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The identifiability of the parameters of a heat exchangerehatthout phase change was
studied in this Master’s thesis using synthetically made.d® fast, two-step Markov
chain Monte Carlo method (MCMC) was tested with a couple skcstudies and a heat
exchanger model. The two-step MCMC-method worked well aectehsed the compu-
tation time compared to the traditional MCMC-method.

The effect of measurement accuracy of certain control blegato the identifiability of
parameters was also studied. The accuracy used did not sedeand a remarkable effect
to the identifiability of parameters.

The use of the posterior distribution of parameters in ciifé heat exchanger geome-
tries was studied. It would be computationally most effitienuse the same posterior
distribution among different geometries in the optimigatof heat exchanger networks.
According to the results, this was possible in the case wheifrontal surface areas were
the same among different geometries. In the other casesthe gosterior distribution
can be used for optimisation too, but that will give a wideedgictive distribution as a
result.

For condensing surface heat exchangers the numericalitstalbithe simulation model
was studied. As a result, a stable algorithm was developed.
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Tassa diplomitydssa tutkittiin lauhduttamattoman lamwadimtimen mallin parametrien

maaraytymista synteetttisesti luodulla aineistolla.aRatrien posteriorijakauman sel-
vittdminen tunnetusta aineistosta on inversio-ongelwia jratkaistiin Bayesin kaavan
avulla. Tydssa testattiin nopeaa kaksivaiheista MarkaircMonte Carlo -menetelméaa
(MCMC) ensin muutamalla testiesimerkilld ja sitten lamwvaihdinyhtalolla. Epasuora

kaksivaiheinen menetelma osoittautui toimivaksi ja napdaskentaa perinteiseen suo-
raan MCMC-menetelmé&an verrattuna.

Liséksi tdssa tydssa tutkittiin kontrollimuuttujien naitisepatarkkuuden vaikutusta mallin
parametrien maaraytymiseen. Kontrollimuuttujien kolitsella mittausepatarkkuudella
ei nayttanyt olevan havaittavaa vaikutusta mallin paraeemaaraytymiseen.

Tassa tydssa tutkittiin myods saman posteriorijakaumatt@&sipoisuutta erilaisilla lam-
kannalta edullista yritettaessa optimoida lammonvaitstiamuodostuvaa verkostoa. Saa-
tujen tulosten mukaan samaa posteriorijakaumaa voidagtékderi lammaonvaihdinten
ennustejakauman laskemiseen sellaisenaan, kun lamrhdmv@n otsapinta-ala on sa-
ma. Muutoin saatu ennustejakauma on levedmpi kuin oik@aleriorijakaumalla las-
kettu ennustejakauma olisi.

Lauhduttavan lammonvaihtimen osalta tutkittiin mallimmeriikkaa. Malli saatiin toimi-
maan stabiilisti ja sita voitiin kayttaa toisessa diplojigsa.
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NOTATIONS
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pre-exponential factor in Arrhenius law
heat surface area

area of the cross-section of the duct
frontal surface area

specific heat capacity

constant of Nusselt number (parameter)
case specific hydraulic diameter
activation energy in Arrhenius law
model function

partial model function

correction factor for the cross-flow heat exchanger
observation function

set of geometry variables

specific enthalpy of the moist air
correction factor for the flow rate

rate constant of the reaction

thermal conductivity

thermal conductivity of the wall

height of the slot or length of the plate
constant of Nusselt number (parameter)
mass

molar mass

number of moles

constant of Nusselt number (parameter)
number of passes in combined heat exchanger unit
number of cold slots in heat exchanger
Nusselt number

pressure

atmospheric pressure

pressure in bars

dynamic pressure

static pressure

saturation pressure of water vapour
total pressure

[m?]
[J/kgK]
[-]
[m]
[J/mol]
[-]
[-]
[-]
[-]
[]
[J/kg]
[-]
[mol/dsh
[W/mK]
[W/mK]
[m]
[-]
[ka]
[kg/mol]
[mol]

[-]
[Pa]
[Pa]
[bar]
[Pa]
[Pa]
[Pa]

[Pa]

pressure difference between inside and outside of the du®a] [



prior distribution

posterior distribution (also the notatiaiif) is used)
normalising factor
likelihood density function
Prandlt number

mass flow

volume flow

energy

heat of vaporisation at 0 °C
ideal gas constant

heat capacity flow ratio
Reynold’s number

vector of the state variables
thickness of the wall

time

temperature

temperature in Celsius degrees
dew point of the moist air
dry bulk temperature
temperature in Kelvins

wet bulk temperature

[-]
[-]
[]
[-]
[-]
[ka/s]
[m3/s]
[J]
[J/kg]
[J/Kmol]
[-]
[-]
[-]
[m]
[s]
[°C]/[K]
[°C]
[°C]
[°C]
[K]
[°C]

temperature difference between the hot and the cold miXeg]

layers

logarithmic mean temperature difference between the Q]

and the cold side

overall heat transfer coefficient
velocity

volume

width of the slot

vector of the control variables
mass fraction

set of model variables

molar fraction

thickness coordinate of the wall
vector of observations

number of transfer units

[WHi]
[m/s]
[m’]
[m]

[-]
[-]

[-]
[-]

[m]

[-]

[-]
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Indexes

cond
da
duct

he

convective heat transfer coefficient [WAK]
overall heat transfers coefficient from the condensatedo fliv/m?K]
cold flow

convective heat transfer coefficient of condensate (water)W/m?K]
convective heat transfer coefficient during a simultaned¥s/m?K]
mass transfer

regression coefficients []
noise vector or the error vector of observations [-]
vector of the unknown model parameters [-]
vector of “pseudo” parameters [-]
parameter estimate [-]
theta-function [°C]
O-function of enthalpy [°C]
©-function of moisture content [°C]
dynamic viscosity of the the fluid [Nshh
auxiliary variable in the calculation df [-]
auxiliary variable in the calculation df, . in one pass [-]
density [kg/m3]
standard deviation (of measurement error) [-]
interaction term of the compounds []
heat rate [W]

heat flux [W/m?]
moisture content of the air [kg/kg]
moisture content of saturated air [ka/kg]

incoming cell boundary according to hot flow
outgoing cell boundary according to hot flow
cold, value of the property on cold side
condense

dry air

duct, in the (ventilation) duct

hot, value of the property on hot side

heat exchanger, in heat exchanger
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ma

surf

wall

inlet, incoming, value of the property in the inlet
moist air

outlet, outgoing, value of the property in the outlet
surface, at the surface

water

wall, in the wall

water vapour

at infinity, in mixed layer

Abbreviations

MCMC  Markov chain Monte Carlo

SS
std

Sum of Squares
standard deviation



1 Introduction

Heat exchangers are widely used in paper mills for heat exgde decrease the costs of
paper making. In paper mills different kinds of heat excleagan be coupled together
in many ways so that they produce a network of heat exchangecan be optimised
to produce maximal heat recovery by minimal costs. If thabglity of the optimisation
resultis the aim of the study, some statistical analysigdnbae done. This has to be started
by studying the unit processes. The effects of accuracy téma&property modelling on
heat flow has been studied earlier by Liikdla [1]. His work centrated on traditional
sensitivity analysis and even some Bayesian analysis was. dMarkov chain Monte
Carlo (MCMC) methods are a very efficient way to study therthstions of all model
parameters, compared to traditional sensitivity analysis

The scope of this study will be one heat exchanger unit. ltlvdlmodelled mathemat-
ically, the parameter estimation will be done by MCMC methoodels will be “tra-
ditional” phenomenological engineering models rathenthmore detailed FEM-models.
The posterior distribution of the parameters in heat exgaamodel is estimated. Solving
the model is numerically slow, so some methods to decrea&sedimputation times are
needed and these will be tested here. Measurements neestatistical analysis are very
difficult to get in our case. For that reason syntheticall\dmdata is used in analysis.
Sampling will be studied from the point of view of the measneat sample size and the
size of error in response.

The optimisation of a network of heat exchangers can be donexample, by changing
the geometries and the number of heat exchanger units inetinrk. If the results of
the optimisation are to be statistically estimated, thegras distributions of model pa-
rameters can be used in optimisation. It will be studied Wwaethe posterior distribution
of model parameters generated with one geometry can be uie@dnother geometry,
because that would be computationally the lightest way.

There is an error in the measurement of control variables tdailg the case with all
measurements and models. Combining units together wiéase this error if measure-
ments are not taken between units but measurements are drasieel calculated values
from previous unit and the measurement error there. Thetedfiean error in control
variables to posterior distribution will be studied. Figahe numerics of the condensing
heat exchanger model will be improved.



2 Heat Exchangers

Large heat exchangers are used in industry for heat rectwysgve primary energy used
in the process. Small heat exchangers are used at homesiasnadr in ventilation.
Applications considered here are typical for paper mactiiger section air systems.

A heat exchanger is an apparatus which transfers energyhoofiow to cold flow. Flows
can be separated, for example, by a tube or a plate. Fluidsiosthe thesis are air
and water. There is always some water vapour in the air. Thus aalled moist air.
Fluids can change phase inside the heat exchanger. Herald wean that water vapour
might condensate or water might evaporate. Evaporatingexeaangers are not used is
conventional heat recovery systems in paper machine degéios. For that reason phase
change means hereafter always condensation, not evaporati

If no phase change happens inside the heat exchanger — catidernof the fluid — the
heat exchanger is called hereaft@ncondensing heat exchangertheat exchanger with-
out phase changdf the phase change — condensation of the water vapour —emapp
inside the heat exchanger, the heat exchanger is calledftesr@ondensing surface heat
exchangeor heat exchanger with phase chandfluids on the both side are water, then
the heat exchanger is noncondensing. Such a case will natrisdered here, but the
flows will be moist air in the both sides or moist air in the higkesside and water in the
cold side.

Flows can be parallel, counter-current or crossing oneslatdeat exchangers are called
parallel-flow, counter-flow and cross-flow heat exchangespectively. The cross-flow
plate heat exchanger will be modelled, because for prdcéagaons the cross-flow is most
often the only possibility in paper mills. An illustratiori a cross-flow heat exchanger is
represented in Figufe 1.

The geometry of the heat exchandgy, is thought from the point of view of the patrticle
in the fluid, where the coordinate system is Lagrangian (mpvather than static). The
width of the slot between the plates is small compared toghgth of the sides of the
plate. For this reason the distance between the plais<alled the width of the slot and
the measure along the side of the plai®called the height of the slot. Similarly, the side
of the plate perpendicular to flow is always called the heajhhe plate on both the hot
and the cold side. Thus the information about the side of tive fflas to be always given
when the term height of the plate is used. A hot slot on botls @fidhe heat exchanger



Figure 1: An illustration of a cross-flow plate heat exchange

is assumed. For that reason the total surface area of a hearegerA is two times the
amount of cold slotsv.s multiplied by the area of one plate.

Characteristic measure or hydraulic diamefgg;, is four times the area of cross section
of one slot divided by the circumference of the cross seaifdhe slot. So for a tube it is
the diameter of the tube and for a plate heat exchanger it&rad by

4wl

2(w +1) @

dhydr -

and is about two times the width of the slot between the pla¢esuse usually the height
of the slot is much more than the width of the slot. The crasgignal area of the slots in
a heat exchanger on the hot or the cold side is also callechtafreurface Agors-

Afluid is coming to the heat exchanger and passing it alongtata pipe. The geometry
of the ductGy,. includes the cross-sectional area of the ddigt.;. It is calculated as a
product of the lengths of the sides in a square duct and fondrduct by circumference
measure.

In the following subsections the model without phase chargkthe model where con-
densation happens on the surface are described startmgttie basics of heat transfer.
More information about this topic can be found, for exampid?] or [3].



2.1 Fundamentals of heat transfer

The conservation of energy is the first law of thermodynamitss used later in sec-
tion[Z3. According to the second law of thermodynamicsapytiis increasing. It is a
reason for the phenomena that heat always transfers frortolemtid. There are three
mechanisms of heat transfer: conduction, convection agidtran. In this study the ra-
diation can be neglected because in process temperaterefent of the radiation is not
remarkable.

Conduction happens inside a material. It is caused by tHeramaom movement of
molecules and atoms (diffusion). According to the Fousi¢miv heat flux®” is propor-
tional to temperature gradient. The Fourier’s law in oneafhigional form for a wall made

of homogeneous material is

T
@” - k:wall d— ) (2)

n—
. dyan

where

@” ., isthe perpendicular heat flux of the wall inside the wall [Wm
kwan 1S the thermal conductivity of the wall [W/mK],
T is the temperature [°C]/[K],
Twan IS the thickness coordinate of the wall [m].

Convection combines microscopic diffusion and macroscopotion of the fluid where
energy is transferred by the flow of the fluld [2, p. 6]. Heahsfer from a fluid to a
solid material or the other way around is also called comwact-ree convection always
exists if the surface temperature of a solid material isedéit from the temperature of
the fluid. It can be enforced by external means (enforcedestion). Hereafter enforced
convection is assumed because that is more efficient anchuselganism in process heat
exchangers. When the fluid is enforced to flow along a surfaeeyelocity is zero at the
surface and it increases when we go further from the surfBce layer starting from the
surface and ending at the mixed layer where no change in theityehappens anymore
is called velocity boundary layer. When the temperaturebefluid and surface of the
solid material are not the same, there will be a thermal bapnkhyer near the surface.
The temperature in the fluid near the surface is the same &g cunitface. In the boundary
layer the temperature will increase or decrease graduatiyitireaches the temperature
of the mixed layer. Convection happens from hot surface td ftoid in the boundary
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layer according to the Newton’s law of cooling

" = (Tt — To), 3)
where
®” is the heat flux [W/r],
! is the convective heat transfer coefficient [VWKh
Tyt IS the temperature at the wall surface [°C],
T, isthe temperature in the mixed layer [°C].

2.2 Heat transfer through a wall

In heat transfer through a wall from fluid to fluid convecticapipens on the both sides
of the wall and conduction in the wall as can be seen in Figlirdr2a steady state
situation the temperature gradient inside the wall is linkethat case the one dimensional
Fourier’s law [2) can be expressed as

AT‘Vva
:z/vall = —Kyan 11’ (4)

wall

where AT, is the temperature difference in the wall ang; is the thickness of the
wall.

If convection is included, it will make the situation a l@tbit more complicated. The
fluid is receiving or releasing heat depending on the sidéefwall. When the fluid is
flowing along the wall, the temperature of the fluid is chaggas well as the surface
temperature of the wall in different places of the surfacextiNheat transfer through a
wall in one point of the intersection of the wall will be stedi If we combine convection
and conduction at one point on the wall, we will obtain thddwing equation for heat

flux

" =U(Th. — To.) = UAT, (5)
where
U is the overall heat transfer coefficient W],
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T, isthe temperature of hot flow in the mixed layer [°C],
T... isthe temperature of cold flow in the mixed layer [°C],
AT, is the temperature difference between the hot and the cold
mixed layers [°C].
Te, Th,
A
Swall

Boundary layer|
I~

e / h
TCsurf
Te

Ty

oo

2

undary layer

Figure 2: Transfer of heat through the wall

The overall heat transfer coefficient combines conductimh@nvection resistances be-
tween fluids in the following way

1 1 Swall 1
- - - 6
U Qp * Ewan * Oéc’ ( )

whereqy, is the convective heat transfer coefficient on the hot sideams the convective

heat transfer coefficient on the cold sidé [2, pp. 80-85]. iMa# has a minor effect on

the overall heat transfer coefficient and thus the central tan the right hand side of the
equation can be neglected.

The convective heat transfer coefficienfor fluid can be solved from the definition of
the Nusselt number
- adpyar

Nu = — (7

where
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Nu isthe Nusselt number [-],
dnyar s the case specific hydraulic diameter  [m],
k is the thermal conductivity of the fluid [W/mK].

Nusselt number describes thermal gradient in a boundaey.|8here are several empir-
ical correlations for Nusselt number in literature. We use Dittus—Boelter correlation
here for turbulent flow in circular tubes|[2, p. 496]. The etprafor this situation is

Nu = CRe™Pr", (8)
where
C,mandn are the experimental constants for the Nusselt number [-],
Re is the Reynold’s number [-],
Pr is the PrandIt number [-]-

Reynold’s number is a measure of turbulence in the flow. Iltsidien is

Re = U/dhr ©)
7
where
v Is the velocity of the fluid [m/s]
p is the density of the fluid [kg/r,

1 is the dynamic viscosity of the the fluid [Ns?in
Prandtl number describes dimensionless viscosity of the. flis definition is

pr— &2k (10)

wherec, is the specific heat capacity of the fluid.

2.3 Model of the heat exchanger without phase change

A heat exchanger can be constructed of tubes or plates. We dlee model for a cross-
flow plate heat exchanger.

13



The heat flux can be written as

o = (11)

|

where® is the heat rate and is the heat surface area.

The heat rate is obtained by integrating equatidn (5) wispeet to the surface area

b= / 4o = / UAT,dA . (12)
A A

We obtain
O = UAAT,,, (13)

whereAT,,, isthe logarithmic mean temperature difference betweehaohand the cold
side. For the counterflow heat exchanger we get

ATy~ ATy (T, —T.) = (T, — T
& B (Txo _TCi) ’
In ATy 1 (Ti‘i_TCO)

where

is the temperature of hot inlet flow [°C],
T, isthe temperature of cold inlet flow  [°C],
is the temperature of hot outlet flow  [°C],
T.., isthe temperature of cold outlet flow [°C].

Logarithmic mean temperature difference combines locaptrature differences in dif-
ferent places over the heat exchanger. Derivation of ltdgaic mean temperature differ-
ence is given in[2, pp. 646-649].

For a cross-flow heat exchanger the heat rate is written as

O = FUAAT,,. (15)

Here F' is thecorrection factorwhich correctsAT;,, for the cross-flow heat exchanger.
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The formula for the factor is

(140967795 ¢<2

F = VTE 1 : (16)
£-00625 £ ° 772

where¢ is the auxiliary variable in the calculation &f, seel[#, Ca 7].

For a one pass heat exchanger the varigldan be calculated by the equation

0.8R;,
=74 [ 0.6/R 17
§ h ( \ Lty + T Rh) ; (17)

whereZ,, is the number of transfer units artj, is the heat capacity flow ratio.

When combining heat exchanger units for multi-pass mixdd ffow and unmixed hot
flow the expression fof becomes

E= VR, (18)

where¢ is the auxiliary variable in the calculation of,.... in one pass and,,. is the
number of passes in combined heat exchanger[unit [4, Ca 9].

In a multipass case, the correction factor is calculatechyila

1 ass_]-
F — F1_|_,npi

Npass

Fo (19)

Npass Npass

using the variablé in equation[IB) instead of the varialgldor the factorF;. The factor
I is calculated as
Fro = (140.6362)7024, (20)

Equation[IB) was used instead of equatlon (17) also for ass peat exchanger because
the results did not differ a lot. Actually in this thesis omlige pass heat exchangers were
used.

15



The number of transfer units or dimensionless conductandenoted by the equation

UA

)
Amy, Cpy,

Zy = (21)

whereg,,, is the mass flow of the hot fluid ang, is the specific heat capacity of the hot
inlet flow. Heat capacity flow ratio is denoted by the equation

Rh — th Cph (22)

)
qmc Cpc

whereg,, is the mass flow of the cold fluid angl_ is the specific heat capacity of the
cold inlet flow.

The overall heat transfer coefficiebt also varies along the heat exchanger with the
change of temperature due to changing values of materipkepties as will be explained
later in Sectiofi:3.213. Therefore itis important to use tlodal correlation in equatiofll(8)
instead of a local one.

In equation[(Ib) there are three unknowns: the heatdrathe outlet temperaturg, on
the hot side and the outlet temperatiie on the cold side. To solve the unknowns the
heat exchanger has to be studied along the flows of the fluidsthrsides. Here we need
the law of energy conservation. When cold air passes throlugiheat exchanger it is
warmed up. It receives all the energy which is passed thrthuglwvall from the hot side,
because we assume that the unit is perfectly insulated aadtieady state situation the
wall cannot reserve any energy. The amount of energy retbivéhe fluid is proportional
to the temperature difference between the outlet and tle¢ ifh general the amount of
energy needed to heat any material is

Q = mc,AT, (23)
where
Q is the energy [J],
m  isthe mass [kal,

AT isthe temperature difference [°C].

The heating power is obtained by dividing equatiad (23) witht time A¢. Thus the heat

16



rate on the cold side is denoted by the equation

@ = qmc Cpc (TCO - TCi ) ‘ (24)

In the same way, a hot fluid is loosing heat energy with the gaomesr as a cold fluid is
receiving that. So the equation for heat rate on the hot side i

P = Gmy, Cpy, (Thi - Tho)' (25)

By combining equation§(24)_(P5) ard115) we will obtain fbkowing model for the
cross-flow heat exchanger:

¢ = thcph(Thi - Tho)>
GmeCpe(Te, — Tt;), (26)
b = FUAAT,.

K
|

For a given heat exchanger, the independent known variabégs,, and7:,. The outlet
temperatured},, andT,, are the state variables to be computed by solving the system
in equation[(ZB). Note thal{P6) forms a nonlinear pair ofans. It has to be solved
numerically.

The mechanical dimensioning probleisian optimisation problem where we try to min-
imise aread and maximise heat rate, while keeping the outlet temperatures inside the
required boundary conditions. Regardless of whether weleaéing with a mechanical
dimensioning problem or an existing heat exchangers always the most interesting
variable from the practical point of view.

2.4 Model of the condensing surface heat exchanger

The heat of vaporisation and thus the energy released irotigeasation of water vapour
is much more than energy released from water vapour aloneeitypical temperature
change for heat exchangers. The amount of the energy rdleasiee condensation can

17



exceed the amount of the energy received in the temperdtarege of moist air. If there
occurs a phase change in the heat exchanger, the resuksobttel without phase change
are no more valid. Condensation starts when the surfaceetepe’,,.; drops below
the dew pointly.,,. As far as this does not happen it is safe to use the model utitho
phase change.

The condensing surface model is more demanding than thelmwitieut phase change
because the mass transfer of the condensate has to be takeceount in addition to
heat transfer. For a condensing case a model derived byr®ailf] will be used. It is
based on the mechanical dimensioning problem, where tlaeaie not known because
the heat exchanger does not yet exist. His model solves ¢ae ahich is needed to heat
the cold fluid to the desired temperature, when the incom@ngperatures are known.
The incoming temperaturés,, and7,, and the outgoing cold temperatufg are given
while areaA and hot outgoing temperatuie, are unknowns. The model is consisting
of a group of differential equations. The model and the md&aito implement that as a
computer program will be described here. For more detad{=je

Figure[3 illustrates the heat and the mass balances of areetém on the condensing

surface of the heat exchanger. Hot air and condensate aiadglomwnwards on the right

hand side of the surface and cold fluid upwards on the left gidbe surface. Dashed

line in the condensate separates new condensate formee stutiied area element and
old condensate flowing downwards.

Similarly as in equatior{6), the overall heat transferdfazient can be defined as

1 1 syan 1
— =T (27)
oy e Kyanl Oy

whereqy is the overall heat transfers coefficient from the condensatthe cold flow
anda,, is the convective heat transfer coefficient of the conden@edter). The wall and
condensate has a minor effect on the overall heat transéfi@ent and can be neglected,

thusay ~ ae.

In a cross-flow heat exchanger there is always a temperatafieedn the outlets as can be seen in
Figurel® for reasons described in p&gk 27. Because themohftthe model without phase change is mean
temperature of the outlet, there has to be some safety nasdor surface temperature not to drop below
dew point.
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Figure 3: An illustration of the heat and mass balance on ¢imelensing surface. New
condensatélg,,,, is formed on the surface elemehtl on the right hand side of dashed
line in condensate. Arrows indicate the direction of the flow

Let us examine the the volume element on the right hand sidieeoflashed line in the
condensate in Figufd 3. The heat balance for the volume elteraa be written by

d® + ¢, dh + ¢y, Teonadqm, = 0, (28)
where
dm, IS the mass flow of the hot air [kg/s],
h is the specific enthalpy of the moist air [J/kg],
Cpu is the specific heat capacity of the condensate (water) KJ/kg
T.ona IS the temperature of the condensated water [°C],
dm, IS the mass flow of the condensate (water) [kg/s].

The mass balance for the volume element can be written by

dew + Gmy, dw = 07 (29)
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wherew is the moisture content of the air.

The differential for the enthalpy of the moist air in the vole element is given by

dh = (¢p,, +wep,,,)dTh + (ro + ¢p,, Th)dw, (30)
where
¢pe, 1S the specific heat capacity of dry air [J/kgK],
¢, IS the specific heat capacity of water vapour [J/kgK],
T,  isthe temperature of the moist air in the hot side [°C],
To is the heat of vaporisation at 0 °C [2501 J/kg].

Substituting equatioi.(29) and equatifgnl(30) in equafl®) y2Ids

d¢ - _th (dea + wcpwv)dTh + (ro + prvTh - prTcond)dqmw' (31)

The first term on the right hand side of equatibd (31) is given b

— Gy, (Cpy, + Wy )ATh = Acond (Th — Teona)dA, (32)

wherea,.q IS the convective heat transfer coefficient during a sinmgltaus mass transfer.

The differential for the mass flow of the condensate is olethioy

A, = Geond (W — Weond )dA, (33)

dea + wCOndewv

wherew.nq IS the moisture content of saturated air. When substitwgmmgation [(3B) in
equation[(3L) we obtain

(cond
do = con Ty — Tcon
o T WoondCa [(¢pan T Weond Cpu ) (Th d)
+(TO + prvTh - prTcond)(w - Wcond)]dA . (34)

h — hcond W — Weond
Qieond — ¢, Th| dA
Pw
dea + wcondcpwv dea + wcondcpwv

whereh..q IS the specific enthalpy of the condensate.
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Equation for the®-function is
0 =06,-06,, (35)

where©,, is the ©-function of enthalpy and,, is the ©-function of moisture content.
The equation for th&,,-function is given as
h — heon
@h — CO! d (36)

dea + wCOHdCPwv

and for the®,,-function reads as

W — Weond

dea _'_ wcondcpwv

pr Tcond . (37)

w

Substituting equation§{B6) arld137) in equatiod (34) weld

AP = Qeond (O — O)dA = AonaOdA. (38)

EquationsI(33) and{B8) holds true under the assumption

dh o h — hcond

dwv W — Weond

(39)
For the the volume element between the heat surface andthedibne in the condensate

in Figure[3 the heat balance is

dq)c =do — Gmey prchond7 (40)

whered. is the heat rate on the cold side.

Finally we examine the volume element on the supply side @hibat exchanger. As in
equation[(ZK¥) for the model without phase change the heahbalfor condensing surface
model in the volume element is

d®, = gm.cp AT, 41
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whereT. is the temperature of the fluid in the cold side. As in equafi) for the heat
exchanger model without phase change the heat balancerfdersing surface model in
the volume element is

dP. = ax(Teona — Tt.)dA. (42)

To be able to solve the temperature of the conderigate we combine equations from
equation[(3B) to equatiob{¥2). If we then divide the resuthw,..,qdA we will obtain

m dTCOn
&(Tcond_Tc):@_m d

—_—. 43
Qcond Xleond dA ( )

The last term of equatiofi{#3) is usually of minor magnitude thus often the last term
can be neglected][5, p. 878]. Doing so we end up shorter eguati

s (Tcond - Tc) = 0. (44)

Qcond

According to Soininen, there is more than one way of creatimgpmputer program for
analysing the process and the area of the heating sulfape8§39]. The one used here is
the same as in his article. Soininen discretised the difteakequations described above
and formed a group of difference equations.

We examine a countercurrent heat exchanger, where hot #awisg downwards and
cold fluid upwards. The heat exchanger is divided incaells according to Figurgl 4.
There is no phase change on the cold side, thus the heat rdte @old sided, can

be calculated as ifi.(P4). The discretisation is designethaothe areas of the cells are
varying but the heat rates®,. through the cells are equal among all cells and thus also the
temperature differencAT. of a cell on the cold side can be calculated. Indicesdb

are for boundaries of the cell according to the flow directbthe hot side as in Figufé 4.

The computation starts from the uppermost cell. For the sidle all incoming and outgo-
ing flow values are known in every cell. For the uppermostttait is also true for the hot
incoming air but not for the outgoing air. The edgef the uppermost cell is set to point
where the condensation starts. There is no condensate gamioefore that. There can
be dry, noncondensing surface before the condensatias biarit can be solved using
the model without phase change. The temperature of the osatey’,,,4 at the point
where the condensation starts can be solved from equa#bn (4
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Figure 4: An illustration of the condensing surface modato#vs indicate the direction
of the flow. Red arrow is hot air and blue arrow is cold air. Bledge is condensed
water.

As stated in[[5, p. 881], when for a certain section, the \@hfé:.,, w., ¢n,a» Teona, and
T.,at the boundary, are known, the five unknown quantitiésb, AA, AT,.nq4, Ah and
Aw (see Figur€l4) can be solved from a group of the five equations:

( Ad = Amy, (Ah — Cpy, (TConda - AT‘Cond)A"‘)) s
AD = 0 OAA,
A(I)c =Ad + QmwacprTcond = chcpCATm
A(I)C = ak<Tconda — ATcond/2 — Tci + ATC/2)AA,
cond < Wa — Weonda + Wy — Aw - u}condb) AA,

2 dea + u}C(mdacpwv dea + Wcondb prv

(49)

AQmW - th A(A) - a

where® is the mean value of the-function at cell boundaries andb.

Soininen did not reduce the difference equation group. Hewas in the heat exchanger
model [ZB6) without phase change the system can be redudierfuSo we arrive at a
system of three equations, from which the three unknown$geaolved.

The outgoing values for the cell can be approximated by sglthe system[{45) and
adding the results to inlet values for the cell. Once the aiuty values are calculated
the incoming values for the next cell are got by substituthng outgoing values for the
incoming ones. Then the process is repeated for every cethedend the value for the
heat exchanger area can be calculated as a sum of the arba<efls.
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If the cold fluid is heated above the dew point of the hot aiths the surface temperature
is above the dew point, the upper part of the heat exchandidoemioncondensing. The
dry area can be solved by equati@nl(13) so thas the heat rate through the dry part.
That can be solved by

acondThi + acho - (acond + ak)TdGW

q)dry = Qcond (€35 ) (46)
q’mh cpma qme cPc
where
P4y is the heat rate of the dry part [w,
Tyew Is the dew point of the moist air [°C],
ma 1S the specific heat capacity of moist air  [J/KgK].
The dew point temperature can be calculated by
Ds
= W 47
P = 0.62197 “7)
and |
T = 99.64 + 320,64 2Pw) (48)

11.78 + In(pwy)’
wherep,,, is the water vapour pressure gnds the static pressure.

To summarise, the condensing case leads to a system whendirzeao system of equa-
tions for three unknowns has to be solved at each discrietisstep. The effect of the
number of discretisation steps to the accuracy of the reslilbe studied in Sectioh 7 3.
This mechanical dimensioning problem where the area isawkitan be changed to the
problem of existing heat exchanger and known area. Thatng thy solving the con-
densing surface model again and again and varying the ctliet duid temperature until
the calculated area of the solution reaches the desired &mehe problem of existing
heat exchanger three unknown state variable§iarel.. andwy,. The last of those is not
usually measured directly, but calculated with the wet betkperature as described later
in Sectio:3.ZP.
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3 Model variables

Most of the variables in equatiofi{26) are calculated by mesbvariables, which will be

discussed in Sectidn3.1. Model variables calculated witlttly measured variables will
be discussed in Secti@nB.2. Only the temperatures in enqug®) are measured directly.
They can be given either in Kelvins or in Celsius degrees lmszave are dealing with

temperature differences. In Appendix 1 the formulas foramal properties will be given

either in Kelvins or Celsius degrees depending on the eguuadtiater the temperature will

always be given in Celsius degrees if not mentioned otherwis

3.1 Measured variables

In this section we will discuss the measured or observeabbes when the fluid is air.
Then the measured variables are the dry bulb temperairethe wet bulb temperature
Twet, @atmospheric pressugg;.,, dynamic pressurg, of the flow and the pressure dif-
ferenceAp between the inside and the outside of the ventilation dubtm&asurements
are done on both sides of the heat exchanger, on the cold atine ot side. The atmo-
spheric pressure simply is assumed to be the same everywhgrpical example of the

measurements in the moist air cross-flow heat exchangeras gi Figurdb.

Tdry Ap
Twet
Tdry Tdry
Twet Twet
cold flow —» Ghe atm >
Ap Ap
Pa
Tdry A p
Twet bd
hot flow

Figure 5: Measurements in moist air cross-flow heat exchange
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The area and the other geometry information of the heat exygvas received from the
manufacturer. The area of the ventilation duct, which islusethe calculation of mass
flow, is measured and rounded to the nearest manufactunediasthvalue or reasonable
value.

Sometimes the pressure difference between the inside anoutkide of the ventilation
duct can be called the static pressure. Here the staticyseessdenoted by, and it is
the sum of the atmospheric pressure and the pressure diffeteetween the inside and
the outside of the duch, = Ap + pam- It IS equal to the pressure inside the ventilation
duct. The usage of the word total pressure instead of steggspre is avoided because it
can be confused with the total pressure in Bernoulli equatiQ; = ps + pq.

The model variables are divided into calculated and medstagables because later in
Section[&¥4 also the error variance of the independent aovdriables will be consid-

ered. There the error will be added to the originally meadwagiables. Assumptions
about error levels are based on the measurement accuraaywilllbe studied next more

carefully.

3.1.1 Measuring and measurement inaccuracy

There are several sources of errors in the measuring proGessite measurement error
is larger than the error in laboratory conditions. Manuifaets give information about
the error of a measuring instrument in laboratory condgiohhe form of informing the
measurement error has not been standardised in any wayllybearesult of laboratory
measurement is compared to a result, which has been measiihed more accurate
instrument. The measuring instrument will be acceptedafrésult is within error limits.
Such a procedure implies univariate measurement érrorH6jvever, all measurement
errors in thesis are considered as Gaussian and homosceslast thought in practice
they are mostly heteroscedastic.

All measurements are done on both the cold and the hot sideedfdat exchanger. The
measurements can be done either before the inlet or afteyutthet or both. The mea-
surements are usually not made on-line and in practice megsane unit takes approx-
imately half an hour. All measurements are done on one sideeofinit at a time. It is
possible that circumstances vary a bit between the measuatspwhich is one possible
source of error. Lot of measuring information and the erggraximations in the next
pages are based dn [7].
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Dry bulb temperatures are measured at only one point on eaghsfdes of the heat
exchanger (hot and cold, inlet and outlet). The temperangasurements are done by
PT100-sensors, which are based on the fact that electigtarse is a function of tem-
perature. The accuracy of thermometers is usually neaC0at0°C and the error is
heteroscedastic — increasing with temperature. The stdm#viation (std) of the strict
error in the thermometer alone is assumed to be 0.025°C.

The temperatures are measured at one depth inside theatientiluct from one hole,
which is in the middle of the wall of a square ventilation duth the outlet, after the

heat exchanger, the fluid has a temperature profile that casedre in Figurél6. The
temperature profile is formed because on one side of the kelaaeger hot air is facing
the coldest possible air all the time. On the other side thé aw is heated before it
reaches hot air. In one paper mill, for example, some teny@sin the outlet profiles
were measured. The measured values for one heat exchartlgepoofile were 46.8°C,

48.4°C and 52.3°C. The internal temperature differenc@témperature profile in one
outlet was approximately 4°C. The temperature values imegu [Z6) are mean values.
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Figure 6: Temperature profiles inside the cross-flow hedtaxger. The upper surface is
the hot side and the lower surface is the cold side.

The sensors are short and do not reach the centre of the chagt.can point in different
directions if the measurement is repeated and thus theyneidisure a different point of
the temperature profile. Temperature profile can changendi@pgon the flow conditions.
Especially, in the outlets this can be one main source of émraddition to instrument
error. It takes some time for the sensor to reach the temperat the fluid as can be seen
in the solid lines of Figur€l7. If the reading is read too sabmill cause a systematic
error. If the measuring was repeated, there would be sonna extdom error, too. That
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would be caused in addition to normal random error becauseutd be impossible to
read the reading exactly at the same time as previously. &cetl measurement error
will be much larger than the error caused by the thermoméateea For the error in dry
bulb temperatures = 0.25°C has been used as a standard deviation.
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t

Figure 7: Readings from the sensors during the dry bulb teatypee measurements. La-
bel a points to case where the sensor is colder than the targeesh&asurement in the
beginning of the measurement process. Lalpgints to case where the sensor is warmer
than the target of the measurement in the beginning of thesunement process. The
correct dry bulb temperature is measured in the area whene#uings are stabilised.

Wet bulb temperature is measured at the same time as drydsafierature with a similar

sensor. In the wet bulb temperature measurement the sersavwdared with a cloth rinsed
in clean water. When water starts to evaporate from the cibtwols down the sensor
compared to the sensor which is measuring the dry bulb teatyrer The drier the air

is, the larger is the difference between the dry and the wiet teanperatures. When the
cloth becomes dry enough, the sensor which is measuringehbwib temperature starts
to warm up until it reaches the temperature of the dry sensor.

If the wet cloth is colder than the wet bulb temperature, #ragerature of the sensor
measuring the wet bulb temperature will increase untidtrees the dry bulb temperature.
One tries to read the wet bulb temperature at the moment Wigeteinperature is stable.
That can be seen as a flat part in Figre 8. If the air is very ddytet and the velocity
of the flow is high, the reading can be very difficult, becauaegart is very short. If the
wet cloth is warmer than the wet bulb temperature, first tiscestarts to cool down and
then to warm up. One tries to read the temperature in the fitftepoint. Measurement
error is larger in the first case and it is larger than the nreasent error of the dry bulb
temperature in all cases. The error in measuring the wettbuliperature is the function
of the flow rate and the humidity. Standard deviation- 0.5°C is used here as a value
for the error in the wet bulb temperatures.
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Figure 8: Readings from the sensors during the dry and wét temhperature measure-
ments. The solid line represents the dry bulb temperatwtdl@dashed line represents
the wet bulb temperature. Labelpoints to cases where the sensor is colder than the
target of the measurement in the beginning of the measutgmearess. Labél points to
cases where the sensor is warmer than the target of the reesentrin the beginning of
the measurement process. The correct wet bulb temperatareasured in the flat area
of the figure.

The same pressure gauge is used to measure both the dynassangrand the pressure
difference between the inside and the outside of the véiotlauct. The values for the
pressure difference and the dynamic pressure are usuaiky sondreds of Pascals or less.
The pressure difference is measured from one point in eveeya the heat exchanger.
For example, the Macnehelic gauge of Dwyer Instruments hasrar below+2% of the

full scale. Standard deviation = 1 Pascals is used here as a value for the error in the
pressure difference.

The dynamic pressure is measured through a Pitot state-fithmat is put through the wall
of the ventilation duct so that the tip of the tube is pointiog/ards the incoming fluid
flow. The dynamic pressure is the pressure difference bettheepressure caused by the
flow of fluid in the tip of the Pitot tube and the pressure inglteduct in a calm, sheltered
place. Unlike other measurements dynamic pressure is mezghatiseveral points of the
cross section of the ventilation duct, so that the measurempants form a grid[[B].
The dynamic pressure is usually measured at the inletslomyactice the error of the
dynamic pressure should always exceed the error of theyyeedgference between the
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inside and the outside of the duct if they are measured wéls#ime pressure gauge. In
the same way, the error of wet bulb temperature is alwaygitalgan the error of the dry
bulb temperature. Standard deviatior- 2.5 Pascals is used here as a value for the error
in the dynamic pressure.

The atmospheric pressure measurements are usually gotheonearest weather station
or airport. One has to make an altitude correction, becdesatmospheric pressures are
announced in the sea level. The error of the barometer isHass50 Pascals. However,
the normal atmospheric pressure, 101325 Pascals, is afsemeed without making any
measurements. In that case the error in the atmospherguypessan exceed 1000 Pascals
depending on the weather. In Nauvo, Finland, for example,atmospheric pressure
was measured twice an hour for a year and the standard deviaéis over 1000 Pascals
[Q]. Standard deviatiom = 1000 Pascals is used here as a value for the error in the
atmospheric pressure measurements. In Table 2 there &etedlall measurement errors
used in thesis.

Table 2: Standard deviatiomsof the measurement errors used in the thesis.

Model variable Symbol Std of error
Dry bulb temperature Tary 0.25
Wet bulb temperature Tet 0.5
Pressure difference betwen inside and outside of the duci\p 1
Dynamic pressure of the fluid Pa 2.5
Atmospheric pressure Datm 1000

3.2 Calculated variables

The mass flow and the specific heat capacity in equdiidn (2&)aculated with observ-
able variables represented in Secfiod 3.1. The moisturebaf the airw, is needed in
the calculation of mass flow and specific heat capacity. Thistore@ content of the air is
also used in the calculation of other material properties thpecific heat capacity. Ma-
terial properties are then used in the calculation of thal tuéat transfer coefficient. For
this reason the calculation of the mass flow and moisturectoratre presented in more
details in this section.
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3.2.1 Mass flow

The mass flow of air in equations_{26) afndl(45) is the mass flodrpfir because it is
independent of condensation. To calculate the mass flowyodidthe density of moist
air is needed. It can be solved by the ideal gas law

pV = nRTx, (49)
where
V  isthe volume of the gas [th
n  is the number of moles of gas [mol],
R isthe ideal gas constant [J/Kmol],

Tk isthe temperature in Kelvins  [K].

If we substitutel” = m/p andn = m/M in equation[[4B) and solve the density from it,

we will obtain
sta

50
s (50)

Pma =

wherep,,., is the density of the moist air and,,,, is the molar mass of the moist air.

Molar mass\/,,, of moist air can be solved from the equation

1 Tda, Ty
= 51
Mma Mda * MWV’ ( )
where
Tqa IS the mass fraction of the dry air [-],
Twv IS the mass fraction of the water vapour [-],
Mg, is the molar mass of the dry air [kg/mol],
M, isthe molar mass of the water vapour  [kg/mol].
Mass fractions are solved as
. 1
T =1 — Ty = —— (52)

Mda + Myv B 1+w’

wheremyg, is the mass of the dry air and,,, is the mass of the water vapour.
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The flow rate of the fluid is also needed in the calculation efrttass flow. The measure-
ment of the fluid flow in a ventilation duct with a velocity aregthod using Pitot static
tubes is given next. The reference for that idin [8]. The dyitgoressure is related to the
flow rate according to the law of Bernoulli

1
pa = 5pv". (53)

The dynamic pressure is measured in several grid pointseirvéntilation duct which
transports the fluid to heat exchanger and forward from tnfFthose measurements we

can solve the flow rates

2
Vductma — ppd ) (54)

wherevg,.,., 1S the velocity of the moist air in the ventilation duct.

The mean flow rate can be calculated by

1 n
@ductma - ﬁ E Vductmais (55)
=1

wherevg,,., IS the mean velocity of the moist air in the ventilation duct &g.,,.; IS
the velocity of the moist air at poiritin the ventilation duct.

The volume flow for the moist air can be calculated by

QVina = kAductq_}ductmaa (56)
where
qv.. isthe volume flow of the moist air [Pvs],
k is the correction factor for the flow rate [-],

Aques IS the area of the cross-section of the duct Jjm

The factork takes into account the number of the measurement pointsiédodynamic
pressure in the duct and the geometry of the duct. In thisghles value one was used
for the factork.
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We obtain the mass flow,, . of the moist air by

qmma = qvmapma’ (57)

Finally the mass flow of the dry air, which is used in the moasbbtained from the mass
flow of the moist air by

qm
Mda = ) 58
q da 1 ( )

whereg,,, . is the mass flow of the dry air.

At this point it is good to note that the velocity of the fluidtime duct in equatior.($5) is
not usually the same as the velocity of the fluid in the heaharger in equatioil9). The
volume flow in the heat exchanger is, however, the same ag inahtilation duct. Thus
the velocity in the heat exchanger can be solved from

UheAslots - ﬁductmaAductu (59)

whereu,, is the velocity of the fluid in the heat exchanger ahg, is the frontal surface
area.

3.2.2 Moisture content of the air

The absolute water content or moisture contei a function of static pressure and dry
and wet bulb temperature. Moist air is considered as a nexaticompletely dry air and
water vapour as an ideal gas mixture. Moisture content exgas a ratio of mass fractions
of the water vapour and dry air (kg/kg here). It can be catedlas

My 1.0048(Ther — Tary) + Weond (2501 — 2.3237T 1)

_ . 60
“ T 2501 + 1.86T ey — 4.19T er (60)

The constants for the equation as well as the equations éomibist air in this section
are taken from[10, p. 299] and the physics behind the equatexplained in[11, pp.
613,621].
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The moisture content of saturated air can be calculatedégdhation

Weond = 0.62197 st (61)

Ps — Psat

wherep,,; is the saturation pressure of water vapour.

The saturation pressure of the water vapour can be estipfatedstance, by the formula

(62)

Tyt — 99.64
Peat = EXP (11.78—t ) ,

Tyet + 230

3.2.3 Material properties

The physical properties of fluids are called material proper Here in the modelling of
the heat exchanger we need specific heat capacity, thermeilicovity, dynamic viscos-
ity and density. For water, the calculation of material @es is easier than for air. For
moist air the dry air and the water vapour are handled seggr@td somehow combined
after that. The water vapour content always affects the ma&fgoperties of air. In the
context of material properties the word “correlation” irethterature means the fitting
of a material property to temperature, pressure and meistointent. There are several
alternative correlations for material properties presér literature. The density of the
air was already presented in equatibnl (50). The rest of thelations for the material
properties used here are presented in Appendix 1.

The temperature is changing inside the heat exchanger anchthes of material prop-
erties are changing accordingly. The most proper way ohtakhis into account in the
calculation of the overall heat transfer coefficient woudditegrating the values for ma-
terial properties through the whole heat exchanger. Thkragtic mean of the material
properties at the inlet and the outlet is easier to calculdtavever, temperatures at the
inlets for the calculation of material properties inside thole heat exchanger was used.
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3.3 General form of a model

In general, a model can be written in the form

s = f(x,0), (63)
where
s is the vector of the state variables [],
f is the model function [-],
x Is the vector of the control variables [-],
0 is the vector of the unknown model parameters [-],

y=g(s), (64)

wherey is the vector of observations agds the observation function.

In the heat exchanger model without phase change the indepemmeasured or known,
control variables are

€T = (Gh67 Gduct; Tweth7 Twetc ) pdh7pdc7 Tdryh7 Tdryc; Aph7 Apcu patm)T )

where the geometry variablésare the most controllable variables, but can be considered
as constants once the geometry is fixed. That is actually bereafter. The following

six variables — the temperatures and the dynamic pressurean-be considered more
controllable (active) variables than the last three (p&3siontrol variables. This would

be the case if we had laboratory circumstances. In papes,rdlwever, none of the vari-
ables are conrollable in that sense due to circumstances:. \Felues, moisture contents
and other process technical dimensioning variables acelea¢d based on the measured
independent variables as described in the previous section

For the unknown parameters we choose

Ny

Ne
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the constants in equatiod (8). Note that all the other modelpeters — the constants of
the material property correlations, for instance — areté@as known and fixed values.
Only the above parametefsare used to calibrate the model against real measurements.

T,
=S5 = .
Y T,

The state variables are
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4 Inverse problems and the Bayesian inference

Parameter estimation and finding the confidence limits foampaters with given mea-
surements is a typical example of an inversion problem. Fefexence to inverse prob-
lems seel[12]. By taking the measurement noise into accawntan write the general
form of a model as

y=f(x,0) +e, (65)

wheree is the noise vector or the error vector of observations.

Given the datay andx we should be capable of estimating the paraméténsthe Bayes
formula, the probability distribution of the parameters:
(y[0)p(0) _  p(yl0)p(6)

_ _b _
OO =) T Tatuiew@)as )

where

p(fly) is the posterior distribution (also the notatiof?) is used) [-],

p(0) is the prior distribution [-1,

p(y|0) s the likelihood density function [],
p(y) is the normalising factor [].

If we assume that noise in the model in equatibd (65) is indéest and identically
distributed (i.i.d.) Gaussian noise~ N (0, 1), the likelihood function becomes

plyl0) = Ce 2255, (67)

whereC is a constanty? is the error variance and where tB§-function

88 = (= F(@:.0)" = lly = f(=. 03 (68)

includes the model as a squared sum of the residuals.

Integrating the normalising factor in the denominatorjewvemerically, is often a difficult
task. In the next section we discuss the Metropolis—Hasthgprithm — a practical way
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of solving the posterior distribution without a need foraigtation.

4.1 The Metropolis—Hastings algorithm

The Markov Chain Monte Carlo method (MCMC) is a process whiombines the
Markovian property to the Monte Carlo method. The Markopaoperty means that the
next point in the random process only depends on the prewinesand no other points.
The Monte Carlo methods refer to random sampling.

The Metropolis—Hastings algorithm (MH) is MCMC-method wihican numerically solve
the posterior distribution in the Bayes formula. It is anasithm, where a move towards
a better parameter estimate is always accepted, as in anyisgtion method. But unlike
in optimisation methods usually, a step towards a worsectiine is also accepted with
some probabilitﬁ The Metropolis—Hastings algorithm is represented in Althon[ll. For
reference seé[13, p. 270].

Algorithm 1 The Metropolis—Hastings algorithm

1. Seti = 1 and choose a starting poifit

2. Generate the candidateéfrom the proposal distributioq(0*|6;)

3. Choose
0. 0* with probability «(6;,0"),
17 6, with probability 1 — a(6;, 6%),
where
) . p(9*\y)}mﬂ . { p(9*|y)(J(91\9*)}
a(6;,0") = min < 1, = minq 1, 69
(07 =min {1, 50 OGO

4. Seti=1:+1landgoto?2

A good starting point for the algorithm, the maximum likeldd estimatd, is achieved,

for example, by minimising the sum of the squares of the tegd&lin the model. We
seti = 1 andf;, = 6 and set, as the first value in the chain. Then we choose a new
candidate)* from the proposal distribution, usually centredathus near it. In step three

2In simulating annealing, for example, a step towards woirgetion is also accepted but the probability
of accepting bad movements is decreasing, approachingizeiroy the optimisation.

3The version were the proposal distribution is symmetricaited the Metropolis algorithm. Hastings
included an asymmetric proposal distribution. We assunyerareetric proposal hereafter.
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we compare the posterior value of the new candidate and thienpar value of the last
accepted value in the chain. If we are going upwards, we at¢bepcandidate and add

it as the last value to the chain. If we are going downwards ¢dndidate is worse than
the last value in the chain), then we choaese- U(0, 1) from the uniform distribution
and accept” if u < «(6;,0"). If 0 is accepted, it is added as the last value to the chain.
Otherwised; is added as the last valdg, ; to the chain. Then we go back to step 2 and
repeat the algorithm until the chain is long enough. It castb@vn that if the MCMC

run is properly done and the chain is long enough it convelmytree posterior distribution
given in equation[{d6). The statistical parameters for thstgrior distribution can be
calculated from the chain.

In the adaptive version of the Metropolis—Hastings (AM) treposal distribution is
adapted to the posterior distribution by the covarianceimat the chain [14]. A new

proposal closer to the rejected one can also be tri€d [15% i$ltalled delayed rejection.
A combination of them is called DRAMT16] and the usage of thentioned transforma-
tions can be found i [17] of18].

4.2 Indirect method for MCMC

Because solving the model by the equation syskein (26) ie glatv, a new approach was
tested to decrease the computation time. That is an indirecstepmethod where the
MCMC run is divided into two phases.

If we assume the additive Gaussian error model in equali&h (e variance scaled
SS-function is calculated with the direct MCMC method by

SS(0) = Z (wf (70)

- o
i=1

wheren is the number of observations angrefers to theth measurement (independent)
andy; refers to theth response or observation (dependent).

In the two-step method we use scalar “pseudo paramétéri'fact it is a scalar variable
of the model, which hides all the real parameters behintf itséhe model. The two-step
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method can be used if the model can be described by the formula

y=f(x,0)+e= f(x, f(Z,0)) +e. (71)

wheref is the partial model function antlis the set of model variables.

The first step of indirect MCMC method is represented in Alipon[d. First we take one
observation or measurement. Then normal MCMC run is donle tdt observation to
obtain the posterior distribution (=chain) for the pseudogmeter. We go through every
observation to obtain the corresponding posterior digtidins for the pseudo parameters.

Algorithm 2 The first step of the indirect MCMC method
FORi=1TOn

Run MCMC atith measurement by using variance scafédfunction

5S:(6;) = (M) (72)

o

to obtainn chains for posterior distributiongé; y;).

END

Next we use the posterior distributions of pseudo paramét@roduced in the previous
step as a data for step two. How that is done, can be seen inithigdd. Performing
steps one and two should yield the same posterior distabytl|y) as the direct method
gives. The size of the sample from the posterior distribufioom chain) in step two
needs to be large enough and the inner sum needs to be scaleel $iye of the sample
from the chain.

Algorithm 3 The second step of the indirect MCMC method
Run MCMC by using the variance scal®d@-function

SS(6) = Z (Z (W) /m) ’ (73)

i=1 \ j=1

wherem is the size of the samplefrom the posterior distributiop(§i|yi) of step
one and; is the variance calculated from that distribution.
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When implementing thé S-function in a computer the variances in equatiod (73) could
be calculated by chain outside tl§&-function because their values are independent of
the parameter values and do not change. Scaling the size shthple in the posterior
distributionp(6;|y;) outside theSS-function does not make calculation any faster. Squar-
ing the residuals leaves a central mixed temﬁijf(ii, 0), which cannot be calculated
outside thes'S-function.

This method should be faster than the direct method if theahejuires the usage of
a root solver, an ode solver or some slow numerical methodsteqtwo is only some
algebraic equations. The chains in the first step of theéatimethod can be much shorter
than a chain in the direct method, because the chain is miegdrbn a case of just one
parameter. In the first step of indirect method the adaptatfdhe proposal distribution
can be done in every step because the calculation of theiangarmatrix is an easy task
with just one parameter.
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5 Tests for the two-step indirect method

The normal direct and the new indirect method with three dast simple toy examples,
one nonlinear and two linear cases, will be compared in th@¥ong sections. Itis espe-

cially important to use the same data in the comparisongihttmber of the observations
or the sample size of the data is small. The only differencianéncomparisons should
then be caused by the random character of the MCMC method.

5.1 Case study 1: Linear plane

The first case is a linear regression model

Yi = Bo + Bixin + Poxio + - - - + BuZin + €, (74)

where( stands for regression coefficient. Model can be written irariform as

Y1 1 211 @2 -+ T Bo €1
Y2 1 @91 o -+ @y ﬁl €2

= o o . A I : (75)
ym 1 Tml Tm2 - Lmn ﬁn €m

By using the pseudo parameterthe model becomes

v = 6; + e, 51250+Zﬁj$ij,i=1,---,n- (76)

=1

In the indirect MCMC runs the pseudo parameteis sampled in every measurement
as in Algorithm2 to obtain the posterior distributions foetresponseg,. There is no
need for a second step, because we now have the posterrdndisns for the responses.
We can directly solve the overdetermined equation groupagon [75), by minimising
the least squares or by solving the normal equations torobtai posterior distributions
for the real parameters(heref;).
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While synthesising the data, valuis-1, —1)*, (1, -1)*, (=1,1)", (1, 1)"]* for = and
[1,1,1]" for 3 were used. The four first elements in the first column of thererector
e; ~ N(0,1%) multiplied by the square root of the error variance- 0.5 was added to
the exact solution of the model. The noise veetors given in Tabld}4. The marginal
distributions for the five direct runs versus the five indinems for the parameters are
shown in Figurl9, as well as the predictive distributiorlswated atr = [1,1]". It can
be seen that the results of the direct and the indirect methodot be distinguished.

Figure 9: The marginal posterior distributions for the pageterss; and the predictive
distributions for the responsgatz = [1,1]*. The red distributions are produced by the
direct method and black distributions by the indirect metho

5.2 Case study 2: Slope of line

In the previous section we used only the first step of the @atlimethod. Next we will
test the second step of the indirect method by using MCMC. mibdel for the second
test case is

y; = Ox; + €, (77

wherex andy are vectors oh points in the one dimensional space @hid one scalar.
Thus the MCMC run corresponds to fitting the data to a strdigktpassing the origo
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and determining the posterior distribution for the slopé&str; was calculated at =
[50, 100, 150, 200] with # = b = 1. Then the data was generated by adding noise to the
exact solution of the model from the first four elements ofrtbise vectoe; ~ N(0,1?)
multiplied by the square root of the error variance- 0.5% as in case 1. In the first step
four MCMC runs were done by going through the elements offie by one. So basically
the posterior distributions for the pseudo parametets b; (the slopes for the four lines)
were estimated. In each run there where one measuremertofttrel variable and the
corresponding response) and one parameter. The modelati@o{/T) was substituted
in place of the model in equatioh{72). In the second step tdstepior distributions of
the slopes of all the lines were put together to produce amedlel parametet = b. As

in the first step, the same model was used but now it was suiiestiin the place of the
model in equationi{d3). Thus hefe= f in equation[[7ll). The posterior distributions of
the slope from the five normal MCMC runs and the five indirectMTruns produced
by the two-step method are shown in Figliré 10. There are sdfeestices among the
runs but the posterior distributions do not differ betwesnmethods as it can be seen.

200¢

100}

Figure 10: The marginal posterior distributions for thepglaf the line. The red dis-
tributions are produced by the direct method and the blaskildutions by the indirect
method.

5.3 Case study 3: Arrhenius law

The nonlinear test case was an analytical solution of tHerdifitial equation in reaction
kinetics. The usage of the analytical solution is fastenttiee usage of the numerical
solver and in that sense more ideal as a test case. The agfatibe analytical solution
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y=e", (78)

wherek is the rate constant of the reaction and the time.

The Arrhenius law states that the rate of the kinetic reaatiepends on temperature in
the following way

k= AeT, (79)
where
Tk isthe temperature in Kelvins K],
R isthe ideal gas constant [J/Kmol],
A isthe pre-exponential factor in Arrhenius law [mol/¢sh
E isthe activation energy in Arrhenius law [J/mol].

There are plotted reaction curves for different tempeestiur Figur¢ T1(@). It can be seen
that the amount of the substrate is decreasing when timessimga The decreasing is
faster with higher temperatures.

1= '
. 10°¢ >
Yy I 30°C k
\ Jpet
*50°C §
Q : 10

(a) Reaction kinetics at different tempera-  (b) Samples from MCMC chains
tures.

Figure 11: Data for the first step (a) and for the second stepf(the indirect method in
case 3.

Synthetic data was generated at five different temperatiires- [10, 20, 30, 40, 50]*°C,

by using parameter values= 10° andE = 4-10*. The first five elements from the error
vectore; ~ N(0,1%) of Table[@ multiplied by the square root of the error varialese!

o? = 0.01” were added to the exact solution of the model. Only one measemt for
each temperature was done (dots in figgren = 5). The substrate consentratignwas
measured at the temperatdiavhen four time units had passed from the beginning of the
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process. In this nonlinear case the pseudo parameferig, the real model parameter
is @ = [A, E]", control variables are = [t,T]" andi = T. In the first step five
separate MCMC runs were done by samplingt corresponding temperaturésso that
equation[(7B) is substituted in the place of the model in 8gnd72). The samples from
the chains for different temperatures are shown in FigufgjL1

After that the chain®, from the first step were used as data for the second step. There
equation[[7B) gives the model in equatifnl(73). The predidistribution for the central
temperaturdl; = 30°Cwas calculated. The comparisons of the direct and thedaodi
two-step methods are plotted in Figlird 12. Again, we seethigatesults agree with both
methods.

] ee
’a’w‘"'
1 de-7)
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| 2e-7
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D 01
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60
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30¢
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Figure 12: The posterior distribution and the marginal gost distributions for param-
etersA and E in the Arrhenius law. The distribution for the responsés calculated
at 7o = 30°C. The red distributions are produced by the direct methatithe black
distributions by the indirect method.
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6 Statistical analysis of the heat exchanger model with-
out phase change

The model given by the equation{26) was implemented by thav@csoftware so that
all code could also be run in MATLAB. Some parts of the modetenedso implemented

as Octave binary files by C++ to improve the performance ottue. The root founding
routinef sol ve was used to solve the model. The Octaw®l ve cannot pass parame-
ters to a model like the MATLAB sol ve can. Global variables were used for passing
the values of parameters. The values of the parameters weeel $0 global variables
before a call td sol ve and they were read from the global variables in the model. The
DRAM toolbox [19] was used for MCMC runs.

In the heat exchanger model without phase change the pamanestord is given by
equation[(B), so that, = C, 6, = m, 63 = n,, andf, = n., wheren,, andn,. are the
powers of the Prandtl number for the hot and the cold sidpectely.

The predictive distributions represented here are oldalnyesolving the model with a
sample from the posterior distribution of the parametersvhat follows, the black colour
denotes distributions produced by the indirect two-stefhotaand the red colour denotes
distributions produced by the traditional MCMC method.

6.1 Comparison of the direct and indirect methods

There are 6 or 7 measured control variables in the model ndiapg on whether the atmo-
spheric pressure is considered controllable or not. Theareshe dry bulb temperatures,
wet bulb temperatures and dynamic pressures for both tharitbthe cold side. Thus
the total factorial design of the two level per control vateawould yield at leas2® + 1
measurements, 65 altogether, if the central point was decluFor practical reasons this
Is too much. The measurements can be taken in differentrastances, so that the con-
trol variables are different, but still not necessary ddsg. The number of measurements
should be minimised because there is no online measurintharmircumstances for mak-
ing the measurements are quite demanding and thus the nmeggisiexpensive. There are
no laboratories available for testing heat exchangergeitbonsidering all this, the data
for a heat exchanger was generated by using eight measuwefran the full factorial
design and the central point, even though in practice it thghmpossible to completely
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manage the control variables.

The dynamic pressureg, andpy, and the hot incoming dry bulb temperatdrg,, had

all possible two level combinations. The rest of the vagabliere combined but not with
all possible combinations. Atmospheric pressure is nosicianed as a control variable
here. The range for the control variables was nearly the searike one typically used
in the process technical dimensioning of heat exchangehns. nfeasurement points for
the control variables are given in Talble 3 starting from theosid column and ending in
the seventh column. The value for the atmospheric pressasel @1 325 Pascals and zero
Pascals for the pressure difference between the insideha@ndutside of the ventilation
duct in the hot and the cold side for every measurement.

Table 3: Measurement points. Columns 2-7 are values of thealwvariables. The mois-
ture contentv and pv are process technical dimensioning variables accordirvghioh
the factorisation is done.

Control variables Dimensioning variables
Sam P le Tdryh Tdryc Tweth Twetc Pd,, Pd. Wh We PUh PUc
1 82.0 315 426 234 69.7 81.6]0.039 0.015 11.0 12.1
2 79.0 35.0 45.1 25.7 58.0 56.1|0.050 0.017 10.1 10.0
3 79.0 35.0 40.2 21.1 814 56.1]0.033 0.010 12.0 10.0
4 79.0 28.0 40.2 257 580 107.2|0.033 0.020 10.1 14.0
5 79.0 28.0 45.1 21.1 81.4 107.2|0.050 0.013 11.9 14.0
6 85.0 28.0 45.1 21.1 58.0 56.1]0.047 0.013 10.0 10.1
7 85.0 28.0 40.2 25.7 814 56.1]0.030 0.020 11.9 10.1
8 85.0 35.0 40.2 21.1 58.0 107.2(0.030 0.010 10.0 13.9
9 85.0 35.0 45.1 257 81.4 107.2(0.047 0.017 11.9 13.8

The values for the wet bulb temperatures were calculatekwzds from the moisture
contents when the dry bulb temperatures were known. Agtuak moisture content is
used as a process technical dimensioning variable instebd wet bulb temperature. At
the hot side the moisture contentvas varying from 0.03 kg/kg to 0.05 kg/kg and in the
cold side from 0.01 kg/kg to 0.02 kg/kg. For the hot side thikess than in the literature
[10, p. 302] but it was used here to ensure that the heat egehavas not going to con-
densate. After that the dynamic pressures were similahtytzied backwards fromuoy,,
the multiplication of density and flow rate in heat exchangey, is a process technical
dimensioning variable rather than a dynamic pressure. @hees for the process techni-
cal dimensioning variables andpuvy,, used in the measurements as well as the mass flows
are given in Tablgl3.
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The data was made synthetically by adding noise from the abdistribution to the
results of the model as in equatiofs](65) and (71). First tbdehwas solved in nine
measuring points, thus exact values for the heat ®atend the outlet temperaturég,
andT, were obtained. Then data was generated by adding noise remdise vector
€1 ~ N(0,1) to 7;,, and from the noise vectes ~ N (0, 1) to 7., multiplied by the error
std levelo = 0.25. The error vectors for generating the synthetic data amengiv Tabld}.
It was confirmed that the indirect method worked with othesewectors, too.

Table 4: Exact results of the heat exchanger model at theurerasnt points of the
control variables from Tabld 3. Noise vectaeisande, and the corresponding synthetic
datay generated by multiplying the noise vectors by the standawiation of the error

o = 0.25 and adding the result to the outlet temperatures. Dew péithiechot side and
the temperature marginal, masg T,..+ — Tyew, Defore condensation starts. Convective
and overall heat transfer coefficients.

Sampley & T, T, €1 €9 Y1 Yo Taew Marg ay ac U

1 343 726 479 —-0.1 —-0.7 72.6 47.7 36.2 156 48 47 23.9
264 71.1 50.3 1.2 —-0.3 714 50.2 40.3 11.8 45 41 214
279 719 512 -—1.1 0.8 71.7 514 33.0 183 51 41 22.7
356 68.3 42.7 —0.7 —1.1 68.1 424 33.0 16.9 45 53 24.3
382 69.4 43.8 1.0 1.1 69.6 44.1 40.3 8.6 52 53 26.1
342 74.7 47.6 0.5 0.2 748 477 394 108 45 41 214
363 757 487 —-06 2.0 75.6 49.2 31.6 176 51 41 22.7
346 74.5 495 —-0.7 —1.1 74.3 49.2 31.6 24.8 45 53 24.1
373 75.5 506 —0.2 —0.6 75.5 50.4 394 16.1 52 53 26.1

© 00 ~J O T = W N

For the heat exchanger model the “pseudo” parametér is U; and the real model
parameters ae = [C, m, ny, n.] from equation[(B) of the Nusselt number. The measured
control variables arg¢ = & = [Tury, , Tury.: Patms APn, Ape, Twetys Tete Pay > Pa) -

The pairwise comparisons of the parameters in the posteistiibution for the normal
direct MCMC method and the indirect two-step method are shioFigure[IB. It is dif-
ficult to see the possible differences from that figure. Fat thason the marginal distri-
butions for the parameters from the three normal direct MQM and the nine indirect
two-step runs are plotted in Figurel14. In Figlré 15 thergootted predictive marginal
distributions for responses in the central sample pointbemone in Tablél3. There
does not seem to be remarkable differences in the methodgh&areason the indirect
two-step method have been used hereafter with the heatreyehmodels. The indirect
two-step method sped up the computation compared to thiéidrzal direct method.
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Figure 13: Pairwise comparisons of the heat exchanger gdeasn The red distributions
are produced by the direct method and the black distribstiiyrthe indirect method.

6.2 Effect of measurement sample size, design of experimenand
error variance

Measurement sample size has an effect on the identifialoilithe parameters. There
has to be at least as many measurements as there are pasam#iermodel if we want

the parameters to be identified at all. Here it means that weldhave at least five

measurements. Random effects can have a large effect oesthlésrif the data is sampled
only in few points. The smaller the size of the sample is thgdathe probability that

measurements of individual samples are differ from eachroth

The more measurements there are the better the parameteitd ble identified. That
can be seen in Figulel6. There are distributions for ninepapoints given in Ta-
ble[d and distributions for full factorial design of the 65rgale points described in Sec-
tion[€1.There were no remarkable difference on the si@disbarameters of the error
vectors between 65 and nine sample points. The variances girameters in the poste-
rior distribution are smaller for 65 sample points than forensample points. Therefore
the distributions in FigurEZ16 are better identified for 6Bpée points. This can be ex-
pected by thes'S-function residuals: the sums of the residuals for largepdasmare larger
than for small samples while the error variance remainsahees Then the likelihood of
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Figure 14: Marginal posterior distributions for the heatleanger parameters. The red
distributions are produced by the direct method and thekldastributions by the indirect
method. Vertical lines stand for literature values.

0.2

0.1

340 , 350 7255 727

Figure 15: Distributions for the responses at sample panet foom TabldB. The red
distributions are produced by the direct method and thekldastributions by the indirect
method.

being accepted with the same value of parameters becomésrsimidarger sample sizes
in equation[{@l7).

Nine sample points will be used in thesis hereafter mostlydasons described in section
but also for technical reasanane the number of samples is fixed, the identifiability
can be increased only by choosing more optimal samples. Sdgpthe sample size and
the places of measurements is called design of experimenggneral, full or fractional

“4The calculation of distributions with the faster indirecgtmod for 65 sample points in Figutel 16 took
eight hours while the calculation of distribution for nirengple points took approximately one hour.
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Figure 16: Posterior distributions for parameters andesponding distributions for re-
sponse. The black distributions are generated with ningoapoints and the magenta
distributions with 65 sample points. Vertical lines staadliterature values.

factorial design is better for identifying the parametéi@trandomly chosen points. Us-
ing D-optimality criteria or optimising the place of the sale points using the identifi-
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ability of the posterior distribution directly as an objeetfunction could possibly yield
to even better identifiability of the parameters. The lattethod was actually tested here
by the evolutionary algorithm. Indeed, the identifiabilibheasure (the sum of standard
deviations of parameters) was decreasing. However, tmgifiddility of the parameters
in the sample points generated by that method were not staaiee strictly.

Here the error variance of the outlet temperatures was as$stober® = 0.25% including
both the errors in thermometer (small) and the circumsta(iaege). If the error variance
of the outlet temperatures is assumed to be caused by thmedhester alone, the reason-
able error variance might be’ = 0.025%. The comparison of the posterior distributions
of parameters and predictive distributions can be seergr€[lT. The data is generated
by the error variance levets’ = 0.25* ando?® = 0.025” using the same error vectors. It
can be seen that for a smaller error variance the identifiabil the parameters is clearly
better than for a larger error variance.

The values for the four constants in the Dittus—Boelteralation are”’ = 0.023, m = 0.8,
ny, = 0.3 andn. = 0.4 in literature. The same values were used here in the geoeraiti
the data. The median values calculated for the parameterstfre posterior distribution
were different from those. The reason for that can be the skstsibution due to the
small size of the sample. The values were, however, inselenth sided 95 % confidence
or credibility intervals of marginal distributions as cam $een in Tablgl5. There are me-
dians and two sided 95 % credibility intervals of marginatdbutions for the parameters
and the corresponding predictive distributions at the fieshple point of TablEl3 with a
large error variance and a small error variance. There apegVen limits and medians
with a large error variance so that the error vecterande, in Table[4 were interchanged
and the order of the elements was reversed when the data niiesiged.

The widths of the predictive distributions for hot outletigeratures were approximately
half of the widths for cold outlet temperatures. Ratio f@angtard deviations of predictive

temperature distributions in hot outlet and in cold outfethie central design point was
1.7 for all cases described above. However, ratios for stahdeviations of the noise in

the synthetic hot and cold outlet data did not remain the sameng cases.

It can be seen that the range for constantthe power of Reynolds number, was much
more than the range for constantthe power of Prandtl number. It is expected because
the Prandtl number for air was only a little less than ore)(7) with used dimensioning
while the values for the Reynold’s number were thousandsvaler has been used as
a fluid, constant: would not probability has been varying so much because taeddr
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Figure 17: Posterior distribution for parameters and nmaigiistributions for prediction.
The black distributions are generated with error leel= 0.25 and the cyan distributions
with error levelo? = 0.025. Vertical lines stand for literature values.

number for water is approximately 10.
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Table 5: Credibility intervals and medians of posteriotmligitions for parameters’, m,
ny, andn, in the Dittus—Boelter correlation and the correspondiregltive distributions
at the first point in Tabl€l3. The values given in the literat(the first column) were
used in the synthetisation of the dafg.5 andd, o5 are the 2.5 % and 97.5 % fractiles,
respectively. The median & ;. The error variance in the large noise colummis=
0.252. The error variance in the small noise column is one tenthatt fThe reverse noise

uses the same error vectors as large noise but the errorsveetoe interchanged and
reversed.

Large noise Small noise Reverse noise
0 | Literature| 0yoos  0Oos  Ooors | Ooozs  Oos  Ooors | Ooozs  Oos  Ooors
C 0.023 [ 0.003 0.019 0.110 | 0.017 0.021 0.025 | 0.012 0.068 0.360
m 0.8 063 0.79 095| 079 0.81 0.82] 057 0.72 0.87
ny 03] —2.1 —-0.2 1.6 0.0 0.2 04 =25 0.4 2.8
Ne 04 —-31 -=1.0 1.3 0.0 0.2 0.4] —0.3 2.0 4.3
y | Literature| yoos  Yo5  Yoors | Yoo2s  Yos  Yoors | Yoo2s  Yos  Yo.ors
) 343 | 338 343 349 | 342 343 344| 338 342 348
Th, 726 724 726 72.77| 726 726 726| 725 726 727
T, 479 | 476 479 481 | 478 479 479 | 476 47.8 481

6.3 Usability of the same posterior distribution among diferent
geometries of the heat exchanger

Is it possible to change the geometry of the heat exchangktaanalculate predictive
distribution by using the chain of parameter values prodwaéh another geometry? The
need for that might emerge, for example, in the optimisadicthe geometry if predictive
distributions were used[20, pp. 49-67]. Using the samerchadifferent geometries
would be much faster compared to running MCMC inside thenoiger for each geom-
etry separately. Three geometries were created for teséin@ and C. The design of
experiments was the same for all geometries and is givenble[la Geometries are de-
scribed in Tabl&l6. Here all marginal distributions genegtatith geometry A are drawn
with a solid line, all marginal distributions generated lwgeometry B are drawn with
a dotted line and all marginal distributions generated \g#hbmetry C are drawn with a
dashed line.

In the first test case geometries A and B were used. The hdatsiwareas were different
but not the frontal surface areas. Thus the flow rate in thedwdanger and the overall
heat transfer coefficierif did not change. An MCMC run with the geometry A was made
and the posterior distribution got from that is denoted aftee as chain A. Similarly, the
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Table 6: Heat exchanger geometries A, B and C for test cadseabke overall heat transfer
coefficient, andA, the surface area, are the same for the whole geometry. Bhefre
the dimensions are given for both the hot and the cold sidegrately. The lengths are
meters and the areas are square meters.

Geometry A B C
Surface areal 388 487.5 742.5

U for 1. sample poin 23.9 23.9 15.3
Side Hot | Cold | Hot | Cold | Hot | Cold
Cross-sectional areg 3.16 | 1.69| 3.16 | 1.69 6| 2.48
Duct area 3 1.5 3 1.5 3 1.5
Height of the plate 2 1 25| 1.25 31 1.25
Width of the slot 0.016 | 0.017 | 0.016 | 0.017| 0.02| 0.02
Number of slots 98 97 79 78| 100 99
Hydraulic diameter | 0.032 | 0.034 | 0.032 | 0.034 | 0.040 | 0.039

posterior distribution produced with the geometry B is deddereafter as chain B. The
predictive distributions for geometry A was calculated sjng chain A and B separately.
Then the predictive distributions for geometry B were chdted by using chain B and A,

separately as before. The predictive distributions didliféeér as can be seen in Figurd 18.

0.2
0.2
0.1
0.1f
0 340 o 346 0 308 o 406

Figure 18: Marginal distributions for the responses. THeldime is generated with chain
A and the dotted line is with chain B. The figure on the left is g@ometry A and the
figure on the right for geometry B.

In the second test case also the frontal surface areas winedi (= differentU). The
predictive distributions were calculated as describediedbut now for geometries A and
C. There are differences between the predictive distdimstin Figurd_Il9. The predic-
tive distributions have a larger standard deviation whemegated with a wrong chain
compared to one generated with a correct one.
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Figure 19: Marginal posterior distributions for the respes. The solid line is generated
with chain A and the dashed line with chain C. Figures on tlfieHand side are for
geometry A and figures on the right hand side for geometry C.

6.4 Error in measured variables

In this section an error in the control variabless assumed so that they are not con-
sidered strictly given as usually. Actually all the measoeats have an error, also the
control variableg. It has been assumed that the measurement error is Gausditrese
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is no systematic error. Thus the mean of the measurementisreero and the strict
measurement is the mean of the distribution of the measuntsme

In an MCMC run the measurement distribution of the contrelaladles can be taken into
account by including the variables to a parameter vector in addition to real parame-
ters. Those extra parameters are calledr-in-z parameters here. Then we give a prior
varianceo? and a prior meam, from the normal distribution to the parameters. The
prior 1, for an error-ing parameter is the value of the corresponding strict contat v
ablex. The priorc? for an error-ins parameter is the variance of the estimated error in
the value of the corresponding control variable In the MCMC run the value for the
control variabler is picked from the corresponding error<inparameter instead of using
the strict control variable in the calculation of the model in theS-function. How the
Metropolis—Hastings algorithm takes the priors into actpoan bee seen, for example,

in [X7, p. 17].

If we assume that there is an error in the measurement of titeot@ariable, we should
get wider distributions for the model parameters compavdti¢ case where we assume
a strict control variable:. This was tested with the linear test case, see equdiion (77)
The error variance of (02 = 2%) was set to be sixteen times the error variance of
(05 = 0.5%). It can be seen in FiguEERO0 that the distribution is bro&u#re unstrict case
compared to the strict case.

200

100}

0.08 1.02

Figure 20: Comparison of the posterior distributions ofsluges for strict and error-in-
case in linear test case 2. The red distributions are gesteessuming a strict measure-
ment. The blue distributions are generated assuming aniertte measurement of the
variable. All distributions are produced by the direct nogth
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For nonlinear Arrhenius case in equatibnl (78) the erroaveés7. = 1°C in the measure-
ment of the temperature was used. The predictive distobukiere generated by using
only the real parameters of the chain. The errog-jparameter was replaced by the strict,
or the prior meanur value of temperature in the calculation of the predictiohe pre-
dictive distributions were calculated at the central saygaint. The unstrict predictive
distributions for response at 30°C were wider as can be seigure2].

60+

301

0.59 0.62
Yy

Figure 21: Marginal posterior distributions of respongesanlinear test case (Arrhenius
law) at 30 °C. The red distributions are produced by a chaiere/h was assumed to be

a strict measurement. The blue distributions are produgeal ¢thain where an error in
the measurement of thewas assumed. All distributions are produced with the direct
method.

Finally, an MCMC run with the heat exchanger model was donedayg unstrict control
variables. For simplicity, control variables were consatkeunstrict only in the second
step of the indirect method. The same chains from the firgt were used as data for
making the comparison of the strict and errorxitases more reliable. The standard de-
viations described in Tabl@ 2 were squared to get the prior gariances? in the control
variables and in the three measured but not controllabliabas (..., Ap, and Ap.).
The values given in Tabld 3 were used for prigr For p..,, 101325 Pascals was used
and forAp, andAp,. zero Pascals were used as ppiQr

Every measurement of one control variable propagates ooeiarr parameter. Thus the
use of the nine sample points given in Taldle 3 and all six cbntriables and the three
measured but not controllable variables as errar parameters propagated 81 errorin
parameters in addition to the four real parameters, 85 pateamaltogether. Even that is
still a simplification. In reality the dynamic pressure isasared in several grid points as
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described in Sectidn31.1. If we had had the grid of six mesamsant points on both the
hot and the cold side, it would have led to 175 parametergeititer.

The predictive distributions were generated by using thdehparameters only. Error-in-
x parameters were replaced by the strict, or the prior mgamlues of the corresponding
measured variables in the calculation of prediction. IruFe{Z2 there is a comparison of
the predictive distributions generated with unstrict past distributions and with strict

posterior distributions. The predictive distributionsi\geated with unstrict posterior dis-
tributions are little wider than distributions generatetihvstrict posterior distributions

but the difference is not remarkable.

10¢

~725 72.7 47.7 48.1

Th TCO

(o]

Figure 22: Marginal distributions for responses. The bldiskributions are produced by
a chain wherer was assumed to be a strict measurement. The green disinbudre
produced by a chain where there were assumed to be an erf@ mdasurement of the
x. Both chains were produced with the indirect method.
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7 Numerics of the condensing surface model

The purpose here was to improve an earlier version of theasmidg surface model. All
material properties were treated as constants here unltkeicase of the heat exchanger
model without phase change. Thus the convective heat &nanskfficients were also
constants. On the cold side water is used as a fluid here ixémeges. Moisture content
of the hot air was 0.164 kg water vapour / 1 kg dry air and dewmtp@mperature was
61°C. The values used in the example case are given in [[kble 7.

Table 7: Numerical values used in the condensing surfadesiiehanger

Model variable Air  Water
Inlet temperature [°C] 68 10
Mass flow [kg/s] 30 20
Convective heat transfer coefficient W] | 45 6000

The model for the condensing heat exchanger described io8&E4 is a mechanical
dimensioning problem model, which means that the heatseideea is not known but the
incoming temperatures are known as well as the outgoingteofgherature. The model
can be transformed by a numerical trick from a mechanicaédsioning problem model
to a model where the area is known and the outgoing cold teatyeris unknown. There
IS a connection between the cold outgoing temperature andréea in both directions.
Changing from the mechanical dimensioning problem modehéocase where a heat
exchanger exists (and the area is known) becomes a rootifgutasgk in one dimension
as can be seen in Figurd 23. There the atredthe heat exchanger is plotted as a function
of the cold output temperatufe, .

Some nongradient based methods were tested, such asdnssettant, regula falsi and
the Muller method, to solve the root in Figurd 23. In the Mullgethod [21, pp. 52-53]

the value of the model is solved at three points (blue sqluaresthe parabola (blue line)
in the figure is fitted to those points to estimate the functidhe value of the function

at the root of the parabola is calculated. That becomes thepoet (red square) to fit

the parabola when one point is dropped away in the next iberaf the algorithm. For

the secant method a secant line is used instead of the par@bestimate the function.
The existingf sol ve-solver could not be used becaudseol ve cannot be called inside
f sol ve at least in Octave.

The model cannot be solved if cold water should be heated tochmin that case the
local incoming cold temperature inside the heat exchangezesls the local outgoing hot
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Figure 23: Root founding = converting a mechanical dimemsig problem model to an
existing area model

temperature at the place where the heat exchanger staoisdertsate in the calculation of
the dry area in equatiofi{lL3). Then the logarithmic mean &atpre difference obtains
an imaginary value. This problem did not occur if the colddluias air. How much the
cold water can be heated depends on the circumstances. diteepéotted areas versus
cold outgoing temperatures with different hot incoming pematures in Figue24. It can
be seen that the area needed to heat the cold fluid to a cemapetature starts to increase
rapidly after the dew point. Above the dew point condensatioes not happend, heat
exchanger is less effective and more area is needed to adhewvesired temperature.

7.1 Effect of the initial guess

Function solverf sol ve needs to get at least a function for root finding and starting
point as parameters. When the constant values were usedialsguesses, or starting
values for the function solvdrsol ve in the first cell, the solver could not converge to
a correct solution in all circumstances. The solver doesnecessarily converge even
if the solution exists. Having the starting guess near tlo¢ leads to convergence more
probably.

An “intelligent” adaptive method to estimate the initialegs for the differences in dif-
ference equatior.(#5) was used. The basic idea is to esttimatlution for the whole
heat exchanger and then divide the estimate by the numblkee a&lls. For example, the
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Figure 24: Area vs. cold outgoing temperature with difféienoming hot temperatures.
For the lower incoming temperatures the inflection is mopadraThe vertical line is the
dew point.

difference of the heat rate on the cold sifié. in one cell can be calculated exactly by
dividing the heat rate on the cold sideb. by the number of the cells. For the area this
kind of estimation is impossible because actually we shealde the area but we cannot
know it beforehand. But our initial guess fdrA should, of course, be an estimate for the
total area divided by the number of the cells. For the tentpezadifference of the con-
densate\T,,,.q the calculation of the estimate is more difficult. The iditialue for the
temperature of the condensate can be calculated by eq@fApbut the outgoing value
cannot be known. It should not drop below the temperaturéefiicoming cold fluid.
Thus their difference divided by the number of the cells cauged as the initial guess.
For the enthalpy differencAh the heat rate on the cold side divided by the hot mass flow
and that divided by the number of the cells gave a considggaiad estimate everywhere.
With the calculation of the initial guess for the differennghe moisture contemkw the
situation is somehow similar to th&T,,qbecause we know the incoming value for the
moisture content but we do not know the outcoming value. Ifalg® assume here that
the outgoing hot temperature reaches the value for the imgpoold temperature, we can
calculate the moisture content at that temperature, stthtfaom the incoming one and
divide the result with the number of the cells.

Once the first cell was solved, the solution obtained by difiee equatiori{45) was used
as an initial guess for cell two. Similarly, the solution b&tprevious cell was used as an
initial guess in the next cell hereafter.
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7.2 Retrial of the solution in the case of the fail of the conugience

Octavef sol ve uses FORTRAN 77 MINPACK subroutine hybrd. It returns an info
argument, which reveals the success of the convergence sbthtion. The solver could
not converge to the correct solution with initial startingegs when the outgoing cold
temperature exceeded 60°C, which can be seen in Highire 28rap & the function. It
can also be seen, that the solver did not converge after assfot start in the following
cells. The problem was solved by repeatedly starting theesoandomly near the initial
guess or the solution from the previous step to get the doiwaction in Figurd2b.
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Figure 25: Failure to achieve a correct solution with a cantsstarting guess and one
trial. In the upper solution an adaptive starting guess amedrel of the solution are used.

7.3 Effect of the number of cells

A trade off exists between accuracy and time consumptiorth Bee increasing by the
number of cells. The effect of the number of cells to the nedaiccuracy of the area
at different outgoing temperatures is represented in Ei@br The areas calculated with
different cell numbers are compared to a case where the n®dalided into thousand
cells. That is considered “a true area” in the calculatiorihgf percentage error and
calculated areas for smaller cell numbers are considetednlbe seen that the absolute
percentage error is increasing when the number of cellsaedsing.

With the low outgoing cold temperatures the number of cedlssonot remarkably affect
the accuracy. The highest absolute percentage error is deth point.
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Similar figures were produced with different incoming hanpeeratures. The shapes of
the error curves looked similar to the ones in Fidure 26. Bygaring the figures it was
noticed that the nearer the incoming hot temperature wdsetdew point the higher the
percentage error of the area was.

0A [%]
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-15+

-20+
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Figure 26: Effect of the number of cells to the relative aacyrof the area [%] at different
outgoing temperatureg. [°C]. Different lines are done with different cell numbeihe

vertical line is the dew point.
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8 Conclusions

The identification of parameters in the heat exchanger medebut phase change was
studied by MCMC methods. The Nusselt number, which is usetiencalculation of
the overall heat transfer coefficient, can be calculatechbyDittus—Boelter correlation,
for example. The confidence limits for the constants (patarsgin the Dittus—Boelter
correlation were found. There are combinations of paranvedees bounded by the error
so that especially the values for— power of the Prandtl number — in the cold and
the hot side can vary remarkably and even be negative. Nigturanphysical parameter
values can be avoided using proper priors. The congtaocan never be negative. It
seemed that predicting the hot outlet temperature is legs$ 8tan predicting the cold
outlet temperature.

The estimation of the right level of the error variance isctailfor the correct results when
we use synthetic data. The pattern of the posterior digtabwf the parameters can be
affected by the level of the error variance only little bué twidth of the distributions
can be chosen in advance. As we could see, we can get thesresultant by choosing
the correct level of the error variance when we make the dHtat holds true also for
the predictive distributions which can be used for the ogation of heat exchanger net-
works. At least repeated pilot measurements should be takesstimating the level of
the error variance. Only real data can reveal the error chlngéhe model. As far as we
are playing with synthetic data the results are only as geoolua comprehension about
the measurement error.

There is no convergence proof about the indirect two-stegMM@Gnethod. However, it

seemed to work quite well here. The results did not differ parad to traditional method
and it sped up the computation with the heat exchanger mddelperformance analysis
should be done in some other environment because part obthes tike the vectorised
code, is executed in MATLAB and Octave as a compiled codeenpalrt of the code is

still interpreted. When used with other models it might bedjto compare the results of
the indirect method to the traditional method. There i$ atiheed for making the two-
step method more automatic. The results of the second spgmden the data, which is
a sample from the chains made in the first step. The results tihe second step varied
a little depending on how the sample was taken from chainseofitst step. That should
be studied more.

The new indirect method can be used, for example, in the dedfigxperiments if we
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try to maximise the identifiability of the MCMC chains. If asdrete sample space for
measurements is used, we can run the first step in every sawmiptesave the chains and
then combine these chains as needed in the second step.ldb ipassible to compute

the first step in parallel. If it is possible to solve the modéhout the second step as in
the first linear test case, it improves mixing of chains. We gaduce one chain in every
measurement point as in case one, because the chains imoeresttbnal parameter space
are usually mixed better than in a multidimensional pareamgpace. Thus the multidi-

mensional parameter space is changed to a one dimensioaaigter space during the
MCMC run and then back to the multidimensional parametecspa get the posterior

distributions of the parameters by solving the model.

The use of same parameter posterior distribution with aifiegeometries in the case of
same process technical dimensioning is limited to geoe®etvhere heat exchangers have
the same frontal surface areas. If we want to make other ésanghe geometry when
optimising the geometry using the posterior, we have to beercareful. It has to be taken
into account that the predictive distributions producethwai wrong chain are wider than
the distributions produced with a correct one and the meaneat the same. The safest
way is to produce an own chain for every geometry. The use efabrain in different
geometries should be studied more.

Itis not recommended to use error in the control variablésersame way as is done here
if the measurement errors are below the described levelsng&he error in the control
variables into account is too demanding considering thefiten

Our implementation of the condensing surface model coulgske for the optimisation in
[20]. In general, there is a need to find a pseudo paramet@nidensing surface model,
which hides all real parameters behind itself in order ofititerect method to be used.
In the condensing surface model also the wet bulb temperatuthe hot side has to be
added to the measured response vector and respectivelytiv e taken into account in
the SS-function.
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Appendix 1. Material properties used in this thesis

The following equations for material properties were useceh Liikola [1] collected
them from the literature and used them in his Master’s thesis

Thermal conductivity for dry air is obtained by
kaa = 2.646+/Tx/ (1 + (245.4 - 10*12/TK) /Tx) - 1072, (1-1)

wherek,, is the thermal conductivity of dry aif]1, p.39] arig; is the temperature in
Kelvins. Thermal conductivity for water vapour is obtairtad

6.471\/Tk 1
kWV = 459 . (109'218pl)ar'(100/TK) _ 1) . 10—3’ 1_2
(1 (17373 102/ /Ty (1-2)

wherepy,,. is the pressure in bars aig, is the thethermal conductivity of water vapour
[L, p.39]. Value for the thermal conductivity of moist airgst by combining previous
values by the method of Wilke

Taak Tk
kma — _ Lda da~ _ Ty WV~ : (1_3)
Tda, + ¢12xwv Ty + ¢21xda
where
kma is the thermal conductivity of moist air ~ [W/mK],
ZTqa IS the molar fraction of the dry air [-],
Twv IS the molar fraction of the water vapour [-],
) is the interaction term of the compounds [-]]22, pp.407]410
Value for interaction term is got from equation
2
(1 + (k:da/kwv)l/2 (MWV/Mda)1/4>
b12 = (1-4)

(8 (1 + Maa/My))'"?

Value for ¢, is got by interchanging the subscripts in the formula.

continues



Appendix 1 continued

Dynamic viscosity for dry air is got by equation

1458 1070/Tx
2 = 10,4/ T

(1-5)

where ., is the dynamic viscosity of the the dry alr [1, p.39] and fortevavapour by
equation
oy = (0.0361T% — 1.02) - 107, (1-6)

where 1, IS the dynamic viscosity of the the water vapour [1, p.39].lugafor the
dynamic viscosity of moist aif,,, is got by the method of Wilke as in previous case by
substituting values for dynamic viscosity in place of valeéthermal conductivity.

Specific heat capacity for dry air is got from formula

Cpyn = 3.7348 - 107713 + 1.8304 - 10 °T¢ + 1.0063, (1-7)

wherec,, . is the specific heat capacity of dry alf [1, p.40] and for watspour from
formula

322441924 - 10737k + 1.055 - 107572 — 3.596 - 107273

- 1-8
po 1000 - My, I

wherec,,, is the specific heat capacity of water vapdur [1, p.40]. Sjmelbeat capacity
for the mixture of dry air and water vapour is got by equation

Cpma - dea + wcpwv’ (1-9)

wherec,, . is the specific heat capacity of moist air[23, p.81].
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