
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY         

Department of Industrial Engineering and Management 

 

 

 

 

 

 

REQUIREMENTS TRACEABILITY 
 

 

 

 

 

The subject of this thesis has been approved by the Council of the Department of 

Industrial Engineering and Management on the 29th of August, 2001. 

 

 

Supervisor: Professor Tuomo Kässi 

Instructor: Master of Science in Engineering Laura Nihti 

 

 

 

Lappeenranta 10.10.2001 

 

Mia Hokkanen 

Ruotsalaisenraitti 2 B 31 

53850 Lappeenranta 

Tel. +358 (0)40 703 9647 



 

ii

ABSTRACT 

Author: Mia Hokkanen 

Name of thesis: Requirements Traceability 

Department: Industrial Engineering and Management 

Year: 2001  Place: Lappeenranta 

Master’s Thesis. Lappeenranta University of Technology. 

84 Pages, 15 Figures, 7 Tables and 2 Appendices 

Supervisor Professor Tuomo Kässi 

Instructor Master of Science in Engineering Laura Nihti 

Keywords: software engineering, requirements engineering, requirements trace-

ability 

Hakusanat: ohjelmistotuotanto, vaatimusmäärittely, vaatimusten jäljitettävyys 

Requirements engineering is an important part of software engineering. Require-

ments traceability is a part of the requirements management process and it makes 

requirements management easier through the whole product development project. 

However, requirements traceability is very often ignored in software development 

projects.  

The objectives of this thesis are to establish the importance of requirements trace-

ability in software development projects and the methods to carry out require-

ments traceability information. Requirements traceability and implementation 

techniques are studied through the literature. The present state of requirements 

traceability in an organization is studied through the real process model and real 

projects. 

As a result of the study there are reasons why requirements traceability informa-

tion should be carried out in software development projects and procedures how 

the implementation could be started cost-effectively. There are also recommenda-

tions of the traceability strategies and methods. With minor corrections require-

ments traceability is easy to carry out in some level. Creating traceability matrixes 

is the biggest improvement proposal for the process model. Matrixes ensure trace-

ability information in backward and forward directions. A proposed requirements 

management tool would help to maintain traceability information.  



 

iii

TIIVISTELMÄ 

Tekijä: Mia Hokkanen 

Työn nimi: Vaatimusten jäljitettävyys 

Osasto: Tuotantotalous 

Vuosi: 2001  Paikka: Lappeenranta 

Diplomityö. Lappeenrannan teknillinen korkeakoulu 

84 sivua, 15 kuvaa, 7 taulukkoa ja 2 liitettä 

Tarkastajana professori Tuomo Kässi 

Ohjaajana diplomi-insinööri Laura Nihti 

Hakusanat: ohjelmistotuotanto, vaatimusmäärittely, vaatimusten jäljitettävyys 

Keywords: software engineering, requirements engineering, requirements trace-

ability 

Vaatimusmäärittely on tärkeä osa ohjelmistotuotantoa. Vaatimusten jäljitettävyys 

on osa vaatimustenhallinta prosessia. Jäljitettävyystieto helpottaa vaatimusten hal-

lintaa läpi koko tuotekehitys projektin. Hyvin usein vaatimusten jäljitettävyyttä ei 

kuitenkaan ole toteutettu ohjelmistokehitysprojekteissa. 

Työn tavoitteena oli selvittää vaatimusten jäljitettävyyden tärkeyttä ohjelmistotuo-

tannossa sekä kuinka jäljitettävyys voitaisiin toteuttaa ohjelmistokehitysprojek-

teissa. Vaatimusten jäljitettävyyttä sekä eri tekniikoita sen toteuttamiseksi on tut-

kittu kirjallisuuden avulla. Yrityksen vaatimusten jäljitettävyyden nykytilaa on 

selvitetty tutkimalla olemassa olevaa prosessimallia sekä todellisia tuotekehitys-

projekteja. 

Tuloksena esitettiin perusteluja, miksi jäljitettävyystieto pitäisi sisällyttää ohjel-

mistokehitysprojekteihin sekä menetelmiä, kuinka jäljitettävyystieto voidaan to-

teuttaa projekteissa kustannustehokkaasti. Työssä on esitetty strategiavaihtoehto ja 

menetelmät jäljitettävyyden toteuttamiseksi. Pienillä korjauksilla  jäljitettävyys 

pystytään toteuttamaan kevyellä tasolla. Suurin parannusehdotus prosessimalliin 

on jäljitettävyysmatriisien luominen. Matriisien avulla pystytään projekteissa to-

teuttamaan jäljitettävyys sekä eteen- että taaksepäin. Vaatimustenhallintatyökalu 

helpottaisi jäljitettävyystiedon ylläpitoa. 



 

iv

ACKNOWLEDGEMENTS 

The subject of this thesis was given by Sonera Service Software, which is Son-

era’s research and development unit. 

I would like to thank my instructor Laura Nihti for the invaluable suggestions and 

guidance she gave during the study. She helped me to find the right focus for this 

study in the beginning and without her support I could not have finished this study 

so quickly. I am grateful to my supervisor, Professor Tuomo Kässi for his valu-

able instructions and dedication to instructing and supporting me.  I would like to 

thank Jarkko Lehto for his valuable comments and for giving me time to concen-

trate on this thesis. I would also like to thank people in Sonera for their support. I 

especially thank all those people who I interviewed for their valuable input for the 

study. Special thanks to Janne for always supporting me. 

 

 

 

 

 

 

 

 



 

v

TABLE OF CONTENTS 

ABSTRACT 

TIIVISTELMÄ 

ACKNOWLEDGEMENTS 

TABLE OF CONTENTS 

LIST OF FIGURES 

LIST OF TABLES 

ABBREVIATIONS 

 

1 INTRODUCTION........................................................................................1 

1.1 Background ..........................................................................................1 

1.2 Arguments for Requirements Traceability.............................................2 

1.3 Objectives of the Study.........................................................................2 

1.4 Research Methods ................................................................................3 

1.5 Scope of the Study................................................................................4 

1.6 Structure of the Work ...........................................................................5 

2 REQUIREMENTS ENGINEERING............................................................6 

2.1 Requirements Engineering....................................................................8 

2.2 Requirements Management................................................................. 11 

3 REQUIREMENTS TRACEABILITY (RT)................................................13 

3.1 Classifications of RT .......................................................................... 14 

3.1.1 Pre- and Post- Requirements Traceability .................................. 14 

3.1.2 Forward- and Backward Traceability ......................................... 16 

3.1.3 Traceability Types..................................................................... 18 

3.2 Definitions of Requirements Traceability............................................ 21 

3.3 Types of Traceability Techniques ....................................................... 22 

3.3.1 Cross Reference-Centered ......................................................... 22 

3.3.2 Document-Centered................................................................... 23 

3.3.3 Structure-Centered..................................................................... 23 

3.4 Traceability Techniques...................................................................... 24 



 

vi

3.4.1 Traceability Table...................................................................... 24 

3.4.2 Traceability Lists....................................................................... 26 

3.4.3 Automated Traceability Links.................................................... 27 

3.4.4 General-Purpose Tools .............................................................. 28 

3.4.5 Requirements Management Tools.............................................. 29 

3.5 Managing Requirements Traceability ................................................. 30 

3.5.1 Traceability Policies .................................................................. 30 

3.5.2 Traceability Manual................................................................... 31 

3.5.3 Traceability Strategies ............................................................... 33 

3.6 Problems of Requirements Traceability .............................................. 36 

3.7 Costs of Requirements Traceability .................................................... 38 

4 ADVANTAGES OF THE REQUIREMENTS TRACEABILITY ..............39 

5 CASE: SONERA SERVICE SOFTWARE (S3) .........................................42 

5.1 R&D Process Model........................................................................... 42 

5.2 General R&D Process......................................................................... 42 

5.3 Applied R&D Process in S3................................................................ 44 

5.3.1 Requirement Capture Process .................................................... 44 

5.3.2 System Concept Process ............................................................ 45 

5.3.3 Design and Implementation Process .......................................... 46 

5.3.4 Testing Process.......................................................................... 46 

6 DESCRIPTION OF THE PRESENT STATE OF REQUIREMENTS 

TRACEABILITY (RT) IN S3 ............................................................................48 

6.1 RT and the S3’s Product Development Process Model........................ 48 

6.2 RT in Real Projects............................................................................. 49 

6.2.1 Project A ................................................................................... 50 

6.2.2 Project B ................................................................................... 52 

6.2.3 Project C ................................................................................... 53 

7 RESULTS ..................................................................................................55 

7.1 Problems with RT in S3’s Projects...................................................... 55 

7.2 Usability and Benefits of RT Information for the S3 ........................... 57 



 

vii

7.3 What Information Should Be Traced in S3.......................................... 58 

7.4 How to Implement RT in S3 ............................................................... 60 

7.4.1 Template Improvements for the Product Development Process 

Model................................................................................................. 60 

7.4.2 Traceability Strategy.................................................................. 62 

8 CONCLUSIONS AND RECOMMENDATIONS ......................................65 

9 DISCUSSION ............................................................................................69 

REFERENCES 

APPENDIX 1 

APPENDIX 2 

 

 

 

 

 

 

 

 

 

 



 

viii

LIST OF FIGURES 

Figure 1. Structure of the study. ...........................................................................5 

Figure 2. Illustration of a software development life cycle  

 (Thayer & Dorfman 1997, p. 454)..........................................................6 

Figure 3. Hierarchical decomposition of the requirements  

 engineering domain (Wiegers 1999, p. 19).............................................8 

Figure 4. Major requirements management activities  

 (Wiegers 1999, p. 268). .......................................................................12 

Figure 5. The location of the RT in the software development process. ..............13 

Figure 6. A simplified diagram to show the two basic types of RT,  

 pre-RT and post-RT (Gotel 1995, p. 79). .............................................15 

Figure 7. Four types of requirements traceability (Wiegers 1999, p. 299). ..........17 

Figure 8. The distinction between horizontal, vertical, forwards,  

 and backwards RT (Gotel 1995, p. 37).................................................18 

Figure 9. Traceability types (modified from Leino 2001, p. 8)............................19 

Figure 10. Sample requirements structure (Spence & Probasco 1998, p. 5).........34 

Figure 11. Traceability overview (Spence & Probasco 1998, p. 30). ...................36 

Figure 12. Deconstructing the requirements traceability  

 problem for provision (Gotel & Finkelstein 1994a, p.14). ....................37 

Figure 13. General R&D process model (Tolonen 1999, p. 4). ...........................43 

Figure 14. Main events of DPs (Tolonen 1999, p. 5)...........................................43 

Figure 15. Proposal for the requirements structure in S3.....................................62 

 

 



 

ix

LIST OF TABLES 

Table 1. Requirements Engineering Good Practices  

 (Modified from Wiegers 1999, p. 38-39). ................................................9 

Table 2. Definitions of requirements traceability (Gotel 1995, p. 71-72).............22 

Table 3. Other example of requirements traceability matrix  

 (Wiegers 1999, p. 303). .........................................................................24 

Table 4. Requirements traceability matrix showing links between  

 use cases and functional requirements (Wiegers 1999, p. 304)...............25 

Table 5. Likely sources for the information of traceability links  

 (Wiegers 1999, p. 305). .........................................................................26 

Table 6. Traceability list (Sommerville & Sawyer 1997, p. 229).........................27 

Table 7. Basic information of the projects. .........................................................50 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x

ABBREVIATIONS 
 

 

AMR  Analyzed Main Requirements 

DP  Decision Point 

FR  Functional Requirement 

ID  Identification 

MS  Mile Stone 

O&M  Operation and Maintenance 

Post-RT  Post Requirements Traceability 

Pre-RT  Pre Requirements Traceability 

RC  Requirement Catalog 

RE  Requirements Engineering 

RM  Requirements Management 

RM-tool  Requirements Management tool 

RS  Requirements Specification 

RT  Requirements Traceability 

RUP  Rational Unified Process 

R&D  Research & Development 

SRS  Software Requirements Specification 

S3  Sonera Service Software 

TI  Traceability Information 

TIP  Technical Implementation Proposal 

TS  Technical Specification 

UC  Use Case 

 

 

 



 

1

1 INTRODUCTION 

1.1 Background 

In a very competitive software development environment the quality and fastness 

of software development processes are remarkable competitive advantages. De-

velopment projects should be concluded on time, on budget and the end result 

should be the same as the customer is expecting. All these aspects measure the 

quality of projects but unfortunately many of the software development projects 

fail at least in one of these aspects. There are many reasons for these failures and 

results of the Standish Group International (2001) sample research show that four 

main reasons for project challenged factors are lack of user input, incomplete re-

quirements and specifications, changing requirements and specifications, and lack 

of executive support. Thus, one way to increase the quality and fastness of the 

software development process is to improve requirements engineering (RE) and 

management processes. Requirements traceability (RT) is an important part of the 

requirements management (RM), but too often it is not carried out completely if at 

all in development projects.  

 

In software development projects everything is very liable to changes and so itera-

tive process models have become popular. The more iterative are the projects the 

harder it is to manage them. There will always be some changes in requirements 

during development projects. Traceability information (TI) shows which compo-

nents have to be changed or held constant and which components will be affected 

by the changes. Shortage of the RT information may lead to higher costs, wrong 

or unnecessary changes, impossible reuse of components, harder fault tracking, 

frustrating waste of time and many other problems during a development project. 

If the TI is reliable, changes will be made correctly and completely during devel-

opment project, which improves the productivity. The RT information helps to 



 

2

manage requirements. Well-managed requirements improve the total quality of 

the development project.  

 

Thus importance of RT and its benefits raise an interesting research topic. How 

could a company use the traceability information and for what? What are the 

benefits of the traceability information? What kind of traceability information is 

needed? How can a company get the traceability information? How can the trace-

ability information be exploited? These are some of the questions for this thesis to 

approach through literature and real organizational settings in Sonera Corporation. 

1.2 Arguments for Requirements Traceability 

Why should requirements be traceable in software development projects? RT 

helps development projects succeed. With RT information requirements are easier 

to manage. When requirements management is easier the impact of the changes in 

development projects is also easier to evaluate. In addition, traceability informa-

tion assists to verify that all requirements are implemented. All these issues make 

successful product development projects possible. Successful product develop-

ment leads to better customer satisfaction. Thus RT finally enhances the competi-

tive advantage of the company.  

Traceability information is not freely available and some work has to be done to 

get it. The challenge is to get people convinced about the importance of the trace-

ability information and to make them realize that it should be available in devel-

opment projects as soon as possible. To convince people, some good reasons have 

to be given for the question why RT is so important that the firm should invest on 

it.   

1.3 Objectives of the Study 

Three objectives are identified to answer the research question of this thesis. The 

first objective of the thesis is to identify the use of the requirements traceability 

information. This is done through theoretical and empirical analysis. The aim is to 



 

3

find answers for the questions how and what traceability information could be 

used. The thesis tries to create a clear picture of the use and advantages of the RT. 

 

The second objective of the thesis is to find out what kind of information should be 

traced and how. Tracing requirements through the development project assemble 

additional expenses, which brings more challenges to the analysis of the needed 

information. The information that should be traced is identified through theoreti-

cal and empirical study. Empirical study will be used to create a picture of the 

present state of RT in Sonera and to identify what kind of requirements informa-

tion could be useful for the company. As a result of the empirical study there will 

be an answer for the questions how RT information is implemented in the com-

pany’s development projects, what information should be traced and how. The 

goal is to identify how RT can be carried out in a general level not in a detailed 

level. Anyhow always should be remembered that all necessary things should be 

traced but nothing more or less.  

 

1.4 Research Methods 

This thesis consists of a literature study and a case study. The concepts of soft-

ware and requirements engineering are studied through literature. RT is studied 

through literature and empirical study. The aim is to define RT through literature, 

compare it to practice and thus give some recommendations and improvement 

proposals. Benefits, advantages and necessity of RT will be justified by combin-

ing the theoretical and empirical studies.    

Empirical study is done through practical examples of the development projects in 

the company and in this way the current situation of RT is defined.  This study is 

based on going through the material of the product development process model of 

the company and the material of the product development projects. The level of 

RT in the development projects is also analyzed by discussing and interviewing 

people involved in those software development projects. These discussions and 



 

4

interviews are analyzed based on theoretical study. Proposal for the traceability 

information of requirements, which the company should have, is based on theo-

retical and empirical study. Empirical study identifies what kind of requirements 

should be traceable especially in the development projects of Sonera. 

1.5 Scope of the Study 

This thesis concentrates on reasoning the importance of RT in software develop-

ment processes that concentrate on new products. The thesis argues and gives 

good reasons for a company to invest in requirements traceability information. RT 

is considered here only through one development project from requirements to 

testing. RT through different versions of the product is excluded from this study. 

At the end of the study there will be defined what information should be traceable 

because traceability information always costs and so all necessary things should 

be traced to reach majority of the benefits of RT.  

 

The empirical study concentrates on Sonera’s R&D unit Sonera Service Software 

(S3). The tracking of requirements in a real project is excluded from this study but 

the comparison between the theory and the present state of the requirements trace-

ability in S3 is included. Recommendations of this study are directed to S3. 

 

 

 

 

 

 

 

 

 

 

 

 



 

5

1.6 Structure of the Work 

The structure of the study is illustrated in figure 1. 

1. INTRODUCTION1. INTRODUCTION

2. REQUIREMENTS
 ENGINEERING

2. REQUIREMENTS
 ENGINEERING

3. REQUIREMENTS
TRACEABILITY

3. REQUIREMENTS
TRACEABILITY (RT)

4. ADVANTEGES OF
4. ADVANTAGES OF THE

REQUIREMENTS TRACEABILITY

5. SONERA SERVICE SOFTWARE5. CASE: SONERA SERVICE SOFTWARE (S3)

6. PRESENT STATE OF REQUIREMENTS TRACEABILITY IN S3
6. DISCRIPTION OF THE PRESENT STATE OF REQUIREMENTS

TRACEABILITY (RT) IN S3

7. RESULTS7. RESULTS

8. CONCLUSIONS AND RECOMMENDATIONS8. CONCLUSIONS AND RECOMMENDATIONS

9. SUMMARY9. DISCUSSION

THEORETICAL PART
OF THE STUDY

EMPIRICAL PART
OF THE STUDY

 

Figure 1. Structure of the study. 

 



 

6

2 REQUIREMENTS ENGINEERING 

The core of software engineering is constructing and maintaining computer-based 

systems. The first explicit model for the software development process was the 

“waterfall model”, which cascades from one phase to another (Reinikainen 2000, 

p. 5). The waterfall model is illustrated in figure 2. However, nowadays many 

models exist for the software development life cycle. Thayer and Dorfman (1997, 

p. 8-11) mention five basic development models, which are the baseline manage-

ment and waterfall models, the prototyping life cycle model, the incremental de-

velopment model, the evolutionary development model, and the spiral model. 

System Requirement
Analysis

System Requirement
Analysis

Requirement
Analysis

Requirement
Analysis

Operation and
Maintenance

Operation and
Maintenance

Preliminary
Design

Preliminary
Design

Detailed
Design

Detailed
Design

Code and Unit
Testing

Code and Unit
Testing

Integration and
Acceptance Testing

Integration and
Acceptance Testing

Installation and
Turnover

Installation and
Turnover

 

Figure 2. Illustration of a software development life cycle (Thayer & Dorfman 

1997, p. 454). 

Software engineering typically starts with Requirements Engineering (RE). The 

scope of the RE is to define the purpose of a proposed system and to outline its 



 

7

external behavior. According to Sommerville & Sawyer (1998, p. 5) RE is a rela-

tively new term which includes all of the activities involved in discovering, 

documenting, and maintaining a set of requirements for a computer based system. 

Traditionally RE was considered to be restricted to a particular phase of the soft-

ware development life cycle. Normally this phase occurred before design, imple-

mentation, testing, and utilization. This view is based on the earlier mentioned 

waterfall model (figure 2). Nevertheless, this view has been changed during last 

decades and it is now generally accepted that RE process will continue through 

the whole software development process, as requirements are continually being 

refined throughout the life cycle. (Lauesen 2000, p. 10) (Goguen & Linde 1993, p. 

152) 

RE activities are often divided into five categories in literature. These five catego-

ries alternate between different writers but the contents are almost the same. Fol-

lowing will be presented common definitions for these five categories (Thayer & 

Dorfman 1997, p. 1) (Wiegers 1999, p. 43): 

• Requirements elicitation. The process through which the customer and the de-

veloper of a software system discover, review, articulate, and understand us-

ers’ needs and verifies user requirements through discussion. There are three 

common levels of requirements elicitation: business, user, and functional, 

which come from different sources. In this phase constraints are also set up on 

the software and the development activity. 

• Requirements analysis. The process of analyzing the customers’ and users’ 

needs to achieve definitions of software requirements. All stakeholders have 

to understand the meaning of each requirement. 

• Requirements specification (RS). The development of the document that 

clearly records each of the requirements of the software system, and possibly 

it is formalized to act as a basis for contractual purposes between the customer 

and the supplier of the product. In this phase requirements need to be docu-

mented in some consistent way and some standard convention must be estab-

lished to uniquely identify each requirement. 



 

8

• Requirements validation/verification. The process of ensuring that the soft-

ware requirements specification is in compliance with the system require-

ments. Requirements’ correctness (such as completeness and consistency) and 

feasibility properties (such as cost and resources needed) are evaluated and 

analyzed. 

• Requirements management (RM). Assists in maintaining the requirements’ 

evolution through the development project. RM consist of requirements elici-

tation, specification, analysis, and verification, and includes also planning, 

traceability, impact assessment of changing requirements and so on.  

Wiegers (1999, p.268) points out that RM includes all activities that maintain the 

integrity and accuracy of the requirements agreement as the project progresses.  

2.1 Requirements Engineering 

Wiegers (1999, p. 19) defines RE activities as illustrated in figure 3. One minor 

difference for the definition depicted above is that Wiegers groups elicitation, 

analysis, specification and verification activities into one group named require-

ments development. This Wiegers definition of RE will be followed in this thesis.  

 

 

 

 

Figure 3. Hierarchical decomposition of the requirements engineering domain (Wiegers 
1999, p. 19). 

Wiegers (1999, p. 38) introduces some good practices for RE, which could help 

development teams do a better job on their requirements activities. These activi-

Requirements Engineering

Requirements Development Requirements Management

AnalysisElicitation Specification Verification



 

9

ties are roughly described in table 1. Good practices are grouped under same ac-

tivities as in figure 3, but there is two additional groups, knowledge and project 

management, which have some important tasks related to RE process. Practices of 

these two groups will be discussed briefly because there are some tasks related to 

requirements management. Requirements management itself is discussed in more 

detail in chapter 2.2. 

Table 1. Requirements Engineering Good Practices (Modified from Wiegers 1999, 

p. 38-39). 

Knowledge Requirements Management Project Management 

- Knowledge of require-
ments analyst 

- User reps and managers 
knowledge of require-
ments 

- Knowledge of the devel-
opers in application do-
main 

- Glossary for the terms 

- Change management pro-
cess 

- Requirements traceability 

- Versions control of re-
quirements documents 

- Requirements status track-
ing 

- Measure requirements 
stability 

- Use a requirements man-
agement control 

- Select appropriate life 
cycle 

- Base plans on require-
ments 

- Renegotiate commitments 

- Manage requirements 
risks 

- Track requirements effort 

Requirements Development 

Elicitation Analysis Specification Verification 

- Vision and scope 
of the product 

- Define require-
ments develop-
ment procedure 

- Establish focus 
groups 

- Identify use cases 

- Analyze user 
workflow 

- Define quality 
attributes 

- Reuse require-
ments 

- Requirements’ 
context diagram 

- Possible proto-
types 

- Feasibility analy-
sis 

- Requirements 
prioritization 

- Model the re-
quirements 

- Create a data dic-
tionary 

- Adopt Software 
Requirements 
Specification 
(SRS) template 

- Sources of re-
quirements 

- Requirements’ 
labeling 

- Business rules 
recording 

- Requirements 
traceability ma-
trix creation 

- Requirement 
documents in-
spection 

- Test cases writing 
from require-
ments 

- User manual writ-
ing 

- Defining accep-
tance criteria 



 

10

As Wiegers (1999, p. 42) points out, good knowledge of RE is important for peo-

ple involved in RE process and it ensures better quality for the software develop-

ment process. Requirements process is a key to success and so all project stake-

holders should have a basic understanding of the rationale, importance, and prac-

tices of RE. People, who are primarily responsible for capturing, documenting, 

and analyzing user requirements should receive a large-scale training in these ac-

tivities. 

There are three levels of requirements elicitation: business, user, and functional. 

These come from different sources at different times during the project, have dif-

ferent audiences and purposes, and need to be documented in different ways. The 

business requirements cannot exclude any user requirements, and functional re-

quirements should be traceable to user requirements. Nonfunctional requirements, 

such as quality attributes, should also be elicited from the most appropriate 

sources. (Wiegers 1999, p. 43) (Thayer & Dorfman 1997, p. 1) 

Software project management approaches are intimately related to a project’s re-

quirement processes and especially to requirements management processes. Pro-

ject plans should be based on the functionality that is to be built, and changes in 

requirements will affect on those plans. The project plans should therefore antici-

pate and accommodate expected changes in requirements and project scope. If the 

initial requirements are uncertain, a software development cycle that accommo-

dates this uncertainty might be selected (e.g. the waterfall software development 

life cycle is appropriate only for fully defined initial requirements). (Wiegers 

1999, p. 52-53) 

According to Wiegers (1999, p. 148-149) a document referred to the Software 

Requirements Specification (SRS) states the functions and capabilities that a 

software system must provide and the constraints that it must respect. If the qual-

ity of this document is good, the rest of the development project is much easier to 

manage because the SRS is the basis for all subsequent project planning, design, 

and coding, as well as the foundation for system testing and user documentation. 



 

11

Good quality of SRS means that it is understood and agreed by all stakeholders 

and everybody is committed to it. The SRS should also be consistent internally 

and with the existing business practice documents. Requirements in the SRS must 

be complete, implementation independent, unambiguous and consistent, precise, 

and verifiable (Dorfman & Thayer 1996, p. 91). The better the quality of the SRS 

the easier is the task for the requirements management and project management. 

Good quality of the SRS ensures that budget, resource, and lifecycle estimates 

will keep on. Likely there are also fewer changes to be made during development, 

which also helps the requirements management processing. 

2.2 Requirements Management 

According to Sommerville and Sawyer RM is concerned with all of the processes 

involved in changing system requirements. RM is a process, which support other 

requirements engineering activities and is carried out in parallel with them. Defi-

nition of RM pointed out by Leffingwell and Widrig (2000, p. 16) is as follows ”a 

systematic approach to eliciting, organizing, and documenting a process that es-

tablishes and maintains agreement between the customer and the project team on 

the changing requirements of the system.” The principal concerns of RM are: 

1. Managing changes to agreed requirements 

2. Managing the relationships between requirements 

3. Managing dependencies between the requirement document and other docu-

ments produced during the systems and software engineering process. (Som-

merville & Sawyer 1997, p.216) 

In common sense RM is a critical activity – it ensures the voice of customer is 

heard throughout the development process and that RE is not restricted to a single 

phase in the lifecycle (Gotel 2000, p. 5). Good practices for RM were described in 

table 1. Wiegers (1999, p. 268) groups these practices into four main categories. 

Categories and activities of these categories are described in figure 4.  



 

12

Requirements
 Management

Version Control Requirements
TracingChange Control Requirements

 Status Tracking

- Proposing changes
- Analyzing impact
- Making decisions
- Communicating
- Incorporating
- Measuring 
  requirements 
  stability

- Identifying  
  requirements
  document versions
- Identifying
  individual
  requirement
  revisions

- Defining links 
  to other 
  requirements
- Defining links to
  other system 
  elements

- Defining 
  requirement
  statuses
- Tracking 
  requirements that
  have each status

 

Figure 4. Major requirements management activities (Wiegers 1999, p. 268). 

According to Sommerville and Sawyer (1997, p.217) to manage requirements, 

requirements traceability information need to be maintained. Traceability informa-

tion helps to discover what other requirements might be affected by requirements 

changes. RM practices such as maintaining dependencies between requirements 

have long term benefits, which are better customer satisfaction and lower system 

development costs. These benefits will not appear immediately and so developers 

may consider RM as an overhead. Implementing RM in development projects 

may need some additional work at first, which makes it more difficult to convince 

people about its importance. However, the experience has shown that the invest-

ment in good requirements management processes is cost-effective.  

 



 

13

3 REQUIREMENTS TRACEABILITY (RT) 

The central task of RM is to assure requirements traceability, from the earliest 

elicitation activities through to system evolution and maintenance. Requirements 

traceability (RT) is at the heart of RM (Gotel 2000, p. 6) (Easterbrook & Nuseibeh 

2000, p.6). Figure 5 depicts the role of the RT in the software engineering (SE) 

and shows that RT is in the middle of everything. If RT is implemented success-

fully it has positive impact on the whole project and improves the quality of the 

project and so it should be considered as an important part of the software engi-

neering (Ramesh et al., 1995). 

SE

RE

RM

RT

 

Figure 5. The location of the RT in the software development process. 

According to Robertsons (1999, p. 265) a requirement is traceable if any part of 

the product that exists can be identified because of the requirement, and for any 

part of the product can be identified the requirement that caused it. Gotel & 

Finkelstein (1994, p.1) created a common definition for the term requirements 

traceability. This definition cited by many authors is as follows: 

”Requirements traceability (RT) refers to the ability to describe and follow the life 
of a requirement in both a forwards and backwards direction (i.e. from its origins, 
through its development and specification, to its subsequent development and use, 
and through periods of ongoing refinement and iteration in any of these phases).” 



 

14

RT is often thought as a concern in an increasing number of standards and guide-

lines for systems and software requirements engineering. This concern has oc-

curred because of the variety of methods and tools have been developed to ad-

dress RT issues and research interest in the area is growing. RT is a widely re-

ported problem area in industry and the persistence of RT problems can be attrib-

uted to the lack of any thorough problem analysis (Gotel & Finkelstein 1994, p.1). 

3.1 Classifications of RT 

Traceability has been classified in many ways. The most common ways occurring 

in literature are the pre- and post –traceability (Gotel & Finkelstein 1994a, p.11), 

forward- and backward –traceability (Gotel & Finkelstein 1994a, p.10), and trace-

ability types (Sommerville & Sawyer 1997, p. 226). It should be noted that any of 

these classifications do not close other classes out, in contrast they support and 

augment others.   

3.1.1 Pre- and Post- Requirements Traceability 

Pre- and post-requirements traceability classification divides RT into two basic 

types, which together encompass the whole area of RT. The following are the 

definitions for these terms defined by Gotel (1995, p. 78). 

Pre- requirements traceability (pre- RT) refers to the ability to describe and fol-

low those aspects of a requirement’s life prior to its inclusion in the RS in both a 

forwards and backwards direction (i.e., requirements production and refinement).  

Post- requirements traceability (post- RT) refers to the ability to describe and fol-

low those aspects of a requirement’s life that result from its inclusion in the Re-

quirements Specification (RS) in both a forwards and backwards direction (i.e., 

requirements deployment and use). 



 

15

There are two main phases of a requirement’s life, its on-going production and its 

development. Pre- and post-RT are grouped based on these two basic lifecycle 

phases. Figure 6 shows a typical simplified setting of RT to illustrate the differ-

ence between pre- and post-RT. These two types deal with separate kinds of in-

formation, assist with different types of problem, and have different claims on po-

tential support for traceability. (Gotel 1995, p. 78) 

RS Design Code

Pre-RT Post-RT

Sources

 

Figure 6. A simplified diagram to show the two basic types of RT, pre-RT and 

post-RT (Gotel 1995, p. 79). 

Pre-RT is the requirements development part of RE (figure 2), which includes 

elicitation, analysis, specification, and verification. The output of pre-RT is the 

basis of the Software Requirements Specification (SRS) document, which in-

cludes traceability information before design phase. If this initial work of RT is 

well done, the quality of software development processes rises very likely. The 

more complete and consistent SRS set is the fewer and/or smaller changes will be 

made to the product during development. This is the reason why authors often 

emphasize the meaning of pre-RT and argue that post-RT have only limited affect 

on the quality of the development process.  



 

16

Gotel (1995, p. 79) says that “Post-RT depends on the ability to trace require-

ments from and back to a relatively static baseline document, usually the RS, and 

through a succession of documents and products in which they are distributed.” 

Post-RT helps to manage changes made to requirements baseline (SRS) through 

the chain of requirements distribution and helps to assess impacts of changes on 

the development project. Hence, even if the pre-RT is almost complete, the post-

RT cannot be implemented without good instructions and planning. Post-RT 

needs to have some policies so that it could be implemented effectively. In the 

literature there are some common policies of RT that could be considered when 

companies own traceability policies are defined. Every company has to determine 

policies, which are appropriate to the development environment it is working on. 

This thesis considers traceability policies and manual in more detail later and it is 

considered as an important part of the empirical study.  

Problems with post-RT occur mainly when the activities and frameworks of RE 

deviate from each other. This problem can be eliminated by formal development 

settings instead of informal development methods. Post-RT operates from base-

line SRS and if this baseline is defective, difficulties might be assumed in post-RT 

too. Thus, post-RT cannot affect on the quality of pre-RT even though the quality 

of pre-RT affects on post-RT. Ultimate requirements sources need to be traceable 

to support such changes in the baseline and to assess their impact. (Gotel 1995, p. 

79-80) 

3.1.2 Forward- and Backward Traceability 

One classification of RT is the forward- and backward RT, which means that a 

requirement can be followed from its origin through implementation. Figure 6 il-

lustrates four types of forward- and backward links of RT. Customer needs are 

traced forward to requirements, so if needs change during development the links 

shows directly what requirements will be affected. This also proves that the speci-

fication has addressed all stated customer needs. Requirements are also backward 

traceable from requirement to its origin. (Wiegers 1999, p. 298) 



 

17

The right hand side of the figure 7 addresses that, as system requirements flow 

into software requirements, design, code, and other artifacts during development, 

requirements can be traced forward by defining links between individual require-

ments and specific product elements. These types of links assure that every re-

quirement has been satisfied because it can be shown which product components 

address each one. The fourth type of link traces specific work products backward 

to requirements and justifies why each item has been created. Most applications 

include code that is not related directly to user-specified requirements, but every 

line of code should have a reason to be implemented. (Wiegers 1999, p. 299) 

Customer
Needs

Requirements
Downstream

Work
Products

Forward to
requirements

Backward from
requirements

Forward from
requirements

Backward to
requirements  

Figure 7. Four types of requirements traceability (Wiegers 1999, p. 299). 

Basically forward- and backward traceability refer to the direction in which RT is 

carried out. RT can be described also in terms of horizontal and vertical RT. 

These terms refer to the phases of a requirement’s life through which RT is car-

ried out. Horizontal RT is traceability between versions and variants of a require-

ment within a particular phase of its life. Vertical RT illustrates traceability be-

tween previous or subsequent phases of a requirement’s life in product develop-

ment process. The distinction between horizontal, vertical, forward, and backward 

RT is described in figure 8. (Gotel 1995, p. 37) 



 

18

Origin of requirement
(e.g. in a customer document)

Other intermediate
artifacts in which
requirements are
d l d(e.g. in a requirements
specification, design
document, and so forth)

Realization of
requirement (e.g., in
a software module)

Backwards Forwards
Horizontal

Backwards

Forwards

Vertical

(version 2) (version 3) (version n)

 

Figure 8. The distinction between horizontal, vertical, forwards, and backwards 

RT (Gotel 1995, p. 37). 

3.1.3 Traceability Types  

There are different types of traceability information, which might be maintained 

during the development project. Figure 9 illustrates eight types of traceability in-

formation. This classification classifies RT based on links between requirements 

and other entities. These types can be categorized into two above-mentioned 

groups of RT, pre- and post-RT. First four types can be included in pre-RT and 

last four in post-RT. All links consider forward- and backward traceability.  

 

 



 

19

REQUIREMENTSREQUIREMENTS

Sources like:
People

Documents

Sources like:
People

Documents

RationaleRationale

5
ArchitectureArchitecture

DesignDesign

External system
interface

External system
interface

2

6

7

1

Test casesTest cases

8

3

4

 

Figure 9. Traceability types (modified from Leino 2001, p. 8). 

The eight traceability types presented in the figure are 1) requirements-sources, 2) 

requirements-rationale, 3) requirements-people involved, 4) requirements-

interface, 5) requirements-requirements, 6) requirements-architecture, 7) require-

ments-design, and 8) requirements-test. These are explained in more detail next.  

The requirements-sources (1) is a link to the information on which the require-

ment is based. A requirement source can be for example a stakeholder, standard, 

technical document, other document, other requirements or any combination of 

these etc. This link helps to analyze a requirement and to understand why the re-

quirement exists. If the requirement changes the source can be found easily, which 

makes change management quicker.  (Sommerville & Sawyer 1997, p. 75, 226) 

The requirements-rationale (2) links the requirement with a description of why 

that requirement exists. The rationale associated with a requirement is a link be-

tween the problem and the requirements for the proposed problem solution. The 

rationale makes it easier for readers to understand the requirement and to assess 

the impact of changes to the requirement. Problem experts can use the rationale to 



 

20

check if the requirement is consistent with the problem being solved. (Sommer-

ville & Sawyer 1997, p. 87, 226) 

The requirements-people involved (3) is a link to the people who have been speci-

fying the requirement. If people involved information is available they are usually 

located and accessed rapidly when the information of requirements is needed. 

This gives the possibility to generate information lazily, in other words when it is 

needed. To record all the information related to the requirement is often unwork-

able and it is usually desirable to augment it with face-to-face communication. 

(Leino 2000, p. 14) 

The requirements-interface (4) links requirements with the interfaces of external 

systems, which are used in the provision of the requirements. This link should be 

maintained where there is a high dependency on other systems. (Sommerville & 

Sawyer 1997, p. 226) 

The requirements-requirements (5) links requirements with other requirements 

that are, in some way, dependent on them. This type of information should be al-

ways maintained (Sommerville & Sawyer 1997, p. 226). Different kinds of rela-

tions between requirements are defined in chapter 3.4.1.  

The requirements-architecture (6) links requirements with the sub-systems where 

these requirements are implemented. This is particularly important where different 

sub-contractors develop different sub-systems. (Sommerville & Sawyer 1997, p. 

226)  

The requirements-design (7) links requirements with specific components in the 

system, which are used to implement the requirement. These may be hardware or 

software components. Requirements allocation to different components is impor-

tant especially if the system is complex and critical or contains several compo-

nents with not so fixed functionality. (Sommerville & Sawyer 1997, p. 226) 



 

21

Requirements-component link can be used to ensure that all requirements are im-

plemented in the system. This link is useful for management to allocate right peo-

ple to do some critical components, which are defined easier with this link. Also 

the development schedule is easier to estimate. (Leino 2001, p. 12) 

The requirements-test (8) link records which requirement the specific testing arti-

fact is testing. The high-level customer requirements are usually linked to the ac-

ceptance tests and the system requirements to the system and integration tests. 

This link helps to prioritize tests because test can be derived from the priorities of 

the requirements. When the change to the system requirements takes place, the 

affected test cases can be identified with the links between the tests and require-

ments. (Leino 2000, p. 17-18) 

3.2 Definitions of Requirements Traceability 

There are many partial definitions of traceability. This is because there is a lack of 

common definition. These partial definitions are purpose-driven, solution-driven, 

information-driven, and direction-driven definitions or some combinations of 

these (Gotel 1995, p.71). These definitions are explained in the table 2. 

 

 

 

 

 



 

22

 Table 2. Definitions of requirements traceability (Gotel 1995, p. 71-72). 

Definition type RT defined in terms of Example 

Purpose –driven What it should do. RT is the ability to adhere to the busi-
ness position, project scope and key 
requirements that have been signed 
off. 

Solution –driven How it should be imple-
mented. 

Traceability refers to the ability of 
tracing from one entity to another 
based on given semantic relations 

Information –driven The information that should 
be traced. 

RT is the ability to link between func-
tions, data, requirements and any text 
in the statement of requirements that 
refers to them. 

Direction –driven The direction in which it 
should be achieved. (for-
wards or backwards) 

Traceability enables each requirement 
to be traced to its origin in other 
documents and to the software compo-
nent(s) satisfying the requirement. 

 

3.3 Types of Traceability Techniques 

A number of basic techniques are identified through which RT can be achieved. 

Techniques can be fitted into three different types, which are cross reference-

centered, document-centered, and structure-centered. These various types of tech-

niques differ in the quantity and diversity of information they can trace between, 

in the number of interconnections they can represent between information, and in 

the extent to which they can adapt to reflect changes and so maintain RT through-

out a project’s life. (Gotel 1995, p. 42) 

3.3.1 Cross Reference-Centered 

According to Gotel (1995, p. 42) Cross reference-centered technique can be clas-

sified to simple cross referencing scheme and to more comprehensive cross refer-

encing scheme. Simple cross referencing techniques are embedded in the main 

project documentation itself, as would be with phrases like “see Section x” or the 

repetition of terms and their explanation in a reference glossary. This kind of 



 

23

technique can be automatically supported if the documentation is held in an on-

line form by hypertextually linking the two ends of a cross-reference or the con-

secutive occurrences of a term. Examples of this scheme are those based on some 

form of explicit requirements tagging, numbering, or indexing, and those based on 

expressing and maintaining specified relationships between key phrases. 

Gotel (1995, p. 42) continues that more comprehensive cross referencing schemes 

supplement the main project documentation, typically with the addition of special-

ized tables or matrixes, to specifically keep track of cross references. Examples 

for this scheme are widely used requirements traceability matrixes, as well as their 

extensions into matrix sequences. 

3.3.2 Document-Centered 

Document centered techniques ensure RT by dictating either all or part of the 

structure and content of the project documentation. Examples include those 

schemes that specify particular forms to fill in, as well as the use of hypertextual 

document templates within the Document Integration Facility. And there are also 

schemes, which use the notion of integration documents, or transformation docu-

ments, to store the links between documents created in different phases of devel-

opment. (Gotel 1995, p. 42) 

3.3.3 Structure-Centered 

Structure-centered techniques enhance the project documentation to achieve RT 

by restructuring it in terms of an underlying network or graph. These techniques 

are particularly used when the focus of RT is the update and propagation of re-

quirements changes. (Gotel 1995, p. 43) 



 

24

3.4 Traceability Techniques 

There are some basic techniques, which may be used to maintain traceability in-

formation. These are traceability tables, traceability lists, automated traceability 

links, general-purpose tools, and requirements management tools. Traceability 

tables are also called traceability matrixes. These techniques are discussed in the 

following. 

3.4.1 Traceability Table 

Traceability table is a cross-reference matrix where the entries in the table indicate 

some kind of traceability link between the items in the rows and the items in the 

columns. Table 3 describes one kind of traceability table or matrix in which links 

between use cases, functional requirements, design elements, code, and test cases 

can be seen.  

 Table 3. Other example of requirements traceability matrix (Wiegers 1999, p. 303). 

Use case Functional 
Requirement 

Design Element Code Test Case 

UC-28 

UC-29 

Catalog.query.sort 

Catalog.query.import 

Class catalog 

Class catalog 

Catalog.sort() 

Catalog.import() 
Catalog.validate() 

Search.7   
Search.8   
Search.8 
Search.13 
Search.14 

 

Table 4 shows how each functional requirement is linked backward to a specific 

use case, and forward to one or more design, code, and test elements. Design ele-

ments can be objects in models such as data flow diagrams, tables in a relational 

data model, or object classes. Code references can be methods in a class, source 

code filenames, or procedures or functions within the source file. More columns 

can be added to extend the links to other work products, such as online help 

documentation. Traceability links can define one-to-one, one-to-many, or many-



 

25

to-many relationships between types of system elements. Table 3 makes it possi-

ble to add several items in each table cell and so these different relationships can 

be carried out.   

 Table 4. Requirements traceability matrix showing links between use cases and 
functional requirements (Wiegers 1999, p. 304). 

Use Case Functional     
Requirement UC-1 UC-2 UC-3 UC-4 

FR-1     

FR-2     

FR-3     

FR-4     

FR-5     

FR-6     
 

Table 4 illustrates a simple traceability table or matrix where use cases and func-

tional requirements are linked together. This is a two-way traceability matrix. 

Each cell at the intersection of two linked components is marked to indicate the 

connection (Wiegers 1999, p. 304). Different symbols can be used to indicate dif-

ferent relations of connections. According to Sommerville & Sawyer (1997, p. 

228) there might exist three different kinds of relations between requirements and 

these relations can exist also between other work products. These relations are 

described in the following. 

• Specifies / is-specified-by relation indicates that some requirement B adds de-

tail to another requirement A. 

• Requires / is-required-by indicates that some requirement B requires the re-

sult provided by some other requirement A. 



 

26

• Constrains / is-constrained-by indicates that some requirement B is con-

strained by some other requirement A. 

When different kind of relations are used, the character and meaning of each re-

quirement is easier to understand. These kinds of matrixes as illustrated in table 4 

are more amendable to automated tool support than are single traceability ma-

trixes illustrated in table 3 (Wiegers 1999, p. 304). 

Traceability links should be defined by whoever has the appropriate information. 

Some typical sources of knowledge about links between various types of source 

and target objects are identified in table 5. The roles and individuals that can sup-

ply each type of traceability information in different projects should be defined. 

 Table 5. Likely sources for the information of traceability links (Wiegers 1999, p. 
305). 

Link Source Object 
Type 

Link Target          
Object Type 

Information Source 

System requirement Software requirement System engineer 

Use case Functional requirement Requirement analyst 

Functional requirement Functional requirement Requirement analyst 

Functional requirement Software architecture 
element 

Software architect 

Functional requirement Other design elements Developer 

Design element Code Developer 

Functional requirement Test case Test engineer 

 

3.4.2 Traceability Lists 

Traceability lists are simplified from traceability table where, along with each re-

quirement description, one or more lists of the identifiers of related requirements 



 

27

are kept. Lists are more compact than tables and do not become as unmanageable 

with large number of requirements. Table 6 describes the traceability list, which is 

a simple list of relationships that can be implemented as text or as simple tables. 

This table describes dependencies between requirements. There might be several 

lists, one for each type of relationship such as requires, is-required-by, specifies 

etc., or a single list of related requirements may be kept. The disadvantage of 

these lists compared to traceability tables is that there is no easy way to assess the 

inverse of a relationship. It can be easily seen that R1 is dependent on R3 and R4 

but the whole table must be looked through to see which requirements depend on 

it. (Sommerville & Sawyer 1997, p. 229-230) 

 Table 6. Traceability list (Sommerville & Sawyer 1997, p. 229). 

Requirement Depends-on 

R1 R3, R4 

R2 R5, R6 

R3 R4, R5 

R4 R2 

R5 R6 

 

3.4.3 Automated Traceability Links 

Automated traceability links means that requirements are maintained in database 

and traceability links are included as fields in the database record. When require-

ments are managed in a database, it is easier to maintain links between individual 

requirements and to search for and abstract related groups of requirements. The 

appropriate way to implement requirements database depends on the type and the 

number of requirements, which must be managed and the particular ways of 

working in an organization. Issues that influence design choices are as follows. 

• How are requirements expressed? Is it natural language, graphical models, 

mathematical expressions, etc., which will be used as forms of requirements? 



 

28

• How many requirements are typically managed? 

• Are the requirements always developed and managed by teams which work 

together at the same site and which use the same types of computers or is the 

access for requirements needed from different sites? 

• Who will be responsible for database administration or is this a separate re-

sponsibility? 

If the requirements are managed in a database, the database can be designed to 

include traceability information. So each requirement in the database should in-

clude at least two fields for traceability information. These fields should contain 

information about other requirements on which the requirement depends on, and 

requirements, which are dependent on that requirement. However, if there is a 

need to maintain other types of traceability information such as requirements-

architecture links, database must include fields to record information about each 

different type of relationships. All above mentioned issues and costs need to be 

considered when an organization is making choices for database system. (Som-

merville & Sawyer 1997, p. 227, 236-240) 

3.4.4 General-Purpose Tools 

Traceability tools do not do the work alone because verification of the require-

ments demands thinking. However, tools enable project members to inspect the 

traceability relationships to ensure that no verification relationships have been 

omitted and that no excess verification relationships are present (Leffingwell & 

Widrig 2000, p. 333). Leino (2001, p. 19) argues in her thesis that if tracing is im-

plemented manually, it can result in most cases either not being done or per-

formed poorly. General-purpose tools can be configured to support numerous ac-

tivities and they support also those automated traceability links described in the 

previous chapter. General-purpose tools include hypertext editors, word proces-

sors, spreadsheets, database management systems, prototyping tools, etc. Al-

though traceability is not a concern of such general-purpose tools they can be 

hand-configured to allow previously manual and paper-based RT tasks to be car-



 

29

ried out on-line. Generally this includes establishing cross-references between 

project documents, or document fragments, and placing conditions upon their 

automatic update. (Gotel & Finkelstein 1994a, p. 4-7) (Gotel 1995, p.45)  

3.4.5 Requirements Management Tools 

Complex systems need more dedicated tools than general-purpose tools for im-

plementing RT information because of the volume of the data. Great amount of 

data makes RT implementation more challenging and more error-prone. Require-

ment management tools (RM-tools) generally supports RT documenting and other 

requirements management tasks. RM-tools should depict demanded attributes for 

requirements such as ID, version number, description, creation date, source, cus-

tomer priority, and rationale. According to Leino (2001, p. 21) basic functionality 

of the RM-tools are: 

• Documenting information to attributes of requirements 

• Filtering and sorting to view requirements 

• Importing and exporting requirements to and from the tool 

• Documenting and using RT information 

• Supporting configuration and change management tasks 

Other characteristics for the RM-tools are graphical user interface, compatibility 

with other tools, and support for simultaneous users. The price of the RM-tool 

consist of licenses, consultation, training end-users, system maintenance, and in-

tegrating the tool to the current environment, and all these aspects should be con-

sidered when RM-tool is evaluated. An important factor is how compatible the 

RM-tool is with other tools used in the development environment. RM-tool should 

support other tools related to requirements such as creating use cases, documents, 

and even code. (Leino 2001, p.20-21) (Gotel & Finkelstein 1994A, p. 5-7) 



 

30

3.5 Managing Requirements Traceability 

Requirements management process includes requirements traceability. As men-

tioned earlier RT is at the heart of RM process. Thus there should be some poli-

cies for RM and RT. This thesis concentrates on RT policies and manual and ex-

cludes other RM policies. To manage requirements traceability there have to be 

some policies defined for it.  

3.5.1 Traceability Policies 

According to Sommerville and Sawyer (1997, p. 224) requirements management 

policy should define what traceability information should be maintained and how 

this should be represented. Traceability policies are written policies, which should 

define the following. 

• The traceability information which should be maintained. 

• The techniques, which may be used for maintaining traceability (described in 

detail in chapter 3.4). 

• A description of when the traceability information should be collected during 

the RE and system development processes. The roles of the people should be 

defined also, such as traceability manager, who is responsible for maintaining 

the traceability information. 

• A description of how to handle and document policy exceptions, that is, when 

time constraints make it impossible to implement the normal traceability pol-

icy. Realistically, there will always be occasions where changes have to be 

made to the requirements or the system without first assessing all change im-

pacts and maintaining traceability information. The policy exceptions should 

define how these changes should be sanctioned. The traceability policies 

should also define the process used to ensure that the traceability information 



 

31

is updated after the change has been made. (Sommerville & Sawyer 1997, p. 

224-225) 

In general traceability policies are independent of any particular system. As part 

of the quality planning process, the most relevant traceability policies should be 

selected and tailored to the specific needs of the system that are being specified. 

These should be specified in the system traceability manual. Maintaining trace-

ability information is expensive because it involves managing large volumes of 

information. Thus traceability policies should be realistic and not too bureaucratic. 

Lightweight policies, which are followed, are better than comprehensive traceabil-

ity policies, which are ignored. (Sommerville & Sawyer 1997, p. 225) 

Traceability policies may be implemented by organizations at any level of RE 

process maturity. Simple traceability information is traceability of requirements to 

their sources and other requirements and this may be the starting point for RT im-

plementation for the organization at the basic level in the RE process maturity 

model. In general this is a good way to start implementing traceability informa-

tion. As organizational maturity increases, more complex traceability policies may 

be introduced. (Sommerville & Sawyer 1997, p. 225-226) 

3.5.2 Traceability Manual 

A traceability manual is the document used by requirements engineers and system 

developers and it is a supplement to the requirements document. It includes the 

specific traceability policies used in a project and all requirements traceability in-

formation. The traceability manual assures that project members can easily find 

the specific traceability policies for their project, and traceability information is in 

one place and easy to maintain. (Sommerville & Sawyer 1997, p. 232) 

Thus, the traceability manual is a central record of the traceability policies and 

includes all relevant traceability information for a specific project. Projects have 

different characters and so each project have to evaluate what and how the trace-

ability information should be represented. The traceability manual should also de-



 

32

termine a traceability strategy used for the project and the traceability information 

collection responsibilities. Different traceability strategies are discussed in the 

next chapter. The specific traceability policies for each project depend on a num-

ber of factors. Sommerville and Sawyer (1997, p. 233) groups these factors as fol-

lows. 

1) Number of requirements. The greater the number of requirements, the more 

the need for formal traceability policies. In the case of a very large number of 

requirements, developers of the policy have to be realistic about what trace-

ability policies can be implemented in practice. Complete requirements-design 

traceability is impractical for the most of large systems. 

2) Estimated system lifetime. More comprehensive traceability policies should be 

defined for systems that have a long lifetime.  

3) Level of organizational maturity. Detailed traceability policies are most likely 

to be cost-effective in organizations, which have a higher level of process ma-

turity. Organizations at the basic maturity level should focus on simple re-

quirements-requirements traceability.  

4) Project team size and composition. The larger the project team is, the more 

formal and detailed traceability policies are needed. Basically, if the team is 

very small, the informal discussion between team members may be enough. 

5) Type of system. Critical systems such as hard real-time control systems or 

safety-critical systems need more comprehensive traceability policies than 

non-critical systems. 

The traceability manual is usually developed during the project matures. Trace-

ability policies will be maintained first. Requirements dependencies will be added 

as soon as the requirements document is agreed. Design, document, etc. traceabili-



 

33

ties will be documented at the later stages of the development process. (Sommer-

ville & Sawyer 1997, p. 233)  

The most challenging task is to keep the traceability manual up to date. If the 

document is maintained on paper, there will always be a lag between changes 

made to the paper document and the document, which is used by the engineers 

maintaining the requirements and/or the system.  Networked electronic document 

or RM-tool will decrease these problems, which should be considered while trace-

ability manual will be created for the development projects. To ensure the trace-

ability manual updating there should be a named person whose responsibility is to 

keep the manual up to date.  

3.5.3 Traceability Strategies 

The traceability strategy is an important part of traceability manual. The strategy 

defines implicit and explicit traceabilities that will be used in a specific project. 

Implicit traceability establishes the construction of mappings between the models 

and relationships between model item themselves. Figure 10 depicts these implicit 

relationships between models and shows a common classification for a require-

ment in different phases of its lifecycle. This is only one definition and so the 

names of the documents can vary in different companies but the content is the 

same. (Spence & Probasco 1998, p. 3-5) 



 

34

Vision Document

Use-Case Model Supplementary
Specification

Needs

Features

Software
Requirements

Test Specifications Design Specifications User Documentation
Specifications

These together
contain the same
information as
traditional RS

document

 

Figure 10. Sample requirements structure (Spence & Probasco 1998, p. 5). 

Traceability strategy determines the level of explicit traceability that will be used 

in software development process. The level of traceability should be suitable for a 

project so that a return on investment will be got on any additional explicit trace-

ability, which is maintained. Thus, the traceability strategy should be established 

and evaluated carefully before adopting it in a project. (Spence & Probasco 1998, 

p. 6) 

There are two distinct approaches for strategies, which determines where software 

requirements are collected. One approach is that all requirements are gathered into 

the traditional software requirements specification (SRS) document and in the 

other approach requirements are defined in two places, use-case models and sup-

plementary specification document. The later one is very common and it includes 

four different strategies how to manage requirements in these two different places 

and the connection between them. These four strategies are the following:  

1) Use-case model only. This strategy uses only the use-case model as a state-

ment of the system requirements. This strategy can be chosen only for the pro-

jects, which have close association and trust between customer and developer. 



 

35

Basically the use-case model, glossary, and supplementary specification form 

the entire statement of the system’s requirements. There are no additional 

definitions of needs, product features or software requirements. 

2) Features drive the use-case model. In this strategy the use-case model and 

supplementary specifications form a complete software requirements specifi-

cation as illustrated in figure 9. Features are documented in the vision docu-

ment and are traced to use-cases or supplementary specifications. The Ra-

tional Unified Process (RUP) recommends this as a default strategy. In this 

case the use-case model acts as the main statement of the functional require-

ments.   

3) The use-case model is an interpretation of the SRS. In this case the use-case 

model is an interpretation of a traditional SRS. This is used when traditional 

SRS is required due to regulatory or internal protocol and use-case model en-

ables the practice of use-case driven development. Features are traced into a 

formal SRS document and software requirements are traced into the use-case 

model. 

4) The use-case model reconciles multiple sets of traditional software require-

ments. The use-case model is the interpretation of a formal SRS from multiple 

sources and provides the specification of a single common system. In this 

strategy each stakeholder has their own set of product features and software 

requirements. These multiple viewpoints are reconciled within a single use-

case model, which specifies what the system will do. (Spence & Probasco 

1998, p. 6-7) 

The strategy 2) features drive the use-case model, which is recommended as a de-

fault strategy by RUP and its traceability links are defined in figure 11.  

 



 

36

Use Case 
Section

Use Case 
Section

ActorActorSoftware 
Requirement
Software 

Requirement

Use CaseUse Case

Product FeatureProduct Feature

NeedNeed

traces to traces to

traces to

traces to traces to

traces to

These are the supplementary
 requirements that make up the
supplementary specification.

Note: This traceability link is 
optional as it can be derived from 
the link between the Product 
Feature and the Use Case Section.
This link is often used to relate 
the Product Features to the Use
Cases before the Use Cases 
Sections are written.

 

Figure 11. Traceability overview (Spence & Probasco 1998, p. 30). 

3.6 Problems of Requirements Traceability  

Basically even if the traceability policies and manual are defined clearly and ef-

fectively, there is no guarantee that traceability can be performed perfectly. This is 

because the quality of the traceability information depends on people‘s abilities to 

capture requirements information and other facts mentioned in figure 12, which 

illustrates the requirements traceability problem for provision. This means that to 

perform traceability information in development projects good quality of require-

ments is demanded.  

 

 



 

37

Traceability
depends on

Traceability
depends on

Working practiceWorking practice

Sufficient
resources, 
time and 
support 

Sufficient
resources, 
time and 
support 

Ongoing
cooperation

and
co-ordination

Ongoing
cooperation

and
co-ordination

Awareness of 
information
required to be
traceable

Awareness of 
information
required to be
traceable

Ability to
obtain and
document
required
information

Ability to
obtain and
document
required
information

Ability to organize and
maintain required
information for flexible
traceability requirements
of end-users (supporting
change, restructuring, etc.)

Ability to organize and
maintain required
information for flexible
traceability requirements
of end-users (supporting
change, restructuring, etc.)

 

Figure 12. Deconstructing the requirements traceability problem for provision 

(Gotel & Finkelstein 1994a, p.14). 

Another problem is to gather traceability information for end-user requirements, 

which are sometimes very ambiguous. Traceability information itself can be di-

vided into two groups looking from the end-user point of view. These groups are 

of what and in what way (access to and presentation of information) the traceabil-

ity information should be handled. In addition, these groups are dependent on who 

wants the information (user), why/when they want it (tasks), and what are the 

characteristics of the project. (Gotel & Finkelstein 1994a, p.15) 

A big restriction of implementing requirements traceability is costs that it causes 

in the beginning when it is taken into use in an organization. When traceability is 

adopted in a development project, some additional costs exist because of the time 

consumed for its implementation at first. Implementation costs are also dependent 

on the technique used to RT. Later on, especially in the new product versions, 

costs and time consumed for RT will decrease and eventually there will be cost 

savings. Also the time used for the development project of the next release will 

decrease. Benefits of RT are long-term benefits and people who do the work can-

not see benefits right away. Consequence of this is that people might be skeptical 

and not willing to implement RT. As mentioned earlier RT causes some costs and 

so it is very important to determine effective policies for RT and be very specific 



 

38

of what should be traced. Sometimes if the schedule is very tight in a project RT 

might be ignored because of the lack of time. 

3.7 Costs of Requirements Traceability 

Requirements traceability costs consists of development of RT policies and meth-

ods, convincing and teaching the policies for developers, and maintaining of the 

traceability information. Maintaining costs are usually the larger ones, which 

makes it hard to convince people about the importance of RT. Maintaining costs 

might be considered as a wasted resources, which is true if the policies of RT are 

not planned carefully. Carefully planned traceability policies insure that maintain-

ing costs will not increase above the benefits of traceability information.  

Developing RT policies and methods adequate for the specific development envi-

ronment, it should be remembered that development costs of the policies and 

methods is the minor part of the aggregate costs when maintaining traceability 

information in the software development environment. 

Training developers to use and maintain traceability information in the software 

development processes causes a small part of the aggregate costs of the traceabil-

ity information. Well-trained developers can maintain traceability information 

more effectively and appropriately, which will reduce the maintainability costs.  

Requirements management tool helps to maintain RT information and links but it 

causes some costs too. RM-tool consists of costs of licenses, consultation, training 

end-users, system maintenance, and integrating the tool to the current environ-

ment (Leino 2001, p. 22). These issues should be considered while evaluating 

RM-tool for the use of an organization. 



 

39

4 ADVANTAGES OF THE REQUIREMENTS 

TRACEABILITY 

Wiegers (1999, p. 15) points out that organizations, which implement effective 

requirements engineering processes can enjoy multiple benefits. RT is at the heart 

of requirements management and so very important part of requirements engineer-

ing. RT cannot affect appreciably on the quality of requirements but it helps to 

verify that all requirements are implemented. Leino (2001, p. 24) argues that RT 

is worth of documenting if: 

• Requirements are expected to change frequently 

• It is important to see interrelations between documents 

• Requirements or parts of the system are going to be reused 

• Documentation is used to communicate between different parties 

• The system is going to be maintained by a different company 

• Project people frequently change 

Above mentioned issues can be found almost from every software development 

project nowadays. So the conclusion would be that RT is worth of documenting in 

some level approximately in every software development project. 

Requirements tracing provide a way to demonstrate compliance with a contract or 

specification at one level. At a more advanced level, RT can improve the quality 

of delivered products, reduce maintenance costs and facilitate reuse. However, RT 

is manually intensive task that requires organizational commitment. It demands 

discipline to keep link information current during the whole development project. 

If the traceability information becomes obsolete, you’ll probably never reconstruct 

it. Following are some of the benefits of implementing RT in development pro-

jects (Wiegers, p. 301-302): 



 

40

• Certification. Traceability information (TI) can be used for certification in 

safety-critical applications to demonstrate that all requirements were imple-

mented. 

• Change impact analysis. Without TI, there is a high probability of overlooking 

a system element that might be affected if you add, delete, or modify a par-

ticular requirement.  

• Maintenance. Reliable TI facilitates making changes correctly and completely 

during maintenance, which improves productivity. If there is not TI for the en-

tire system, it can be build one piece at a time as software surgery and en-

hancements are performed. Implementation of TI can be started by listing the 

requirements from the part of the system that have been worked on. The trace-

ability links can be recorded from the current point downward. 

•  Project tracking. If the traceability data is recorded diligently during devel-

opment, an accurate record of the implementation status of planned function-

ality will be available. Missing links indicate work products that have not yet 

been created. 

• Reengineering. The functions in a legacy system can be listed and recorded 

where they were addressed in the new system’s requirements and software 

components. Defining traceability links offers a way to capture some of what 

can be learned through reverse engineering of an existing system. 

• Reuse. TI can facilitate the reuse of product components by identifying pack-

ages of related requirements, designs, code, tests and other artifacts. 

• Risk reduction. Documenting the component interconnections reduces the risk 

if a key team member with essential knowledge about the system leaves the 

project. 

• Testing. With the links between tests, requirements and likely parts of the code 

can be pointed to examine for a bug when a test fails to yield the intended re-

sult. Testers can also verify easily, which requirements are implemented. 



 

41

Above-mentioned issues show that different stakeholders of the development pro-

ject benefit in different ways from RT. Requirements engineer can manage re-

quirements better with RT information. Requirements are also collected easier for 

the next release of the product if RT is done completely. Reusable parts of the 

product can be determined, which helps the work of requirements engineer, archi-

tect, designer and tester in the next release of the product. The impact of the 

change is easier to analyze, which helps project manager and architect to make 

correct workload estimations and so analyze impacts on project’s costs and 

schedule. Testers can verify exactly which requirements are implemented; thus 

customer can be sure that they get what they wanted.  

Good RT helps designers to code exactly what is needed but nothing unnecessary. 

This raises the quality of the product. RT helps to manage the whole development 

project and steering group can be sure what is the state of readiness of the product. 

Reusability of the requirements, components, and test cases makes next release 

development quicker. This is good while the fastness is one of the most important 

competitive advantages in today’s software development markets. If costs and 

schedule estimations are followed, the product agrees with the plans and customer 

is satisfied the image of the whole organization will raise.  

As it can be seen from this thesis that RT has many descriptions and it can be im-

plemented in different ways. Different people have different opinions of how RT 

should be implemented. However, one important issue that RT ensures, no matter 

how it is implemented, is that the development project continues from one phase 

to another without breaks. This means that the next phase is based on the earlier 

phase and the workflow is fluent.  



 

42

5 CASE: SONERA SERVICE SOFTWARE (S3) 

Sonera Service Software (S3) is Sonera’s corporate research and development 

unit, which specializes in research and development activities. The S3’s focus ar-

eas are intelligent service technologies and multimedia technologies. The S3-unit 

supports Sonera’s various business units in their goals to create new value in the 

changing telecom services market. (Sonera Corporation, 2001) 

S3 supports the creation of flexible, synergetic production systems by developing 

production platforms and process interfaces. This aims to increase cost-efficiency 

in production and create new value from customer segment-based differentiation. 

S3 helps Sonera’s business units to ensure continued competitiveness in the rap-

idly changing field of telecommunications by exploring new technologies and 

building new competencies. (Sonera Corporation, 2001) 

5.1 R&D Process Model 

Three different process levels are described for the R&D process in Sonera. These 

levels are general, applied, and adapted process levels. The general R&D process 

model does not describe activities in detail in areas that are specific to a given 

business division, unit, or technology program. Thus, there is a need for an ap-

plied R&D process, which combines the general process model with the routines 

and practices specific to a particular organization to meet the specific needs of a 

particular unit. An adapted process expresses how current development projects 

adapt and use the applied process model in practice. (Tolonen 1999, p. 3) 

5.2 General R&D Process 

Sonera’s general process model consists of three main phases (prestudy, feasibil-

ity study, and project execution) and six decision points (DP). Figure 13 illustrates 



 

43

these phases and decision points. A decision point is an external control point, 

with a standard agenda, which assures that some work is finished in some point. 

Milestones (MS) depicted in figure 13 are project specific internal control points 

of projects. The project group is responsible for making decisions about them. 

Figure 14 defines the main events of decision points.  

Project execution
• Design
• Implementation & verification
• Piloting & validation
• Conclusion

DP0 DP1 DP3 DP4 DP5

MS MS MS MS MS MS

DP2

MS MS

ReleaseFeasibility
studyPrestudy

 

Figure 13. General R&D process model (Tolonen 1999, p. 4). 

DP0 DP1 DP3 DP4 DP5

MS MS MS MS MS MS

DP2

MS MS

Idea is
defined

Requirements
are collected

Design is frozen
IPRs are secured

Requirements are analyzed
Project is planned
Resources are allocated
Cost-benefit analysis is made
Product owner exists

Ready for
piloting

Ready for
integration

Ready for
testing

Ready for
release

Project is
concluded

 

Figure 14. Main events of DPs (Tolonen 1999, p. 5). 

The purpose of prestudy phase is to collect the main technical and commercial 

requirements of the product idea. These requirements are collected from custom-

ers. Rough schedule and workload estimates for the future project are also made 

during this phase. (Tolonen 1999, p. 9) 



 

44

Feasibility study phase prepares a good basis for a successful execution of the 

project. This means that different realization alternatives and their potential con-

sequences are analyzed, as well as their capacity to meet the requirements. In ad-

dition, project goals and strategies are defined, project plans are prepared, and 

risks are assessed. Contract negotiations with resource owners are initiated, and 

the project organization is defined at a comprehensive level. (Tolonen 1999, p. 

11) 

The purpose of execution phase is to carry out the project as planned in respect to 

time, costs, and characteristics, in order to attain the project’s goals and meet the 

customer’s requirements. The project execution phase has four subphases, which 

are design, implementation and verification, piloting and validation, and conclu-

sion. (Tolonen 1999, p. 13) 

5.3 Applied R&D Process in S3 

S3 has created own applied R&D process, which is illustrated in appendix 1. This 

figure contains all sub-processes included in S3’s product development process. 

In the following only those processes related to requirements traceability (RT) 

will be discussed, and they are requirement capture, system concept, design and 

implementation, and testing process. Other processes can also take advantages of 

RT, but they do not have direct impact on RT. Thus, those processes will not be 

concerned here. Present state of RT in S3’s processes and product development 

projects is discussed in chapter 6. 

5.3.1 Requirement Capture Process 

S3 has not defined separate requirements management (RM) process but in prac-

tice requirements are managed in certain level in development projects. In the 

S3’s development projects requirements are managed through these four proc-

esses mentioned earlier and change management procedure. The requirements 



 

45

capture process starts requirements engineering in development projects by col-

lecting customer requirements in the beginning. Technical requirements will be 

collected together with the system concept process. The output of requirements 

capture process is accepted requirement catalogue. Other possible outputs are 

some demo and short product description/introduction, but pre-RT is made avail-

able by requirements catalogue. S3’s requirements catalogue template includes 

following fields for the requirements’ information: group, identification (ID), de-

scription, date, source, customer priority, feasibility, agreed status of requirement, 

and notes. Requirements catalogue has the same purpose as the supplementary 

specification and software requirements specification (SRS) document, which are 

mentioned in the theoretical part of this thesis. (Leino K. 2000) 

5.3.2 System Concept Process 

The system concept process will be started during the requirements capture proc-

ess. The purpose of system concept process is to analyze the feasibility of the 

software product based on proposed requirements. The process proposes appro-

priate architecture for the software product and analyzes both the interfaces to ex-

isting systems and the feasibility of the requirements using selected technology 

solutions. Analyzed main requirements (AMR) and technical implementation pro-

posal (TIP) documents are the outputs of the process. AMR document prioritizes 

use cases and requirements from technical viewpoint, defines scenarios, concep-

tual model, roadmap, and additional requirements. TIP document observes non-

functional requirements as capacity, technical risks, security issues and so forth. 

In addition, TIP determines configuration limitations and architecture, which in-

cludes system scope, system architecture in logical level, used standards, technical 

environment proposal, and limitations to the implementation of the system. 

(Kataikko 2000) 



 

46

5.3.3 Design and Implementation Process 

Before ending the system concept process starts the design and implementation 

process. The design and implementation process is divided into two phases: the 

design phase and the implementation phase. The purpose of the design phase is to 

carry out previously defined requirements, to produce sufficient documentation 

for the implementation of software, and to define tools and methods used during 

implementation. The goal is to extend the architecture description from system 

level to software level and define detailed technical specifications (TS) for each 

software module. Sufficient documentation means TS documents, product de-

scription, security plan, and user interface documents. In practice, projects’ TS 

documents are the following: main TS, module TS, data storage TS, O&M (opera-

tion and maintenance) TS, and localization TS.  During the implementation phase, 

software is implemented according to the outputs from the design phase. The im-

plementation includes programming, module testing, system integration according 

to build plan, and necessary documentation. The process is also responsible for 

correcting faults detected during integration and system testing. Realization of the 

design is followed during the implementation. The specification documents are 

updated during the process and bigger changes are made through the change man-

agement procedure. Outputs of the implementation phase are build plan, build 

notes, module tested modules, updated TSs, and updated product description. 

(Ovaska 2000) 

5.3.4 Testing Process 

Testing process starts by defining the test strategy and test cases (test plan) and 

testing will be started as soon as the design and implementation process has some-

thing to deliver for testing. The purpose of the testing process is to prove that the 

specified, documented requirements have been fulfilled. Testing is based on in-

puts of other processes. These inputs are project plan, technical requirements, TIP, 

technical specifications, service concept descriptions, demonstrations and proto-

types, build notes, and discussions with the project members. Outputs of the test-



 

47

ing process are test plan (test specifications, test case suites, test environment de-

scription) and test report (test case results, fault reports). Testing verifies that all 

requirements are implemented as planned. (Ylimäki 1999) 



 

48

6 DESCRIPTION OF THE PRESENT STATE OF 

REQUIREMENTS TRACEABILITY (RT) IN S3 

Present state of RT in the S3 is analyzed by researching the S3’s product devel-

opment process model and three different product development projects. The 

product development process is analyzed by checking out process descriptions 

and RT related templates. Three different development projects help to establish 

how RT is implemented in the real projects. The level of RT in the projects is ana-

lyzed by researching the related material and interviewing people in the projects. 

As mentioned in theoretical part one important element effecting on the level of 

RT is the size of the project. Thus, the projects that are considered here represents 

different sizes of the development projects in S3.  

6.1 RT and the S3’s Product Development Process Model  

Output of the requirement capture process is the requirement catalog (RC) docu-

ment, which includes all requirements. The RC template includes all relevant 

fields and gives relevant information about single requirement, which makes the 

realization of RT possible in some level. Requirements traceability is divided into 

pre- and post-RT in theory and the S3’s requirement catalog ensures that pre-part 

of RT is almost complete. However, the RC does not enable forward traceability 

to use cases and modules. Requirement’s rationale and version history informa-

tion are missing from the template and the importance of those issues is analyzed 

later in this thesis.  

The AMR document in the system concept process analyzes requirements roughly 

from system usage’s point of view.  The AMR template ensures RT by demanding 

to mention all requirements related to each use case. In that way use cases are 

traced backwards to requirements. The TIP document is a proposal, which will not 

be updated during the project and so RT does not have to be considered com-



 

49

pletely in this document even though some requirements might be mentioned in 

the TIP. 

The design and implementation process should carry out RT information in the TS 

documents and code. Templates for the TS documents support RT by describing 

use cases and classes related to modules. However, class names are not defined in 

so that classes could be linked directly to the different use cases and so this trace-

ability link is not perfect. A code is linked to classes by using same class names in 

a code as is used in the TS document. Until this phase of the project requirements 

are traced backwards in some level. Specific requirements’ IDs are not included in 

the documents but different phases are linked together by referring to the earlier 

phases. 

Test case suite is the document, which describes test cases in the testing process. 

Template for this document demands that the ID of the requirement, which the 

specific test case will verify, should be used as a header for that specific test case. 

Use cases are not mentioned in the template and so the test cases are traced back-

wards directly to the requirements in theory.  

Basically, the requirements traceability information is executed roughly backward 

in the S3’s product development process model. Single requirements are not 

traced from the requirement catalog through the whole process to the testing but 

the previous phase of the process is always linked to the earlier phase. Forward 

traceability is ignored and the meaning and importance of it for the S3 will be 

analyzed later.  

6.2 RT in Real Projects 

Traceability policies for the specific project depend on different kind of issues, 

which are mentioned earlier in the theory part (chapter 3.5.2). Thus, three differ-

ent projects are used to analyze the present state of RT in the S3. The size of the 



 

50

project affects most on the traceability policies and so different size projects are 

used to analyze RT in the S3. Instead of the real names the projects are cited as 

project A, project B, and project C. The size of the project can be defined through 

the size of the project group, duration time, and the amount of the requirements. 

The basic information of the projects is illustrated in table 7. The present state of 

RT in projects will be analyzed in the same order as the analysis of the S3’s proc-

ess model. 

Table 7. Basic information of the projects. 

 Project A Project B Project C 

Duration of the project > 1 year ~ ½ year < ½ year 

The size of the project 
group (people) 

> 20 ~ 10 < 10 

Requirements 

• Rejected/ post-
poned * 

• Implemented re-
quirements 

452 

65  (14%) 
 

387 

186 

85 (46%) 
 

101 

52 

3 (6%) 
 

47 

* Projects A & B have not been concluded and so these numbers may change be-

fore the projects ends. 

6.2.1 Project A 

Project A is in the implementation phase and it can be classified as a big project in 

the S3 and it has earlier releases. When the project has over 400 requirements it is 

not simple to get them traced, especially without tool support. At this phase of the 

project the requirement catalog (RC) is updated in some level but not completely. 

Missing information will be filled in while the catalog is updated.  

There are eight different AMR documents because the project is so big. The qual-

ity of the traceability information varies between those documents. Some use 

cases have clear references to the related requirements and some do not have any 



 

51

references to the requirements. Standardized IDs are not used in this project, 

which makes the implementation of the traceability information harder. Hence, 

backward RT is provided partly until this phase. 

The TS documents, which describe design for the system and modules by use 

cases and other descriptions, do not have complete RT information in this project. 

The TS document should define use cases and contained classes. The level of de-

scribed classes differentiates between documents. If the TS document determine 

classes in a very specific level, and if the same class names are used in code, then 

the requirements are traced backwards. However, in some TS documents the 

classes are described in a very common level and the designer have to do some 

additions. This is the very common situation when the module is defined from the 

scratch. Hence, the documents should be updated but in this project, the docu-

ments are updated late or not at all because of the tight schedule. This means that 

traceability links might break off partly. 

Test case suite documents are used to determine the test cases. Each test case has 

information about the use cases and documents it is related to. In addition, trace-

ability matrixes are used to link classes and use cases, and test cases and use 

cases. Designers map classes to use cases and testers map test cases to use cases, 

which ensures that backward and forward RT is fulfilled from classes to use cases 

and test cases. Matrixes are not filled completely yet but they will be filled in 

while the project matures.  

RT is implemented partly in the project A. Requirements’ IDs are not carried 

through the documentation but the traceability chain goes through the documents 

partly. With minor corrections backward traceability could be implemented per-

fectly. Forward traceability is carried out when the testing process begins and the 

traceability matrices are created. The proposals how to amend RT are discussed in 

the chapter 7.4. One big problem at the beginning of the project was that the pro-

ject’s scope changed a lot. This caused many changes and documentation updat-

ing became arduous and so RT was harder to carry out. Documents’ updating is 



 

52

the problem very often because tight schedules make it more important to get the 

product ready than update documents. 

6.2.2 Project B 

Project B is the medium size project in the S3. The budget and the schedule of the 

project will not fully meet the initial plans. RC updating was started during the 

implementation phase. Single requirements are not traced through the project. 

AMR document was partly updated. The architecture of the project changed a lot 

during the design phase and because of the tight schedule changes were not up-

dated on the AMR document. 

Classes and methods are described in the TS documents but references to the use 

cases, functional parts, requirements, and/or features do not exists. RT chain from 

requirements to testing ends to this point of development. Traceability from tech-

nical specifications to the code is quite clear because same headings are used for 

the classes and methods in the documents and code. The problem is that despite of 

good plans some changes are still made to classes and methods during coding. 

The TS documents are updated if there is time hence traceability is not complete 

and up-to-date to all classes.  

Test cases are named based on the module and class names. This ensures back-

ward traceability from the test cases to the classes and modules even though the 

test case IDs do not reflect to the use case IDs. The test case specification docu-

ment is used to inform the implementation status of the test cases. Testing is 

partly executed as random testing. Random testing does not have direct traceabil-

ity to the technical specifications and it does not show directly which require-

ments are implemented but it often bares even some critical bugs.   



 

53

RT information chain is not complete in the project B. The chain of the backward 

RT breaks off before TS documents but continues after this break to test cases. As 

mentioned earlier, development proposals are discussed in the chapter 7.4. 

6.2.3 Project C 

Project C was the small project in S3. In small projects it is easier to estimate the 

budget and schedule and so this project met those estimates too. Even if the pro-

ject was small the requirement catalog was not updated always on time. This is 

understandable because the document updating is usually done after the change is 

executed. The AMR document was not written in this project. The TIP document 

was provided and all requirements with “must” status in the RC were observed 

and fulfilled in this document. However, any references for the specific require-

ments were not marked on the document. The TS document continued the work 

done in the TIP and the traceability information was executed by using same 

names for the same functional parts. Same names for classes described in the TS 

were also used in the code, which ensures continuous traceability information 

chain backwards. 

Testing was based on test case descriptions and requirement catalog. Test case 

names refer to the names of the specific functional parts described in the technical 

specification. With this traceability information implemented and tested features 

can be verified. While all requirements from the requirement catalog were 

checked it was noticed that one feature was not implemented. This shows that re-

quirements can be verified completely only if every requirement can be somehow 

traced to the code level. 

Even if requirements were not traced completely this project was able to verify the 

requirements which were implemented. The compact amount of people in the pro-

ject group and the compact amount of requirements made this possible. The big-

ger the project the harder it is to verify non-traced requirements. However, this 



 

54

project showed that in the small project almost complete RT chain is possible to 

carry out even if the traceability information is not documented clearly.  



 

55

7 RESULTS 

Backward traceability of the requirements is executed in some level in every pro-

ject but forwards traceability is ignored. There are some minor problems, which 

could be corrected easily. Problems and benefits of the RT are discussed in the 

following. Also there is an analysis of what information should be traced and how 

it should be implemented.     

7.1 Problems with RT in S3’s Projects 

One main problem is that the S3’s product development process model does not 

support RT extensively. The quality of the requirements and features varies in dif-

ferent projects. One reason for the variable quality of requirements, which ap-

peared in discussions, could be that planning of the new product is not always 

started from the needs and features and too specific requirements are described 

during the prestudy. If requirements are deficient the implementation of RT is 

more difficult because of many changes during the project. Templates support 

partly RT but there are still some flaws. The requirement catalog template does 

not determine standardized IDs for the requirements and so IDs varies in different 

projects. This may cause some problems in RT. For example R113 does not de-

scribe what kind of requirement is in question. In addition, there is not any infor-

mation where the requirement will be concerned on and/or analyzed next (i.e. use 

case or another bigger entity) and so forward traceability is ignored. Across the 

board the problem is that the RC document is not updated often enough in the 

S3’s development projects and the form of the catalog is not easy to handle and 

read. Improvements of the RC are discussed later.   

The AMR document analyzes and groups the main requirements. However if the 

RC has a clear grouping system this grouping in the AMR may be useless. The 

AMR tries to link requirements to the bigger entities as product support, installa-



 

56

tion, charging and so on. Basically, requirements are listed under different headers 

especially in the chapters four and five. This type of expression is hard to read and 

update and some kind of matrix could be more useful. The importance of the 

chapters four and five (4. Requirements for development, 5. Requirements for de-

ployment and runtime management) in the AMR should be analyzed and evalu-

ated because the documentation always increases workload and costs and so eve-

rything which might be useless should be reevaluated. The AMR document is not 

used in the small size projects because it is the planning document and smaller 

systems may not need so much detailed and documented planning. The TIP 

document is ignored here because it does not have direct effects on RT. 

The TS-main document template describes the overall system and it does not have 

to support RT very strongly. The TS -module document template supports RT by 

insisting references to the related use cases and classes of the module. However, 

the use case IDs are not standardized in the S3 and even projects does not stan-

dardize those IDs inside the project. Consequence of this is that the sub-use cases 

may have IDs, which are not directly linked to the IDs of the main use cases. 

Forward RT for the test cases is not required in the template and so it does not ex-

ist. Some testers in the project A have used traceability matrixes to link classes 

and use cases, and use cases and test cases. Thus, those matrixes describe forward 

traceability from the technical specifications to the code and test cases. Matrixes 

are not determined by the process description and they are not used widely in dif-

ferent projects.  

The test case suite document describes test cases. The document template insists 

requirement IDs and names to be used as second headings but it may be hard to 

determine one specific requirement for each test case. In practice any of these 

three projects did not use requirements IDs and names as a header. Every project 

divided test cases according to functional entities as template forwarded but sec-

ond headers were different in every project. Some test case suites used the use 

case IDs as headers and others had names, which were related to some part of the 



 

57

functionality. Different kinds of names and not standardized use case IDs make 

the implementation of RT harder. 

7.2 Usability and Benefits of RT Information for the S3 

Many projects in the S3 cannot follow schedule and budget forecasts. RT could 

help with that problem. If the clear chain of requirements is created through the 

project from requirements to testing impacts of the changes are easier to evaluate. 

This helps architects and project managers to evaluate workload, budget, and 

schedule changes more accurately. Thus the whole change management becomes 

quicker and more effective. Effective change management ensures savings for the 

projects. Projects are also easier to manage if the RT information is available and 

project managers can more easily perceive what have been implemented and what 

still have to be done. 

With the RT information steering group can easily assure customers that all fea-

tures of the product are implemented. Customers understand better why some 

changes cannot be done in the present release if the impacts of the required 

change can be attested somehow. Budget, schedule and the quality of the product 

are the most important issues for the customer. If those issues could be better 

guaranteed the customer satisfaction would increase, which means longer cus-

tomer relationships. 

The RT information helps the support to track bugs and then resolve problems 

quicker, which makes the work of the support cost effective. Requirements, mod-

ules and test cases are also easier to reuse because the RT information determines 

which requirements are implemented in the module and what requirements are 

tested by the test case. Reusability of these issues helps product engineers’, de-

signers’, and testers’ work. While their work is easier the product development 

project of the next release will be quicker which saves time and costs. So the cus-

tomer saves time and the S3 can allocate people more efficiently to the other pro-

jects. Basically, the work will be more cost-effective. 



 

58

Testers benefit a lot from the RT information. Testers can verify that all require-

ments are implemented and bugs can be mapped easier. Testers can be sure that 

all requirements are tested. This also guarantees to the customer that every feature 

is included in the product. With the RT information the customer can better follow 

the implementation status of the project and they can see what they will get at the 

end of the project.   

S3 does not have own products, which means that the next release of the product 

very often has different people involved in the development project. The good RT 

information from the previous release helps people’s work in the next release. 

This may also lead to the quicker delivery time. 

All these benefits of RT improve the quality and cost-effectiveness of the product, 

which leads to the better customer satisfaction. To achieve more benefits than 

costs the level of RT to be carried out in the S3’s projects have to be determined 

carefully. This will be analyzed in the next chapter. 

7.3 What Information Should Be Traced in S3 

Benefits of the RT information are greater the more exact is the documentation of 

the RT information. At the same time the costs of RT will increase, which is the 

reason why the information that should be traced in different size projects in the 

S3 have to be analyzed carefully. This chapter analyzes what kind of requirements 

information should be traced in the S3 in general and the next chapter explains 

how the information could be traced. 

In the literature there are a lot of discussions, which argues that every requirement 

should be traced to all phases of the project and all possible relations should be 

determined. That kind of traceability policy should be evaluated carefully because 

the costs may rise higher than the advanced benefits. It is not cost-effective at the 

moment for the S3 to implement perfect RT. This is because the quality of the re-



 

59

quirements varies and S3 have not had any kind of specific traceability policies 

yet. The S3’s process development is not mature enough to adopt highly detailed 

RT yet. Important for S3 is to attain backward and forward traceability chain 

through the whole development project. After the level of RT is achieved the 

benefit of the more detailed RT can be evaluated again and the next step could be 

to maintain the requirements-requirements relation. 

Backward traceability can be assured by making little improvements for the tem-

plates. Forward traceability needs some increments to the documents or the trace-

ability matrixes. Backward-forward traceability ensures that whatever part of the 

development project have to be checked or analyzed the link for the previous and 

next phases is always available. Backward and forward traceability should ensure 

that at least the following links could be determined. People in brackets are re-

sponsible of creating those links: 

• Functional requirements ⇔ Use cases (requirement analyst) 

• Use cases ⇔ Modules (software architect or designer) 

• Modules ⇔ Design classes (software designer) 

• Design classes ⇔ Test cases (test engineer and designer) 

• Test cases ⇔ Use cases (test engineer) 

The chapter 7.4 determines how this kind of RT chain can be implemented. 

In addition features-functional requirements link should be created. This could be 

implemented by giving clear IDs for the features and include those in the source 

field of the requirement catalog or create requirement IDs so that they directly link 

to the feature. This link would help to continue the work from features to re-

quirements and the features would be used as the basis for the requirements.    

The requirements-requirements link would also help the change management and 

as Sommerville and Sawyer (1997, p.226) note this link should always be main-

tained. However, if there are over a hundred requirements it is almost impossible 

and not cost-effective to keep those links updated without the requirements man-



 

60

agement (RM) tool. As Leino (2001, p. 48-49) states in her thesis the survey has 

shown that the RM-tool is necessary to document and visualize the requirement-

requirement relation. S3 does not have the RM-tool or any kind of documentation 

management tool and so the requirement-requirement links should be considered 

later if the tool is available rather than now. However, small projects can try to 

trace requirements to other requirements manually with matrixes if it is consid-

ered to be useful and possible to do. 

7.4 How to Implement RT in S3 

Backward and forward RT can be implemented in S3 by improving the related 

document templates and creating at least two traceability matrices. Documents 

ensure backward traceability when correct IDs are used to the features, require-

ments, use cases, classes, and test cases. Traceability matrixes ensure also the 

forward traceability. Without matrixes forward traceability links should be added 

to the documents, which causes more work for documents updating. Matrixes are 

usually supported by the RM-tools and so they are easily adapted to the RM-tool. 

7.4.1  Template Improvements for the Product Development Process Model 

In the following the proposals are made what kind of changes and improvements 

could be done to the documentation to improve RT in the S3’s process model and 

projects. 

• Product description: The product description document should be created to 

describe the product in a common level and it should contain the product’s 

features. With clear IDs, the features could be linked to requirements. Source 

field in the requirement catalog should include the information of the fea-

ture’s ID the requirement is created from or the requirement’s ID could di-

rectly link to the feature. 

• Requirement catalog (RC): Links for the use cases should be added (e.g. 

notes field). Some standardized ID examples should be determined for the re-



 

61

quirements. Also standardized groups for requirements should be determined. 

Rational’s FURPS (Functionality, Usability, Reliability, Performance, and 

Supportability) classes are already considered in S3 but not yet mentioned in 

the process description or RC template. Version history for the requirement is 

very useful but that information might be too arduous to carry out without the 

RM-tool.  

• Analyzed main requirements (AMR): If requirements are grouped carefully in 

the RC, the chapters four and five in the AMR template are useless because 

listing requirements twice is frustrating and ineffective. Simply announced 

the AMR depicts use cases, which determine the functionality of the product. 

Use case IDs should be standardized so that the sub-use cases could be linked 

to the main-use cases directly by their names. 

• Technical specifications (TS): The TS-main document describes overall ar-

chitecture and all modules for the system. The TS-module document deter-

mines module’s functionality by determining classes. Class IDs should be 

created so that the sub class name could be linked to the main class name. 

Same class names should also be used in the code as are used in the TS-

module document.  

• Test case suite: The document uses requirement ID as a header of the test 

case sets. Use case ID and/or name could be more useful for that purpose. The 

project A for example used the use case IDs as the headers in the test case 

suite documents, which appeared to be a good convention. However, related 

requirements should be mentioned in the test case if possible. The test case ID 

should be almost the same as the related use case ID. This ensures the direct 

traceability link from the test case to use case.  

• Traceability matrix: Some kinds of traceability matrixes have already been 

used but those are not determined officially. The traceability matrixes should 

be defined for functional requirements ⇔ use cases, use cases ⇔ modules, 

modules ⇔ classes, and test cases ⇔ use cases relations. These traceability 

matrixes execute backward and forward RT through all phases from use cases 

to test cases. Appendix 2 depicts the developed traceability matrix for S3. 



 

62

7.4.2 Traceability Strategy 

Traceability strategies were discussed in the chapter 3.5.3. Figure 11 illustrates the 

strategy recommended by the Rational University. Figure 15 is almost the same 

and it depicts the possible RT strategy for S3. This strategy could be easily 

adapted to the S3’s process model. The product description document is under 

development in S3. It is important to start the charting of the new product from 

the needs and features and bit by bit enlarge the description to the detailed re-

quirements. So the product description document should describe the product in a 

general level and determine its features while the requirement catalog presents 

non-functional requirements for the product. The actual RT starts from require-

ments and the clearer is the product description for all stakeholders the easier it is 

to implement RT. 

Product description

Use-Case Model Requirement
Catalog

Needs

Features

Software
Requirements

Analyzed main
 requirements Technical Specifications Test Case Suite

These together
contain the same
information as
the traditional
Requirement
catalog (RC)
document

 

Figure 15. Proposal for the requirements structure in S3. 

Figure 15 shows that requirements are stated by the use case models and the re-

quirement catalog (RC) document. S3 has a pilot project for this kind of require-

ments description in which use cases tries to determine the functional require-



 

63

ments and the RC determines all non-functional requirements. The use case model 

includes use cases and more detailed text descriptions of the functional require-

ments. The use case model should have as detailed information of the functional 

requirements as the RC has from non-functional requirements. The use case 

model and the RC complements each other and IDs used in these documents 

should be congruent with each other. 

After requirements are determined they will be analyzed and prioritized. Nowa-

days there is still the AMR document but the role of the AMR should be reconsid-

ered if the use cases are already described in the use case models. After this phase 

traceability chain continues to the technical specifications and to the test cases 

with those standardized IDs as mentioned in the previous chapter. 

The traceability matrix depicted in the appendix 2 should be used in the S3’s 

product development projects. The matrix is created in the same way as the table 

4 depicts. However the matrix of the table 3 could be considered in a small pro-

jects (100 requirements or less). Table 3 includes all relations from requirements 

to test cases but that kind of matrix would be laborious to use and update in larger 

projects. 

Large and medium size projects, as the project A and B, should consider the 

documentation of the RT information seriously. Standardized IDs for the require-

ments, use cases, classes, and test cases are more important in large projects. 

Small projects, as project C, need to consider what information have to be docu-

mented and what issues are obvious for the project group even without documen-

tation. Standardized IDs do not increase the amount of the work and could be use-

ful also for the small projects. When the project group is small every one in the 

group knows the project very well, which enables lighter documentation. How-

ever, all RT issues, which are important for the possible next release of the prod-

uct should be documented.  



 

64

IDs for the needs and features are not used in S3 and not considered in this study. 

Later if there is a need for the IDs of the needs and features those should be cre-

ated but at this point the most important issue is to get the RT information from 

requirements to test cases. Requirements are based on the needs and features, 

which need to be considered in the requirements eliciting phase. 



 

65

8 CONCLUSIONS AND RECOMMENDATIONS 

The scope of the study was to find reasons why requirements should be traceable 

in an organization. Two objectives were appointed for the study. The first objec-

tive was to identify the use of the requirements traceability information. While 

interviewing people the concept of the importance and need for RT strengthened. 

There have been some problems at the beginning of the software development 

projects in S3 basically in the requirements elicitation and those problems should 

be solved quickly. RT cannot help measurably the requirements elicitation but it 

helps to manage the rest of the project and to verify that all demanded features 

have been implemented. The RT information makes change management more 

effective because the impact of the change is easier to evaluate. RT brings most of 

the benefits to the next release of the product. With the RT information it can be 

seen what parts are reusable, what have to be changed or created. 

The second objective was to find out what kind of information should be traced 

and how. In the literature requirements are often traced in very detail level. The 

methods performed in this thesis for providing the RT information are easy to 

carry out and not expensive. Basically, it is recommended to carry out RT by de-

termining standard IDs for requirements, use cases, code classes, and test cases 

and creating traceability matrixes. Especially the relation between costs and bene-

fits have been considered in this study. Costs/benefits relation is hard to determine 

before the recommended RT-level has been implemented in few projects. This is 

the one reason why this study recommends the implementation of RT in a very 

simple way at first. People are more easily committed into the implementation of 

the RT information if the method is simple. It should be remembered that the 

benefits of RT differentiate between the projects that have next releases and the 

projects that will end completely after the first release.   



 

66

This study examined how RT has been implemented in the S3’s projects by ex-

posing to real projects. This view of how to implement RT in the S3’s projects has 

been created by interviewing and discussing with people, and acquainting to the 

material of the projects and related literature. Opinions of the level of RT in the 

literature differentiate. Some authors accentuate punctual RT but mentions that 

RT can be implemented only in organizations whose processes are mature enough 

while others think that RT can be implemented in different level depending on the 

organizational maturity and other factors related to the development environment. 

However, this study concludes that RT can be started from the lower level in im-

mature organization so that RT can be easily adapted into use. Also RT must not 

cause more costs than the attained benefits are. 

S3 has some level RT already but the chain from requirements to test cases breaks 

off in some points. That is the reason why there is a need to create the RT poli-

cies. This study recommends what issues should be considered while creating RT 

policies for S3. Requirements management (RM) process is not determined sepa-

rately in S3. Requirement capture process and requirements traceability policies 

are important parts of that process and so RM process should be determined to 

bind these two important issues together. 

The traceability policies and strategy introduced in this thesis are based on stan-

dardized IDs and traceability matrixes. The recommendation is that IDs should be 

determined to cover all projects in S3. If standardized IDs are determined indi-

vidually to each project people need always to study those IDs first while entering 

the new project, which is wasting of time. The more the projects have fixed con-

ventions the easier it is for the people to become acquainted with new projects.  

However, standardized IDs should be adaptable because different projects have 

different demands for those IDs.  

The traceability matrix template is introduced in the appendix 2. That template 

can be used without the RM-tool. Manual updating of the matrix might be arduous 

in large projects but not impossible. The RM-tool does not resolve any problems 



 

67

alone but it would help and make the requirements management more efficient. 

For example database for reusable requirements could expedite the requirements 

elicitation phase. While RT is implemented manually its correctness cannot be 

assured. The traceability tool enables to inspect the traceability relationships to 

ensure that no verification relationships have been omitted and that no excess 

verification relationships are present (Leffingwell & Widrig 2000, p.333). This 

study recommends S3 to evaluate the RM-tools to find out which one could be the 

most useful for the S3’s needs. If the RM-tool will be considered seriously in S3 

the tool should integrate greatly with other the tools used in S3. However, it 

should be remembered that the tool alone cannot do the job; verification requires 

thinking (Leffingwell & Widrig 2000, p.333). 

Requirement-requirement link could be executed with the same traceability matrix 

as illustrated in the appendix 2. However, the quality of the requirements in the 

projects of S3 varies much which makes creating of those links very hard. The 

Requirements-requirements links updating is also laborious without the RM-tool 

support. At this state the requirement-requirement link is not recommended for S3 

even though it would help the change management a lot. If the recommended 

traceability strategy will be noticed to be useful for development projects and 

benefits are evident, the requirement-requirement link could be the next step to be 

implemented when developing the RT policies in S3. 

While new traceability strategies are introduced to the organization it should al-

ways be remembered that different people have different ways to work. Thus, it is 

always challenging to get people convinced about new working methods. The RT 

strategy recommended by this study demand that all people in the project will be 

committed to follow the strategy before it works.  

Other factors that affect on the implementation of the RT information are the 

awareness of the information required to be traceable, the ability to obtain and 

document the required information, and finally the ability to organize and main-

tain the required information. Thus, the traceability manual and clear strategies are 



 

68

important to reduce people’s confusion and people should be trained about the RT 

information. 



 

69

9 DISCUSSION 

This thesis focuses on the requirements traceability (RT), which is at the heart of 

the requirements management (RM). The central task of the RM is to assure RT, 

from the earliest activities through to system evolution and maintenance. Anyhow, 

too often RT is not carried out completely if at all in development projects. There 

will always be some changes in requirements during development projects and 

with the RT information those changes can be managed more effectively. Well-

managed requirements improve the total quality of the development project. 

The argument for the RT information is why should requirements be traceable in 

software development projects? The objectives of the thesis are to identify the us-

ability of the RT information, and to find out what kind of information should be 

traced and how.  

The concepts of the RT definitions and techniques are approached through the lit-

erature. The field of the determination of the RT definitions is vast. Basically RT 

is divided into pre-RT and post-RT, and backward and forward RT. Pre-RT con-

centrates on the requirements development phase of requirements lifecycle while 

post-RT concentrates on the requirements on-going production phase. Backward 

and forward traceability means that a requirement can be followed from its origin 

through the implementation to the verification and vice versa.  

Different types of the RT links can be maintained during the development proc-

ess. However, the main point is that RT should continue through the whole devel-

opment project and the work should always be based on the previous phase. This 

RT chain can be implemented using different kind of techniques. Different types 

of traceability techniques are grouped as cross reference-centered, document-

centered, and structure-centered. These illustrate different ways of documenting 

RT. Then there are also some basic techniques, which can be used to maintain the 



 

70

traceability information. Techniques illustrated in this study are the traceability 

table or matrixes, traceability lists, automated traceability links, and requirements 

management tools. 

These techniques and different types of the RT links should be considered while 

the company is creating own traceability manual. In addition each project should 

define own traceability strategies, which determines how the RT information will 

be maintained in a specific project. While creating these strategies the maintaining 

costs of the RT information should be considered carefully so that costs will not 

rise above the benefits of RT. 

The RT information helps project managers to know the implementation status of 

the project and analyze the impact of the change request. The good RT informa-

tion also reduces risks of the information gap if people changes in the project and 

more reusable components may appear. Also, testing and support benefits when 

bugs and other problems can be found quickly. These benefits are often long term 

benefits, thus people should be patient while carrying out the RT information.  

The present state of RT in S3 is determined and analyzed. This is done by analyz-

ing the S3’s product development process model and by acquainting with three 

real development projects. This analyzing is made by acquainting to the related 

materials and by interviewing people in S3. The recommendations of the study 

have been created according to the literature and empirical study. 

The RT strategies should be determined to S3 according to the recommendations 

made in this thesis. The RT strategy recommended in this study is a light RT 

strategy, which has been created especially for the S3’s processes and so it is easy 

to adjust to the S3. The strategy helps people ‘s work because of cohesive work-

ing methods. The thesis also recommends S3 to seriously consider the RM-tool, 

which would help with requirements management and the RT information updat-

ing even though the RM-tool itself does not resolve any problems. 



 

71

REFERENCES 

Dorfman, M & Thayer, R. 1996. Software Engineering. The Institute of Electrical 

and Electronics Engineers, Inc. 21 p. 

Easterbrook, S. & Nuseibeh, B. 2000. Requirements Engineering: A Roadmap. 

[Online]. <http://Citeseer.nj.nec.com/nuseibeh00requirement.html>. (Accessed 

05.05.2001) 

Goguen, J. & Linde, C. 1993. Techniques for Requirements Elicitation. Proceed-

ings of International Symposium Requirements Engineering, The Institute of 

Electrical and Electronics Engineers, Inc. 13 p. 

Gotel, O. 1995. Thesis: Contribution Structures for Requirements Traceability. 

London. Imperial College of Science, Technology and Medicine, University of 

London. 354 p. 

Gotel, O. 2000. 7th International Summer School in Novel Computing: Systems 

Requirements Engineering, Unit 7. London. University College London. 35 p. 

Gotel, O. & Finkelstein, A. 1994a. An Analysis of the Requirements Traceability 

Problem. London. Imperial College of Science, Technology and Medicine, Uni-

versity of London. 27 p. 

Gotel, O. & Finkelstein, A. 1994b. Position Paper: Modelling the Contribution 

Structure Underlying Requirements. London. Imperial College of Science, Tech-

nology and Medicine, University of London. 7 p. 

Kataikko, M. 2000. Sub-process: System Concept Process. Sonera Ltd. 10 p. 



 

72

Lauesen, S. 2000. Software Requirements: Styles and Techniques. Frederiksberg, 

Denmark, Forlaget Samfundslitteratur. 191 p. 

Leffingwell, D. & Widrig, D. 2000. Managing Software Requirements: A Unified 

Approach. 2nd Edition. California, United States of America, Addison Wesley 

Longman, Inc. 491 p. 

Leino, K. 2000. Sub-process: Requirements Capture Process. Sonera Ltd. 9 p. 

Leino, V. 2000. Types and Techniques of Requirements Traceability. Helsinki. 

Helsinki University of Technology. QURE Project. 27 p. 

Leino, V. 2001. Master’s Thesis: Documenting Requirements Traceability Infor-

mation: A Case Study. Helsinki. Helsinki University of Technology. 54 p. 

Ovaska, P. 2000. Sub-Process: the Design and Implementation Process. Sonera 

Ltd. 22 p. 

Ramesh, B., Stubbs, C., Powers, T. & Edwards, M. 1995. Lessons Learned from 

Implementing Requirements Traceability. [Online]. 

<http://stsc.hill.af.mil/crosstalk/1995/apr/lessons.asp>. (Accessed 26.4.2001). 

Reinikainen, L. 2000. Master’s Thesis: Elicitation of Customer Requirements with 

Group Methods in Software Engineering. Lappeenranta. Lappeenranta University 

of Technology. 96 p. 

Robertson, S. & Robertson, J. 1999. Mastering the Requirements Process. Har-

low, England, ACM Press. 404 p. 

Sommerville, I. & Sawyer, P. 1997. Requirements Engineering: A Good Practice 

Guide. West Sussex, England, John Wiley & Sons Ltd. 391 p. 



 

73

Sonera Corporation. 2001. Sonera Service Software. [Online]. 

<http://www.sonera.fi/english/rd/organi.html>. (Accessed 12.06.2001) 

The Standish Group. 1995. CHAOS: Sample Research Paper. [Online]. 

<http://www.standishgroup.com/visitor/chaos.htm>. (Accessed 11.04.2001). 

Thayer, R. & Dorfman, M. 1997. Software Requirements Engineering. 2nd Edi-

tion. California, United States of America, IEEE Computer Society Press. 531 p. 

Tolonen, A. 1999. Sonera R&D Process Model. Sonera Ltd. 35 p. 

Wiegers, K. 1999. Software Requirements. Washington, United States of Amer-

ica, Microsoft Press. 350 p. 

Ylimäki, Y. 1999. Sub-process: The Testing Process. 10 p. 

 

 

 

 

 

 

 



 

74

Interviews 

Verification Specialist of the project B. Sonera Corporation. Interview by email 

on July 6, 2001. 

Account Manager of the project C. Sonera Corporation. Interview in Helsinki on 

June 25, 2001. 

Project Manager. Sonera Corporation. Interview in Lappeenranta on May 7, 2001. 

Project Manager of the project B. Sonera Corporation. Interview in Lappeenranta 

on May 7, 2001. 

Department Manager. Sonera Corporation. Interview in Lappeenranta on June 8, 

2001. 

R&D Specialist of the project B. Sonera Corporation. Interview in Jyväskylä on 

July 3, 2001. 

Verification Engineer of the project A. Sonera Corporation. Interview in Lappeen-

ranta on May 4, 2001. 

R&D Specialist of the project C. Sonera Corporation. Interview in Helsinki on 

June 25, 2001. 

Project Manager of the project A. Sonera Corporation. Interview in Helsinki on 

June 25, 2001. 

Chief Architect. Sonera Corporation. Interview by email on July 10, 2001. 



 

75

APPENDIX 1.  

S3’s Product Development Process 

 

 

 

 

 

 

 

 

Idea
process

Requirement capture

Feasibility study
management

Prestudy 
management

User documentation

Design and implementation Pilot and delivery

System concept

Project management

Technical support

DP3 DP4 DP5DP2

 Testing

Information, document and data management

Configuration management

Subcontracting management

DP1DP0



 

76

APPENDIX 2.   

Traceability Matrix Template 


