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The purpose of this master thesis was to perform simulations that involve use of
random number while testing hypotheses especially on two samples populations
being compared weather by their means, variances or Sharpe ratios. Specifically,
we simulated some well known distributions by Matlab and check out the accuracy
of an hypothesis testing. Furthermore, we went deeper and check what could hap-
pen once the bootstrapping method as described by Effrons is applied on the sim-
ulated data. In addition to that, one well known RobustSharpe hypothesis testing
stated in the paper of Ledoit and Wolf was applied to measure the statistical sig-
nificance performance between two investment founds basing on testing weather
there is a statistically significant difference between their Sharpe Ratios or not.
We collected many literatures about our topic and perform by Matlab many simu-
lated random numbers as possible to put out our purpose; As results we come out
with a good understanding that testing are not always accurate; for instance while
testing weather two normal distributed random vectors come from the same normal
distribution. The Jacque-Berra test for normality showed that for the normal ran-
dom vector r1 and r2, only 94,7% and 95,7% respectively are coming from normal
distribution in contrast 5,3% and 4,3% failed to shown the truth already known;
but when we introduce the bootstrapping methods by Effrons while estimating p-
values where the hypothesis decision is based, the accuracy of the test was 100%
successful.
From the above results the reports showed that bootstrapping methods while test-
ing or estimating some statistics should always considered because at most cases
the outcome are accurate and errors are minimized in the computation. Also the
RobustSharpe test which is known to use one of the bootstrapping methods, stu-
dentised one, were applied first on different simulated data including distribution
of many kind and different shape secondly, on real data, Hedge and Mutual funds.
The test performed quite well to agree with the existence of statistical significance
difference between their Sharpe ratios as described in the paper of Ledoit and Wolf.
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1 INTRODUCTION

In our every day life we are always obliged to make decisions and choosing among
two or many alternative and the right decision on every presented alternative af-
fect positively or negatively on our lives; that is the null hypothesis H0 and the
alternative hypothesis H1.

According to [23] Monte carlo methods refers to simulations that involves the use
of random numbers, nowadays the use of computer especially Matlab in our case
has simplified several statistical studies based on the fact that monte carlo simula-
tions or experiments are an easy and faster done [10] [19].

In statistics, a hypothesis is claim or statement about a property of a population
and a hypothesis testing is a procedure for testing a claim about a property of a
population [13] [1].

A Sharpe ratio is one of the adequate instrument used to measure the performance
rank investment strategy of a portfolio by looking at historic return and risk [14]
[2] [21] [22] [24].

In every hypothesis testing we should be able to understand: (i) an identification
of the null hypothesis and alternative hypothesis from a given claim, and how to
express them in symbolic from; (ii) how to calculate the value of the test statistics,
given a significance level usually known as α; (iii) how to identify the critical
value (s), given a value of the test statistic (iv) how to identify the P-values, given
of the test statistic, (v) how to state the conclusion about a claim in simple terms
understandable by every one [13] [17] [8].

The objective of our work was:

• To check out the accuracy of the hypotheses tests by the use of simulating
some known distribution

• What happen while bootstrapping techniques is involved in [23]

• To understand the sharpe ratio approach as performance measure of an in-
vestment based decision

Many investors do not understand how to determine the level of risk their individ-
ual portfolios. [22] This work contributes to current financial literature by studying
methods that can extend the applicability of the statistical tests based on the asymp-
totic variance to many such performance comparisons for which the other known
statistical methods are either too complicate to implement or can not be reliably
employed. The first of these adjustments is made to enable statistical inference



1 INTRODUCTION 2

on performance difference in cases, when the excess returns are negative for both
portfolios being compared. The other adjustment procedure is appropriate in cases
when excess returns of portfolios are of different sign. The third adjustment is
made in order to reduce biases in test statistics stemming from the violations of
normality and I.I.D. assumptions [2]

Our current work is subdivided into five parts the first one is the introductory part
which introduce the report, the second part is the mathematical background on
monte carlo methods hypothesis testing where the theory is discussed and some
example of the simulation results is shown, the third part is made of portfolio per-
formance measurement especial with the Sharpe ratio approach where the robust
Sharpe hypothesis testing is discussed the fourth part is some results the application
of testing the existence of statistical significance difference between two Sharpe ra-
tio or not when using simulated data as well as the mutual and hedge funds data,
the last and fifth part is made of conclusion including some recommendation.
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2 MONTE CARLO INFERENCE STATISTICS

2.1 Hypothesis testing

Hypothesis testing is a common method of drawing inferences about a population
based on statistical evidence from a sample.

Inferential statistics involves techniques such as estimating population parameters
using point estimates, calculating confidence interval estimates for parameters, hy-
pothesis testing, and modeling based on the sample has been observed or using
managerial judgement [11].

There are two kind of hypothesis testing, parametric one and non parametric one,
The parametric hypothesis testing concern parameters of distributions generally
assumed to be normal, some conditions about the distribution must be imposed or
known while testing; Non parametric hypothesis does not impose conditions about
the distribution of the data variables [8].

Since no assumption are imposed here, the non parametric test can be adequate to
small sample of variable data furthermore the non parametric hypothesis can test
more different hypothesis than the parametric hypothesis.

However, in [8], proved that the non parametric tests are generally not powerful as
the parametric tests due to the use of fewer condition imposed on the distributions.
in order to compare the power of a test A and a test B, we can determine the power
efficiency measure of test B compared with test A, ηBA defined as:

ηBA = ηA
ηB

Where ηA is the sample size needed by A and ηB is the one needed by B.

Concerning our current work thesis we will focus on the testing while inferencing
on two population sample hedge funds and mutual funds.

How can you decided about the choice between two investment funds? a variety of
decision-making technics are established in several Finance books and published
papers but in each hypothesis testing we will follow the same five steps procedure
as follow [19], [1], [3], [8] [23] and [13]:

1. Analyze the problem - identify the hypothesis, the alternative hypotheses of
interest, and the potential risks associated with a decision.

2. Choose a test statistics.
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3. Compute the test statistics.

4. Determine the frequency distribution of the test statistic under the hypothe-
sis.

5. Make a decision using this distribution as a guide.

2.2 How to carry out an hypothesis testing?

Hypothesis testing is carried out using confidence intervals and test of significance.

In hypothesis testing, our goal is to make a decision about not rejecting or reject-
ing some statement about the population based on data from a random sample;
to understand and use statistical hypothesis testing, one needs knowledge of the
sampling distribution of the test statistic

Parametric hypothesis testing using different methods is stated hereunder [1]:

1. Carrying out a hypothesis testing using the test of significance approach [3]:

– Estimate the model parameters and their standards errors in the usual
way.

– Calculate the test statistic by the formular

teststatistic =
β̂ −β∗
SE(β )

(1)

Where β∗ is the value of β under the null hypothesis. The null hy-
potheisi is H0 : β = β∗ and the alternative hypothesis is H1 : β 6= β∗
(for two-sided test).

– To compare the estimated test statistics a tabulated distribution is re-
quired; in this way t-statistics follows distribution with T −2 degree of
freedom

– Choose a significance level α , conventionally is 5% or 1% rarely.

– Given α a rejection region and non rejection can be determined as
shown here under in figure 1, 2 and 3
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Figure 1: Rejection regions for a two sided hypothesis test

Figure 2: Rejection regions for a one sided hypothesis test of the form
H0 : β = β ∗ and H1 : β < β ∗
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Figure 3: Rejection regions for a one sided hypothesis test of the form
H0 : β = β ∗ and H1 : β > β ∗

– Use t-table to find critical value to compare the t-statistics, the critical
value will be that value of x that puts 5% into the rejection region.

– Perform the test: if t-statistics lies in the rejection region then reject H0,
else do not reject H0

2. Carrying out a hypothesis test using confidence intervals

– Estimate the model parameters and their standards errors as usual

– Choose a significance level α , conventionally is 5%

– Use the t-tables to find the appropriate critical value, which will again
have T −2 degrees of freedom.

– The confidence interval for the parameter β is given by:

(β̂ − tcrit .SEβ̂ , β̂ + tcrit .SEβ̂ ) (2)

Where (.) stands for multiplication of two quantities.

– Perform the test: if the hypothesized value of value β lies outside the
confidence interval, C.I, then reject H0, otherwise do not reject H0

2.3 Parametric hypothesis testing

Parametric hypothesis test make assumptions about the underlying distribution of
the population from which the sample is being drawn, and which is being investi-
gated. Parametric hypothesis tests include, ANOVA applied while comparing the
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means of several samples, Chi-Square Test, while testing ’goodness of fit’ to an as-
sumed distribution, contingency tables applied when a variation of the chi-square
test, F-test while comparing variances, Proportion test, for differences between
large or small proportions, t-test, while comparing the mean to a value, or the
means of two samples, z-test known as t-test but for large samples [8].

If the distribution of the studied population is not known then a nonparametric
test is suggested but this one is not powerful because it can not use predictable
properties of the distribution.

2.4 Non-parametric hypothesis testing

As it says in [3] Nonparametric tests, known also as distribution free-tests, are
valid for any distribution, it can be used either when the distribution is unknown or
known, there are based on "order statistics" and are very simple.

The non-parametric tests are various and distinguished according to the inference
population, thus we can cite among (i) the inference on one population, the runs
test, The Binomial Test, The Chi-Square Goodness of Fit Test, The Kolmogorov-
Smirnov Goodness of Fit Test, The Lilliefors Test for Normality, The Shapiro-
Wilk Test for Normality (ii)contingency table, the 2x2 contingency table, the rxc
contingency table, the chi-square test of Independence, the measure of Association
Revisited (iii) inference on two Population the Tests for Two Independent Samples,
the tests for Two Paired Samples and (iv) inference on more than two populations,
The Kruskal-Wallis Test for Independent Samples, The Friedmann Test for Paired
Samples, The Cochran Q test [8]:

Exemple [3]: Sign test for the median

A median of the population is a solution x = µ̃ of the equation F(x) = 0.5, where F
is the distribution function. Suppose that eight radio operators were tested, first in
rooms without air conditioning and then in air-conditioned rooms over the same pe-
riod of time, and the difference of errors (unconditioned minus conditioned) were:

9 4 0 6 4 0 7 11

Test the hypothesis µ̃ = 0 (that is, air conditioning has no effect) against the alter-
native µ̄ > 0 (that is, inferior performance in unconditioned rooms).

Solution. We choose arbitrary the significance level α = 5%. If the hypothesis
is true, the probability p of a positive difference is the same as that of a negative
difference. Hence in this case, p = 0.5, and the random variable number of positive
values among n values has a binomial distribution with p = 0.5. our sample has
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eight values. We omit the value 0, which do not contributes to the decision. then
six values are left, all of which are positive. since

P(X = 6) = (Probability o f 6 out o f 6 events to occur)
= (0.5)6(0.5)0

= 0.0156 = 1.56% < 0.5%,

We reject the null hypothesis and assert that the number of errors made in uncon-
ditioned rooms is significantly higher, so that installing air-conditioning should be
considered.

2.5 Type I and Type II errors in Hypothesis testing

Every testing always involve risks of making false decisions, therefore we define
[3]:

• Type I error: It is an error made while rejecting a true hypothesis, α is de-
signed as the probability of making a type I error.

• Type II error: It is an error made while accepting a false hypothesis, β is
designed the probability of making a type II error.

It is obvious that we can not avoid these errors because uncertainties in sample
data drawn from the population, but there are ways and means of choosing suitable
levels of risks, that is, of values α and β . the choice of α depends on the nature of
the problem (e.g: a small risk α = 1% is used if it is a matter of life or death).

2.6 Some Available Hypothesis Tests in Matlab

2.6.1 Description of the Tests

There exist several Hypothesis tests functions in Matlab according to what kind of
test is needed, In our current work we focus on tests about comparing two random
samples [4].

Ansari-Bradley Test of hypothesis:

Ansari-Bradley test, Tests if two independent samples come from the same distri-
bution, against the alternative that they come from distributions that have the same
median and shape but different variances. The result is h = 0 if the null hypothesis
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of identical distributions cannot be rejected at the 5% significance level, or h = 1
if the null hypothesis can be rejected at the 5% level. the two vectors can have
different lengths.

The Ansari-Bradley test is a nonparametric alternative to the two-sample F test
of equal variances. It does not require the assumption that the two vector come
from normal distributions. The dispersion of a distribution is generally measured
by its variance or standard deviation, but the Ansari-Bradley test can be used with
samples from distributions that do not have finite variances.

The theory behind the Ansari-Bradley test requires that the groups have equal me-
dians. Under that assumption and if the distributions in each group are continuous
and identical, the test does not depend on the distributions in each group. If the
groups do not have the same medians, the results may be misleading. Ansari and
Bradley recommend subtracting the median in that case, but the distribution of
the resulting test, under the null hypothesis, is no longer independent of the com-
mon distribution of the two vector. If you want to perform the tests with medians
subtracted, you should subtract the medians from the two vector before calling
ansaribradley.

Jacques-Berra test

Jarque-Bera test. Tests if a sample comes from a normal distribution with unknown
mean and variance, against the alternative that it does not come from a normal
distribution.

T-test

One-sample or paired-sample t-test. Tests if a sample comes from a normal distri-
bution with unknown variance and a specified mean, against the alternative that it
does not have that mean.

We performs a t-test of the hypothesis that the data in the vector X come from a
distribution with mean zero, and returns the result of the test in H. H = 0 indicates
that the null hypothesis ("mean is zero") cannot be rejected at a given significance
level. H=1 indicates that the null hypothesis can be rejected at a the same level.
The data are assumed to come from a normal distribution with unknown variance.
We test if H0 : x0 = x1 against H1 : x0 6= x1

Kolmogorov-Smirnov (K-S) test

We distinguish two kind of this test; One-sample Kolmogorov-Smirnov test. Tests
if a sample comes from a continuous distribution with specified parameters, against
the alternative that it does not come from that distribution. Two-sample Kolmogorov-
Smirnov test. Tests if two samples come from the same continuous distribution,
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against the alternative that they do not come from the same distribution.

2.6.2 Simulation and Accuracy of the Test

In order to check the accuracy of the test of hypothesis, let’s generate two vectors
r1 and r2 from "randn" matlab function as shown in the figure 4 and 5, where
data are identically, independently distributed (i.i.d) and normally distributed. The
interaction between the two random number is observed in the figure ??.

Knowing that the normal probability density function is given by:

y = f (x|µ,σ) =
1

σ
√

2π
exp

−(x−µ)2

2σ2 (3)

In our case while using the Gaussian distribution µ = 0 and σ = 1

Figure 4: Normal random vectors r1 generated a thousand times
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Figure 5: Normal random vectors r2 generated a thousands times

As a first step, you might want to test the assumption that the samples come from
normal distributions. A normal probability plot gives a quick idea in the figure 4
and 5. Both scatters approximately follow straight lines, indicating approximate
normal distributions.

Performing the tests one thousand times in Matlab the figure 6 below showed how
many times in percentage the test itself can fail to give the right answer although
we know already the outcome of the test. For instance the Ansari-Bradley showed
that two random numbers N(0,1) and N(0,1) are identical distribution only 96,4%
times and 3,6% are not identical which is not true in reality.
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Figure 6: Accuracy of while same distribution

In same manner let’s see what happen for the testing of two different distribution
where r1 is a uniform distribution U(0,1) and r2 is from the normal distribution
N(0,1) as presented in the figure 7, 8 and 9:

Knowing that the uniform cumulative density function (cdf) is given by:

y = f (x|a,b) = x−a
b−a

I[a,b](x) (4)

In our case while using the standard uniform distribution a = 0 and b = 1.



2 MONTE CARLO INFERENCE STATISTICS 13

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

Figure 7: Two random vectors generated a thousand times

10 20 30 40 50 60

−2

−1

0

1

2

3

−2 0 2
0

2

4

6

−2 0 2
0.0010.003

0.010.02
0.05
0.10
0.25
0.50
0.75
0.90
0.95
0.980.99

0.9970.999

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

0 20 40 60
−4

−2

0

2

4



2 MONTE CARLO INFERENCE STATISTICS 14

Figure 8: A uniform random vectors r2 =U(0,1) generated a thousand times
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Figure 9: Normal random vectors r2 = N(0,1) generated a thousand times

According to each test we show in the figure 10 how much a null hypothesis were
not rejected (H0 = 1) although it should be rejected. Specifically the Ansari-bradley
and Kolmogorov-Smirnov perfomed 100% good but Jacque-Berra test showed that
only 94,9% times a random number N(0,1) is normal distributed and 5,1% is not.
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Figure 10: accuracy while different distribution

2.7 Pvalue Approach in Hypothesis Testing

As it says in [23] a p-value is defined as the probability of observing a value of the
test statistic as extreme as or more extreme than the one that is observed, when the
null hypothesis is true. Instead of comparing the observed value of a test statistic
with a critical value, the probability of occurrence of the test statistic, given that
the null hypothesis is true, is determined and compared to the level of significance
α . The null hypothesis is rejected if the P value is less than the designated α . [11]

The procedure of determining testing an hypothesis with p-value approach is illus-
trated here under: [23]

1. Determine the null and alternative hypothesis, H0 and H1.

2. Find a test statistic T that will provide evidence about H0

3. Obtain a random sample from the population of interest and compute the
value of the statistics t0 from the sample.

4. Calculate the p-value:
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• Lower Tail Test: P− value = P0
H(T ≤ 0)

• Upper Tail Test: P− value = P0
H(T ≥ 0)

5. If the p− value≤ α , then reject the null hypothesis.

For the two-tail test, the p-value is determined similarly.

2.8 Bootstrap methods

2.8.1 Definition

The treatment of the bootstrap methods described here comes from Efron and Tib-
shirani [1993]. According to [23] the bootstrap methods refer to the resampling
techniques. Here, we use bootstrap to refer to Monte Carlo simulations that treat
the original sample as the pseudo-population or as an estimate of the population.
Thus, in the steps where we randomly sample from the pseudo-population, we
now resample from the original sample, No new data is actually produced, but new
combinations from the existing data [10]

In the book [19] a potentially more powerful test is provided by the boostrap con-
fidence interval for the variance ratio where the repetition resampling without re-
placement is done. In this work we have performed the test while bootstrapping the
generated random number and see how the results performed, we test the hypoth-
esis using the p-value value approach as described in the Matlab algorithm here
under.

2.8.2 Algorithm

According to definition of the bootstrapping methods learnt we have created our
bootstrapping Matlab function able to sample with replacement in the original data
and calculate each time the p-value and provide a hypothesis decision.

1. Draw or generate element from an N(0,1) known as normal random numbers

2. Set nRep number of how many times the generation will repeat

3. Compute the P-value of each bootstrap sample by creating the function made
of:

• Input:
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– sample - A vector of data to be tested
– Blocksize - Size of the bootstrap blocks
– nb - Number of bootstrap iterations
– alpha - Significance level

• Output:

– H - the function returns hypothesis decision to 0 or 1
– P-value - based on which the decision about the hypothesis was

made and this has made to be the average of all computed p-values
among all bootstrap blocks sampled randomly by the Matlab func-
tion "randperm"

4. make the hypothesis decision basing the rule: if P-value is more than signif-
icance level alpha then do not reject the null hypothesis otherwise reject.

5. Plot the non reject and the rejected cases so as the accuracy percentage of
the test.

2.8.3 Simulation and Bootstrapping Method Hypothesis Testing Accuracy

Applying the above algorithm to some Matlab test of hypothesis we have found
that when the bootstrapping method is applied on data the accuracy is 100% in
many case.

Only two bootstrap function were created while testing with T-test and Jacque-
Bera test therefore for two normal random numbers r1 and r2 the test showed to
be 100% accurate as shown in the figure 11:
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Figure 11: Testing while bootstrapping where the blocksize is 5 and α = 0.1

The significance level in this case were set to be α = 0.1 the above results are
explained by the fact that P-values are as presented in the figure 12:
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3 PORTFOLIO PERFORMANCE MEASUREMENT OVERVIEW

3.1 Performance measurement

There exists many Portfolio performance measurement but the most commonly
used nowadays are the Sharpe ratio, Treynor Ratio, Jensen Alpha. [2] and Appraisal
ratio, while looking at the historic return and risk.

The performance measurement allows to assess and compare the performance (or
past returns) of different investment strategies. [13]

For instance once we need to compare a passive and an active investment strate-
gies; where by definition, a passive investment strategy is when an investor holds
a portfolio that is an exact copy of the market index and does not rely on superior
information in contrast an active investment strategy is when an investor’s port-
folio differs from the market index by having different weights in some or all of
the shares in the market index and the active investor relies on having superior
information therefore increment of much greater cost than the passive investor.

3.2 Sharpe Ratio

3.2.1 Definition

Among the portfolio performance investment cited above we will discuss and de-
velop the Sharpe Ratio.

The Sharpe ratio (also known as Reward-to-Volatility-Ratio) is calculated by sub-
tracting the risk-free rate from the rate of return for a portfolio and dividing the
result by the standard deviation of the portfolio returns; in other words, the Sharpe
Ratio indicates the excess return per unit of risk associated with the excess return.
The higher the Sharpe Ratio, the better the performance.

SR =
Ri−R f

σi
(5)

Where: Ri = the portfolio return during the observation period, R f = the risk free
rate of the return and σi = the standard deviation of the return of investment.
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3.2.2 Measuring with the Sharpe Ratio

Graphically, the Sharpe Ratio is the slope of a line between the risk free rate of the
return and the portfolio in the mean/volatility space. The efficient portfolio in the
mean-variance framework with a risk free asset is to maximizing the Sharpe Ratio
of the portfolio [2].

Figure 13: Excess Return Sharpe Ratios for Two Funds

In the above figure, E(R) stands for Expected return, R f is the Risk free rate of the
return and σ the standard deviation of the return; let’s consider an investor who
plans to put all her money in either fund A or fund B.

Also, assume that the graph plots the best possible predictions of future expected
return and future risk, measured by the standard deviation of return. An investor
might choose A, based on its higher expected return, despite its greater risk. Or,
she might choose B, based on its lower risk, despite its lower expected return.
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Her choice should depend on her tolerance for accepting risk in pursuit of higher
expected return. Absent some knowledge of her preferences, an outside analyst
cannot argue that A is better than B or the converse.

But what if the investor can choose to put some money in one of these funds and
the rest in treasury bills which offer the certain return shown at point R f ? Say that
she has decided that she would prefer a risk (standard deviation) of for instance
10%. She could get this by putting all her money in fund B, thereby obtaining an
expected return of 11%. Alternatively, she could put 2

3 of her money in fund A and
1
3 in Risk free (Treasury Bill or T-Bill). This would give her the prospects plotted
at point A

′
.

The same risk (10%) and a higher expected return (12%). Thus a Fund/Risk free
strategy using fund A would dominate a Fund/Risk free strategy using fund B. This
would also be true for an investor who desired, say, a risk of 5%. And, if it were
possible to borrow at the same rate of interest, it would be true for an investor who
desired, say, a risk of 15%. In the latter case, fund A (by itself) would dominate a
strategy in which fund B is levered up to obtain the same level of overall risk.

Prospectively, the excess Return Sharpe Ratio is best suited to an investor who
wishes to answer the question:

If I can invest in only one fund and engage in borrowing or lending, if desired,
which is the single best fund?

Retrospectively, an historic Excess Return Sharpe Ratio can provide an answer for
an investor with the question:

If I had invested in only one fund and engaged in borrowing or lending, as desired,
which would have been the single best fund? [2] [24]

In the real world, there are situations in which funds underperform the risk free rate
of the return on average and hence have negative average excess returns. In such
cases it is often considered that a fund with greater standard deviation and worse
average performance may nonetheless have a higher (less negative) excess return
Sharpe Ratio and thus be considered to have been better. Let’s consider the figure
below.



3 PORTFOLIO PERFORMANCE MEASUREMENT OVERVIEW 23

Figure 14: Average negative excess Return Sharpe Ratios for Two Funds

Similarly in the above picture, A is clearly inferior to B (and both were inferior
to R f ). But, for an investor who had planned for a standard deviation of 10%, the
combination of 2/3 A and 1/3 R f would have broken even, while investment in
fund B would have lost money. Thus a Fund/Risk free strategy using the fund with
the higher (or less negative) Excess Return Sharpe Ratio would have been better.
Also, one would never invest in funds such as A or B if their prospects involved
risk with negative expected excess returns [24]

3.2.3 Sharpe Ratio and T-statistics Relationship

The Historic Sharpe Ratio can be related to the t-statistic or t-ratio for measuring
the statistical significance of the mean excess return [21].

t− ratio =
β̂ −β0

SE(β̂ )
(6)

Where: β̂ is an estimator of the model parameter β , β0 is zero if the test is H0 :
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β = 0 and H1 : β 6= 0 and SE(β̂ ) : is the standard error of the β̂

And the Historic Sharpe Ratio noted as SRh is equal to:

SRh =
1
T ∑

T
t=1(Rit −R f t)

σD
with σD =

√
∑

T
t=1(Dt − D̄)

T −1
(7)

Where: Rit is the portfolio return in period t, R f t is the risk free rate of the return in
period t and σD is the standard deviation over the given period, Dt = Rit −R f t and
D̄ = 1

T ∑
T
t=1 Dt

Therefore, from equations 6 and 7 the t-statistic can be equal the Sharpe Ratio
times the square root of T (the number of returns used for the calculation). If
historic Sharpe Ratios for a set of funds are computed using the same number of
observations, the Sharpe Ratios will thus be proportional to the t-statistics of the
means.

The Sharpe Ratio is measured and used without any tests about statistical signifi-
cance. But a test whether the difference between two Sharpe Ratios is zero can be
processed [18]

A Sharpe Ratio can be computed by the mean and standard deviation of the distri-
bution of the final payoff. [21] It can also be measured by the expected return per
unit of standard deviation of return for a zero-investment strategy.

3.3 Applicability of Performance Hypothesis Testing with Sharpe Ra-
tio

The determination of statistical significance of the Sharpe ratio difference between
portfolios has been widely discussed in the financial literature (e.g. see Jobson and
Korkie, 1981 [9]; Vinod and Morey, 1999 [25]; Memmel, 2003 [15]; Ledoit and
Wolf, 2008 [18]).

The most popular test for such purpose is still the Jobson-Korkie (1981) [9] test that
has been criticized due to its restrictive assumptions related to the characteristics of
the return distributions being compared (e.g., see Lo, 2002 [12]). Ledoit and Wolf
(2008) [18] prove that the Jobson-Korkie test statistic is not valid if either or both
of the return distributions being analyzed are non-normal or if the observations are
correlated over time.

In addition, inability of the standard Sharpe ratio to cope with negative excess
returns restricts the applicability of the Jobson-Korkie test for such cases. Israelsen
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(2005) [6] introduces the adjustment procedure for valid comparison of negative
Sharpe ratios. Unfortunately, it can not be applied in the context of the Jobson-
Korkie type test without validity loss.

3.4 Comparing Performance Difference between Portfolios with Neg-
ative Excess Returns

The dilemma of comparing negative Sharpe ratios is well-recognized in financial
literature, but it was not solved until 2003 by Israelsen (2003, 2005) [5] and [6].
The dilemma stems from the fact in some cases the traditional interpretation of
the Sharpe ratio (the bigger, the better) may lead to irrational conclusions about
performance ranking when excess returns are negative.

For example, let us first consider two real-world portfolios: The average excess
monthly return over the 36-month evaluation period for portfolio A is -1.815% and
its volatility is 4.736%. For portfolio B, the corresponding numbers are -2.420%
and 6.790%. Therefore, the unadjusted Sharpe ratios are -0.383 for portfolio A and
-0.354 for portfolio B indicating the slight outperformance of B over A. However,
the loss of portfolio A is smaller than that of B, while the risk of B is distinctly
higher.

Therefore, very few investors would be willing to prefer B over A. According to
Israelsen’s refinement method the problem can be solved by powering the denom-
inator of the Sharpe ratio by the ratio of excess return to its absolute value. In this
particular case, the refined Sharpe ratios are -0.086% for portfolio A and -0.163%
for B, indicating the clear out performance of A over B. However, if the assump-
tions of both normality and I.I.D. data held, the refined Sharpe ratios would still
be inapplicable to the Jobson-Korkie-Memmel (JKM) type performance difference
tests, since such statistical tests can not cope with negative excess returns.

on the other hand, we can say that Negative Sharpe Ratios are difficult to interpret.
Some people even reject the Sharpe Ratio altogether because of this.

The problem is the following: it is generally assumed that people have a prefer-
ence for ’more return’ and ’less risk’. Risk in the context of the Sharpe Ratio is
return volatility. One would therefore expect that when ranking portfolios with
equal returns by their Sharpe Ratios, portfolios with lower volatilities are preferred
to portfolios with higher volatilities. This is not the case when the returns are
negative!

More formally: Given two portfolios X and Y with,

r(X) =−5%,r(Y ) =−5% v(X) = 20%,v(Y ) = 25%
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Calculating the Sharpe Ratios of portfolios X and Y gives,

SR(X) = r(X)/v(X) =−5/20 =−0.25 R(Y ) = r(Y )/v(Y ) =−5/25 =−0.20

Since we are dealing with negative number here,−0.25 is a smaller than−0.20 and
we get SR(X) < SR(Y ). This means that that portfolio Y is preferred to portfolio
X because it has a higher Sharpe Ratio, even though portfolio B has the larger
volatility.

3.5 Comparing Performance Difference Between Portfolios with Ex-
cess Returns of different Sign

Suppose we would like to test the statistical significance of outperformance of
Portfolio C with positive excess return against the same two portfolios that we
used earlier in our example of comparing portfolios with negative excess returns.

According to previously-done pairwise comparison, Portfolio A is preferable to
Portfolio B due to its higher mean return and lower volatility.

As an empirical example, let us compare the performance between portfolio A and
portfolio C, whose average monthly return is 1.693% and corresponding volatility
is 6.831% for the evaluation period. By subtracting the average excess return of the
worse portfolio (ie., that of A) from each of the original time-series returns being
compared, the new average excess returns are 0% for portfolio A and 3.508% for
portfolio C.

As the above-described subtraction does not affect volatilities, the statistical com-
parison is now possible without possible bias caused by negative Sharpe ratio of
another portfolio.

3.6 Hypothesis testing with the RobustSharpe ratio

3.6.1 Description of the Problem

In this part we stated the problem as it was stated in the paper of Ledoit-Wolf [18]
for the well understanding the process of RobustSharpe testing of hypothesis. Us-
ing the same notation as in Jobson and Korkie(1981) [9] and Memmel (2003) [15].
suppose that we have two investment strategies i and n whose excess returns over
a given benchmark at time t are rti and rtm, respectively. Typically, the benchmark
is the risk-free rate.
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A total of T return pairs (r1i,r1n), . . . ,(rTi,rT n) are observed. It is assumed that
these observations constitute a strictly stationary time series so that, in particular,
the bivariate return distribution does not change over time. This distribution has
mean vector µ and covariance matrix Σ given by:

µ =

(
µi

µn

)
and Σ =

(
σ2

i σin

σin σ2
n

)
(8)

The usual sample means and sample variances of the observed returns are denoted
by µ̂i, µ̂n and σ̂2

i , σ̂
2
i respectively. The difference between the two Sharpe ratios is

given by

∆ = Shi−Shn =
µi

σi
− µn

σn

And the estimator is

∆̂ = Ŝhi− Ŝhn =
µ̂i

σ̂i
− µ̂n

σ̂n

Furthermore, let u = (µi,µn σ2
i ,σ

2
n )
′ and û = (µ̂i, µ̂n, σ̂

2
i , σ̂

2
n )
′. The standard error

for σ̂ is computed based on the relation,

√
T (µ̂−µ) d−→N(0;Ω),

where d−→ denotes convergence in distribution, and an application of the delta method.
However, The formula for Ω that crucially relies on i.i.d. return data from a bivari-
ate normal distribution is

Ω =


σ2

i σin 0 0
σin σ2

n 0 0
0 0 2σ4

i 2σ2
in

0 0 2σ2
in 2σ4

n

 (9)

This formula is no longer valid if the distribution is non-normal or if the observa-
tions are correlated over time. To give just two examples, consider data that are
i.i.d. but not necessarily normal.

First, the entry in the lower right corner of Ω is given by E[(r1n−µn)
4]−σ4

i instead
of 2σ4

i .
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Secondly, the asymptotic covariance between µn and µ2
n say, is in general not

equal to zero.

To give another example, consider data from a stationary time series. Then the
entry in the upper left corner is given by σ2

i +2∑
∞
t=1 cov(r1i,r(1+t)i) instead of by

simply σ2
i .

3.6.2 Theoretical Solution

The theoretical solution solution of the above problem has been as well solved in
the paper of Ledoit-Wolf [18] and we described it hereunder: Ledoit et al. conve-
niently worked with the uncentered second moments in the following manner:

Let γi = E(r2
1i) and γi = E(r2

1i). Their sample counterparts are denoted by γ̂i and
γ̂n, respectively [18].

Furthermore, let ν = (µi,µn,γi,γn) and ν̂ = (µ̂i, µ̂n, γ̂i, γ̂i) .

which allowed to write

∆ = f (υ)and∆̂ = f (υ̂)

With

f (a,b,c,d) =
a√

c−a2
− b√

d−b2

Assuming that

√
T (υ̂−υ) d−→N(0;Ψ),

where Ψ is an unknown symmetric positive semi-definite matrix. This relation
holds under mild regularity conditions. For example, when the data are assumed
i.i.d., it is sufficient to have both E(r4

1i) and E(r4
1i) finite. In the time series case it

is sufficient to have finite 4+σ moments, where σ is some small positive constant,
together with an appropriate mixing condition, The delta method then implies:

√
T (∆̂−∆) d−→N(0;∆

′ f (ν)Ψ∆ f (ν))
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with

∇
′ f (a,b,c,d) =

(
c

(c−a2)1.5 ,−
d

(d−b2)1.5 −
1
2

a
(c−a2)1.5 ,−

1
2

b
(d−b2)1.5

)
.

If the estimator Ψ̂ of Ψ exists then a standard error for ∆̂ is given by

S(∆̂) =

√
∇′ f (υ̂)Ψ̂∇ f (υ̂)

T
. (10)

3.6.3 Pseudo Algorithm of the RobustSharpe Ratio Matlab Function

The programming code cited in the paper of Ledoit et al. [18] were downloaded
freely from internet [20] the function has been studied and used in our work there-
fore we generated its pseudo algorithm for the well understanding of this function
as follow:

1. Set two column vectors to be tested by their sharpe ratios

2. Set nRep number of how many times the test will repeat

3. Compute the Sharpe ratio to be compared

4. Call the matlab function robustsharpe made of:

• Input:

– Data - [Tx2] matrix of excess returns
– Alpha - fixed significance level; default value = 0.05
– H0 - null hypothesized value for the value of Sharpe ratios differ-

ence; default value = 0
– M - number of bootstrap iterations; default value = 5,000
– bl - block size in Circular Block Bootstrap. Use routine optimal-

blrobustSharpe.m to determine optimal block size. If no block size
is specified, optimalblrobustSharpe.m is called automatically, with
default candidate block sizes 1,3,6,10,15

– kernel - the Quadratic spectral (QS) is taken by defaults.
– extsim - 1 if the indices matrix bootMat in the circular block boot-

strap is fed in rather than simulated in robustSharpe itself, 0 else
useful to achieve comparability of results based on other imple-
mentations.
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– bootMat - exogenous indices matrix in circular block bootstrap of
size [MxT] or 0 where M is number of CBB iterations, T is time
series length

• Output:

– Rejected - 1 if H0 was rejected at significance level alpha, 0 else.
– pval - p-value.
– teststat - test statistic.

• Set the inputs default values if needed.

• Start by calling the data (Tx2).

• Computation of studentized test statistic and generation Circular Block
Bootstrap (CBB) Index Matrix.

• Prewhiten (see explanation in appendix) data with VAR(1) model and
estimate HAC kernel estimator using AR(1) models as univariate ap-
proximating parametric models.

• Studentization of ‘raw’ test statistic and set the values of µ , the means
of two return time series, Difference of Sharpe ratios and HAC std
estimate.

• Generate M CBB matrices by XT∗m where, 1≤ m≤M.

• Call function which determines a matrix with corresponding studen-
tized test statistics for each bootstrap iteration (row), the simulated ex-
cess returns of two assets and the HAC std estimate of difference of
two Sharpe ratios.

• Call another function that computes critical value and tests H0

5. Plot the data in different plots to visualize the shape and distribution of data

6. Plot the non reject and the rejected cases so as the accuracy percentage of
the test.
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4 RESULTS

4.1 Data

Consider two applications to investment funds. In each case, we want to test the
null hypothesis of statistical significant equality of the Sharpe ratios of the two
funds.

For the first step we used simulated data from known distribution in order to mea-
sure the performance of different test.

Secondly we used the same data used in the paper of Ledoit and Wolf [18], where
the first application deals with mutual funds, the selected funds are Fidelity (FFIDX),
a ‘large blend’ fund, and Fidelity Aggressive Growth (FDEGX), a ‘mid-cap growth’
fund. The data were obtained from Yahoo! Finance; the second application deals
with hedge funds, The selected funds are Coast Enhanced Income and JMG Capital
Partners. The data were obtained from the CISDM database.

In above both applications, we use monthly log returns in excess of the risk-free
rate. The return period is 01/1994 until 12/2003, so the period T was equal to 120
(see in the Appendix detailed data set).

4.2 Robust Sharpe Perfomance hypothesis testing

4.2.1 Simulation study and results

Consider two random number r1 and r2 generated from N(0,1) the period is T =
60 and the data has been simulated 10 only times (due to the fact of time taken to
run matlab code) both numbers can be presented in matlab plot as shown in the
figures 15 and 16.
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Figure 15: Normal random vectors r1 generated ten times
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Figure 16: Normal random vectors r2 generated a ten times

The Generated 10 pair of random columns has been created and their Sharpe ratio
has been calculated and reported in table 1:

Table 1: Simulated data from the same distribution

Mean(r1) Mean(r2) Std(r1) Std(r2) SR(1) SR(2) Decision H
1 -0.0222 -0.1466 0.8623 1.0410 -0.0258 -0.1408 0
2 -0.0854 -0.0709 1.0074 1.0620 -0.0847 -0.0668 0
3 0.0935 -0.1785 0.9355 0.9858 0.0999 -0.1811 0
4 -0.0196 -0.1069 0.9204 1.0002 -0.021 -0.1069 0
5 -0.0394 0.1582 1.0465 1.0092 -0.0376 0.1568 0
6 -0.2314 0.1118 1.0020 1.0480 -0.2310 0.1067 0
7 0.1784 0.0893 0.8546 1.1728 0.2088 0.0761 0
8 -0.1603 0.2499 1.1180 0.8099 -0.1434 0.3086 1
9 0.0511 0.0025 1.0019 0.9811 0.0510 0.0026 0

10 0.1144 -0.0856 0.8704 0.9113 0.1315 -0.0939 0

Graphically we have the result as presented in the figure 17:
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Figure 17: RobustSharpe Test on two simulated normal random vectors
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We see that in 90% of our cases the difference of Sharpe Ratios is not statisti-
cally significant and 10% the two Sharpe Ratio is statistically significant different.
hence from table 1 you can easily compare the Sharpe Ratios of the 8th case where
SR(2)> SR(1).

Next let’s consider two different distribution where r1 is the normal distribution
N(0,1) and r2 from the uniform distribution U(0,1) as shown in the figure 18, 19
and 20:
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Figure 18: Normal random vectors r1 generated ten times
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Figure 19: Uniform random vectors r2 generated ten times
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Figure 20: Random vectors r1 and r2 generated ten times

The null hypothesis has been rejected all the 10 times as shown in the table 2:

Table 2: Simulated data from different distribution

Mean(r1) Mean(r2) Std(r1) Std(r2) SR(1) SR(2) Decision H
1 -0,0065 0,4744 1,0752 0,2871 -0,0060 1,6521 1
2 -0,1035 0,5126 0,9046 0,2985 -0,1144 1,7171 1
3 0,0126 0,5089 0,9498 0,2993 0,0133 1,7005 1
4 -0,1146 0,4964 0,8423 0,2707 -0,1361 1,8336 1
5 0,0081 0,4126 0,9664 0,2603 0,0084 1,5852 1
6 -0,1145 0,4250 1,1147 0,3058 -0,1028 1,3896 1
7 0,0324 0,5234 1,0959 0,2807 0,0295 1,8646 1
8 -0,1159 0,5040 1,0593 0,3026 -0,1095 1,6656 1
9 -0,0864 0,5378 0,9146 0,2831 -0,0945 1,8997 1

10 0,0196 0,5151 1,1258 0,2925 0,0174 1,7610 1

Graphically the null hypothesis is 1 as in figure 21:
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Figure 21: RobustSharpe test on two different simulated distribution
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In the above two different kind of distribution we see that the test has detected some
statistically significant difference between the two SR all the ten times, hence one
can easily make comparison of each two distributions according to their Sharpe
Ratios.

Also let’s consider two different distribution normal ditribution where r1 is the
normal distribution N(0.5,4.7) and r2 from the normal distribution N(0.1,9) (in
order to illustrate the case of two mutual funds data as were presented in the paper
of Ledoit and Wolf [18]). Data are presented in figures 22, 23 and 24:
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Figure 22: Random vectors r1 = N(0.5,4.7) generated 20 times



4 RESULTS 38

20 40 60 80 100 120

−20

0

20

−20 0 20
0

5

10

−20 0 20

0.0010.0030.010.020.050.10
0.25
0.50
0.75
0.900.950.980.99

0.9970.999

Data

P
ro

ba
bi

lit
y

Normal Probability Plot

0 50 100 150
−40

−20

0

20

40

Figure 23: Random vectors r2 = N(0.1,9) generated 20 times
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Figure 24: Random vectors r1 and r2 generated 20 times

Computing the Sharpe ratios for the 20 random numbers and their respective testing
we report the results in table 4

Table 3: Simulated data from different distributions N(0.5,4.7) and N(0.1,9)

Mean(r1) Mean(r2) Std(r1) Std(r2) SR(1) SR(2) Decision H
1 0.8248 -0.3939 4.708 8.868 0.175 -0.0444 0
2 0.2976 0.7631 4.454 9.302 0.0668 0.0820 0
3 0.4646 -0.2644 4.59051 9.322 0.1012 -0.0284 0
4 0.1052 -0.3803 4.929 7.979 0.0213 -0.0477 0
5 0.3844 1.247 4.446 8.694 0.0864 0.1434 0
6 0.4293 0.3833 4.427 9.362 0.0970 0.0409 0
7 -0.2686 -0.5416 4.397 8.489 -0.0611 -0.0638 0
8 0.8955 -0.8264 4.699 8.802 0.1905 -0.0939 1
9 0.5748 -0.5041 4.598 9.702 0.1250 -0.0520 0

10 0.6368 -0.6939 4.869 8.597 0.1308 -0.0807 0
11 1.216 1.4979 5.057 8.719 0.2405 0.1718 0
12 0.0391 1.1683 4.975 9.138 0.0079 0.1278 0
13 -0.1587 0.3259 5.23061 9.116 -0.0303 0.0358 0
14 0.179 -0.7356 4.977 8.966 0.0360 -0.0820 0
15 0.7695 0.6712 4.543 8.487 0.1694 0.0791 0
16 0.6333 0.3709 5.19021 8.508 0.1220 0.0436 0
17 0.3274 -0.0287 4.593 9.084 0.0713 -0.0032 0
18 0.3182 0.978 5.1306 7.771 0.0620 0.1258 0
19 0.0483 0.3913 4.701 9.236 0.0103 0.0424 0
20 0.6444 0.4519 4.848 9.344 0.1329 0.0484 0

In the table 4 the test showed the non statistical significance difference 95% times.

Also let’s consider two different distribution normal ditribution where r1 is the nor-
mal distribution N(0,1) and r2 from the normal distribution N(10,1) to visualize
what could happen while having a remarkable difference in mean returns and same
volatility as shown in the figure 25, 26 and 27:
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Figure 25: Random vectors r1 = N(0,1) generated 10 times
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Figure 26: Random vectors r2 = N(10,1) generated 20 times
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Figure 27: Random vectors r1 and r2 generated 10 times

Testing the significance of difference between the two Sharpe ratios for the 10
random numbers the Hypothesis have been accepted all the times as shown in the
figure 28 we see the total existence of statistical significant difference between each
SR.
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Figure 28: RobustSharpe test accuracy for N(0,1) and N(10,1)

One more case which might be an interested area of discussion is to compare
Sharpe Ratio of a Gamma distribution and normal distribution which reflect most
cases of the Hedge funds time series data; for instance let’s compare a gamma dis-
tribution r1 = γ(2.5,2) and a normal distribution of the same mean and variance
r2 = N(2.5,2) that may be represented in the figure 29, 30 and 31:
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Figure 29: Random vectors r1 = γ(2.5,2) generated 20 times
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Figure 30: Random vectors r2 = N(2.5,2) generated 20 times
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Figure 31: Comparison of r1 and r2 generated 20 times

While testing the two distribution with the RobustSharpe test 20 times, we report
in table 4 the results including the mean, the standard deviation, the Sharpe Ratio
and Hypothesis test decision in each case.

Table 4: Simulated data from distribution r1 = γ(2.5,2) and r2 = N(2.5,2)
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Mean(r1) Mean(r2) Std(r1) Std(r2) SR(1) SR(2) Decision H
1 2.586 2.747 2.391 2.165 1.081 1.268 0
2 2.946 2.458 2.752 2.042 1.0708 1.203 0
3 2.892 2.377 2.753 2.187 1.0502 1.086 0
4 3.145 2.638 3.442 2.079 0.914 1.269 1
5 3.084 2.456 2.986 1.862 1.032 1.318 0
6 3.087 2.747 2.964 2.002 1.041 1.371 1
7 2.761 2.159 2.566 1.935 1.075 1.116 0
8 3.219 2.541 3.213 1.883 1.002 1.349 1
9 3.479 2.352 3.351 1.813 1.038 1.313 0

10 3.133 2.631 3.288 2.003 0.953 1.348 0
11 2.871 2.594 2.949 1.923 0.973 1.296 1
12 3.413 2.428 3.362 1.877 1.015 1.293 0
13 3.025 2.436 2.844 2.0703 1.063 1.176 0
14 3.348 2.699 3.186 1.995 1.0508 1.352 1
15 3.027 2.221 3.085 1.831 0.9294 1.212 1
16 2.964 2.599 2.871 2.103 1.0541 1.235 0
17 2.868 2.535 2.995 1.845 0.9896 1.374 1
18 2.829 2.606 2.819 1.789 1.0036 1.456 0
19 2.799 2.398 2.701 2.019 1.0364 1.187 0
20 3.321 2.361 3.305 2.049 1.0043 1.152 0

Graphically we see in figure 32 the accuracy of test along the twenty times of
testing the same distribution of the means and variance shown in the table 4
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Figure 32: RobustSharpe test accuracy for γ(2.5,2) and N(2.5,2)

In the above case we have not good accurate of the RobustSharpe test (65%).
Therefore we can deduce that while testing the statistical significance performance
of two Sharpe Ratio in such case the RobustSharpe Test is critical.

4.2.2 Hedge and Mutual funds results

Hedge funds

While testing the Sharpe ratio of the hedge funds data fifty times the hypothesis
has been rejected fifty times. recalling that while calling this function in Matlab
all input were taken by default except the block size which varied randomly along
fifty testing and equal 1, 3, 6, 10, 15.

The two Hedge fund data can be presented in the plots as shown in the figure 33,
34 and 35:
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Figure 33: The coast Enhanced Income fund data
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Figure 34: The JMG capital partners fund data
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Figure 35: Comparison of the 2 Hedge funds data

The null hypothesis were not rejected all the fifty times as shown hereunder in
figure 36 recalling that:

H0 = 0 means that there is no significant performance difference between the two
Sharpe Ratio being compared.

H0 = 1 means that statistical significance perfomance difference between the two
Sharpe Ratio exist.
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Figure 36: RobustSharpe Test on Hedge funds fifty times

The decision of the non rejection of the null hypothesis were based on the P-values
calculation with studentized bootstrap methods and the this values were close to
the one found in Ledoit-Wolf paper [18] equal to 0.294, our P-values obtained all
the fifty times are shown in the figure 42 recalling that decision rule is to reject the
null hypothesis if Pvalue > α with α = 0.05 in our case.
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Figure 37: All the P-values are between 0.27 and 0.305 hence the rejection of H0
at 0.05 of significance level

We performed the computation of the Sharpe ration being compared and we got
results in the table 5 where Mean stands for the average return µ of each hedge
funds, Std stands for the standard deviation or volatility σ of each hedge funds, SR
stands for the Sharpe Ratio being compared of the two Hedge funds and it has be
calculated as SR = µ

σ
as defined in [2] while Zero investment Strategy (defined in

Appendix).

Table 5: Hedge Funds data results

Hedge1 Hedge2
Mean 1,228 0,2448

Std 1,2107 0,1676
SR 1,0142 1,4605

Basing on the test of significance difference performance between two Sharpe Ra-
tio done we can deduce that the difference of two Sharpe Ratios is statistically
insignificant hence, the first hedge fund, Coast Enhanced Income is statistically
equal to the second hegde fund, The JMG capital Partners.
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Mutual funds

The same manner we had a look on mutual funds and presented the mutual funds
data as shown here under in figures 38, 39, 40:
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Figure 38: The fidelity fund data
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Figure 39: The fidelity Aggressive Growth fund data
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Figure 40: Comparison of two mutual fund data

Also we have got the null hypothesis rejected all the fifty times as shown in Figure
??.
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Figure 41: RobustSharpe Test on Mutual funds fifty times

The above non rejection of the null hypothesis decision were based on the P-values
also close to the one found in Ledoit-Wolf paper [18] equal to 0.092, our P-values
obtained all the fifty times are shown in the figure 42 and all P-values are greater
than the α = 0.05 hence the non rejection of H0 since the decision rule is to reject
the null hypothesis if Pvalue > α .
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Figure 42: All the P-values are between 0.08 and 0.13 hence the rejection of H0 at
0.05 of significance level

The Sharpe ratio of the two mutual funds has been computed and presented in table
6:

Table 6: Mutual Fund data results

Mutual1 Mutual2
Mean 0,5115 0,0985

Std 4,7597 9,1606
SR 0,1075 0,0107

According to the results of the RobustSharpe test we do not reject the null hypoth-
esis that the difference in the Sharpe ratio is statistically significant and the first
mutual fund, the Coast Enhanced Income is statistically equal the second mutual
fund, the JMG Capital Partners.
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5 CONCLUSION

This master thesis was aimed to gain a practical and theoretical understanding
about measuring the ranks investment strategies of a portfolios by the Sharpe ratio
while applying Matlab as a computation software tool. To this, we have studied
the work of Ledoit and Wolf including the Matlab codes created by his team able
to test statistically significant difference between two Sharpe ratios.

The Programming code were using a studentised bootstrapping methods and we
showed that bootstrapping method while testing or estimating some statistics should
always considered because at most cases for the outcome are almost always accu-
rate and errors are minimized in the computation.

In this work we narrowed our objectives and studied only few cases of performance
measurement. We recommend in future works the use of other measures like the
Treynor’s measure, Jensen’s measure or Appraisal ratio as discussed in [2] and
[14] Also the RobustSharpe Test should be emphasized on the portfolios that have
negative Excess Returns and portfolios that have Excess Returns of different signs.
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Appendices

A Some Definitions

Mutual fund: is a type professionally managed collective investment plans that
collect money from many investors to buy securities a financial value.[wiki]

Hedge fund: is an investment find that can undertake a wider range of investment
and trading activities than other funds, but which is only open for investment from
particular types if investors specified by regulators.[wiki]

Return:is the The gain or loss of a security in a particular period. The return
consists of the income and the capital gains relative on an investment. It is usually
quoted as a percentage.

The general rule is that the more risk you take, the greater the potential for higher
return - and loss. [investopedia]

Volatility:1. A statistical measure of the dispersion of returns for a given security
or market index. Volatility can either be measured by using the standard deviation
or variance between returns from that same security or market index. Commonly,
the higher the volatility, the riskier the security.

2. A variable in option pricing formulas showing the extent to which the return
of the underlying asset will fluctuate between now and the option’s expiration.
Volatility, as expressed as a percentage coefficient within option-pricing formulas,
arises from daily trading activities. How volatility is measured will affect the value
of the coefficient used. [investopedia]

Zero investment Portfolio: A group of investment which, when combined, create
a zero net value, the zero investment strategy can be achieved by simultaneously
purchasing securities and selling equivalent securities; thus achieving a lower risk
or gain compared to only purchasing or selling the same securities. This application
has many advantages like

• Reduce taxes, Because of little or no interest income

• Reduce risk by protecting against unexpected shifts in the value of the held
securities.

• Protect the overall value of portfolio so that investment can be made at a later
data
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• Determine if the average portfolio returns are statistically different from
zero.

Prewhitening: A signal is "white" if each sample is independent statistically from
every other sample, once you knew the data up until sample n-1, you would have
no information about sample n.

A pre-whitening filter takes a signal that is not white and produces a white signal.
If you subtract this prediction from the actual sample n, you will be left with the
portion of sample n that is not related to the rest of the samples.

To explain where the stochastic gradient algorithm comes into play, here is a quick
explanation of the system used to whiten the signal.

Say you’re original signal is x[n] (discrete samples) Delay signal by single sam-
ples to get x[n-1] Run signal through whitening filter to get x’[n] (estimate of x[n])
Subtract x’[n] from x[n] to get e[n] (error signal) Feed error signal to whitening fil-
ter to update filter coefficients using stochastic gradient algorithm (also look under
LMS filter) The signal e[n] is your whitened signal. If the system is perfect, the
predictor error will be a white signal, as that is the best performance the predictor
can hope to have. Depending on how correlated the samples are in your original
x[n] are, you may need a very large filter to whiten the signal. The usefulness of
whitening data is in performing data compression.

For example, digital cellular phones do not transmit your digitized voice over the
air. Instead, they whiten the voice signal, and transmit the whitened signal power
(or impulse period) and the filter coefficients.

shortly, Prewhitening aims to make the signal contain equal-strength components
at every possible frequency. The assumption is that all frequencies present in the
signal contain some information that is useful. If the signal is NOT white, then
some information at some frequencies might swamp other, equally valid, useful
information.

Treasury Bill or T-Bill is A short-term debt obligation backed by the U.S. gov-
ernment with a maturity of less than one year. T-bills are sold in denominations
of USD 1,000 up to a maximum purchase of USD 5 million and commonly have
maturities of one month (four weeks), three months (13 weeks) or six months (26
weeks).

T-bills are issued through a competitive bidding process at a discount from par,
which means that rather than paying fixed interest payments like conventional
bonds, the appreciation of the bond provides the return to the holder. [investo-
pedia]
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B Mutual and Hedge Funds Data

Table 7: Mutual and Hedge Funds time series data

Mutual Fund data Hedge Fund data
Mutual1 Mutual2 Hedge1 Hedge2

1 3,9267 2,6476 0,6813 0,1944
2 -2,3305 -0,8163 0,6591 0,3118
3 -4,8583 -5,724 1,1132 0,7974
4 1,96 0,0475 0,5253 -0,0614
5 -0,4397 -4,2416 0,8251 0,5679
6 -2,7056 -7,5912 1,2098 0,2104
7 2,9257 3,3391 0,9581 0,2947
8 3,8781 6,7505 0,778 0,5506
9 -2,5249 -0,8431 1,6924 0,3212

10 1,7459 4,2813 0,6913 0,126
11 -4,0699 -4,4142 1,6391 0,3275
12 0,8401 2,2952 0,2833 0,4815
13 -0,5617 -3,2121 0,5422 0,1553
14 2,8434 4,1845 1,1103 0,0711
15 3,1108 3,6622 1,3098 0,3127
16 1,9165 2,7866 0,2097 0,1502
17 1,2407 3,5773 0,6543 1,1278
18 2,7006 10,063 1,1338 0,7886
19 4,0165 10,753 1,6093 0,6146
20 1,1931 0,9062 2,566 0,1699
21 2,4422 1,9005 1,2471 -0,0595
22 -1,615 -1,6643 1,5419 -0,0196
23 3,6948 -1,6861 0,9945 -0,0259
24 2,0702 -5,9162 1,8171 0,2401
25 2,0209 0,9967 2,1019 0,2413
26 0,8348 5,4183 1,3318 0,3442
27 1,4459 -0,4034 1,8805 0,0854
28 1,2052 5,8189 1,6073 -0,0632
29 1,515 3,3712 2,703 0,4779
30 0,0613 -4,2658 1,5664 0,3831
31 -4,8483 -10,753 1,0703 0,0802
32 2,4498 3,6975 0,8612 0,6241
33 4,5504 7,7571 0,868 -0,0543
34 1,2171 -3,0071 1,2012 0,2818
35 5,407 4,9361 0,942 0,2985
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Mutual Found data Hedge Found data
Mutual1 Mutual2 Hedge1 Hedge2

36 -2,5487 -3,7872 0,8329 0,2286
37 3,7254 6,3227 1,5907 0,7542
38 0,5411 -5,6427 1,661 0,3001
39 -5,4384 -7,0698 0,9036 0,2302
40 5,1897 1,749 1,3449 0,3676
41 4,956 8,6352 1,8047 0,1777
42 4,6393 2,3316 1,4517 0,1375
43 7,6587 9,2936 2,6035 0,0981
44 -5,7242 -1,6182 2,2368 0,2004
45 4,8064 5,6314 0,9382 0,2453
46 -3,2255 -8,205 1,948 0,2735
47 3,9052 0,5 -0,0883 0,2402
48 1,8622 1,0918 1,3549 0,3676
49 0,1058 -1,0718 1,9325 0,2083
50 6,2328 8,7543 0,8779 0,2243
51 4,7072 5,1108 1,375 0,1893
52 0,3427 1,2007 0,731 0,3942
53 -1,0273 -4,224 1,0133 0,1021
54 4,3375 9,339 -1,9875 0,1932
55 0,0311 0,4632 0,8585 0,2345
56 -16,625 -21,925 -2,2863 0,2592
57 3,9789 11,495 -2,1105 0,1928
58 6,7855 2,9996 -0,0441 0,3044
59 5,6955 6,7845 1,3163 0,159
60 7,7121 12,225 1,0026 0,27
61 3,2071 10,22 1,6263 0,3435
62 -2,4622 -5,9869 1,1269 0,3455
63 3,8969 12,781 1,0086 0,2461
64 1,7631 6,3812 2,7126 0,417
65 -3,5363 -4,7808 2,6278 0,301
66 5,0614 8,7382 1,5492 0,4046
67 -3,5352 -1,5323 0,8418 0,3069
68 -1,9028 5,4122 0,6403 0,2636
69 -2,5466 -2,8854 1,1569 0,237
70 3,8562 10,479 0,7975 0,2524
71 3,6341 10,826 -1,044 0,2954
72 9,7548 16,936 1,7733 0,2652
73 -4,8312 -0,7 2,5434 0,206
74 2,9038 15,91 1,491 0,2574
75 3,824 -2,9817 3,0273 0,1668
76 -6,4514 -17,061 3,2998 0,1991
77 -5,0871 -12,186 2,0978 0,2385
78 5,1907 16,948 1,5092 0,1967
79 -2,5309 -7,9302 1,635 0,1754
80 6,1504 14,78 0,8581 0,2347
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Mutual Found data Hedge Found data
Mutual1 Mutual2 Hedge1 Hedge2

81 -5,8471 -10,254 1,5241 0,1921
82 -0,8205 -12,191 0,2828 0,1239
83 -11,711 -26,517 -1,0001 0,149
84 2,1565 6,5252 1,5128 0,2202
85 2,7675 1,6718 4,9735 0,2195
86 -10,242 -22,616 3,6596 0,2111
87 -8,8416 -23,94 1,2367 0,188
88 12,067 19,028 0,7182 0,2022
89 0,2347 -3,5765 0,4607 0,2124
90 -0,6507 -11,193 -0,0162 0,193
91 -5,3993 -13,367 1,6634 0,1913
92 -5,2209 -15,11 1,6853 0,2233
93 -10,378 -23,946 1,8415 0,1721
94 2,6288 15,686 1,4879 0,2012
95 5,7568 10,007 1,3837 0,195
96 2,072 0,0186 3,1651 0,1998
97 -1,6054 -7,0658 2,206 0,203
98 -2,5013 -10,805 0,6142 0,1766
99 2,2475 4,7581 0,9462 0,1716

100 -6,006 -10,273 2,8428 0,2372
101 -0,4965 -7,1369 -0,123 0,1666
102 -6,5602 -16,376 -2,0995 0,1691
103 -8,6304 -7,7748 -1,7822 0,1707
104 -0,0426 -3,7139 1,4042 0,1656
105 -10,261 -14,697 2,0218 0,1648
106 8,2459 13,963 0,8841 0,1589
107 4,8368 13,486 3,0868 0,1578
108 -5,7832 -9,0086 2,9641 0,1711
109 -3,3307 -0,636 3,1595 0,1627
110 -0,8246 -1,5489 1,7362 0,1428
111 1,7395 1,8077 1,0992 0,166
112 7,2318 4,9774 2,2878 0,156
113 3,4893 7,066 1,3509 0,171
114 0,9472 1,2639 -2,1272 0,1833
115 2,3977 2,7054 -1,6775 0,165
116 1,604 3,7319 0,4995 0,1809
117 -1,8021 -1,5551 3,3526 0,2415
118 5,559 5,9161 2,09 0,2133
119 0,586 2,2775 0,8882 0,1626
120 5,5201 1,8237 2,6868 0,175

Mean 0,511455 0,098456 1,22797 0,24482
Std 4,759708 9,160556 1,21074 0,16762
SR 0,107455 0,010748 1,01423 1,46055


