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ABSTRACT
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One of the main tasks in statistical analysis of mathemlaticalels is the estimation of
the unknown parameters in the models. In this thesis we &eeesied, instead of single
estimates, in the distributions of the unknown parametedsramerical methods suitable
for forming them, especially in cases where the model is ineal with respect to the
parameters.

From different numerical methods the Markov Chain Montel€aMCMC) methods are
especially emphasized. These computationally intensetbots have become popularin
statistical analysis during the last decades, mainly direct@ased computational power.
The theory of both Markov Chains and Monte Carlo simulatisnmesented to the extent
that is needed in justifying the MCMC methods. From the rédgateveloped methods
especially the adaptive MCMC methods are discussed. Theagp of the thesis is
practical and thus different issues related to the implaaten of the MCMC methods
are emphasized.

The empirical part of the work consists of five example modiedd are studied using the
methods discussed in the theoretical part. The modelsibes#remical reactions and are
given as ordinary differential equation systems. The nodet collected from chemists
in Lappeenranta University of Technology (Lappeenranialafid) and Abo Akademi
(Turku, Finland).
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Yksi keskeisimmista tehtavista matemaattisten malliastiollisessa analyysissa on mal-
lien tuntemattomien parametrien estimointi. Tassa diptypdssa ollaan kiinnostuneita
tuntemattomien parametrien jakaumista ja nilden muodasten sopivista numeerisista
menetelmista, etenkin tapauksissa, joissa malli on eggiinnen parametrien suhteen.

Erilaisten numeeristen menetelmien osalta paapaino orkdviar ketju Monte Carlo -
menetelmissa (MCMC). Nama laskentaintensiiviset mengiebvat viime aikoina kas-
vattaneet suosiotaan lahinna kasvaneen laskentatehksivBeka Markovin ketjujen etta
Monte Carlo -simuloinnin teoriaa on esitelty tydssa siirgnm, ettd menetelmien toimi-
vuus saadaan perusteltua. Viime aikoina kehitetyista teémesta tarkastellaan etenkin
adaptiivisia MCMC menetelmia. Tyon lahestymistapa on &égbnlaheinen ja erilaisia
MCMC -menetelmien toteutukseen liittyvié asioita kordgéen.

Tyon empiirisessa osuudessa tarkastellaan viiden eskmneakin tuntemattomien para-
metrien jakaumaa kayttaen hyvaksi teoriaosassa eséatignetelmid. Mallit kuvaavat
kemiallisia reaktioita ja kuvataan tavallisina differe@liyhtaloryhminé. Mallit on kerat-
ty kemisteilta Lappeenrannan teknillisesté yliopistgatAbo Akademista, Turusta.
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1 Introduction

During the last few decades there has been a revolution ilyiagpmethods based on
random sampling to problems of statistical analysis. Thisainly due to increased com-
putational power. In practice this development has led ¢oeiased applicability of Monte

Carlo (MC) methodology. Especially Markov Chain Monte @gqMCMC) methods have

become applicable and widely used in statistical analyfsisathematical models.

This work discusses the methods meant for an important taskaitistical analysis of
mathematical models - the estimation of unknown parametedstheir distributions in
models, based on measured data. The case of parametertestimaonlinearmodels

is especially under investigation. In this case, some nigalenethods have to be applied
- in this work we concentrate on Monte Carlo methods that asetd on random sampling.
In addition, the most important theoretical and practicalaepts behind the methods are
discussed, in order to give the reader a comprehensivergetigal view of the methods.

Thus, the problem in the work is not merely to give fixed, in gssense optimal values
for the unknown parameters in the models, but to estimate thlsdistribution of the
parameters. This leads to a Bayesian problem formulaticgrevthe unknown quantities
in the models are thought to be random variables with cedisinibutions.

In this section the outline of the thesis is shortly presgntegether with a description
of the research approach and methodology. The most imgadaearch questions are
presented in an explicit way to give a clear and concrete extdighe goals of the thesis.

1.1 Outline

The thesis begins by introducing the basic idea of the Baypdsamework, together with
the Bayes' rule (chapter 2). The basic theories behind MGatto sampling methods are
discussed in chapter 3 and the usage of MC methodology ifigdstin particular, some
MC sampling methods are introduced, including Accept-Bejeethods and variance
reduction methods such as importance sampling. In chaptiee £ssential theories about
Markov Chains are presented to the extent that is neededpiaiexhow the MCMC
methods work. In addition, the basic MCMC methods are erplatogether with issues
related to the implementation of the algorithms (chapteip visualization of the output
of the methods is especially taken into consideration.



Besides the basic MCMC methods based on the Metropolis aplos@ilgorithms, some
new, recently developed versions of the algorithms areudised in chapter 6. In partic-
ular, different adaptive MCMC methods are presented, teggevith conclusions about
how they should be used and in which cases they are most usefatidition, an alter-

native MC method, the Population Monte Carlo (PMC), is dssad in chapter 7. The
foundation of the method, importance sampling, is presemehapter 3.

Some development ideas and directions for future reseaectiscussed in chapter 8 in
a subjective manner. The ideas presented are based on atimesvnade when working
with the different methods.

The empirical part of the thesis (chapter 9) consists of fkagple models gathered from
research groups in Lappeenranta University of TechnologlyAbo Akademi. The pre-
sented methods are applied to these problems that are tymweder research. The goal
is on one hand to produce new information related to the nspdelch as uncertainties,
parameter identifiability and correlations. On the othardhthe work attempts to spread
the methodology and tools to the researches utilizingssiedil analysis in modeling. The
case examples concentrate on different chemical reactmaels and parameter estima-
tion in them.

1.2 Approach and Methodology

The goal of the thesis is to provide the reader with a cledrpyectical view about some
numerical methods available for evaluating the distrilmuitof unknown parameters in
nonlinear models. The bases of the methods are investitfadedetically, but the main
emphasis of the work is on algorithms and implementationess The goal is that the
reader is able to implement the methods after reading tleisish That is, a major part
of the proofs and theoretical background of the methodsslearreferences to literature
sources. The strongly applying approach is chosen becdtibe tack of literature re-
lated to implementing the algorithms. The algorithms aespnted in pseudo-code and
platform-specific details are not addressed.

The work is done in a comparative manner. That is, one alyor{fMetropolis-Hastings)
is considered to be the "standard" procedure, against wdtlér methods are mirrored
and to which new modifications are presented. On the othed,havo different fun-

damental approaches to the problem are presented: the MCktGonblogy based on



Metropolis-type accept-reject rules and methods baseteoative importance sampling
procedures.

The thesis is also a case-study - the methods are appliecettype of real life applica-
tions; ordinary differential equation systems describthgmical reactions. The goal is
to show that the algorithms work in real applications and thay are relatively easy to
implement. The collaboration with the chemical engineggroups is intended to lead to
more wide application of the methods.

In practice the work is done by building simple implemeraas for the methods using
theMATLABsoftware. In addition, a numerical software calMddests used to produce
the final output related to the case example models.

1.3 Research Questions

First of all, after the problem is formulated, it is esseltiieknow how it can be expressed
mathematically. This problem is handled in the work (set@) through the Bayesian
framework, the use of which has to be justified as well. As cetecresearch questions:

e How can the distribution of the unknown parameters of a ma@ar model be rep-
resented mathematically?

— Why is the Bayesian approach chosen and how does it diffiertine classical
Frequentist framework?

As mentioned, the emphasis of the work is in the MCMC methddse description of
these requires, however, some basic concepts related hoMbanite Carlo and Markov
Chain theory. Thus, answers for the following questionssaigght in chapters 3 and 4.

¢ What do we mean by Monte Carlo methods and why do they producsctre-
sults?

e How can the MCMC methods be justified from the Markov Chaintpadiview?

The main research question is related to the MCMC methoadsdbékres (chapter 5). The
practical approach of the work is expressed by the folloveegof questions:

10



e How can we form the distribution of the unknown parametersanlinear models
using MCMC methods?

— What kind of methods exist for the task?
— What do we have to consider when we want to implement the dsstho
— How can we efficiently illustrate the results visually?

— What kind of random sampling methods do we need to impleimeMCMC
methods? How do these work?

An important part of the thesis is the demonstration of sofméne recently developed
versions of the MCMC methods and alternatives to them (era@ and 7). In addition,
one of the goals of the work is to come up with some ideas to ongithe methods
(chapter 8). These raise the following questions:

e What kind of improvements have been introduced lately tostiedard MCMC
algorithms?

— What kind of cases are these algorithms suitable for?

e How does Population Monte Carlo (PMC) work and how doesfiedifom MCMC?

e How could we develop the methods further?

The purpose of the empirical part is to put the methods intma@nd apply the methods
to a certain set of specific problems. That is, we ask

e How can the methods be applied to ODE models?

e What kind of new information related to the example modelthdanethods pro-
duce?

11



2 Bayesian Inference in Parameter Estimation

The general form of a nonlinear model is presented in equdfidl). The model con-
sists of measuremenys known quantities (constants, control variables etc.), unknown
parameterg and measurement errer

y = f(x;0) +e. (2.1)

The problem is to estimate the unknown parameidyased on the measurementd1],
[2]). In this work a group of numerical methods for solvingghroblem, based on random
sampling, are presented in the framework of Bayesian thebmat is, the error and the
unknown parameters in the model are random variables arelddistribution - they are
not thought to have a single "correct" value, but differeasgible values, others being
more probable than the others.

2.1 Linear vs. Nonlinear Models

The model is said to be linear with respect to its unknown patarss if it can be writ-
ten asy = f(X)6, where the matrixX includes the design (input) variables. For linear
models, exact analytic formulas exist for creating stass{estimates and approxima-
tions about their precision) about the unknown parametsrs Appendix 1 for the basic
formulas in linear case).

For nonlinear models, no exact theory exists for estimatasmknown parameters and
for their distribution and accuracy. That is, numerical hoets are needed in both find-
ing the best estimate (nonlinear optimization task) anduatsg the distribution of the
parameters. The emphasis of the work is on estimating theldison of parameters of
nonlinearmodels.

2.2 Bayesian vs. Frequentist Framework

In statistical analysis there are two major approachesferyence - the Frequentist and
the Bayesian approach. In general, the goal in statistidatence is to make conclusions
about a phenomenon based on observed data. In the Frequremtiswork the obser-
vations made in the past are analyzed with a created modelhencesult is regarded

12



as confidence about the state of the real world. That is, wanasshat the phenomenon
modeled has statistical stability: the probabilities agBreed as frequencies with which an
event occurs if the experiment is run many times. An evert wibbabilityp is thought
to occurpn times if the experiment is repeatedimes.

In the Bayesian approach the interpretation of probah#ityubjective. The belief quan-
tified before is updated to present belief through new olexbdata. In the Bayesian
framework the probability is never just a frequency (singddéue), but a distribution of

possible values. In the previous example the frequemcgan have different values of
which other are more probable than the others - for everyrckprobability can be as-
signed that tells how strong our belief about the claim isatlif, the Bayesian inference
is based on assigning degrees of beliefs for different event

A common task in statistical analysis is the estimation efuhknown model parameters.
The Frequentist approach relies on estimators derived fiidfarent data sets (experi-
ments) and a specific sampling distribution of the estinsatém the Bayesian approach
the solution encompasses various possible parametersvalberefore, the Bayesian ap-
proach is by nature suitable for modeling uncertainty inrtieeel parameters and model
predictions.

The Bayesian approach is basedppior andlikelihood distributions of parameters. The
prior distribution includes our beliefs about the probleefdyrehand, whereas the likeli-
hood represents the probabilities of observing a certainfggarameter values. The prior
and the likelihood are updated to a posterior distributihich represents the actual pa-
rameter distribution conditioned on the observed datautin the Bayesian rule (section
2.3). [3], [4]. [8]

2.3 Bayes’'Rule

As stated above, the Bayesian solution to the parametenastin task is the posterior
distribution of the parameters, which is the conditionabhability distribution of the
unknown parameters given the observed data. That is, watarested in the distribution
with probability density functionr(6|y) wheref denotes the unknown parameter values
andy contains the observations.

To definer(f]y) we assume that there is a joint probability density funciigh y) that
gives the probability for every combination of parameterd data. In the Bayesian frame-

13



work this function is expressed as

p(0;y) = p(y|0)m,(0), (2.2)

wherer,, (6) is the prior distribution that describes our prior knowledsd the parameters.
Herep(y|0) is the likelihood function that gives the probability forcesving datay if we
have parameter valug In order to receive the posterior probability density ftioe the
joint probability has to be normalized so that the probébsisum to value 1. This scaling
factor is the density function of all possible measurementsy). The posterior density
can now be written in a form of the Bayesian Rule ([6], [1]):

p(yl0)mpr(6)

m(0ly) = ()

(2.3)
which is analogous to the Bayesian rule from the elementarygbility calculus for two
random variables! and B:

P(AnB) P(B|A)P(A)

PUIB) = =55 = pg (2.4)

The scaling factor (the marginal density of observatioas) loe calculated as the sum (in-
tegral) over all possible joint probabilities. That is, B&yesian formula can be expressed
i (Y1) 0
P\Y|U)Tpr
) = om0 %)
A simple analytical example of parameter estimation in tlagdsian framework is pre-
sented in chapter 2.3.4.

The tricky part in implementing Bayesian inference in pi@eis the normalizing con-
stant that requires integration over an often high-dimamesi space. This integral is sel-
dom possible to calculate analytically. Deterministic hoets based on the discretiza-
tion of the space may not be feasible because of large cotgmabcomplexity due to
high dimension. This problem can be tackled, for examplé& Wionte Carlo integration
methods (see chapter 3) or with Markov Chain Monte Carlo wddh{see chapters 4-6)
in which the need for computing these difficult integralsigaes.

Before moving into Monte Carlo integration and MCMC methadparameter estima-
tion, we take a closer look on the role of prior and likelihabstributions from the point
of view of parameter estimation.

14



2.3.1 Prior Distributions

As mentioned, the prior distribution describes our presitpriori) knowledge about the
unknown parameters in the model. With properly selectirggghor distribution we can
emphasize the parameters that we know to be more probabi¢thathers. The problem
of selecting the prior distribution is not comprehensivatidressed here.

If we do not have any a priori knowledge about the parametarsininformative prior
can be used. This is the case in all practical examples aniéimgmntations in this thesis.
Thatis, we state,, (¢) = 1. If we have limits for the parameters, we can assign a uniform
prior for the parameters in the feasible interval. [6]

For informative priors it is often useful to use so called jogate priors. This means that
both the prior and the posterior come from the same familyistriutions. Conjugate
priors can be found, for example, for exponential and Gams@normal) distributions.
The conjugate priors are discussed for example in [3].

2.3.2 Likelihood in Parameter Estimation

As said, in the Bayesian framework the erean (2.1) is distributed according to some
distribution that has some probability density functioD, sayp.. If we assume that the
measurement error is independentpit can be shown ([2]) that the difference between
the measurements and predicted values is distributed isaime way as the error. That
is, the likelihood can be written as

p(¥10) = pe(y — f(x;0)). (2.6)

If we assume that the measurement noise is Gaussian with regarand covariance
C, thatis,e ~ N(0, (), the likelihood can also be written as the Gaussian PDF fr th
difference between measurements and observations ([2]):

1 0.5y~ [ (a0)T O (y— [ () 2.7)

) = e oy |

Especially, if we assume that the error terms= y; — f(z;;6) (measurement error for
measuremend) are independent and normally distributed, that;is- N (0, 0?) ande ~

15



N(0,0%I), the likelihood for a certain measurement gets the form

1

—0.50 2 (y;— f(x4;0))2
Prr I . (2.8)

p(yil0) =

Since the error terms are assumed to be independent, thareehitkelihood of all the
measurements can be written as a product

n

p(y16) = [ p(0116) = ——ose 0572550 2.9)

1l (2m02)n/?

whereSSy = Y, (v — f(z:,60))?. This is the basis of the practical implementations in
this thesis. Note that if measurement errors in differerih{goare not identically dis-
tributed or if correlations between error terms exist, tibdhas to be written in full form
(equation 2.7).

When using an uninformative priort,,. () = 1, also the posterior is known up to the
normalizing constant (integral). That is,

m(0y) o< p(yl0). (2.10)

2.3.3 Point Estimates

We are often interested, besides in the shape of the pastistabution, in getting some
values that in some sense represent the posterior distnibutVe can take the "most
probable" value of the posterior density that leadsieximum a posterionalue (MAP):

éMAP = maamr(@\y). (2.11)

For the MAP estimate we normally use the unnormalized pmste(d|y) o p(y|0)m,.(0),
since it is simple to evaluate and results to the same edirf&s [7]

Now
Oriap = mgxp(yIG)p(H)- (2.12)

If we use the non informative prior, the task of finding the MAdeluces to finding the
Maximum Likelihood (ML). The estimate is normally abbreigd as MLE (Maximum
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Likelihood Estimate) [7]:
Oy = MLE = m@axp(y\@). (2.13)

In practice maximizing the likelihood is equivalent to maxzing the log-likelihood func-
tion L;,, = log(p(y|€)), which is the same as minimizinglog(p(y|#)). This results in
the following target function:

— Loy = —log(p(yl0)) = 20.50_2(% — f(2s;0))* + 0.5nlog(27m0?). (2.14)

This kind of objective function is often chosen, becauss #asier to optimize than the
likelihood itself. Also some optimization routines are esjally designed for objective
functions that contain sums of squares. In addition, thevopation routines often assume
that the objective function is to be minimized and that is W minus sign is used.

2.3.4 Example: Coin Tossing

To illustrate the Bayesian Framework a simple analyticalnegle of coin tossing is pre-
sented here (adopted from [4]). L&} represent the result obtained from the i:th toss
of a coin so that; = 0 means tails and; = 1 heads. We are now interested in the
probability of getting heads in a series of tosses. Ad_denote the probability of receiv-
ing heads. Now we can write the probability of observing dipalar series of tosses
y = (y1, ..., yn) conditioned on the probability:

P(yr,..,ynl0) = [] 0V (1 — 0)' 7% = 62v:(1 — 6)' "2 = oM (1 — )" (2.15)

whereN; is the number of heads in the observations aijchumber of tails. This is the
likelihood of receiving a particular series of heads anl$taupposing that the probability
for receiving heads i8. That is, the likelihood contains the information about hewil
various parameter valuésc [0, 1] are able to explain the observed data.

The maximum likelihood estimate is taken as the value thaimaes the log-likelihood
function
Liog(0) = log(0™ (1 — 0)™°) = Ny log () + Ny log (1 — 8). (2.16)

The maximum likelihood estimate ésm = % which is the same as the estimate from
the Frequentist framework.
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If we select a non-informative prior (see section 2.3.1)ddferent valuesy, meaning
that we consider all values for the "trué'in the interval[0, 1] equally possible, we can
formulate the posterior density with the Bayes’ rule asdot:

ON1(1 — g)No (N+1)

!
m(0ly) = P(Oly1, ..., yn) = 0% (1= 6)vds AT oM (1 — )N, (2.17)
0

Here the integral in the denominator is analytically dedivesing the beta integral (see
[8]). The development of the posterior density function sesies of throws is illustrated
in figure 2.1.

2 3 3
2 2
1
1 1
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
1 heads, 0 tails 3 heads, 2 tails 5 heads, 6 tails
4 6 10
4
2 5
2
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
11 heads, 10 tails 19 heads, 20 tails 50 heads, 50 tails

Figure 2.1: The development of the posterior in a set of tistdMote that we get a result
even with NV = 1, when the Frequentist estimate would give either probigiilior O.
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3 Monte Carlo Methods

The termMonte Carlo(MC) method is normally expressed in a very general way - MC
methods are stochastic methods; methods that involve sagmaindom numbers from
probability distributions to investigate a certain prableThe Monte Carlo methods are
mainly meant for solving two kinds of problems that oftensarin statistical analysis.
MC methods provide a way to generate samples from a giverapility distribution. On
the other hand they give a solution to the problem of estimgagkpectations of functions
under some distribution and thus calculating numerical@amations for integrals.

In this section we consider the mathematical background ofitel Carlo methods, ex-
plaining why Monte Carlo methods work in the problems statkdve and how accurate
they are. In addition to the fundamental theory of simulatiwe introduce some basic
MC methods. The section begins with a short introductionlgmr@hms for creating
random samples from different probability distributionalgorithms that are needed to
implement Monte Carlo methods. The theory is based on [§][19] and [11].

3.1 Sample Generation

A major issue in statistics is the ability to create sampiesifa given probability distribu-
tion. In the Bayesian framework, we want to create samptes the posterior density in
order to examine the correlation and accuracy of model patars and predictions. The
Monte Carlo based methods rely on the possibility of crgatandom variables from ar-
bitrary and possibly complex distributions. In this senttbe basic methodology of sam-
pling from different distributions, in particular the noaindistribution, is first discussed.
Then, a different type of numerical sampling method (Acdepject), is presented. We
assume here that we are able to sample from the uniformllision U [0, 1] and we do
not address how this is done in practice.

3.1.1 Traditional Methods

If we know the cumulative distribution function (CDF) of tlastribution we want to
sample from, we can use the Inverse Transform method (lev@2 method) to produce
samples from the target distribution. The inverse CDF metikdased on the fact that a
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random variablg"~!(u), whereu is sampled from the uniform distributidi[0, 1] has the
distributionF'. Thatis, random points are "shot" from the y-axis to the CD#fve and the
corresponding points in the x-axis are regarded as iid sasrfppm the target distribution
(see figure 3.1). [6], [8]

0 0.5 1 15 2 25 3 35 4
Finv(u)

Figure 3.1: Inverse CDF method for producing samples froenetkponential distribution
with F=1—eandF ! = —In(1 — u).

The inverse CDF method assumes that the CDF is known. Thiktrbrg difficult or
impossible to calculate analytically, however. In thiseeas empirical CDF function can
be formed by calculating the CDF in pointsx = (z1,...z,,) and interpolating a point
from interval[z;_,, z;] that satisfies:; ;| < F(u) < ;.

In many applications, including MCMC as formulated in thh®sis, it is essential that
we can produce samples from Gaussian distributions. Pimogluandom samples from

a univariate Gaussia (u, 0%) can be simply generated by = 1 + zo, wherez ~
N(0,I) (which means that; ~ N (0, 1)). For a multivariate GaussiaN (i, C') (C'is the
covariance matrix) direct sampling meass= ;. + Rz whereC = RTR and thus the
matrix R = C''/? can be formed via the Cholesky decomposition. Here we assigiaie
that we are able to generate samples frdit), 1). In general, the algorithm for creating
x ~ N(u,C) goes as follows.

e ComputeC'/? using the Cholesky decomposition
e Generate ~ N (0, )

e Calculatex = j + C'/%z
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To show that the method works correctly, we need the equality Ay) = AT Cov(y)A.
This gives

Cov(x) = Cov(C'*z)
— (Cl/Q)TI(Cl/Q)
= C.

3.1.2 Accept-Reject Methods

For many distributions it is difficult or impossible to do éat sampling with an inverse
transform or enough points for reliable empirical CDF ar¢ available. Sometimes the
distribution cannot even be presented in a usable form tahes&raditional methods in-
troduced in the previous chapter. The selection of methaliisccAccept-Reject methods
only require that we know the analytical form of the targensiey up to a multiplica-
tive constant. This is the case in sampling from the posteligiribution in the Bayesian
framework.

Thefundamental theorem of simulatigj6]) forms the basis of Accept-Reject sampling
methods. Let us consider, for simplicity, a one-dimensi@®diting where we have a
density f(z), which is bounded in the intervét, b] so thatf(x) < M for all x € [a, b]

and which fulfillsf;’ f(z)dz = 1. To create random samples from this density we can
"shoot" random point$.X, U) to a rectangular area € [a,b] and f(z) € [0, M]. The
points fulfilling U < f(X) are regarded as samples from a distribution with denfity
based on theorem 3.1 ([6]).

Theorem 3.1 (Fundamental Theorem of Simulation)
SimulatingX ~ f(z) is equivalent to simulatingX, U) ~ U{(z,u) : 0 < u < f(x)}.

The Accept-Reject method produces samples from a disimibbptz) using an envelope
functiong(z) that satisfiep(x) < Mq(z), whereM < co. Assuming that we can sample
from ¢(z), the Accept-Reject algorithm for producing one sample fdistribution with
densityp(x) goes as follows

1. Generate a candidate poiitfrom proposal function that has unnormalized density
q(z) and generaté& from U[0, 1].
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2. AcceptX as a sample of a distribution (with unnormalized dengity)) if U <
f(X)/Mq(X). If accepted, end the algorithm. Otherwise go to step 1.

The Accept-Reject method, illustrated in figure 3.2, hasestmitations. The efficiency
of the algorithm depends on how close the proposal distdhus to the distribution
from which one wants samples. The const&htoften has to be quite large so that the
inequality is fulfilled over the whole space, especiallyhwdrge dimensions. This leads

to low acceptance probabilitie®(z accepted) = P(U < z\%ﬁ)) =1/M. [6], [8], [12]

15 T T T T T T
Target Function
Envelope Function
x  Accepted

Rejected

0.5

Figure 3.2: Accept-Reject demonstration.  Sampling froomcfion p(z) =
e~0%" (sin?(x) + 0.3) using the envelope functiaf(z) = 1.5¢%%*", 40 points accepted,
60 rejected.

3.1.3 Bootstrapping

In this thesis we are interested in ways to investigate hevdistributions of the unknown
parameters in a general nonlinear model (equation 2.1)Veeh@he simplest idea to
produce samples from the distribution of the parameters sdd random noise to the
data and, at each step, do the LSQ fit and regard the diffeaeateter values as a sample
from the posterior distribution. This does not work, howevehe added noise is different
from the actual measurement noise. Often we do not know tresuarement noise, and
each iteration would require a possibly time consumingroation step, which makes
the utilization of the method doubtful. [13]
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Bootstrapping is a sample generation method in which we use different coatlons of
the existing data, with which the estimation is done in arattee manner. In bootstrap-
ping, a sampling with replacement procedure is carried bute haven measurements
for design variables( and response variablés, n new indexes/ are randomly chosen
fromindexes = (1,...,n). Then, the original dataX;,Y;) is replaced with (X ;,Y;) and
the fitting is done again to get a new sample from the postdrstribution of the param-
eters. In this work, the bootstrapping method and sampliiig replacement is needed in
the Population Monte Carlo scheme in chapter 7.

3.2 Monte Carlo Integration

The problem of finding expectations is equivalent to intégra since if we can decom-
pose the integrand, say(z), into a product of a functiorf(x) and a probability density
functionp(x), the definite integral can be written as

1= [ hado = [ f@pla)dn = By )] (3.1)

That is, if we can estimate the expectation, we are providéudan estimate for the inte-
gral as well. In this section different methods for calcuigtthe integral numerically us-
ing a random sampling (Monte Carlo) approach are discugsgdneral one-dimensional
definite integrall = f;’ h(z)dx = f f(z)p(x)dx is considered in the examples, for sim-

plicity.

3.2.1 Uniform Sampling - Crude MC

The simplest way to calculate the integral numerically isis® Riemann sums, where
the integration interval is divided into parts of lengthsAz; (: = 1...n). The integral
estimate can be calculated with

I= zn: h(z;)Az;. (3.2)

This kind of numerical integration is often done in a detenstic manner by dividing
the interval into parts of equal length. That 83; = Az = (b — a)/n for all 4. This
gives the classical formula= (b — a)/n 3", h(z;). The simplest Monte Carlo version
of the Riemann sum idea is to take the points in which the idmiss done randomly
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from the uniform distributionz; ~ Ula, b]. This is sometimes referred to asude MC.
The approach is, however, often ineffective, because allpdrts of the integrand are
considered to be equally important with respect to the valube integral. The Monte
Carlo approach in this case also adds some computationglerity, since the function
value has to be multiplied with a differetz in each term of the sum.

3.2.2 Non-uniform Sampling

If the integrand consists of a product of a function and a abalily density function
(equation 3.1), the power of the Monte Carlo approach is seere clearly. The Monte
Carlo estimate can be derived using random variaftes..., z,,) drawn from the distri-
bution with densityp(z). The Monte Carlo estimate for the integral is now

=23 @), (3.3)

Using the product notation, we are not limited to samplirmgfrthe uniform distribu-
tion. If there is a representatiof(z)p(x) for h(x) so, that the functiom(x) includes
the "important" parts of the integrartdz) (where the value of the integrand is high),
the efficiency of the method is improved when compared wightthditional Riemannian
approach. The improvement in efficiency is illustrated i@ €&xample below.

Example. Let us consider an indefinite integral
I = / e (sin2 62 + 3 cos® xsin? 4z + 1).

We notice that the integral is given as a product, where teetérm is the (unnormalized)
density function of the standard normal distribution witlean O and variance 1. The
density and the integrand are plotted in figure 3.3.

Now we produce the integral estimate in two different way&e Tirst one {;) is done

by selecting points from a uniform distribution; ~ U[—4, 4], since we see that the in-
tegrand is close to zero at| = 4. Then equation (3.2) is used to produce the estimate.
The second estimatd.) is produced by taking; ~ N(0,1). Since the density is un-
normalized, the final result has to be corrected by the imvefshe normalizing constant,
Vv2m. We can see that the unnormalized density takes into actberinportant points

of the integrand, points close to= 0. The development of the integral estimate with a
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different number of sampled points is represented in figude 3

5 \ \ \ \ \ \ \

p(x)
— — h(x)

Figure 3.3: Integrand(z) = f(z)p(x) and (unnormalized) densify(z). The density
captures the important parts of the integrand.

MC with uniform p(x)

0 50 100 150 200

6MW~WWWWWWMHW

0 50 100 150 200
number of sampled points

MC with normal p(x)

Figure 3.4: Development of estimatés(crude MC) andl, with respect to increasing
sample sizel, seems to converge faster to the correct value.

Note that the integrand(z)p(z) and the effectiveness of the simple Monte Carlo ap-
proach is strongly dependent on the dengity). Often the integrand is not represented
in the product notation, or the distribution with densityétion p(z) might be difficult

to sample from and the distribution might not cover the im@ot parts of the integrand.
The integrand can, however, be written in a form of a prodé@ietfoinction ancuny prob-
ability density, that has the desired properties. This,idefled importance sampling, is
presented in section 3.2.4.
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3.2.3 Hit and Miss Strategies

A simple way to evaluate integrals of a positive functidfx) is to use a similar kind
of approach as in Accept-Reject methods for producing randariables from different
distributions. Suppose that we have functilfy(z) that satisfies\/q(z) > p(z) for all

x and we are able to produeesampled z;} from the distribution with PDF(x). Then,
for each sampled point we can produce sampldsom U[0, Mq(x;)]. That is, we have
points{z;,y;} "under" the curveM¢(x). Now we can simply calculate the number of
points satisfying; < h(x;). If Mq(z) is chosen so that its integrg] is easy to calculate,
the estimate for the original integralcan be calculated as a ratio= m/n - 1,. Thatis,
the Accept-Reject idea can also be used to evaluate insegral

The simplest way to use this idea to calculate one dimenkiotegrals of positive func-
tions is to takeg(x) to be a constant large enough. Now we can producamples
{z;,y;} inside the "box"a < =z < b, 0 < y < M and see which pointg; satisfy

y; < h(z;) (altogetherm points) and simply calculate the integral estimate as ® rati
I =m/n-I,=m/n-(b-a)K. This is often inefficient, since the area of the box can
be large compared to the integral, and many points have todagetl to get a reliable
estimate.

The "hit and miss" simulation idea can be generalized to nséogtions - the idea is sim-
ply to generate many samples, see which of them satisfy sedigsioperty and calculate
ratios. An example of calculating tail probabilities for armal distribution using this
type of simulation is given in section 3.2.4.

3.2.4 Importance Sampling

As seen in section 3.3, the error given by crude Monte Catkgiation converges quite
slowly to the true integral value, namely with ratg,/n. One of the most popular tech-
niques to reduce the variance of the estimate is importaano@kng. The theory is based
on [6], [4], [7] and [14].

In crude MC method the random points with which the integsa¢stimated are often
drawn from a uniform distribution. That is, every point inetlintegral is considered
equally important with respect to the value of the integhakddition, the density(x) in

the integrand (equation 3.1) can be difficult to sample fremimportance sampling one
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tries to generate more points from the important regionsetarget function that govern
the value of the integral, that is, where the integrand haelaalues.

In importance sampling a densigyz) is introduced. This function roughly estimates the
function h(z) = f(x)p(z) in equation (3.1). We can rewrite the integral and the MC
estimate as follows

f(z)w(w;).

(3.4)
Here the pointg; are drawn from the distribution with(x) as PDF. That is, we "force"
the integrand into a desired product form and by introdut¢ireggadditional density(x)
we can decide the distribution from which we sample whenrtkegrral is estimated. The
function g(z) is sometimes referred to asmportance functionandw(x) asimportance
weight Theg(x) is chosen so that it somehow mimics the target distributiwh that it
is easy to sample from. The importance function should captuparticular the peaks
of the target distribution, and be positive where the tadystribution is positive. The
analogy to the crude MC method (section 3.2.1) is that witpdrtance sampling we
choose the density respect to which the expectation (iakeigrcalculated. Numerically,
the importance function(z) in equation (3.4) has the same rolesés) in equation (3.1).
Two examples are now given to illustrate the importance siamgpapproach. The first one
compares the importance function to taking points unifgrirdm the integration interval.
The second example illustrates the effectiveness of impod sampling compared to the
hit and miss strategy.

I |
NE

) _
)

qglx

)

’ = b p(x) x a:Nl Y x; pl
[ s = [ s = 130 sl

i=1

Example. To illustrate importance sampling in comparison to crudenk&oCarlo inte-
gration, let us consider the simple integfak= fol x%e~*. As importance function we
choose for examplg(z) = 2.62'° from which we can sample using the inverse CDF
method. The cumulative distribution function for the imaarce function is7(x) = z*°
and the inverse CDF functio—!(x) = z~2¢. Figure 3.5 shows the integrand and the
importance function. We see that the importance functiomgkts the points more near
the upper bound, where the integrand has its largest vakigare 3.6 presents the con-
vergence of crude MC and importance sampling with respetitécsample size in this
simple example.

Example. Let us consider a task of calculating the probabiftyX > M) whereX ~
N(0,1) andM is large so that the probability to be calculated is small.

The basic Monte Carlo approach would be to to sample numbmrs¥ (0, 1) and calcu-
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Figure 3.5: Integrand’-°c~* and importance functiop(z) = 2.6x'°.
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Figure 3.6: Crude MC (up) and importance sampling (down)drtance sampling con-
verges much faster for this example and gives smaller vegian

late the ratio of points satisfying > M. The estimatd, is produced this way. The task
is equivalent to calculating the integral of the gaussiai-dm M to oo, but since we
know that the integral from-oo to oo is 1, we can use the simple hit and miss strategy
(Monte Carlo simulation).

The estimate, is produced by importance sampling with importance funcyor) =
e~ @=M) wherex > M, which represents the exponential distribution. That isgmpha-
size the important area (the tail of the distribution). TH2Rds nowG/(z) = 1 —e~ @)
and the inverse of the CDF &~!(z) = M — In (1 — z). The inverse CDF method (sec-
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tion 3.1.1) is used to produce samples from the importanositye Now we calculate the
Monte Carlo estimate for the integral

I, = /Oo h(z)dx = /OO &x;g(x)dx ~ i h(xl.')

M v 9(x g(;)

where pointse; are taken from the exponential distribution with PDF giverybx). The

two approaches witi/ = 4.5 are compared in figure 3.7. One can see that the hit and
miss approach that is based on ratios does not work in ca$esewhe ratio is very low
compared to the number of samples.
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Figure 3.7: Computing the tail probability of a standardmal distribution with hit miss
and importance sampling. The blue line represents theoradue.

Many variations and generalizations of the importance sagdea exist. One group of
such methods consists of iterative or sequential impoeaaenpling methods. Another
popular method that has been under research recently, ipdpelation Monte Carlo
(PMC), which is an iterative approach to importance sangplPMC is shortly reviewed
in chapter 7.

3.3 Convergence of MC estimates

How can we be sure that the Monte Carlo estimate of an integralerges to the right
value as the number of samples generated approaches iafiHibyv fast is the method
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converging to the right value and how accurate the estingteoximately is when a cer-
tain number of samples are produced? These questions aesadd in this section with
two important theorems related to random sampling methbdsis of Large Numbers
and Central Limit Theorem.

3.3.1 Laws of Large Numbers

Roughly speaking, the Laws of Large Numbers (LLN) essdgtgdy, that if we have a
sequence of random numbers generated from the same dismnptne average of them
gets arbitrary close to the expectation of their commorrithstion, when the length of
the sequence approaches infinity. Normally, in probabiligory, two formulations for
the laws are given: the Weak Law of Large Numbers (WLLN) arel $trong Law of

Large Numbers (SLLN). Here the laws are presented with at ginoof for the weak law,

and their relevance in justifying MC methodology is exptain

Theorem 3.2 (Weak Law of Large Numberd)et X, ..., X,, be a sequence of iid random
variables with meam and finite variancer2. Then the sample average

X+ X+t X,
n

X,

converges in probability to the common mean

Proof. As stated in Appendix 1, the convergence in probability odradom variableY,,
to ;. means that for any number> 0

lim P(|X, —pul<e) =1

n—oo

The Chebyshev inequality for random variables ([8]) stétiesfor a random variabl&’,,

< Var(X,) '

- 2

P(|IX, —pl =€) p

Now we havel/ ar(X;) = o? for all : andCov(X;, X;) = 0 for all (¢, j). Thus

Var(X; + X;) = Var(X;) + Var(X;) + 2Cov(X;, X;) = Var(X;) + Var(Xj;).
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Thus, since we know thafar(aX) = a*Var(X) ([8]), we get

Var(X,) = Var(X;+..+X,)/n)
_ % (Var(X1) + .. + Var(X,))

= o*/n.

Using the Chebyshev inequality we can write

2

P(X,—pl<e)=1-P(Xo—pl>e >1- " —lasn— oo
ne

which completes the proof.

Theorem 3.3 (Strong Law of Large Numberd)et X1, ..., X,, be a collection of iid ran-
dom variables with mean and X, their sample average. Then

P ( lim X, = ,u) =1. (3.5)

n—oo

That is, the sample average convergésost surely to the common meagin

The stochastic termamost surelyconvergence in distributioandconvergence in prob-
ability used in the theorems are explained in more detail in Appehdix

We can see that the integral estimatgiven by equation (3.3) is a sample average of iid
sampleg f(z1), ..., f(z,)) that have a common expectation= E,,)[f(x)] = I. Thus,

if we consider the Laws of Large Numbers, we can see that  whenn — co. That

is, the Monte Carlo estimate converges to the correct vditieeantegral with increasing
sample size. The law is the justification of Monte Carlo basietllation methodology
(see [6]).

3.3.2 Central Limit Theorem

In estimation tasks it is crucial to know how accurate theweste is. In basic Monte Carlo
estimation we can use the Central Limit Theorem to studydkeaf convergence in MC
methods. [11], [15]
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Theorem 3.4 (Central Limit Theorem).et X1, ..., X,, be a collection of iid random vari-
ables with mea, finite variances? and sample meak ,,. Then

X, —

o/\/n

— N(0,1).

The CLT tells that the average ahyiid random variables convergas distributionto
the Normal distribution with meap and variancer? /n. That is, the error of the estimate
follows the distributionV (0, o2 /n). This means that the error decreases at rate?.
Note that the error does not depend on the dimension of tlegral, which justifies the
usage of MC methods in high dimensional integrals. The cdatjmun time with deter-
ministic numerical integration methods based on disa@ébn increases rapidly when
the dimension increases. MC integration can produce esgsna higher dimensional
integrals with less computation.

To observe the error in MC methods, it is possible to constaumonfidence interval for
the estimateX,,, since we know that with large the distribution of the error is Gaussian.
The confidence interval with risk level can be written as

— zZ0 zZ0

X=Xt R

where z is the point where the cumulative density functioV¢d, 1) gets value — /2.
For more on confidence intervals, refer to Appendix 1.

X, + =] (3.6)

With Monte Carlo methods it is sometimes possible to appnate the normalizing con-
stant in the Bayesian Rule in equation (2.5). MC methods vimmaore complex and
high-dimensional integrals than traditional determicistethods. When the integrals get
very complex the MC methods also run into trouble, however.

The convergence rate of the basic MC method (sometimesedfés ascrude MC) is
relatively slow with respect to - for one additional significant digit of accuracy one needs
approximately 100 times more samples. Therefore it is rssggd0 employ some vari-
ance reduction techniques to improve the crude MC methodsd@mclude for example
stratified sampling, antithetic variates and importanceang (section 3.2.4).
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4 Markov Chain Monte Carlo Methods

In Bayesian analysis for unknown parameters in mathematiodels we are often inter-
ested in forming the posterior distribution for the paraengt Since this is rarely possible
to do analytically, we are satisfied with a number samplesiftbe posterior distribu-
tion of the model parameters. To achieve this by applyingBages’ rule (equation 2.5)
one has to integrate over the whole parameter space to atdbke normalizing constant
for the posterior density. A numerical approximation candshieved through Monte
Carlo integration methods (see chapter 3). Especially gih{giimensional cases, how-
ever, these methods might be problematic. In this chaptekd¥aChain Monte Carlo
(MCMC) methods are introduced. With MCMC methods, the pastalistribution can
be evaluated without having to worry about the problemasicmalizing constant of the
Bayes’ rule.

The chapter begins by introducing the basic theory of Makbsins needed in analyzing
and justifying MCMC methods and their convergence to thetrigrget distribution (pos-
terior). Then, the basic MCMC method, the Metropolis-Hagsialgorithm, is discussed.

4.1 Markov Chains

The idea behind the MCMC methods is to create a certain tygdaskov Chain that
represents the posterior distribution. In this sectionldasic concepts related to Markov
Chains, in the case of a finite state space, and the way theysatkin MCMC methods
are discussed. For more detailed description related tie$about stochastic processes
and Markov Chains, refer to [9], [2] and [4].

A Markov Process is a certain type of discrete time stocbgsticess. A Markov Chain
is a series of states created by a Markov Process. Assume/¢hiadve a series of ran-
dom variables( X XM ). This series is a Markov Chain (produced by a Markov
Process), if the value ok **1) only depends on the value of the previous st&té.
Formally

PXUD =5, ] XO =50, XD =5, ., XU =5,) = P(XT) = 5,1 | XV = 5))
(4.1)
wheres; denotes the state of the chain at "tinie"
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Let us look at a Markov ProcedsY®, ¢ = 0,1,2,...} that has a finite state space (for
simplicity) S (sayk possible states) and the states assume valuesRforithat is,S =
{s1, s9, ..., 5k }. A state space here means the set of all possible valuesietithy the
process. We can define an initial distribution (state) ascéove\(s;) = P(Xy = s;).

If the state space is discrete, we can define a transitiorapitity matrix P = [p;;|, where
pi; denotes the probability of moving from stateto states;, thusp,; = P(XD) =
s;|X® = s;). The transition probability matrix, also referred to as Markov Kernel,
does not change over time and thus producgsia homogeneous Markov Chain. Note
thatzj pi; = 1 for all <. Now, the initial distribution can be updated to produceribat
state of the process by multiplying the initial state witle thansition probability matrix
and summing over all possible initial states

P(IQ = Sj) = Z )\(SJ[)Z]
7
The process continues in a similar manner.

We can also define probabilitie%“.), that stand for moving from statg to states; using
exactlyn steps. Formally

p = P(XH = 5 X (M) = ;). (4.2)

The Chapman-Kolmogorov equations define the transitiobadiities for an arbitrary
number of steps. If we definB, as the k-step transition matrix, we have

Pyim = PP, (4.3)

and
P, = P". (4.4)

Let 7;(¢) denote the probability that we are at statandn«(t) = {m;(t),j = 1,...,k}
probabilities for all states at time That is,7;(t) = P(X; = s;). Then, using equation
(4.4) we can write

7(t) = AP, = AP". (4.5)

The Markov Chain has reached gtationary distribution 7*, if applying the transition
kernel to current state leads to the same state:

P =1, (4.6)
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Let > denote the probability for statg in the stationary distribution. With this nota-
tion, stationarity mean$ _, w/p;; = w;. That is, the stationary distribution is the left

eigenvector of the transition probability matr that has the eigenvalue 1.

A Markov Chain is said to b&reducible, if, when starting from any starting poing),

any point is reachable with positive probability with a fexitumber of steps. That is, the
Markov Kernel of an irreducible Markov Process allows freeves all over the state space

- all the statexommunicatavith each other - the states are "stochastically connected"”
Formally, pg.” > (0 for all states for some.

Another Markov Chain property needed in MCMC theory is pleeiodicityof a chain. A
Markov Chain is said to bperiodicif there are parts of the state space that the process can
visit only at regular time intervals. If the chain is not poatic, it is said to beperiodic
Formally, the chain is aperiodic,g;fcd{n|p§;7) > 0} = 1 (gcd stands for greatest common
divisor).

A states; in a Markov Chain is said to becurrent if the probability of returning te; is
1. That is, we return to the state surely at some time. In sgiif the expectation of the
return time is finite, the state is said to pesitive recurrent

Let us assume that a stationary distributiorexists. If, regardless of the initial distribu-
tion, the distribution ofX,, approaches* asn — oo, then* is called thdimiting distri-
butionof the Markov Process. In this case, the Markov Process hasgaie stationary
distribution, which means that the process will end up to the same stayiaistribution
independent of the initial distributiok. In this case the chain is calledgodic

The Markov Chain is said to lreversiblewith respect to a distribution*, if the so called
detailed balanceondition holds. That is,

pjk’ﬂ'; = pk;j’ﬂ';:. (47)

If a transition kernel that satisfies the detailed balanéeued, the process has a stationary
distribution. That is, reversibility implies stationafisince

* * * *
E DjkT; = E PrjTy, = T, E Prj = Ty,
J J J

and thust* P = 7*. The detailed balance condition is often used to show tlegptbcess
with a certain transition kernel results in a stationarnytriisition. If, in addition, one
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can show that the process is irreducible and aperiodicetbgists a unique stationary
distribution.

In Markov Chains Monte Carlo methods the idea is to create &kdaChain using ran-
dom sampling so that the created chain has the posterigibdisbn as its unique sta-
tionary distribution (limiting distribution). That is, htMCMC methods produce ergodic
Markov Chains. In section 4.2 the most basic methods of acigehis, the Metropo-
lis algorithm and its generalization (Metropolis-Hassrggorithm), are introduced. In
chapter 4.3 it is shown that the detailed balance conditaddhfor the Markov process
created by the Metropolis algorithm.

Definition A Markov Chain Monte Carlo (MCMC) method for the simulatioiecdistri-
bution f is any method producing an ergodic Markov Chain whose statiodistribution

is f.

The SLLN and CLT theorems (theorem 3.3 and theorem 3.4) ad&bwith certain as-
sumptions when producing a set of correlated samples usi@lyl®. That is, a subset
of an ergodic Markov Chain can be regarded as a set of iid randiriables, when the
MCMC algorithm has been run long enough. That is, the MCMQ@ree of the av-
erage of the chain converges to the "true" mean of the digtab - the sampled values
asymptotically approach their correct values:

Fo= 21X~ [ flajn(da), 8)

The convergence theorems can be written from the perspeativiarkov Chains as fol-
lows ([15]).

Theorem 4.1 (SLLN for Markov Chains)Suppose{ X;}52, is ergodic with stationary
distribution=. Then, iff is real andr|f| bounded,f,, — f= with probability 1.

Theorem 4.2 (CLT for Markov Chains)Suppose that the assumptions in theorem 4.1
hold. Then there exists a real numbei( f) so that

Vilfa = fm) = N(0,0°(f)
in distribution, independent of the initial state.
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That is, if the transition kernel in the MCMC method is defirsmthat it produces an
ergodic Markov Chain, the mostimportant convergence lavid &nd the produced chain,
when run long enough, can be regarded as a set of samplestiotarget distribution

in spite of the Markovian nature of the method. The CLT implibat the sample path
averages of the target functioficonverges towards a Gaussian distribution, and thus
provides a measure of the variability of the created statesnw is large. For proofs,
generalizations and more detailed examination on MarkasiiCtheory behind MCMC,
also in general state space, refer to [2] and [1], for example

4.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm prescribes a sietphnsition kernel to produce
a markov chain that has invariant distributio(®) that can be regarded as a sample from
7(0). The MH algorithm is based on accept-reject methodologevacandidate poirtt*

is created from a proposal distributigf.|¢) that contains the probabilities for receiving
a certain candidate point given the previous valu@he Metropolis-Hastings algorithm
ca be written as follows:

1. Initialization

e Choose a starting poiif
e Setb,;; = 6y
e SetChain(1l) = 6, andi = 2

2. Choose a new candidate from the proposal distribution: q(.|0,4)

3. Accept the candidate with probability

m(0%)q(Ooral0")
T(Oo1a)q(0*|0oia)

4.9

a = min (1,

e If accepted se€hain(i) = 6* andf,;; = 6*

o If rejected seChain(i) = Oyq

4. Set; =i+ 1andgoto 2

If we assume a symmetric proposal distribution, thay{8;|0,.4) = ¢(0.4|0%), Wwe get
a special case of the MH algorithm called the Metropolis athm that was introduced

37



earlier (1953) by Nicholas Metropolis in [16]. For additedmepresentations of the algo-
rithm, refer to [6], [1], [9] or [3].

Note here that if we use the Bayesian framework we know théepios densityr(6) up

to a normalizing constant. We see that in equation (4.9) tmstant cancels out. If we
assume a standard nonlinear moge¥ f(x; 6)-+¢) with Gaussian noise (~ N (0, 1))
and a non-informative prior,,.(¢) = 1, we can write the acceptance probability for the
Metropolis algorithm as follows:

7(6%)
7T(901d)

p(y[0”)

STy = min (16007 ) (a10)

a = min (1, ) = min (1,
This is a practical form of the acceptance rule and it is the<daf the implementations of
different MCMC methods in this work. The third step (acceg®step) of the algorithm
can now be written in a more practical way as follows

3. ComputeSSy- andS.Sy,,,. Accept the candidate if
SSg < 58, OFif u < =007 (5502 =550,

whereu is a random number generated frén, 1].

Many modifications of the basic MCMC based on the Metropblgstings algorithm have
been developed. The promising family of adaptive methodssisussed in chapter 6. In
addition, several aspects have to be considered when usgig®in practice, as well as
when evaluating the convergence of the algorithms. Thesessare addressed in chapter
5.

4.3 Metropolis-Hastings as a Markov Chain

Why does the Metropolis-Hastings algorithm work - how canskew that it produces
a Markov Chain with a stationary distribution0)? Here the detailed balance condi-
tion (equation 4.7) is considered, which is a sufficient (metessary) condition for the
existence of a unique stationary distribution with a despeobability density function.
The detailed balance condition can be shown to hold for tesition kernel produced
by the MH algorithm as presented below. In [2] it is shown itedlethat the metropolis
kernel with some simple proposal distributions, such assSian with fixed covariance,
centered at the previous point, produces a Markov Chairhideathe necessary ergodicity
properties.
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The goal is to form the transition kernél = [p,;| for the MH algorithm that describes
the probabilities of moving from state to states;. Then we need to show that for the
transition kernel the DB condition holds, thatis;)p;; = 7(s;)p;;- The transition kernel
can be formed in the following way:

pij = P(moving from s; tos;) = P(proposing s;)P(accepting s;)

m(s5)q(sils;)

= q(sj]si)a(si, s;) = q(s;]s;) min (1, m(si)q(sjlsi)”

Thus,

m(si))pi; = m(si)q(s;|si) min (1, E

That is, based on the detailed balance condition, the Meli©plastings algorithm pro-
duces a transition rule with which the chain has a statiodastyibution.

In the case of a discrete state space, the transition pidigad@rnel produced by the
Metropolis-Hastings algorithm can be defined as

pa = dlilsominth e Sot sy 7
Dii = 1—Zp,»j
J#

which satisfies the detailed balance condition.

Another way to justify that the Metropolis algorithm leadsat certain stationary distribu-
tion is to examine the situation, where we have two arbitragmbers of the state space,
say s, ands,, so thatr(s,) > 7(s,). Let us assume that at time- 1, we have a draw
from the posteriors;_; ~ w. Now we can show that we can always make an exact move
with the Metropolis kernel between two arbitrary states #redprobability of movement

is the same in both directions.

First, let us consider the situation, where we move frigno s,. That is, we examine the
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probability that we are at statg at timet — 1 and at state, at timet:

P(s; = sp;51-1 = Sa) = P(st—1 = Sa)P (st = sp|5t-1 = S4)
= 7(54)q(5p]8a) (50, 5p)

= W(SQ)Q(3b|Sa>
because for a move upwards the point is always accepted ).

For the moves, — s,, we get

P(s; = 843811 =38p) = m(5p)q(Salsp)(8p, Sq)
7(sq)
(s

= 7(s6)q(5alsp)

3

~—

= 7(sa)q(splsa)
for a symmetric proposal(z|y) = ¢(y|x), as is the case in the Metropolis algorithm.

That is, we see thaP(s; = sp;5-1 = Sa) = P(s = Sq;5-1 = sp) for any s, ands;,
belonging to the state space. This implies th@_;) = 7(s;) and thatr is the stationary
distribution of the process. A similar calculation can beriea through for the more
general Metropolis-Hastings kernel, where:|y) # ¢(y|z) is allowed. Essentially, the
idea is based on stationarity caused by reversibility, ihebharacterized with the detailed
balance equation.

The detailed balance condition presented above only gtesathat the created stochastic
process has a stationary distribution. For exact investiga about whether the MCMC
methods have the ability to converge towards the desirg¢dstay distribution, the terms
geometric ergodicityand uniform ergodicityare often used. It can be shown, using the
definition of the so calledoefficient of ergodicitythat if the created chain is uniformly
ergodic, the strong law of large numbers holds and the mathoderges to the stationary
distribution. In addition, it can be shown that the Metrapdfiastings algorithm with a
Gaussian proposal distribution (used in this work) createsiformly ergodic Markov
chain. See [2] and [17] for proofs and convergence calcuiati
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4.4 Single Component Metropolis-Hastings

In the Metropolis-Hastings algorithm presented in secli@) all components of the chain
(values for unknown parameters) are updated at the sameliinpeactice, when using a
Gaussian proposal, this means sampling from a multiva@atessian distribution. In the
Single Component Metropolis Hastingkgorithm (SC), presented in the original paper
by Metropolis et.al. ([16]), the chain is updated compongntcomponent. Thus:
represents theth sampled value for componeit

That is, the parameter vector is divided into componentsareliteration of the algo-
rithm containsp steps where is the length of the parameter vector. This leadg to
different conditional proposal distributions apdlifferent acceptance probabilities. The
proposal distribution for componenat iterationt can be univariate Normal distribution
with center at the previously sampled poitit, and some fixed variance’. That is,

qi ~ N(0:_,,0?). In the acceptance probability calculation the posterwesused. The
difference to MH is that when sampling componérall previously sampled components
(1,...,a — 1) from the same iteration are used in evaluating the posteTibat is, at it-
erationt, the posterior is made one-dimensional by fixing componénts., i — 1) with
values obtained from iterationand components+ 1, ..., n with values obtained from

iterationt — 1.

This makes SC appealing in high-dimensional cases, betheggoposal distributions
stay simple and they are easy to sample from. The SC algoighshortly presented
below (replace steps 2-3 in the Metropolis-Hastings atboriin section 4.2). See [9] and
[2] for more on the topic.

Fori=1to p (number of parameters)

e Samplef; ~ ¢! (wheret represents the index of the sample)

e Accept with probability

01, 0L 0r 0t o
o = min (1, ﬂ—(lt iil il t;il t;l) )
W(Gt,...,et ,Qtil,etil, "'78t71)

— If accepted set! = 67

— Else sep! = 6!,
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All methods using one-dimensional proposals and compobgr@omponent updating

of the chain, including SC, Gibbs sampling (section 4.5) &@RhM (section 6.2), may

suffer from poor mixing if the parameters are correlatedisTs natural, since the corre-
lations are not taken into account in one-dimensional psapdistributions, whereas the
covariance matrix in multivariate Gaussian contains thfermation. That is, the path
in pairwise scatter plots produced with SC contains onlyggiarallel to the coordinate
axes - the algorithm can move only along a coordinate axis.

One way to go around the problem of unknown correlations ietate the proposal dis-
tribution at some predefined steps. This can be done by adilcglthe covariance matrix
of the chain created so far and computing the principal corepts of the covariance ma-
trix. These directions can be used as sampling directiotsarSCAM algorithm. See

appendix 1 for more details. [18]

4.5 Gibbs Sampling

Gibbs sampling is a modification of the SC algorithm and itidely used in different ap-
plications. In the Gibbs algorithm the sampling is also doo@ponent by component us-
ing one dimensional full conditional posterior distriterts 7 (6;|61, ..., 0;-1,6;41, ..., 0,).
Gibbs sampling assumes that these conditional distribsitie known, which means that
all other components than the one to be sampled are fixed.blpsGiampling the created
points are always accepted. Gibbs algorithm can be used theeronditional distribu-
tions can be found easily and are easy to sample from. Thethigos presented below.

[3]

For j =1 to p (number of parameters)

° Samp|e9; ~ W(inl, e 62‘_1, H’i—i-l? ceey 6p>

e SetChain;(j) = 0

The construction of the one-dimensional conditional dstions might, however, be
complicated. If the conditional distributions are not kmow analytical form, an em-
pirical distribution can be created by evaluating the tadistribution=(#) with respect

to a given coordinate a number of times. After that, the isge€DF method (section
3.1.1) can be applied. This requires several iterationseirer. [13]
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5 On Implementing MCMC

Several issues related to implementing the MCMC methodsaictige are discussed here.
First, the question of choosing the proposal and tuningatameters to form an effective
proposal distribution is taken into consideration. We tyfihd ways to assure that the
sampling really covers as much of the parameter space ab[®ss

Secondly, the convergence problem related to MCMC ressilitstioduced: how can we
be sure that the method has actually converged so that welathat the produced chain
is a representative sample of the posterior distributiohis problem is the target of a
large amount of current research and the goal here is to mresene of the ideas for
convergence diagnostics.

Finally, some other practical issues related to implenmg®WCMC are discussed. These
include using a burn-in period, thinning the chain and thgsgulity of running multiple
parallel chains.

5.1 Proposal Distribution

The MH algorithm itself is very simple. However, the perf@nte of the algorithm is
dependent on how we choose the proposal distribuidé,,;). The proposal distribution
has a large effect on thmixing of the chain, which means how well the samples are
spread over the parameter space and its important parts. clear that with too wide

a proposal distribution many of the candidate points arected and the chain "stays
still" for long periods and the target distribution is readhslowly. Then again, when
the proposal distribution is too narrow, the acceptande fathigh but a representative
sample of the target distribution is achieved slowly. Thentenixing and the effect of the
width of the proposal are illustrated in figure 5.1. [2]

There are two basic ways of constructing the proposal digion. In the first approach
we choose a fixed proposal.|0,.;) = ¢(0) that is independent of the previous state
(parameter values). This is called Independent Metrogadistings and it is very similar
to the Accept-Reject algorithm presented in chapter 3.1.2.

A more practical approach takes the previously simulatddevanto account when the
proposal is formed. That is, we perform a local search for ntendidate points at the
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Figure 5.1: Example of a chain of one parameter started wB®{optimized parameter
values. The upper picture tells that the proposal is too witlee chain stays still for
long periods. The lowest picture presents narrow proposia¢ samples don’t seem to
converge well. The chain in the middle is well mixed. For ttigin the MSE was used
to calculate the covariance of the proposal.

neighborhood of the current value. This is why this algantttalled the Random Walk
Metropolis algorithm, is in some sources referred to as Lddeatropolis, whereas the
previous approach sometimes goes with the name Global ptso The Random Walk
approach is less dependent on the form of the proposal lisish in relation to the
form of the target distribution. It is also more practicah@ we can use a standard,
easy-to-sample proposal distribution, for example a Gansfistribution centered at the
current point. Here we regard the Random Walk Metropolistiigs as the basic MCMC
algorithm used in different case examples in chapter 9. TéwedBm Walk Metropolis-
Hastings algorithm with a Gaussian proposal distributepresented below.

1. Initialization

e Choosd,, setd,;; = b,
e Choose covarianc€

e ChooseN (chain length) and sét= 1

2. Acceptance Step (Metropolis Step)
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e Sample,,.,, from N (60,4, C) andu from UJ0, 1]
e CalculateSs,;; andSS,,..,

_2 .
o If SSy,., <SSy, 0ru < e 2 (SSonew=550,0) seth); = 0,,,. Otherwise set
ei = eold

3. Ifi < M seti =i+ 1 and go to step 1. Otherwise stop the algorithm.

In the algorithm the proposal "width" parameter is the camge C' of the Gaussian
proposal distribution, or variance in a one-dimensionakcd he problem in choosing the
proposal distribution then turns into the problem of tunihg covariance matrix so that
the sampling is efficient. Traditionally this is done by chimg a fixed covariance by hand
by the modeler using some approximation or “trial and erstrdtegy. Recently some new
data-driven modifications to the basic Metropolis alganthave been introduced in order
to update the covariance matrix as the algorithm procedusgper 6).

Note that the created Markov Process has a stationarylistn, since the detailed bal-
ance condition holds. In addition, the stationary distiifuis unique, since the random
walk process clearly is irreducible - the probability of niay from any point to any other
point is always positive. Since the process is random, kdatl periodic behavior and is
thus also aperiodic.

5.2 Initializing MCMC

If we use the Random Walk Metropolis algorithm with a Gausgieoposal distribution,
we have to come up with a guess for the Covariance MatriAlso for the convergence
rate it is useful to choose the starting paipicorrectly.

In the MCMC implementations in this work the starting poistchosen to be the point
that suits the data in an optimal way in LSQ sense. That i, asgeneral nonlinear model
(z denotes the measurement index)

0y = mgnzl (y; — f(z4,0))>.

This leads to a nonlinear optimization task (to a nonline&QLproblem to be precise).
These can be solved with many methods introduced for examf®]. In unconstrained
nonlinear optimization the polytope search method is ornt@imost popular, since one
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does not need gradients or Hessians. Specifically for neatih SQ, the Levenberg-
Marquardt method is probably the most popular. The optitromatask can be handled
with standard optimization routines found in differentesdific computing environments.

The covariance of the Gaussian proposal can be chosen bgrida&rror. Often, however,
it is useful to use the covariance approximation obtainedhftinearization. That is,
the model is linearized and then the formula from linear the6' = o2(X7X)"1 (see
appendix 1 for proof), is used. The linearization is basedaylor expansion around the
estimated point :

1(0) = 1(6) + VI(0)(6 — 6) + %(9 —0)TH®O - 6) + ... (5.1)

whereH is the Hessian matrix containing the second order derigatfsee Appendix 1).
When we consider the LSQ function

PUO) [ 9 f (k) . Of (zx,0) Of (z1, )
96,00, ( (s 0) = i) =55 = 5p, )

Since the residualsf(xy, é) — y,) are relatively small (the LSQ has been optimized with
an optimization routine to produce the estiméjewe can omit them and write an ap-
proximation for the Hessian matrix as follows:

Hij ~ 2; 00 00

In matrix form, H ~ 2J7.J, whereJ is the Jacobian matrix calculatedébtcontaining
the first order derivatives (see Appendix 1).

When we insert the approximation to the truncated Taylormesmpn (first three terms),
we get
10) ~ 1(0) + (0 — )T JT.J(0 — 0) (5.2)
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N

becausévi(f) ~ 0 at the LSQ optimum.
In linear case (see appendix 1), wh&ndenotes the design matrix, we have

1) = (X0 —y)'(X0—y)=0"XT"X0 - 0"XTy —y"X0 +yTy  (5.3)

N

which can be written as a quadratic form containiég- 6):
10) = (0 —0)"X"X(6 —0)+ D (5.4)
whereD is independent of. Substitutingd = ¢ yields D = {(#) and
10)=10)+ (0 —0)"XTX(0—0) (5.5)
where is the estimate from the linear theory (see Appendix 1)

Thus, comparing equations (5.2) and (5.5), we see that t@bitan matrixJ assumes
the role of the design matriX in the linear formulas, and the covariance approximation,
when the assumptiofiov(y) = oI is made, gives

C = Cov(§) ~ o(JT ).

Here the variance? could be calculated from replicated measurements. Thistisften
possible, however. We can use the residuals of the fit to attithe variance, based on
the assumption that measurement error is about equal ttugdsi [13]

2 RSS 3y (yi — f(xi,0))?

~ = = 5.6
g OMSE n—p n—p (5.6)

The Jacobiary might be difficult to calculate analytically so we often neeedumerical
approximation for it, calculated using finite differences.

Finally, the basic Random Walk Metropolis algorithm can besg in pseudo code, from
which it is straightforward to implement with a number of gramming techniques.

1. (Initialization)

e ChooseN;mu

e Setf; =ming Y ., (v — f(x:,0))* (Use some optimization routine)
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CalculateM SE = RSS/(n—p) wheren is the number of measurements and
p the length ofY

SetSS,; = SSgl

Calculate Jacobiart (numerically or analytically)

CalculateC = (JTJ)" '« MSE

Calculater so thatC' = RT R (Cholesky decomposition)
2. (Simulation Loop)

e Fori =210 Ny
— Samplez = {z;},i = 1...p wherez; ~ N(0,1)
— Setbew = Ouia + Rz
— Sampleu,, from U[0, 1]
— CalculateS s,,..,
— Calculaten = min (1, e70-57 " (55new—551a))
—fu, <«
x Setl; = Open
* Setbyq = Onew
* SSo1q = SSnew
— Else
x Setd; = 0,4
— Endif
e Endfor

Note that the model might have more than one response comisotiat are observed
(every measurement is a vector). In this case the calculation of the sum of sual®o
leads into a vector. The findlS -value can be calculated as the sum of the components.

5.3 Burn-In and Practicalities

In the beginning of MCMC sampling there may be a period bethesalgorithm con-
verges to the correct distribution and starts producingpesirom it. The length of the
initial period depends on the shape of the target distrioudind the initial valueg,. The
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period in which the chain has not yet converged must be dieckin order to avoid un-
representative, "false" samples. This period is calledbtima-in period. In practice one
might give the length of the burn-in period as input to theoalipm, for example 1000
iterations. During the burn-in period the parameter valaesnot saved into the chain
structure. [2]

How long should the burn-in period be? Some ways to detectergence and end the
burn-in period are introduced in section 5.4. The most sawpdy is to run the MCMC
algorithm a few times with different starting values andaaby see where the parameter
values converge to some equilibrium and thus base the lefgtie burn-in period on
these observations.

One typical option to form the chain is to run a single long,miscard the burn-in period
and regard the rest as a sample from the target distribuki@ne, however, the samples
are not independent, since the sampling is based on a Mankme$s and correlation
between consecutive members in the chain exists. To reHa@®trelation of the samples
it is possible to perform thinning, which means saving oMgrg n:th point of the chain.
The level of independence can be studied in many ways, offwdome are explained in
section 5.4.

Other strategies for MCMC sampling include making severabdimm-length parallel
MCMC runs. Here, however, we might run into convergence faois, if the algorithm
does not converge fast enough. If we make every parallehdoaig, we end up with
issues of computational complexity. The task of runningapp@k MCMC runs would
therefore be an interesting application of parallel cormmqaut the parallelization of the
problem is quite straightforward. That is, if we have an effee parallel computing envi-
ronment (a cluster for example), we might be able to run perethains with no significant
increase in computational time.

The extreme strategy would be to make a large number of shGVI® runs from dif-
ferent (random) initial values and record only the final estat every run. In this work,
however, the strategy of one, sufficiently long run is used.

5.4 Convergence Diagnostics and Chain Length

A difficult question in MCMC methods is whether the creatediohs long enough so that
it has reached its invariant distribution. Another issua theeds consideration is whether
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the algorithm has covered the target distribution suffityen

How can the sufficient chain length be assessed in MCMC methddhe methods that
address this issue belong to the field of MCMC convergengmndistics. Convergence di-
agnostics here means statistical analysis done in ordssasaonvergence of the MCMC
algorithm. A nice review about the methods currently adddéan MCMC convergence
diagnostics can be found from [20]. Some of the methods ae#lyodiscussed here.

The convergence assessment issue is difficult in MCMC dlyuas, because the rate of
convergence vary depending on the algorithm used and thettdistribution. It is stated
in [20] that it is not possible to construct effective anadst estimates for the convergence
rate and accuracy of MCMC algorithms. That is, we cannot ggtamalytical formula
or stopping criteria for the algorithm, that would uniquegtermine the run length. The
MCMC algorithms can be falsified, but not verified - we can méaeetotally sure that the
sample created is a comprehensive representation of therfpoglistribution. Conver-
gence diagnostics are methods for making educated gudssatstihe convergence of the
algorithms.

The methods for assessing convergence can be roughly divittiecategories. The most
simple and straightforward methods seem to be based on oniowjtthe created chain
visually or with some statistical tools. These methods angegeasy to implement and
do not cause a lot of extra computational complexity. Thawly these methods are
discussed here in more detail than other, more formal method

The most obvious method for assessing convergence in MCMBeiwvisual study of
the marginal paths. That is, one can plot every column of Haéncseparately for every
parameter versus the index of the row in question. From malgihain paths one can
see where the values start to converge to a certain levellargest initial period of the
marginal paths, where the chain seems not to have convectgedbe regarded as the
minimum length for the burn-in period. This is illustratédr(an example task presented
in section sec:boxo) in figure 5.2. [2]

The sum of squares values given by every sampled parameter ean also be studied to
get information about the movement of the algorithm. Theyeaim which the SS-values
vary should stay about constant when the algorithm has cgede

A popular approach to diagnose convergence is to run a nuoflggrallel chains with
very dispersed starting values. Again one can visuallyysthd period, after which the
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Figure 5.2: Marginal paths for a kinetic model (see secti@f&r model description). It
seems that the first two parameters converge quite fast iloniaeginal stationary distri-
butions, whereas for the last two the convergence takestB0Gsteps. Thus, the burn-in
period should be at least 400 here.

chains start to agree. For visual study one can use the nahugaths, for example. Itis
also possible to compare the parallel chains using somdesitpimeasure, as explained
in [20].

The most simple statistics normally calculated from the MCBteps is the acceptance
ratio, that is the percentage of points accepted until acenumber of steps. Some ranges
for "optimal" acceptance ratio are suggested in literatiowé since the optimal acceptance
ratio is dependent on the shape of the posterior distributias difficult to construct any
generally applicable rules concerning the acceptance.rdfiowever, a value between
0.1 and 0.5 is normally regarded to be satisfactory. Momtpthe acceptance ratio and
tuning the proposal distribution according to it is one of gimplest ways to improve
the convergence of the MCMC methods. If the acceptance saBms too low, a smaller
proposal distribution can be tried, for example by scalimg ¢ovariance of the Gaussian
proposal down, and vice versa for too high acceptance ratios

The correlation between states that are close to each adluses bias in the estimates
based on the produced chain. That is, when assessing if e ally is a set of iid
samples from the target distribution, one can use the irdtion about the correlations
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between members in the chain. This is normally done with cartelation functions
(from time series theory), that give the correlation betwago components in the chain
that arek iterations away from each other. That is, #te order autocorrelatio®(k) is

Zf\:k (9i - é)(9i+kz - é) _ COU(‘% 0i+k)
SN (6 —6)? Var(6;)

R(k) = (5.7)
wheref; is the marginal distribution of parametéin the MCMC chain. Usually low
autocorrelation means fast convergence. In addition, dgatwant to plotR (k) against
k that should show geometric decay. Using autocorrelatioronverge diagnostics is
illustrated in figure 5.3.

0.01

0.008

0.006 |-

R(K)

0.004 |

0.002 -

90 100

Figure 5.3: An autocorrelation plot for the first parametethe kinetic model explained
in section 9.2. The plot shows clear decay so the chain hdsaphp converged when it
comes to this parameter. In addition, if we take every 100thmonent from the chain,
we can regard the thinned chain as a set of independent ssmple

Another graphical method that appears in the literaturéésGUSUM method. In this
method the cumulative sums of the marginal distributiors @alculated and plotted
against the number of terms used in the sum, and the smostlhéise plot is inves-
tigated. [20]

In addition, some formal statistical tests have been dpesldo test the convergence of
the MCMC algorithm. In the Geweke method, for example, tharciburn-in discarded)
is split into separate peaces and these are compared withlardiy test. [20]

A bit analogously with the Geweke method, one can calculateaied "batch means"
from the chain. In this method, the precision of the samplamms estimated by dividing
the chain into small parts, "batches". The mean values db#tehes are then calculated
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and the variance of the means is estimated. When using thicheone has to make sure
that the individual batches are long enough so the samplasaa satisfactory estimates
for the true means. In addition, one has to use a sufficienteuwf batches to get a good
estimate for the variance. In literature, 20 different batcare suggested. [2]

5.5 MCMC Results and Visualization

The visualization of results is an important issue when mgiaference based on MCMC
simulations. What kind of plots can we produce to presenh#ve information, brought
by MCMC, to the modeler? This question is discussed here.

Traditional regression analysis gives fixed values for wvkmparameters and prediction
curves. MCMC methods are based on random sampling and resitpirical distribu-
tions for unknown parameters. Moreover, it is possible im@ia also values for model
prediction at different points and construct a distribotadso for the response curves of
the model, that are called hepeedictive distributions

Because MCMC results in empirical distributions, it is pbksto derive information
related to uncertainties in unknown parameters (identlfighband in model predictions.
In addition, pairwise examination of different paramet@rshe chain gives information
about how the parameters correlate, which may lead to meflaement, for example.

5.5.1 Marginal Distributions

The MCMC methods produce samples fromradimensional posterior distribution of
unknown parameters. The distribution of any subset of thamater vector can be de-
rived directly from the chain by choosing the values sampbedhe parameters in ques-
tion.

The most obvious plots that can be produced from the MCMQcdra the one-dimensional
marginal distributions for each parameter. For estimatimggdensity of the marginal dis-
tribution one can use some kind of non-parametric densitiyneson mechanism, for
example histograms and kernel density estimators. Thedretn approach for one-
dimensional density estimation is illustrated in figure.5.4
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Figure 5.4: Histograms for unknown parameters from the rhdescribed in section 9.2.
The drawback of using histograms is that many points areeteéa produce a smooth
plot. This plot was created with the Metropolis algorithritwehain length 250000.

One might also want to calculate some kind of confidencevaterfor one-dimensional
marginal distributions that approximately include somecpatile (| — o) of the distri-
bution mass. For samples of one parameter this is easy to dwibyng the sampled
parameter values and approximating where the cumulativesuhe values reaches per-
centilesa/2 and (I — «/2). The following table is created from the chain as in figuré 5.
with a = 0.05. Table 1 shows the LSQ estimate, the empirical median of lagncand
the empirical limits for the confidence interval.

Table 1. Least squares estimates and empirical confidemas.|i

LSQ |05 a/2 1—a/2
¢, | 0.9264| 0.9308| 0.8024| 1.1311
¢, | 0.1080| 0.1073| 0.0815| 0.1350

It is also common in MCMC analysis to plot the sampled poirtisvpise for every pos-
sible parameter pair, to reveal correlations between patrars (figure 5.5). In this case,
one might want to construct a confidence region, that woulgt@pmately include a
certain percentile of the two-dimensional marginal digition mass. One could use the
histogram approach in two dimensions as well by assigningcaan the axes and see
how many points fall into each box in the grid. Below some &ddal approaches for
estimating the — «) level based on the sampled points are discussed.

One-dimensional marginal plots reveal problems in the tifiahility of different pa-

rameters. The two-dimensional plots can reveal correiatind show that the ratio of
two parameters is well identified, but the parameters therasare not (a line in two-
dimensional plots). For some models it may be useful to plxt éhree-dimensional
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marginal distributions, which might reveal a plane-likdnbeiour between three parame-
ters, that could not be visualized with lower dimensionatgl
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Figure 5.5: Sampled parameter values plotted pairwisel®ekample model described
in section 9.2.

Kernel Density Estimation

For one-dimensional density plots and two-dimensionatscalots the density in a de-
sired point can be estimated using a sum of kernel functibesexy data point. That is,
in a one-dimensional case, in pointve estimate the density(x) with

d(z) = ilK <x;x) (5.8)

where the data points are the sampled parameter values, in the MCMC context. lysual
the kernel functionk is the PDF of some well known distribution, like Gaussiane pla-
rameterh is the "bandwidth"”, which describes the width (variancedhaf kernel function

- the bigger the parameter is, the smoother plots we gete ®wuery point spreads wider
to the neighborhood. Normally a rule of thumb (introduced@]) for / is used and we
take

h = 1.06n""° min (s, iq/1.34) (5.9)

wheres is the standard deviation arid the interquartile range (see Appendix 1) of the
samples.

For the pairwise scatter plots the PDF of a bivariate GanstigtributionN (1, x2, 01, 09, p)
(for representation, see for example [8]) can be used asreekiemction, with some val-
ues given to variances{ ando,) and correlatiorp. In the bivariate case the variances
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can be calculated using a rule of thumb as follows (see [21]).

o1 = 1.06n"Y® min (sy, iq, /1.34)
oy = 1.06n "% min (5, igy/1.34) (5.10)

wheresy, s, (Standard deviationsjgq; andig, (interquartile ranges) are calculated from
the samples. For more on kernel density estimation, refgip

The kernel density approach is illustrated in figure 5.6 fothipairwise scatter plot and
one-dimensional marginal distributions. The kernel mdtisapplied to one-dimensional
parameter plots to get a smooth-looking PDF for the parametl two-dimensional
density estimation, a grid is set on the axes and the dems#tstimated at each point.
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Figure 5.6: A scatter plot of a parameter pair with confideregons based on kernel
densities. 1D marginal distributions, also produced bykinmel method, are combined
with the scatter plot.

Confidence Regions Using Gaussian Mixture Models

Another idea to form confidence regions is to use Gaussiamuwmodels. A Gaussian
Mixture model is a distribution with the PDF defined as a wesghsum of a number, say
N., of Gaussian PDFs. That is

NC
plaln £) = wipi(|w, T) (5.11)
=1
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where} "¢, w; = 1, which means thaf p(x|u, X)dx = 1. That is, the model is formed
from multivariate Gaussian "components" with meanand covariances,;.

The MCMC chains can be analyzed and represented in diffevags using GMM. A
Gaussian mixture model can be fitted to the produced chaimpedally, for plotting
purposes, a number of bivariate Gaussian components catiduktd the pairwise data
of the chain. Then, the contours (ellipses) of a certainrddstonfidence levell(— «)
can be plotted. These can be graphically combined to prabaicestimate of the overall
(1 — «) confidence region. Thi‘combined GMM ellipses” approach is illustrated in
figure 5.7.

Figure 5.7: A scatter plot of a parameter pair with confidereggons based on a Gaus-
sian Mixture Model. The confidence regions for the compasienthe mixture are first
computed and the contours are combined.

The fitting of the GMM can be done, for example, using the Eigigan-Maximization
(EM) algorithm (see for example [6]). The fitting for the datx = (x4, ..., x,) goes,
in principle, as follows.

1. Generate aninitial guess for the parametgrs: (11", ..., u{”) andy = (=, ..., 5!9)
for c different components. Set= 0.

2. (a) Calculate the posterior probabilities (weighis) and normalized versions
wY) for each componentj(= 1...c) and for each point using the PDFs of the

Components
W9 = plalu®,50)
50— w@) |
Zzz1wl(cj)

(b) Calculate new means, covariances and weights for theseaucomponents
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as expectations

pl = Y,
k=1

Stho= D (wn — )@ — )"
k=1

() IS )
Witr = Z Wy,
k=1
3. If the desired precision is achieved, stop. Otherwise set + 1 and go to step 2.

A good initial guess for the parameters can be calculatedgXample, using some clus-
tering algorithm, such as K-means (see for example [22]).

The plotting mechanism based on the graphical combinatitimeaconfidence ellipses of
the components of a fitted GMM is suitable for certain sitiagi. Sometimes, however,
the plots produced are angular: the points where two eBipsgersect produce sharp
corners to the plots, as seen in figure 5.8. In addition, aflobanual tuning is needed
related to the number of fitted Gaussian components. Sorae @ehow to automatically
detect the "optimal” number of components exist, for examp[23].
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Figure 5.8: Scatter plots of parameter pairs with confideegeons based on a Gaussian
Mixture Model. The points of intersection result in angypéots.

Another way to use the fitted Gaussian Mixture Model to twmeinsional density estima-
tion and confidence region plots is to pick the direction & @aussian kernel function
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(correlationp) in a certain point according to the component in the miximael that
the point belongs to. Thi¥GMM-directed kernel density estimation" produces bet-
ter density estimates and more accurate confidence regidghe pairwise scatter plots -
especially in cases where the shape of the marginal distribbalters a lot.

In practice the directed kernel density estimation workghaskernel density estimation
with a fixed covariance (variances and correlation in 2D j;ageh the exception that we
now choose the correlation for the bivariate Gaussian kexeyarately for every point
using the covariance matrix of the corresponding GMM congmdnThe GMM compo-

nent that the point belongs to is decided by checking whiciglted component gives
the largest density (PDF value) to the point. That is, we skedbe component for point
x with

" = max wp;(x| i, i) (5.12)

Example. Let us concider the two-dimensional version of a "bananpatiatarget dis-
tribution, introduced in [24]. That is, the PDF of the targistribution is defined by
fo = f o ¢w(z), wheref is the PDF of a bivariate Gaussian distributidit0, C') with
C' = diag(100, 1) (contours are ellipses with one axis 10 times the size of therh The
twisting effect is brought to the target by defining(z) = (x1, 25 + b,? — 100b). The
greater the parametéris, the more twisted the target is. Here the value 0.1 is used.
In figure 5.9 the directed approach is compared to the keraesity estimation with a
fixed kernel, using 5000 points sampled from the targetidistion with PDF f;.

The computational complexity of the EM-algorithm is ofteuite high, especially when

it comes to large data sets as is the case in analyzing MCM@ubuSome new, faster
versions of the EM-algorithm, designed especially for ¢éagigtasets, have been proposed
lately for example in [25]. These algorithms are to be tesoedMCMC purposes in the
future.

Due to the difficulties in the GMM approach for plotting corsitte regions, the kernel
density estimation approach with a fixed kernel functiongediin this work as the basic
way of forming confidence regions. However, if the kernel giBnapproach does not
work, the GMM-based approach can be tried. Gaussian mixtodels are also useful in
other aspects of MCMC analysis, some of which are listedviaelo

e Compression of the MCMC chain - a long chain can be expresgédew param-
eters (weights, means and covariances of the components)
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e Producing new data - it is possible to sample new data frommtix¢ure model,
which is approximately distributed as the points samplett WMICMC

e New statistics from the chain - the correlations in the congrt Gaussians reveal
the structure of the correlations in the model parameters

Fixed kernel density GMM-directed kernel density
T T T T T T T T T

10

-10}

‘ ‘ ‘ ‘ ‘ ‘ ‘ - ‘ ‘ ‘ ‘ ‘
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

Figure 5.9: Density estimation of a twisted, thin distribatusing 5000 sampled points.
The left figure is produced by using a fixed kernel functionevep is taken as the corre-
lation coefficient calculated from the points. The right figis produced by choosing
separately for every point using a fitted Gaussian mixturdehwith 6 components.

5.5.2 Predictive Inference

The accuracy of the response of the model can also be evaliateigh MCMC methods.
That is, we are not limited the model parametgrsve can, in fact, make inference about
any functionf(¢). The function can also be the model itself. If we calculatritodel
response values with different parameter values produgdd@®VIC methods, we get the
so calledpredictive distributions. These model prediction curves and their distribution
are, in fact, often more interesting than the distributiohthe parameters.

In practice, this results in curves that represent theidigions of the model prediction
and observations (see figure 5.10).
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Figure 5.10: Predictive distribution for the response comgnts for the example model
described in section 9.2.

The confidence interval marked with darker gray in figure Ssl@roduced simply by
calculating the response curves with the parameter valwes gn the sampled chain for
given time points (the ODE systems that describe chemieali@ns are time dependent),
for example. This results in a sample of response valuesfi@rent time points. That
is, values for given time points are calculated using the @hadgth the parameters in the
MCMC chain. With the samples it is possible to create an ecgliconfidence interval
for every time point. Thd — « confidence intervals for model prediction curves can be
formed as follows.

1. Generate MCMC chain for unknown parameters

2. Calculate the model prediction for (a thinned part) thaighn order to create a
chain for the model prediction.

3. Calculate the confidence interval for the prediction galseparately for every time
point

(a) Sortthe values
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(b) Take then/2 and1 — a/2 empirical percentile of the samples (through inter-
polation)

4. Plot the limits for every (time) point

Of course the production of response samples does not hdwe @aoseparate procedure
like presented above - the samples can be calculated in MG&té&tions after sampling
new values to the chain. The response values could be savezkadmple, in every 100th
step.

The uncertainty of new observations can be modeled by addimige" to the calculated
model prediction values. The added noise depends on thevamance (or covariance)
of the measurements. The error can be assumed to be corssiarg @pproximation) or
it can also be sampled when the MCMC chain is constructed.cbhédence intervals
for the noisy predictions (lighter gray in figure 5.10) canfbemed as stated above. The
error sampling schemes are discussed further in sectionl®.practice, the confidence
area created by adding noise to the sampled prediction suneans, roughly speaking,
the area from which observations (present and the ones yetm@) can be expected to
found with a certain probability.

Different Ways to Model the Measurement Error

In figure 5.10 the noisy predictions, that form the lightexygarea, were formed by adding
normally distributed noises(~ N (0, 5*I)) to the model predictions given by the param-
eters in the MCMC chain. That i$y0isy = Yprea + €. When the predictiony,,.q gets
close to zero, as happens with respodsa figure 5.10, the noisy predictions might get
negative values and thus allow negative observations sin€e,,... This happens, be-
cause the size of the measurement error is assumed to beuebbstween consecutive
measurements, whereas in practice the measurement egmiiter when the values of
the responses get small.

In figure 5.10 this problem is handled by cutting the negativisy prediction area away
from the plot and allowing only,.;s, > 0. An alternative way to model the noise struc-
ture is to calculatg/Jroisy = \/Fprea + €, Which givesy,,qisy = (\/Yprea + €)* and thus alll
noisy predictions are positive. This magnifies the errotteelibut is suitable for certain
situations. When this kind of approach is used, the sum o&rgguin the likelihood in
the MCMC run (equation 2. 9) has to be calculated in the cpoeding manner: here

SS@ \/E \/ *rla
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A third way to add the error to the model predictions, so that noisy predictions are
all positive, is to assume that the noise is multiplicatiad éognormal. That is¢;oq ~
Log — N(0,02I) which means that = log (ez0q) ~ N(0,0%I). Now we can calculate
10g (Ynoisy) = 108 (Yprea) + € WhiCh QiVESY,0isy = Ypreaexp () > 0. In this case the
likelihood is calculated using 'Sy = >, (log y; — log f(z;,0))>.

In figure 5.11 the "squared error" and "multiplicative logmal error" approaches are
demonstrated. For the demonstrations, data was creatédef@quared error case with
Yiata = (VYomodet + €>2 and for the lognormal case Wity = Yinoder exp (€). For the
first component 4) the noise was created with ~ N(0,0.05) and for B with e; ~
N(0,0.1).
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Figure 5.11: Predictive distribution plots for responsenponentA of the model intro-
duced in 9.2. The "squared error" approach is presentedesdnad the "lognormal” case
below. With these approaches no negative, "non-physicalfiptions are simulated.

5.6 Sampling the Error Variance

In the algorithms presented in this work, the measurememwir & modeled as ~
N(0,0%I), and the Gaussian likelihood is constructed using thisrapsion. The er-
ror variancer? is assumed to be known and it stays constant during the MCMCNuote
that the error variance might differ between different okied response components.
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Normally, however, the error variance is not exactly knowd an approximation has

to be calculated using the measurements. If replicated uneaents from observation

points are available, the error variance can simply be ed&thas the sample variance
calculated from the replicated measurements. When thstithe case, the error variance
can be approximated from the data using the classical faifaguation 5.6).

The error variance can also be regarded as a variable - west#relvariance "float" and
sample it along with the unknown model parameters. In thiti@e, one such sampling
mechanism, based on a conjugate prior and Gibbs samplipggsented. The presenta-
tion is based on [3].

We know, assuming a non-biased "perfect" model, that ther &grms €¢; = y; — f(x;;0))
are distributed the same way as the error. If we assume thatrtor is normally dis-
tributed, we can write an expression for the conditionabgiality distribution of param-
eters and measurements with a given variance:

n

&)

=1

1

p((0.y)lo?) o< (0%) " exp (— =

1
= (0_2)7n/2 exXp (—27‘2559)

We are interested in the posterior distribution of the ewantancep(o?|(6,y)). Using the
Bayesian notation, we can writéo?|(0,y)) o< p(a?)p((0,y)|c?) wherep(a?) represents
the prior density for the variance.

How can we assign the prior for the variance so that the postdistribution is some
known distribution, from which we can produce samples edfidy? If we use conju-
gate priors (section 2.3.1), the posterior has the same &srithe prior. For the normal
distribution with unknown variance, the conjugate priothe inverse Gammalistribu-
tion, which can be rewritten (with different parameteriaa) to the form of thescaled
inversey? distribution (Inv¢?(n, 5?)), that has the following PDF form with degrees
of freedom and scale parametg:

p(z) o a~ (2D = (n5%)/2 (5.13)

which is equivalent to thinverse Gammadlistribution "~!(«, 3)) with parameters and
G, that has the PDF
p(x) oc g~ @b/, (5.14)
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It can be easily seen, that the likelihood function aboveiaes the form of the PDF of
the Inv-?(n, S?) distribution (and thus inverse Gamma)gif is regarded as the variable
andd constant. That is, when we multiply the prior and the likebl, they get a similar

form, with different parameters.

Now we assign a conjugate prior to the variance from the scateersex? (inverse
Gamma) ag? ~ Inv — x?*(ng, o3). The resulting posterior density is

p(a?(0,y)) o< p(a®)p((0,y)|0?)
x (o2) " e (—;00253) ()™ exp (‘ife)

_ (O_Q)—((no+n)/2+1) exp (—T; (TLQSS + SS@)) .

That is, using the inverse Gamma, we can write the posteistrilglition for the variance
as )

2((0,y) ~ T (”0;” oSy 2* SS@) — T Y(a,b). (5.15)
In practice, the Gamma distribution is more convenient #anpling, since many scien-
tific computing environments include the functions to samipbm it. We can use the
relationship between Gamma and Inverse Gamma distribaitiod calculate the variance
with 0% = 1/ wherey ~ T'(a,b™!). This can be done, becauseXf ~ I'"!(a, b) then
Y =1/X ~T(a,1/b).

When the result is coupled with a MCMC sampling algorithm tloe parameters, we
arrive at a Gibbs sampling procedure (see section 4.5). iEhate assign some initial
value for the model parameters (usually the LSQ optimung,taen sample the variance
from the conditional distribution as described above. mlext MCMC step we use the
sampled variance and thus calculate a des@nditional ono?, which we use to sample a
newo?. The sampling procedure adds only one step to the MCMC dlgos, after the
acceptance step.

The parameten, in the prior distribution can be thought to represent the benof ob-
servations equivalent to the information given by the pridre S2 represents the average
squared deviation of the observations [3]. In practige= 1 andS? = M SE (see equa-
tion 5.6) are often chosen in this work. The parametgs often chosen to be small (such
as 1 or 0.01 or 0.001), which is an attempt to make the prianfonmative, as explained
in [26]. If we choose, = 0, the effect ofS? vanishes, but sincgS, can be close to 0, we
often need some kind of prior and prefer a small numberforOn the other hand, also
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informative versions of the prior can be used, if we have skimeé of a priori knowledge
about the behavior of*.

If the error is modeled to be multivariate Gaussian with saroeariance matrix, the
conjugate prior distribution for the covariance is InveW§eshart. That is, also the error
covariance matrix can be sampled at each MCMC step, if we dovaot to make the
assumptiorC' = ¢2I. In this case we allow the different response componentsve h
correlated errors. For more information about error mouglsee [3] and [27].
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6 Adaptive MCMC Algorithms

In the basic MCMC method based on random walk MetropolistiHgs (see section 4.2)
the problem is how to choose the proposal distribution so tthe algorithm converges
as fast as possible. This normally requires a lot of manuahtuof the proposal. When
using a Gaussian proposal, the problem is to find a suitablarigmce matrix for the
proposal.

Adaptive MCMC methods use the history of the iterative psscéhe chain created so
far) to update the proposal distribution during the compata Several algorithms are re-
cently introduced, using a bit different adaptation schetoeipdate the covariance matrix
of a Gaussian proposal distribution. The Adaptive Prop(sB) and Adaptive Metropo-
lis (AM) algorithms are discussed in the next section. Afteat, some further methods,
called DRAM (Delayed Rejection Adaptive Metropolis) and/A\ (Single Component
Adaptive Metropolis) are presented. No convergence anddeegdy investigations are
made here, for them refer to the original papers ([28],[18[he goal is to present the
algorithms in a practical form from which they are straigitfard to implement.

It is clear that the adaptive algorithms lead to a stochg@sticess that is not Markovian,
because the dependence on the history reaches furthertzactotthe previous state. For
some of the methods, however, it can be shown that the algohias appropriate ergod-
icity properties so that it generates samples correctiyftioe invariant target distribution.

The adaptive algorithms mentioned above are based on ngdég covariance matrix
of a Gaussian proposal distribution. That is, both the waltd the orientation of the
proposal distribution are updated iteratively.

6.1 Adaptive Proposal and Adaptive Metropolis

The Adaptive Proposal (AP) and Adaptive Metropolis (AM)@ithms were introduced
in [24] and [29]. The only difference is that in AP the covaiga of the Gaussian pro-
posal distribution is calculated using a fixed number of ey states, whereas in AM
an increasing part of the whole chain calculated so far isl us¢he adaptation. Both of
the algorithms are based on updating the covariance of adizeiygroposal, as calculated
from the sampled chain. A danger of adaptive schemes ishibgtrhay lead to incorrect
convergence, since the process is not Markovian anymorgestandard ergodicity re-
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sults do not apply. Indeed, this is the situation with AP, le/ihe authors could prove the
ergodicity of the AM algorithm ([29]).

The adaptive methods simply add one step to the simulatiop & the basic MCMC
algorithm. If we look for example the algorithm presentedeaction 4.2, we can add an
"adaptation step" to the algorithm after the "acceptanep”sthe if-structure):

e Do Adaptation

— CalculateC;
— CalculateR so thatC,., = RTR

How is the new covariance matriX;; calculated? Let us suppose here that we are at
timet in the algorithm and we already have created chiain X, ..., X;). The proposal
distribution is now Gaussian with mean at the current sigtend covariancé€’, ;. For

the AP algorithm we use a fixed history length, $agnd put

Ciy1 = sqCov(Xy_y, ..., Xy), whent > t. (6.1)

In the AM algorithm we use the whole history of the chain, alnel &daptation rule can
be defined as
Ciy1 = s4Cov(Xo, ..., Xy), whent >ty (6.2)

wheret, is the initial period after which the adaptation is begun. aWh < ¢, we can
use a fixed initial covariana€,. The constant, is a scaling parameter that depends only
on the dimension of the parameter space. In practical impftations we use a rule of
thumb for the scaling parameter, introduced in [38): = 2.4?/d. This can be shown
to optimize (in some sense) the mixing properties of the camdetropolis walk when
using Gaussian target and proposal distributions. [29]

The adaptation process can be "thinned", which means thadhptation is done after
a certain period - during a number of steps we use a fixed, queiy adapter proposal,

after which we do adaptation again. The covariance is cailedlusing the formula for

the empirical covariance matrix (see Appendix 1). This, éesv, requires a lot of com-

putation if we do it every time we perform adaptation. In dea.1.4 some ways to

update the covariance recursively, based on the valuestitremprevious adaptation step,
are presented.

The Adaptive Metropolis algorithm is compared to the MH aitjon in the next example.
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Example. Let us consider a situation, where we have unknown parastter(a, b] and
model responsg and we have to form the distribution of the parameters. Wenddhe
likelihood for the parameters so that the parametéas to be close tg. In addition,
we know a priori that the parametgihas to be very close t@’. That is, we define the
likelihood as

p(yl(a,b)) = exp (=100(b — a®)?) exp (—(a — y)?) = exp (=100(b — a*)* — (a — y)?).

The negative log-likelihood functior- In(p(y|(a,b))) = 100(b — a*®)? + (a — y)? re-
minds theRosenbrockunction, which is often used as a benchmark function fdedant
optimization routines. That is, the distribution of the @aeters here follows the Rosen-
brock function, which has a rather difficult shape, which emthe tuning of the proposal
distribution for MCMC sampling more difficult.

In the example we sef = 1. Both normal Metropolis MCMC and AM are run with
different Gaussian proposal distributions with mean atdineent point. A fixed covari-
ance of formCy = "—;I is used for the Metropolis MCMC and for the AM before the first
adaptation. In figure 6.1, several runs of length 5000 are wuth different values for
the scaling parametér. By alteringk we change the size of the fixed Gaussian proposal
distribution. The acceptance rate and the scatter plotexamined to make conclusions
about the performance of the different approaches.

From figure 6.1 one can see that the performance of Metroglgi@ithm is very sensitive
to the proposal covariance. With AM we get reasonable resuitl better coverage of the
posterior distribution, even if the initial covariance was too well chosen. If the initial
proposal is too large, AM can run into problems related tasilarity - the covariance is
calculated from a set of replicates of a single points. Irctses where the algorithm does
not move in the beginning, we might try a larger adaptatidarwal and scale the initial
proposal covariance so that it becomes smaller. Some tricksercome difficulties in
AM are discussed in section 6.1.2. In section 6.3 the DRAM#@lgm, that helps to get
the sampler "moving", is discussed.

The AM algorithm seems to work especially well with strongltyrrelated distributions.
This seems natural, since the proposal distribution adapite rapidly changing behavior
of the posterior. The algorithm has been tested to work u@@dmensional problems
([29]). When the dimension gets higher, the AM requirese@asingly long simulations.
Another adaptive method, designed especially for high dsi@al problems, is intro-
duced in the section 6.2.
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Figure 6.1: The scatter plots in the left column were produzgeMetropolis MCMC and
the right ones with AM. Herer> = 0.1. Adaptation interval for the right column was
200 and scaling parameter was 1, 10 and 1000 for each rowatasge. The dark black
contour line represents the area where the posterior pidlggRRosenbrock function) is
high.
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6.1.1 Adaptation Interval

How should the adaptation in AM be done? One must make sur¢éhdahain produces

enough diverse points during the adaptation interval sottieacovariance matrix can be
calculated. This is especially important in the beginniBgcause of problems related to
singularity the adaptation interval is normally taken tajoite large. In general, the more
the chain moves in the beginning, the smaller the adaptatierval can be. Adaptation

intervals ranging from 50 to 1000 are used in the empirical &this work.

The effect of cutting down the adaptation interval can bemadly seen in better mixing
and in higher acceptance ratio. It depends on the case, leowmx strong the effect of
adaptation is. To illustrate the effect, the developmergamfeptance ratio in the AM run
is plotted in figure 6.2 for 3 example models discussed in & One can see, that the
difference compared to standard MH depends strongly ondbke.c
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Figure 6.2: The development of acceptance ratio with dsfieedaptation intervals for 3
models found from chapter 9. For the first model from the lgfe adaptation intervals
50 and 100 seem to provide best results. For the second ntbdeddaptation interval
100 seems to result in higher acceptance ratio, whereadfitiercy of the plain MH is
quite poor. In the third picture, the adaptation does noehasignificant effect on the
acceptance ratio.
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6.1.2 Greedy Start

A pitfall in using Adaptive Metropolis is the possible slotag of the algorithm. If the
algorithm stays still for a long time in the beginning of they the covariance calculated
from the sampled points will become singular and the algoriwill fail. This is why the
adaptation interval is normally chosen to be quite largeerdthas to be some movement
in the beginning in order to get a reasonable covarianceixnakor later iterations a
smaller adaptation interval could be used (the adaptabatdde done more frequently).
One idea would be to alter the adaptation interval as theriéihgo proceeds, so that in
the later iterations the adaptation would be done more ofteaddition, a separate larger
adaptation interval can be used for the burn-in period.

One way to make sure that the covariance matrix will not beesmgular is to apply a
greedy startprocedure. In greedy start, the proposal distribution &@nce matrix) is
updated using only the accepted states for a short initiabge That is, all the points
from which the covariance is calculated differ from eacheotfi29]

If the algorithm does not move or the acceptance ratio isdapit is because the proposal
distribution is too wide. One way to speed up the algorithrtoisshrink” the proposal
distribution by multiplying the width parameter (varianceovariance in Gaussian pro-
posals) by some scaling factor. On the contrary, if the aecee ratio is too high, scaling
upwards works as well. [29]

6.1.3 Initial Covariance

An additional implementation issue related to AM is the rofethe initial covariance
of the proposal distribution. In the initialization stepns® kind of initial covariance is
formed, typically based on MSE and linearization as exgdim chapter 5.2, for ex-
ample. When the first adaptation is calculated, how is th#@lntovariance taken into
account?

One possibility is to totally discard the initial covari@eand merely calculate the first
adapted covariance from the sampled points. Another, psrheore efficient way is to
take the initially fitted covariance into account as well.isTban be done, for example,
by interpreting the initial covariance as if it had been atdéed from a number of points,
sayn points, after which the first covarianeg, can be calculated using the recursive
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formula. Basically this means that with different choices the initial covariance can
be weighted - if large: is chosen, we trust the initial covariance more. In addjtgaveral
AM chains may be calculated, with initial covariance takeritee final covariance of the
previous run. [29]

6.1.4 Updating the Proposal Covariance

In the adaptation step, the new proposal covariarice (wherek is the adaptation in-
terval) can be calculated simply by applying the empiricalaziance formula (appendix
1) to the whole chaiffiXy, ..., X;.,_1). However, when the chain lengths get very long,
the calculation of the covariance becomes a large computdtburden. Here we dis-
cuss the option of updating the covariance recursivelyyguihe covariance, mean and
sampled points calculated during the last adaptationvateiThat is, we try to find the
function f so thatC, . = f(C}, X, Xnew) WhereX, is the mean of X, ..., X;_;) and
Xnew = (X¢, Xy, ..., Xpax—1) includes the new sampled points.

Let us consider a situation where we have sampled poxs..., X;). Then, as stated in
[29], using the formula for the empirical covariance matvize can write the next covari-
anceCy,; using the previous covarian€g = Cov(Xy, ..., X;_1) and the new sampled
point X; as follows:

t—1
t

S E— [
Cip1= Ci + ?d(tXt—lthl — (t+1)X, X, + X, X]). (6.3)

The meanX, can also be calculated recursively using the previous méan. The
formula for updating the mean is derived below.

_ Xo+ X1+ ..+ X,

Xt =
t+1
ot X+ X+ + X X
t+1 t t+1
t — X,

= X, 4+t

P R |

_ t _
= Xt_l_’_t—l——l(Xt_Xt_l)‘ (64)

Finally, the recursive formula for calculating ., found by continuing the one-step iter-
ation (equation 6.3), is given as
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(6.5)
+t+li—1Xn5ngew)‘

In addition, a formula for the k-step update for the mean,,_,, that is needed in the

k-step covariance update above, can be written by extertimg@ne-step mean update

formula (equation 6.4):

— t — 1
Nepr =X+ —— > X (6.6)

t+k t+k
The covariance update using the k-step formula (equat®ndiectly results in shorter
and possibly faster code implementations. However, thisagch might lead to numer-
ical difficulties such as inaccuracies and number overfl@eisce the formula contains
matrix multiplications where the cells might have very ngalues. Thus, in practice, it
is safe and advisable to use the one-step update formulat{eqe.3) iteratively: times
to produceC;, ;. from C,.

Formulas (6.3) and (6.4) also show how the AM algorithm apphes MH when — oo,
sinceCy,; — C, and X, — X, ;. Thatis, the proposal converges towards a fixed
distribution. The proof of ergodicity of the AM algorithm &so based on this fact (see
[29]).

6.2 Single Component Adaptive Metropolis

The idea of adaptation can also be applied to the SC algoptiesented in section 4.4.
In Single Component Adaptive Metropolis (SCAM), the onednsional Gaussian pro-
posal distributions used in SC are adapted individuallyas\i. The algorithm is similar
to SC, with the exception that for each componaiitthe candidate point is generated
from distributionN (X} _,, ¢i) where variance; is updated for each component using the
adaptation rule

ch=sVar(Xy, ..., X} ). (6.7)

As in AM, the adaptation is only applied after an initial petj before which the variances
for the conditional proposals for components are kept fiXdwk scaling parameteris in
practical implementations chosen as in AM and is therefore2.4 (dimensiond = 1).
Again, to avoid computational costs, a recursive formutaifadating the variances can be
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formulated. [18] The SCAM algorithm performs well in higlmtensional cases where
there is no strong correlation between the parameters. elhseo work well also in
some cases with strong correlation, but not in always. Ireggntruly high-dimensional
problems still require more research.

6.3 Delayed Rejection Adaptive Metropolis

The Delayed Rejection algorithm (DR), introduced in [28]aimodification of the stan-
dard Metropolis-Hastings algorithm that has been proveonjarove the efficiency of
MCMC estimators. The idea in DR is that in case of rejectiothmacceptance step we
propose another move instead of storing the old parameligesa the chain. The accep-
tance probability of this "second stage" acceptance stefpasen so that the reversibility
conditions of the chain are preserved and thus the chais st@pdic. The second stage
move depends on the current position and on the point thabdws rejected in previous
stage. The delayed rejection mechanism can be extendeg taiarber of stages. More
on DR can be found from [31] and [32].

Delayed Rejection Adaptive Metropolis (DRAM) combines piddion to the DR pro-
cedure. Here, after every AM step done with an adapted cavee(”;, DR is applied
upon rejection so that for stagehe proposal covariand@ = C;. The covariance at DR
stagei can be computed for example simply by scaling the covarigncduced by the
AM-step: C! = ~,Cy, wherei = 1...m. Herem is the number of DR stages applied for
every rejected point. The purpose of the algorithm is to gaotae that at least one of the
proposals is chosen sufficiently. Other second stage marebe& designed as well.

The DRAM algorithm improves the efficiency compared to seaddMCMC and AM ap-
proaches especially, when the initial point is badly chasshthe parameters are not well
identifiable. In addition, if the algorithms have difficas in getting themselves moving
(the acceptance ratio is very low), the DRAM algorithm, wsttond stage moves scaled
down, can provide help. In easier cases, the algorithm doeperform significantly
better than AM, for example.

In the empirical part of the work, for most of the models, thé Algorithm was able to
produce a sufficient sample from the posterior. In one cass&eher, the acceptance ratio
stayed very low with AM, whereas DRAM seemed to produce a nooraprehensive
sample from the posterior (see section 9.6).

75



7 Population Monte Carlo

In MCMC sampling algorithms presented in chapters 4 and é pmint from the posterior
distribution is sampled at each iteration. The convergearidbe algorithms is ensured
through the ergodicity theorems. In addition, no genemapging rules can be formed
and the convergence is assured by different visual methods.

In Population Monte Carlo (PMC) methods we produce, at etfation, a sample of
sizen from the target (posterior) distribution. In addition, every sample created gives
an unbiased estimator of the mean of the target. That is,lgweidam can be stopped
at any time, only the accuracy of the estimator improves@lihve iterations. The user
does not have to worry about either dependencies that areodhe Markovian nature of
MCMC or convergence of the algorithm. PMC can also, if weideed, be a little faster
than standard MCMC algorithms.

The PMC method that has been under research recently, lsuitalsampling from the
posterior of the Bayesian framework, is based on iteragmication of the importance
sampling procedure discussed in section 3.2.4. The bagkdrof the method is in the
family of Sequential Monte Carl¢SMC) methods, also referred to Barticle Filters
that are primarily designed for dynamical models, that cadéscribed as a discrete time
series by

f(It) + (% (71)
h(l’t) + e (72)

Ti41 = f(xtﬂ)t)

Yy = h(ﬁt, €t)

wherev; ande; are noise signals. In the second equations, the additige r@isumption
is made.

The most simple iterative importance sampling methods fedynamical models are
the Sequential Importance Re-sampling (SIR) and the S¢iglémportance Sampling
algorithms. More about SMC methods for dynamical modelsmarfiound from [33],
[14], [34] and [35].

The methods can, however, be modified to work also in the chsestatic target dis-
tribution and static unknown parameter values, as is the oaghe formulation of the
problems in this work. Especially PMC methods are develdpeadilize iterative impor-
tance sampling in parameter estimation of static models.
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The purpose of this chapter is to introduce the backgrouadghe PMC approach and
present a simple algorithm for the method. Since this workcentrates mainly on

MCMC, the PMC method is just presented as a promising alteméor tasks that need
sampling. The approach is theoretical and only a simple @kam used to demonstrate
PMC in practice. The theoretical investigation related kd@is based mainly on [36],

[37] and [38].

7.1 PMC algorithm

The PMC method is quite close to the SIR method - actually PICke thought as a
re-formulation of SIR for static models. In literature th#®€ is often described as a
competitor to MCMC methods. However, the PMC and MCMC meshare not that
different in nature - they both are based on sampling from eoivg" distribution; in
MCMC we sample from the proposal distribution and in PMC we tise importance
function. In addition, MCMC steps can be used as a part of M€ Rlgorithm (and vice
versa) as discussed later in this section.

Let us consider a samplé’) = (;vgt), ey xﬁf)) that is created at iteratian In MCMC, the
next sample:+Y) would be created from a proposgl|z®). The usage of the "wrong"
distribution is justified with the ergodic theorem. In PMC ,westead, make a correction
to the "wrong" distribution at each step using importancegiviéng (see chapter 3.2.4 for
details).

If we have, at iteration, sampled the componentsgf) from the importance distributions
g,»t(xgt)), the importance weights can be defined as

(t)
w? = (z;") (7.3)

L))

where: = 1,...,n. That is, in PMC the importance function may depend on thexnd
of the sample and iteration index, a bit analogously with Single Component MH and
Gibbs Sampling. We can, of course, define a "global" impa¢annctiong, = g;;, that
would be analogous with the proposal distribution in the fdjgolis-Hastings algorithm
presented in chapter 4.2. It can be shown that the depenaenbyth: and¢ does not
affect the validity of the importance sampling scheme.

Since the posterior distribution is only known up to a norzia constant £(z) =
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n(zly) = K f(y|z)m,-(x)), we get unnormalized weights by usingr) = f(y|z)m,,(z)
in equation (7.3). In the PMC algorithm we need the normdliwightswz(t) so that
S, @ = 1, which can be done with

t w”
o = —1 (7.4)

(2 Znil w(t) :

Now, the PMC algorithm for producing a sampte? = (Xl(t), ey X,(f)) can be written in
pseudo-code as follows [6].

1. Fort=1,..,.N

(@ Fori=1,...n
e Select importance functiog,
e Generater!” ~ g,
e Calculatew'” using (7.3)

(b) Endfor
(c) Calculated” using (7.4)

(d) Re-sample: samples from:() with replacement according tbgt) to produce
X,

In the re-sampling step, a re-sampling with replacemenbigdacted. Sampling with
replacement here means basically the same as in Bootstrédqoase(section 3.1.3) for
creating new samples from existing data: random indexeslaeen. The previous in-
dexes are replaced with the created ones, that can contdica®of different points. In
the PMC algorithm, the re-sampling is done according to teghts that different parti-
cles (sampled points) have. That is, particles with largeghts are replicated and moved
to the next generation of particles more likely than theiplas$ with small weights. The
approach is a bit analogous with the selection process ilgwnary algorithms. In prac-
tice, the re-sampling can be done (for example) by constgi@n empirical CDF from
the weights and using the inverse CDF method (see sectioh) 3.1

Here we note that the importance functions calculated dt stp may depend on previ-
ous importance samples. That is, the algorithm can be destas an adaptive iterated
importance sampling. It can be shown, however, that thetatap of the importance
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function does not affect the correctness of the algorithratTs, adaptive schemes for
updating the importance weights can be designed with legtdatons. In the case of
adaptive MCMC algorithms, thorough ergodicity calculasdave to be carried through
in order to justify the method that is no longer Markovian.isTkind of flexibility in im-
portance function design can also be calculated as one ad¥entages of PMC when
compared with MCMC.

How can the importance functiong be formed? One idea is to use some distributions
that are easy to sample from and that are centered at theopsgpointX ), for exam-
ple Gaussian distributions. If separate importance fonstare defined for each compo-
nent, the importance functigy, can be for example a normal distributiN(Xi(t_”, aft))
wheres” is calculated from the previously sampled poittg'”, ..., X"). In addi-
tion, different scales for the importance distribution t@chosen according to the perfor-
mance of previous proposal distributiong_). The performance measure for a certain
importance function can be, for example, the number of regdead points that differ from
each other. On the other hand, if a global importance fungfio= g;; is used, the im-
portance function can be, for example, a multivariate GansgistributionN (z(*), C®)
where covarianc€'® is calculated from the previously created sample or fromathele
past. The former approach is analogous with the SCAM metinaddtlze latter with the
AP and AM methods from the adaptive MCMC methodology presegit chapter 6. The
SCAM-style PMC is, at least intuitively, promising also ilgh-dimensional scenarios.

One problem of the re-sampling step in the algorithm is thatsample produced by re-
sampling with replacement might contain many replicationthe same point. One idea
to increase the diversity of the created sample, introducd89], is to use a standard
MCMC step after the re-sampling. That is, new samplé is produced fromX® in
every iteration with a simple MCMC step to make the point$edifrom each other. In
this way the PMC and MCMC methods can be coupled.

The simplest way to utilize the PMC idea in standard MCMC atgms with Gaussian

proposal distributions is to make the center point of theartgmce distribution move with
MCMC using standard Metropolis-Hastings acceptance raled at each step produge

samples from the importance distribution with the resangpBtep. That is, the location
of the importance distribution is defined by the MCMC methlogt, the sampling itself

relies on PMC. This kind of approach lead$®ICMC (Population MCMC) algorithms,

and can improve the efficiency of the standard MCMC, wherg onk point is accepted
or rejected at each step.
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7.2 Example

Here, a simple example of PMC in the context of parametemasion in the Bayesian
framework (the general problem in this work) is presenteckt s consider a simple
model with 2 unknown parameters:

y=>bi(l—e ") ¢ (7.5)

where data is created with~ N (0, 0.02?) andb = (1,0.1). The PMC algorithm was run
so that the mean and the covariance of the Gaussian impertistcibution was updated
at each iteration using the sampled points (in AM style). pOiits were created at each
iteration and 10 iterations were made. The initial covasewas calculated from the data
using the approximation from section 5.2. The Jacobian \ab=zutated analytically. The
scatter plot of the parameters is presented in figure 7.1.

The results seem to be somewhat similar and the maximumhded estimate for the
point is close to the true values. The plot produced by MCMg@resented in figure 7.2.
It shows similar behavior for the posterior distributiontbe parameters. That is, the
PMC algorithm is here successfully applied to a simple patemestimation task. Thus,
PMC is relatively simple to implement. Also, as mentionée, &daptive schemes can be
designed more loosely, since we do not have to deal with eypdonditions.
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PMC, 10 iterations, 500 points at each iteration
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Figure 7.1: Population Monte Carlo with an adaptive impactadistribution.

MCMC run, chain length 5000, no adaptation
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Figure 7.2: MCMC run for the example model
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8 Developing MC Methodology

In this chapter, some aspects and ideas related to the f@search among Monte Carlo
methods in parameter estimation tasks are discussed. Thegauis merely to propose
some ideas and directions for future development that cgme&hen working with the
methods. The ideas are related to sampling the error steyctorming new, effective
proposal distributions and designing Population Montdd&Cschemes.

In MCMC methodology, a crucial question is the modeling a #rror structure. Espe-
cially, when using a Gaussian error, the error variance @asdmpled using conjugate
priors, as briefly introduced in section 5.6. If the measweeterrors are not independent
and identically distributede(~ N (0, 01)), we should sample therror covariance that
can be done using a conjugate priors as well. This kind of sagppchemes are one area
of potential development in MCMC methods.

The choise of the proposal distribution is essential wheantes to the efficiency and the-
oretical correctness of the algorithms. In the PMC apprpadood importance function
seems to be an even more crucial issue. That is, one direaftidevelopment is to find

new, effective proposal (importance) distributions. Imtigallar, one could use, instead of
one Gaussian distribution, a mixture of multiple Gaussiah$aussian mixture model

(GMM) can be fitted to a data set, which allows the mixture psgb to adapt. At least
intuitively a mixture proposal would be more efficient tharsiagle Gaussian, at least
in strongly "twisted" cases. A limiting factor in using a rixe model can be the addi-
tional computational burden. This can be helped if the pnesiclassification information
(GMM fit) can be used to construct the next fit in a recursive neanas in updating the
covariance in adaptive methods (chapter 6).

Another issue, worth looking into, might be different Piped Component Analysis tools
for nonlinear cases. The information about principal congus might be of great help
when constructing the proposal distribution.

More effective proposal distribution could potentiallyfoemed also using some informa-
tion directly received from the model. For example, whenragjmnating the covariance
of the proposal using the inverse Hessian instead of théoltapproximation, we could
get the inverse Hessian directly from a quasi-Newton stplinazation algorithm such

as BFGS.
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Population Monte Carlo offers an interesting alternatvd dCMC. And, as mentioned
in chapter 7, it offers more freedom in designing adaptivpantance distributions. The
adaptive PMC algorithms might be an interesting field foufatresearch. Also the PMC
and MCMC can be coupled in many ways, for example MCMC can bd irsdiversify-
ing the PMC sample after re-sampling. In addition, the "eepbints" for the importance
distribution can be sought using MCMC - in this approach thly difference to MCMC
methods would be multiple points created at each step wethefsampling procedure.

When it comes to adaptive methods, one of the tuning paramt¢he adaptation in-
terval, which is normally kept quite large (100-200). Theeival is kept large partly
because in a bigger interval the algorithm most likely mosdeast a little, which makes
the adaptation (calculation of the covariance) possibtee idea would be not to keep the
adaptation interval constant. We could do the adaptatisedan the information about
the movement of the algorithm. We could perform the adamtatvhen a certain amount
of new points are accepted. In this approach the adaptatterval would be bigger in
the beginning and smaller in the end - and it would requirs tesing from the user since
the adaptation interval would not have to be defined explicit
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9 Case Examples

This section includes the empirical part of the work. Herfevamodels from the field of
chemical reaction kinetics are presented and the distoibsidbf the unknown parameters
are formed with MCMC methods. Results are visualized withrtiethods presented in
the theoretical part. The models are currently under resesr Abo Akademi (Turku,
Finland) and in Lappeenranta University of Technology (egnranta, Finland). First, a
simple example model from chemical kinetics is presentdds odel is used in some
illustrations in the theoretical part of the work.

For solving the parameter estimation tasks in the case egantwo techniques are used.
For MH, AM and DRAM solutions, théAODESTstatistical software is used. The soft-
ware and its MCMC tool are programmed using Fortran and nmadities librariesA-
PACKandBLAS On the other hand, for plotting purposes and for differentifications
of the Metropolis and AM algorithms, the MATLAB software ised.

The emphasis of the theoretical part is on questions raigeddoMCMC -type statistical
analysis of the models, not on the actual chemistry behiadibdels and what the results
mean from the chemical point of view. The latter part is leftthe modelers themselves.

Most of the models are run with both Metropolis algorithmc{gan 4.2) and Adaptive
Metropolis (section 6.1) in order to compare the methodssealif AM provides better
results than the Metropolis algorithm. In two models, theAMRalgorithm is used.

9.1 Model Types and Data

The empirical part of this work concentrates on mechanistathematical models that
describe chemical reactions. The general mechanistic hcadee written as follows.

s = f(x,0,¢c) (9.1

y = g(s) (9.2)
wheres is the stateof the system with certain values for design variabktgesinknown
parameter® and constante. The functionf represents the model. The observation

function g denotes the relation between the states given by the moddhamguantities
observed (measured) by the modeler.
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In so calledexplicit algebraionodels the states can be explicitly calculated by substitut
from the formulas = f(x, 0, c). This is the most simple case and no numerical solvers
are needed to compute the states with different values fgdevariables.

The models describing chemical reactions are often ODEeBys in which the concen-
trations of certain substances change in time. In ODE mdtlelstates are presented at

each time point in the form
ds

i f(s,x,0,c) (9.3)

In addition, some initial conditior(0) = s, is given. In order to obtain the state at each
time point, the ODE has to be solved, which can be done analigti or, in most cases,
with a numerical solver. The models in this chapter are diesdras ODE systems. The
solvers used in these models MOESSAN the FORTRAN framework andde45in

MATLAB.

If the model is described as a system of differential equatithat contain derivatives
with respect to several variables, we end up to Partial Bafigal Equations (PDE). Nor-
mally PDE models include time and space variables. The PRE®e transformed into
ODE systems with discretization methods, for example. ©fte computation time for
function evaluations, and thus MCMC methods, rise.

The measurement data is often given as maatgheqdata sets). The model can include
so calledlocal variablesthat are constant within data sets but may differ betweemthe
for example temperature. In addition, soowtrol variablesthat also change within the
batches, may exist.

All in all, the model data is given imV,.; batches. A batcl hasN,(k) observations
and each observatignhasN,.,(j, k) measured response components. That is, we have
measurementg;;, where: is the index of the response component in observatian
batchk. If y,,, denotes the corresponding model prediction, the LSQ fandip be
minimized can be calculated as a sum over all batches, adirebisons and all response
components as follows:

N.set NObS (k) NT@SP(j7k)

LSQ(0) = ‘ (Vi — ypi]-k>2' (9.4)

In table 2 below, the models dealt with in this chapter arersanzed. For each model,
the model type, the MCMC algorithm used, the dimension aedtimber of observed
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responses, are listed.

Table 2: Example model types, algorithms used and numbenmlofawn parameters and
observed responses.

Name Section Model Algorithm | Dim | Resp
Example Model 9.2 ODE (2 components) MH/AM 4 2
Phloroglucinol 9.3 ODE (3 components AM 7 3
Propionic Acid 9.4 ODE (6 components AM 7 4
Esterification 9.5 ODE (4 components AM 5 1
Sitosterol 9.6 | ODE (14 components) DRAM 22 | 11

Thus, the number of unknown parameters in the models ramge & to 22. In most
of the cases, the AM algorithm gave good results, and thenpeters were identified
well. In one case (sitosterol), due to the complex naturéefaosterior distribution, the
acceptance ratio was very low with MH and AM, and the DRAM allipon was used to
get the sampler moving. In this case there were also probiertige identifiability of
some parameters.

In the "difficult” cases with many unknown parameters and QidEponents, the com-
putational time was significantly larger than that of the@en models; the computation
of a sufficiently long MCMC chain could take about one day whsimg a standard work-
station. In a very complicated model with a very large nunddemknown parameters, a
more powerful computing environment would be required.
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9.2 Simple Example Model

This model is used for illustration purposes in previouspthes. The model describes
a simple one-way chemical reaction, wheteas transformed intaB with some speed
described by rate parametey, and B is disappearing with ratk,. That is, the reaction
can be written as

A =k B ke

which means that the model can be defined as an ODE systeniaygsfol

dA

— = —kA

dt !

dB

22— A—IkB
dt 1 2

wherek; andk, are reaction rates. The temperature dependency of thaaeaate is
expressed in chemical kinetics using the Arrhenius’ lawylimch

ky = kpeane Bz (9.5)
ky = kipeane=Fez (9.6)
z = 1/R(1T —1/Tpean). (9.7)

The frequency factorg]***" denote the "average" reaction rate is some "average" temper
atureT),.... Risthe general gas constant afidandE, denote the activation energies for
the reaction. The estimated parameters herd ate(k**", E, k7", E5). T denotes
the temperature in which the measurements are made (a acabie).

To illustrate the general notation given in chapter 9.1 stia¢es and the observation func-
tion can be defined as

s(1) = A
s(2) = B
g(s) = s

That is, we observe both components of the ODE system. If tv@l\second component
was observed, we would hayés) = s(2). In this modeb = (k]*«", £y, k{**", E5) and
xz = (T, A(0), B(0)). The constants ate= (R, T,can)-

The MCMC results for the example model were presented in@ebt5. In the follow-
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ing, an additional MCMC example of optimizing the temperatprofile for the example
modes is presented.

9.2.1 Optimizing the Temperature Profile

Let us consider the temperatufein the example model to be a control variable, which
means that it is allowed to vary between different time mifithen, a useful question in
practice would be to think how we should control the temperato that, for example,
the output of the intermediate componéhis maximized.

LetT = (13, ...,T,) denote the temperature profile, that we can control. Hegenotes
the temperature in time poirdf. Now we optimize the temperature profile so that the
output of B is maximized. Thus, for optimal temperature profilewe can write

T = max B(ty).

The resulting optimal temperature profile is presented iirgg9.1. From the results we
can conclude that, in order to get a large final valueBowe must keep the temperature
low in the beginning of the reaction and then quickly inceséign the end. The simplified
temperature profile, that can be implemented during therexpat, is presented in figure
9.1.

400 400
350 350
o
S 300 300
'—
250 250
200 200
0123456789 0 2 4 6 8
time time

Figure 9.1: The optimized temperature profile (with an aliguess) and the correspond-
ing simplified profile.

Now we can simulate the responséand B with the optimized temperature profile, with
the different possible parameters given by the MCMC run e Isow responses behave
with the optimized temperature profile. The results for bagbponse components are
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presented in figure 9.2. The results show that the unceytairihe model is dramatically
increased in comparison to the original setting (figure b.10hat is, when we move
away from the original temperature profiles, where the mesamants were made, the
predictability of the model deteriorates: Thus, the modelat able to accurately explain
the behaviour of the response components when the consliibthe experiment are
changed: the uncertainty in the activation energy estisyateduce a large uncertainty in
the new situation. The MCMC methodology is easily able t@adthis kind of prediction
error.

0.5

0.6

m 04r

0.2

time

Figure 9.2: The predictive distributions for the responséh the optimized temperature
profile.
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9.3 Creation of Phloroglucinol

The creation of phloroglucinol is a process studied in theatdgnent of Chemical Engi-
neering at Lappeenranta University of Technology. The rmisd®rmulated as an ODE
system with 3 response components, all of which are obseiiael number of unknown
parameters is 7. The measurement are done in 5 experimatitéerent temperatures.

From the MCMC perspective the parameters seem to be ratHeideastified. The AM
algorithm seems to provide slightly better mixing than ttendard MH algorithm. The
predictive distributions show that the model fits well to teta.

9.3.1 Model Description

The kinetic model for the overall reaction is formulated a<2DE system as follows.

% = —MMR, — M™R,
Cil—f = —2M™MR,
C
where
R, = kAB
Ry = FkA™.

The rate constants; and k£, and =z are defined as in the example model in the previ-
ous chapter (Arrhenius’ law). That is, the parameters to ftfenated here aré =
(kjean By, k5™ FEy,ny,no,m3). The states are defined to be= [A, B, C] and the
observation functio(s) = s.

9.3.2 MCMC Results

Table 3 below shows the LSQ estimate, empirical median antidence interval limits
(o = 0.05) for the model. From the estimates one can see that, for eeafipand E;
are well identified, whereas the values sampled:foandn; get a wider range of values.
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Table 3: LSQ estimate and empirical confidence limits forrtiozlel.

LSQ 0.5 a/2 1—a/2
ke | 0.274E-03| 0.295E-03| 0.179E-03| 0.4469E-03
Ey 0.273 0.274 0.264 0.285
Egreer | 0.0098 0.010 0.0045 0.022
E, 0.213 0.221 0.201 0.244
ny 2.11 2.08 1.95 2.23
N 0.624 0.736 0.330 1.221
ns 0.598 0.756 0.471 1.085

The pairwise scatter plots are presented in figure 9.3. Taegblows that most of the
parameters behave nicely. The scatter plot reveals thag theorrelation between some
parameters, the strongest correlation being between gdeampairs (6,7) and (3,6). The
correlation coefficients (see Appendix 1 for definition)azdated from the chain are about

0.8 for both of the pairs.

When we look at the marginal plots in figure 9.5, the correladiare also clearly shown.
The figures on the right, that represents a chain createdadiiptive metropolis, seems
to be mixing more efficiently than the plain Metropolis MCM@&pented on the left side.

Predictive distribution curves for one of the data set®©@#dther 5) are presented in figure
9.4 using the error variance sampling scheme presenteaiins&.6. The parameters in
the prior distribution for the error variance were defined&, = 1 andS; = MSE. If

a prediction is made from the response curves, it shouldhigugpld with the accuracy

given by the lighter gray area in the paint brush curve.
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Figure 9.3: Pairwise scatter plots from the chain createt Mietropolis algorithm. The

burn-in time was 1000 and chain length 10000. One-dimeas$tonfidence intervals and
confidence regions (approximately 95%) are created withkéineel density method.
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Figure 9.4: Distributions for model fits. The chain was cegaising AM with adaptation
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Figure 9.5: Marginal Paths for the 7 unknown parameters. [€fiepicture is created
with plain Metropolis MCMC, the right one with AM, using adagion interval 100 and
regarding the initial covariance matrix as if it was samgiedn 1000 points.
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9.4 Esterification of Neonpentyl Glycol with Propionic Acid

The model is studied at Lappeenranta University of Techyglat the Department of
Chemical Engineering. It is described as a 6-component G¥em, 4 of which are
observed. The reaction kinetics are studied in a batchoeattdifferent temperatures.
The measurement are given in 12 batches and the number abwnkyarametersis 7. For
a thorough explanation of the chemistry behind the ODE ismin [40] (to be published).

From the MCMC perspective the model parameters seem to bevell; and the standard
algorithms, MH and AM, are well suitable for the evaluatidritee posterior distribution
of the parameters.

9.4.1 Model Description

The model can be defined as a 6-component ODE system as follows

dA ks C? A

- = ~hAB+ > — ks AD — =W

% = —kAB— kyBC — %W

% = kAB — kyBC + 2k3 AD — QkiQ - %W
% = kBC + kf‘f - %W

% — (kiAB + kyBC)M

dM

o =W

where
W = M, (k1AB + ko BC)M.

Here M,, is a given constant and the reaction ratesk, andks are derived from the Ar-
rhenius law, and thus the unknown parameterg ase( k", Ey, k5", Ey, k5", B3, K.,).
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In the "state notation" we can write all the calculated staiefollows:

] = [A,B,C,D,E, M|

) (A(0) — MA)/A(0)
) (B(0) = MB)/B(0)

9) = (MC—C(0)/(A(0) - MA)
) (MC - €(0))/(B(0) = MB)
) (A+B+C+D)M+ E.

Components 7 and 8 represent timaversiorfor A and B and components 9 and 10 the
selectivityfor A and B. The 11th state records the total mass of the @acomponents.
We observe the first 4 components of the ODE system. Thataglikervation function
IS written as

9.4.2 MCMC Results

The pairwise scatter plots presented in figure 9.6 show tieapairameters are well iden-
tified. In this kind of case, where the posterior distribatliehaves in a regular way, the
AM algorithm does not provide significant improvement comggbto the MH algorithm
with M SE chosen as the error variance.

The predictive distributions for the states in three dats see given in figures 9.7 and
9.8. We see that responsésand B fit well to the data, but there is systematic error in the
model with respect to respons€sand D, that overestimates the measurement error with
respect to these responses. The question about how to @ttlactrror in the model itself
into the statistical analysis, in addition to the measur#neeror, is subject to ongoing
research and not addressed here.

The same kind of temperature profile optimization as for tkengple model in chapter
9.2 can be carried through for this model. For implementasiod results, refer to [40].
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Figure 9.6: Pairwise scatter plots for the model paramelére chain was produced with
AM, adaptation interval being 100.
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Figure 9.7: Predictive distributions with good fits.
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Figure 9.8: Predictive distributions with systematic eiirothe model.
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9.5 Esterification Processes

The model discussed here has been studied in Abo AkadenkyuTEinland. The de-
scription of the chemistry behind the model can be found fifddj. The model is an
ODE system with 4 components, one of which is observed. Timebeu of unknown
parameters is 5 and the measurements are done in 9 batches.

From the MCMC perspective the model parameters seem to behavsatisfactory way.
The AM algorithm seems to result in slightly better mixingathMH. The predictive
distribution reveals systematic error in the observedoasp.

9.5.1 Model Description

The model is described as an ODE system below.

dea
dt
deg
dt
dec
dt
dep
dt

where

cacg —cocp/ K
T =
W

(OCCA + ﬁCD)Ch Vv
a = agelr /s
ﬁ _ 60€E2/8.314z

z = 1T —1/Thean-

The parameters to be estimated ére- (K, o, b, E1, F2). The initial volumelj is a
local variable and volum¥& is a control variable, that may change in every measurement
within batches. Here = [A, B, C, D] and we observe only the first component of the
systemy(s) = s(1).
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9.5.2 MCMC Results

In this model chain length of 20000 and burn-in time of 5000engsed. Different adap-
tation intervals were tried and also different burn-in soles - both fixed and adaptive
proposals (scaling and greedy adaptation) were used.

Table 4 below shows the LSQ estimate, empirical median anfidance interval limits
for the model parameters, calculated from the MCMC chain.

Table 4: LSQ estimate and empirical confidence limits forghmmeters.

LSQ | 0.5 a/2 1 —a«/2
K 292 |3.02 |234 |392

ap | 3.29 |3.20 |1.93 |4.47

Bo | 23.0 | 23.6 |18.2 |29.5
E, | 66300| 66000| 23500| 112000
E, | 41500| 42800 13500 71200

Two marginal path plots are presented in figure 9.9. One camagge that with the
adaptive method the mixing of the chain seems to be signtfichetter, especially with
respect to the first paramete]. The mixing is significantly improved merely by em-
ploying scaling and / or greedy adaptation during the burphase. If adaptation is used
also after the burn-in, the mixing is slightly improved. Tis here the greedy adaptation
procedure turns out to be especially useful.

The pairwise scatter plot produced by AM (with adaptatiademal 100 and greedy adap-
tation during the burn-in) is presented in figure 9.10. Aligraeters seem to have one
clear optimum. The strongest correlation exists betweearpaters (3,2).

The predictive distributions for the first response vamaBlpresented in figure 9.11 for 4
data sets. The plot shows that the model seems to fit the daieasely.
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Figure 9.9: Marginal Paths for the 5 unknown parameters. [€fiepicture is created
with plain Metropolis MCMC, the right one with AM, using adagion interval 100 and
greedy adaptation during the burn-in phase.
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Figure 9.10: Pairwise scatter plots from the chain creatil the AM algorithm. The
burn-in time was 5000 and chain length 20000. Adaptatiogriail was 100.
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Figure 9.11: Predictive distribution curves for 4 data sets
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9.6 Sitosterol Hydrogenation Process

The model, studied in the Process Chemistry centre of Abadéka (Turku, Finland),
is defined as an ODE system of 14 components, 11 of which aenazs The number
of unknown parameters is 22. The mathematical descriptitimeomodel is omitted here
due to its complexity - for the description refer to [42].

From the MCMC point of view this model is interesting, becatise dimension and the
number of observed response components are higher thaam dfidise other cases. The
basic MCMC algorithms, MH and AM, seem to have problems irtiggtthemselves
moving: the acceptance ratio is very low. The DRAM algoritpravides significant help
in this case. The distribution of the parameters reveatmgticorrelation between two
parameters, which could justify model reduction. Also,\a parameters seem to be badly
identified and some parameters converge close to the optiimmzlimits. The predictive
distributions show that some of the responses are able thgpthe measurements well
and some predictive distributions include more noise.

9.6.1 MCMC Results

Some of the unknown parameters in the model are well idedt{Bee figure 9.12). In
some cases there seem to be clear identifiability probldmascan be seen from figures
9.13 and 9.14.

One parameter pair is very strongly correlated (figure 9dr] it seems that the ratio
between the parameters is well identified, but the paramétemselves are not. Model
refinement and reparametrization could help in this issuadtition, at least one param-
eter gets very close to zero and the parameter could be ass&yfixed value (zero) and
removed from the optimization target.

The predictive distributions for the components in somadats are presented in figures
9.16 and 9.17.
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Figure 9.12: The well behaving model parameters.
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Figure 9.13: Problems, for example, related to the ideiiftst of parameter 4.
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Figure 9.14: Problems in the identifiability of parametérsaddition, the first parameter
seems to get values close to zero. Strong correlation betp@@ameters 12 and 22.

10000

8000

6000 -

4000

2000

0 2000 4000 6000 8000 10000

Figure 9.15: Strongly correlated parameters. Here repati@mation could be done so
that the ratio of the parameters would replace the othempater in the list of unknown
parameters.
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occurs in the model prediction.
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10 Conclusions

Due to increased computational power the MCMC methods heweldped into a feasible
tool for investigating the posterior distribution of unkmoe parameters in mathematical
models. The methods are straightforward to implement ans édmployable also in real
life modeling tasks, as seen in the case examples of this.work

The numerical methods for sampling from the posterior dhation provide many kinds
of new, valuable information to the modeler, including etations between parameters,
uncertainties related to both parameter estimates andcpisgdcurves and identifiability
of the parameters. When dealing with regular MCMC methodebtan the Metropolis
and Metropolis-Hastings algorithms, problems may howesey if the posterior behaves
in a certain way, for example if the posterior is strongly i4ted". The proposal distribu-
tion has to be correctly chosen in order to make the algosthmrk efficiently. In this
case, the family of adaptive methods provide significanp hehe proposal distribution
adapts to the shape of the posterior and the methods becesddpendent on the initial
proposal distribution. The effect of the adaptive methaals lse seen in better mixing of
the produced MCMC chain.

The adaptive methods seem to have a significant effect inficeeacy of the algorithm,
especially in correlated cases. High-dimensional problane often efficiently tackled
with single component versions of the algorithms. If thé@hpoint and the identifiability
of the parameters is poor, the Delayed Rejection approdeh pfovides better results.

There are many different aspects that are to be considered tadnlding applications and
code that implement some MCMC -type method. One of the magstipns is conver-
gence. It can be diagnosed with many methods, of which théumse$ul seem to be based
visual examination of the output of the algorithm and didoag the initial "burn-in" pe-
riod from the output. In addition, one has to be able to prewdficient starting points
and initial proposal distributions through different estites (LSQ) and approximations
(linearization). Also the interpretation of results andualizations is an important issue
when making inference about the posterior distributione Tésults may be visualized
using marginal distributions with confidence intervals aoafidence regions. In addi-
tion, the effect of the uncertainty in parameters to the jgtexh (response) curves can be
visualized by building predictive distributions.

In adaptive methods, the main implementation issue is thptation interval - how often
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should the adaptation be done? Normally the adaptationvaltes kept relatively large
in order to make the algorithm move in the beginning and tresuiang that there are
enough diverse points to make the adaptation. Some spéackd tan be employed to
make the algorithm move, including greedy adaptation ptocee The DRAM algorithm
seems to be helpful as well, when there are problems in gatimmsampler moving. Also
the role of the initial proposal distribution has to be calesed - it is possible to discard
it when the first adaptation occurs or assign a weight to itrdyaresents the trust towards
the initial proposal distribution.

In order to keep the theory and implementations simple, ttasurement error is in this
work assumed to be distributed in a Gaussian way and theserrdifferent measurement
are assumed to be independent and identically distribdteel error can also be modeled
in Bayesian terms so that the error variance is sampled wngugate priors. If the
assumption is that the errors are not independent and tharbkeccorrelation in the errors
between the measurements, we end up in error covariancexapations and sampling
schemes.

Population Monte Carlo methods, based on performing ingmae sampling iteratively,
seem to provide a promising alternative to standard MCMChiodd. The PMC methods
also provide more freedom when designing adaptation schenines approach is subject
to ongoing research.
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APPENDIX A

Appendix 1. Mathematical Definitions

Here some of the mathematical terms and notations are explamn more detail.
Convergence of Random Variables

In probability theory, several different types of converge of random variables are de-
fined. The weakest form of convergence is convergenc@stribution. If we consider

a sequence of random variables;, X, ...) and the corresponding sequence of CDF:s
(F, Fy, ...), we say thatX,, converges in distribution t& (that has CDH) if

nh—{go F.(a) = F(a) = P(X <a)
for everya € R whereF' is defined and continuous. That is, the probability tRatis in
some given range gets arbitrary close to the probability #hé in the same range, when
avery largen is chosen. Convergence in distribution is used in the CEnitrat Theorem
and in the Weak Law of Large Numbers. One result related toergence in distribution
is that if X,, — X in distribution, thery(X,,) — ¢(X) in distribution {y : R — R).

Another term related to convergence in this work is convecgel/most surely. The
sequenceX,, converges almost surely towards random variab|ef

P(lian:X)zl

n—oo

which means that events that don not converg&'tbave probability 0. In general, a
proposition is said to hold almost surely#(” proposition holds”) = 1. Convergence
almost surely implies also convergence in distributione Tibtation is used in the Strong
Law of Large Numbers.

Another type of convergence, namely convergeincgrobability appears often in prob-
ability theory literature. The sequengg, is said to converge to X in probability, if

lim P(|X, — X|>¢) =0.

n—oo

The definition is used in the weak law of large numbers in secsi.3.1.

CONTINUES



APPENDIX A CONTINUED

Mean, Variance, Covariance and Correlation

The expectation of a random variabléX describes the most probable value of all possi-
ble values. The expectation is defined as (discrete andanis case respectively)

p=FEX)= Zﬂ%‘p(fi),

p=FEX)= /OO xp(z)dz.

The variance of a random variable describes the variatiahcaffusion of the variable
around its expectation. The variance for a discrete randamalvle with probability den-
sity functionp is defined as

o’ =Var(X) = B(X — p)”> = (x; — p)°pla:).

Similarly for continuous random variable with density faioo p:

ol =Var(X)=E(X —p)?= / (z — p)’p(z)dz.
Using the Steiner’s theorem we get a formula for varianceigheasier to compute. Below
it is given for both discrete and continuous case respdgtive

7= Y atpla) - i

o0

o? = / 2 p(x)dr — p?.

The variance is seldom calculated analytically. Insteddaaple variance" is often cal-
culated from the measured data, using an estimate for thenear. Ifz), = (214, ..., Tnk)
denotes the column vector in a design matrixopservations for a variable), the sample
variance can be calculated using
2 1 - _\2
Var(ry) =0, = Z (i, — Tg)".

n—14%
=1

The square root of the variance is thtendard deviation of a random variable:

Std(zy) = 04, =/ Var(xy).

CONTINUES



APPENDIX A CONTINUED

The covariance is a measure of the relation (co-movemetvwdas two random variables
X andY. The covariance is defined as

Cov(X,Y)=E(X - EX))(Y —-EY))).

If we look at the observation matrix, the corresponding c@arece between two measured
variablesr; = (zy,, ..., xy) @andxy, = (214, ..., Tox) €aN be calculated using

n

> G — 70 s — TR

=1

Cov(zy, ) = Ogy, =

Note thatC'ov(z,z) = Var(xz). The covariance matrixov(X) whereX is the observa-
tion matrix, is defined by ov(X) = [Cov(x;, z;)|, wherei, j € Zandl <i <p, 1 <
j < n. That is, the diagonal contains the sample variances andttiex parts of the
matrix consist of covariances between different measuag@bles.

The correlation coefficient between two random variablefefined as

Ovey, _ Cov(xy, x1)

Oz,0¢, N Std(l’l)std(l'k) ’

Corr(zy, k) = Prjz, =

That is, the non-diagonal elements of the covariance medrxalso be written as,,, =

pasia:j O-$io-$]' .
Confidence Intervals

If we are estimating some quantiéy the (1 — «) * 100% confidence interval for it is
the interval to which the true value of the parametdyelongs with probabilityl — «.
The principle of forming the confidence interval is simplee assume that the estimated
parametep follows some distributiorD,. From Dy we can assign the limits adnb so
that

Pla<Dy<b)=1-a.

From the two inequalities < D, < bitis possible to compute the limits for the parameter
0:
L<o<U.

For example if we assume th&t ~ N (u, 02), through CLT we know thak’ ~ N (u, 0% /n)

and thus L
X —p
7 =
a?/\/n

~ N(0,1).

CONTINUES



APPENDIX A CONTINUED

Now thel — « confidence interval fo, for example, can be calculated from the equation
—Rl-a/2 <Z< “l—a/2

wherez, represents the point of the CDF &f(0, 1) at whichP(X < z,) = z.

Linear Regression Models

If the model is linear with respect to the unknown paramétat can be written in the
formy = X6 + e. The estimaté that minimizes the LSQ function, is the solution of the
normal equation¥” X6 = X Ty, which leads to

0= (XTX)'xTy.
If the measurement errer~ N (0, 021) (i.i.d. components), we gétov(f) = o2(XTX)".

Proof. Letb be the LSQ solution to the linear problem= Xb. Thatis,h = (X7 X)X Ty
(normal equation). Nowou(b) = Cov((XTX)~1XTy). Using the assumptiafiov(e) =
Cov(y) = %I, the factthaCov(Ay) = ACov(y)AT and(AB)T = BT AT and(AT)~! =
(A=H)T ([8]) we get
Cov(h) = (XTX)"1XTo?((XTXx)"1XT)T

= AXTX)1(XTX)(XTX)"1

= oA(XTX)™L (10.1)
In nonlinear regression, no exact distribution theory like one presented above can be
formed, and one has to rely on numerical methods.

Jacobian Matrix

The Jacobian matrix contains the partial derivatives of trsler with respect to every
function and every variable. if = y(x) is defined as a set of functions

= y1($1,---,$k)
Yn = Yn(T1,.; 7) (10.2)

CONTINUES
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then
1 Oy
8z1 8$k
J =
Oyn Oyn
dr1 " Oxp

Hessian Matrix

The Hessian matrix contains the information about the sgooder (partial) derivatives
of a certain function with respect to every variable paiyy ¥ f(z4, ..., z,,), the Hessian
matrix is defined as

?f _%f f
8z§ Ox10xe2 77 Ox10xp
02 f
H = Oxo20x1
_of 22f
92,017 022

Quartiles and Interquartile Range

If we have ordered data witkr, observations, the first quartilg is defined as thenedian
of the n first (smallest) observatianRespectively, the third quartilg is defined as the
median of the n largest observatioriBhe second quartilg, is the median of the whole
data.

The interquartile range is used as a measure of spread ististatsamples. It is defined
asiq = qs — q1-

Principal Component Analysis

PCA (Principal Component Analysis) is meant for searchimg directions, where the
deviation of the samples is the largest. That is, we try totiredmost important directions
(directions that mostly describe the structure of the data) a high-dimensional data set.

Numerically the directions of the greatest deviation cambiined through the singular
value decomposition (SVD) of the data matrix. The SVD forobservation matrixX’ (n

x p) would beX = UX VT whereU andV are orthogonal anl = diag(oy, ..., 0,). In
this work the PCA techniques are considered as a way to rtitatproposal distribution
in the single-component versions of the MCMC algorithms €@ SCAM).



