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ABSTRACTLapeenranta University of TechnologyDepartment of Mathematics and PhysicsGoodluck Mika MlayAnalyzing Carbon trade permits in Optimization frameworkThesis for the Degree of Master of Science in Technology200977 pages, 22 �gures, 5 tables, 1 appendixExaminer: Prof. Markku Lukka and PhD. Matti HeiliöKeywords: Carbon Trade, Emission permit, Kyoto treaty, Optimization, Lagrangian,Sequential Quadratic Programming, Di�erential Evolution.The threats caused by global warming motivate di�erent stake holders to deal withand control them. This Master's thesis focuses on analyzing carbon trade permitsin optimization framework. The studied model determines optimal emission anduncertainty levels which minimize the total cost. Research questions are formulatedand answered by using di�erent optimization tools. The model is developed andcalibrated by using available consistent data in the area of carbon emission technol-ogy and control. Data and some basic modeling assumptions were extracted fromreports and existing literatures . The data collected from the countries in the Kyototreaty are used to estimate the cost functions. Theory and methods of constrainedoptimization are brie�y presented. A two-level optimization problem (individualand between the parties) is analyzed by using several optimization methods. Thecombined cost optimization between the parties leads into multivariate model andcalls for advanced techniques. Lagrangian, Sequential Quadratic Programming andDi�erential Evolution (DE) algorithm are referred to. The role of inherent measure-ment uncertainty in the monitoring of emissions is discussed. We brie�y investigatean approach where emission uncertainty would be described in stochastic framework.MATLAB software has been used to provide visualizations including the relation-ship between decision variables and objective function values. Interpretations in thecontext of carbon trading were brie�y presented. Suggestions for future work aregiven in stochastic modeling, emission trading and coupled analysis of energy pricesand carbon permits. ii
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1 IntroductionIn recent years our planet, earth has faced drastic climate changes. There hasbeen global warming that makes our planet hotter than one century ago. Severalenvironmental risks such as drought, �ooding, spread of tropical diseases, destruc-tion of cost line due to high ocean tides, melting of ice covering peaks of mountains,raging forest �re, hurricanes and storms have brought worrisome to the mass ofpeople. Data shows that, over last 100 years, the temperature of air near by earth'ssurface has risen by almost 1 degree Celsius scale and for 20 warmest years, 19 haveoccurred since 1980 and three hottest years ever observed, have occurred in the lasteight years [19]. The warming of planet earth has been caused by high accumulationof green house gases (GHG) which absorb more heat from the sun. Most of green-house gases are related to human activities such as heavy industries and intensiveagriculture. Di�erent treaties have been signed by industrial developed and fast de-veloping countries to curb the situation. Among those treaties, Kyoto Protocol hasbecome successful to address and give solution of reducing global warming threats.This Protocol embraces �exible mechanisms of alleviating global warming such asEmission Trading, Clean Development Mechanism (CDM) and Joint Implementa-tion [20].In this section, three main points will be put in the central of our discussion. The�rst one will be the background of the thesis, where by a reader will �nd exactlywhat motivated the author to the topic and the tools author has been using toanalyze research data in the context of carbon trading. The second point will bethe objective of the thesis where by main goals and research questions are outlinedand how they will be solved explicitly. The last point is the structure of the thesisin brief, where all sections are outlined shortly. After this short introduction thebackground of the thesis will be discussed in the following subsection.1.1 Background of the ThesisDrastic climate change due to high concentrations of greenhouse gases (GHG)in the atmosphere is one of the most severe environmental risks. Most of greenhouse gases are caused by human activities such as industries and agriculture. Mostof these gases are categorized into six types [5], which are carbondioxide (CO2),methane (CH4), nitrous oxide (N2O), hydro�uorocarbons (HFCs), Per�uorocarbons(PFCs) and sulfur hexa�uoride (SF6). 1



The global e�orts to alleviate the threats of climate changes have been made byseveral international conventions. The United Nations Framework Convention onClimate Change [6] that was conducted at Rio de Janeiro, Brazil in 1992 aimed atreinforcing her Parties to stabilize greenhouse gas concentrations in the atmosphereat a level that would prevent dangerous anthropogenic interference with the climatesystem. Later under the same convention, Kyoto Protocol was established at Kyoto,Japan in December, 11th, 1997. The protocol came into e�ect in February, 16th, 2005after Russian rati�cation. It speci�es to its members an emission level which has notto be exceeded within the commitment period of 2008-2012. Under Kyoto Protocol,industrialized countries [7] agreed principally to cut down emission on average ofabout 5.2 percent below 1990 levels.Article 5 of Kyoto protocol [8], requires her Parties to conduct the national sys-tem of estimating anthropogenic emission and prepare the inventory for reportingemissions by sources and their removal by sinks. The guidelines for such nationalsystem have been speci�ed in International Panel on Climate Change [9] . Howeverthe protocol seeks from her members to report the emission to her Convention Sec-retariat and comply to their levels of endowment but it does not regard uncertaintywhich is associated with reported emission.All emission estimates according to [10] contain uncertainty due to errors in mea-surement instruments, natural variability of emission generating process and biasexpert judgements. However [3] pointed that uncertainties are generally caused byemission factors and activity data re�ecting GHG related activities. Uncertainty inemission factors arise from lack of su�cient knowledge about processes generatingemissions, lack of relevant measurements and thus inappropriate generalizations.Depending on the source generating emission, [11] and [12] reported that uncer-tainty of CO2 from energy sources is small, around 5 percent. Other pollutants arereported to have much more uncertainty, usually more than 20 percent as pointedin [13]. These include N2O from agricultural soil, PFCs and SF6 from aluminiumproduction, CH4 from land�lls and N2O from road tra�c. The implementation ofKyoto Protocol need high quality emission inventories to ensure that parties complyto their commitments and right reducing measures of emissions are taken. Uncer-tainty reporting is a crucial in the context of emission trading. Kyoto protocol inresponse, from its article 17 introduced emission trading to facilitate achievementof national agreed reduction targets. Annex B countries to the protocol allowed tosell their excess emission reductions as it is potential for cost-e�ciency.2



Carbon market performance under inventory reporting has been explained deeplyby [1] and [2]. Both assumed that uncertainty has to be associated with emissionsto oversee the compliance with Kyoto targets. In order to meet these targets onehas to invest in emission reduction or monitoring uncertainty or by buying permits.Reducing emission levels create costs investment in technology process improve-ments and renovations of process installations. Reduction of uncertainty is anothersource of costs. Improving measurement accuracy and extending the scope of emis-sion monitoring is possible only by investment into improved technology. Hencesmaller uncertainty means high cost level.Several optimization methods have been used to solve the optimal value suchas emission levels of di�erent Parties or Regions under consideration. ClassicalLagrangian, Sequential Quadratic Programming (SQP) and Di�erential evolutionmethods have been applied widely to analyze to solve the optimal values and toanalyze relationship existing between di�erent decision variables in the model. In thenext subsection which is the objective of the thesis, these methods will be discussedbrie�y on how they are going to solve our optimization problems.1.2 Objective of the ThesisPrimary objective of this master's thesis is to analyze two schemes in Emissiontrading. The �rst scheme is when there is no transaction, i.e. no trade of carbonpermits but each Party carry its own initiative to cut down emissions and relativeuncertainty. The second scheme of our analysis will be upon the situation where bythe trade of permits is done, by carbon permits being exchanged between potentialbuyers and sellers. In both schemes we are going to �nd and compare total costs forcutting down both emissions and relative uncertainty.The secondary objectives of our work are to analyze:
• the nature of our optimal solution.
• e�ect of introducing relative uncertainty to the cost function.
• emission uncertainty in stochastic framework.
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1.3 Research QuestionsOur research questions have been extracted from objectives and will be answeredimmediately to the next coming sections. The research questions are as follows:Research Question 1Is there any signi�cant impact between the situations when carbon trade permitsare traded or not traded?To answer this question cost functions are introduced. These functions are based onthe data collected from the countries of Kyoto treaty (confer table 1). We are goingto use the method of Lagrange multiplier, Sequential Quadratic Programming (SQP)and Di�erential Evolution (DE) to calculate the optimal points of both emissions andrelative uncertainty and compare the total cost for reducing emissions and relativeuncertainty in case there is no transactions and when carbon permits are bought ortraded.Research Question 2Does our solution attains local or global minimum?The nature of the solution will be determined by using �rst order conditions(KKT) and su�cient second order conditions.Research Question 3Does inclusion of relative uncertainty to the cost function has an impact inanalyzing the cost of reducing uncertainty?We are going to replace absolute uncertainty with relative uncertainty and �ndthe relationship between emissions and relative uncertainty.Research Question 4
4



Does stochastic analysis of Emission uncertainty important in modeling emissionsand relative uncertainty?We are going to study an alternative formulation in modeling of total emissionswhen the uncertainty intervals are replaced by probability distributions.After describing how are we going to answer our research questions, the nextsubsection will describe brie�y how the thesis is structured.1.4 Structure of the ThesisThe thesis work comprises of seven sections. It begins with introduction sectionin brief describing the background, objective and research questions related to ourmaster's thesis. In this section some important points such as Lagrangian, Sequen-tial Quadratic Programming (SQP), Di�erential Evolution optimization methods,local and global minimum points and costs of reducing both emission and relativeuncertainty are brie�y reviewed.Analysis of necessary and su�cient conditions for optimality of general con-strained minimization problem have been presented in section 2. In this section,Lagrangian of constrained problem, active constraints, constraint quali�cation con-ditions and Kuhn Tucker conditions for optimality have been deeply examined. Theend of this section is marked by brief explanation of saddle point conditions whichare more restrictive than Kuhn Tucker conditions.Methodology and modeling have been presented in section 3. The section de-scribes how the model has been chosen, parameter estimates of the model, introduc-tion of relative uncertainty to the model and analysis of local minima. Assumptionsused in estimating the cost parameters of the model have been clearly described.Data and source from which the data have extracted are presented brie�y in section4. Section 5 entails extensively several methods have been used to come up withthe solution of our optimization problem. Classical Lagrangian for optimization,Sequential Quadratic Programming (SQP) and Di�erential Evolution(DE) meth-ods have been adequately described and used to solve parameters such as optimalemission level and relative emission uncertainty to the situations where permits arenot transacted and when permits are allowed to be bought or sold within the par-ticipants to the carbon trade. In addition to the optimal number of permits each5



Party should be allocated are solved and illustrated using MATLAB plots. The rela-tionship between decision variables and objective function value has been explicitlypresented. The section is ending by evaluating the model results by giving briefinterpretations in the context of Carbon Trading.Section 6 is concerned about stochastic emission uncertainty, where by uncertaintyrelated to emission levels are explicitly analyzed in stochastic framework. The �nalsection is conclusion and future work followed by references.2 Constrained OptimizationIn this section we are going to analyze necessary and su�cient conditions foroptimality of general constrained minimization problem(CP). We are going to ex-amine deeply the Lagrangian of constrained problem, 'active constraints', constraintquali�cation conditions and Kuhn Tucker conditions for optimality.2.1 Lagrangian for constrained problemLet us consider the following general constrained minimization problem (CP) asit is pointed in [17]:
(CP) min f(x) = f(x1, ..., xn) (2.1)s.t ci(x) = 0, i = 1, ..., me (2.2)

ci(x) ≥ 0, i = me + 1, ..., m (2.3)The constraints c(x) = (ci(x), ..., cm(x))T in (2.2) and (2.3) is a column vector. Weare going to de�ne important terminologies in the context of constrained optimiza-tion as follows:De�nition 1. (Feasible set)The feasible set Ω ⊂ R
n is the set of all points which satisfy all given constraints.According to [16], p.308, active and inactive set of constraints in constrained opti-mization can be explained brie�y as follows:De�nition 2. (Active set)The active set A(x) at any feasible point x consist of the set of equality constraint6



indices E together with indices of inequality constraints i such that ci(x) = 0, thatis, A(x) = E ∪ {i ∈ I|ci(x) = 0}.We can say that the inequality constraint i ∈ I is said to be active at a feasible point
x if ci(x) = 0 and inactive if the strict inequality ci(x) > 0 is satis�ed. Furthermoreall equality constraints are active at every feasible point x.The Lagrangian function of the constrained problem (CP) can be written as:

L(x, λ) = f(x) − λT c(x) = f(x) −
m
∑

i=1

λici(x) (2.4)where λ = (λ1, ..., λm)T is a vector of Lagrange multipliers. The �rst order partialderivative with respect to x gives:
∇xL(x∗, λ∗) = ∇f(x∗) −

m
∑

i=1

λi
∗∇ci(x

∗) (2.5)2.2 Optimality conditionsIn this subsection we are going to discuss necessary and su�cient conditions foroptimality. Before looking for optimality conditions of constrained optimizationproblem we have to check if linear independence constraint quali�cation (LICQ)holds. This has been explained in [16], p. 320 that:De�nition 3. Given x is the feasible point and A(x) is the set of active constraintsde�ned in De�nition 2 then the linear independence constraint quali�cation (LICQ)it is said to hold if the gradients of active constraints are linearly independent.A feasible point x mentioned in De�nition 3 is known as regular point.2.2.1 Necessary conditions for optimalityThe necessary conditions for x∗ to be a local minimizer of constrained problem (CP)are also called the �rst order conditions. According to [16], p. 321 the necessaryconditions for optimality are stated in the following theorem:Theorem 2.1. (First-Order Necessary Conditions)Suppose x∗ is the local minimizer of constrained problem (CP) in (2.1), (2.2) and7



(2.3) and both objective function f and the constraints ci are continuously di�eren-tiable and that linear independence constraint quali�cation (LICQ) holds then thereexist Lagrange multipliers λ∗ = (λ1
∗, ..., λm

∗) such that the following conditions aresatis�ed at (x∗, λ∗):
• Feasibility:

ci(x
∗) = 0 i = 1, ..., me

ci(x
∗) ≥ 0 i = me + 1, ..., m

(2.6)
• Stationarity

∇xL(x∗, λ∗) = 0 or ∇f(x∗) =

m
∑

i=1

λ∗

i∇ci(x
∗) (2.7)

• Complementarity
λi

∗ci(x
∗) = 0 i = me + 1, ..., m (2.8)

• Dual feasibility
λ∗

i ≥ 0 i = me + 1, ..., m (2.9)These conditions from theorem 2.1 are known as Kuhn-Tucker (KT) or sometimesKarush Kuhn Tucker (KKT) conditions. The point x that satis�es the KT conditionsis called KT-point or KKT- point. It is pointed in [18] that the conditions in (2.9)are for dual feasibility that means that the Lagrange multipliers that correspond toactive constraint can be zero.
8



On top of that, stationarity and complementarity conditions shown in (2.7)and (2.8), mean that the gradient ∇f(x∗) is the linear combination of gradientsof the active constraints at x∗. According to [16] the conditions in (2.8) are calledcomplementary in the sense that either constraint i is active or λ∗
i = 0 or possiblyboth. It is obvious that the lagrange multipliers correspond to inactive constraintsare zero. This leads us to de�ne the special case for complementarity as follows:De�nition 4. (Strict Complementarity).Given that A(x∗) is the set of active constraints at optimal point x∗ and I is anindex of inactive constraints and λ∗ satisfy the KT conditions,we can say that strictcomplementary conditions holds if exactly one of λ∗

i and ci(x
∗) is zero for each index

i ∈ I. In other words we can say that λ∗
i > 0 for each i ∈ I ∩ A(x∗).2.2.2 Su�cient conditions for OptimalityThese are conditions which will guarantee our solution to the local minimum solu-tion for constrained minimization problem. They include in both �rst order (KKT)and second order conditions. These conditions are summarized in the followingtheorem as it is pointed in [17]:Theorem 2.2. (Su�cient Conditions).

x∗ is local minimum point on constrained problem (CP) if there exist Lagrange mul-tipliers λ∗ = (λ1
∗, ..., λm

∗) such that the following conditions hold:1. KKT-conditions of Theorem 2.1.2. Second order conditions:For every non-zero vector y ∈ R
n such that;

yT∇ci(x
∗) = 0 for all equality constraints i = 1, ..., me.

yT∇ci(x
∗) = 0 for all inequality constraints with λi

∗ > 0,
yT∇x

2L(x∗, λ∗)y > 0.The condition yT∇x
2L(x∗, λ∗)y > 0 pointed in Theorem 2.2 implies that the sym-metric matrix ∇x

2L(x∗, λ∗) is positive de�nite.
9



2.2.3 Saddle point conditionsThese are more restrictive conditions than those which have been mentioned inTheorem 2.2 and they determine whether the constrained problem (CP)has attainedglobal minimum point or not. These conditions are presented in [17] and beingsummarized in the following theorem;Theorem 2.3. (Saddle point conditions).If (x∗, λ∗) is a saddle point of the Lagrangian of (CP), i.e. if λi
∗ ≥ 0 for, i =

me + 1, ..., m and L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) for all x ∈ R
n and all λ ∈ R

mwith λi ≥ 0 for i = me + 1, ..., m, then x∗ is the global minimum point.3 Methodology and ModelingOur optimization model will focus to minimize costs of reducing reported emissionand its associated uncertainties. In our case we shall incorporate in both absoluteand relative uncertainties.The necessary set of variables can be de�ned as follows. Let
i = Parties or countries participating under Kyoto Protocol,for i = 1, 2, 3, ..., N .

xi = reported emission in every party i.
εi = volume of absolute uncertainty emission.

Ci(xi) =total costs for Party i of keeping reported emission on level, xi.
Fi(εi) =total costs for Party i of keeping absolute uncertainty on the level εi

Ki =Kyoto target of emission to each party i and
yi =number of emission permits accrued by Party i (might be positive for netpurchaser, or negative for net supplier of permit).Each Party faces a two step optimization problem. The �rst step optimizationproblem is for each Party to carry its own individual task to decide whether to abateemissions or to invest in monitoring the volume of absolute uncertainty emissions.The second step optimization is for the Party (or country) to decide whether or notto exchange the number of emission permits with other Parties [1].10



For individual optimization, the least cost of reducing reported emission, Ci(xi) aswell as monitoring the volume of absolute uncertainty, Fi(εi), is given by:
fi(yi) = min

xi,εi

[Ci(xi) + Fi(εi)] (3.1)s.t xi + εi ≤ Ki + yi (3.2)Both cost functions Ci(xi) and Fi(εi) are assumed to be positive, decreasing andconvex in xi and εi respectively. Furthermore these functions are assumed to becontinuously di�erentiable [3]. The convexity of fi(yi) is assured since it is a mini-mum sum of two convex functions Ci(xi) and Fi(εi).This is according to the following lemma in [17] as;Lemma 3.1. (Sum of convex functions).If f(x) and g(x) are both convex functions, hence f(x) + g(x) is also convex.The marginal costs C ′
i(xi) and F ′

i(εi) are both negative in xi and εi respectively soas to be positive in reducing xi and εi. The theorem proved in [4] will be helpful toexamine how objective value of optimization problem changes as the result of thechange of its parameters and is stated here under as follows:Theorem 3.2. (Envelope theorem) :Suppose M(a) = maxf(x, a) gives the maximized value of objective function f as afunction of parameter a then M(a) = f(x(a), a) and M(a) changes as parameter achanges, namely dM(a)

da
=

∂f(x∗, a)

∂a
|x∗=x(a) at optimal point x∗By substituting equation (3.2) into (3.1) and eliminating xi we have;

fi(yi) = min
εi

[(Ci(Ki + yi − εi)) + Fi(εi)] (3.3)Then by applying theorem 3.2 in equation (3.3) we get;
f ′

i(yi) =
∂

∂yi

min
εi

[(Ci(Ki + yi − εi)) + Fi(εi)] = C ′

i(xi∗) (3.4)If substituting (3.2) into (3.1) and eliminating εi we have;
fi(yi) = min

xi

[Ci(xi) + Fi(Ki + yi − xi)] (3.5)The use of envelope theorem to (3.5) gives;
f ′

i(yi) =
∂

∂yi

min
εi

[Ci(xi) + (Fi(Ki + yi − xi))] = F ′

i(εi∗) (3.6)11



where by x∗
i and ε∗i are optimal solutions of subproblem (3.1) and (3.2), i.e. theoptimal reported emission and optimal volume of absolute uncertainty respectively.As equation (3.4) is equal to (3.6) then we obtain the optimality condition C ′

i(x
∗
i ) =

F ′
i(ε

∗
i ), that imply that the marginal costs for cutting down reported emissions to

x∗
i is equal to marginal cost of reducing the volume of absolute uncertainty to ε∗iat optimal conditions. By minimizing (3.1) subject to linear constraint (3.2) andsetting Lagrangian λi we obtain the Lagrangian function;

`(xi, εi, λi) = Ci(xi) + Fi(εi) − λi(xi + εi − Ki − yi) (3.7)Then the �rst order partial derivatives of (3.7) gives;
∂`

∂xi

= C ′

i(xi) − λi = 0 (3.8)
∂`

∂εi

= F ′

i(εi) − λi = 0 (3.9)
∂`

∂λi

= xi + εi − Ki − yi = 0 (3.10)Solving (3.8) and (3.9) we obtain:
λi = C ′

i(x
∗

i ) = F ′

i(ε
∗

i ) (3.11)from which λi is Lagrangian multiplier and is interpreted as the shadow price, i.e.the willingness of Party i to pay for emitting one more unit of reported emission,
xi or volume of absolute uncertainty, εi by considerably relaxing constraint (3.2)by one unit. At optimal conditions, shadow price is equal to the marginal costs ofreducing reported emission as well as reducing volume of absolute uncertainty. Sincethe market will not be in equilibrium, the shadow prices λi will di�er considerablybetween buyers and sellers of permits re�ecting potential for trade. This will au-tomatically lead to second optimization problem to �nd permit distribution amongthe participants so as to equalize the shadow price among them. The aggregate costof reaching the Kyoto targets is de�ned as the sum of individual costs as follows;Suppose the aggregate cost function is given by:

F (y1, ..., yN) =

N
∑

i=1

fi(yi) (3.12)
12



It follows that our optimization problem will be:
min

yi

F (y1, ..., yN) (3.13)s.t N
∑

i=1

yi = 0 (3.14)By setting Lagrangian multiplier µ to (3.13) and (3.14) and solving the �rst ordercondition we have;
L(y1, ..., yN , µ) =

N
∑

i=1

fi(yi) − µ
N
∑

i=1

yi (3.15)
∂L

∂yi

= f ′

i(yi) − µ = 0 (3.16)
∂L

∂µ
= −

N
∑

i=1

yi = 0 (3.17)Solving equation (3.16) we obtain the �rst order condition:
f ′

i(yi) = µ, ∀i (3.18)Condition (3.18) imply that the marginal cost of permits, yi, shall in equilibriumequal to a speci�c level µ to all participants. It is obvious that by combining (3.4)and (3.6) we deduce that:
f ′

i(yi) = C ′

i(x
∗

i ) = F ′

i(ε
∗

i ) (3.19)This shows that the only necessary condition to bring the permit market into equilib-rium is for permit price equal to both marginal costs for reducing reported emissionand volume of absolute uncertainty.3.1 Introduction of Relative uncertainty to the ModelWe aim at investigating the e�ects of introducing the relativity uncertainty to thecost function (3.1). We claim that this approach is suitable for analyzing the costsof reducing uncertainty that involved to the inventory of non-CO2 GHG such asmethane, CH4, nitrous oxide, (N2O) and their aggregate in combination with CO2.13



As it was mentioned earlier, uncertainty of emission factors depend on emissionsource and the knowledge about processes generating emission, then it was reportedto [11] and [12] that CO2 emission factors from energy related sources is 5 percent.It is reported in [3]that, other GHG depending on the emission source, have moreuncertainties, for example N2O from agricultural sources is up to 100 percent, while
N2O from combustion is up to 200 percent.Let Hi(Ri) be the costs for reducing relative uncertainty, Ri. It is assumed thatrelative uncertainty is given by Ri = εi/xi. The total abatement costs is the sumof Hi(Ri) and emission reduction costs, Ci(xi). Under Kyoto protocol, as pointedin [3] we are needed to express uncertainties in absolute terms. That is emissionlevel xi plus absolute uncertainty ε = xi.Ri shall not exceed the Kyoto target, Kiincreased or decreased by a certain speci�c level of Permit, yi (see condition (3.2)).Let Zi (xi, Ri) represents the total cost for abating both emissions, xi and relativeuncertainty, Ri such that:

Zi (xi, Ri) = Ci(xi) + Hi(Ri) (3.20)Then after introducing the relative uncertainty into trade system then equation(3.1)and (3.2) become;
Gi (xi, Ri) = min

xi,Ri

Zi (xi, Ri) (3.21)s.t xi + xi.Ri ≤ Ki + yi (3.22)The approach showing in (3.21) and (3.22) strongly re�ect the dependence be-tween both emissions and their associated uncertainty. As it has been noticed, theconstraint (3.22) is non-linear in contrast to (3.2). It is assumed that both functions
Ci(xi) and Hi(Ri) display the usual economic properties: that is they are convex,decreasing and continuous di�erentiable. This implies that both xi and Ri should bepositive to re�ect the reality and it is assumed that Ki + yi should be strict positiveand Parties do not sell more permit than their Kyoto compliances. The Lagrangefunction of (3.21) and (3.22) is:

L (xi, Ri, λi) = Ci(xi) + Hi(Ri) − λi (xi + xi.Ri − Ki − yi) , (3.23)14



whose �rst order conditions give;
∂L

∂xi

= C ′

i(xi) − λi − Ri.λi = 0 (3.24)
∂L

∂Ri

= H′

i(Ri) − λi.xi = 0 (3.25)
∂L

∂λi

= xi + xi.Ri − Ki − yi = 0 (3.26)Solving (3.24) and (3.25) for optimality we get
λi =

C ′
i (x∗

i )

1 + R∗
i

=
H′

i (R
∗
i )

x∗
i

, (3.27)where by x∗
i and R∗

i are optimal levels of emissions and relative uncertainties andLagrange multiplier, λi is interpreted as the permit shadow price.With �rst order conditions of (3.23) it is assumed that the cost function H′
i(Ri)is independent of emission level xi, that is relative uncertainty does not changein case of change in emissions. However from (3.27) we notice that the marginalcost ratio C ′

i(xi)

H′
i(Ri)

depends on both optimal level of emission, x∗
i and optimal relativeuncertainty R∗

i while in case of independent emission and absolute uncertainty statedin (3.11) reveals that the ratio of marginal costs is 1.The cost function Zi(xi, Ri) in (3.21) is the minimum sum of two convex functionssubject to the non-linear constraint (3.22) with respect to the variables xi and Rifrom the fact that εi = xi.Ri.3.2 Analysis of local minimaTo have more insight of the minimum of Lagrange function, then the second deriva-tive of Zi(xi, Ri) has to be analyzed so as to check the existence of several localminima. Taking into consideration that countries need not to over-comply to Kyototargets,we take a case of equality constraint (3.22). We express our goal function(3.21) to depend only on xi. Now constraint (3.22) becomes:
xi + xi.Ri − Ki − yi = 0 (3.28)15



By making Ri the subject from (3.28) we obtain:
Ri =

Ki + yi − xi

xi

(3.29)Substituting (3.29) into (3.21) we get:
Gi (xi) = Ci (xi) + Hi

(

Ki + yi − xi

xi

) (3.30)The �rst order derivative of (3.30) gives:
dGi

dxi

= C ′

i (xi) +

[−xi − (Ki + yi − xi)

xi
2

]

.H′

i

(

Ki + yi − xi

xi

) (3.31)
= C ′

i (xi) −
(Ki + yi)

xi
2

.H′

i

(

Ki + yi − xi

xi

) (3.32)Setting the �rst derivative to zero and from (3.29), it follows that:
Ki + yi

xi
2

=
C ′

i (xi)

H′
i (Ri)

(3.33)The second order derivative with respect to xi becomes:
d2Gi

dxi
2

= C ′′

i (xi) + 2
xi (Ki + yi)

xi
4

H′

i

(

Ki + yi − xi

xi

)

+

(

Ki + yi

xi
2

)2

H′′

i

(

Ki + yi − xi

xi

)

= C ′′

i (xi) + 2
(Ki + yi)

xi
3

H′

i (Ri) +

(

Ki + yi

xi
2

)2

H′′

i (Ri) (3.34)From condition (3.33) which was valued at dGi

dxi

= 0 we make both H′
i(Ri) and xithe subject:

H′

i (Ri) =
xi

2C ′
i (xi)

Ki + yi

(3.35)
xi =

√

H′
i (Ri)

C ′
i (xi)

(Ki + yi) (3.36)
16



Substituting (3.35) into (3.34) we have:
d2Gi

dxi
2
| dGi

dxi
=0

= C ′′

i (xi) +

(

C ′
i (xi)

H′
i (Ri)

)2

H′′

i (Ri) + 2
(Ki + yi)

xi
3

xi
2C ′

i (xi)

Ki + yi

= C ′′

i (xi) +

(

C ′
i (xi)

H′
i (Ri)

)2

H′′

i (Ri) + 2
C ′

i (xi)

xi

(3.37)
By substituting (3.36) into (3.37) we have:

d2Gi

dxi
2
| dGi

dxi
=0

= C ′′

i (xi) +

(

C ′
i (xi)

H′
i (Ri)

)2

H′′

i (Ri) + 2

√

C ′
i(xi)

H′
i(Ri)

C ′
i(xi)√

Ki + yi

(3.38)The �rst two terms of (3.38) are positive since the cost function Ci(xi) andHi(Ri)are convex. The third term can be negative since both marginal costs C ′
i(xi) and

H′
i(Ri) are negative. Now depending on magnitude of C ′

i(xi) and H′
i(Ri), d2Gi

dxi
2
| dGi

dxi
=0can be negative. This implies that the problem (3.21), (3.22) can be non-convexand could have several local minima.Without the loss of generality we can derive the goal function that depends onrelative uncertainty, Ri and its corresponding second order derivative as follows:Making xi the subject from (3.28) we have:

xi =
Ki + yi

1 + Ri

(3.39)Substituting (3.39) into (3.21) we get:
Pi(Ri) = Ci

(

Ki + yi

1 + Ri

)

+ Hi(Ri) (3.40)The �rst order derivative of (3.40) gives:
dPi

dRi

=
− (Ki + yi)

(1 + Ri)
2 C ′

i

(

Ki + yi

1 + Ri

)

+ H′

i(Ri) (3.41)Setting the �rst order derivative to zero and making use of (3.39) we �nd that:
H′

i(Ri)

C ′
i(xi)

=
Ki + yi

(1 + Ri)
2 (3.42)
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From (3.41) the second order derivative becomes;
d2Pi

dRi
2 =

2(1 + Ri)(Ki + yi)

(1 + Ri)4
C ′

i(xi) −
(Ki + yi)

(1 + Ri)
2 .
−(Ki + yi)

(1 + Ri)
2 C ′′

i (xi) + H′′

i (Ri)

= H′′

i (Ri) +

(

Ki + yi

(1 + Ri)
2

)2

C ′′

i (xi) + 2
(Ki + yi)

(1 + Ri)3
C ′

i(xi)

(3.43)
Solving d2Pi

dRi
2 at dPi

dRi

= 0 we manipulate (3.42), that will give:
(1 + Ri) =

√

C ′
i(xi)

H′
i(Ri)

.
√

Ki + yi

=⇒ (1 + Ri)
3 =

C ′
i(xi)

H′
i(Ri)

(Ki + yi)

√

C ′
i(xi)

H′
i(Ri)

.
√

Ki + yi

(3.44)
Substituting (3.44) into (3.43) and make the use of (3.42) we �nally get the expres-sion:

d2Pi

dRi
2 | dPi

dRi
=0

= H′′

i (Ri) +

(H′
i(Ri)

C ′
i(xi)

)2

C ′′

i (xi) + 2

√

H′
i(Ri)

C ′
i(xi)

.
H′

i(Ri)√
Ki + yi

(3.45)Since both Hi(Ri) and Ci(xi) are assumed to be convex then the �rst two termsto the right of (3.45) are positive. That is H′′
i (Ri) and C ′′

i (xi) are strictly greaterthan zero. The third term is negative when both H′
i(Ri) and C ′

i(xi) are negative.Depending on magnitude of marginal costs, H′
i(Ri) and C ′

i(xi) we can signal d2Pi

dRi
2at dPi

dRi

= 0 to be either positive or negative. This implies that problem (3.21) canbe non-convex and could have several local minima.The analysis of second order is very important in the context of carbon permitmarket as we can not achieve global minimum cost solution. The market might belocked to local minima.
18



3.3 Choice of cost functionIn order to reach local minimum conditions we considered a convex function foremission reduction to be:
Ci (xi) =



















bi (xi − ai)
2 for xi ∈ [0, ai]

0 for xi > ai

(3.46)where ai is initial emission or 'Business-As-Usual' (BAU). If xi = ai, no cost oremission regulation is taken into account to reduce emission. This re�ects baselineemission and is also known as business as usual (BAU) as it is pointed in [3]. In thesame manner we formulate cost function for reducing the relative uncertainty as;
Hi (Ri) =



















di (Ri − R0,i)
2 for Ri ∈ [0, R0,i]

0 for Ri > R0,i

(3.47)where by R0,i is initial volume of relative uncertainty. If Ri = R0,i, it means that nocost is incurred to reduce relative uncertainty and R0,i will re�ect the baseline forrelative uncertainty.These cost functions have been proposed by several authors [1], [2], and [3].Quadratic curve re�ects the typical well known feature of increasing marginal costs.The parameter values in the model are derived from available data in the countriesof Kyoto treaty (refer table 1).Our claim is that although (3.46) and (3.47) are convex (downward) functions,they can not achieve the least cost solution. In other words there exist local maximaas an indication of these functions to exhibit non-convexity to some points. Tosupport our claim let us consider both functions Hi (Ri) and Ci (xi) by writing(3.30) in terms of (3.46) and (3.47) to get:
Ti (xi) = bi (xi − ai)

2 + di

(

Ki + yi − xi

xi

− R0,i

)2 (3.48)Setting to zero the �rst order derivative of (3.48) gives:
dTi

dxi

= 2bi (xi − ai)+2di

(

Ki + yi − xi

xi

− R0,i

)(−xi − (Ki + yi − xi)

xi
2

)

= 0 (3.49)19



Manipulating (3.49) by dividing it by 2 and multiplying by xi
3 we get:

bi (xi − ai)xi
3 − di (Ki + yi − xi − xiR0,i) (Ki + yi) = 0

=⇒ bi (xi − ai) xi
3 − di (Ki + yi)

2 + di (1 + R0,i) (Ki + yi)xi = 0

=⇒ (xi − ai) xi
3 +

di

bi

(1 + R0,i) (Ki + yi) xi −
di

bi

(Ki + yi)
2 = 0

(3.50)
By normalizing xi upon ai we �nd that xi

ai

= ui from which:
xi = aiui (3.51)Substituting (3.51) into (3.50) we get:

0 = ai
4ui

4 − ai
4ui

3 +
di

bi

(1 + R0,i) (Ki + yi) aiui −
di

bi

(Ki + yi)
2

⇒ 0 = ui
4 − ui

3 +
di

ai
3bi

(1 + R0,i) (Ki + yi) ui −
di

biai
4

(Ki + yi)
2

⇒ 0 = ui
4 − ui

3 +
di

ai
3bi

(1 + R0,i) (Ki + yi) ui −
di

ai
3bi

(1 + R0,i) (Ki + yi)
Ki + yi

ai(1 + R0,i)(3.52)Now we let two dimensionless parameters αi and γi represent:
αi =

di

ai
3bi

(1 + R0,i) (Ki + yi) (3.53)
γi =

Ki + yi

ai(1 + R0,i)
(3.54)Substituting Equations (3.53) and (3.54) into (3.52) we have:

0 = ui
4 − ui

3 + αiui − αiγi

⇒ 0 = ui
3(ui − 1) + αi(ui − γi), for ui > 0, αi > 0 and γi > 0

(3.55)To have minima solutions, let us write Equation (3.55) as:
αi(ui − γi) − ui

3(1 − ui) = 0 (3.56)20



We have to consider the expression αi(ui−γi) as the tangent line to ui
3(1−ui) inorder to determine parameters αi and γi which might help us to draw the conclusionabout the minima. The function f ′′(ui) = ui

3(1 − ui) has two point of in�exionfrom the fact that f ′′(ui) = 6ui − 12ui
2 = 0 gives us ui = 0 or ui = 0.5. When

ui < 1/2 implies that ui
3(1 − ui) is convex and if ui > 1/2 the expression is concave.Our focus will be when ui = 0.5. The slope at this point, f ′(ui)|ui=0.5 = 3ui

2 −
4ui

3|ui=0.5 = 0.25. That is f(0.5) = 0.53(1 − 0.5) = 1/16 and clearly the line passesthrough (1/2, 1/16). Furthermore we can �nd that:
αi(ui − γi) = 1/4ui − 1/16 (3.57)

αi = γi = 0.25 (3.58)Equation (3.56) exhibits only one positive solution ui = 1/2 for αi = 0.25 and
γi = 0.25. For values of αi and γi less than 0.25 , Equation (3.56) exhibits morethan one solution. This is showed in �gure 1 where by f(ui) = αi(ui−γi)−ui

3(1−ui),
g(ui) = αi(ui − γi) and h(ui) = u3

i (1 − ui).Figure 2 represents functions f(ui), g(ui) and h(ui) with αi = γi = 0.2 < 0.25.In fact f(ui) exhibits more than one positive solution at this range of αi = γi =

0.2 < 0.25 which are ui = 0.7236, 0.4472 and 0.2764 and it is concave when ui < 0.5and convex when ui > 0.5, while h(ui) is convex when ui < 0.5 and is concave when
ui > 0.5.On the other hand, �gure 3 shows functions f(ui), g(ui) and h(ui) with αi =

γi = 0.3 > 0.25. Function f(ui) exhibits a positive real solution at ui = 0.5477 andit is concave when ui < 0.5 and convex when ui > 0.5, while function h(ui) is convexwhen ui < 0.5 and it is concave when ui > 0.5.It is pointed in [3] that parameter γi in the context of carbon market is interpretedas the ratio between Kyoto emission plus traded permit to the BAU emission level

21



0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

u

 

 
f(u

i
)

g(u
i
)

h(u
i
)

Figure 1: Convex and concave behavior revealed by �rst order derivative of goalfunction, Gi(xi) in Equation (3.30) expressed in terms variable xi

ai

= ui and param-eters, αi = γi = 0.25)plus absolute uncertainty.Thus;
γi =

Ki + yi

ai(1 + Ri)

=
Ki

(

1 + yi

Ki

)

ai(1 + Ri)

=
Ki

ai

(1 + τi) (1 + Ri)
−1

(3.59)
By binomial expansion we �nd that;

γi =
Ki

ai

(1 + τi)
(

1 − Ri + Ri
2 + . . .

)

≈ Ki

ai

(1 + τi − Ri − Riτi + . . .)

≈ Ki

ai

(1 + τi − Ri)

(3.60)
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Figure 2: Convex and concave behavior revealed by �rst order derivative of goalfunction, Gi(xi) in Equation (3.30) expressed in terms variable xi

ai

= ui and param-eters, αi = γi = 0.2 < 0.25)
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Figure 3: Convex and concave behavior revealed by �rst order derivative of goalfunction, Gi(xi) in Equation (3.30) expressed in terms variable xi
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= ui and param-eters, αi = γi = 0.3 > 0.25)
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where by Ki

ai

is a ratio of agreed Kyoto Protocol to Business as Usual emission and
τi =

yi

Ki

is the ratio of traded emission permits to Kyoto Protocol targets. If forsure γi < 0.25 is approximately as saying more than 75 percent of BAU emissionlevel has been reduced.3.4 Estimates of cost parametersDue to the fact that the information about costs for reducing relative uncertainty islimited then parameter di from Equation (3.47) can be obtained by assuming that thecosts of relative uncertainty reduction at any level R1
i relative to initial uncertainty

R0,i are dependent on costs of emission reduction according to the following formula:
∂Ci(xi)

∂xi

|xi=xi
1 =

∂Hi(Ri)

∂Ri

|Ri=Ri
1 .

1

ai

(3.61)with
xi

1

ai

=
Ri

1

R0,i

(3.62)This formulation originated from [1] that marginal cost of absolute uncertaintyreduction F ′
i(εi) at any level relative to the initial uncertainty ε0,i is the same asmarginal cost of emission reduction C ′

i(xi) at the same percentage of BAU (BusinessAs Usual) level. That is :
∂Fi

∂εi

|εi=εi
1 =

∂Ci

∂xi

|xi=xi
1 (3.63)with εi

1

ε0,i

=
xi

1

ai

, where the cost function for absolute uncertainty Fi(εi) is downsidefunction.Now from Equations (3.46) and (3.47) we �nd that;
C ′

i (xi) |xi=xi
1 =

1

ai

H′

i (Ri) |Ri=Ri
1

⇒ 2bi

(

xi
1 − ai

)

= 2
di

ai

(

Ri
1 − R0,i

)

⇒ bi

(

xi
1 − ai

)

=
di

ai

(

Ri
1 − R0,i

)

(3.64)
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It follows from (3.62) that Ri
1 =

xi
1R0,i

ai

, and substituting it to Equation (3.64) we�nd :
bi

(

xi
1 − ai

)

=
di

ai

(

xi
1R0,i

ai

− R0,i

)

biai
2
(

xi
1 − ai

)

= diR0,i

(

xi
1 − ai

)

⇒ di =
ai

2bi

R0,i

(3.65)
Since parameters to the right of Equation (3.65) are available then parameter di ofEquation (3.47) can be evaluated.4 DataWe used data from [3], where the cost function parameters were estimated withmodel �tting methods. Available measured data from Kyoto regions were used toderive cost functions for reducing emission level and uncertainty. Data rooted fromcost reducing functions which were derived by the help of MERGE Model. MERGEis an abbreviation stands for 'A model for Evaluating the Regional and Global E�ectsof GHG Reduction Policies' and was developed by Manne and Richel as it is quotedfrom [14]. Five Kyoto regions were considered for estimating the cost functions.These regions are US, OECDE (OECD Europe), Japan, CANZ (Canada, Australiaand New Zealand combined) and EEFSU(Eastern Europe and Former Soviet Unioncombined). The parameters for emissions and uncertainty reduction which wereprojected with reference to year 2010 are shown in table 1. Energy related carbonemission reductions were only considered and monetary unit was US dollar of 1997.
5 Solution to the ModelIn this section, three optimization methods which are Lagrangian, SequentialQuadratic Programming (SQP) and Di�erential Evolution (DE) have been usedto solve the optimal values of emission levels , relative uncertainty and number ofallocated permits to each Party or Region. Decision variables are plotted againstthe objective function value to establish the relationship between them that is veryimportant for various interpretations in carbon trading context.26



Kyoto target Initial emissions(BAU) Cost functionparameter Initial uncertaintyVariable Ki ai bi R0,iUnit MtC/yr MtC/yr MU$/(MtC/yr)2US 1251 1820.3 0.2755 0.13OECDE 860 1038.0 0.9065 0.20Japan 258 350.0 2.4665 0.15CANZ 215 312.7 1.1080 0.20EEFSU 1314 898.6 0.7845 0.30Total 3898 4419Table 1: Projections with reference to 2010 of Kyoto target together with costparameters of emissions and uncertainty reductions. Source:[3]5.1 Model ResultsIn this subsection and few that follow we are going to discuss di�erent approacheswhich have been used to come with very important results in the context of carbontrading. First, Lagrangian was used thoroughly in optimizing both emission andrelative uncertainty. Second, sequential quadratic programming algorithm has beenused to �nd optimal emission, relative uncertainty and optimal distribution vectorsamong the Parties participating in Kyoto treaty. It is gradient based method thatguarantees local optimal solution. Third, Di�erential Evolution (DE) to �nd optimalemissions, relative uncertainty and optimal distribution of permits. On top of that ithas been used to come up with important visualizations such as relationship betweendecision variables and objective function values that has important implications incarbon trading. Finally, stochastic uncertainty approach has been introduced formodelling of inherent uncertainty in the monitoring of emissions.We were interested also to compare our results with those from [3] who usedthe search method called sequential bilateral trading, where the permit trade wereselected randomly, i.e. [y1, ..., y5] so as to solve the optimal permit vector by changing
[y1, ..., y5] in stepwise manner (+1, -1 stages, i.e a pairwise trade of permits whereone Party gains buy selling permits to another).Relative uncertainty Ri can be expressed in terms of reported emission, xi andabsolute uncertainty, εi from the fact that Ri= εi

xi

. For our case we solved Equations(3.21) and (3.22) by using Lagrangian function (3.23) and its �rst order partialderivatives (3.24), (3.25) and (3.26) which were equated to zero to get the optimalsolutions for both reported emission, xi and uncertainty Ri. The cost functions for27



reducing both emissions, Ci(xi) and relative uncertainty, Hi(Ri) have been de�nedin Equations (3.46) and (3.47).Two important cases were considered. The �rst case we considered each Partyto optimize its own level of emission and relative uncertainty when there was notransaction carried on (that is, the situation where there is no permit trade, yi = 0).This implies that the constraint (3.22) will be xi + xi.Ri = Ki just for each Partyto comply to Kyoto target, Ki.The second case was the situation where by permits, yi were traded or bought.In both cases the optimal Equations (3.24), (3.25) and (3.26) were considered as asystem of nonlinear equations, F (x) = 0. We used an inline function and optimsetcommand which display iterations for solving F (x) = 0 from MATLAB software.The approximate solutions were found in such a way that, F (x) is nearly to zero.The results for both cases are shown to the tables (2) and (3) respectively. Somevariables are de�ned in tables 2 and 3 with abbreviations as follows:
• Ems=Emissions
• Runc=Relative uncertainty
• Sp=Shadow price
• MC=Marginal cost of emission reduction
• MR=Marginal cost of uncertainty reduction
• TC=Total cost for reducing both emissions and relative uncertainty
• Ptr=Permits traded5.2 Sequential Quadratic Programming (SQP)In this subsection we are going to use sequential quadratic programming (SQP)method to solve the optimal emissions, xi, relative uncertainty,Ri, and optimaldistribution of emission permits, yi among the Parties under Kyoto Treaty. Our

28



Ems Runc Sp MC MR TC αi γiVariable x∗
i R∗

i λi C ′
i(xi) H′

i(Ri) Ci(x
∗
i ) +

Hi(R
∗
i )Units MtC/yr - $/tC $/tC $ MUS$ - -US 1134.9 0.1000 -342.6 -376.86 -388820 135740 5.9738 0.6082OECDE 738.4 0.1647 -466.4 -543.22 -344390 87450 4.9711 0.6904JAPAN 230.4 0.1199 -526.9 -590.08 -121400 37110 5.6514 0.6410CANZ 185.6 0.1583 -243.1 -281.58 -45120 18840 4.1254 0.5730EEFSU 991.2 0.3257 109.6 145.30 108640 8120 6.3365 1.1248Total 287260Table 2: Optimal values of both emissions, xi and uncertainty, Ri in the situationbefore trade i.e, yi = 0

Ems Runc Sp MC Ptr TC αi γiVariable x∗
i R∗

i λi Ci
′(xi) yi Ci(x

∗
i )+

Hi(R
∗
i )Units MtC/yr - $/tC $/tC - MUS$ - -US 1312.4 0.1000 -252.9 -278.2 201 77388 6.9336 0.7059OECDE 873.96 0.1774 -252.6 -297.4 169 26887 5.9480 0.8261JAPAN 291.63 0.1316 -254.4 -287.9 72 9085 7.2286 0.8199CANZ 181.36 0.1579 -251.35 -291.0 -5 20073 4.0294 0.5596EEFSU 696.86 0.2585 -251.51 -316.5 -437 35565 4.2292 0.7507Total 0 168998Table 3: The optimal values of emissions and relative uncertainty when the permitswere traded
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quadratic subproblem is:
Gi (xi, Ri) = minxi,Ri

[Zi (xi, Ri)]s.t xi + xi.Ri ≤ Ki + yi

5
∑

i=1

(yi) = 0, yi ∈ (−∞, +∞)

0 ≤ xi ≤ ai, 0 ≤ Ri ≤ R0,i

(5.1)
The function Zi (xi, Ri) is de�ned by:

Zi (xi, Ri) =
5
∑

i=1

[

bi (xi − ai)
2 + di (Ri − R0,i)

2] (5.2)Sequential Quadratic Programming (SQP) is a gradient based method whosefunction to be minimized and the constraints must both be continuous. It guaranteeslocal solution and represents the state of art in non linear programming methodsas it gives e�ciency, accuracy, and percentage of successful solution over a largenumber of test problems [27].Our problem (5.1) is Medium- Scale Optimization of the general form:
min
d∈Rn

q(d) =
1

2
dT Hd + cT d

Aid = bi i = 1, ..., me

Aid ≤ bi i = me + 1, ..., mwhere by a MATLAB function fmincon can be used to solve it.The MATLAB func-tion, fmincon attempts to �nd the minimum of scalar function of several variablesstarting at an initial estimate . fmincon uses Sequential Quadratic Programming(SQP) method. In this method, the function solves the Quadratic Programming(QP) at each iteration. According to [28], [29] and [30] an estimate of the Hes-sian (H) of the Lagrangian is updated at each iteration by using BFGS (Broyden,Fletcher, Goldfarb and Shanno) quasi Newton formula. The general SQP algorithm,according to [17] is as follows: 30



1. Choose a starting point x0 and matrix B0 approximating the Hessian of theLagangian. Set k = 0.2. Terminate if xk satis�es the optimality conditions or if k > kmax.3. Solve the problem QPk:
min

p
Φk(p) = pT gk +

1

2
pT Bkps.t Akp = −ckDenote the solution by pk.4. Set xk+1 = xk + pk.5. Calculate an estimate for the Lagrange multipliers uk+1 and Bk+1 = B(xk+1, uk+1).Set k + 1 and go to 2.5.3 Implementation of solution using SQPDuring the implementation of the solution, bounds from which the optimal valueshave to be found were de�ned as shown in optimization problem (5.1). Initial valuewas set. Equality constraint was implemented in the working �le Separate function�les were created. These are objective function value and non-linear constraints�les. The optimizer fmincon was commanded to call both objective and non-linearconstraint functions. The maximum number of iteration and function evaluationwere set to 106 for more accuracy and precision. After 19 iteration the followingresults were displayed: Ems Runc Ptr TCVariable x∗

i R∗
i yi Ci(x

∗
i )+

Hi(R
∗
i )Units MtC/yr - - MUS$US 1313.3 0.1064 202.07 74731OECDE 874.04 0.1774 169.10 26861JAPAN 292.2 0.1317 73 8949CANZ 180.78 0.1579 -5.6789 20244EEFSU 696.11 0.2584 -438.03 35824Total 0 166609Table 4: The optimal values of emissions, emission permits and relative uncertaintyafter transaction using SQP method 31



Rounding up the permits, the optimal permit vector will be yi = [202 , 169 , 73 ,−6 ,−438]for regions US, OECDE, JAPAN, CANZ and EEFSU respectively. Negative signmeans sellers of permits while positive sign of permits means the buyers of permits.The aggregate sum of cost for all regions was lower than when you compare to thesituation where the trade of permits is taking place, i.e. 166609MUS$ comparedto 287260MUS$. More interpretations can b e drawn, for example, emission levelswhen permits were not transacted were slightly lower compared to the situationwhen the permits were traded. US, OECDE and Japan emission levels increasebecause of buying more permits to pollute while in case of CANZ and EEFSU emis-sions decrease because they are sellers of carbon permits. The results are too closeto those were found by using sequential bilateral trade pointed in [3].Some other classical non-derivative methods such as Nelder-mead algorithm canbe used after using advanced techniques of changing from constrained to uncon-strained optimization.5.4 Di�erential Evolution (DE) algorithmDi�erential Evolution (DE) algorithm was �rst introduced by Price and Storn in1995 and can be classi�ed as an evolutionary optimization algorithm [22]. There areseveral versions of DE. For our case we are going to use a particular version of di�er-ential evolution which is known as DE/rand/l/bin scheme to solve our optimizationproblem:
Gi (xi, Ri) = min

xi,Ri

Zi (xi, Ri) (5.3)s.t xi + xi.Ri ≤ Ki + yiThe function Zi (xi, Ri) is de�ned by:
Zi (xi, Ri) = bi (xi − ai)

2 + di (Ri − R0,i)
2 (5.4)DE/rand/l/bin, according to [23] is the technical name where by:

• rand, means the base vector is randomly chosen.
• l, means l vector di�erence is added to base vector.32



• bin, means the number of parameters donated by the mutant vector, closelyfollow binomial distribution.In general we use this scheme to optimize a function, f of the form:
f(x) : RD −→ R (5.5)The optimization goal is to minimize the value of this objective function f(X);

min(f(x)) (5.6)by optimizing the values of parameters:
X = (x1, ..., xD), X ∈ RD, (5.7)where X is a vector comprised of D objective function parameters. Parameters ofobjective function are also subject to lower and higher boundary constraints, x(L)and x(U) respectively:

x
(L)
j ≤ xj ≤ x

(U)
j , j = 1, ..., D (5.8)The important aspect we should put into consideration is that, Di�erential Evo-lution (DE) like any other Evolutionary algorithm mimics the natural evolutionmechanisms such as reproduction, gene crossover and mutation, survival of �ttestand so on [17]. The general Evolutionary algorithm can be shown in the followingpseudocode fashion [24]:_________________________________________________________BEGININITIALIZE population with random candidate solutions;EVALUATE each candidate;REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO1. SELECT parents;2. RECOMBINE pairs of parents;3. MUTATE the resulting offspring;4. EVALUATE new candidates;5. SELECT individuals for the next generation;ODEND__________________________________________________________33



This general scheme of evolutionary algorithm as �ow chart is presented in �gure 4:
Parents

Population

Recombination

Mutation

Offspring

Survivor selection

Initialization

Termination

Figure 4: The general scheme of Evolutionary algorithm as �ow-chart
For our case we are going to apply DE/rand/l/bin strategy (Algorithm 5.1)which is the representative of DEGS (Di�erential Evolution with Global Selection)in convex unimodal problems and has the following control parameters: Crossoverrate, CR ∈ [0, 1], mutation factor F ∈]0, 1+] and the population size NP . D is thedimension of the problem (the length of population vectors ~xi,g) [25].Unimodal problem according to [24] is de�ned as:De�nition 5. (Unimodal problem)A problem is said to be unimodal if there is only one point which is �tter than allof its neighbors.5.5 Implementation of solution using DEOur solution to the constrained optimization problem 5.3 has been implementedby using function 'sol=cde(func,limits)'. This function implements Di�erential Evo-lution (DE) strategy, DE/rand/l/bin. The name of the function to be minimized34



Algorithm 5.1 DE/rand/l/bin (DEGS)Randomly initialize population, g = 1while termination criterion not met dofor i = 1;i ≤ NP ;i = i + 1 doRandomly pick r0, r1, r2 ∈ {1, 2, ..., NP}, r0 6= r1 6= r2 6= iRandomly pick jrand ∈ {1, 2, ...., D}for j = 1;j ≤ D;j = j + 1 do
vj,i,g = xj,r0,g + F. (xj,r1,g − xj,r2,g) (Mutation)
uj,i,g =

{

vj,i,g if rand[0, 1] ≤ CR ∨ j = jrand (Crossover)
xj,i,g otherwiseend forend forfor i = 1; i ≤ NP ;i = i + 1 do

~xi,g + 1 =

{

~ui,g if f( ~ui,g) ≤ f( ~xi,g) (Selection)
~xi,g otherwiseend for

g = g + 1 (update generation counter)end whileand initialization of limits of decision variables are given as input. Output is thebest found solution.The population size, NP was set to 100 while keeping updating generationcounter from G = 1 to the maximum number of Gmax = 300 so as to be assured ofgetting the best solution. Both mutation factor F and Crossover rate, CR were setto 0.9The limits in which the best solution will be sought were provided by consideringthe following facts:
• The optimal emission levels, x∗

i , should be between 0 and ai which is BusinessAs Usual (BAU), i.e. 0 ≤ x∗
i ≤ ai. BAU is emission without restrictions andis shown in table 1.

• Optimal Relative uncertainty, R∗
i , should not exceed initial uncertainty, R0,ipresented in table 1, i.e. 0 ≤ R∗

i ≤ R0,i.
• For economic reasons, Permits traded, yi, whether negative (for potential sell-ers) or positive (for potential buyers) should not exceed the Kyoto targets, Kiset to each Party or Region, i.e −Ki ≤ yi ≤ Ki.
• Permits in all regions should sum up to 0, i.e. ∑ yi = 0. This means that nomore permits should be left in the market for transaction.35



The results presented in table 5 were found by using Di�erential Evolution algorithm:We were very interested to �nd the number of permits each Party can buy to emitEms Runc Sp MC Ptr TC αi γiVariable x∗
i R∗

i λi Ci
′(xi) yi Ci(x

∗
i )+

Hi(R
∗
i )Units MtC/yr - $/tC $/tC - MUS$ - -US 1304.3 0.0998 -253.3 -278.6 200 79768 6.9288 0.7054OECDE 881.73 0.1672 -251.4 -293.4 170 27300 5.9538 0.8269JAPAN 293.61 0.1126 -261.8 -291.3 70 10660 7.1848 0.8149CANZ 182.26 0.1385 -249.7 -284.3 -4 20902 4.0486 0.5623EEFSU 699.19 0.2146 -250.6 -304.4 -436 46593 4.2340 0.7516Total 0 195883Table 5: The optimal values of emissions, relative uncertainty and permits found byusing Di�erential Evolution algorithm 5.1more or to sell so as to gain pro�t from the buyers. For illustration we called (evoked)the history from initial generation to maximum generation where by the optimalnumber of permits can be found. For example after 17 generations, US had beenallocated 200 permits as it is shown in �gure 5:The maximum number of generations from which the optimal value of permitswill be sought, is found to the point where our �gure starts to stabilize and forminghorizontal line.We extended our knowledge of using DE in solving also the optimal solutionof problem (5.3) when there is no transaction, i.e, yi = 0. The parameter x1, R1and objective function value, G1 (x1, R1), for US were plotted against number ofgenerations in �gure 6 and �gure 7 as follows:The optimal values, x∗

1 , R∗
1 and G1 (x1, R1) which is objective function value werefound to be 1134.9MtC/yr, 0.1023 and 134800MUS$ after 95, 129 and 112 numberof generations respectively (confer �gure 6 and 7).We were also interested to �nd how the parameter for emission, x1 and parameterfor relative uncertainty, R1 are related to objective function value (cost), G1 (x1, R1).The parameter, x1 was found to be negatively correlated to objective function value,

G1 (x1, R1) as it can be clearly seen from the left panel of �gure 6 and the separate�gure 7. The relationship between emission parameter, x1 and objective functionvalue (total cost) was plotted in �gure 8 as follows:36
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Figure 5: The number of generations against permits in US Region
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Figure 6: Parameter value, x1 and R1 plotted against number of generation in USRegion 37



0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

generation

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

Generation against objective value

Figure 7: Objective function value, G1 (x1, R1) against number of generation
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We calculated also correlation coe�cient, ρ, for −1 ≤ ρ ≤ 1, from history ofgenerations, to check the extent by which the two parameters showing in �gure 8are correlated. Correlation matrix, R(i, j) was found by using the formula:
R(i, j) =

C(i, j)
√

C(i, i)C(j, j)
(5.9)where by C is covariance matrix. Suppose, G1 is objective function value for US,then correlation matrix, R(x1, G1) was found to be:

R(x1, G1) =

















x1 G1

x1 1.0000 −0.9996

G1 −0.9996 1.0000

















(5.10)
Correlation coe�cients are o�-diagonal elements of matrix 5.10. That is corre-lation coe�cient of parameters x1 and G1 is ρ = −0.9996. This is to show that thetwo parameters are strongly negative correlated. An implication to carbon tradingcontext is that as emission decreases, the cost of abating (reducing) it increases andvice-versa.We plotted also the relationship between relative uncertainty, R1 and objectivefunction value, G1 in �gure 9 as follows:Figure 9 shows that parameter, R1 has no correlation with objective functionvalue, G1. This indicates that relative uncertainty, R1 for US Region has little or noe�ect (contribution) to objective function value. Correlation matrix for parameters

R1 and G1 was calculated and found to be:
R(x1, G1) =

















R1 G1

R1 1.0000 −0.0214

G1 −0.0214 1.0000

















(5.11)
where by its corresponding correlation coe�cient is, ρ = −0.0214.
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Although results found by using Di�erential Evolution algorithm in table 5 areconverging to those found by classical Lagrangian method in table 3, we have totake a note that DE is heuristic method and it does not guarantee global solution[17]. Sometimes Evolutionary algorithm gives both feasible and infeasible solutions.However it is impractical to �nd the objective function value, for an infeasible so-lution, but two solutions according to [26] are compared at a time by using thefollowing scenarios:
• Any feasible solution is preferred to any infeasible solution.
• Among two feasible solutions, the one having a better objective function valueis preferred.
• Among two infeasible solutions, the one having a smaller constraint violationis preferred.5.6 Employment of Kuhn Tucker conditions to the ModelIn this subsection we are going to analyze Kuhn Tucker(KT) conditions (some-times called Karush-Kuhn-Tucker(KKT)) according to the results presented in table2 and table 3 respectively. This is generalization of Lagrangian method to determinethe necessary conditions for optimality. According to [16], p.330, these conditionstell us much on how the �rst order derivatives of objective function is related tothe active constraints at a solution xi. First we are going to analyze the situationwhen there is no trade of permits. This implies that constraint (3.22) becomes

xi + xiRi = Ki.Let us consider the optimization problem presented in Equations (3.21) and(3.22). By substituting the cost functions (3.46) and (3.47) and adding non negativ-ity constraints, xi ≥ 0 and Ri ≥ 0. Suppose that we present the function Wi(xi, Ri)such that:
Wi(xi, Ri) = bi (xi − ai)

2 + di (Ri − R0,i)
2 (5.12)
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It follows that the optimization problem becomes;
Ui(xi, Ri) = minxi,Ri

Wi(xi, Ri)s.t xi + xiRi = Ki

xi ≥ 0

Ri ≥ 0

(5.13)
The Lagrangian function of Problem (5.13) can be written as follows;

L(xi, Ri, λi, µi, Λi) = bi (xi − ai)
2 + di (Ri − R0,i)

2 −λi(xi +xiRi −Ki)−µixi −ΛiRi(5.14)The following Kuhn-Tucker conditions apply:
• Primal feasibility

xi + xiRi = Ki

xi ≥ 0

Ri ≥ 0

(5.15)
• Stationarity

∂L

∂xi

= 2bi(xi − ai) − λi − λiRi − µi = 0 (5.16)
∂L

∂Ri

= 2di(Ri − R0,i) − λixi − Λi = 0 (5.17)
• Dual feasibility

µi ≥ 0 (5.18)
Λi ≥ 0 (5.19)42



• Complementary slackness
µixi = 0 (5.20)

ΛiRi = 0, for i = 1, 2, ..., 5 (5.21)It is clearly that Ki 6= 0 and it follows from (5.15) which can be written as
xi(1 + Ri) = Ki, that a�rms xi 6= 0. From Equation (5.20) implies that µi = 0. Itis practically that reported emission can not be equal to Kyoto target, xi 6= Ki andimmediately it follows that from (5.15) that Ri 6= 0. Hence from (5.21) it impliesthat Λi = 0.By substituting µi = 0 and Λi = 0 into (5.16) and (5.17) and make use of equalityconstraint (5.15) we shall get the system of the following three equations:

2bi(xi − ai) − λi − λiRi = 0

2di(Ri − R0,i) − λixi = 0

xi + xiRi − Ki = 0

(5.22)
Solving the system (5.22) we shall end up with optimal values for emission , relativeuncertainty and shadow prices presented in table 2.We have noted that xi 6= 0 and Ri 6= 0. This implies that the only activeconstraints in (5.15) is xi + xiRi = Ki.5.6.1 KT su�cient second order conditionsIn order to examine for su�cient KT second order conditions we need to �nd theHessian matrix by considering Equations (5.16) and (5.17) as follows:

∇2(xi, Ri, λi) =







2bi −λi

−λi 2di






(5.23)
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The values for bi and λi are obvious presented in table 1 and 2 respectively. In orderto get the values for di we have to apply relation (3.65) where the values for initialuncertainty R0,i are also provided in table 1. Then the values for di for i = 1, 2, ..., 5separately are:
d1 = 7022100, d2 = 4883500, d3 = 2014300, d4 = 541700 and d5 = 2111600We have now to apply determinant and eigenvalue tests so as to deduce the natureof our minima points. From Equation (5.23) and for i = 1, let us call a11 = 2b1.The determinants of a11 and a22 are given by:

|a11| = 2b1 = 2 ∗ 0.2755 = 0.551 > 0, (5.24)
|a22| =

∣

∣

∣

∣

∣

∣

∣

2b1 −λ1

−λ1 2d1

∣

∣

∣

∣

∣

∣

∣

= 4b1d1 − λ1
2 = 7620979.44 > 0 (5.25)For i = 2 it follows that:

|a11| = 2b2 = 2 ∗ 0.9065 = 1.813 > 0, (5.26)
|a22| =

∣

∣

∣

∣

∣

∣

∣

2b2 −λ2

−λ2 2d2

∣

∣

∣

∣

∣

∣

∣

= 4b2d2 − λ2
2 = 17490042.04 > 0 (5.27)For i = 3 we have:

|a11| = 2b3 = 2 ∗ 2.4665 = 4.933 > 0, (5.28)
|a22| =

∣

∣

∣

∣

∣

∣

∣

2b3 −λ3

−λ3 2d3

∣

∣

∣

∣

∣

∣

∣

= 4b3d3 − λ3
2 = 19595460.19 > 0 (5.29)For i = 4 we �nd that:

|a11| = 2b4 = 2 ∗ 1.1080 = 2.216 > 0, (5.30)
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|a22| =

∣

∣

∣

∣

∣

∣

∣

2b4 −λ4

−λ4 2d4

∣

∣

∣

∣

∣

∣

∣

= 4b4d4 − λ4
2 = 2341716.79 > 0 (5.31)For i=5, we have:

|a11| = 2b5 = 2 ∗ 0.7845 = 1.569 > 0, (5.32)
|a22| =

∣

∣

∣

∣

∣

∣

∣

2b5 −λ5

−λ5 2d5

∣

∣

∣

∣

∣

∣

∣

= 4b5d5 − λ5
2 = 6614188.64 > 0 (5.33)In order to use eigenvalue test, let the values of eigenvalues be ηi and manipulatingmatrix in Equation (5.23) it will give us:

∣

∣

∣

∣

∣

∣

∣

2bi − ηi −λi

−λi 2di − ηi

∣

∣

∣

∣

∣

∣

∣

= 0 (5.34)The determinant of Equation (5.34) gives us:
ηi

2 − 2(bi + di)ηi + 4bidi − λi
2 = 0 (5.35)Now we have to solve eigenvalues, ηi from the set of quadratic equations in (5.35)separately for i = 1, ..., 5 as follows:For i = 1 we have quadratic equation:

η1
2 − 2(b1 + d1)η1 + 4b1d1 − λ1

2 = 0

=⇒ η1
2 − 14044200.551η1 + 7620979.44 = 0 (5.36)Equation (5.36) gives η1 = (1.4044).107 > 0 or η1 = 0.5426 > 0For i = 2 it follows;
η2

2 − 2(b2 + d2)η2 + 4b2d2 − λ2
2 = 0

=⇒ η2
2 − 9767001.813η2 + 17490042.04 = 0 (5.37)Equation (5.37) gives η2 = (9.7670).106 > 0 or η2 = 1.7907 > 0
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For i = 3, we have quadratic equation:
η3

2 − 2(b3 + d3)η3 + 4b3d3 − λ3
2 = 0

=⇒ η3
2 − 4028604.933η3 + 19595460.19 = 0 (5.38)By solving (5.38) we get η3 = (4.0286).106 > 0 or η3 = 4.8641 > 0For i = 4, we have:
η4

2 − 2(b4 + d4)η4 + 4b4d4 − λ4
2 = 0

=⇒ η4
2 − 1083402.216η4 + 2341716.79 = 0 (5.39)Solving (5.39) we get η4 = (1.0834).106 > 0 or η4 = 2.1615 > 0Lastly, for i = 5 we �nd that:
η5

2 − 2(b5 + d5)η5 + 4b5d5 − λ5
2 = 0

=⇒ η5
2 − 4223201.569η5 + 6614188.64 = 0 (5.40)Solving (5.40) we get η5 = (4.2232).106 > 0 or η5 = 1.5662 > 0Since all roots of quadratic equations (5.36, 5.37, 5.38, 5.39, 5.40) are positive impliesthat all eigenvalues are also positive. Hessian matrix (5.23) is positive de�nite andeigenvalues are all positive, concluding that (x∗, R∗) = (xi

∗, Ri
∗) are local minimumpoints.Furthermore to be assured that our solution attains local minimum let us test ifthe following relation exists according to our optimal values we have:

L(x∗, R∗, λ, µ, Λ) ≤ L(x∗, R∗, λ∗, µ∗, Λ∗) ≤ L(x, R, λ∗, µ∗, Λ∗) (5.41)In-fact from (5.14) when substituting the optimal values from table 2 and costparameters from table 1 we �nd that:
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L(x∗, R∗, λ∗, µ∗, Λ∗) = bi (xi
∗ − ai)

2 + di (Ri
∗ − R0,i)

2 − λi
∗(xi

∗ + xi
∗Ri

∗ − Ki)(5.42)
− µi

∗xi
∗ − Λi

∗Ri
∗

=⇒ L(x∗
1, R

∗
1, λ1

∗, µ1
∗, Λ1

∗) = 136637, L(x∗
2, R

∗
2, λ2

∗, µ2
∗, Λ2

∗) = 87450,
L(x∗

3, R
∗
3, λ3

∗, µ3
∗, Λ3

∗) = 37120, L(x∗
4, R

∗
4, λ4

∗, µ4
∗, Λ4

∗) = 18840 and
L(x∗

5, R
∗
5, λ5

∗, µ5
∗, Λ5

∗) = 8120Again we can �nd separately the values of expression L(x∗
i , R

∗
i , λi, µi, Λi) for i =

1, ..., 5 as follows:
L(x∗

1, R
∗

1, λ1, µ1, Λ1) = 135740 − 1134.9µ1 − 0.1000Λ1 (5.43)
L(x∗

2, R
∗

2, λ2, µ2, Λ2) = 87450 − 738.4µ2 − 0.1647Λ2 (5.44)
L(x∗

3, R
∗

3, λ3, µ3, Λ3) = 37110 − 230.4µ3 − 0.1199Λ3 (5.45)
L(x∗

4, R
∗

4, λ4, µ4, Λ4) = 18840 − 185.6µ4 − 0.1583Λ4 (5.46)
L(x∗

5, R
∗

5, λ5, µ5, Λ5) = 8120 − 991.2µ5 − 0.3257Λ5 (5.47)Depending on the choice of µi ≥ 0 and Λi ≥ 0 from conditions (5.18) and (5.19) itfollows that:
L(x∗, R∗, λ, µ, Λ) ≤ L(x∗, R∗, λ∗, µ∗, Λ∗) (5.48)We also have to �nd the value of expression L(x, R, λ∗, µ∗, Λ∗) by substituting to itthe values of shadow prices λi from table 2 as follows:

L(x, R, λ∗, µ∗, Λ∗) = bi (xi − ai)
2 + di (Ri − R0,i)

2 + λi
∗ (xi + xiRi − Ki) (5.49)47



But xi + xiRi − Ki −→ 0 and from the fact that the value of di is large enough wewill end up with:
L(x, R, λ∗, µ∗, Λ∗) = bi (xi − ai)

2 + di (Ri − R0,i)
2 (5.50)This signals that:

L(x∗, R∗, λ∗, µ∗, Λ∗) ≤ L(x, R, λ∗, µ∗, Λ∗) (5.51)Hence from relations (5.48) and (5.51) and by transitive property we get the generalexpression:
L(x∗, R∗, λ, µ, Λ) ≤ L(x∗, R∗, λ∗, µ∗, Λ∗) ≤ L(x, R, λ∗, µ∗, Λ∗) (5.52)We claim from the general expression in (5.52) that (x∗, R∗) = (xi

∗, Ri
∗) are localminimum points of the problem. That is our solution reach the local minimum.5.7 Evaluation of the Model ResultsTable 2 presents the optimal values of Equations (3.21) and (3.22) for bothemissions, xi and relative uncertainties, Ri each Party should choose so as to complywith Kyoto Protocol. In this situation no transaction is done in the sense that carbonpermits are not bought or traded. The shadow prices, λi are not in equilibrium.They di�er from one region to another to re�ect the potential for trade. This meansthat each region has its own willing to pay for an extra unit of emission it emits,i.e. by relaxing constraint (3.22) by one unit. In future Party members will see thebene�t of trading permits so as to equilibrate and bringing down the shadow price.The shadow prices for US, OECDE, Japan and CANZ are negative in the sensethat those regions are positively willing to pay amounts of shadow prices shownin table 2 for an extra unit of emission, that is for every 1tC. Further more it ispointed in [15] p.686 that the necessary condition for minimization problem is for

λ values to be non-positive. The shadow price of EEFSU is positive in the sensethat the region does not need to carry any emission reduction strategy to complywith Kyoto Protocol. For the same argument according to [1] the marginal costs
C ′

i(xi) and H′
i(Ri) for reducing emissions and relative uncertainty respectively arenegative for regions US, OECDE, Japan and CANZ so as to be in positive sense inreducing emissions and relative uncertainty. These regions are willing to pay for anadditional unit of reduced emissions or relative uncertainty. The aggregated total48



cost for reducing both emissions and relative uncertainty before any transaction isdone was found to be 287260 MU$.The values for αi and γi were calculated following the relations (3.53), (3.54)and (3.65). The values for αi range from 4.1254 for CANZ to 6.3365 for EEFSU,while the values for γi range from 0.5730 for CANZ to 1.1248 for EEFSU. Theinteresting feature here is in region EEFSU that has γi > 1. This implies that itdoes not need to have any initiative to abate emissions so as to comply with Kyototargets. This follows direct from Equation (3.60) from which ai < Ki (confer table1), that means the BAU assigned to EEFSU is lower than Kyoto targets. Anotherinteresting feature is that, the smaller the value of γi the higher the need to abatethe reduction in order to comply with Kyoto targets. For instances CANZ has taskto reduce 1 − 0.5730 = 0.427 ≈ 43% from the BAU emission levels, while OECDEhas to reduce 1 − 0.6904 ≈ 31% from its BAU emission level. Both αi and γi aregreater than threshold 0.25 that was stated in Equation (3.58) to show that fromeconomic point of view, Parties will not be willing to abate to the threshold. It ispointed in [3] that, since values of αi > 3 and γi > 0.45 then in our case non-convexsolution does not exist. Then it is possible our solution to attain local minimum.It follows from table 3 that permits are now bought or traded within the Partymembers.Both CANZ and EEFSU accrue negative amount of permits, yi whichimplies that they are net seller of permits in the carbon market, while US, OECDEand Japan accrue positive amount of permits to indicate that they are potentialbuyers of permits in the carbon market. The shadow prices for all regions is roughlyequilibrated to 252$/tC. The total cost for reducing both emissions and relativeuncertainty is 168998MUS$ lower than the total cost in the situation when therewas no trade of permits (confer table 2). This has made a slight increase of optimalemission level of both emissions, xi and relative uncertainty Ri for potential buyersof permits which are US, OECDE and Japan compared to the situation when therewas no trade of permits.The value of γi for EEFSU after the trade of permit is now 0.7507 < 1. Thismeans that EEFSU is now obliged to take part in emission reduction compared tothe situation when there was no trade. We can signal also the slight increase of γi tothose regions which are potential buyers of permits. This indicates that they havea slight relief of emission reduction and they will be motivated to buy permits inthe market than to invest in other programmes of cutting down emissions. Likewiseeven in the context of trading permits the values of αi and γi are greater than 349



and 0.45 respectively. This implies that non-convex solution does not exist and ouroptimal solutions will be locked to local minimum.However from emission cost reducing function in (3.46) is a decreasing functionfrom zero emission to Business As Usual (BAU). The cost function becomes zerofrom BAU onwards as a re�ection of not having any restrictions or regulations tocounter emitters. It indicates that costs for cutting down emissions increases asemission decreases and vice versa up to BAU. Afterwards costs stabilize to zero.This is shown brie�y in �gure 10 as an example from US with regard to data shownin table 1.
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Figure 10: Costs for reducing emissions against reported emissions for US withreference to Equation (3.46)
It is also obvious for the case of uncertainty reduction cost function (3.47) that is adecreasing function. This indicates that the cost for monitoring relative uncertaintyincreases as volume of uncertainty decreases and vice versa to initial uncertaintyand becomes zero onwards (Confer �gure 11).50
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Figure 11: Costs for monitoring uncertainty against reported relative uncertaintyfor US with reference to Equation (3.47) and data from table 1
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We can get clear picture when holding all regions' cost functions together. In�gure 12, given that Marginal cost, MC =
∂C

∂X
, where C and X are both cost forreducing emission and reported emission respectively it is fundamental that, if allregions will be forced to cut down emissions as much as possible, JAPAN wouldhave incurred high Marginal abatement costs for emission than other regions. It isalso pointed in [21] those regions with high marginal abatement cost are consideredto be potential buyers of permits while those which have low marginal abatementcost are potential sellers of permits.
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Figure 12: Costs against regions' reported emissions hold together with reference todata from table 1
In �gure 13 all cost functions for uncertainty are decreasing functions to zero.Again since Marginal cost, MC =

∂H
∂R

, where H and R are costs for reducinguncertainty, and reported relative uncertainty respectively then it follows that UShas high marginal abatement cost for uncertainty than other regions.The concepts of Abatement cost function and Marginal Abatement cost (MAC)has been de�ned by [21] as follows: 52
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Figure 13: Costs against regions' reported relative uncertainty hold together withreference to data from table 1
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De�nition 6. (Abatement cost function and MAC)Abatement cost function describes cost that related to emission reduction. ThenMarginal Abatement Cost (MAC) is de�ned as the minimum possible cost related toemission reduction.It is further pointed in [21] that both economic theory and empirical resultsindicates that MAC is a grown function of emission reduction level. Let us takean example of US. Emission for US was targeted to 1135MtC/yr with a MAC of377.6$/tC. If the right to emit is decreased from that level Marginal abatement Cost(MAC) is higher than the targeted one. That means it is cheaper to buy additionalpermits to emit more than to introduce new pollution reduction investments (Confer�gure 14).
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Figure 14: Marginal Abatement Cost (MAC) against Emission for US with referenceto data from table 2It can be shown that there is slight improvement when carbon permits are traded.After the trade of permits the optimal emission for US has increased to 1312 MtC/yrcompared to 1135 MtC/yr when no trade was conducted. However MAC has de-creased sharply to 278$/tC compared to 377.6$/tC when there were no transaction54



carried. This is due to the fact that US is a potential buyer of additional permitsfrom the market to pollute more. This is contrast to CANZ and EEFSU where bythere is slight decrease in optimal value of emissions and sharp increase in MACfrom the situation where no trade of permits is carried to the context where tradeis taking place. For illustration compare �gure 14 and 15
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Figure 15: Marginal Abatement Cost (MAC) against Emission for US when permitsare traded with reference to data from table 3The behavior of �gures 14 and 15 can be hold together to �gure 16. The decreasein MAC from 377.6$/tC to 278$/tC indicates that it is cheaper for US to buyadditional carbon permits in market to have right to emit more, i.e. from 1135MtC/yr when permits are not bought to 1312 MtC/yr in the situation permit tradeis allowed.Likewise for CANZ who are potential seller of permit say, optimal level of emissionis decreased from 185.6MtC/yr to 181.4MtC/yr and by doing so raising the MACfrom 281.6$/tC to 291$/tC. This behavior has been shown in �gure 17
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Figure 16: Marginal Abatement Costs (MACs) against Emissions for US for situa-tions when no permit trade and when permit trade is allowed with reference to datafrom tables 2 and 3

56



0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

700

Emissions,permits

M
A

C

 

 
MAC function after trade of permits
 Optimal Emission level target for CANZ before transaction

Figure 17: Marginal Abatement Costs (MACs) against Emissions for CANZ forsituations when no permit trade and when permit trade is allowed with reference todata from tables 2 and 3
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The relationship of all three variables,i.e. Emissions, uncertainty and total costsfor reducing both emissions an d relative uncertainty can be shown in 3-D surfaceof �gure 18
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Figure 18: 3-D surface shown how Emissions, uncertainty and total cost for reducingemission are related in US region with reference to data from table 1
It is clearly noticed that as total costs for cutting down both emissions and relativeuncertainty increase then volume of emissions and relative uncertainty decrease.
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6 Stochastic Emission UncertaintyEmission data in this paper are reported over a certain period of time, i.e, yearlyby committing small error. This kind of error can not be neglected for better resultsof modeling, that is why we have to switch from deterministic of assessing emissionuncertainty to probabilistic one. In this section we are going to analyze emissionuncertainty in stochastic framework.Let us assume that optimal emission levels, x∗
i , reported in table 2 are estimatedaverages of emissions taken over a year for each Party or Region. Relative uncer-tainties, R∗

i , are fractions of unreported emissions due to emission factors, emissionsource and lack of general knowledge about emission generating process and so on.The actual emission will be given by:
X = x∗

i + x∗

i Ri (6.1)Suppose that emission level, X is the random variable and is normally distributedwith mean, E(X) = µ and V ar(X) = σ2, where by X is real emission levels.X can be generated by considering the relationship:
X = µi + ξi (6.2)where by error in emission ξi is normally distributed with mean 0 and variance,

V ar(ξi) = σ2, i.e ξi ∼ N(0, σ2). In this case for each Region or Party, i, the newlygenerated emission levels will be:
Xi = µi + N(0, σ2), for i = 1, ..., 5. (6.3)For better result we are going to simulate emission levels by using the randomgenerator r from normal distribution with sample size of one million (1000000)de�ned by:

r = µi + σ ∗ randn(nsample, 1) (6.4)where r will be newly generated emission level, µi is estimated mean or average ofemission levels and σ is its corresponding standard deviation.59



After the random generation of one million sample size of emission levels andhaving calculating the standard deviation, σ from the relationship:
Z =

X − µ

σ
(6.5)where by Z = 1.645 so for probability that the actual emissions in table 2 shouldnot exceed Kyoto target, i.e P(Xi ≤ Ki) is brought to 95%. Then the histogramsof each Party or Regions are drawn as follows:
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Figure 19: The histogram showing normal distribution for emissions in US andOECDE
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Figure 20: The histogram showing normal distribution for emissions in JAPAN andCANZThe standard deviation, σ, of each region was calculated by using Equation 6.5and we found that σ = 34.5, 37.0, 8.4, 8.9 and 98.1 for US, OECDE, Japan, CANZ60
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Figure 21: The histogram showing normal distribution for emissions in EEFSUand EEFSU respectively. EEFSU has widest distribution of all, having the highestmeasure of variability, σ = 98.1. This is due to the fact that its uncertainty emissionrelative to the reported one is too high, i.e. its R∗
i = 0.3257, that means about 33%of emission, x∗

i = 991.2MtC/yr is not reported (refer table 2). Japan has leastmeasure of dispersion, i.e. σ = 8.4. The data points are close to the mean emission,x∗
i and its uncertainty emission, R∗

i = 0.1199 is too small compared to reportedemission, which is about 12% of the reported emission.However, we can assume that total emissions,∑Xi is normally distributed withmean,∑µi and variance,∑σ2
i , i.e. ∑Xi ∼ N

(

∑

µi,
∑

σ2
i

).The probability that the total emissions in table 2 do not exceed the total Kyototarget, i.e. P ( 5
∑

i=1

Xi <

5
∑

i=1

Ki

) in table 1 is brought to 95% and it is shown in thefollowing histogram:We are now interested to shift our focus to theoretical approach of how to intro-duce stochastic modeling and probability distribution to describe uncertainty. Letus assume that the aggregate (total) emission, X denoted by 5
∑

i=1

Xi is normallydistributed with mean, µi and variance, V ar(X) = σi
2, i.e. Xi ∼ N(µi, σ

2
i ). Byusing Equation (6.5) we can build the following relationship:61
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Figure 22: The histogram showing normal distribution for total emissions in allRegions described in table 2Let us call the upper α-level of emissions, Eα, for Kyoto regions, i = 1, ..., 5 isgiven by:
Eα = µ(X) + Zασ(X) (6.6)

=

5
∑

i=1

µi + Zα

√

√

√

√

5
∑

i=1

σ2
i (6.7)A cost function for keeping emission levels and uncertainty levels at {µi, σi} canbe formulated as follows:

W (µ, σ) =

5
∑

i=1

[

αi(µi − ai)
2 + βi/σ

2
i

] (6.8)Now let t be a target level for total emissions which is strictly bigger than totalKyoto target, i.e. t >
∑5

i=1 Ki, then we de�ne our optimization task as follows:We are required to �nd values for {µi, σi} that minimize the cost of bringing theupper α-level (for instance 95% level) of emissions down to the target value t.This leads to the following optimization task:62



min
µi,σi

5
∑

i=1

[

αi(µi − ai)
2 + βi/σ

2
i

]

s.t 5
∑

i=1

µi + Zα

√

√

√

√

5
∑

i=1

σ2
i < tWe suggest this approach to be the best way to introduce stochastic modeling andprobability distributions to describe the uncertainty.The optimum solution naturally depends on the chosen target level t and the α-level. Using other non-gaussian distribution to model the uncertainty would alsogive variants to this method.

63



7 Conclusion and Future workThe challenges posed by global warming e�ects have motivated most of researchersto turn around it, so as to get the way to alleviate them.In this Master's Thesis, the model for solving optimal level of emissions and rela-tive uncertainty was well developed. It is convex, continuous and di�erentiable atevery point. The smoothness of this model makes it easy for classical optimizationmethods to give best results [17]. In the part of analysis, the data extracted from[3] (confer table 1) were useful and consistent in describing some interesting charac-teristics in the context of carbon trading as shown in �gure 8.Exact and heuristic optimization methods have been used for solving optimal valuesand analyzing real and practical situations in carbon trading context. These meth-ods are Lagrangian and Di�erential Evolution (DE) respectively. The results werepresented in table 2- 5. MATLAB software was used to plot features of our interestsuch as parameter values showing in �gure 6 and 7. The relationship (correlation)between parameter values and objective function values were shown in �gure 8 and9.For the sake to avoid neglecting errors in reported emissions, stochastic emissionuncertainty were explicitly analyzed in stochastic framework. Emission, X was ran-domly generated by assuming that it follows the gaussian (normal) distribution withmean, µ and variance, V ar(X) = σ2. Errors, ξi in reported emission were normallydistributed with mean, µ = 0 and variance, V ar(ξi) = σ2. Results and interpreta-tions were presented in �gure 19 up to �gure 22.In spite of the fact that we got some fruitful results, this work should be taken asa base for future researches. Data used in this thesis were too deterministic , so werecommend in future work, the application of Time series data, i.e. carbon permitprices collected daily for past �ve years to the following areas:1. Relationship between electricity and carbon markets in analyzing equilibriumprices of the two markets, seasonality, mean reversion, volatility and jumps(spikes). Analysis of data can be extended to examine the e�ects of recentglobal economic crisis to both markets.2. Econometric analysis of carbon prices using regression models, ARMA (AutoRegressive Moving Average), ARCH (Auto Regressive Conditional Heteroscedas-ticity), GARCH (Generalized Auto Regressive Conditional Heteroscedasticity)and statistical tool, MCMC (Markov Chain Monte Carlo) which includes ran-dom walk. 64
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Appendix: The MATLAB Codes for SQP results pre-sented in table 4% Function files%1.Function file for non-linear constraintsfunction [c,ceq] = NonLinearConstraints(X,data)x = X(1:5);y = X(6:10);R = X(11:15);c = x.*(1+R)-y-data.K';ceq = [];%2.Function file for objective function valuefunction out = ObjfFunCon(X, data)x = X(1:5)';y = X(6:10)';R = X(11:15)';out = sum( data.b.*(x - data.a).^2 + data.d.*(R - data.R0).^2 );%%Working fileclc; clear all; close alldisp('Solution using FminCon: READ MATLAB HELP FOR REFERENCES');%define datadata.K = [1251.0 860.0 258.0 215.0 1314.0 ];data.R0 = [ 0.13 0.20 0.15 0.20 0.30 ];data.a = [1820.3 1038.0 350.0 312.7 898.6 ];data.b = [ 0.2755 0.9065 2.4665 1.1080 0.7845 ];data.d = (data.a.^2.*data.b)./data.R0;%define options for optimizeroptimset('fmincon');options.MaxFunEvals = 1e6;options.MaxIter = 1e6;



options.ShowStatusWindow = 'on';%%this turns the medium scale on.options = optimset('LargeScale','off');options.Display = 'iter';%%initializeinit = 10*rand(3,length(data.K)); init = init(:);%%sum constraint ( sum(y)=0 )Aeq = [0 0 0 0 0 1 1 1 1 1 0 0 0 0 0]; %matrix for sum constraintbeq = 0; %sum must be zero%%bounds [x1 x2 x3 x4 x5 y1 y1 y3 y4 y5 R1 R2 R3 R4 R5]%%lower boundlb = [0 0 0 0 0 -Inf -Inf -Inf -Inf -Inf 0 0 0 0 0];%%upper boundub = [data.a Inf Inf Inf Inf Inf data.R0];%%call the optimizer[out cost] = fmincon(@(X) ObjFunCon(X,data),init,[],[],Aeq,beq,lb,ub,...@(X) NonLinearConstraints(X,data),options);%%give out resultstest = out;test(6:10) = round(test(6:10));disp(' x y R')disp(vpa([out(1:5) out(6:10) out(11:15)],5))out = vpa([out(1:5) out(6:10) out(11:15)],5);disp(' sum of y')disp(sum(out(:,2)))%val = ObjFunCon(test,data)


