ODE system. If onlythe second component

was observed, we would haveg(s) = s(2). In this modelθ = (kmean
1 , E1, k

mean
1 , E2) and

x = (T, A(0), B(0)). The constants arec = (R, Tmean).

The MCMC results for the example model were presented in section 5.5. In the follow-

87

ing, an additional MCMC example of optimizing the temperature profile for the example

modes is presented.

9.2.1 Optimizing the Temperature Profile

Let us consider the temperatureT in the example model to be a control variable, which

means that it is allowed to vary between different time points. Then, a useful question in

practice would be to think how we should control the temperature so that, for example,

the output of the intermediate componentB is maximized.

Let T = (T1, ..., Tn) denote the temperature profile, that we can control. HereTi denotes

the temperature in time pointti. Now we optimize the temperature profile so that the

output ofB is maximized. Thus, for optimal temperature profileT ∗ we can write

T ∗ = max
T

B(tn).

The resulting optimal temperature profile is presented if figure 9.1. From the results we

can conclude that, in order to get a large final value forB, we must keep the temperature

low in the beginning of the reaction and then quickly increase it in the end. The simplified

temperature profile, that can be implemented during the experiment, is presented in figure

9.1.

0 1 2 3 4 5 6 7 8 9

200

250

300

350

400

time

T
em

p

0 2 4 6 8

200

250

300

350

400

time

Figure 9.1: The optimized temperature profile (with an initial guess) and the correspond-
ing simplified profile.

Now we can simulate the responsesA andB with the optimized temperature profile, with

the different possible parameters given by the MCMC run, to see how responses behave

with the optimized temperature profile. The results for bothresponse components are

88

presented in figure 9.2. The results show that the uncertainty in the model is dramatically

increased in comparison to the original setting (figure 5.10). That is, when we move

away from the original temperature profiles, where the measurements were made, the

predictability of the model deteriorates: Thus, the model is not able to accurately explain

the behaviour of the response components when the conditions of the experiment are

changed: the uncertainty in the activation energy estimates produce a large uncertainty in

the new situation. The MCMC methodology is easily able to reveal this kind of prediction

error.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

A

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

time

B

Figure 9.2: The predictive distributions for the responseswith the optimized temperature
profile.

89

9.3 Creation of Phloroglucinol

The creation of phloroglucinol is a process studied in the department of Chemical Engi-

neering at Lappeenranta University of Technology. The model is formulated as an ODE

system with 3 response components, all of which are observed. The number of unknown

parameters is 7. The measurement are done in 5 experiments indifferent temperatures.

From the MCMC perspective the parameters seem to be rather well identified. The AM

algorithm seems to provide slightly better mixing than the standard MH algorithm. The

predictive distributions show that the model fits well to thedata.

9.3.1 Model Description

The kinetic model for the overall reaction is formulated as an ODE system as follows.

dA

dt
= −Mn1

r R1 − Mn2
r R2

dB

dt
= −2Mn1

r R1

dC

dt
= MrR2

where

R1 = k1AB

R2 = k2A
n3.

The rate constantsk1 andk2 and z are defined as in the example model in the previ-

ous chapter (Arrhenius’ law). That is, the parameters to be estimated here areθ =

(kmean
1 , E1, k

mean
2 , E2, n1, n2, n3). The states are defined to bes = [A, B, C] and the

observation functiong(s) = s.

9.3.2 MCMC Results

Table 3 below shows the LSQ estimate, empirical median and confidence interval limits

(α = 0.05) for the model. From the estimates one can see that, for example, E1 andE2

are well identified, whereas the values sampled forn2 andn3 get a wider range of values.

90

Table 3: LSQ estimate and empirical confidence limits for themodel.

LSQ 0.5 α/2 1 − α/2
kmean

1 0.274E-03 0.295E-03 0.179E-03 0.4469E-03
E1 0.273 0.274 0.264 0.285
kmean

2 0.0098 0.010 0.0045 0.022
E2 0.213 0.221 0.201 0.244
n1 2.11 2.08 1.95 2.23
n2 0.624 0.736 0.330 1.221
n3 0.598 0.756 0.471 1.085

The pairwise scatter plots are presented in figure 9.3. The plot shows that most of the

parameters behave nicely. The scatter plot reveals that there is correlation between some

parameters, the strongest correlation being between parameter pairs (6,7) and (3,6). The

correlation coefficients (see Appendix 1 for definition) calculated from the chain are about

0.8 for both of the pairs.

When we look at the marginal plots in figure 9.5, the correlations are also clearly shown.

The figures on the right, that represents a chain created withadaptive metropolis, seems

to be mixing more efficiently than the plain Metropolis MCMC presented on the left side.

Predictive distribution curves for one of the data sets (altogether 5) are presented in figure

9.4 using the error variance sampling scheme presented in section 5.6. The parameters in

the prior distribution for the error variance were defined toben0 = 1 andS2
0 = MSE. If

a prediction is made from the response curves, it should roughly hold with the accuracy

given by the lighter gray area in the paint brush curve.

91

Figure 9.3: Pairwise scatter plots from the chain created with Metropolis algorithm. The
burn-in time was 1000 and chain length 10000. One-dimensional confidence intervals and
confidence regions (approximately 95%) are created with thekernel density method.

92

Figure 9.4: Distributions for model fits. The chain was created using AM with adaptation
interval 100 and burn-in period of length 1000.

93

Figure 9.5: Marginal Paths for the 7 unknown parameters. Theleft picture is created
with plain Metropolis MCMC, the right one with AM, using adaptation interval 100 and
regarding the initial covariance matrix as if it was sampledfrom 1000 points.

94

9.4 Esterification of Neonpentyl Glycol with Propionic Acid

The model is studied at Lappeenranta University of Technology, at the Department of

Chemical Engineering. It is described as a 6-component ODE-system, 4 of which are

observed. The reaction kinetics are studied in a batch reactor at different temperatures.

The measurement are given in 12 batches and the number of unknown parameters is 7. For

a thorough explanation of the chemistry behind the ODE is given in [40] (to be published).

From the MCMC perspective the model parameters seem to behave well, and the standard

algorithms, MH and AM, are well suitable for the evaluation of the posterior distribution

of the parameters.

9.4.1 Model Description

The model can be defined as a 6-component ODE system as follows.

dA

dt
= −k1AB +

k3C
2

Keq
− k3AD − A

M
W

dB

dt
= −k1AB − k2BC − B

M
W

dC

dt
= k1AB − k2BC + 2k3AD − 2k3C

2

Keq
− C

M
W

dD

dt
= k2BC +

k3C
2

Keq
− D

M
W

dE

dt
= (k1AB + k2BC)M

dM

dt
= −W

where

W = Mw(k1AB + k2BC)M.

HereMw is a given constant and the reaction ratesk1, k2 andk3 are derived from the Ar-

rhenius law, and thus the unknown parameters areθ = (kmean
1 , E1, k

mean
2 , E2, k

mean
3 , E3, Keq).

95

In the "state notation" we can write all the calculated states as follows:

[s(1)...s(6)] = [A, B, C, D, E, M]

s(7) = (A(0) − MA)/A(0)

s(8) = (B(0) − MB)/B(0)

s(9) = (MC − C(0))/(A(0) − MA)

s(10) = (MC − C(0))/(B(0) − MB)

s(11) = (A + B + C + D)M + E.

Components 7 and 8 represent theconversionfor A and B and components 9 and 10 the

selectivityfor A and B. The 11th state records the total mass of the reaction components.

We observe the first 4 components of the ODE system. That is, the observation function

is written as

g(s) = [s(1), s(2), s(3), s(4)] .

9.4.2 MCMC Results

The pairwise scatter plots presented in figure 9.6 show that the parameters are well iden-

tified. In this kind of case, where the posterior distribution behaves in a regular way, the

AM algorithm does not provide significant improvement compared to the MH algorithm

with MSE chosen as the error variance.

The predictive distributions for the states in three data sets are given in figures 9.7 and

9.8. We see that responsesA andB fit well to the data, but there is systematic error in the

model with respect to responsesC andD, that overestimates the measurement error with

respect to these responses. The question about how to include the error in the model itself

into the statistical analysis, in addition to the measurement error, is subject to ongoing

research and not addressed here.

The same kind of temperature profile optimization as for the example model in chapter

9.2 can be carried through for this model. For implementation and results, refer to [40].

96

5.5
6

6.5
7

7.5
x 10

4

2

1

3

3.5

x 10
−3

3
2

5

5.5

6

x 10
4

4

3

7

8

9

x 10
−4

5

4

4

6

x 10
4

6

5

8.5 9.5 10.5

x 10
−3

6

8

10

7

5.5 6 6.5 7 7.5

x 10
4

3 3.5

x 10
−3

5 5.5 6

x 10
4

7 8 9

x 10
−4

4 6

x 10
4

6

Figure 9.6: Pairwise scatter plots for the model parameters. The chain was produced with
AM, adaptation interval being 100.

97

0 50 100 150 200 250

2

4

6

D
at

a
1

Response A

0 50 100 150 200 250
0

5

10
Response B

0 50 100 150 200 250 300

2

4

6
D

at
a

3

0 50 100 150 200 250 300
0

2

4

6

0 50 100 150 200
0

2

4

D
at

a
5

0 50 100 150 200
0

5

10

Figure 9.7: Predictive distributions with good fits.

0 50 100 150 200 250
0

2

4

D
at

a
1

Response C

0 50 100 150 200 250
0

1

2
Response D

0 50 100 150 200 250 300
0

2

4

D
at

a
3

0 50 100 150 200 250 300
0

1

2

0 50 100 150 200
0

2

4

D
at

a
5

0 50 100 150 200
0

2

4

Figure 9.8: Predictive distributions with systematic error in the model.

98

9.5 Esterification Processes

The model discussed here has been studied in Åbo Akademi, Turku, Finland. The de-

scription of the chemistry behind the model can be found from[41]. The model is an

ODE system with 4 components, one of which is observed. The number of unknown

parameters is 5 and the measurements are done in 9 batches.

From the MCMC perspective the model parameters seem to behave in a satisfactory way.

The AM algorithm seems to result in slightly better mixing than MH. The predictive

distribution reveals systematic error in the observed response.

9.5.1 Model Description

The model is described as an ODE system below.

dcA

dt
= −r

dcB

dt
= −r

dcC

dt
= r

dcD

dt
= r

where

r =
cAcB − cCcD/K

(αcA + βcD)ch
V0

V

α = α0e
E1/8.314z

β = β0e
E2/8.314z

z = 1/T − 1/Tmean.

The parameters to be estimated areθ = (K, α0, β0, E1, E2). The initial volumeV0 is a

local variable and volumeV is a control variable, that may change in every measurement

within batches. Heres = [A, B, C, D] and we observe only the first component of the

system:g(s) = s(1).

99

9.5.2 MCMC Results

In this model chain length of 20000 and burn-in time of 5000 were used. Different adap-

tation intervals were tried and also different burn-in schemes - both fixed and adaptive

proposals (scaling and greedy adaptation) were used.

Table 4 below shows the LSQ estimate, empirical median and confidence interval limits

for the model parameters, calculated from the MCMC chain.

Table 4: LSQ estimate and empirical confidence limits for theparameters.

LSQ 0.5 α/2 1 − α/2
K 2.92 3.02 2.34 3.92
α0 3.29 3.20 1.93 4.47
β0 23.0 23.6 18.2 29.5
E1 66300 66000 23500 112000
E2 41500 42800 13500 71200

Two marginal path plots are presented in figure 9.9. One can again see that with the

adaptive method the mixing of the chain seems to be significantly better, especially with

respect to the first parameter (K). The mixing is significantly improved merely by em-

ploying scaling and / or greedy adaptation during the burn-in phase. If adaptation is used

also after the burn-in, the mixing is slightly improved. That is, here the greedy adaptation

procedure turns out to be especially useful.

The pairwise scatter plot produced by AM (with adaptation interval 100 and greedy adap-

tation during the burn-in) is presented in figure 9.10. All parameters seem to have one

clear optimum. The strongest correlation exists between parameters (3,2).

The predictive distributions for the first response variable is presented in figure 9.11 for 4

data sets. The plot shows that the model seems to fit the data accurately.

100

Figure 9.9: Marginal Paths for the 5 unknown parameters. Theleft picture is created
with plain Metropolis MCMC, the right one with AM, using adaptation interval 100 and
greedy adaptation during the burn-in phase.

2

4

2

1

15
20
25
30
35

3

2

0

5

10

15
x 10

4

4

3

2 4
0

5

10
x 10

4

5

2 4 15 20 25 30 35 0 5 10 15

x 10
4

4

Figure 9.10: Pairwise scatter plots from the chain created with the AM algorithm. The
burn-in time was 5000 and chain length 20000. Adaptation interval was 100.

101

0 200 400 600 800 1000 1200 1400
2

4

6

8

0 50 100 150 200 250 300
0

2

4

6

0 200 400 600 800 1000 1200 1400 1600
5

6

7

8

9

10

11

0 200 400 600 800 1000 1200 1400
5

6

7

8

9

10

11

Figure 9.11: Predictive distribution curves for 4 data sets.

102

9.6 Sitosterol Hydrogenation Process

The model, studied in the Process Chemistry centre of Åbo Akademi (Turku, Finland),

is defined as an ODE system of 14 components, 11 of which are observed. The number

of unknown parameters is 22. The mathematical description of the model is omitted here

due to its complexity - for the description refer to [42].

From the MCMC point of view this model is interesting, because the dimension and the

number of observed response components are higher than those of the other cases. The

basic MCMC algorithms, MH and AM, seem to have problems in getting themselves

moving: the acceptance ratio is very low. The DRAM algorithmprovides significant help

in this case. The distribution of the parameters reveals strong correlation between two

parameters, which could justify model reduction. Also, a few parameters seem to be badly

identified and some parameters converge close to the optimization limits. The predictive

distributions show that some of the responses are able to predict the measurements well

and some predictive distributions include more noise.

9.6.1 MCMC Results

Some of the unknown parameters in the model are well identified (see figure 9.12). In

some cases there seem to be clear identifiability problems, that can be seen from figures

9.13 and 9.14.

One parameter pair is very strongly correlated (figure 9.15)and it seems that the ratio

between the parameters is well identified, but the parameters themselves are not. Model

refinement and reparametrization could help in this issue. In addition, at least one param-

eter gets very close to zero and the parameter could be assigned a fixed value (zero) and

removed from the optimization target.

The predictive distributions for the components in some data sets are presented in figures

9.16 and 9.17.

103

1.7
1.8
1.9

2
2.1

x 10
5

13

11

6

7

8

9
x 10

4

14

13

7

8

9

10
x 10

4

15

14

7 8 9

x 10
4

5

6

7

x 10
4

16

1.7 1.8 1.9 2 2.1

x 10
5

6 7 8 9

x 10
4

7 8 9 10

x 10
4

15

Figure 9.12: The well behaving model parameters.

200

400

600

800

1000

4

3

10
12
14
16
18

6

4

0

20

40

9

6

0 10 20 30
0

2000

4000

6000

8000

10

200 400 600 800 1000 10 12 14 16 18 0 20 40

9

Figure 9.13: Problems, for example, related to the identifiability of parameter 4.

104

0

5000

10000

2

1

0

5000

10000
8

2

1

1.5

2

2.5
x 10

5

12

8

5

10

15
x 10

−5

17

12

0 10 20 30
0

5

10

x 10
4

22

0 5000 10000 0 5000 10000 1 2

x 10
5

5 10 15

x 10
−5

17

Figure 9.14: Problems in the identifiability of parameters.In addition, the first parameter
seems to get values close to zero. Strong correlation between parameters 12 and 22.

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Figure 9.15: Strongly correlated parameters. Here reparametrization could be done so
that the ratio of the parameters would replace the other parameter in the list of unknown
parameters.

105

0 20 40 60 80 100
0

20

40

re
sp

 1

0 20 40 60 80 100
0

20

40

re
sp

2

0 20 40 60 80 100
0

50

100
re

sp
 5

0 20 40 60 80 100
0

50

100

time

re
sp

 6

Figure 9.16: Predictive distributions for response components 1,2,5 and 6. The model
prediction fits the measurements accurately.

0 10 20 30 40 50 60 70 80
0

2

4

re
sp

 7

0 10 20 30 40 50 60 70 80
0

2

4

re
sp

 9

0 10 20 30 40 50 60 70 80
0

10

20

re
sp

 1
0

Figure 9.17: Predictive distributions for response components 7,9 and 10. Some noise
occurs in the model prediction.

106

10 Conclusions

Due to increased computational power the MCMC methods have developed into a feasible

tool for investigating the posterior distribution of unknown parameters in mathematical

models. The methods are straightforward to implement and thus employable also in real

life modeling tasks, as seen in the case examples of this work.

The numerical methods for sampling from the posterior distribution provide many kinds

of new, valuable information to the modeler, including correlations between parameters,

uncertainties related to both parameter estimates and prediction curves and identifiability

of the parameters. When dealing with regular MCMC methods based on the Metropolis

and Metropolis-Hastings algorithms, problems may howeverrise, if the posterior behaves

in a certain way, for example if the posterior is strongly "twisted". The proposal distribu-

tion has to be correctly chosen in order to make the algorithms work efficiently. In this

case, the family of adaptive methods provide significant help - the proposal distribution

adapts to the shape of the posterior and the methods become less dependent on the initial

proposal distribution. The effect of the adaptive methods can be seen in better mixing of

the produced MCMC chain.

The adaptive methods seem to have a significant effect in the efficiency of the algorithm,

especially in correlated cases. High-dimensional problems are often efficiently tackled

with single component versions of the algorithms. If the initial point and the identifiability

of the parameters is poor, the Delayed Rejection approach often provides better results.

There are many different aspects that are to be considered when building applications and

code that implement some MCMC -type method. One of the main questions is conver-

gence. It can be diagnosed with many methods, of which the most useful seem to be based

visual examination of the output of the algorithm and discarding the initial "burn-in" pe-

riod from the output. In addition, one has to be able to provide efficient starting points

and initial proposal distributions through different estimates (LSQ) and approximations

(linearization). Also the interpretation of results and visualizations is an important issue

when making inference about the posterior distribution. The results may be visualized

using marginal distributions with confidence intervals andconfidence regions. In addi-

tion, the effect of the uncertainty in parameters to the prediction (response) curves can be

visualized by building predictive distributions.

In adaptive methods, the main implementation issue is the adaptation interval - how often

107

should the adaptation be done? Normally the adaptation interval is kept relatively large

in order to make the algorithm move in the beginning and thus assuring that there are

enough diverse points to make the adaptation. Some special tricks can be employed to

make the algorithm move, including greedy adaptation procedure. The DRAM algorithm

seems to be helpful as well, when there are problems in getting the sampler moving. Also

the role of the initial proposal distribution has to be considered - it is possible to discard

it when the first adaptation occurs or assign a weight to it that represents the trust towards

the initial proposal distribution.

In order to keep the theory and implementations simple, the measurement error is in this

work assumed to be distributed in a Gaussian way and the errors in different measurement

are assumed to be independent and identically distributed.The error can also be modeled

in Bayesian terms so that the error variance is sampled usingconjugate priors. If the

assumption is that the errors are not independent and there can be correlation in the errors

between the measurements, we end up in error covariance approximations and sampling

schemes.

Population Monte Carlo methods, based on performing importance sampling iteratively,

seem to provide a promising alternative to standard MCMC methods. The PMC methods

also provide more freedom when designing adaptation schemes. This approach is subject

to ongoing research.

108

References

[1] Kaipio, J. Somersalo, E. 2005.Statistical and Computational Inverse Problems, Applied

Mathematical Sciences (Vol. 160). New York, USA: Springer Science+Business Media. 344 p.

Chapter 3. ISBN 0-387-22073-9

[2] Tamminen, J. 1999.MCMC Methods for Inverse Problems. Licenciate Thesis.Geophysical

Publications (Vol. 48). Helsinki, Finland: Finnish Meteorological Institute. 82 p.

[3] Gelman, A., Carlin, J., Stern, H. Rubin D. 1996.Bayesian Data Analysis, Second Edition.

London, Great Britain: Chapman Hall. 696 p. ISBN: 0-158-48838-8

[4] Neal, R. 1993. Probabilistic Inference Using Markov Chain Monte Carlo Meth-

ods. Technical Report (CRG-TR-93-1). Toronto, USA: University of Toronto, De-

partment of Computer Science. 144 p. Chapters 1-4. Available as PDF at:

http://www.cs.toronto.edu/r̃adford/ftp/review.pdf.

[5] Nurmi, P. 2004. Introduction to Bayesian Data Analysis. The Seminar of Computational

Data-analysis. Helsinki, Finland: University of Helsinki, Department of Computer Science.

Available as PDF at: http://www.cs.helsinki.fi/u/salmenki/lda-seminaari04/bayesian.pdf.

[6] Robert, P. Casella, G. 2004.Monte Carlo Statistical Methods. New York, USA: Springer-

Verlag. 645 p. Chapters 1-3,6-7,14. ISBN 0-387-21239-6

[7] Karlsson, R. 2002.Simulation Based Methods for Target Tracking. Linköping Studies in Sci-

ence and Technology(Thesis No. 930). Linköping, Sweden: Linköping University, Depart-

ment of Electrical Engineering, Division of Automatic Control and Communication Systems.

Chapters 2-3.

[8] Råde, L. Westergren, B. 2001.Beta, Mathematics Handbook. Lund, Sweden: Studentlitter-

atur. 546 p. ISBN: 91-44-00839-2

[9] Gilks, W., Richardson, S. Spiegelhalter D. 1996.Markov Chain Monte Carlo in Practice.

New York, USA: Springer Science+Business Media. 512 p. Chapters 1,3-4,19,22. ISBN 0-

412-05551-1

[10] Mackay, D. 1996.Introduction to Monte Carlo Methods. In collectionLearning in Graph-

ical Models. Netherlands: Kluwer Academic Publishers. pp. 175-204. Available as PS at:

http://www.cs.toronto.edu/̃mackay/erice.ps.gz.

[11] Grinstead, C. Snell, J. 1997. Introduction to Probability, Second Re-

vised Edition. USA, American Mathematical Society. Available as PDF at:

http://www.dartmouth.edu/c̃hance/teachinga ids/booksarticles/probabilitybook/pdf.html.ISBN :

0 − 8218 − 0749 − 8

109

[12] Schon, T. 2003.On Computational Methods for Nonlinear Estimation. Linköping Stud-

ies in Science and Technology(Thesis No. 1047). Linköping, Sweden: Linköping University,

Department of Electrical Engineering, Division of Automatic Control and Communication Sys-

tems. Chapter 4.

[13] Haario, H. 2006.Statistical Methods for Inverse Problems. Lecture Material. Lappeenranta,

Finland: Lappeenranta University of Technology.

[14] Doucet, A. 2000. On Sequential Monte Carlo Sampling Methods for Bayesian

Filtering. Submitted for Publication. Available as Technical ReportCUED/F-

INFENG/TR. Cambridge University, Department of Engineering. Available at:

http://citeseer.ist.psu.edu/article/doucet00sequential.html.

[15] Pursiainen, S. 2003.Numerical Methods in Statistical EIT. Masters Thesis. Espoo, Finland:

Helsinki University of Technology. Chapter 3.

[16] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. Teller, E. 1953. Equation of

State Calculations by Fast Computing Machines. The Journal of Chemical Physics(21/06).

pp. 1087-1092

[17] Tierney, L. 1994. Markov chains for exploring posterior distributions. The Annals of

Statistics (22). pp. 1701-1762

[18] Haario, H., Saksman, E., Tamminen, J. 2006.Componentwise adaptation for high dimen-

sional MCMC. Computational Statistics(Vol 20, no 2). pp. 265-274.

[19] Rao, S. 1996.Engineering Optimization: Theory and Practice, 3rd Edition. New York,

USA: John Wiley and Sons. 920 p. ISBN: 0-471-55034-5

[20] Brooks, S. Roberts, G. 1998. Assessing Convergence of Markov Chain Monte

Carlo Algorithms. Statistics and Computing (Vol. 8). pp. 319-335. Available at:

http://citeseer.ist.psu.edu/andrieu03introduction.html.

[21] Venables, W. Ripley, B. 1997.Modern Applied Statistics with S-PLUS, Second Edition.

New York, USA: Springer. 548 p. ISBN 0-387-98214-0

[22] Hartigan, J. Wong M. 1979.K-Means Clustering Algorithm. Applied Statistics (Vol 28, no.

1). pp. 100-108.

[23] Figueiredo, M. Jain, A. 2002.Unsupervised Learning on Finite Mixture Models. IEEE

transactions of pattern analysis and machine intelligence(Vol 24, no. 3).

[24] Haario, H., Saksman, E., Tamminen, J. 1999.Adaptive proposal distribution for random

walk Metropolis algorithm. Computational Statistics (Vol 14, No 3). pp. 375-395. Available

at: http://citeseer.ist.psu.edu/haario99adaptive.html.

110

[25] Verbeek, J., Nunnink, J. Vlassis N. 2006.Accelerated EM-based clustering of large data

sets. Data Mining and Knowledge Discovery(Vol. 13/3). pp. 291-307. Available as PDF at:

http://www.science.uva.nl/ṽlassis/pub/Verbeek04dmkd_rev.pdf.

[26] Gelman, A. 2004. Prior distributions for variance parameters in hierar-

chical models. EconWPA, Econometrics (Number 0404001). Available at:

http://ideas.repec.org/p/wpa/wuwpem/0404001.html.

[27] Carroll, R., Ruppert, D., Stefanski, L. Crainiceanu C.2006. Measure-

ment Error in Nonlinear Models: A Modern Perspective, Second Edition. Lon-

don, Great Britain: Chapman Hall. 488 p. Chapter 9. Available as PDF at:

http://www.stat.tamu.edu/c̃arroll/eiv.SecondEdition/bayesian.pdf. ISBN 1-584-88633-1

[28] Haario, H., Laine, M., Mira, A. Saksman E. 2003. DRAM: Efficient adap-

tive MCMC. Reports of the Department of Mathematics, University of Helsinki

(preprint 374). Helsinki, Finland: Helsinki University. Available as PDF at:

http://mathstat.helsinki.fi/reports/Preprint374.pdf.

[29] Haario, H., Saksman, E., Tamminen, J. 2001.An adaptive Metropolis algorithm. Bernoulli

(Vol. 7(2)). pp. 223-242. Available at: http://citeseer.ist.psu.edu/haario98adaptive.html.

[30] Gelman, A., Roberts, G. Gilks W. 1996.Efficient Metropolis jumping rules. Bayesian

Statistics (Vol. 5). pp. 599-608. Oxford University Press.

[31] Green, P. Mira A. 2001. Delayed Rejection in reversible jump Metropolis-Hastings.

Biometrika, 2001 (Vol. 88). pp. 1035-1053.

[32] Mira, A. 2001. On Metropolis-Hastings algorithms with delayed rejection. Metron, 2001

(Vol. LIX, No. 3-4). pp. 231-241.

[33] Andrieu, C., Freitas, N., Doucet, A. Jordan, M. 2001. An Introduction to

MCMC for Machine Learning. Machine Learning (Vol. 50). pp. 5-43. Available at:

http://citeseer.ist.psu.edu/andrieu03introduction.html.

[34] Moral, D., Doucet, A. Jasra A. 2000.Sequential Monte Carlo Samplers. Technical Report,

CUED/F-INFENG/TR 443. Cambridge University, Department of Engineering. Available at:

http://citeseer.ist.psu.edu/moral02sequential.html.

[35] Celeux, G., Marin, J. Robert, C.Iterated Importance Sampling in missing data problems.

Submitted to Computational Statistics and Data Analysis (to appear). Available as PDF at:

http://www.ceremade.dauphine.fr/x̃ian/cmr03.pdf.

[36] Cappe, O., Guillin, A., Marin, J. Robert C. 2004.Population Monte Carlo. Available at:

http://citeseer.ist.psu.edu/569964.html.

111

[37] Iba, Y. 2001. Population Monte Carlo algorithms. Transactions of the

Japanese Society for Artificial Intelligence (Vol. 16, No. 2). Available as PDF at:

http://www.ism.ac.jp/̃iba/journal.pdf.

[38] Douc, R., Guillin, A., Marin, J., Robert C. 2005. Minimum variance

importance sampling via Population Monte Carlo. Available as PDF at:

http://www.ceremade.dauphine.fr/x̃ian/dgmr05.pdf.

[39] Ridgeway, G. Madigan, D. 2002. A Sequential Monte Carlo Method for Bayesian

Analysis of Massive Datasets. Netherlands: Kluwer Academic Publishers. Available at:

http://citeseer.ist.psu.edu/541343.html.

[40] Vahteristo, K., Laari, A., Haario, H. Solonen, A. 2006.Estimation of kinetic parameters in

esterification of neopentyl glycol with propionic acid. To be published. Lappeenranta. Finland:

Lappeenranta University of Technology, Department of Chemical Engineering.

[41] Lilja, J. 2005. A Fibrous Polymer-Supported Sulphonic Acid Catalyst in Esterification Pro-

cesses. PhD thesis. Turku, Finland: Laboratory of Industrial Chemistry, Process Chemistry

Centre, Åbo Akademi. Article 3.

[42] Wärnå, J.m Geant, M., Salmi, T., Hamunen, A., Orte, J., Hartonen, R. Murzin, D. 2006.

Modeling and Scale-up of Sitosterol Hydrogenation Process: From Laboratory Slurry Reactor

to Plant Scale. Industrial Engineering Chemistry Research (Vol. 45, No. 21). pp. 7067-

7076.

112

APPENDIX A

Appendix 1. Mathematical Definitions

Here some of the mathematical terms and notations are explained in more detail.

Convergence of Random Variables

In probability theory, several different types of convergence of random variables are de-

fined. The weakest form of convergence is convergencein distribution. If we consider

a sequence of random variables(X1, X2, ...) and the corresponding sequence of CDF:s

(F1, F2, ...), we say thatXn converges in distribution toX (that has CDFF) if

lim
n→∞

Fn(a) = F (a) = P (X ≤ a)

for everya ∈ R whereF is defined and continuous. That is, the probability thatXn is in

some given range gets arbitrary close to the probability that X is in the same range, when

a very largen is chosen. Convergence in distribution is used in the Central Limit Theorem

and in the Weak Law of Large Numbers. One result related to convergence in distribution

is that ifXn → X in distribution, theng(Xn) → g(X) in distribution (g : R → R).

Another term related to convergence in this work is convergencealmost surely. The

sequenceXn converges almost surely towards random variableX, if

P
(

lim
n→∞

Xn = X
)

= 1

which means that events that don not converge toX have probability 0. In general, a

proposition is said to hold almost surely ifP (”proposition holds”) = 1. Convergence

almost surely implies also convergence in distribution. The notation is used in the Strong

Law of Large Numbers.

Another type of convergence, namely convergencein probability appears often in prob-

ability theory literature. The sequenceXn is said to converge to X in probability, if

lim
n→∞

P (|Xn − X| ≥ ǫ) = 0.

The definition is used in the weak law of large numbers in section 3.3.1.

CONTINUES

APPENDIX A CONTINUED

Mean, Variance, Covariance and Correlation

The expectationµ of a random variableX describes the most probable value of all possi-

ble values. The expectation is defined as (discrete and continuous case respectively)

µ = E(X) =
∑

i

xip(xi),

µ = E(X) =

∫ ∞

−∞

xp(x)dx.

The variance of a random variable describes the variation and diffusion of the variable

around its expectation. The variance for a discrete random variable with probability den-

sity functionp is defined as

σ2 = V ar(X) = E(X − µ)2 =
∑

i

(xi − µ)2p(xi).

Similarly for continuous random variable with density function p:

σ2 = V ar(X) = E(X − µ)2 =

∫ ∞

−∞

(x − µ)2p(x)dx.

Using the Steiner’s theorem we get a formula for variance that is easier to compute. Below

it is given for both discrete and continuous case respectively.

σ2 =
∑

i

x2
i p(xi) − µ2,

σ2 =

∫ ∞

−∞

x2p(x)dx − µ2.

The variance is seldom calculated analytically. Instead, a"sample variance" is often cal-

culated from the measured data, using an estimate for the variance. Ifxk = (x1k, ..., xnk)

denotes the column vector in a design matrix (n observations for a variable), the sample

variance can be calculated using

V ar(xk) = σ2
xk

=
1

n − 1

n
∑

i=1

(xik − xk)
2.

The square root of the variance is thestandard deviation of a random variable:

Std(xk) = σxk
=
√

V ar(xk).

CONTINUES

APPENDIX A CONTINUED

The covariance is a measure of the relation (co-movement) between two random variables

X andY . The covariance is defined as

Cov(X, Y) = E((X − E(X))(Y − E(Y))).

If we look at the observation matrix, the corresponding covariance between two measured

variablesxl = (x1l, ..., xnl) andxk = (x1k, ..., xnk) can be calculated using

Cov(xl, xk) = σxlxk
=

1

n − 1

n
∑

i=1

(xil − xl)(xik − xk).

Note thatCov(x, x) = V ar(x). The covariance matrixcov(X) whereX is the observa-

tion matrix, is defined byCov(X) = [Cov(xi, xj)], wherei, j ∈ Z and1 ≤ i ≤ p, 1 ≤
j ≤ n. That is, the diagonal contains the sample variances and theother parts of the

matrix consist of covariances between different measured variables.

The correlation coefficient between two random variables isdefined as

Corr(xl, xk) = ρxlxk
=

σxlxk

σxl
σxk

=
Cov(xl, xk)

Std(xl)Std(xk)
.

That is, the non-diagonal elements of the covariance matrixcan also be written asσxixj
=

ρxixj
σxi

σxj
.

Confidence Intervals

If we are estimating some quantityθ, the (1 − α) ∗ 100% confidence interval for it is

the interval to which the true value of the parameterθ belongs with probability1 − α.

The principle of forming the confidence interval is simple: we assume that the estimated

parameterθ follows some distributionDθ. FromDθ we can assign the limitsa adnb so

that

P (a ≤ Dθ ≤ b) = 1 − α.

From the two inequalitiesa ≤ Dθ ≤ b it is possible to compute the limits for the parameter

θ:

L ≤ θ ≤ U.

For example if we assume thatX ∼ N(µ, σ2), through CLT we know thatX ∼ N(µ, σ2/n)

and thus

Z =
X − µ

σ2/
√

n
∼ N(0, 1).

CONTINUES

APPENDIX A CONTINUED

Now the1−α confidence interval forµ, for example, can be calculated from the equation

−z1−α/2 ≤ Z ≤ z1−α/2

wherezx represents the point of the CDF ofN(0, 1) at whichP (X ≤ zx) = x.

Linear Regression Models

If the model is linear with respect to the unknown parameterθ, it can be written in the

form y = Xθ + ǫ. The estimatêθ that minimizes the LSQ function, is the solution of the

normal equationXT Xθ̂ = XT y, which leads to

θ̂ = (XT X)−1XTy.

If the measurement errorǫ ∼ N(0, σ2I) (i.i.d. components), we getCov(θ̂) = σ2(XTX)−1.

Proof. Let b̂ be the LSQ solution to the linear problemy = Xb. That is,̂b = (XT X)−1XT y

(normal equation). NowCov(b̂) = Cov((XTX)−1XT y). Using the assumptionCov(ǫ) =

Cov(y) = σ2I, the fact thatCov(Ay) = ACov(y)AT and(AB)T = BT AT and(AT)−1 =

(A−1)T ([8]) we get

Cov(b̂) = (XTX)−1XT σ2((XT X)−1XT)T

= σ2(XT X)−1(XTX)(XT X)−1

= σ2(XT X)−1. (10.1)

In nonlinear regression, no exact distribution theory likethe one presented above can be

formed, and one has to rely on numerical methods.

Jacobian Matrix

The Jacobian matrix contains the partial derivatives of first order with respect to every

function and every variable. Ify = y(x) is defined as a set of functions

y1 = y1(x1, ..., xk) ...

yn = yn(x1, ..., xk) (10.2)

CONTINUES

APPENDIX A CONTINUED

then

J =







∂y1

∂x1
... ∂y1

∂xk

...
∂yn

∂x1
... ∂yn

∂xk






.

Hessian Matrix

The Hessian matrix contains the information about the second order (partial) derivatives

of a certain function with respect to every variable pair. Ify = f(x1, ..., xn), the Hessian

matrix is defined as

H =













∂2f
∂x2

1

∂2f
∂x1∂x2

... ∂2f
∂x1∂xn

∂2f
∂x2∂x1

...

...
∂2f

∂xn∂x1
... ... ∂2f

∂x2
n













.

Quartiles and Interquartile Range

If we have ordered data with2n observations, the first quartileq1 is defined as themedian

of the n first (smallest) observations. Respectively, the third quartileq3 is defined as the

median of the n largest observations. The second quartileq2 is the median of the whole

data.

The interquartile range is used as a measure of spread in statistical samples. It is defined

asiq = q3 − q1.

Principal Component Analysis

PCA (Principal Component Analysis) is meant for searching the directions, where the

deviation of the samples is the largest. That is, we try to findthe most important directions

(directions that mostly describe the structure of the data)from a high-dimensional data set.

Numerically the directions of the greatest deviation can beobtained through the singular

value decomposition (SVD) of the data matrix. The SVD for theobservation matrixX (n

x p) would beX = UΣV T whereU andV are orthogonal andΣ = diag(σ1, ..., σp). In

this work the PCA techniques are considered as a way to rotatethe proposal distribution

in the single-component versions of the MCMC algorithms (SCand SCAM).

