SÄHKÖGENERAATTORIN RUNKOKAPPALEEN VALMISTUSTECHNINEN TAR- KASTELU

A MANUFACTURABILITY ANALYSIS OF AN ELECTRIC GENERATOR’S BODY PART

Kouvolassa 30.3.2011
Aki Mänttäri
SISÄLLYSLUETTELO

1 JOHDANTO .. 3
 1.1 Design for manufacturing and assembly .. 4
2 MAG-HITSAUS ... 6
 2.1 Laitteisto .. 6
 2.2 Suojakaasut .. 6
 2.3 Kaarityypit .. 7
 2.4 Hitsauslisäaineet ... 9
 2.4.1 Umpilangat .. 9
 2.4.2 Täytelangat .. 9
 2.5 Monilankahitsaus ... 10
 2.5.1 Tandem-MIG/MAG-hitsaus .. 11
 2.6 Lämpökäsittely ... 12
 2.6.1 Jännitystenpoistohehkutus ... 12
 2.6.2 Normalisointi ... 13
 2.7 Robotisoitu hitsaus .. 13
 2.7.1 Robottihitsattavan rakenteen muotoilu ... 14
 2.7.2 Kappaleenkäsittely ... 18
 2.7.3 Hitsauskiinnitin .. 19
3 VALAMINEN ... 25
 3.1 Valumuotti .. 26
 3.2 Hiekkavalu .. 26
 3.2.1 Kaavaus .. 28
 3.2.2 Keerna ... 28
 3.3 Jälkikäsittelyt valun jälkeen ... 29
 3.4 Valukappaleiden muotoiluohjeet ja -säännöt .. 29
 3.4.1 Valukappaleiden suunnittelu mallikustannusten kannalta ... 30
 3.4.2 Valukappaleiden suunnittelu kaavauksen kannalta ... 31
 3.4.3 Valukappaleiden suunnittelu keernanvalmistuksen kannalta .. 32
 3.4.4 Valukappaleiden suunnittelu valun kannalta ... 33
4 GENERAATTORIN RUNKOKAPPALE JA SEN VALMISTUSTEKNINEN TARKASTELU .. 39
 4.1 Runkokappaleen muutosehdotukset hitsauksen kannalta .. 40
 4.2 Valumateriaali .. 45
 4.3 Runkokappaleen valutekninen tarkastelu .. . 45
 4.3.1 Rungon kiinnityspisteet ... 47
 4.3.2 Vaarnaruuvien kiinnityspisteet ... 48
 4.3.3 Rungon nostopaikat ... 49
 4.4 Alkuperäisen rakenteen valaminen .. 49
 4.5 Valmistusmenetelmien vertailu .. 50
5 JOHTOPÄÄTÖKSET .. 52
6 YHTEENVETO .. 54
LIITTEET
LIITE I: Taulukoita valettavan kappaleen työvarois ta
LIITE II: Taulukko pallografiittivaluraudan seinämäpaksuussuosituksista
1 JOHDANTO

Teoriaosuudessa on esitellyt teettäjän pyytämä valmistusmenetelmien perusteoria ja sen jälkeen on tarkemmin tarkasteltu hitsattavan ja valettavan runkokappaleen muotoiluun liittyvää teoriaa. Hitsattavan kappaleen robotisoituun hitsaukseen liittyy myös vahvasti kappaleenkasittely ja hitsauskiinnittimet, jotka välillisesti vaikuttavat myös kappaleen muotoiluun.

1.1 Design for manufacturing and assembly

Design for Manufacturing and Assembly (DFMA) on menetelmä, jolla pyritään pienentämään tuotteen kustannuksia parantamalla sen valmistettavuutta ja kokoontuvuuden helppoutta suunnittelun keinoin. On tärkeämpää parantaa tuotteen valmistettavuutta ja helppottaa kokoontavuutta, kuin lisätä automatisoinnin määriä tuotteen valmistuksessa. Vaikka valmis tuote täytäisi asetetut vaatimukset, on suunniteltu tuote joka tapauksessa puutteellinen, jos sen valmistettavuus on jätetty huomioimatta. (Timings & Wilkinson 2000, s. 5.)

Käytännössä ei ole olemassa varsinaista peruskaavaa DFMA:lle, vaan kaikki järjestelmällinen parantaminen tuotteen valmistettavuudessa ja kasattavuudessa toteuttavat DFMA:n periaatteet. DFMA on tapa laajentaa suunnittelujen ajatusmaailmaa huomioimaan valmistettavuuden ongelmia. (Lohtander 2002.)

Toteuttamalla suunnittelun eri vaiheet rinnakkain - simultaatio - niin, että eri työvaiheitata otetaan huomioon samanaikaisesti (kuva 1), saavutetaan tuotteen parempi laatu. Kun tuotteen suunnittelussa otetaan kaikkien osapuolten vaatimukset huomioon, saadaan tuote nopeammin tuotantoon ja tarpeettomia kustannuksia saadaan säästettyä, kun ongelmia ei tarvitse enää ratkoa jälkikäteen tuotantotiloissa. (Höök et al. 2010.)

![Kuva 1. Rinnakkais- eli simultaanisuunnittelun periaate valtuotteella (Höök et al. 2009).](image)

Suunniteltaessa tuotetta on huomioitava, että tuotteen kustannuksiin voidaan vaikuttaa valitsemalla eri materiaaleja ja eri valmistusmenetelmiä. Tuotteen osien lukumäärää pysty-
tään vähentämään vaihtamalla valmistusmenetelmää, jolloin vähentynyt osien määrä vai-
kuttaa tuotteen kasaamiseen. Tuotteelle asetetut vaatimukset määräävät valmistusmenetel-
mät, joita on mahdollista käyttää. Valitsemalla sopivin menetelmä, voidaan tuotteen vaati-
mukset täyttää vähemmillä kustannuksilla. (Timings et al. 2000, s.7.)
2 MAG-HITSAUS

MAG-hitsaus eli metallikaasukaarihitsaus on kaasukaarihitsausprosessi, jossa valokaari palaa suojakaasun ympäröimänä hitsauslangan ja työkappaleen välillä. Kaari sulattaa perusainetta ja lisääinelankaa, ja langan päässä oleva sula metalli siirtyy pisaroina perusaineessa olevaan hitsisulaan. Suojakaasuna käytetään aktiivista kaasua, joka vaikuttaa hitsaustapahtumaan ja hitsisulaan. (Lukkari 1997, s.159-160, 199.)

MAG-hitsaus on yleensä osittain mekanisoitua hitsauta eli hitsaajan käsin tehtävä hitsausta. HNtusulanka syötetään koneellisesti hitsauspistooliin ja hitsauspistoolin kuljetus tehdään käsin. Hitsaus on helppo mekanisoida, automatisoida tai robotisoida. (Lukkari 1997, s. 160.)

2.1 Laitteisto

Tyypillisessä MIG/MAG-hitsauslaitteistossa on virtalähde, joka muuttaa verkkovirran hitsauskseen sopivaksi. Lisääinelanka on kelalla, jolta se syötetään langansyöttölaitteella monitoimijohdossa kulkevaa johdinputkea pitkin hitsauspistoolille. Pistoolissa lanka kulkee kosketussuuttimen läpi valokaareen. Suojakaasu johdetaan samanaikaisesti kaasupullosta virtausmittarin kautta monitoimijohdossa olevan kaasuletken läpi hitsauspistooliin. Maadoituskaapeli yhdistää virtalähteen ja työkappaleen. (Lukkari 1997, s. 177.)

Pienissä MIG/MAG-laitteistoissa on yleensä virtalähde ja langansyöttölaite samassa koneessa. Tämäntyyppisiä laitteistoja kutsutaan ns. kompaktikoneiksi. Monipuolisissa tuotantohitsausksissa on yleistä, että langansyöttölaite ja virtalähde ovat erillään, jolloin langansyöttölaite voi olla sijoitettuna virtalähteen päälle, puumiin tai lattialle. (Lukkari 1997, s.177.)

2.2 Suojakaasut

Suojakaasun tehtävä MIG/MAG-hitsauksessa on suojata hitsisula, lisääinelangan päähä ja sulat lisääinepisarat ilmalta, tai tarkemmin ilmassa olevilta hapelta ja typeltä. Suojakaasu
vaikuttaa myös seuraaviin asioihin (Lukkari 1997, s.197; Lepola & Makkonen 2001, s.136):

- hitsaineen kemiallinen koostumus
- hitsaineen lujuuks- ja iskusitkeysominaisuudet
- lisääneen siirtymistapa eli kaarityyppi
- roiskeiden koko ja määrä
- valokaaren vakavuus
- hitsipalon muoto
- tunkeuman syvyys ja muoto
- hitsauskustannukset
- hitsauksen tuottavuus.

Monet hitsausvirheet johtuvat puutteellisesta kaasusuojauksesta, mihin syynä voi olla huonokuntoinen kaasunsyöttöjärjestelmä, liian pieni tai suuri kaasuunvirtaus tai vetoisuus työtiloissa. Oikein valittu suojakaasu voi parantaa hitsaustulosta merkittävästi. (Lukkari 1997, s. 197.)

2.3 Kaarityypit

MIG/MAG-hitsauksen parametreja säätämällä ja eri suojakaasuilla on mahdollista hitsata erilaisilla kaarityypeillä. Näillä kaarityyypeillä on omat erityispiirteensä, jotka vaikuttavat merkittävästi hitsauksen onnistumiseen ja jälkityön määrään. (Lukkari 1997, s. 168; Lepola et al. 2001, s. 140.)

Kuumakaarihitsuksessa kaariteho on niin suuri, että se ehtii sulattamaan syötetyn lisääinelangan ilman oikosulkuvaihetta. Tällöin kaari palaa koko ajan ja aineensiirtyminen on hieman pisaraista. Riittävän suuri hitsausvirta argonvaltaisilla seoskaasuilla sulattaa lisääinelangan pään kartiomaiseksi ja pisarat siirtyvät suihkumaisesti hitsisulaan. Koska hitsisula on suuri, ei kuumakaarihitsu suovellu asentohitsuksia eikä päättäisliitosten pohjapalkojen hitsaamiseen. Sitä käytetään välis- ja pintapalkojen hitsaamiseen jalkosennossa ja alapienahitsuksia. (Lukkari 1997, s. 170; Lepola et al. 2001, s. 141-142.)

- suurempi hitsausnopeus ja hitsiaineentuotto verrattuna lyhytkararihitsuksseen
- pienempi hitsausenergia ja vetelyt verrattuna kuumakaarihitsuksseen
- vähemmän roiskeita ja hitsashuuruja
- hitsin hyvä ulkonäkö
- paksumman langan käyttö mahdollista
- helpottaa hitsauta vaikeasti hitsattavilla lisääineillä, esim. erilaiset nikkeli-valtaiset lisääineet
- paremmat asentohitsausominaisuudet.
2.4 Hitsauslisäaineet

Tässä kappaleessa esitellään MIG/MAG-hitsauksessa käytettävien lisäaineiden ryhmittely.

2.4.1 Umpilangat

MIG/MAG-umpilankahitsauksessa hitsauslisäaineet ovat kelalla olevia ohuita lisäainelanukoja. Yleisimmät langanhalkaisijat ovat 0,8; 1,0 ja 1,2 mm. Hitsauslankojen kemiallinen koostumus vastaa yleensä hitsattavan teräksen koostumusta. Hitsiaineentuotto on hitsattessa samalla virralla suurempi ohuella langalla kuin paksulla langalla, koska virtatiheys on ohuella langalla suurempi. Tämä ei kuitenkaan tarkoita sitä, että ohuella langalla saavutetaan aina suurempi hitsiaineentuotto kuin paksulla langalla. Paksun langan kuormitettavuus on kuitenkin oleellisesti suurempi ja sitä kautta saadaan suurempi tuotto. Ohuella ja paksulla langalla on myös tärkeä ero tunkeumissa. Kun tuotto ja hitsausnopeus ovat samat, niin tunkeuma on suurempi paksulla langalla. Tämä on tärkeä asia, kun valitaan käytännössä sopivaa langanhalkaisijaa. (Lukkari 1997, s. 192, 208.)

2.4.2 Täytelangat

Suojakaasun kanssa hitsattavat täytelangat voidaan jakaa kahteen pääryhmään (Lukkari 1997, s. 236):

- jauhetäytelangat eli kuonaa muodostavat täytelangat
- metallitäytelangat eli kuonattomat täytelangat.

Jauhetäytelangat voidaan edelleen täytteen tarkemman koostumuksen perusteella jakaa ruttiilitäytelankoihin ja emästäytelankoihin. Ruttiililangat jaetaan edelleen asentohitsauslankoihin ja jalkohitsauslankoihin. Muodostuvan kuonan on jähmetyttävä riittävän nopeasti, jotta se pystyy tukemaan hitsisulaa asentohitseissä. (Lukkari 1997, s. 236.)
Rutiilitäytelangat hitsataan kuumakaarella, myös asentohitseissä, vaikkakaan aineensiirto-
minen aivan pienillä tehoilla ei ole enää kuumakaarimaista. Tämän ansiosta asentohitsaus
rutiiliasentolangoilla on tehokasta ja liitosvirheiden vaara pieni. Roiskeettomuus, hyvä
hitsin muoto, pehmeä ja vakaa valokaari ja hyvä kuonon irtovuus ovat tunnusomaisia piir-
teitä rutiilitäytelangoille. Suomessa rutiililangoista käytetään ylivaimaisesti eniten asento-
lankoja. (Lukkari 1997, s. 237; Lepola et al. 2001, s. 172.)

Emästäytelangoilla on parhaat hitsiaineen laatuomaisuudet. Erinomaiset mekaaniset
ominaisuudet, iskusitkeysominaisuksien myöstönkestävyys, erinomainen hitsin tiiviys,
matalat epäpuhtausominaisuudet hitsiaineessa ja erittäin niukkavetyinen hitsiaine ovat tunnusomaisia piir-
teitä emästäytelangoille. Joskus rutiilitäytelangoilla hitsattaessa on hankalaa
saada pohjapalko ehjäksi, varsinkin keraamista juuritukea vasten. Usein pohjapalko hitsa-
taan tästä syystä emäslangalla ja täytepalot rutiililangalla. (Lukkari 1997, s. 238.)

Emästäytelangat eivät ole niin arkoja konepajapohjamaalille ja muille epäpuhtauksille hit-
sattavilla pinnoilla, kuin muut täytelangat. Ne ovat myös täytelangoista vähiten arkoja ve-
dolle ja tuulle. Emästäytelangoilla asentohitsausomaisuudet ovat kuitenkin vain koh-
tuulliset, sillä roiskeita syntyy enemmän kuin muilla lankatyypeillä. (Lukkari 1997, s. 238.)

Metallitäytelangoissa ei yleensä ole mitään kuonaa muodostavia aineita, joten ne ovat um-
pilankojen tapaan kuonattomia lankoja. Kuonattomuuden ansiosta ne soveltuvat hyvin me-
kanisoituun ja erityisesti robotisoitun hitsaukseen. Metallitäytelangat ovat tuottavia ja
tehokkaita lankoja, joiden tyyppisin käyttöalue on tehokas jalko- ja alapienahitsaus. Riit-
toisuus on korkeampi kuin muilla täytelankatyypeillä ja se on umpilangan kanssa samalla
tasolla, eli noin 95 %. (Lukkari 1997, s.238.)

2.5 Monilankahitsaus

MIG/MAG-hitsausta voidaan tehostaa käyttämällä yhden lisääinelangan sijaan useampaa
lisääinelankaa. Monilankahitsausprosesseja ovat MIG/MAG-hitsauksessa kaksoislankahit-
saus (Twin) ja kaksilankahitsaus (Tandem):

2.5.1 Tandem-MIG/MAG-hitsaus

2.6 Lämpökäsittely

Seostamattomia rakenneteräksiä käytetään yleensä toimitustilassa. Koska lämpökäsittely aiheuttaa aina lisäkustannuksia, tulisi myös seostamattomien rakenneräisten lämpökäsitten-lyä harkittaessa arvioida sillä saavutettavat edut. (MET raaka-ainekäsikirja 1 2001, s. 42.)

2.6.1 Jännitystenpoistohehkutus

Myöstettäessä, eli jännitystenpoistohehkutettaessa, terästä sen sisäiset jännitykset laukeavat kuumennuslämpötilaa vastaavalle myötörajalle. Tavanomaisissa myöstölämpötiloissa 550…600 °C myötölujuus on vain noin 10 % myötöljujuudesta huoneenlämpötilassa. Oikein tehdyllä myöställä voidaan mm. (MET raaka-ainekäsikirja 1 2001, s. 42-43):

- vähentää jäännösjännityksiä
- parantaa hitsin väsymislukuutta ja sitkeyttä
- varmistaa mittojen säilyminen työstössä ja käytössä.

Myöstön onnistumiseen vaikuttavat kuumennus- ja jäähdytysnopeus, rakenteen aineenpakkuuskien erot ja rakenteen jäykkyys. Suuret erot aineenpakkuuksissa ja jäykä rakenne edellyttävät hitaita lämpötilanmuutoksia. Yleisesti voidaan esittää, että kuumennusnopeus on laskettavissa kaavan 1 mukaisesti. (MET raaka-ainekäsikirja 1 2001, s. 43.)

\[
\Delta T = \frac{(50...200) \, ^\circ C}{s/25 \, h},
\]

jossa \(s \) on kappaleen suurin aineenpakkuus millimetreinä ja \(\Delta T/\Delta t \) on kuumennusnopeus (\(^\circ C/h\)), joka kuitenkin maksimissaan on 200 °C tunnissa. Myöstölämpötila on siis 550…600 °C, ja pitoaika saadaan joko kaavalla 2 tai 3. Pitoajalla tarkoitetaan aikaa, jonka työkappale on oltava myöstölämpötilassa. (MET raaka-ainekäsikirja 1 2001, s. 43.)

\[
t_{\text{pito}} = \frac{s}{25 \, mm} \times 1h
\]

(tai)

\[
t_{\text{pito}} = s \times 2 \frac{\text{min}}{mm},
\]

(3)
joissa t_{pito} on pitoaika ja s on kappaleen suurin aineenpaksuus millimetreinä. Kaava 2 antaa ajan tunteina ja kaava 3 minuutteina. Pitoaika on kuitenkin vähintään 30 minuuttia. (MET raaka-ainekäsikirja 1 2001, s. 43.)

Jäähtymisen enimmäisnopeus voidaan laskea kaavalla 4.

$$\frac{\Delta T}{\Delta t} = \frac{275 \ {^\circ}C}{s/25mm \ h},$$

jossa $\Delta T/\Delta t$ on kappaleen sallittu enimmäisjäähtymisnopeus ($^\circ$C/h) ja s on kappaleen suurin aineenpaksuus millimetreinä. Jäähtymisnopeus on kuitenkin enintään 275 °C tunnissa. (MET raaka-ainekäsikirja 1 2001, s. 43.)

2.6.2 Normalisointi

Normalisoinnissa teräs kuumennetaan austenitointilämpötilaan 900…920 °C ja jäähdytetään vapaasti ilmassa. Pitoaika austenitointilämpötilassa on 1 minuutti kutakin aineenpaksuuden millimeträ kohden, mutta kuitenkin vähintään 15 minuuttia. Perusaineen lujuusominaisuudet pysyvät ennallaan tai paranevat tässä käsittelyssä. Lujuusluokan S355 teräksillä saattaa lujuu jäädä matalaksi, joten lisääine on valittava lämpökäsittely huomioon ottaa. Myöstöön verrattuna normalisointia joudutaan käyttämään melko harvoin muissa kuin paineastiarakenteissa. (MET raaka-ainekäsikirja 1 2001, s. 43.)

2.7 Robotisoitu hitsaus

Verrattuna käsinhitsaukseen robottihitsaus luo omat vaatimuksensa jo kappaleen suunnitte-
luvaiheeseen. Robotilla hitsattavien kappaleiden tyypilliset ongelmat liittyvät edelleen osi-
en valmistustarkkuuteen, koska käsinhitsaus sallii suuremmat mittapaikkeamat. Hitsausrai-
lojen sijaintivirheet sekä railontilavuoksissa ja railogeometriiassa tapahtuvat muutokset
ovat kaikki merkittäviä ongelman aiheuttajia. Virheet voivat aiheuttaa läpipalamiesta, valu-
mia ja vajaita a-mitioja. Käytännössä nämä virheet vaativat aina hitsausoperaattoria kor-
jaamaan ohjelmaa, jos käytössä ei ole railonseurantaa ja/tai adaptiivistä hitsausjärjestel-
mää, joka osaa takaisinkytkennän avulla korjata hitsausparametreja automaattisesti. Nämä
järjestelmät ovat kuitenkin suhteellisen kalliita ja niiden hankintaa on tarkasti harkittava.
(Kivioja et al. 2007, s. 45; Turku 2009, s.29-30; Veikkolainen 1998, s. 25-27.)

Toisaalta karkealevytuotteessa osanvalmistustarkkuus on hankala saada robottihitsauksen
vaatimalle tasolle ilman anturointia, jotka korjaavat osista, railoista ja muista seikoista joh-
tuvia epätarkkuuksia. Tästä johtuen toimivan anturoinnin käyttö on perusedellytys tehok-
kaalle ja laadukkaalle robottihitsaukselle karkealevyrakenteissa. (Veikkolainen 1998, s. 25-
27.)

2.7.1 Robottihitsattavan rakenteen muotoilu

Rakenteen oikeaoppinen muotoilu on perusedellytys kappaleen robotisoidulle hitsaukselle.
Käsinhitsattavaksi tuotteeksi suunnitellulle kappaleelle tulee suorittaa tarkastelul robotisoit-
tua hitsausta silmälläpitäen, mutta uutta tuotetta suunniteltaessa on automatisoidun hitsauk-
sen huomioon ottamisen helpointa. Huomioon tulisi ottaa ainakin seuraavat seikat (Ahola
1988, s. 4,13; Linden et al. 2006, s.265):

- Vähentämällä hitsattavien osien määrää helpottuu ohjelmointi, hitsauskiin-
nittimet yksinkertaistuvat sekä osien käsittely ja varastointi helpottuvat.
- A-mittojen, railomoitujen ja materiaalien yhdenmukaistamisella kappalees-
sa helpotetaan ohjelmointia sekä hitsausparametriien määrittämistä ja tes-
taamista.
- Rakenne ei saa estää hitsin luoksepäästävyyttä.
- Pienahitsejä sekä T- ja päällekkäisliittoksia tulisi suosia mahdollisuksien
mukaan, mikä pienentää railonvalmistustoleransseja ja läpipalamiisriski
poistuu.
Hitsin tunkeumaa hyödyntämällä voidaan pienentää tarvittavaa hitsiaineen-määrää. Tämä vaatii kuitenkin menetelmäkokeen.

Yhdenmukaistamalla, eli vakioimalla, a-mitat, railomuodot, materiaalit ja levynpaksuudet voidaan haitsaustyötä edeltävätä toimenpiteitä vähentää. Jos tunkeumaa tullaan hyväksikäyttämällä hitsiaineenmallin hyödyntämällä, tämä vaatii kuitenkin menetelmäkokeen. Jos valmistettavissa kappaleessa pystytään käyttämään samoja a-mittoja, levynpaksuksia ja hitsityyppejä, vähenee useiden menetelmäkokeiden tarve ja ohjelmointityö helpottuu. (Ahola 1988, s. 4,13; Linden et al. 2006, s.265.)

Suunnittelussa pyritään mahdollisimman pienen a-mitteen. Standardissa SFS 2373 on esitetty staattisesti kuormitettujen teräsrakenteiden hitsausliitosten mitoitus ja lujuuslaskenta. Standardissa esitetty lujuuslaskenta on voimassa vain mitta-alueella

\[3 \text{ mm} \leq a \leq 15 \text{ mm}. \]

(Suomen standardin SFS 2373, s. 20.)

Minimi-a-mitta 3 mm johtuu siitä, että huono railonsovitus tai pieni liitosvirhe aiheuttaisi liian suurta suhteellista virhettä. Hitsin jäähtymisnopeuden kannalta suositellaan seuraavaa aineenpaksuuudesta riippuvaa ohjearvoa hitsin a-mitalle (SFS 2373, s. 20):

\[a = 0.5 \sqrt{3} \text{ (mm)} \]

(Suomen standardin SFS 2373, s. 20.)

Maksimi-a-mitta 15 mm johtuu siitä, että oletettamis jännityksen jakaantumisesta murtotilassa tasan hitsin paksuudelle ei pärä kovin paksuilla hitseillä. Laboratoriokokkeissa tämä ilmenee mitatun murtoljuuuden alenemisena. (SFS 2373, s. 20.)
esitetty liitosmuotoja ja muotoiluperiaatteita sekä niiden soveltuvuutta robottihitsaukseen. (Linden et al. 2006, s. 268; Turku 2009, s. 33.)

Kuva 2. Liitosmuotojen robottihitsaukseen sopivuuden vertailua (Linden 2006, s. 266).
Kuva 3. Liitosmuotojen roottihitsaukseen sopivuuden vertailua (Linden 2006, s. 266).

Jotta hitsi voidaan hitsata, on hitsauspolttimen mahdollista hitsausteknisesti oikeassa asennossa hitsin luo. Tilantarpeeseen vaikuttavat sekä polttimen että robotin osien koko. Jos hitsattaessa joudutaan kiertämään esteitä tai toimimaan ahtaissa paikoissa, on hitsaus lounollisesti hitaampaa. Mahdollisimman avoin ja yksinkertainen rakenne helpottavat ohjelmointia ja nopeuttavat hitsausta. Kuvassa 4 on esitetty ongelmallisia rakenteita. Kuvan a) -kohdan tapauksissa liitosmuodot ovat sopimattomia ja b) -kohdan tapauksissa hitsaus taapahtuu liian ahtaassa tilassa. (Ahola 1988, s.20.)
Kuva 4. Ongelmakohtia hitsauspään ja työkappaleen välillä. a) Sopimaton liitosmuoto, b) Hitsaus ahtaassa tilassa. (Ahola 1988, s. 22.)

2.7.2 Kappaleenkäsittely

suunnalta. Sen sijaan hitsausasentoja ei voida vastapöytätäyppisellä kappaleenkäsittelylaitteella valita aina vapasti, koska tavallisimmin laitteessa on vain yksi ohjattava akseli. (Leino & Meuronen 1987, s. 3.)

Hitsauspöytätäyppisen kappaleenkäsittelylaitteen hitsauskiinnitin rakennetaan tavallisimmin suoraan levyrungon päälle. Levyrunko samalla suoja hitsauspöydän pintaa hitsausroiskeilta. Levyrungonessa on elimet hitsauskiinnittimen paikoittamiseksi oikein hitsauspöydän suhteen. Tämä voidaan toteuttaa esimerkiksi kahdella, mieluiten erikokoisella lieriötapilla. Kiinnitin lukitaan paikalleen 2-4 ruuvilla. (Leino & Meuronen 1987, s. 3.)

Vastapöytätäyppisen kappaleenkäsittelylaitteen hitsauskiinnittimen muodostaa tavallisesti kehikko, johon kappaleen paikoituksesssa ja kiinnittämisessä tarvittavat elementit kiinnitetään. Kehikko paikoitetaan tavallisesti päistään lieriötapeilla ja lukitaan paikalleen neljällä ruuvilla. Kappaleenkäsittelylaitteen toisen pään kannatin on edullista tehdä aksiaalisuunnassa uivaksi, millä kompensoidaan hitsauskiinnittimen pituusvaihtelut. (Leino & Meuronen 1987, s. 3.)

2.7.3 Hitsauskiinnitin
Kappaleiden automatisoitu hitsaus vaatii yleensä osien paikoittamista ja kiinnittämistä toisувasti ja tarkasti samaan asentoon. Koska railonseurantalaitteet eivät ole mikään itsetarkoitus, on kappaleiden kiinnittymisen hitsauskiinnittimeen taattava riittävä tarkkuus osien keskinäiselle asennolle hitsausta varten. Ahola on esittänyt kolme tapaa, joilla kappaleen hitsaus voidaan järjestää nousevan mekanisointiasteen mukaan (Ahola 1988, s. 31):

- Manuaalinen silloitus erillisessä silloituskiinnittimesä, jota seuraa kappaleen asetus toiseen kiinnittimeen valmiiksihitsausta varten. Tässä tapauksessa vaaditaan siis kaksi kiinnittintä sekä ylimääräinen asetus.

Etenkin pienet kappaleet voidaan kiinnittää niin, että kappale hitsataan suoraan valmiiksi ilman silloitusta. Tällöin on otettava huomioon erityisesti muodonmuutosten vaikutukset ja suunniteltava hitsausjärjestys tarkoin.

Lähtökohtana on ns. 3-2-1-sääntö ts. kappaleen saaminen staattisesti määrettyyn asemaan. Tukipisteiden lukumääriä ja paikkaa valittaessa on otettava huomioon seuraavat seikat (Leino & Meuronen 1987, s. 12):
suuri määrä tukipisteistä sijoitetaan kappaleen suurimmalle paikoitettavalle pinnalle

tukipisteiden vastapinnat on valittava kappaleen mitoitus- ja toimintaperiaatteet mukaan (vastinpinnoiksi valitaan pinnat, joiden asemalla on merkitystä kappaleen toiminnalle)
eri hitsastyövaiheissa käytetään mahdollisimman paljon samoja vastinpintoja.

Suurikokoisten tai ohuiden levyjen paikoituksessa voidaan levyn taipumisen vuoksi joutua käyttämään kolmea useampaa tukipistettä yhdessä tasossa tai korvaamaan ne kapeilla tasomaisilla tukipinnoilla. Tasomaisia tukipintoja joudutaan käyttämään myös esimerkiksi päätäisliitoksen juuritukena. Suurten tasopintojen käyttämistä tukipintoina tulee kuitenkin välttää. Niihin kerätyy helposti roiskeita, ja esimerkiksi hitsauksen paluuvirran kulkureitti muodostuu niissä epämääräiseksi. (Leino & Meuronen 1987, s. 12.)

Levyjen paksuus- ja esivalmistustoleranssien vaikutusta voidaan pienentää käyttämällä vastepintoina niitä pintoja, jotka välittämättä määrävät railon sijainnin. Kuvassa 5 on esitetty esimerkkitapaus, jossa on huomioitu levyyn paksuustoleranssin vaikutus hitsauskiinnittimen suunnittelussa. (Leino & Meuronen 1987, s. 13.)

Kuva 5. Levyn paksuustoleranssin vaikutuksen eliminointi hitsauskiinnittimellä (Leino & Meuronen 1987, s. 14)
Levyssä oleva pyöreä reikä on erittäin käyttökelpoinen paikoituselin. Kahdella reiällä voidaan korvata kolme levyn ulkopuolista tukipistettä. Osan mittatarkkuudelle on eduksi, jos samoja reikiä on voitu käyttää osan paikoitukseen myös muissa työväineissä, esimerkiksi särväysessä. Reikiksi tulevat vasteet ovat tavallisesti lieriötappajeja, joiden pää on viistetty asetuksen helpottamiseksi. (Leino & Meuronen 1987, s. 14.)

Ohjaustappien välys rei’issä voi hitsauskiinnittimesä olla varsin suuri, luokkaa 0,2…0,5 mm, jolloin osan asetus ja kappaleen poistaminen on helppoa. Jos reikien keskinäinen etäisyysvaihtelu on suuri, on toisen ohjaustapin kytkeminen sytytä valmistaa kevennykset. Mikäli jostain syystä käytetään ahdasta sovitetta reiän ja ohjaustapin välillä, helpottuu kappaleen poistaminen, kun lieriöpinnan asemasta käytetään ohjauspintana pallopintaa. (Leino & Meuronen 1987, s. 14.)

Hitsauskiinnittimen mitoitukselle ja muotoilulle luonteenomaisia piirteitä ovat:

- osien mittaepätarkkuudet (sekä materiaalista että valmistuksesta aiheutuvat)
- kappaleen muodonmuutokset hitsauksessa sekä
- irrallisina aseteltavista osista valmistuu jäykkä, suurempi kokonaisuus (Leino & Meuronen 1987, s. 61).

Hitsauskiinnittimen suunnittelussa ensisijaisena tavoitteena on saada hitsattavat railot kohdalleen, ts. hitsattavan kappaleen osat sellaiseen asemaan toisiinsa nähden, että hitsauksen jälkeen kappale on oikean mittainen. Kiinnittimen mitoitusperustana ei siten ole valmis hitsattu kappale, vaan siitä hitsausmuodonmuutosten verran poikkeava aihio. Ero ei välttämättä ole suuri, mutta ainakin massiivisten kappaleiden kohdalla hyvin merkittävä. (Leino & Meuronen 1987, s. 61.)

Railon paikan tarkkuusvaatimus on vain poikkeustapauksissa ankarampi kuin ± 0,5 mm. Yleensä ± 1 mm:n tarkkuusvaatimusta pidetään riittävänä. Paksuseinänäisten pienaliitos-ten tarkkuusvaatimus saattaa olla vielä tätäkin vaatimattomampi, mutta useiden millimetrien epätarkkuuksien säätiminen johta yleensä myös muihin hitsaustekniisiin vaikeuksiin, joten niitä on syytä välttää. (Leino & Meuronen 1987, s. 61.)
Osien mittavaihtelun tulee ottaa huomioon kiinnittimen mitaluoksessa ja muoilussa siten, että mahdollisuuksien mukaan mittavaihtelut ohjataan kohtaan, jolla ei hitsauksen kannalta ole merkitystä (kuva 6). Toinen vaihtoehto on puolittaa mittavaihtelu kuvan 7 esittämällä tavalla. On kuitenkin muistettava, että kaikki osien mittavaihtelun kompensoimiseksi tehtävät toimenpiteet vaikuttavat myös lopputuotteen mittoihin. Jos lopputuotteensa mittatoleranssit ovat tiukat, ei niitä voida millään niinintekniikan keinolla saavuttaa epätarkoista osista. Ainoa keino hyväksyttävään lopputulokseen pääsemiseksi on parantaa osien mittatarkkuutta. Hitsauskiinnittimen tulee toimia myös osien tulkina: kiinnittimen sopievat vain sellaiset osat, jotka ovat mitoiltaan riittävät tarkat, jolloin kiinnittimen sopimattomat osat voidaan hylätä. (Leino & Meuronen 1987, s. 61.)

Kuva 6. Osien mittaepätarkkuuksien sijoittaminen kohtaan, jossa ne eivät vaikuta liitosten sijaintiin (Leino & Meuronen 1987, s. 62).
Kuva 7. Osan mittaepätarkkuuden puolittaminen (Leino & Meuronen 1987, s. 62).
3 VALAMINEN

Valaminen on vanhin metallien muotoilumenetelmistä ja sitä on menestyksekkästi käytetty tuhansien vuosien ajan. Valuraudat ovat olleet koneenrakennuksen ja rakennustekniikan perusmateriaaleja jo koko teollistuneen ajan. Valuosat muodostavat nykyäänkin vielä merkittävän määrien koneenosista ja valumetallien kehityksestä viime vuosikymmenen aikana on erityisesti mainittava pallograafiittiraudat, joista on tullut merkittävä koneiden rakennusaine. (Autere et al. 1982. s. 7; Autere et al. 1981 s.1; Höök et al. 2010.)

Valumenetelmä sallii suuren vapauden muotoilulle ja täten mahdollistaa valuappaleille annettavaksi kauniin ja miellyttävän ulkonäön. Vaikka näennäisesti kappale muotoillaankin ulkonäköystä, saattaa taustalla piileskellä myös valmistusteknillinen syy. Rikkomalla tasaisia pintoja esimerkiksi koristeellisilla kuvoilla, saadaan huomio siirrettyä pois mahdollisesti epätasaisesta pinnasta. Mitä pienempi on pinnan vaakasuoran osuus, sitä pienempi on valvirheiden vaara. Valukappaleen yksinkertainen muoto ei aina merkitse sitä, että se on helpompi valaa. Usein on helpompaa saada aikaa an virheetön valukappale, jos se on jonkin verran profiiloitu. (Östberg 1967, s. 186.)

Valumenetelmästä voidaan yleisesti todeta (Höök et al. 2009):

- Valaminen on lyhin tie raaka-aineesta valmiiksi tai lähes valmiiksi tuotteeksi. Sitenn se on myös nopein ja vähiten energiaa vaativa tapa valmistaa metallituotteita.
- Valaminen vaatii investointeja ennen tuotannon aloittamista.
- Valumenetelmä soveltuu sekä yksittäis- että sarjatuotantoon.
- Kappaleen koko ja muoto asettavat vain vähän rajoituksia, jolloin teollinen muotoilu on mahdollista, mutta ohjeita ja sääntöjä on muotoilulle paljon.
- Valukappaleen paikalliset aineenvahvuudet voidaan optimoida helposti.
- Valukappaleella on parempi värähtelyjen vaimennuskyky kuin vastaavalla hitsatulla rakenteella.
- Lähes valmiisii mittoihin valettu tuote vaatii vain vähän lastuavaa työstää.
- Valumetalleilla on hyvä kierrätettävyyys ja materiaalihuksaa syntyy vähän.
- Valaminen vaatii muotoilun erikoisosaamista, joka on enimmäkseen käytännössä opittua.
- Sarjakoon suureneminen pientää kappalekustannuksia.
- Vastoin ennakkoluuloja, valettu kappale ei yleensä ole sen painavampi kuin hitsattu kappale.

3.1 Valumuotti

Valmiiksi kaavatut ja kootut muotit pyritään yleensä valamaan mahdollisimman pian. Piennä käisikaavaamoissa muotteja ei välttämättä siirrellä, vaan valu tapahtuu siinä missä muotti on kasattu. Suurissa valimoissa usein on oma valuosoasto, jonne muotit siirretään valamista varten. Tällöin voidaan minimoida sulan metallin siirtely, saada tilan käyttö järkevemmäksi ja estää valukaasujen sekä savun leviämisen muihin tiloihin tehokkaammin. (Autere et al. 1982, s. 393.)

3.2 Hiekkavalu
Hiekkavalussa käytetään valun jälkeen hajotettavaa kertamuottia, joten jokaista valettua kappeletta varten on valmistettava oma muotti. Valumuotti valmistetaan valumallin avulla sopivalla sideaineella käsitellystä hiekkasta. Hiekan käyttöelänpöytä eri metallien valamiseen riippuu sen ns. sintraantumislämpötilasta, jossa hiekkarakete akavat tarttua kiinni
Hiekkamuotin muotti- ja keernahiekkana käytetään yleensä kvartsihiekkaa (sulamispiste 1700…1750 °C), oliviinihiekkaa (sulamispiste 1200…1850 °C), kromiittihiekkaa (kromi- oksidin ja rautaoksidin seos, sulamispiste 1800…1900 °C) tai zirkonihiekkaa (sulamispiste 2200…2300 °C). (Höök et al. 2009.)

- hartsi + happro
- hartsi + esteri
- sementti + vesi
- vesilasi + esteri.

3.2.1 Kaavaus

![Kuva 8. Käsinkaavauksen periaate (Niemi 2009).](image)

3.2.2 Keerna

moidsä käytettävien keernojen määrä ja yksinkertaistaa niiden ulkomuoto, sillä keernojen valmistus luonnollisesti lisää kustannuksia. (Autere et al. 1986, s. 371; Östberg 1967, s. 46-47; Höök et al. 2010.)

3.3 Jälkikäsittelyt valun jälkeen

3.4 Valukappaleiden muotoiluohjeet ja -säännöt
Kappaleen rakennesuunnittelussa on tärkeää muotoilla kappale siten, että valmistumenetelmän edut voidaan käyttää täysin hyväksi ja samalla ottaa huomioon menetelmän asetta mat vaatimukset. Noudattamalla kappaleen muotoilusta annettuja ohjeita ja sääntöjä, saadaan kappaleesta valuystävällinen ja kappaleelle saadaan hyvät ominaisuudet mahdollisimman pienillä kustannuksilla. Rakennesuosituksia ei ole käsitettävää valamisen rajoituk-

3.4.1 Valukappaleiden suunnittelu mallikustannusten kannalta

Kuva 9. Mallikustannuksia on pienennetty hihnapyröän rakennetta muuttamalla. a) Jaettu malli. b) ja c) yksiosaisia malleja, joiden valmistus on noin 30 % halvempi kuin a)-kohdassa. Kohdassa c) on työvarat ja mallin päästö asetettu kokonaan toiseen mallipuloliskoon. (Östberg 1967, s. 17.)

3.4.2 Valukappaleiden suunnittelua kaavauksesta

Valukappaleisiin lisätään usein ripoja, listoja ja muita jäykistetä. Ne nostavat kaavauskustannuksia, ja jos ne eivät ole välttämättömiä, ei niitä tulisi turhaan lisätä. Kun jäykistetä on käytettävä, on usein mahdollista valita sellaiset muodot, jotka eivät tarpeettomasti lisää kaavauskustannuksia. Jäykiste tulisi sijoittaa jakopinnan ja sen normaalin suuntaisesti. Jäykisteet ja muut pinnasta ulkonevat muodot tulee sijoittaa kappaleen sille puolelle, jolle ne on helpompi kaavata. Jäykistelistojen asemesta voidaan vaihtoehtoisesti lisätä kappal-
leen seinämäpaksuutta tai käyttää lujempaa ainetta. (Autere et al. 1981, s. 13; Östberg 1967, s. 39.)

Suurien valukappaleiden valmistus voi olla halvempaa, jos ne jaetaan pienempiin osiin. Jos valukappaleen muoto poikkeaa paljon kaavauskehysten muodosta, tulee kehysen tila huo-
nosti hyväksikäytettyksi. Tällaiset valukappaleet on usein edullisempaa jakaa pienemmiksi ja yksinkertaisempi osaksi, jotka myöhemmin liitetään yhteen sopivalla tavalla. Kappa-
leen jakaminen tekee usein mahdolliseksi konekaavauksen sellaisille kappaleille, jotka muuten täyttisi kaavata käsin. Valuvirheiden hallinta on myös helpompaa pienemmillä ja yksinkertaisemmillä osilla. (Autere et al. 1981, s. 15.)

3.4.3 Valukappaleiden suunnittelun keernanvalmistuksen kannalta
Keernojen käyttöä tulisi välttää, jos se vain on mahdollista. Liian monimuotoina on tarkoitetu
a on kuitenkin vältettävää, jolloin keernan käyttö on perusteltua. Keernoilta ei voida vält-
tyä, jos valuokkeeseen on tehtävä ontelo. Tällöin tulee ontelo muotoilla mahdollisim-
man yksinkertaisemaksi. Tämä helpottaa keernan valmistusta, käsittelyä ja muottiin asettamis-
ta. (Autere et al. 1981, s. 16, Östberg 1967, s. 56.)

Keernan valmistukseen pätee samat päästösäännöt kuin malleillekin. Keernalaatikko, jonka
avulla keerna valmistetaan, voidaan jakaa useampaan osaan, joista jokainen osa saa oman
päästösuuntansa. Moniosainen keernalaatikko on kalliimpia, tai monoisai-
en keernalaatikko. Moniosaisen keernalaatikoiden mittatarkkuus on myös huonompi.
(Autere et al. 1981, s. 16, Östberg 1967, s. 56.)

Kappaleen seinämäpaksuus tulee virheelliseksi, jos keerna päätsee liikkumaan valun aika-
na. Kappale on muotoiltava siten, että keernat voidaan valmistaa suurina ja harvoina tois-
taan riippumattomina yksiköinä. Keernoilla on oltava riittävän monta ja suurta ohjausta,
joilla se asemoidaan muottiin. Usein väliseinäinäin on mahdollista tehdä reikää, jotka ma-
dollistavat keernojen lisäohjauksen ja kiinnittämisen. Valun aikana voi muodostua keerna-
kaasuja, joille on oltava ulospääsytie tai ne muodostavat rakkulamaisia valuvirheitä kappa-
16, Östberg 1967, s. 56.)
3.4.4 Valukappaleiden suunnittelu valun kannalta

Kuva 10. Kannessa b) voi olla pienempi seinämäpaksuus kuin kannessa a), koska siinä on valumatka lyhyempi, säteet suuremmat ja metallin nousunopeus tasaisempi (Östberg 1967, s. 61).

Kuva 11. Imuvirheiden eri esiintymismuotoja. a) avoimu. b) imuontelo, johon on yhdistynyt imupainauma. c) avoimu terävässä kulmassa. d) keskilinjahuokoisuus. (Autere et al. 1981, s. 24.)

Seinämien paksuuden vaihtelu tulee tehdä sopivalla pyöristyksillä tai käyttämällä 15° ylimenokulmaa. Tällä pyritään estämään heikkojen kohtien syntyminen kappaleeseen paksuuserojen takia. Kuvassa 14 on esimerkkejä seinän paksuuden vaihtelusta.

Kuva 14. Huonoja ja suositeltavia rakenteita eripaksuisten seinämien liitokohdissa (Autere et al. 1981, s. 26).

Terävään sisäkulmaan voi epäedullisen kiteytymisen johdosta muodostua heikko kohta, johon helposti syntyy repeämä. Vika estetään kulmapyöristyksellä. Valaurutakappaleen terävän ulkokulman jähmettyminen valkoiseksi voidaan estää pienellä kulmapyöristyksellä. Kahden samanpaksuisen seinän sisäkäräyn pyörystyssäteenä (R) voidaan yleisesti käyttää seinämävahvuutta (T), mutta olosuhteiden mukaan voidaan säteen suuruus valita alueelta R = (0,7 ... 1,3)T. Kuvassa 15 on esitetty esimerkki. (Autere et al. 1981, s. 26.)

Kuva 15. Ulko- ja sisäkäräyn oikeaoppinen pyörästyminen estää heikon kohdan syntymisen kulman valun aikana (Autere et al. 1981, s. 26).
Risteyksissä on mahdollista siirtyä toiseen seinämäpaksuuteen. Tällöin tulee huomioida seinämäpaksuksien suhde. Jos paksumman seinämän (T) suhde ohuempaan seinämään (t) on yli puolitoistakertainen (T > 1,5t), tulee käyttää 15°:n ylimenokulmaa. Kuvassa 16 ja 17 on esitetty esimerkkejä eri seinämäpaksuuteen siirtymisestä risteyksessä. (Autere et al. 1981, s. 26.)

Kuva 17. Eripaksuisten seinämien muodostaman L-risteyksen muotoiluohje (Autere et el. 1981, s. 26).
4 GENERAATTORIN RUNKOKAPPALE JA SEN VALMISTUSTEKNINEN TARKASTELU

Nykyisellään generaattorin runkokappale on suunniteltu valmistettavaksi levyosista. Muotoilultaan se on pelkistetty, mutta tarkoituksenmukainen. Generaattorin molemmissa päissä on samankaltaiset runkokappaleet (kuva 18). Yksi runkokappale koostuu yhteensä kuudesta osasta, joiden levynpaksuudet vaihtelevat:

- Mankeloidun U-muotoisen levyn paksuus on 10 mm.
- Päällislevyn paksuus on 20 mm.
- Reiällisten sivulevyjen paksuus on 30 mm.
- Alhaalla olevien kiinnityslevyjen paksuus on 40 mm.

Suuremman runkokappaleen massa on noin 450 kg ja pienemmän massa on noin 370 kg.

Kuva 18. Generaattorin runkokappaleiden päämitat ja niiden asemointi toisinsa nähten (salassapitosopimuksen takia rungon kuva on sensuroitu työn julkaistavasta versiosta).

Rakenteesta on tunnistettava geometriset piirteet, joiden täytyy pysäyä samanlaisena rakennemuutosten jälkeenkin. Rakenteen suuret reitit ovat koneistettu ja niiden tulee olla saman-

4.1 Runkokappaleen muutosehdotukset hitsauksen kannalta
Nykyisellään rakenne on suunniteltu hitsattavaksi, mutta lähempi tarkastelu on suoritettava. Tarkastelu tehdään robotisoitu hitsaus huomioituna. Etukäteen valittu materiaali, rakenneteräs S355, ei aseta erityisvaatimuksia hitsaukselle tai osavalmistukselle.

Molempien runkokappaleiden sivulevyyt ovat identtisiä, mutta koska runkokappaleiden syvyysmita on eri, on osavalmistuksen kannalta mahdotonta tehdä muista osista sopivia molempin runkokokonaisuuksiin. Käytännössä tämä ei aiheuta suurta sekaannuksen vaa- raa silloitushitsauksessa, koska osat eroavat merkittävästi leveydeltään toisen runkokappaleen vastaavista osista ja tällöin osia ei ole mahdollista kasata ristiin.

Ensimmäisenä toimenpiteenä hitsauksen tehostamiseksi on rakenteesta etsittävä mahdol- sia keinoja hitsattavien osien ja hitsien vähentämiseksi. Nykyisessä rakenteessa ei juuri ole mahdollisuutta vähentää hitsattavien osien määrää. Kotelomainen rakenne, jossa onkalon muodostava levy on jo mankeloiutu, ei ole mahdollista toteuttaa vähemmällä osien määrää. Myöskään osien yhdistäminen, esimerkiksi valmistamallakahden levyosan kokonaisuus
särämäällä, ei järkevästi onnistu suhteellisten paksujen, mutta pinta-alallisesti pienien levyjen takia.

Eripaksuiset levyosat eivät ole hitsausta edeltävien toimenpiteiden kannalta toivottavia. Koska levynpaksuudet vaihtelevat, on hitseille suoritettava useita menetelmäkokeita ja hitsausparametrit on erikseen haettava jokaiselle hitsille. Myös robotin ohjelmointityö monimutkaistuu, jos levynpaksuus ja hitsausparametreja ei voida vakioida. Ilman tarkempaa tuntemusta rakenteeseen kohdistuvista rasituksista, on vaikeaa luotettavasti todeta, että levynpaksuus voidaan yhdenmukaistaa eri osissa. Tämä vaihtoehto tulisi kuitenkin huomioida.

Runkokappaleet kannattaa silloittaa omassa silloituskiinnittimessä ja siirtää sen jälkeen omaan, hitsausta mahdollisimman vähän häiritsevään hitsauskiinnittimeen. Silloitus voi tapahtua käsin, koska silloitusvaihe on melko lyhyt verrattuna varsinaiseen hitsaustyöhön. Tällöin robotin käyttö voidaan keskittää varsinaiseen hitsaustyöhön. Käsinvaihe on melko lyhyt verrattuna varsinaiseen hitsaustyöhön. In piirreiksen tulee asettaa ja hitsauskiinnittimessä on mahdollista käyttää ja hitsaustyöhön.

4.2 Valumateriaali
Työn teettäjä on valinnut mahdollisiksi valumateriaaleiksi pallografiittivaluraudat EN-GJS-400-15U ja EN-GJS-500(-7). Standardin SFS-EN 1560 perusteella voidaan varmuudella todeta kyseisten materiaalien olevan standardoituja pallografiittivalurautojat. Murtolujuudet on ilmoitettu numeroarvoina nimikkeessä ja ne ovat 400 ja 500 N/mm². Ensinnäkin materiaalissa on erikseen spesifioitu murtovenymän vähimmäisarvo prosentteina, joka on siis 15 %. Kirjain U kertoo valuraudan mekaanisi ominaisuuksia määritettäessä tarvittavan koesauvan valmistustavan, joka kyseisessä tapauksessa on valukappaleeseen kiinni saatava valuraudan mekaanisi ominaisuuksiin suomu- tai tylppägrafiitti. (Lindroos et al. 1986, s.536-537; Höök et al. 2010.)

Pallografiittivalurautojen mekaaniset ominaisuudet ovat perusrakenneterästen luokkaa tai jopa paremmat. Grafiitti saadaan erkahtumaan pallomaisesti käsittelemällä sula valurauta magnesiumilla. Pallomaisesti erkahtunut grafiitti vaikuttaa huomattavasti vähemmän epäedullisesti valuraudan mekaanisi ominaisuuksiin kuin suomu- tai tylppägrafiitti. (Lindroos et al. 1986, s.536-537; Höök et al. 2010.)

4.3 Runkokappaleen valutekninen tarkastelu
Hitsatuksi rakenteeksi suunnitellulle kappaleelle on suoritettava valutekninen tarkastelu, jossa arvioidaan sen valettavuus ja tehdään rakennemuutosehdotuksia tarpeen mukaan. Näille muutosehdotuksille löytyy kirjallisuudesta paljon sääntöjä ja ohjeita, jotka usein
ovat jopa ristiriitaisia. Ohjet ja säädöt eivät kuitenkaan ole suoranaisia rajoituksia, vaan niiden on tarkoitus tarkastella asian tieutystä näkökulmasta. Sopivalla kompromissiratkaisulla rakenne saadaan sellaiseksi, että tuotteen valmistuskustannukset ja laatu ovat toivotulla tasolla. Rakennesuositosohjeet ja -säännöt on saatu kokemusperäisesti ja niihin vaikuttavat myös käytössä olevat menetelmät. Onkin siis suositeltavaa olla yhteydessä valimoon, jossa tuote on kenties tarkoitus valaa, sillä heillä voi olla parhaimmat ratkaisut heidän laitteistoilleen. (Autere et al. 1981, s. 5; Östberg 1967, s. 10.)

Runkokappaleessa on monta toiminnallista pintaa, joiden muuttaminen ei ole mahdollista ilman mittavia muutoksia. Koska rungon on tarkoitus kantaa kuormaa molempien suurien reikien kohdalta, on kovin vaikeaa yrittää keventää niiden seinämien rakennetta. Rungon sisäonkaloa on mahdollista muotoilla paremmin ilmaa virtaavaksi tai muuten vain miellyttävämääksi, kun kappale valmistetaan valamalla. Rungon vaihtelevat materiaalivahvuudet eivät ole ongelma käytettäessä palografifiittivalurautaa, koska sen seinämäherkkyyys ei ole ongelma, toisin kuin esimerkiksi suomugrafiittivaluraudalla (Höök et al. 2010).

4.3.1 Rungon kiinnityspisteet

Kuva 22. Rungon kiinnitysjalan periaatteellinen muutosehdotuskuva.

4.3.2 Vaarnaruuvien kiinnityspisteet

4.3.3 Rungon nostopaikat

On mahdollista valaa nostokorvakkeet runkoon, mutta ne tulisivat tällöin helpoiten rungon jakopinnalle. Jos korvake halutaan muuaatelleen kun jakopinnalle, joudutaan käyttämään keernoja. Kaikkien korvakkeiden ollessa samalla jakopinnalla, ei runkokappaleen asentoa voida muuttaa, esimerkiksi ketjuviputaljaa käyttäen, asennuksen aikana. Toinen vaihtoehto on, että runkoon koneistetaan kierreireitä, joihin voidaan kiinnittää asianmukaiset nostosilmukkaruuvit. Samoja nostokohtia käytetään valmiin generaattorin asennuksessa, joten niiden tulee olla vahvat ja ehdottoman kestävät.

4.4 Alkuperäisen rakenteen valaminen

Vaikka edellä on esitetyt muutosehdotuksia, ne eivät välttämättä ole parempia ratkaisuja, kuin alkuperäisessä rakenteessa. On vaikeaa esittää valettavuuden kannalta muutosehdotus-
tuksia jo valmiaksi suunniteltuun kokonaisuuteen ilman, että muitakin komponentteja muutettaisiin. Tämä on kuitenkin varmasti mahdollista siirryttäessä prototyyppistä tuotantover- sioon. Kuten monessa tämän työn lähdemateriaalissa sanotaan, on tärkeää olla yhteydessä valimoon jo tuotetta suunniteltaessa.

4.5 Valmistusmenetelmien vertailu
Kuten yllä on jo mainittu, generaattorin runkokappaleen yläpinta tulisi olla tasomainen ja vaatimustenmukaisesti sileä. Valmistamalla runkokappale levyosista hitsaamalla, ei tässä asiassa pitäisi ilmetä ongelmia. Valamalla valmistettuun runko-osan yläpintaan tulee jo- honkin kohtaan ainakin yksi jakopinta ja päästöstä johtuva tasomaisuuden heitto. Tämä ei kuitenkaan välttämättä ole ongelmallista, ja riippuukin täysin lämmönvaihtimen ja rungon välisestä tiivistestä, tarvitseeko vaeltua osaa koneistaa yläpinnasta.
Staattoriin liittyvän sivulevyn reiän mitoitus ei vielä tätä työtä tehdessä ollut varmistunut ja
on mahdollista, että reiän koneistetun liitospinnan pituus tulee kasvamaan. Valukappaletta
on mahdollista muuttaa malleja muokkaamalla. Valumenetelmä sallii helpon materiaalin
lisäämisen sinne missä sitä tarvitaan. Mittaa muutettaessa on muistettava huomioida myös
toleranssien sekä vaadittavojen työvarojen kasvu standardin SFS-EN ISO 8062-3:2007 mu-
kaisesti. Valmistettaessa runkokappale hitsaamalla, joudutaan reikään hitsaamaan rengas-
mainen lisäosa, jos ei koko sivulevyn paksuutta kasvateta. Tämä taas ei ole järkevää kap-
paleen massan kasvun takia.

Hitsatun runkokappaleen kustannukset pysyvät kaiken aikaa samalla tasolla, poislukien
tuotannon tehostuminen toimintatapoja parantamalla ja materiaalien hintavaihtelut. Valu-
tuotannon aloittaminen vaatii investointeja, jotta saadaan valmistettua tarvittavat mallit,
kaavauskehät, yms. Tämän jälkeen kustannukset jakautuvat koko syntyvälle tuotannolle
tasaisesti. Sarjakoon kasvaessa yhteen tuotteeseen kohdistuvat kulut pienenevät.

Pintakäsittelytoimenpiteet eivät olennaisesti eroa hitsatun ja valetun rakenteen välillä. Suu-
rehkon kappalekoon takia raesuihkupuhdistus on käytännössä ainoa mahdollinen menetel-
mä runkokappaleiden pintapuhdistukseen ennen pintakäsittelyä. (Autere et al. 1986,.435-
440)

Jos mietitään robotisoitua hitsausta ja valamista, on molemmille valmistusmenetelmille tyyppistä, että käyttettävissä oleva lainitteisto ratkaisee käytetyt lopulliset rakennerratkaisut ja niiden soveltamisen onnistumisen. Nämä asiat asapainottelevat keskenään ja ilman asiantuntevaa apua valetavaksi suunniteltu kappale voi tulla hyvinkin kalliiksi kokeiluksi. Onkin ensisijaisen tärkeää olla yhteydessä valimoon jo tuotteen suunnitteluvaiheessa, mitä painotetaan kirjallisuudessa paljon.
Tässä vaiheessa voidaan todeta molempien valmistusmenetelmien sopivan hyvin kyseessä olevan sähkögeneraattorin runkokappaleen valmistukseen. Lopulliseen valintaan varmasti-kin vaikuttavat kappalekustannukset, joita saadaan valutuotteella pienennettyä sarjakoon kasvassa. Todelliset säästöt kuitenkin riippuvat kappaleen valmistajista ja käytettävissä olevasta laitteistosta.

DFMA-menetelmän soveltamisen kannalta voidaan työtä pitää onnistuneena, koska kappaleelle saatiin esitettyä muutosehdotuksia, jotka voisivat parantaa kappaleen valmistetta- vuutta. Jos lukijalle saatiin herätettyä ajatuksia valmistettavuuden huomioimisesta suunnit- telussa, on sekin merkki työn onnistumisesta. Valitettavasti työssä ei ole esittää mitään konkreettisia tuloksia mahdollisista parannuksista, vaan se tapahtuu jatkossa jatkerityksen omassa tuotannossa.

Jatkon kannalta olisi mielenkiintoista tutkia, kuinka paljon nykyaikaiset NC-koneet ovat pienentäneet mallikustannuksia valukappaleiden valmistuksessa, ovatko mallikustannukset enää niin rajoittava tekijä muottien valmistuksessa kuin vuosikymmeniä sitten ja onko nu- meerisesti ohjattujen koneiden avulla pystytty parantamaan valukappaleiden mittatarkkuut- ta merkittävästi.
6 YHTEENVETO

Työn tarkoituksena oli tutkia sähkögeneraattorin runkokappaleen valmistettavuutta MAG-hitsauksen ja valettavuuden kannalta. Työssä esitettiin molemmista valmistusmenetelmistä perusteoria. Runkokappaleeseen sovellettiin Design for Manufacturing and Assembly -menetelmää (DFMA), jonka pääperiaatteena on huomioi valmistettavuus- ja kokoonpanetavuusläviköökulmat suunnittelussa.

Myös alkuperäisen rakenteen valettavuutta pohdittiin ja ei varsinaisesti löydetty mitään estettä, joka tekisi valun mahdottomaksi. On kuitenkin varmasti valuteknisiä seikoja, jotka huomioimalla valuettavalleen laatua voitaisiin parantaa.

Valmistusmenetelmien vertailu suoraan osoittautui hankalaksi, koska vaikka ne kilpailuevatkin tässä tapauksessa keskenään, ovat niiden erityispiirteensä hyvin erilaiset. Molemmat valmistusmenetelmät soveltuvat hyvin sähkögeneraattorin runkokappaleen valmistukseen ja lopullinen valinta varmasti tapahtuu toteutuvien kustannuksien mukaan.
LÄHDELUETTELO

Taulukko 1. Typical required machining allowance grades for raw castings (SFS-EN ISO 8062-3:2007, s. 14).

<table>
<thead>
<tr>
<th>Method</th>
<th>Required machining allowance grade (RMAG) for casting material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steel</td>
</tr>
<tr>
<td>Sand cast, hand moulding</td>
<td>G to K</td>
</tr>
<tr>
<td>Sand cast, machine moulding</td>
<td>F to H</td>
</tr>
<tr>
<td>Mould (except pressure die</td>
<td>—</td>
</tr>
<tr>
<td>Pressure die casting</td>
<td>—</td>
</tr>
<tr>
<td>Investment casting</td>
<td>E</td>
</tr>
</tbody>
</table>

For castings with largest overall dimension greater than 6300 mm, F to K applies.

Taulukko 2. Required machining allowance (SFS-EN ISO 8062-3:2007, s. 8).

<table>
<thead>
<tr>
<th>Largest overall dimension</th>
<th>Machining allowance for required machining allowance grade (RMAG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMAG A</td>
</tr>
<tr>
<td>—</td>
<td>≤ 40</td>
</tr>
<tr>
<td>> 40</td>
<td>≥ 63</td>
</tr>
<tr>
<td>> 63</td>
<td>≤ 100</td>
</tr>
<tr>
<td>> 100</td>
<td>≥ 180</td>
</tr>
<tr>
<td>> 180</td>
<td>≤ 250</td>
</tr>
<tr>
<td>> 250</td>
<td>≥ 400</td>
</tr>
<tr>
<td>> 400</td>
<td>≤ 630</td>
</tr>
<tr>
<td>> 630</td>
<td>≥ 1000</td>
</tr>
<tr>
<td>> 1000</td>
<td>≤ 1600</td>
</tr>
<tr>
<td>> 1600</td>
<td>≥ 2500</td>
</tr>
<tr>
<td>> 2500</td>
<td>≤ 4000</td>
</tr>
<tr>
<td>> 4000</td>
<td>≥ 6300</td>
</tr>
<tr>
<td>> 6300</td>
<td>≤ 10000</td>
</tr>
</tbody>
</table>

NOTE. Grades A and B are only applied in special cases, e.g. with series production in which the pattern equipment, the casting procedure and the machining procedure with regard to clamping surfaces and datum surfaces or targets have been agreed between the customer and the foundry.
Pallografiittivalurautojen juoksevuus on jonkin verran heikompi kuin suomugrafiittivalurautojen. Useimmat valuikkappaleet valetaan siten, että pienin ulottuvuus on pystysuorassa. Sula metalli virtaa tavallisesti kappaleen leveyssuunnassa joko yhdeltä tai kahdelta sivulta muotin onteloon. Pisin matka, jonka sula metalli joutuu juoksemaan, on yleensä puolet valuikkappaleen leveysmitasta. Taulukossa 3 esitetään seinämäpaksuussuosituksia pallografiittivaluraudalle. (MET raaka-ainekasikirja 2 2001, s. 122)

Taulukko 3. Pallografiittivalurautojen seinämäpaksuussuosituksia (MET raaka-ainekasikirja 2 2001, s. 123).

<table>
<thead>
<tr>
<th>Valukappaleen leveysmitta mm</th>
<th>0...500</th>
<th>500...1000</th>
<th>yli 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seinämäpaksuus vähintään mm</td>
<td>5</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>