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The objective of this thesis is the development of a multibody dynamic model matching
the observed movements of the lower limb of a skier performing the skating technique in
cross-country style. During the construction of this model, the formulation of the equation
of motion was made using the Euler - Lagrange approach with multipliers applied to a
multibody system in three dimensions.

The description of the lower limb of the skate skier and the ski was completed by employ-
ing three bodies, one representing the ski, and two representing the natural movements of
the leg of the skier. The resultant system has 13 joint constraints due to the interconnec-
tion of the bodies, and four prescribed kinematic constraints to account for the movements
of the leg, leaving the amount of degrees of freedom equal to one.

The push-off force exerted by the skate skier was taken directly from measurements made
on-site in the ski tunnel at the Vuokatti facilities (Finland) and was input into the model
as a continuous function. Then, the resultant velocities and movement of the ski, center
of mass of the skier, and variation of the skating angle were studied to understand the
response of the model to the variation of important parameters of the skate technique.
This allowed a comparison of the model results with the real movement of the skier.

Further developments can be made to this model to better approximate the results to the
real movement of the leg. One can achieve this by changing the constraints to include the
behavior of the real leg joints and muscle actuation. As mentioned in the introduction of
this thesis, a multibody dynamic model can be used to provide relevant information to ski
designers and to obtain optimized results of the given variables, which athletes can use to
improve their performance.
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ABBREVIATION AND SYMBOLS

Abbreviations

CM center of mass
DAEs differential algebraic equations
DOF degrees of freedom
ISBS International Society of Biomechanics in sport
Nelli National electronic Library Interface
ODEs ordinary differential equations
PRISMA Systematic Reviews and Meta-Analyses
ZXZ Euler angle rotation sequence

Symbols

a0, ak, bk Fourier series coefficients
a0 vector of the system generalized coordinates
av acceleration vector absorbing terms which are quadratic in the velocities
A rotation matrix
c vector of constant terms
C vector of kinematic constraints
Cq constraint Jacobian matrix

Ct vector of partial derivatives of the constraint equations with respect to
time

D single rotation matrix
f number of degrees of freedom
F vector of external forces
Ḡ velocity transformation matrix between angular velocities and first time

derivative of Euler parameters
I identity matrix
Iθθ inertia tensor of the rigid body
m number of constraints, number of Fourier coefficients
M moment
M moment matrix

M i mass matrix of the i-th body
n number of bodies, number of generalized coordinates, number of half

rotations, quantity of pairs of data
nc number of independent constraint equations
q number of generalized coordinates
q vector of generalized coordinates



Qe vector of generalized forces
Qv vector of quadratic velocity inertia terms
Qd vector absorbing terms that are the partial derivatives of the constraint

equations
rp position vector of particle P in a global coordinate system

rxy Pearson correlation coefficient

R position vector of the frame of reference
ū position vector within the body reference system
V volume of the body
W e work of external forces
Wi work of inertial forces
X i coordinate system axis along the i-th direction

Greek Letters

α, β parameters of the Baumgarte stabilization method
δ partial differential operator of calculus
θ generalized rotational coordinates planar case, step size in the Fourier

fitting process
θ vector of Euler angles, generalized rotational coordinates
λ vector of Lagrange multipliers
ρ density of the body
ϕ, θ, ψ Euler angles
ξi coordinate system axis along the i direction
ω̄ vector of local angular velocities

Superscripts

b number of bodies
i, j, 1, 2, 3 index of the body
T transpose of a vector of a matrix
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1 INTRODUCTION

The term skiing is defined by the Encyclopedia Britannica as the action of moving over
the snow by the use of a pair of long skis (Allen, 2008). Skiing is considered to be one of
the oldest activities still practiced nowadays, with only a few technological changes from
its original concept. These changes mainly pertain to the fabrication materials and pro-
duction of the skis. For example, in ancient times, skis were manufactured out of wooden
flat pieces, while in modern times, the fabrication materials and technology comprise a
sophisticated combination of wood and composites.

1.1 Historical development of skiing as a sport activity

Skiing can be traced back in time at least 6000 years, when its principal use was for
hunting, gathering, transportation, and obtaining wood supplies. One well-known fact
is that people from the Nordic countries used skiing to move from one place to another,
mainly because their land was covered by snow most of the year. This can be seen in
figure 1, which presents a pictograph from 2000 B.C. found in Rödöy, Norway, considered
one of the most ancient graphical representations of the skiing culture of the Nordic tribes.

Figure 1. Pictograph of ancient skiers in Rödöy, Norway, circa 2.000 B.C. (Lind et al.,
2010, p. 2).

Almost four thousand years later, since the year 1890, skiing has developed as a sport
activity and assumed its current modern shape. Different techniques have evolved from
the traditional Nordic style practiced between 1890 - 1940 by the aristocrats and wealthier
middle classes. These techniques are currently known as alpine, ski jumping, free ride,
free style and cross-country style (Allen, 2007, p. 1-6).

From the previous classification, the cross - country style may be considered as the origi-
nal descendant of the Nordic style; in fact, nowadays the terms Nordic and cross - country
are sometimes used synonymously when one makes reference to the ski style of the past.
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At the time, cross - country skiing was preferred over all other types of skiing techniques
that existed because people found it more suitable to traveling longer distances than the
others (Hindman, 2005, p. 15). Presently, this activity has evolved into one of the most
practiced sport and leisure activities around the world due to its low impact, short learning
curve, and, above all, low cost (it requires neither specialized nor expensive gear to start
practicing it).

If a basic comparison must be made, it can be said that one of the main differences be-
tween cross-country skiing and the other ski styles is that the binding between the foot
and the ski attaches only at the toes, and the skis are more lightweight.

There are different variants of the cross-country style, among which are classical, Tele-
mark, and skating. The classical technique, shown in figure 2, is the conventional tech-
nique of cross-country skiing, where the skier’s movement is performed in diagonal
strides while the skis remain parallel to each other.

Figure 2. Classical cross country skiing practice (Hindman, 2005, p. 14).

When the conditions of the path lead to a downhill, the skier applies the Telemark tech-
nique, as shown in figure 3. Sondre Norheim of Telemark, Norway pioneered this tech-
nique (Blikom, 2010).

The last (but not least important) technique found within the cross - country skiing styles
is the skating technique. This technique is performed in a manner similar to ice skating.
To perform the movement, the skier pushes outward with the cross - country ski in such
a way that the inner edge of the ski pushes against the snow. Skiers mostly appropriate
this technique for use on surfaces with firm and smooth snow. Figures 4(a), 4(b) and 4(c)
show the execution of this technique by cross - country skiers so that it is possible to
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Figure 3. Telemark technique (Knightson, 2010).

appreciate the range of movements required to accomplish the forward displacement.

(a) Propulsive phase (b) Gliding phase (c) Stride phase

Figure 4. Different phases of the skating technique (Skating technique basics, 2011).

One cannot deny the high impact of this sport discipline on its practitioners all over the
world. Even athletes who are originally from countries where snow is not present are
active in international competitions. This is because cross-country skiing is a highly at-
tractive, developed sport receiving attention from the worldwide athletic community.

In regards to the performance side of the sport, one can read and study a great deal about
the developments of cross-country skiing in terms of equipment manufactured by large
companies and execution of the technique taught by personal trainers. However, in further
sections of this research, the reader will find that not much work has been done toward a
multibody simulation of the skating technique of cross-country skiing.

1.2 Objectives of the research

The main objective of this research is to formulate a simplified multibody dynamic model
of a cross country skier that matches the observed behavior of the movements of the cross
- country skating technique.
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As previously mentioned, the skating technique has been studied extensively from phys-
iological, medical, and training points of view (Rusko, 2033, p. 1-30). Nevertheless, as
shown in the systematic literature review presented later, studies related to the modeling
of the skier movement and skiing technique mechanics are in development in the field of
multibody dynamics. The number of opportunities that the multibody dynamics field can
offer and develop for athletes and teams participating in this discipline is vast.

Much can be done to achieve optimal performance in the training requirements of
elite or high-level competitive skiers with a multibody dynamics model. It is possible
to 1) determine in advance all the resultant kinematic parameters associated with the
technique, such as velocities and accelerations of the skier or of different parts of the
skier’s body; 2) describe the complete geometry of the movements of skis, legs, and arms
of the athlete; and 3) use these data to adjust the execution of the activity to obtain the
maximum output with the least possible effort.

Moreover, with the multibody dynamics model, it is possible to model the influence of
novel ski designs, products, and binding systems on the skiing itself. This might help a
competitive skier to select the most optimal combination of gear components to maximize
effectiveness during competition. It may also minimize field testing during the research
and reduce the development phases and times of new prototypes.

The subsequent integration of this model with a more complex biomechanical model of
the skating technique may lead to a deeper understanding in research on muscle actuation
and energy consumption as well as on the stresses affecting bones. These findings could
in turn be integrated into the bone strain formulation model that is currently implemented
in the Laboratory of Machine Design of this University.

With the multibody dynamics model, new variants of the ski-skating technique can be
proposed to make it more physiologically efficient. Also, the impact that the technique can
have on the joints of the lower limbs of athletes can be assessed, and common injuries that
top competitive athletes may develop with the continued practice of this sport discipline
can be better studied.

This thesis presents a multibody dynamic formulation allowing for a broad set of config-
urations. It describes an explicitly formulated study of a three dimensional model of the
technique on a leveled plane without the use of poles. However, the actual model might
be used to study the different variants of the skating technique and even other similar
techniques, as the prescribed parameters needed as an input to the model can simulate the
natural movement of athletes.
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The author of this research work considers that the use of multibody dynamics to simulate
the skating technique will open new doors to a better understanding of the occurring
phenomena in the execution of the technique. If developed consistently, the model can
support athletes in obtaining maximum performance from individual capabilities.
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2 LITERATURE REVIEW IN CROSS COUNTRY SKI MODELING

In this section, one main topic will be considered. The presentation of the current ad-
vances in the area of multibody modeling of cross-country skiing, which will be covered
by means of a systematic literature review.

2.1 Methodology for performing a systematic literature review

Before one embarks on the development of a new model, it is important to know what
has been previously done regarding the specific subject of interest in order to analyze and
understand the different concepts and assumptions and to obtain a simplified version of a
dynamic model that can be used in the present work.

To collect a relevant set of documents on the subject, a systematic literature review must
be methodologically conducted, with the main objective of showing actual mathematical
model proposals of the skier performing the cross-country ski skating technique. To the
present knowledge of the author, it may be stated that this is one of the first reports of its
kind summarizing what can be found in the scientific databases regarding this particular
topic.

After the selection of the definitive studies to be reviewed, a comparison table was to be
made with the following points:

• The multibody dynamics approach used to model the skier, including the preferred
coordinate of systems, complexity of the formulation based on the number of bod-
ies, final form of the equation of motion, numerical resolution method, and fitting
of experimental coefficients, such as friction coefficients.

• The method or experimental procedure used to determine the value of the variables
contained in the equation of motion, including the type of equipment and instru-
mentation used to gather this data.

To accomplish this systematic review, the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) 2009 (Moher et al., 2009) was used, and its flow
diagram for systematic reviews and check list were followed (see figure 5).

To identify the articles relevant to this study, the electronic review was carried out with
the use of one report search engine and two databases. The first one of these resources
used was the scientific report search engine Nelli (National Electronic Library Interface),
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Figure 5. PRISMA 2009 Flow Diagram.

which is the national net library service used by all universities in Finland. This search
engine executes a systematic search on databases such as EBSCO, Elsevier, Springer, and
more than 21 others databases related to the scientific fields, and combines the possible
duplicated articles bias titles and authors’ recognition.

Secondly, the PubMed Database was used. This database contains studies related to the
bio-medical field, including important studies concerning the behavior and modeling of
the human body. Lastly, the International Society of Biomechanics in Sports (ISBS)
database was used. This database contains the reports of ISBS proceedings related to
the modeling of human body responses and the effect of diverse actions on the human
body via simulation, modeling, or on-site experimentation.
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The criteria for the literature review search were as follows:

• The language selected for the search of the scientific articles was English due to the
extensive number of global references and organizations that primarily use English
in their publications.

• The types of publications considered for the review were technical articles, confer-
ence papers, patents, or any other relevant documents resulting from the database
searches.

• The period of time for performing the search had no imposed restrictions either
in CPU time to accomplish the search or in the publication date of the retrieved
reports.

• The key words used in the search engines were “cross-country” AND “ski” AND
“skating” AND “model”.

For every result obtained, the abstract was preliminarily reviewed and then compared
among the different database results to detect duplicated documents. The references in-
cluded in the selected articles were also reviewed in order to take into account any missing
article as a result of the systematic search process. In the appendices, the number of sci-
entific articles by database at the time of the electronic review was populated in order to
obtain an actual reference of the number of references screened.

The scientific articles retrieved from the databases were sorted and relevance to the study
taken into account. Those articles with similar characteristics were carefully examined
to determine if the field of application complied with the requirements of the literature
review.

2.2 Results of the systematic literature review

The results of the electronic search carried out are shown schematically in figure 6. From
the Nelli Database search engine and in accordance with the search characteristics, 1311
studies were retrieved; from the PubMed Database, two were retrieved; and from the ISBS
Database, none was retrieved.

As can be seen in figure 6, no discussion or comparisons can be expressed from this
systematic literature review because it was impossible to find any study concerned with
the main topic of this thesis, at least from the databases consulted. This might mean that
studies conducted in this field are not published yet, are located in a different database
with special restrictions for the public audience, or are published in a language other than
English.
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Figure 6. Flow diagram of the literature selection process.

This result provides valuable information to researchers of this field: there is a great
opportunity to start developing models and validation methods to be applied to the skating
technique of cross-country skiing to multiple ends. Such models and validation methods
could create tools that can support further training methods, estimations of the impact
of this technique on the human body (especially for injured skiers), and development of
new equipment. This would allow a skate skier to take full advantage of all of the natural
movements that the body performs during the execution of this activity.
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3 CONSTRAINED MULTIBODY DYNAMICS THEORY

The definition of the type of formulation used to model a multibody system influences the
steps taken to develop and to implement the system in a computerized manner.

The study of constrained multibody systems began with Euler (1707 - 1783) and
D’Alembert (1717-1783). Their studies were based on earlier studies on linear motion
carried out by Newton and on Euler’s equations for rotational motion. A systematic anal-
ysis of constrained multibody systems was subsequently formulated and established by
Lagrange (1736 - 1813). Lagrange was the first to perform the derivation of the general-
ized equations of motion for multibody systems (Chaudhary et al., 2009, p. 3).

Because of the focus on the automatic generation of the equation of motion via the im-
plementation of specific and general computer codes, the most common lines of action
or methodologies used to develop the dynamics of mechanical systems are presented in
figure 7.

Figure 7. Basic types of formulation of the equation of motion (Chaudhary et al., 2009,
p. 4).
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Figure 7 shows that, depending on the purpose or information that the research team
wants to retrieve, one formulation type might be more suitable than another. In the case
of the development of the skate skier model, the information of interest for the team is the
influence of the execution of the technique on variables such as the speed of the skier.

Further useful information acquired for purposes other than to know how fast the skier
can travel is information related to the constraint forces of the ankle and knee of the skier.
Knowledge of these forces makes it possible to analyze their impact from a physiological
standpoint. This can be used as input for biomechanical studies related to the lower limb
or to the development of improved gears.

This study could be considered the first stage of more complex research work dedicated
to skiing as a high impact sport and to the improvement of the technique using multibody
dynamics.

The formulation used in the research is based on the Euler - Lagrange equations. This was
chosen because of its minimal form after proposing the model, its ease of implementation
into a computer code such as Matlab and Maple, its significant amount of qualified bibli-
ographic and electronic sources, and its application in the Laboratory of Machine Design
of the Lappeenranta University of Technology.

These equations will be constructed using a spatial set of three bodies to represent the
lower limb of the skier and the ski. The movement of the center of mass of the skier will
have the capability of being described in any of the coordinate axes, meaning that the
position and velocities of this point can be estimated and compared in a manner closer to
reality.

3.1 Definition of the Lagrange multipliers formulation

One consideration when the Lagrange multipliers approach is applied is the use of abso-
lute coordinates to describe the resultant different kinematic and dynamic vector quanti-
ties acting upon the bodies of the model supported by the use of local coordinate systems
to simplify the location of important study points.

As mentioned in the previous section, one of the advantages of the implementation of the
Lagrange multipliers approach is the simplicity of the method combined with the pos-
sibility of calculating accelerations simultaneously with the Lagrange multipliers terms.
However, certain considerations have to be made during the integration steps of the equa-
tion of motion.
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The first consideration to be made is related to the type of constraints that exist in the
model. Usually, it is possible to have joint or driving constraints. Joint constraints de-
fine the connectivity between the bodies, and driving constraints describe specific motion
patterns or trajectories that the point of the described body has to follow.

In the case of the present research, both types of constraints are present in the model,
meaning that during the integration steps, continuous functions describing the trajectory
of essential points and forces acting upon the body have to be fed. This transforms the
problem into a partially inverse dynamics problem.

The aforementioned task becomes a key issue in every modeling process involving an
inverse dynamics approach. Usually these data are taken from measurement instruments
which perform a discrete capture of values of the monitored variable and store them in a
specific way.

The discrete data have to be handled in such a way that a continuous function can be
found to fit the imported values. In addition to that, the data have to be smooth up to the
second derivative when the fitting refers to the position and orientation of objects. The
fitting process might be accomplished in several ways; however, in this work, the data
will be fitted by means of the use of Fourier series.

The second consideration to be taken into account is related to the way in which the
differential algebraic equations (DAEs) are integrated. Because of the fact that the DAEs
might be directly integrated without consideration of position and velocities constraints,
there is the possibility of drifting and violating these constraints during each integration
step. To avoid or minimize these deviations, some stabilization routines have been created
and must be included in the computer code designed for the skier model.

One of the most widely and simply used methods adopted and implemented in this work is
the Baumgarte stabilization method. Basically, the purpose of the Baumgarte stabilization
method is to replace the acceleration equation with a combination of acceleration, veloc-
ity, and position constrain equations, creating a more stable set of ordinary differential
equations (ODEs), (Cline, 2003, p. 4).

After including the stabilization method, this set of DAEs converted into ODEs can be
integrated using the Runge-Kutta numerical algorithm. This popular algorithm is found
as a built-in function in different symbolic and numerical mathematic software; therefore,
there is no need to develop a customized mathematical solution for the model.
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For constrained multibody systems, the equation of motion stated by the Lagrangian mul-
tipliers is based on equation (1).

Mq̈ + CT
q λ = Qe +Qv

Cqq̈ = Qd (1)

where M is the body mass matrix, q = [RT θT ] is the vector of body generalized co-
ordinates, Cq is the constraint Jacobian matrix, λ is the vector of Lagrange multipliers,
Qe is the vector of generalized forces, Qv is the quadratic velocity vector arising from
differentiating the kinetic energy with respect to time and with respect to the generalized
coordinates and Qd is the vector absorbing terms that are the partial derivatives of the
constraint equations.

Equation (1), may also be presented in matrix form which is the way in which the final
equation of motion of the model will be written. Refer to equation (2) for the matrix
representation.

[
M CT

q

Cq 0

][
q̈

λ

]
=

[
Qe +Qv

Qd

]
(2)

Following the stated Lagrangian formulation for the constrained multibody system, the
next chapter will be dedicated to defining each of the terms forming the equation of motion
as specifically applied to the skier model. The first term is the vector of generalized
coordinates.

3.2 Vector of generalized coordinates and its derivatives

As previously mentioned, the configuration of the multibody system in the Lagrangian
multipliers formulation will be described using the absolute Cartesian and orientation
coordinates. Therefore, the necessary information to define any point in the space is
needed in the form of a vector to formulate the equations of motions of the model.

The vector containing the set of variables to completely define the location and orientation
of a body is called the vector of generalized coordinates. Figure 8 shows the representa-
tion of a position vector of an arbitrary point of a body.
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Figure 8. Reference coordinates of the rigid body (Shabana, 1998, p. 11).

The position of the point p of the body b is completely defined by equation (3)

rbp = Rb +Ab ūb (3)

where rbp is the position vector of the point P with respect to the inertial frame of ref-
erence, Rb is the position vector of the origin of the body reference system, Ab is the
rotation matrix describing the orientation of the axes of the body reference system with
respect to the absolute reference system and ūb is the position vector of the point p with
respect to the origin of the body reference system.

The vector representing the origin of the body reference system might be written as in
equation (4)

Rb =
[
Rb

1 R
b
2 R

b
3

]T
(4)

Here, each one of the terms enclosed in the brackets represent the magnitud of the vectors
oriented along the coordinate axes X1, X2 and X3, respectively. This representation is
equivalent to the traditional X , Y and Z nomenclature, respectively.

The rotation matrixAb deserves special attention; this stems from the fact that this matrix
can be formulated employing different approaches which must be consistent during the
whole model development.
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Among the different approaches that might be used to specify the angular orientation of a
rigid body, the following may be mentioned:

• Direction cosines

• Bryan angles

• Euler parameters

• Rodriguez parameters

• Quaternions

The selection of the method is related to the field of application of the model. For example,
use of the direction cosines to describe the orientation of the body will lead to a matrix
of nine elements and an additional set of six constraints between these coordinates. In
complex models, it is often inconvenient to work with nine coordinates and six constraints
(Wittenburg, 2008, p. 9). Each method entails advantages and disadvantages.

In the case of modeling of the skate skier, the system selected to describe the angular
orientation of the body is the Euler angles. Its advantages and disadvantages will be
discussed in the next paragraphs.

A Euler angle may be defined as a degree of freedom (DOF) representing a rotation about
one of the coordinate axis (Grassia, 1998, p. 3). The angular orientation of the rigid
body can then be said to be the result of three successive rotations. The three axes used
to perform the rotations are not necessarily orthogonal (Shabana, 1998, p. 67), and these
successive rotations are performed in a defined sequence maintained during the entire
formulation of model.

In figure 9, two reference systems are presented. The first one is formed by the orthogonal
vectorsX1X2X3. The second system is formed by the orthogonal vectors ξ1ξ2ξ3, which
initially coincide.
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Figure 9. Description of the rotation about the z axis. (Shabana, 1998, p. 67).

If the system ξ1 ξ2 ξ3, is rotated by an angle ϕ located in the ξ1 ξ2, about the ξ3 axis, then
the result of this rotation can be written as in equation (5).

ξ = D1x (5)

where x represents the Cartesian coordinates on the plane of rotation andD1 is the trans-
formation matrix to be applied to describe the magnitudes of any vector of the ξ1 ξ2 ξ3
system inX1X2X3 system.

The matrix D1, is presented in equation (6). This procedure is then performed on the
other two remaining rotations to construct the final total rotation matrix (see equation
(7)). For its compact and extended representation, refer to equation (8).

D1 =

 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 (6)

A = D3D2D1 (7)

A =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1


 1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 (8)
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In equation (8), the angles ϕ, θ and ψ are the ones used to measure the rotations about the
selected axes.

A special characteristic of the use of the Euler angles is the specific sequence of the suc-
cessive rotations. The transformation matrix presented in equation (8) uses the sequence
(ZXZ) that indicates about which axes of the local reference system the rotations are
performed.

The advantages of the use of Euler angles are threefold: their reduced form of just three
coordinates to describe the orientation; their suitability for integrating ODE; and the ease
of computation of their derivatives, even though these functions are nonlinear.

The main disadvantage of the use of Euler angles is the possibility of “locking up the
system”. In the case of θ = nπ(n = 0,±1, . . .), the axis of the third rotation coincides
with the axis of the first rotation; thus, the angles ψ and ϕ cannot be distinguished. This
phenomenon is known as Gimbal lock.

If Gimbal lock occurs, this physically means that “there is a direction in which the mecha-
nism whose orientation is being controlled by the Euler rotation cannot respond to applied
forces and torques” (Grassia, 1998, p. 3).

However, the suitability of the use of Euler angles remains when two physically significant
directions exist and when the variations of the angle related to the second rotation keep
within the limits, thus avoiding Gimbal lock.

During the modeling of the skate skier, special care must be taken to fulfill the limits
related to the magnitude of the Euler angles in order to avoid any singularity during the
simulation process. This also can be accounted for by observing the natural movements
performed by the skier. It can be observed that in the skating technique, the amplitude of
the rotations of the lower limb is limited to values that will not produce the locking of the
system.

The next important parameter is the vector ū, which defines the position of a point with
respect to the absolute frame of reference. This vector represents the position vector in
the local reference system. It can be written by employing the local coordinate axes (see
equation (9)).

ū =
[
x̄p ȳp z̄p

]T
(9)

As seen from the previous components of the position vector written for the absolute ref-
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erence frame, some of those magnitudes are essential to defining positions, velocities,and
accelerations of points of the bodies or the bodies themselves.

This set of important variables is included in a vector previously mentioned as the vector
of generalized coordinates. It is presented in equation (10) along with its first and second
derivatives, shown in equations (12) and (13), respectively.

q =
[
q1 q2 . . . qi

]T
(10)

in which,

qi =
[
Ri

1 Ri
2 Ri

3 ϕi θi ψi
]T

(11)

where the terms Ri
j , with i = 1 . . . 3 (number of bodies in the model) and j = 1 . . . 3

(reference system axes x, y, z respectively) and the angles ϕi, θi and ψi are the Euler
angles used to form the transformation matrices to define the orientation of the body
reference systems, with respect the absolute reference system.

The derivatives of the vector of generalized coordinates are then presented in the next
equations.

q̇i =
[
Ṙi

1 Ṙi
2 Ṙi

3 ϕ̇i θ̇i ψ̇i
]T

(12)

q̈i =
[
R̈i

1 R̈i
2 R̈i

3 ϕ̈i θ̈i ψ̈i
]T

(13)

The following section presents another term of the Lagrange multipliers equation of mo-
tion, the Jacobian matrix of the system.

3.3 Constraints and Jacobian matrix of the system

Before formulating the Jacobian matrix, it is necessary for one to define the constraint
equations of the system. The constraint equations are the expressions that describe the
connectivity between the bodies of a system as well as the specified motion trajectories
that certain points follow (Shabana, 2001, p. 132).

18



Mathematically, one of the ways of formulating the constraint equations of a system is
presented in equation (14).

C(q1, q2, . . . , qn, t) = C(q, t) = 0 (14)

whereC = [ C1(q, t) C2(q, t) . . . Cn(q, t) ]T is the set of independent constraint equa-
tions, and n is the number of generalized coordinates.

The generalized coordinates and the constraint equations are related by the degrees of
freedom (DOF) of the system. This relationship can be expressed as DOF = n − nc,
where nc is the number of independent constraint equations.

From the previous relationship, other definitions may be derived for constrained multi-
body systems. If nc = n, then the system is a kinematically driven system; however, if
nc < n, then the system is a dynamically driven system.

An additional important classification to be considered concerning the constraints is their
dependency with time. If the constraint equations have the form presented in equation
(14), they are called holonomic constraints. If these constraints do not change with time,
they are called scleronomic constraints. Moreover, if the system is holonomic and time
appears explicitly as in equation (14), then the system is called rheonomic (Shabana, 1998,
p. 92). On the other hand, the constraints that cannot be written in the form of equation
(14) are called nonholonomic constraints. These constraints might have the simple form
presented in equation (15).

a0 +Bq̇ = 0 (15)

where a0 = a0(q, t) = [ a01 a02 . . . anc ]T , q̇ = [ q̇1 q̇2 . . . q̇n ]T is the vector of the
system generalized velocities andB is a matrix having the form

B =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

... . . . ...
bnc1 bnc2 · · · bncn

 = B (q, t) (16)

One important difference with respect to holonomic constraints is that nonholonomic con-
straints are unable to be integrated and written in terms of the generalized coordinates. In
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this research, holonomic constraints are classified and referred to as geometric constraints,
and nonoholonomic constraints are classified and referred to as kinematic constraints. The
two types of representations are shown in equations (17) and (18).

C (q, t) = 0 Holonomic Constraint (17)

C (q, q̇, t) = 0 Non-holonomic Constraint (18)

The identification of these two types of constraints during the definition phase of the
Jacobian matrix of the system is essential due to the additional procedures to be applied
when one integrates the equation of motion of the model.

If the vector of holonomic constraints if differentiated with respect to time, then the ve-
locity kinematic equations can be obtained. See equation (19).

d

dt
C (q, t) =

∂

∂q
C
d

dt
q +

d

dt
C

Cqq̈ = −Ct (19)

The term Cq results from differentiating the constraint equations with respect to the gen-
eralized coordinates. It is called the Jacobian matrix of the system. Ct is the vector of
partial derivatives of the constraint equations with respect to time (Garcia, 1994, 97). If
scleronomic constraint equations are being modeled, the term Ct becomes zero vector.

To begin to define the constraint equations of the system, firstly one must do a detailed
analysis of the body joints to determine the geometric constraints. Then, further analysis
is needed to formulate the driving constraints. Because of the previous statements made
in the initial assumptions, it may be foreseen that kinematic constraints will not appear in
the development of the model, facilitating the implementation of well-known integration
methods, such as the Runge - Kutta high-order integration routine.

3.4 Mass matrix of the system

In this section, the mass matrix of the model is formulated. To obtain its final form, it
is necessary to refer to the study of the generalized inertia forces affecting the system.
Generalized inertia forces are the forces derived from the effect of the linear and angular
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accelerations acting on a body with specific mass properties.

One of the methods used to develop the generalized inertia forces is the application of the
principle of virtual work to this type of acting forces. The first step is to determine the
virtual change in the absolute position of an arbitrary point on the rigid body, as previously
defined in equation (3). The virtual change of the position vector is provided in equation
(20) (Shabana, 1998, p. 149-150).

δri = δRi +Aiūiδ θ (20)

In the last equation, δri is the virtual change of the position vector of the point under
study, and δRi is the virtual change associated with the point origin of the body reference
system. The termAiūi may be written as

Aiūi = Ai
(
ω̄i × ūi

)
= −Ai ˜̄u

i
ω̄i (21)

Here, ω̄i is the body angular velocity vector, and ˜̄u
i is the skew symmetric matrix defined

by

˜̄u
i

=

 0 −xi3 xi2

xi3 0 −xi1
−xi2 xi1 0

 (22)

in which xi1, xi2 and xi3 are the components of the vector ūi.

Additionally, the angular velocity vector may be written as ω̄i = Ḡ
i
θ̇
i

, where Ḡi is a
matrix that depends on the selected rotational coordinates of body i, and θ̇

i
is the time

derivatives of the rotational coordinates of the body reference system.

To define the matrix Ḡi, it is necessary to study the formulation of the angular velocity in
the absolute and local reference system. Figure 10 shows a gyroscope which supports the
formulation of these angular velocities.

Next, the angular velocity of the rotor can be expressed as ω = φ̇k1 + θ̇ i2 + ψ̇ k3, where
k1 is a unit vector along the Z1 axis, i2 is a vector along the X2 axis, and k3 is a unit
vector along the Z3 axis. These vectors can be expressed in mathematical form as
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Figure 10. Gyroscope (Shabana, 2001, p. 468).

k1 =
[

0 0 1
]T

(23)

i1 =

 cosφ − sinφ 0

sinφ cosφ 0

0 0 1


 1

0

0

 =

 cosφ

sinφ

0

 (24)

k3 =

 cosφ − sinφ 0

sinφ cosφ 0

0 0 1


 1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 0

0

1

 =

 sinφ sin θ

− cosφ sin θ

cos θ

 (25)

Then, the angular velocity vector can be written as

ω = φ̇

 0

0

1

+ θ̇

 cosφ

sinφ

0

+ ψ̇

 sinφ sin θ

− cosφ sin θ

cos θ

 (26)

After operating, equation (26) can be written as
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ω =

 θ̇ cosφ+ ψ̇ sinφ sin θ

θ̇ sinφ− ψ̇ cosφ sin θ

φ̇+ ψ̇ cos θ

 =

 0 cosφ sinφ sin θ

0 sinφ − cosφ sin θ

1 0 cos θ


 φ̇

θ̇

ψ̇

 (27)

In its simplified form, equation (27) transforms into

ω = Gθ̇ (28)

in which θ̇ is the vector of the first derivatives of the Euler angles, and

G =

 0 cosφ sinφ sin θ

0 sinφ − cosφ sin θ

1 0 cos θ

 (29)

To define this matrix in the local coordinate system of the body, the following transfor-
mation has to be applied:

Ḡ = ATG (30)

resulting in

Ḡ =

 sin θ sinψ cosψ 0

sin θ cosψ − sinψ 0

cos θ 0 1

 (31)

Substituting the definitions given in equation (21) and (31) into equation (20) makes it
possible to obtain

δri = δRi −Ai ˜̄uiḠ
i
δθi (32)

This last expression may be written in a partitioned form as

δri =
[
I Ai ˜̄uiḠ

i
] [ δRi

δθi

]
(33)
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where I is a 3 × 3 identity matrix.

The virtual work of the inertia forces is

δW i
i =

∫
V i
ρir̈iTδridV i (34)

In equation (34), ρi and V i are the mass density and volume of the rigid body i, re-
spectively. The vector r̈iT represents the absolute linear acceleration of the point under
observation, and it is defined in equation (35).

r̈i =
[
I Ai ˜̄u

i
Ḡ
i
] [ R̈i

θ̈
i

]
+ aiv (35)

in which R̈
i

is the absolute acceleration of the origin of the body i reference system, θ̈
i

is
the double derivative with respect to time of the rotational coordinates, and aiv is a vector
absorbing terms which are quadratic in the velocities. This vector is defined as

aiv =
(
ω̃i
)2
ui − ũiĠi

θ̇
i

(36)

The term ω̃i is the skew symmetric matrix of ωidescribed by

ω̃i =

 0 −ω̄i3 ω̄i2

ω̄i3 0 −ω̄i1
−ω̄i2 ω̄i1 0

 (37)

where ω̄i1, ω̄
i
2 and ω̄i3 are the components of the vector ω̄i .

The substitution of equations (35) and (33) into equation (34) yields

δW i
i =

[
..

R
iT ..

θ
iT
]{∫

V i
ρi

{[
I

−ḠiT ˜̄u
iT
AiT

] [
I −Ai ˜̄u

i
Ḡ
i
]

+ai
T

v

[
I −Ai ˜̄u

i
Ḡ
i
]}

dV i
}[δRi

δθi

]
(38)
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which can be written as

δW i
i =

[
q̈i

T

M i −QiT

v

]
δqi (39)

The termM i is the symmetric stiffness mass matrix

M i =

∫
V i
ρi

[
I −Ai ˜̄u

i
Ḡ
i

symmetric Ḡ
iT ˜̄u

iT ˜̄u
i
Ḡ
i

]
dV i (40)

and QiT

v is the vector of inertia forces that absorbs the terms that are quadratic in the
velocities.

This symmetric mass matrix presented in equation (40) may be written in the form

M i =

[
mi

RR mi
Rθ

mi
θR mi

θθ

]
(41)

where

mi
RR = miI (42)

mi
Rθ = miT

θR = −Ai

[∫
V i
ρi ˜̄u

i
dV i

]
Ḡ
i (43)

and

mi
θθ = Ḡ

iT
Ī
i
θθḠ

i (44)

where mi is the total mass of the rigid body i, and Ī iθθ is a 3× 3 symmetric matrix called
the inertia tensor of the rigid body.

The inertia tensor of the rigid body may be formulated as

Ī
i
θθ =

∫
V i
ρi ˜̄u

iT ˜̄u
i
dV i (45)
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Ī
i
θθ =

 iixx iixy iixz

iiyy iiyz

symmetric iizz

 (46)

where the elements iixx, iiyy and iizz are called the moments of inertia and iixy, i
i
xz and iiyz

are called the products of inertia.

Constancy is an important characteristic of moments and products of inertia, because they
are defined in the local coordinate system. However, the term mi

θθ changes with respect
to time, as it depends on the orientation coordinates of the rigid body.

Further comments must be made regarding the term mi
Rθ. As this term is based on the

skew symmetric matrix ˜̄u
i, it can be concluded that if the origin of the body reference

system is attached to the center of mass of the body, then the skew matrix is a null matrix.

3.5 Vector of Lagrange multipliers

In constrained multibody systems, one may make a dynamic analysis without isolating
the bodies that form the system. This type of approach considering the system as a whole
is usually referred to as the embedding technique in multibody dynamics.

This embedding technique keeps the constraint forces apparently hidden in the formula-
tion of the equation of motion. However, to solve the vector of generalized accelerations
with the Lagrangian formulation, a second set of equations has to be introduced to account
for the constraint forces and to make the complete system of equations solvable.

The term Lagrange multipliers appears as a key factor in accounting for the constraint
forces. Both vectors, Lagrange and generalized accelerations, are used then to define the
vector of constraint forces.

To formulate the vector of Lagrange multipliers of the skate skier model, it is necessary
to derive the general procedure defining their values. In figure 11, two rigidly attached
bodies are presented as a system example. This would be restricted to the planar case that
can be applicable to the three dimensional case.

The vector of constraint equations of this system is presented in equation (47).
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Figure 11. System of two bodies rigidly attached to each other (Shabana, 2001, p. 324).

C =

[
Ri +Aiūip −Rj −Ajūjp

θi − θj

]
(47)

The first row of the matrix accounts for the non-relative translation of the two bodies
while the remaining one account for the non-relative rotation.

The Jacobian matrix of the two body system can be written in partitioned form as

C =
[
Ci
q Cj

q

]
(48)

Ci
q =

[
I Ai

θiū
i
p

0 1

]
(49)

Cj
q =

[
I Aj

θj
ūjp

0 1

]
(50)

where I is the 2 x 2 identity matrix, and Ai
θi and Aj

θj
are the partial derivatives of the

transformation matrices Ai and Aj with respect to the generalized rotational coordinates
θ related to each body.

If a free-body diagram (FBD) is made for the bodies of the system, then the constraint
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forces appear as part of the forces acting on the bodies. This FBD is depicted in figure 12.

Figure 12. Free-body diagram of the two-body system (Shabana, 2001, p. 325).

The joint forces are F =
[
F x F y

]T
and M is the moment.

If the forces and moments are collected in a vector called λ, the system may be defined
as

λ = −

[
F

M

]
(51)

The reaction forces acting on bodies i and j are equal in magnitude and opposite in direc-
tion, and may be expressed in vector form as

F i = −λ =

[
F

M

]
(52)

F j = λ = −

[
F

M

]
(53)

These reaction forces are said to be equipollent to other systems of generalized reaction
forces defined at the origin of the absolute coordinate system. The vector of generalized
reaction forces is presented in the next equations.

Qi
c =

[
F

M + (AiūiP × F ) · k

]
(54)

Qj
c =

[
F

M + (AjūjP × F ) · k

]
(55)
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where k is a unit vector along the z direction. Also, it can be demonstrated that the
relationship (AiūiP × F ) · k is equal to ūiTP A

iT

θ F . In the following part, these identities
will be developed.

(AiūiP × F ) · k (56)

AiūiP =

[
cos θi − sin θi

sin θi cos θi

][
ūipx

ūipy

]
=
[
ūipx cos θi − ūipy sin θi ūipx sin θi + ūipy cos θi

]
(57)

(AiūiP × F ) · k =

∣∣∣∣∣∣∣
i j k

ūipx cos θi − ūipy sin θi ūipx sin θi + ūipy cos θi 0

F i
x F i

y 0

∣∣∣∣∣∣∣ · k
= F i

y

(
ūipx cos θi − ūipy sin θi

)
− F i

x

(
ūipx sin θi + ūipy cos θi

)
(58)

The second part of the identity is

ūi
T

P A
iT

θ F (59)

ūi
T

P A
iT

θ =
[
ūipx ūipy

] [ − sin θi cos θi

− cos θi − sin θi

]
=
[
−ūipx sin θi − ūipy cos θi ūipx cos θi − ūipy sin θi

]
(60)

ūi
T

P A
iT

θ F =
[
−ūipx sin θi − ūipy cos θi ūipx cos θi − ūipy sin θi

] [ F i
x

F i
y

]
= F i

x

(
−ūipx sin θi − ūipy cos θi

)
+ F i

y

(
ūipx cos θi − ūipy sin θi

)
(61)
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It can be seen in equations (58) and (61) that the result is the same. Furthermore,

Qi
c =

[
F

M + (AiūiP × F ) · k

]
=

[
I 0

ūi
T

P A
iT

θ 1

] [
F

M

]
(62)

and

Qi
c =

[
I 0

ūi
T

P A
iT

θ 1

] [
F

M

]
= −CT

qiλ (63)

Qj
c =

[
I 0

ūj
T

P A
jT

θ 1

] [
F

M

]
= −CT

qjλ (64)

From the set of previous derivations of the generalized constraint forces, it can be seen that
the dimension of the vector of Lagrange multipliers λ equals the number of constraints
present in the system. In this case, the two bodies represented in the plane are rigidly
attached and produce three constraint equations, two restricting the relative translation
and one restraining the relative rotation, so the vector of Lagrange multipliers is a column
vector of dimension three.

λ =

 λ1

λ2

λ3

 (65)

where λ1, λ2 and λ3 are the Lagrange multipliers associated with each one of the con-
straints of the system.

In the case of a multibody system formed by more than two bodies, the generalized re-
action forces that appear due to the constraints imposed may be written as in equation
(66).

Qi
1 = − (C1)

T
qi λ1

Qi
2 = − (C2)

T
qi λ2

...
Qi
ni

= − (Cni)
T
qi λni

(66)
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in which Qi
1, Q

i
2 and Qi

ni
are the individual generalized constraint forces related to the

constraints in body i. C1, C2 and Cn are the constraints of body i, and λ1, λ2 and λn
are the corresponding Lagrange multipliers.

After the collection of the previous terms into one vector, the generalized constraint force
affecting the body can be formulated. See equation (67).

Qi
C = Qi

1 +Qi
2 + . . .+Qi

2

Qi
C = − (C1)

T
qi λ1 − (C2)

T
qi λ2 − . . .− (Cni)

T
qi λni (67)

Qi
C = −CT

qiλ

As the reaction force of the whole system is the sum of the individual generalized con-
straint forces acting on each body, this force affecting the system may be written as in
equation (68):

QC = −


CT

q1λ

CT
q2λ
...

CT
qnbλ

 = −CT
qλ (68)

where the Lagrange multipliers vector contains one term per each constraint imposed on
the system.

3.6 Vector of generalized forces

In order to introduce the concept of virtual forces associated with the generalized coor-
dinates, the principle of virtual work must be applied. This is to extract the term formed
during the formulation of this principle.

Figure 13 shows a force acting on the rigid body i.

Vector F i represents the force acting on the body. When one applies the principle of
virtual work to this vector, which is assumed to be defined in the global coordinate system,
the virtual work of this vector can be written as
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Figure 13. Force vector on body i (Shabana, 2001, p. 414).

δW i
e = F iT δ riP (69)

in which the vector riP , previously defined in equation (20), has the partitioned form

δri =
[
I −Ai ˜̄u

i
Ḡ
i
] [ δRi

δθi

]
(70)

Recalling the identities ũi = Ai ˜̄uiAiT and Ḡi
= AiTGi , the virtual change in the

position can be written as

Ai ˜̄u
i
(
AiTGi

)
= ũiGi (71)

δri =
[
I −ũiGi

] [ δRi

δθi

]
(72)

With the combination of equations (71) and (72), the virtual work can be written as

δW i
e =

[
F iT −F iT ũiGi

] [ δRi

δθi

]
(73)
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or,

δW i
e =

[
F iT

R F iT

θ

] [ δRi

δθi

]
(74)

where F iT

R = F iT and, F iT

θ = −GiT ũi
T

F i. These terms are known as the generalized
forces of the system, which in this specific example is formed by only one body.

Equation (74) may be physically interpreted in such a way that the force acting on an
arbitrary point of the rigid body i is equipollent to another system located in the origin of
the absolute reference system represented by the same force and the effect of that force
associated with the orientation of the body reference system (Shabana, 2001, p. 415).

An additional presentation of the term F iT

θ can be shown if the properties of the skew-
symmetric matrices are considered. If ũi = −ũiT , then

F iT

θ = GiT ũiF i

F iT

θ = GiT
(
ui × F i

)
(75)

where the term ui × F i is the Cartesian moment resulting from the application of the
force F i. If one calls this termM i = ui × F i, equation (75) can be written as

F iT

θ = GiTM i (76)

It is important to expand the procedure previously used to include the effects of different
forces acting on the different bodies of a multibody system. First, a case where several
forces and moments act on a body will be discussed.

Let us consider that on the rigid body the forces F 1, F 2, . . . , F nf act respectively on the
points whose position vectors are r1, r2, . . . , rnf and the set of momentsM 1,M 2, . . . ,
Mnm . The virtual work produced by these forces and moments is

δWe = F T
1 δr1 + F T

2 δr2 + · · ·+ F T
nfδrnf + (M 1 +M 2 + · · ·+Mnm)TGδθ (77)
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Let us now consider the moment caused by the forces acting on a point different from the
origin of the absolute reference system. The virtual work may be written as

δWe =
(
F T

1 + F T
2 + · · ·+ F T

nf

)
δR

−
(
F T

1 ũ1 + F T
2 ũ2 + · · ·+ F T

nf ũnf
)
Gδθ

+ (M 1 +M 2 + · · ·+Mnm)TGδθ (78)

The previous equation can be written as

δWe = (Qe)
T
R δR+ (Qe)

T
θ δθ (79)

in which the terms (Qe)R and (Qe)θ are

(Qe)R =

nf∑
j=1

F j (80)

(Qe)θ = GT

[
nm∑
k=1

M j +

nf∑
j=1

(uj × F j)

]
(81)

The vector of generalized forces for body i can be written as

Qi
e =

[ (
Qi
e

)
R

(
Qi
e

)
θ

]T
(82)

The total vector of generalized forces can be formed by concatenating the vectors repre-
senting the generalized forces of each body:

Qe =
[
Q1
e Q2

e . . . Qn
e

]T
(83)

3.7 Vector absorbing the terms that are quadratic in the velocities

The quadratic velocity vector appears as part of the formulation of the inertia forces gen-
erated by the rotation of the body. This vector was already introduced in equation (38),
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and it can be written in a simplified form as

Qi
v = −

∫
V i
ρi

[
I

−ḠiT ˜̄u
iT
AiT

]
aivdV

i (84)

From the previous sections, it was also defined that the vector aiv is equal to
(
ω̃i
)2
ui −

ũiĠ
i
θ̇
i
. However, it can be also written that

aiv = Ai
(

˜̄ω
i
)2
ūi −Ai ˜̄ui ˙̄Giθ̇

i
(85)

Then, the quadratic velocity vector, can be expressed as a combination of two compo-
nents,

Qi
v =

[ (
Qi
v

)
R(

Qi
v

)
θ

]
(86)

Where each one of the terms is

(
Qi
v

)
R

= −Ai

∫
V i
ρi
[(

˜̄ω
i
)2
ūi − ˜̄u

i ˙̄G
i
θ̇
i
]
dV i (87)

(
Qi
v

)
θ

= Ḡ
iT
∫
V i
ρi
[

˜̄u
iT
(

˜̄ω
i
)2
ūi − ˜̄u

iT ˜̄u
i ˙̄G

i
θ̇
i
]
dV i (88)

Furthermore, these vectors can be written as follows

(
Qi
v

)
R

= −Ai
(

˜̄ω
i
)2[∫

V i
ρiūidV i

]
+Ai

[∫
V i
ρi ˜̄u

i
dV i

]
˙̄Giθ̇

i
(89)

(
Qi
v

)
θ

= Ḡ
iT
[∫

V i
ρi ˜̄u

iT
(

˜̄ω
i
)2
ūidV i

]
− ḠiT

Ī
i
θθ

˙̄Giθ̇
i

= Ḡ
iT
[
ω̄i ×

(
Ī
i
θθω̄

i
)

+ Ī
i
θθ

˙̄G
i
θ̇
i
]

(90)

It must be mentioned that in the case where the body coordinate system is attached to
the center of mass of the body, an important simplification can be made. The terms
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∫
V i
ρiūidV i and

∫
V i
ρi ˜̄u

i
dV i are null, certifying a characteristic already mentioned in the

formulation of the inertial forces:

mi
Rθ = 0, mi

θR = 0 and
(
Qi
v

)
R

= 0 (91)

Similarly to the case of the generalized forces, the quadratic velocity vector for a multi-
body system can be written as

Qv =
[
Q1
v Q2

v . . . Qn
v

]T
(92)

3.8 Generation of an additional equation to convert DAEs into ODEs in the La-
grange formulation and its stabilization methods

One of the techniques used to solve a set of differential algebraic equations is to convert
them into a set of ordinary differential equations. This is accomplished by appending
the second derivative with respect to time of the constraint equations (Flores et al., 2009,
p. 306), to transform the equation of motion into an index-1 system of ODEs (Soellner,
2008, p. 53). During the process of integration of the equation of motion, it is possible
to violate the geometrical constraints postulated for the model. This stems from the fact
that during the derivation of the constraint equations, some magnitudes not dependent on
time, such as length or angles, are lost, causing the bounds to be eliminated. The physical
consequence of this effect is that the bodies ruled by these constraints might move away
from or closer to each other without any control during the simulation process.

Several methods have been formulated in order to limit the violation of the constraints
imposed. These methods include the following:

• Baumgarte stabilization method

• Integration of mixed systems of differential and algebraic equations

• Geometric projection stabilization approach

• Penalty-based stabilization techniques

The method used in the development of the model will be the Baumgarte stabilization
method, which has been widely used and studied (Bauchau, 2010, p. 3).

To begin with the description of the transformation equation, it is necessary to recall the
mathematical description of the constraint equations. This is shown in the next equation:
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C (q, t) = 0 (93)

When one derives equation (93) with respect to time twice, the following is obtained.

The first derivative is

d

dt
C (q, t) =

δC (q, t)

δq

dq

dt
+
dC (q, t)

dt
= 0 (94)

Cqq̇ +Ct = 0

Cqq̇ = −Ct (95)

The second derivative is

d

dt
(Cqq̇ +Ct) =

dCqq̇

dt
+
dCt

dt
(96)

Cqq̈ + (Cqq̇)qq̇ + 2Cqtq̇ +Ctt = 0

Cqq̈ = −Ctt − (Cqq̇)qq̇ − 2Cqtq̇ (97)

The last equation might be expressed in matrix form as a complement of the complete
Lagrange equation:

[
Cq 0

] [ q̈
λ

]
= Qd (98)

whereQd is equal to −Ctt − (Cqq̇)qq̇ − 2Cqtq̇.

The Baumgarte stabilization method proposes that the constraints be kept slightly violated
before the correction actions can be effectively applied.

The application of the stabilization method consists of the substitution of equation (97)
with the following relationship:
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C̈ = Cqq̈ −Qd

C̈ + 2αĊ + (β)2C = 0
(99)

where α > 0 and β 6= 0 are the parameters of the stabilization method.

Equation (99) might be written in the form

C̈ = Cqq̈ −Qd

Cqq̈ = Qd − 2α (Cqq̇ +Ct)− (β)2C
(100)

Then, the equation of motion that includes the Baumgarte stabilization method can be
written in a general form:

[
M CT

q

Cq 0

] [
q̈

λ

]
=

[
Qe +Qv

Qd − 2α (Cqq̇ +Ct)− (β)2C

]
(101)

The selection methods of the values of the Baumgarte parameters have been studied
widely, and there is no specific correct postulate to be used as a general guideline.

In this research, some experimental consideration will be made during the simulation of
the skate skier. The following instructions will also be taken into account: both initial
parameter values are positive and acquire the form

α =
1

h
and β =

√
2

h

where h is the time step chosen from the integration process (Flores et al., 2009, p. 306).
Further variation to these values will be introduced to manually optimize the fulfillment
of the constraint, but a large emphasis on the study of these parameters will not be made.

3.9 Application of Fourier series to fit discrete data

In the implementation of the ski-modeling process, forward dynamics will be used to
obtain the response of the center of mass of the skier as a function of the forces exerted
by the leg in each stride.

In order to use the discrete data generated from the measurement instruments, it is first
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necessary to transform the data into continuous functions, with the purpose of making
them smooth (up to the second derivative in the case of position data of body markers).

The procedure employed to achieve this is based on the use of the Fourier series, in which
the set of data will be fitted by the application of equation (102).

y (θ) = a0 +
m∑
k=1

(ak sin (kθ) + bkcos(kθ)) (102)

with

a0 =

∑n
i=1 yi
n

ak =
2
∑n

i=1 yisin(kθi)

n

bk =
2
∑n

i=1 yicos(kθi)

n

In the Fourier expansion, n is the quantity of pairs of data gathered; m is the total number
of Fourier coefficients employed to perform the fitting; a0, ak and bk are the Fourier series
coefficients; y is the expected value of the unknown; and θ is the known variable usually
referred to as the time step size of the capture process. These last two terms combine to
form the set (y1, θ1), (y2, θ2), . . ., (yn, θn).

To have an idea of how good the fitted function is, the Pearson correlation coefficient rxy is
calculated in the way specified in equation (103). The closer the result of this coefficient
is to the value of one indicates that the function used to calculate the expected values
might be used to explain the behavior of the captured data.

rxy =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2i − (

∑
xi)

2
√
n
∑
y2i − (

∑
yi)

2
(103)
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4 FORMULATION OF EQUATION OF MOTION OF THE SKIER MODEL

In the development of a model of the skating technique, it is necessary to know and depict
the coordination pattern of the characteristic movement that an athlete performs during
the execution of the physical activity. One can make this description taking into account
that this technique is similar to the one used in ice skating, in which the skater generates
the forces by pushing in a sideward direction (Fintelman et al., 2011).

4.1 Description of the phases and key variables of the skating technique

The technique stroke may be divided into three basic phases: the glide, push-off and
reposition phase (Fintelman et al., 2011) (see figure 14). During the glide phase, the
whole body acquires translational movement while is supported over one leg. In the
push-off phase, the ski moves sideward and, due to the grip and penetration of the ski in
the snow, the skier generates the necessary force to produce translation movement of the
whole body. In the reposition phase, the leg is retracted and prepares for the next cycle.

Figure 14. Different phases of a stroke in skating technique of cross-country skiing
(Rusko, 2003, p. 47).

Moreover, some other physics variables have to be considered in addition to the ones
applied to skating. These include friction, drag, gravity, force, mass, and velocity, and are
further discussed below.

Friction: The cross-country style skier has a close relationship with the friction produced
between the ski and the snow. Three cases of friction can be differentiated in cross-country
skiing. When the skier is going downhill, the less the friction, the higher the speed and
farther the distance achieved with less effort. However, when moving on a leveled plane
or especially when making uphill progress, the skier needs the friction so that the skis can
grip the snow, allowing the skier to push up and move the other ski forward.

Drag: Also called wind resistance, drag is produced by the rearrangement of the air
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molecules located in front of the moving direction of the skier when the skier translates
from one place to another. The effect of drag is basically seen in the speed of the skier.
The higher the drag is, the more reduced the speed is.

Gravity: The effect of gravity is that of pulling bodies down to the ground. However, in
skiing, gravity is not sufficient in itself to pull a skier downhill. This is due to the presence
of friction in the ski - snow contact surface.

Force: The force generated in cross-country skiing may be produced in at least two ways.
First, force is produced by the legs of the skier pushing the skis towards the snow; second,
force is produced by the skier’s use of poles.

Mass: The fact that the friction force generated by the skier is dependent on the mass of
the person has introduced the use of external substances (such as waxes) into the sport to
reduce the friction coefficient. Through the controlling of this coefficient, it is possible to
level the playing field with regards to the influence of body weight in competitions.

Velocity: This parameter is affected by the frequency, length, and force of the stride
(Duoos-Asche, 1984).

Next, some analysis of the key aspects of modeling is presented to reduce and constrain
the complexity of the model. In table 1 below, a comparison of many points between
a speed skating model (Fintelman et al., 2011) and a cross-country skate-skiing instruc-
tional video is presented.

Lastly, the selection of the methodology to formulate and find the solution for the equation
of motion of the model will dictate its complexity, the relevant data needed as an input,
and the results that can be acquired from it.

4.2 Description of the model of the skier

In order to begin the formulation of the model, it is necessary to postulate some assump-
tions which simplify the number of variables and phenomena to be taken into account.

Firstly, as observed in the instructional video and in the study made to model the speed
skater, it can be seen that the consideration of the relative motions of the upper body
with respect to the lower extremities in this first stage is irrelevant. It has been said that
the upper body helps to balance the body of the athlete; however, its influence in the
kinematical parameters of the movement is not yet clear. What is important to keep in
mind is the effect of the position of the upper body when the air drag increases or when it
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Table 1. Initial considerations for the development of the model

AREA
SKATING TECHNIQUES VIDEO

(The Nordic Ski Project, 2006)

A SIMPLE 2-DIMENSIONAL MODEL OF
SPEED SKATING WHICH MIMICS OB-
SERVED FORCES AND MOTIONS (Fintelman
et al., 2011)

Ski-snow / skate-ice
contact

There is no lateral slip. The ski edges are at
the end of the glide to avoid slipping. There is no lateral slip of the skate on the ice.

Level of the plane

The technique changes according to the
steepness of the plane. Basically, the skat-
ing angles, the stride rate and the length of
the glide are adjusted.

The travel is considered to be done on a leveled plane.

Direction of travel of
the skies / skates

The skis travel in a straight line. The skates travel in straight line.

Movement of the arms
The movement of the arms is neglected.
They are used just to control the balance of
the skier.

The movement of the arms is neglected.

Vertical motion of the
center of mass of the
skier

The vertical motion of the skier is not men-
tioned as an important parameter. It is men-
tioned that it is better to lower the center of
gravity to gain a larger push-off force. The
vertical movement follows the physiological
pattern of the skier. During steep hills it is
better to keep a constant height.

The vertical motion of the skater is neglected

Coefficient of friction This value is found experimentally

Push-off force
This depends of the positioning of the body
weight. The weight of the skier determines
in part the push-off force.

The ground reaction force is due to the non- holo-
nomic constraint of the skate.

Other remarks specifi-
cally mentioned in the
reports

- The movement starts from the center line
of the travel.
- The normal skating angle should be about
45 degrees. In the video it is visible that the
angle is not 45 degrees.
- One should minimize body twisting. The
body should face the direction of the travel.
- It is important to maintain the symmetry of
the movement in each side.
- The glide and push off are combined.

has to be considered as an opposing force to the movement of the skier.

An additional issue of the exclusion of the upper body from consideration is that the poles
are not part of the model. This reduces the force-adding effect that the skier can use to
increase velocity during the race.

Secondly, the model has to include the natural movement that the leg performs during
the execution of the technique without modeling it exactly. To accomplish this, the lower
body of the skier is modeled as a system formed by three bodies: one body that represents
the ski, a second body that represents the lower part of the leg and the third body that
represents the thigh.

Thirdly, the joint between the bodies is modeled as follows. The knee joint is modeled
as a prismatic joint in order to reduce the input parameters needed to describe it without
losing the generality of the movement. The joint between the lower leg and the ski is
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modeled as a spherical joint resembling the movement of the human ankle. The joint
between the ski and the ground will have five restrictions, allowing only the displacement
of the ski on a straight path and on a leveled plane.

Lastly, instead of the use of a non-holonomic constraint to define the straight traveling of
the ski, a simple holonomic constraint will be formulated to reduce the form in which the
equation of motion is handled.

The model of the skier is depicted in figure 15 according to the previously mentioned
assumptions.

Figure 15. Description of the multibody model of the skier.

Now it is possible to start defining each one of the terms that conform to the equation of
motion of the skier. These terms are formulated following the same order stated in chapter
two. The first term formulated in the next section is the vector of generalized coordinates.

4.3 Vector of generalized coordinates of the skier model

In figure 16, the position and orientations of the body reference systems are indicated in
order to formulate the position vector and their derived quantities.

As expressed in equation (10), the vector of generalized coordinates and its derivatives
with respect to time of the skier model comprised of three bodies has the following form.

q =
[
q1 q2 q3

]T
(104)
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Figure 16. Positioning and orientation of the body reference systems.

q̇ =
[
q̇1 q̇2 q̇3

]T
(105)

q̈ =
[
q̈1 q̈2 q̈3

]T
(106)

Equation (104) and its first and second derivative with respect to time are shown next in
expanded form.

q1 =
[
R1

1 R1
2 R1

3 ϕ1 θ1 ψ1
]T

q2 =
[
R2

1 R2
2 R2

3 ϕ2 θ2 ψ2
]T

(107)

q3 =
[
R3

1 R3
2 R3

3 ϕ3 θ3 ψ3
]T

Here are the first derivatives with respect to time:

q̇1 =
[
Ṙ1

1 Ṙ1
2 Ṙ1

3 ϕ̇1 θ̇1 ψ̇1
]T

q̇2 =
[
Ṙ2

1 Ṙ2
2 Ṙ2

3 ϕ̇2 θ̇2 ψ̇2
]T

(108)
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q̇3 =
[
Ṙ3

1 Ṙ3
2 Ṙ3

3 ϕ̇3 θ̇3 ψ̇3
]T

And finally, here are the second derivatives with respect to time.

q̈1 =
[
R̈1

1 R̈1
2 R̈1

3 ϕ̈1 θ̈1 ψ̈1
]T

q̈2 =
[
R̈2

1 R̈2
2 R̈2

3 ϕ̈2 θ̈2 ψ̈2
]T

(109)

q̈3 =
[
R̈3

1 R̈3
2 R̈3

3 ϕ̈3 θ̈3 ψ̈3
]T

4.4 Constraints and Jacobian matrix of the skier model

The constraint equations of the multibody system must be defined. First, a detailed anal-
ysis of the body joints is made to determine the geometric constraints. Then, further anal-
ysis is needed to formulate the driving constraints. Because of the previous statements
made in the initial assumptions, it may be foreseen that kinematic constraints will not
appear in the development of the model, facilitating the implementation of well-known
integration methods, such as the Runge - Kutta high-order integration routine.

The first joint to be analyzed will be the ski - ground joint. The ski is considered as
the first body of the system. The following facts will be taken into account during the
formulation of the geometric restrictions:

• The ski travels on a leveled plane.

• The direction of the travel of the ski does not change with respect to time.

• The orientation of the body reference system does not change during the active
phase of the ski.

For use as a reference, the definition of the ground constraints is expressed in equation
(110) (Shabana, 2001, p. 136).

qGround − c = 0 (110)

Equation (110) might be interpreted as the invariance of the body reference system with
respect to a set of constant initial values. The first resultant constraint equation represent-
ing the constant position level of the ski on the z axis is written in equation (111).
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C1 = R1
3 − c13 = 0 (111)

where c13, is the initial value of the body reference system origin on the z axis.

The assumed fact that the ski travels following a line orientated ϕ1 degrees from the global
X axis, provides the necessary information to formulate the second constraint. Figure 17
shows a graphical representation of the previous statement.

Figure 17. Geometry of the active phase of the ski.

The relationship between the x and y components of the origin of the body reference
system may be completely described by the tangent trigonometric function.

tanϕ1 =
R1

2

R1
1

C2 = R1
1 sinϕ1 −R1

2 cosϕ1 = 0 (112)

To represent the constant orientation of the body one reference system, the approach used
to formulate the constraint equation C1 is used.

As the Euler angles representing the orientation at any moment of the body reference
system do not change during the active phase of the ski, it may be said that the difference
of the value of these angles with respect to a set of constant values (cϕ1 , cθ1 , cψ1) does
not change. These constraints are presented in equations (113) to (115).
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C3 = ϕ1 − cϕ1 = 0 (113)

C4 = θ1 − cθ1 = 0 (114)

C5 = ψ1 − cψ1 = 0 (115)

In constraint equations C4 and C5, the value of the constants used for this model is zero
due to the condition of traveling on a leveled plane. In the remaining C3 equation, the
angle φ1 describes one of the most important parameters in the execution of the technique.

The values that this angle may acquire range from 0 to approximately 70 degrees. These
values are mainly influenced by the steepness of the plane and the stride rate that the skier
would need to apply to gain more velocity. For example, in steeper planes, the use of
angles near 70 degrees would help the skier to overcome the lack of friction in pushing
forward.

The second joint to be described is the spherical joint formed by the ski and second body.
To define the constraint equations of this joint, figure 18 will be used as a visual aid in the
development of the restrictions.

When one analyzes the relative degrees of freedom that the spherical constraint allows
between the two bodies, it can be concluded that because of the configuration of the
joint, only the relative translation is constrained, leaving only three degrees of freedom of
relative rotation (Korkealaakso, 2009, p. 33,39).

The necessary condition to be fulfilled in the spherical joint is that two points, P 1 and
P 2 on bodies 1 and 2 respectively, coincide throughout the whole motion. This condition
may be written as

C(q1, q2) = r1P − r2P = 0 (116)

When one applies equation (116) to the present case, then the constraint equation may be
re-written as

C(q1, q2) = R1 +A1ū1
P −R2 −A2ū2

P = 0 (117)
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Figure 18. Geometry of a spherical joint in three-dimensions.

As equation (117) is a vector equation based on the generalized coordinates referring
to the position of the point P , it leads to a set of three scalar equations related to the
restriction of relative translation in three dimensions.

Substituting each one of the terms in equation (117) with their respective symbolic value
related to the skier model, it is possible to formulate the constraint equations that will
completely define this joint. In equation (118), a matrix representation of the constraint
equations of the spherical joint is presented followed by the formulation of the scalar
equations derived from it.

 C6

C7

C8

 =

 R1
1

R1
2

R1
3

+

 A1
11 A1

12 A1
13

A1
21 A1

22 A1
23

A1
31 A1

32 A1
33


 r̄1P1

r̄1P2

r̄1P3



−

 R2
1

R2
2

R2
3

−
 A2

11 A2
12 A2

13

A2
21 A2

22 A2
23

A2
31 A2

32 A2
33


 r̄2P1

r̄2P2

r̄2P3

 (118)

The terms inside the transformation matrices are abbreviated according to their positions
on the matrix. This simplification is made in order to limit the size of the formulas to the
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workspace of the report and to facilitate the interpretation and reading of them.

The transformation matrix and the position vector of the point in the local coordinate
system are calculated as presented previously in equations (8) and (3). Then, in order to
fully describe the constraint equations for the spherical joint of the model, it is necessary
to determine the specific data related to the origins of the body reference systems and the
location of the spherical joint.

The origin of the body reference system of body 1 is located in the center of the ski, and
it coincides with the position of the joint. The origin of the body reference system of the
second body is located in the middle of the segment representing this body. In accordance
with this, the following relationships may be established:

r1P =

 R1
1

R1
2

R1
3

+

 A1
11 A1

12 A1
13

A1
21 A1

22 A1
23

A1
31 A1

32 A1
33


 0

0

0

 =

 R1
1

R1
2

R1
3

 (119)

r2P =

 R2
1

R2
2

R2
3

+

 A2
11 A2

12 A2
13

A2
21 A2

22 A2
23

A2
31 A2

32 A2
33


 0

0

l1

 =

 R2
1

R2
2

R2
3

+

 l1A
2
13

l1A
2
23

l1A
2
33

 (120)

where l1 is the distance from the origin of the reference system of the second body to
the joint measured about the Z2 local axis. Equation (121) shows the construction of the
constraint equations.

 C6

C7

C8

 =

 R1
1

R1
2

R1
3

−
 R2

1

R2
2

R2
3

−
 l1A

2
13

l1A
2
23

l1A
2
33

 (121)

C6 = R1
1 −R2

1 − l1A2
13 (122)

C7 = R1
2 −R2

2 − l1A2
23 (123)

C8 = R1
3 −R2

3 − l1A2
33 (124)

The last joint to be described is the prismatic joint present between the second and third
body. Figure 19 shows the configuration used to formulate the constraint equations.

A prismatic joint in three dimensions has one DOF and five relative movement restrictions

49



Figure 19. Considerations in the development of the constraint equations of the
prismatic joint.

comprised of two translations and three rotations. The use of this joint in the model is
convenient for describing the vertical motion of the center of mass of the skier. Indeed,
this effect has not been considered in an analogous research project carried out for the
speed skater, but it is a very important consideration because of the close relationship
with the force exerted by the skier during the push off phase.

The five constraint equations that arise from this joint are based on the following assump-
tions:

• The vectors r23 and r33 are parallel and they are aligned.

• There is no relative orientation change between the two bodies.

To express these considerations in a mathematical form, the properties of the cross and
scalar product of the vector will be used.

To specify the parallelism of these two vectors, let us refer to figure 20 to formulate this
condition.

Two vectors are said to be parallel if the result of their cross product is the zero vector.
This is written in equation (125) in its traditional representation.
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Figure 20. Perpendiculars and parallel vectors (Shabana, 2001, p.51).

ai × aj = 0 (125)

When this vector equation is calculated, three scalar equations appear. Two of these
equations are dependent, but the identification of these is a task requiring some additional
steps that will not be introduced in this work. In order to avoid the additional process,
another approach to set the condition of parallelism is used.

The new approach leads to two scalar equations which automatically neglect the third
dependent equation, thus resulting in no need for further analysis. Equation (126) shows
the parallelism of two vectors using the dot product.

When one applies the dot product to demonstrate the parallelism condition, it is necessary
to make use of additional construction vectors. These vectors are constructed perpendic-
ular to the vectors to be proven in the mentioned condition. Refer to vectors ai1 and ai2 in
figure 20.

aiT1 a
j = 0

aiT2 a
j = 0

(126)

Given that vectors ai1 and ai2 are by definition constructed perpendicular to the body vec-
tor ai, the fulfillment of the conditions presented in equation (126) is enough to guarantee
the parallelism condition between ai and aj .
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As mentioned in the assumptions to formulate the prismatic joint in three dimensions, the
vectors to be proven parallels in the model are r23 and r33. These vectors are defined in
bodies two and three respectively and are aligned with the local Z axis of each body.

The perpendicular construction vectors will be taken from the unit vectors aligned with
the second body local axisX2 and Y 2.

The definition of the first two constraint equations related to this joint starts with the
formulation of the body and construction vectors. Equation (127) shows the vector related
to the second body.

r23 = R2 +A2r̄2z −R2

r23 =

 A2
11 A2

12 A2
13

A2
21 A2

22 A2
23

A2
31 A2

32 A2
33


 0

0

1



r23 =

A
2
13

A2
23

A2
33

 (127)

where r23 is the vector related to the second body, A2 is the transformation matrix of the
second body coordinate system, and r2z is the unit local vector aligned with the local Z2

axis.

In a similar form, equation (128) shows the vector related to the third body.

r33 = R3 +A3r̄3z −R3

r33 =

 A3
11 A3

12 A3
13

A3
21 A3

22 A3
23

A3
31 A3

32 A3
33


 0

0

1



r33 =

A
3
13

A3
23

A3
33

 (128)
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where r33 is the vector related to the second body, A3 is the transformation matrix of the
third body coordinate system, and r3z is the unit local vector aligned with the local Z3

axis.

In equations (129) and (131), the perpendicular vectors are used to apply the second
approach to demonstrate the parallelism condition. One can do this by using the properties
of the scalar product of two vectors.

r21 = R2 +A2r̄2x −R2

r21 =

 A2
11 A2

12 A2
13

A2
21 A2

22 A2
23

A2
31 A2

32 A2
33


 1

0

0



r21 =

 A2
11

A2
21

A2
31

 (129)

where r21 is a perpendicular construction vector related to the second body and r̄2x is the
unit local vector aligned with the localX2 axis.

r22 = R2 +A2r̄2y −R2 (130)

r22 =

 A2
11 A2

12 A2
13

A2
21 A2

22 A2
23

A2
31 A2

32 A2
33


 0

1

0



r22 =

 A2
12

A2
22

A2
32

 (131)

in which r22 is a perpendicular construction vector related to the second body and r̄2y is
the unit local vector aligned with the local Y 2 axis.

With the application of equation (126) to the specific conditions of the model, the follow-
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ing relationships may be written.

r2T1 r
3
3 =

[
A2

11 A2
21 A2

31

] A3
13

A3
23

A3
33

 = 0 (132)

r2T2 r
3
3 =

[
A2

12 A2
22 A2

32

]  A3
13

A3
23

A3
33

 = 0 (133)

In equations (132) and (133), the results of the matrix multiplication for each case are
presented. These equations become constraint equations C9 and C10, representing the
parallelism condition of the two body vectors positioned in the second and third body.

C9 = r2T1 r
3
3

C9 = A2
11A

3
13 + A2

21A
3
23 + A2

31A
3
33 = 0

(134)

C10 = r2T2 r
3
3

C10 = A2
12A

3
13 + A2

22A
3
23 + A2

32A
3
33 = 0

(135)

The second condition to be considered when one formulates the geometric constraints of
this joint is the expression related to the alignment of the vectors r23 and r33. In order to
achieve this, the conditions of parallelism are inspected on a vector formed by two points,
one from each body vector. If the conditions of parallelism are fulfilled, it means that the
two body vectors are aligned. Figure 21 depicts the construction of the vectors to prove
the alignment of the body vectors.

Because the origins of the local reference systems are used to formulate the body vectors
to describe the joint, these two points are employed to form the vector to support the
inspection of the alignment between r23 and r33.

rAlig = R2 −R3
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Figure 21. Visual representation of the vectors used to prove the alignment of the body
vectors.

rAlig =

 R2
1

R2
2

R2
3

−
 R3

1

R3
2

R3
3

 =

 R2
1 −R3

1

R2
2 −R3

2

R2
3 −R3

3

 (136)

With the application of the conditions of parallelism to vector rAlig, the following expres-
sions and equations are presented.

C11 = r2T1 rAlig =
[
A2

11 A2
21 A2

31

]  R2
1 −R3

1

R2
2 −R3

2

R2
3 −R3

3

 (137)

C11 = A2
11

(
R2

1 −R3
1

)
+ A2

21

(
R2

2 −R3
2

)
+ A2

31

(
R2

3 −R3
3

)
= 0 (138)

C12 = r2T2 rAlig =
[
A2

12 A2
22 A2

32

]  R2
1 −R3

1

R2
2 −R3

2

R2
3 −R3

3

 (139)

C12 = A2
12

(
R2

1 −R3
1

)
+ A2

22

(
R2

2 −R3
2

)
+ A2

32

(
R2

3 −R3
3

)
= 0 (140)
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The condition of no relative rotation between the bodies is the last condition to finally
define the constraints that this joint generates. To postulate this condition, an additional
vector r31 has to be constructed perpendicular to the body vector on the third body. This
vector is shown previously in figure 21.

r31 = R3 +A3r̄3x −R3

In the last expression, r̄3x is the unit local vector aligned with the local x axis.

r31 =

 A3
11 A3

12 A3
13

A3
21 A3

22 A3
23

A3
31 A3

32 A3
33


 1

0

0



r31 =

 A3
11

A3
21

A3
31

 (141)

The non-relative rotation condition is guaranteed if the previous vector stays perpendicu-
lar to the vector r22 of the second body. In mathematical notation, this condition may be
written in the form presented in equation (142).

C13 = r2T2 r
3
1 =

[
A2

12 A2
22 A2

32

]  A3
11

A3
21

A3
31


C13 = A2

12A
3
11 + A2

22A
3
21 + A2

32A
3
31 = 0

(142)

Up to this point, the model contains 18 (generalized coordinates) −13 (constraints) =

5 degrees of freedom. It is necessary to specify additional constraints controlling the
physiological parameters of leg extension and range of angles.

To restrict the extension of the leg during the active phase, the following length constraint
is imposed. See figure 22 for an adequate interpretation of this constraint.

This geometric constraint may be written in terms of the position of the origin of the local
reference system located in the third and first bodies (see figure 23).
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Figure 22. Constraint of the leg extension imposed in the model.

Figure 23. Formulation of the leg extension.

lex (t) = |R3 −R1|

lex (t) =

∣∣∣∣∣∣∣
 R3

1

R3
2

R3
3

−
 R1

1

R1
2

R1
3


∣∣∣∣∣∣∣ =

√
(R3

1 −R1
1)

2
+ (R3

2 −R1
2)

2
+ (R3

3 −R1
3)

2

(143)

57



Then, the constraint equation that represents the desire leg extension may be written as

C14 =

√
(R3

1 −R1
1)

2
+ (R3

2 −R1
2)

2
+ (R3

3 −R1
3)

2 − lex (t) = 0 (144)

The next constraints to be imposed are those related to the angles that the leg covers while
performing the movement during the active phase. This task can be achieved by using
different approaches, one of which is constraint of the relative orientation of the second
and first body with respect to each other.

In this particular case, one can impose the constraints by formulating the trajectory of the
origin of the local reference system of the second body. Figure 24 shows the description
of this constraint.

Figure 24. Constraint movement of the origin of the local reference system of the second
body.

This condition imposes three additional constraints to the model. These are shown in the
next equations.

C15 = R2
1 − f1 (t)

C16 = R2
2 − f2 (t)

C17 = R2
3 − f3 (t)

(145)

in which f1 (t), f2 (t) and f3 (t) are respectively the X(t), Y (t) and Z(t) components of
the trajectory f (t) that follows this point.

58



The previously defined constraints of the model can be summarized as presented in tables
2, 3, 4, and 5 Along with this summary, a physical interpretation of each constraint is
added to provide a realistic meaning to the mathematical formulations employed.

Table 2. Ski-ground constraints

CONSTRAINT EQUATION PHYSICAL INTERPRETATION
C1 = R1

3 − c13 = 0 Movement of the ski on a leveled plane

C2 = R1
1 sinφ1 −R1

2 cosφ1 = 0
Movement of the ski on a line orien-
tated ϕ1 with respect to the global Y
axis of the absolute X-Y plane

C3 = φ1 − cφ1 = 0
Constant orientation of the body ref-
erence system referred to the ϕ1 Euler
angle

C4 = θ1 − cθ1 = 0

Constant orientation of the body ref-
erence system referred to the θ1 Euler
angle

C5 = ψ1 − cψ1 = 0
Constant orientation of the body refer-
ence system referred to the ψ1 Euler
angle .

Table 3. Ski-lower leg constraints

CONSTRAINT EQUATION PHYSICAL INTERPRETATION

C6 = R1
1 −R2

1 − l1A2
13

Restriction of relative translation along
the X global axis

C7 = R1
2 −R2

2 − l1A2
23

Restriction of relative translation along
the Y global axis

C8 = R1
3 −R2

3 − l1A2
33

Restriction of relative translation along
the Z global axis

After one finds the constraint equations of the system, the next step is to formulate the
Jacobian matrix as previously depicted in equation (19).

The constraint equations of the system are collected in the vector of constraint equations.
See equation (146). After the differentiation of this vector with respect to the generalized
coordinates is performed, the resulting final form is presented in appendix B.

C =

[
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C11 C12 C13 C14 C15 C16 C17

]T
(146)
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Table 4. Lower - upper leg constraints

CONSTRAINT EQUATION PHYSICAL INTERPRETATION

C9 = A2
11A

3
13 + A2

21A
3
23 + A2

31A
3
33 = 0

Condition of parallelism of the two
body vectors

C10 = A2
12A

3
13 + A2

22A
3
23 + A2

32A
3
33 = 0

Condition of parallelism of the two
body vectors

C11 = A2
11 (R2

1 −R3
1) + A2

21 (R2
2 −R3

2) +
A2

31 (R2
3 −R3

3) = 0
Condition of alignment of the axes of
the bodies

C12 = A2
12 (R2

1 −R3
1) + A2

22 (R2
2 −R3

2) +
A2

32 (R2
3 −R3

3) = 0
Condition of alignment of the axes of
the bodies

C13 = A2
12A

3
11 + A2

22A
3
21 + A2

32A
3
31 = 0

Restriction of relative rotation between
the two bodies affected by the joint

Table 5. Kinematic rheonomic constraints

CONSTRAINT EQUATION PHYSICAL INTERPRETATION
C14 =√

(R3
1 −R1

1)
2

+ (R3
2 −R1

2)
2

+ (R3
3 −R1

3)
2−

lex (t) = 0

Restriction of the leg extension during
the active phase

C15 = R2
1 − f1 (t)

Restriction of the movement of the
second body with respect to the ski X
global direction

C16 = R2
2 − f2 (t)

Restriction of the movement of the
second body with respect to the ski Y
global direction

C17 = R2
3 − f3 (t)

Restriction of the movement of the
second body with respect to the ski Z
global direction

4.5 Mass matrix of the skier model

The complete mass stiffness matrix of the multibody system is constructed out of three
individual body matrices, one for each body present in the model.

In the following steps, the individual mass matrices of the bodies are formulated using
equations (31), (41), (42), (44), and (45).

Mass matrix of body 1:

The first body corresponds to the ski itself and is modeled as a parallelepiped volume.
The moments and products of inertia of this common shape can be found ready tabulated
and are collected into the next equations (Huston, 1990, p. 204). Figure 25 shows how
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the inertia moments are described according to the local orientation axes.

Figure 25. Assumed geometry of the ski.

i1xx =
m1

12

(
a2 + c2

)
(147)

i1yy =
m1

12

(
a2 + b2

)
(148)

i1zz =
m1

12

(
b2 + c2

)
(149)

The substitution of equations (147), (148) and (149) into equation (45) yields

Ī
1
θθ =


m1

12
(a2 + c2)

m1

12
(a2 + b2)

m1

12
(b2 + c2)

 (150)

The products of inertia are zero for in case due to the specific alignments of the body
reference axis.
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For the first body, equation (31) takes the following form:

Ḡ
1

=

 sin θ1 sinψ1 cosψ1 0

sin θ1 cosψ1 − sinψ1 0

cos θ1 0 1

 (151)

With the substitution of the results of equations (150) and (151) into equation (44), the
value ofm1

θθ it is found. The values of the moments of inertia will remain denoted as I1xx,
I1yy and I1zz to facilitate the handling of the matrices.

m1
θθ =sin θ1 sinψ1 sin θ1 cosψ1 cos θ1

cosψ1 − sinψ1 0

0 0 1


I

1
xx

I1yy

I1zz


sin θ1 sinψ1 cosψ1 0

sin θ1 cosψ1 − sinψ1 0

cos θ1 0 1


(152)

m1
θθ =

 m1
θθ1,1

m1
θθ1,2

m1
θθ1,3

m1
θθ2,2

0

symmetric m1
θθ3,3

 (153)

The remaining term for the final formulation of the mass matrix of the first body is a
diagonal 3× 3 matrix with the mass of the ski as the diagonal term.

m1
RR =

 m1

m1

m1

 (154)

Then, the final reduced form of the mass matrix of the first body can be presented such
as in the following equation. For a more detailed presentation of these mass matrices and
those related to the second and third body, please refer to appendix B.

M 1 =

[
m1

RR

m1
θθ

]
(155)
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Mass matrices of the second and third bodies:

The second and third bodies are considered to be slender rods. The center of masses of
the bodies are located in their geometrical center. See figure 26.

Figure 26. Description of moments of inertia in the second and third body.

The value of the moments of inertia for these two bodies is presented in the next equations.
Similarly to the case presented for the first body, the axes are set in such a way that the
products of inertia of both bodies become zero. Also, the procedure developed for the
mass matrix of the first body is used for the remaining cases.

The second body equations are

i2xx = i2yy =
m2

12
(L2)

2 (156)

i2zz = 0 (157)

And the third body equations are

i3xx = i3yy =
m3

12
(L3)

2 (158)

i3zz = 0 (159)
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Then, the Ḡ2 and Ḡ3 matrices are

Ḡ
2

=

 sin θ2 sinψ2 cosψ2 0

sin θ2 cosψ2 − sinψ2 0

cos θ2 0 1

 (160)

Ḡ
3

=

 sin θ3 sinψ3 cosψ3 0

sin θ3 cosψ3 − sinψ3 0

cos θ3 0 1

 (161)

The component related to the rotation of the body mass matrix is

m2
θθ =sin θ2 sinψ2 sin θ2 cosψ2 cos θ2

cosψ2 − sinψ2 0

0 0 1


I

2
xx

I2yy

0


sin θ2 sinψ2 cosψ2 0

sin θ2 cosψ2 − sinψ2 0

cos θ1 0 1


(162)

m3
θθ =sin θ3 sinψ3 sin θ3 cosψ3 cos θ3

cosψ3 − sinψ3 0

0 0 1


I

3
xx

I3yy

0


sin θ3 sinψ3 cosψ3 0

sin θ3 cosψ3 − sinψ3 0

cos θ3 0 1


(163)

The matrices related to the translation of the bodies and the individual mass matrices are

m2
RR =

 m2

m2

m2

 (164)

m3
RR =

 m3

m3

m3

 (165)
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M 2 =

[
m2

RR

m2
θθ

]
(166)

M 3 =

[
m3

RR

m3
θθ

]
(167)

The mass matrix of the model can be then presented as in equation (168):

M =

M
1

M 2

M 3

 (168)

4.6 Vector of Lagrange multipliers of the skier model

When one takes into account that the number of constraint equations applied to the model
is 17 (13 scleronomic constraints and four rheonomic constraints), the vector of Lagrange
multipliers applicable to the case may be formulated as

λ =

[
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

λ11 λ12 λ13 λ14 λ15 λ16 λ17

]T
(169)

where each Lagrange multiplier corresponds to its equivalent constraint in the order pre-
sented in the vector of constraint equations.

4.7 Vector of generalized forces of applied to the model

The forces originating from the work performed by the leg during the push-off phase are
shown in figure 27. These forces act during a period of the gliding time of the opposite
leg. They are considered to be applied to the center of mass (CM) of the skier and are
located in both the third body and the first body (in the case of the friction force) of the
model.

With the expansion of equation (83) for the multibody system applied to the skier, where
the number of bodies is 3, the form of the vector of generalized forces due to the pushing
force, air drag, and friction force can be formulated as follows below.
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Figure 27. External forces applied to the system.

For the first body (representing the ski), the only force applied is the friction force gen-
erated by the contact between the snow and the ski. One important characteristic of this
force is that it is oriented at all moments along the axis Y 1. The virtual work produced
by this force on the first body is

δW 1
e =

(
Q1
e

)T
R
δR+

(
Q1
e

)T
θ
δθ (170)

The force presented during the formulation of the procedure to determine the virtual work
has already been defined in the absolute frame of reference. In the case of the skier, it
is convenient to present this force in the local reference system, which means that the
additional transformation F friction = A1F̄

1
friction must be applied. It is possible to find

the value ofA1 from the previous sections.

F friction = A1F̄
1
friction (171)

F friction =

 cosφ1 sinφ1 0

− sinφ1 cosφ1 0

0 0 1


 0

−F 1
friction

0

 (172)
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F friction =

−F
1
friction sinφ1

−F 1
friction cosφ1

0

 (173)

(
Q1
e

)
R

= −

F
1
friction sinφ1

F 1
friction cosφ1

0

 (174)

The moment caused by this force may be written as

(
Q1
e

)
θ

= G1T
[
ufriction × F 1

friction

]
(175)

in which, after the substitution of each one of the terms,

(
Q1
e

)
θ

=

 0 0 1

cosφ1 sinφ1 0

sinφ1 sin θ1 − cosφ1 sin θ1 cos θ1





 cosφ1 sinφ1 0

− sinφ1 cosφ1 0

0 0 1


 0

0

0


×

 −F
1
friction sinφ1

−F 1
friction cosφ1

0




(176)

It can be noticed in equation (176) that the point of application of the force on the ski is
considered to be at the origin of this body. Then, the value of the moment produced by
this force can be presented as in the next equation.

(
Q1
e

)
θ

=

 0 0 1

cosφ1 sinφ1 0

0 0 1


0

0

0

 =

0

0

0

 (177)

The vector of generalized forces corresponding to the friction force can be presented in
its final form as

Q1T

e =
[
−F 1

friction sinφ1 −F 1
friction cosφ1 0 0 0 0

]
(178)
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The third body is the next body where forces can be found in the skier model. These
forces, as mentioned before, originate from the action of the pushing of the leg and the
air drag. The formulation of the generalized force due to these forces is shown next; it
follows the procedure applied to the first body.

The push-off force and the air drag force are considered to be applied in the origin of
the local reference system of the third body. This consideration is important in order to
formulate the moment produced by these forces. The next equation shows the generalized
forces related to the translation produced by the forces.

(
Q3
e

)
R

=
2∑
j=1

F 3
j = F 3

push + F 3
air (179)

(
Q3
e

)
R

= A3
(
F̄

3
push + F̄

3
air

)
(180)

The orientation of the force due to air drag is considered to be aligned with the axis Y 3 in
the third body. The push-off force, is considered to have components in the X3, Y 3 and
Z3 axis.

The orientation of the force due to the air drag is considered to be aligned with the axis
Y 3 in the third body and for the case of the push off force, the consideration made is that
this force has components in theX3, Y 3 and Z3 axis.

In the case of the component
(
Q3
e

)
θ

(
Q3
e

)
θ

=

0

0

0

 (181)

This result is similar to that of the first body because of the selection of origin of the local
reference system as an application point for the forces.

The total vector of generalized forces consists of the following form:

Qe =
[
Q1
e Q2

e Q3
e

]T
(182)

where the vectorQ2
e is equal to zero because no forces are applied to this body.
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4.8 Vector absorbing the terms that are quadratic in the velocities.

The following body velocity vectors are found through the application of the previous
definitions to each one of the bodies forming the model.

In the case of the quadratic velocity vector of the ski (first body), the origin of the body
reference system coincides with the center of mass, yielding the following form of the
quadratic velocity vector.

Q1
v =

[
0(
Q1
v

)
θ

]
=

 0

Ḡ
1T
[
ω̄1 ×

(
Ī
1
θθω̄

1
)

+ Ī
1
θθ

˙̄G
1
θ̇
1
]  (183)

The coincidence of the origin of the local reference body with the center of mass also
serves to simplify the form of the quadratic velocity vector of the second and third bodies.

Q2
v =

[
0(
Q2
v

)
θ

]
=

 0

Ḡ
2T
[
ω̄2 ×

(
Ī
2
θθω̄

2
)

+ Ī
2
θθ

˙̄G
2
θ̇
2
]  (184)

Q3
v =

[
0(
Q3
v

)
θ

]
=

 0

Ḡ
3T
[
ω̄3 ×

(
Ī
3
θθω̄

3
)

+ Ī
3
θθ

˙̄G
3
θ̇
3
]  (185)

Finally, the quadratic velocity vector may be written in its complete form as

Qv =
[
Q1
v Q2

v Q3
v

]T
(186)
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5 MODELING RESULTS

In this section, the results of the integration of the equation of motion (EOM) of the skier
will be presented along with graphs showing the fulfillment of the rheonomic and sclero-
nomic constraints respectively imposed on defined trajectories and joints in the model.

As previously mentioned in the introduction, after the EOM of the skier was defined,
the resulting equation was coded into Matlab (Moler, 2004). The resultant positions and
velocities were obtained by performing the integration of the set of ODE and were then
plotted in order to visualize the influence of some key variables on the execution of the
skating technique by the skier. However, before some of these results can be produced, the
values must be defined of certain physiological variables and dimensional characteristics
needed as inputs for the model. These variables include the following.

• Limits of the phase time length and skating angle

• Leg retraction and extension vs. time

• Push-off force function vs. time, friction force and air drag

• Movement of the origin of the local reference system of the second body

Part of the set of variables presented define the rheonomic constraints needed to com-
pletely formulate the movement of the skier. For example, the movement of the leg during
the active phase will establish the path followed by it. This path is needed as an input in
the constraint equations C9, C10 and C11.

Other types of parameters, such as variables representing the mass of the skier and the
measurement of the parts of the lower and upper leg, need to be included in the equations
formulated for the skier. These three variables are shown in the next table.

Table 6. Mass and leg dimension of the skate skier

Variable Value
Mass (Kg) 75

Upper leg (m) 0.5

Lower leg (m) 0.4

5.1 Definition of the cases to be analyzed in terms of phase time and skating angle.

In this section, a group of cases will be formulated in order to simulate the effect that
the change in the phase time and skating angle have on the velocity of the skier. To
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accomplish this, the following values for these variables are proposed. See table 7.

Table 7. Definition of the changing variables

Phase Time (sec) Skating angle (deg)
0.5 70

1 50

2 30

For example, in the first case, the skier has phase times of 0.5 seconds with a skating angle
of 70 degrees. Although this combination is not usually found when a skier executes the
technique on leveled planes, it will help one to understand the results of the model.

5.2 Leg retraction and extension versus time.

During the active phase of the leg, it is neither fully retracted at the beginning of the phase
nor fully extended when applying the push-off force for the next phase. The leg extension
vs. time will thus be assumed to increase linearly from a value of 50% to ultimately
90% of the total length at the moment before changing to the other leg. In figure 28, this
movement is described with the CM of the skier located vertically in line with the center
of the ski.
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Figure 28. Leg extension of the skier in function of phase time.

It can be seen that for a smaller phase time value, the prescribed extension will be achieved
faster than for larger phase time values. This is indeed the case when the skier skis on
steeper hills and has to increase the skating angle to compensate for the backward pulling
effect of the gravity.
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Although in this research the condition of steep hills is not considered, a similar action on
a leveled plane was modeled in the first trial run.

The time functions that describe these three lines are shown in the next equations. These
time functions are incorporated directly into the constraint equation C14.

Legext = Iniext + Cextension.t (187)

where Legext is the value of the leg extension in function of time in meters; Iniext is
the initial leg extension at the beginning of the push-off phase; Cextension = 0.8, 0.4,
0.2 is a constant that depends on the simulation time for the first, second, and third trial,
respectively; and t is the time in seconds.

5.3 Push-off force function versus time, friction force, and air drag

The push-off force produced by the skier in each of the active phases was taken from
the data collected from the measurements taken in Vuokatti in December, 2011. The
specifications of the equipment used to obtain these data can be summarized as follows:

• Two custom-made small and lightweight (1070 g) force plate pairs built by the
Neuromuscular Research Center, University of Jyväskylä

• 12 channel ski force amplifier built by the Neuromuscular Research Center, Uni-
versity of Jyväskylä

• A/D converter with sampling rate of 1 kHz, model NI 9205; National Instruments;
Austin, Texas, USA

• Wireless transmitter WLS-9163; National Instruments; Austin, Texas, USA

• PC-laptop with wireless receiver card and data collection software LabVIEW 8.5;
National Instruments; Austin, Texas, USA

As mentioned previously in the section dedicated to the development of the constraint
equations of the system, this force is considered to be applied to the center of mass of the
skier and is directed along a unit vector formed between the origins of the first and third
body of the modeled leg exerting the push-off.

Figures 29 and 30 show the complete arrangement of the equipment carried by the skier
and a general view of the construction of the ski binding with the installed force plates.

Figure 31 shows the cyclic behavior of the force exerted by the skier while performing the
skating technique. Only a representative portion of these data of one phase is taken into
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Figure 29. Force measurement set up at Vuokatti ski tunnel facility.

Figure 30. Force plates installed in the ski bindings (Ohtonen, 2010, p. 9).

account for simulating the push-off of the skier during a phase. Refer to figure 32, which
shows the portion used in all the trial runs and adapted to the simulation time proposed.
In this figure, the fitted curve used to input the value of the force related to time is plotted.
It can be seen that the applied fitting process seems to conveniently model the behavior of
the discrete data. The value of the Pearson coefficient obtained for this particular fitting
process is 0.9976.

With the data obtained from the measurements, it is possible to determine the value of the
friction force produced at the time of the experiment. Figure 33 shows the behavior of
this friction force during the execution of the experiment.

The researcher’s use of an average value to take into account the force acting in opposition
to the movement of the skier might seem misappropriated. However, this use is due to
the complex characteristics of the ski-snow mechanics in which the coefficient of friction
produced in this contact depends on different factors not easily obtained. Figure 34 shows
the different values that this coefficient of friction can have in the relative movement of
the ski with respect to the the snow.
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Figure 31. Total force exerted by the skier.
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Figure 32. Force representative data of one active phase.

In figure 34, f is the total friction coefficient, fd is the dry friction coefficient produced
by the solid-solid contact between the ski and the snow, fw is the lubricated friction coef-
ficient due to the hydrodynamic effect of the ski, and fs is the water capillary coefficient
of friction that appears due to the adherence of the water beneath the ski to both surfaces
with relative movement. The complex combination of these three friction mechanisms
dictates the friction laws applied to skiing.

The average value can be calculated from the discrete measurement data. This set of
values can be seen in table 8 for the trial selected.

It can be noticed that the friction force is small when compared with the value of the actual
push-off force in this short trial. Although it might be considered as not having been taken
into account in the analysis presented in this report, it is still important to notice that these
values of friction force depend on the specific characteristics of the experiment facilities,
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Figure 33. Friction force produced during the execution of the trial run.

Figure 34. Variation of the total coefficient of friction in the ski-snow contact (Colbeck,
1988, p. 83).

and they must be included for further analysis when the value of the coefficient of friction
reaches higher values because of the different combination of factors that generate this.

The air drag will not be considered in this analysis because of the short length of the
experiment. The air drag can be included at any moment into the model; however, further
studies must first be conducted regarding the values that the air drag can adopt in function
of the apparent restrictive area created by both the upper body position of the skier and
the characteristics of the gear being worn.
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Table 8. Key values of the measured friction force

Friction force [N ]
Maximum 31.894

Average 5.305

Minimum −18.7134

5.4 Movement of the origin of the local reference system of the second body

To constrain the movement of the origin of the local reference system of the second body,
it is only necessary to estimate the orientation of this system during the simulation phase.
No additional constraints or path prescriptions need be made pertaining to the distance
between this point and the origin of the local reference system of the first body because
of the conditions imposed by the spherical joint.

For simulation purposes, and according to the on-site observations, it is assumed that the
angle θ2 specifying the rotation about the localX2 axis changes as indicated in figure 35.
The orientation of the reference system attached to the upper leg follows the same move-
ment because of the constraints imposed by the prismatic joint between the two bodies.
The change in this angle simulates the rotation of the leg of the skier when producing the
pushing-off and shift to the other leg.
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Figure 35. Rotation of the leg in function of the phase duration.
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These variations can be written as a function of the simulation time, such as in the case of
the prescription of the leg extension. See equation (188).

Legrot = Inirot + Crotationt (188)

in which Legrot is the angle that the skier has rotated the leg in time t; Inirot is the
initial rotation angle the skier uses to begin the gliding phase; and Crotation = 90, 45,
22.5 consists of the respective values of the constant indicating how the rotation is being
performed, depending on the selected case. The rotation starts at the beginning of the
active phase, as represented in figure 35.

The definition of the rotation angles of the leg is important because it also affects how the
force is transmitted to the other leg when the skate skier shifts between phases.

5.5 Set of simulation results

After one inputs all the required variables into the model, one obtains the following set of
simulation results presented immediately below. An analysis of each item follows (with
the exception of the last item, for which results are presented in appendix C).

• Vertical movement of the CM of the skier

• Fulfillment of the prescribed orientation of the leg of the skier during the gliding
phase

• Movement in X-Y plane of the CM of the skier and the center of the ski

• Travel velocity of the CM of the skier

• Fulfillment of the constraints imposed on the model (these results are presented in
appendix C)

In this section of the paper, the analysis of single phase simulations will be conducted in
order to explain the details involving the development of the movement of the skier. In
section 5.6, a simulation of a combination of phases will be described in order to analyze
the convenient use of this code to model longer distances involving several strides.

Results from the first set of initial values of the skating angle and phase time

The following results are obtained from the set of parameters for the trials. Figure 36
shows the previously proposed leg extension in function of the phase time. The change in
the orientation of the leg of the skier modifies the linear function that defines the vertical
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position of the center of mass, creating a parabolic trajectory in each case.

It can also be seen that in all cases, the prescribed condition of the beginning and ending
of the movement of the leg is accomplished.
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Figure 36. Vertical movement of the CM of the skier. First trial.

Figure 37 presents a top view of the movements of origin of the ski and the CM of the
skier. Careful attention must be given to the trajectory followed by the CM, which breaks
its vertical alignment with the ski to follow the physiological movement of the leg. In this
figure, the segmented lines represent the travel trajectory of the ski for each one the cases.
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Figure 37. Trajectory of the CM of the skier and the center of the ski in the X-Y plane.

Figure 38 shows how the center of mass of the skier displaces along the travel direction
(Global X direction) with respect to the phase time.

The effect of the friction force opposing the skier displacement can also be observed. This
is depicted by the change in slope in the third case. If the simulation time is increased,
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Figure 38. Distance covered by the CM of the skier in the active phase.

this effect can be greatly noticed and the velocity will start decreasing because of the lack
of propulsion force.

5.6 Simulation of a long ski run.

In this section, a new aspect of the model will be explored. The continuous movement of
the skier will be presented with several sets of strokes. This is so that one may observe the
behavior of the increase of the velocity of the skier because of the effects of the imposed
forces until the absolute magnitude of the velocity reaches an equilibrium. In this case,
the input parameters used to accomplish this task are mentioned in table 9.

Table 9. Long ski run simulation parameters

Input parameter Value
Mass (Kg) 75

Phase time (s) 1

Clength 0.2

Crotation 22.5

Strokes 10

Skating angle (deg) 50

Init. velocity (m/s) 0

The trajectory of the CM of the skier and the local body reference system located on the
ski during each stroke are depicted in figure 39. In this trial, the global X direction is
taken as the main travel direction. This will be the main consideration for the long run
simulation cases. It is noticeable how the trajectory of the CM of the skier follows a
periodic function quite close to a sin or cos functions.
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Figure 39. Description of the continuous strokes.

In figure 40, it is possible to distinguish some important characteristics pertaining to the
velocities of the CM of the skier. Firstly, figure 40 shows the effect of the applied push-off
force at the beginning of each stroke. This is clearly noted from the crescent slope of the
velocity curve of each phase.

Secondly, the figure displays the effect of the stride or change of active phase, which is a
decrease in the absolute velocity of the skier during the shift, followed by the recovery of
the level of velocity in consonance with the applied force.

Figure 41 depicts how the equilibrium between the forces applied is found after the sixth
stroke. This equilibrium is described by the convergence of the value of the velocity of the
CM of the skier to a constant value. The average total velocity found for this movement
is about 2.47 m/s.
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Figure 40. Velocity of the CM of the skier during the long ski run simulation.

The large influence of the selected skating angle ϕ1 when the technique is performed
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Figure 41. Average velocity of the CM of the skier in each stroke.

should be noted. Figure 42 shows that if the long run trial is set as a base case for the
comparison, a second skier will be able to acquire a slightly superior average velocity by
reducing the skating angle 10 degrees, with the added benefit of using only half of the
force employed in the base case.

It is also observed that when a skier retains a skating angle of 50 degrees and employs half
of the baseline force, the resultant average velocity is reduced by approximately 32 % and
not by 50 %, as intuitively might be thought. Further studies of this issue may lead to the
discovery of the optimum relationship between the skating angle, power of the skier, and
stride rate in specific cases.
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Figure 42. Comparison of average velocity with modified skating angles and push-off
forces.

Figure 43 presents the different components of the velocity of the skier in the X-Y plane.
It can be noted that in spite of the fact that the Y component of the skier velocity is almost
twice larger than the correspondent in the X direction, the absolute value of the skier
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travel velocity is mainly influenced by the last one.
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Figure 43. Value of the velocity components and absolute value.

Taking into account the previous comment regarding the importance of the skier velocity
in the X axes, figure 44 present the obtained simulated power exerted by the skier. Under
the afore stated skier run conditions. From the model it is obtained an average power
around 300 W when the stable conditions are reached.
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Figure 44. Power exerted by the skier during the long ski run.
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6 CONCLUSIONS

In this thesis, a multibody dynamic model of a cross-country skier executing the skating
technique without poles has been formulated and presented. This thesis has also presented
the related required theory, description of fundamental concepts, and application of these
to solve a real physical problem.

The formulation of this model has retained the generality of the shape of the equation of
motions (with no simplifications applied), thus allowing the implementation of necessary
changes to include any of the variations left out during the postulation of the assumptions.

The flexibility of the model has facilitated the path for generating the Matlab code to ob-
tain the numerical results needed for every simulation study case. Furthermore, it was
noticed that the change in the CPU simulation time was not important, nor was it consid-
ered as a relevant variable to control.

The effect of several forces can be easily added to the systems as well as any specific
trajectory of the leg of the skier. In addition, a skating plane other than leveled can be
modeled by easily changing the corresponding constraints. This versatility makes the
code flexible and adaptable to new conditions, which may be imposed with little effort on
the part of the researcher.

To obtain the first set of results from the skier model, three cases were analyzed. The
skating angles and the gliding time were varied, and the push-off force was kept as an
invariant external force. With these variations, several physical conditions are imposed
on the model, and the coherent results can be studied and compared to the reality of the
skier situation.

When skiers skate with high skating angles and short stride rates, their velocity is lower
than when they skate with smaller skating angles and longer stride rates. This result is
generated because of the apparent sensitivity of the technique to the skating angle. With
this approach, it is possible to find the optimal combination of parameters, skating angle,
and gliding length, which would allow a skate skier to obtain maximum speed according
to the determined force availability of the athlete.

One illustration of the conclusion mentioned in the previous paragraph is the result pre-
sented in figure 42. It can be observed that two different athletes who do not have the
same leg power might still achieve the same average velocity by varying the skating an-
gle. This demonstrates one of the advantages of using a multibody model in sports, the
discovery of optimum combinations.
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The final simulation trial points to the possibility of analysis of the dependence of the
average velocity on the applied push-off force. These are directly related, but not in a
linear form. This is demonstrated by the variation of the push-off force with the retention
of the same skating angle, as also shown in figure 42 The intuitive assumption is that when
the push-off force is reduced by half, the resultant average velocity will also be reduced
by half; however, it was demonstrated that this is not the case.

From the last simulation trial, it might be also possible to analyze the dependency of the
average velocity and the applied push off force. They are directly related however not in a
linear form. This is demonstrated by the variation of the push off force keeping the same
skating angle as shown also in figure 42.

Much needs to be refined to reasonably match the model to several real conditions, such as
irregular travel planes, skis, air drag consideration, and specific movement of the legs of
the athletes. The research conducted for this thesis can conveniently contribute to future
work because of its flexibility and its adaptability to real external and internal prescribed
parameters.
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APPENDICES

APPENDIX A

In table 10, the list of articles found per database searched is presented.

Table 10. Number of articles obtained by database.

DATABASE NAME RESULTS
WILIMA 10

ABI/INFORM GLOBA (PROQUEST) 47

DOAJ Directory of open access journals 0

EBSCO Academic search elite 56

EBSCO Business source complete 0

Elsevier (Science direct) 99

Emerald Journals (Emerald) 4

Springer Journals 372

SCOPUS - V.4 (Elsevier) 716

ARTO 0

Conference Papers Index (CSA) Not available
METADEX (CSA) Not available
TALI 5

VTT:n julkasuja 4

Web of Science 3

Lappeenranta Maakuntakirjasto 0

WebStat 0

LUTPub - Doria 0

INSSI - TKK 5

PROLA - American Physical Society Not available
TKKDOC - Teknillinsen korkeakoulun elektroninen julka-
isuarkisto

0

Knovel 0

TOTAL 1311



APPENDIX B

Developed terms of the equation of motion of the model

Vector of generalized coordinates

q =

[
R1

1 R1
2 R1

3 ϕ1 θ1 ψ1 R2
1 R2

2 R2
3 ϕ2

θ2 ψ2 R3
1 R3

2 R3
3 ϕ3 θ3 ψ3

]T

Vector of constraints

C =



R1
3 − c13

R1
1 sinφ1 −R1

2 cosφ1

φ1 − cφ1
θ1 − cθ1
ψ1 − cψ1

R1
1 −R2

1 − l1.A2
13

R1
2 −R2

2 − l1.A2
23

R1
3 −R2

3 − l1.A2
33

A2
11A

3
13 + A2

21A
3
23 + A2

31A
3
33

A2
12A

3
13 + A2

22A
3
23 + A2

32A
3
33

A2
11 (R2

1 −R3
1) + A2

21 (R2
2 −R3

2) + A2
31 (R2

3 −R3
3)

A2
12 (R2

1 −R3
1) + A2

22 (R2
2 −R3

2) + A2
32 (R2

3 −R3
3)

A2
12A

3
11 + A2

22A
3
21 + A2

32A
3
31√

(R3
1 −R1

1)
2

+ (R3
2 −R1

2)
2

+ (R3
3 −R1

3)
2 − lex (t)

R2
1 − f1 (t)

R2
2 − f2 (t)

R2
3 − f3 (t)
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Jacobian matrix of the system

C
q
=

                                    

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
q
2
,1

C
q
2
,2

0
C
q
2
,4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

−
1

0
0

C
q
6
,1
0

C
q
6
,1
1

0
0

0
0

0
0

0

0
1

0
0

0
0

0
−
1

0
C
q
7
,1
0

C
q
7
,1
1

0
0

0
0

0
0

0

0
0

1
0

0
0

0
0

−
1

0
C
q
8
,1
1

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
C
q
9
,1
0

C
q
9
,1
1

C
q
9
,1
2

0
0

0
C
q
9
,1
6

C
q
9
,1
7

0

0
0

0
0

0
0

0
0

0
C
q
1
0
,1
0

C
q
1
0
,1
1

C
q
1
0
,1
2

0
0

0
C
q
1
0
,1
6

C
q
1
0
,1
7

0

0
0

0
0

0
0

C
q
1
1
,7

C
q
1
1
,8

C
q
1
1
,9

C
q
1
1
,1
0

C
q
1
1
,1
1

C
q
1
1
,1
2

C
q
1
1
,1
3

C
q
1
1
,1
4

C
q
1
1
,1
5

0
0

0

0
0

0
0

0
0

C
q
1
2
,7

C
q
1
2
,8

C
q
1
2
,9

C
q
1
2
,1
0

C
q
1
2
,1
1

C
q
1
2
,1
2

C
q
1
2
,1
3

C
q
1
2
,1
4

C
q
1
2
,1
5

0
0

0

0
0

0
0

0
0

0
0

0
C
q
1
3
,1
0

C
q
1
3
,1
1

C
q
1
3
,1
2

0
0

0
C
q
1
3
,1
6

C
q
1
3
,1
7

C
q
1
3
,1
8

C
q
1
4
,1

C
q
1
4
,2

C
q
1
4
,3

0
0

0
0

0
0

0
0

0
C
q
1
4
,1
3

C
q
1
4
,1
4

C
q
1
4
,1
5

0
0

0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0
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Where the terms of the Jacobian matrix are

Cq2,1 = sinϕ1

Cq2,2 = − cosϕ1

Cq2,4 = R1
1 cosϕ1 +R1

2 sinϕ1

Cq6,10 = −l1 cosϕ2 sin θ2

Cq6,11 = −l1 sinϕ2 cos θ2

Cq7,10 = −l1 sinϕ2 sin θ2

Cq7,11 = l1 cosϕ2 cos θ2

Cq8,11 = l1 sin θ2

Cq9,10 = − sin θ3(sinϕ3 sinϕ2 cosψ2 + sin θ3 cosϕ2 cos θ2 sinψ2

+ cosϕ3 cosϕ2 cosψ2 − cosϕ3 sinϕ2 cos θ2 sinψ2)

Cq9,11 = sinψ2(sinϕ2 sin θ2 sinϕ3 sin θ3 + cosϕ2 sin θ2 cosϕ3 sin θ3 + cos θ2 cos θ3)

Cq9,12 = − sinϕ3 sin θ3 cosϕ2 sinψ2 − sinϕ3 sin θ3 sinϕ2 cos θ2 cosψ2

+ cosϕ3 sin θ3 sinϕ2 sinψ2 − cosϕ3 sin θ3 cosϕ2 cos θ2 cosψ2

+ sin θ2 cosψ2 cos θ3

Cq9,16 = sin θ3(sinϕ3 sinϕ2 cosψ2 + sinϕ3 cosϕ2 cos θ2 sinψ2 + cosϕ3 cosϕ2 cosψ2

− cos(ϕ3 sinϕ2 cos θ2 sinψ2)

Cq9,17 = sinϕ3 cos θ3 cosϕ2 cosψ2 − sinϕ3 cos θ3 sinϕ2 cos θ2 sinψ2

− cosϕ3 cos θ3 sinϕ2 cosψ2 − cosϕ3 cos θ3 cosϕ2 cos θ2 sinψ2

− sin θ2 sinψ2 sin θ3

Cq10,10 = sin θ3(sinϕ3 sinϕ2 sin(psi2)− sinϕ3 cosϕ2 cos θ2 cosψ2

+ cosϕ3 cosϕ2 sinψ2 + cosϕ3 sinϕ2 cos θ2 cosψ2)

Cq10,11 = cosψ2(sinϕ2 sin θ2 sinϕ3 sin θ3 + cosϕ2 sin θ2 cosϕ3 sin θ3 + cos θ2 cos θ3)

Cq10,12 = − sinϕ3 sin θ3 cosϕ2 cosψ2 + sinϕ3 sin θ3 sinϕ2 cos θ2 sinψ2

+ cosϕ3 sin θ3 sinϕ2 cosψ2 + cosϕ3 sin θ3 cosϕ2 cos θ2 sinψ2

− sin θ2 sinψ2 cos θ3



Cq10,16 = − sin θ3(sinϕ3 sinϕ2 sinψ2 − sinϕ3 cosϕ2 cos θ2 cosψ2

+ cosϕ3 cosϕ2 sinψ2 + cosϕ3 sinϕ2 cos θ2 cosψ2)

Cq10,17 = − sinϕ3 cos θ3 cosϕ2 sinψ2 − sinϕ3 cos θ3 sinϕ2 cos θ2 cosψ2

+ cosϕ3 cos θ3 sinϕ2 sinψ2 − cosϕ3 cos θ3 cosϕ2 cos θ2 cosψ2

− sin θ2 cosψ2 sin θ3

Cq11,7 = cosϕ2 cosψ2 − sinϕ2 cos θ2 sinψ2

Cq11,8 = sinϕ2 cosψ2 + cosϕ2 cos θ2 sinψ2

Cq11,9 = sin θ2 sinψ2

Cq11,10 = − sinϕ2 cosψ2R2
1 + sinϕ2 cosψ2R3

1 − cosϕ2 cos θ2 sinψ2R2
1

+ cosϕ2 cos θ2 sinψ2R3
1 + cosϕ2 cosψ2R2

2 − cosϕ2 cosψ2R3
2

− sinϕ2 cos θ2 sinψ2R2
2 + sinϕ2 cos θ2 sinψ2R3

2

Cq11,11 = sinψ2(sinϕ2 sin θ2R2
1 − sinϕ2 sin θ2R3

1 − cosϕ2 sin θ2R2
2

+ cosϕ2 sin θ2R3
2 + cos θ2R2

3 − cos θ2R3
3)

Cq11,12 = − cosϕ2 sinψ2R2
1 + cosϕ2 sinψ2R3

1 − sinϕ2 cos θ2 cosψ2R2
1

+ sinϕ2 cos θ2 cosψ2R3
1 − sinϕ2 sinψ2R2

2 + sinϕ2 sinψ2R3
2

+ cosϕ2 cos θ2 cosψ2R2
2 − cosϕ2 cos θ2 cosψ2R3

2

+ sin θ2 cosψ2R2
3 − sin θ2 cosψ2R3

3

Cq11,13 = − cosϕ2 cosψ2 + sinϕ2 cos θ2 sinψ2

Cq11,14 = − sinϕ2 cosψ2 − cosϕ2 cos θ2 sinψ2

Cq11,15 = − sin θ2 sinψ2

Cq12,7 = − cosϕ2 sinψ2 − sinϕ2 cos θ2 cosψ2

Cq12,8 = − sinϕ2 sinψ2 − cosϕ2 cos θ2 cosψ2

Cq12,9 = sin θ2 cosψ2

Cq12,10 = sinϕ2 sinψ2R2
1 − sinϕ2 sinψ2R3

1 − cosϕ2 cos θ2 cosψ2R2
1

+ cosϕ2 cos θ2 cosψ2R3
1 − cosϕ2 sinψ2R2

2 + cosϕ2 sinψ2R3
2

− sinϕ2 cos θ2 cosψ2R2
2 + sinϕ2 cos θ2 cosψ2R3

2

Cq12,11 = cosψ2(sinϕ2 sin θ2R2
1 − sinϕ2 sin θ2R3

1 − cosϕ2 sin θ2R2
2

+ cosϕ2 sin θ2R3
2 + cos θ2R2

3 − cos θ2R3
3)



Cq12,12 = − cosϕ2 cosψ2R2
1 + cosϕ2 cosψ2R3

1 + sinϕ2 cos θ2 sinψ2R2
1

− sinϕ2 cos θ2 sinψ2R3
1 − sinϕ2 cosψ2R2

2 + sinϕ2 cosψ2R3
2

− cosϕ2 cos θ2 sinψ2R2
2 + cosϕ2 cos θ2 sinψ2R3

2 − sin θ2 sinψ2R2
3

+ sin θ2 sinψ2R3
3

Cq12,13 = cosϕ2 sinψ2 − sinϕ2 cos θ2 cosψ2

Cq12,14 = sinϕ2 sinψ2 − cosϕ2 cos θ2 cosψ2

Cq12,15 = − sin θ2 cosψ2

Cq13,10 = sinϕ2 sinψ2 cosϕ3 cosψ3 − sinϕ2 sinψ2 sinϕ3 cos θ3 sinψ3

− cosϕ2 cos θ2 cosψ2 cosϕ3 cosψ3 + cosϕ2 cos θ2 cosψ2 sinϕ3 cos θ3 sinψ3

− cosϕ2 sinψ2 sinϕ3 cosψ3 − cosϕ2 sinψ2 cosϕ3 cos θ3 sinψ3

− sinϕ2 cos θ2 cosψ2 sinϕ3 cosψ3 − sinϕ2 cos θ2 cosψ2 cosϕ3 cos θ3 sinψ3

Cq13,11 = − cosψ2(− sinϕ2 sin θ2 cosϕ3 cosψ3 + sinϕ2 sin θ2 sinϕ3 cos θ3 sinψ3

+ cosϕ2 sin θ2 sinϕ3 cosψ3 + cosϕ2 sin θ2 cosϕ3 cos θ3 sinψ3

− cos θ2 sin θ3 sinψ3)

Cq13,12 = − cosϕ2 cosψ2 cosϕ3 cosψ3 + cosϕ2 cosψ2 sinϕ3 cos θ3 sinψ3

+ sinϕ2 cos θ2 sinψ2 cosϕ3 cosψ3 − sinϕ2 cos θ2 sinψ2 sinϕ3 cos θ3 sinψ3

− sinϕ2 cosψ2 sinϕ3 cosψ3 − sinϕ2 cosψ2 cosϕ3 cos θ3 sinψ3

− cosϕ2 cos θ2 sinψ2 sinϕ3 cosψ3 − cosϕ2 cos θ2 sinψ2 cosϕ3 cos θ3 sinψ3

− sin θ2 sinψ2 sin θ3 sinψ3

Cq13,16 = cosϕ2 sinψ2 sinϕ3 cosψ3 + cosϕ2 sinψ2 cosϕ3 cos θ3 sinψ3

+ sinϕ2 cos θ2 cosψ2 sinϕ3 cosψ3 + sinϕ2 cos θ2 cosψ2 cosϕ3 cos θ3 sinψ3

− sinϕ2 sinψ2 cosϕ3 cosψ3 + sinϕ2 sinψ2 sinϕ3 cos θ3 sinψ3

+ cosϕ2 cos θ2 cosψ2 cosϕ3 cosψ3 − cosϕ2 cos θ2 cosψ2 sinϕ3 cos θ3 sinψ3

Cq13,17 = sinψ3(− sinϕ3 sin θ3 cosϕ2 sinψ2 − sinϕ3 sin θ3 sinϕ2 cos θ2 cosψ2

+ cosϕ3 sin θ3 sinϕ2 sinψ2 − cosϕ3 sin θ3 cosϕ2 cos θ2 cosψ2

+ sin θ2 cosψ2 cos θ3)

Cq13,18 = cosϕ2 sinψ2 cosϕ3 sinψ3 + cosϕ2 sinψ2 sinϕ3 cos θ3 cosψ3

+ sinϕ2 cos θ2 cosψ2 cosϕ3 sinψ3 + sinϕ2 cos θ2 cosψ2 sinϕ3 cos θ3 cosψ3

+ sinϕ2 sinψ2 sinϕ3 sinψ3 − sinϕ2 sinψ2 cosϕ3 cos θ3 cosψ3

− cosϕ2 cos θ2 cosψ2 sinϕ3 sinψ3 + cosϕ2 cos θ2 cosψ2 cosϕ3 cos θ3 cosψ3

+ sin θ2 cosψ2 sin θ3 cosψ3



Cq14,1 =
R1

1−R3
1√

(R3
1−R1

1)
2
+(R3

2−R1
2)

2
+(R3

3−R1
3)

2

Cq14,2 =
R1

2−R3
2√

(R3
1−R1

1)
2
+(R3

2−R1
2)

2
+(R3

3−R1
3)

2

Cq14,3 =
R1

3−R3
3√

(R3
1−R1

1)
2
+(R3

2−R1
2)

2
+(R3

3−R1
3)

2

Cq14,13 =
R3

1−R1
1√

(R3
1−R1

1)
2
+(R3

2−R1
2)

2
+(R3

3−R1
3)

2

Cq14,14 =
R3

2−R1
2√

(R3
1−R1

1)
2
+(R3

2−R1
2)

2
+(R3

3−R1
3)

2

Cq14,15 =
R3

3−R1
3√

(R3
1−R1

1)
2
+(R3

2−R1
2)

2
+(R3

3−R1
3)

2



Terms of the mass matrix of the system

M
1
=

         m
1

0
0

0
0

0

0
m

1
0

0
0

0

0
0

m
1

0
0

0

0
0

0
I x
x
1
si
n
2
θ
1
si
n
2
ψ
1
+
I y
y
1
si
n
2
θ
1
co
s2
ψ
1
+
I z
z
1
co
s2
θ
1

I x
x
1
si
n
θ
1
si
n
ψ
1
co

s
ψ
1
−
I y
y
1
si
n
θ
1
co

s
ψ
1
si
n
ψ
1

I z
z
1
co

s
θ
1

0
0

0
I x
x
1
si
n
θ
1
si
n
ψ
1
co

s
ψ
1
−
I y
y
1
si
n
θ
1
co

s
ψ
1
si
n
ψ
1

I x
x
1
co
s2
ψ
1
+
I y
y
1
si
n
2
ψ
1

0

0
0

0
I z
z
1
co

s
θ
1

0
I z
z
1
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M
2
=

         m
2

0
0

0
0

0

0
m

2
0

0
0

0

0
0

m
2

0
0

0

0
0

0
I x
x
2
si
n
2
θ
2
si
n
2
ψ
2
+
I y
y
2
si
n
2
θ
2
co
s2
ψ
2

I x
x
2
si
n
θ
2
si
n
ψ
2
co

s
ψ
2
−
I y
y
2
si
n
θ
2
co

s
ψ
2
si
n
ψ
2

0

0
0

0
I x
x
2
si
n
θ
2
si
n
ψ
2
co

s
ψ
2
−
I y
y
2
si
n
θ
2
co

s
ψ
2
si
n
ψ
2

I x
x
2
co
s2
ψ
2
+
I y
y
2
si
n
2
ψ
2

0

0
0

0
0

0
0
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M
3
=

         m
3

0
0

0
0

0

0
m

3
0

0
0

0

0
0

m
3

0
0

0

0
0

0
I x
x
3
si
n
2
θ
3
si
n
2
ψ
3
+
I y
y
3
si
n
2
θ
3
co
s2
ψ
3

I x
x
3
si
n
θ
3
si
n
ψ
3
co

s
ψ
3
−
I y
y
3
si
n
θ
3
co

s
ψ
3
si
n
ψ
3

0

0
0

0
I x
x
3
si
n
θ
3
si
n
ψ
3
co

s
ψ
3
−
I y
y
3
si
n
θ
3
co

s
ψ
3
si
n
ψ
3

I x
x
3
co
s2
ψ
3
+
I y
y
3
si
n
2
ψ
3

0

0
0

0
0

0
0
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Vector of external generalized forces

Q
e
=

                                                            

−
( −c

o
s
ϕ
1
si
n
ψ
1
−

si
n
ϕ
1
co

s
θ
1
co

s
ψ
1
) Ff

−
( −s

in
ϕ
1
si
n
ψ
1
+

co
s
ϕ
1
co

s
θ
1
co

s
ψ
1
) Ff

−
si
n
θ
1
co

s
ψ
1
F
f

0 0 0 0 0 0 0 0 0

( cos
ϕ
3
co

s
ψ
3
−

si
n
ϕ
3
co

s
θ
3
si
n
ψ
3
) Fp

x
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( −c
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s
ϕ
3
si
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ψ
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−

si
n
ϕ
3
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s
θ
3
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s
ψ
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) Fp

y
+

si
n
ϕ
3
si
n
θ
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F
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s
ϕ
1
si
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ψ
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−

si
n
ϕ
1
co

s
θ
1
co

s
ψ
1
) Fa

( sin
ϕ
3
co

s
ψ
3
+

co
s
ϕ
3
co

s
θ
3
si
n
ψ
3
) Fp

x
+
( −s

in
ϕ
3
si
n
ψ
3
+

co
s
ϕ
3
co

s
θ
3
co

s
ψ
3
) Fp
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−

co
s
ϕ
3
si
n
θ
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F
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−
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ϕ
1
si
n
ψ
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s
ϕ
1
co

s
θ
1
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s
ψ
1
) Fa

si
n
θ
3
si
n
ψ
3
F
p
x
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si
n
θ
3
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s
ψ
3
F
p
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s
θ
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F
p
z
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si
n
θ
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s
ψ
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F
a

0 0 0
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vector absorbing the terms that are quadratic in the velocities
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APPENDIX C

Fulfillment of the constraints imposed on the model

In figures 45, 46, and 47, the graph of the constraints is shown in order to validate that
the prescribed values imposed on the model are being achieved. These constraints appear
in the same order as they were developed in the section dedicated to the Jacobian matrix.
This form of presentation will help the reader to follow how the tolerances within the
constraints are fulfilled.

Figure 45 shows the constraints related to the ski - ground contact. It can be seen that the
constraints are kept within the target values because of the stabilization process applied
during the integration of the equation of motion.
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(e) Constraint C5

Figure 45. Ski ground constraints.

Figure 46 shows the constraints imposed on the contact between the ski and the second



body simulating the binding of the leg to the ski. It can also be observed that the joint
constraints are fulfilled as well as the constraints related to the prescribed movement in
the orientation of the leg about the ski travel line.
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(f) Constraint C11

Figure 46. Constraints between the first and second body.



The last set of constraints shown are the ones related to the contact between the second and
third body as well as the prescribed constraint for the leg extension. Also, it is possible to
see how these constraints are nicely fulfilled. The results related to the second and third
cases are similar to these already presented.
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Figure 47. Constraints between the second and third body.
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