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The theory of electrolyte solutions was described by explaining Debye–Hückel 

theory and deriving the Debye–Hückel equation for the mean activity coefficient. 

Simple two-parameter Hückel equation was used for the calculation of the activity 

coefficients of aqueous hydrobromic and hydriodic acids up to 0.5  at 

temperatures from (0 to 60) °C and from (0 to 50) °C, respectively.  The 

parameters were observed to be independent of the temperature. The Hückel 

equation for the osmotic coefficients of water in the studied solutions was 

compared to that of Pitzer model by predicting the vapor pressures up to 1 

 at 25 °C. The experimental vapor pressures over the reference 

electrolyte solutions were calculated with the Pitzer equation for the osmotic 

coefficients for isopiestic data in this comparison. The simple Hückel model was 

found to be equally good as the Pitzer model for both hydrobromic and hydriodic 

acids up to 0.5  at 25 °C but applies also to other temperatures studied. 
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1 INTRODUCTION 

Thermodynamic models for electrolyte solutions are developed for describing 

mathematically the properties of solutions. Electrolyte solutions are used in 

various chemical processes and it is therefore important to have reliable models 

for the electrolytes. In addition, it is good to mention that physical chemists are 

faced with the need to predict thermodynamic properties of complex or hazardous 

electrolyte systems for which experimental data may not exist. In order to model 

electrolyte systems with high precision, all different types of interactions, such as 

ion-ion, ion-dipole, dipole-dipole, molecule-molecule, should be taken into 

account. In this bachelor’s thesis, the Hückel model was observed to apply to the 

activity coefficients of hydrobromic acid in aqueous solutions at least up to 

0.5  at temperatures from (0 to 60) °C and of hydriodic acid at least up to 

0.5 at temperatures from (0 to 50) °C. The main results of this thesis are  

published in an article of Partanen, Makkonen, and Vahteristo (2013). The data 

for the models are obtained from results of various electrochemical 

measurements. 

-1mol kg

-1mol kg

 

Both HBr(aq) and HI(aq) are strong uni-univalent electrolytes and thus only the 

ion-ion interactions need to be considered. The resulting Hückel model is also 

used to predict the vapor pressure and osmotic coefficient of electrolyte solutions, 

which are then compared to the vapour pressure and osmotic coefficient obtained 

from isopiestic data measured for these electrolyte solutions.  The details of the 

Hückel model and Debye–Hückel theory, on which the Hückel model is based, 

are also described. 

2 ELECTROSTATIC INTERACTIONS 

2.1 The Debye–Hückel model   

In 1923, physical chemists Peter Debye and Erich Hückel developed the first 

significant model for the electrostatic interactions between ions in aqueous 

electrolyte system (Debye and Hückel, 1923). Debye and Hückel postulated a 

local composition model that describes the thermodynamics of ideal solutions 
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with charged ions. The model considers ions as infinitely small hard spheres, i.e., 

points in solution space. Thus the ions have no volumes of exclusion. 

Electrostatic interactions between charged ions are long range interactions. The 

Debye–Hückel model does not describe the interactions between ions and water. 

In this model, the solvent (namely water) influences only through its relative 

permittivity and density. Thus, the space of interactions is called “dielectric 

continuum”.  

 

The reasons explained above give answer to the question why the Debye–Hückel 

model can not be used to describe completely complex and concentrated 

electrolyte solutions. However, the Debye–Hückel model describes accurately the 

activity coefficients in dilute and simple electrolyte solutions. The Debye–Hückel 

model itself is not used here to study the activity coefficients, but the models 

which are used in this study (such as the Hückel model), have a strong theoretical 

connection to the Debye–Hückel model. Currently, the advanced models for 

electrolyte solutions use a modified Debye–Hückel term for describing long-

range interactions in systems of electrolyte solutions (see Thomsen, 2005 and the 

recent COSMO (conductor-like screening molecule) adapted models, where 

contribution from short range interactions is calculated using quantum mechanics 

(Hsieh and Lin, 2010; Wang, Song and Chen, 2011; Ingram, Gerlach, Mehling 

and Smirnova, 2012)). Recently, a quantum mechanical polarizable continuum 

model purely for electrolytes called DESMO (Debye–Hückel-like screening 

molecule) with build-in Poisson–Boltzmann equation (theoretical backbone of 

Debye–Hückel equation, discussed later on) describing electrostatic interactions, 

has been published (Lange and Herbert, 2011). Next the derivation of Debye–

Hückel equation is shown based mostly on the description presented by Robinson 

and Stokes (1965). 

 

In the Debye–Hückel model, the electrostatic force (in vector form) that positive 

ion 1 exerts to an ion 2, is represented by Coulomb’s law of electrostatic 

interactions: 
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Let as consider that the charge distribution around ion i (central ion) has spherical 

symmetry. The relation between charge density e  around ion i, and the electrical 

potential ( )i i r   for a sphere with radius r around ion i is given by Poisson’s 

equation: 

2 e

0 r
i


 

                             (2.1.2) 

 
By applying the properties of sphere symmetry, 2  operator reduces to form 

shown in equation (2.1.3), which is easier to handle. 

 

2 e
2

0 r

1 idd
r

r dr dr

 
 

    
 

                                   (2.1.3) 

 

Due to the charges near to a cation, anions tend to be in excess and near to an 

anion cations tend to be in excess. The electrical potential energy of ions j, with 

the distance r from the ion i, is jz e i . Debye and Hückel assumed that the ions in 

the solution obey Boltzmann statistics. The distribution of the other ions  j around 

the ion i in origin can be described as follows: 

 

  exp j i
j i j

z e
c c

k T




 
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                                   (2.1.4) 
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Thus the charge density becomes: 

 

 e exp j i
j j i j j
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z e
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            (2.1.5) 

 

Substitution in equation (2.1.3) the Poisson–Boltzmann equation results in the 

following: 

2
2

0 r

1
expj j j ii

j

z c z edd
r e

r dr dr k T


 

       
   


B

             (2.1.6) 

 

The Poisson–Boltzmann equation can not be solved analytically because it does 

not follow the principle of linear superposition for the relationship between the 

number of charges and the strength of the potential field. However, this equation 

can be linearized using Taylor expansion for the Boltzmann factor. Taylor 

expansion for the exponential function is 

 

exp[ ] 1 , 0 1x x x                    (2.1.7) 

 

Applying this to equation (2.1.6) we get: 
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              (2.1.8) 

 

Due to the electrostatic neutrality of solution, the first summation is zero, and  

equation (2.1.8) simplifies: 



 

 

6

 

2 2
2
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              (2.1.9) 

 

Taking the constants as one term in equation (2.1.9) and denoting it as we get: 2

  

2 2

2
2

0 r

1
j j

ji
i i

e z c
dd

r
r dr dr k T

 2  
 

    
 


B

            (2.1.10) 

 

The constant , which is square of the Debye–Hückel inverse screening length, 

can be defined with the concentration scale ionic strength of the solution (= 

2

cI ) 

by: 

  

2 2

2 2
2 c c

0 r 0 r 0 r

2 2j j
j

e z c
e I F I

k T k T RT


     
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
B B

              (2.1.11) 

 

where 
As

96485.3
mol

F   is the Faraday constant, 
J

8.31451 
Kmol

R   is the molar 

gas constant, and cI  is defined the by: 

 

2
c

1

2 j j
j

I z c               (2.1.12) 

 

By using the product rule for differentiation, the equation (2.1.10) can be written 

in the form: 

 

2
2 2

2 2

1
2 i i

i

d d
r r

r dr dr

   
 

  
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            (2.1.13) 

 

The equation (2.1.13) can be simplified further to see that it is a linear second 

order homogenous differential equation: 
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0i i

i

d d
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                   (2.1.14) 

 

Equation (2.1.14) can be easily solved by eliminating the first order derivative 

id

dr


 using a substitution method shown below: 
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Thus after substitution the equation (2.1.14) becomes: 

 

 

2
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3 2

2

2 2

'' 2 ' 2 2 '
0

'' 0
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exp( ) exp( )

z r z r z z r z z

r r r r

z z
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



 
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 

  
  

  


  
   

                       (2.1.15) 

 

Since physical reality dictates that the potential must remain finite when r 

approaches to infinity. Remembering i

z

r
  , the solution to equation (2.1.14) can 

be written from the last line of equation bundle (2.1.15) in the following way: 

 

  expi

A
r

r
                (2.1.16) 
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The integration constant A depends on physical conditions of the electrolyte 

solutions. From equations (2.1.16), (2.1.11) and (2.1.5), the following equation 

can be obtained for the charge density: 

 

 
2

e expA r
r

                  (2.1.17) 

 

where 0 r   . 

 

Let say that the central ion i has the charge number . The electrical neutrality 

condition dictates that net charge in the whole solution outside the central ion i 

is , and the charge at space outside the singled out ion has opposite to sign 

compared with the central ion. Assuming that there is a certain radius  around 

the central ion i inside which no ion can not exist (see Figure 1 for schematic 

presentation). This means that the charges outside the central ion are distributed 

on shells having radius gradually larger than  and the number of these cells 

infinite. Summing the charge densities of these shells throughout the solution 

space gives exactly the same charge as the central ion, but opposite in sign. This 

can be expressed by the following integral: 

iz

iz e

*a

*a

 

*

2
e4 i

a

r dr z 


e               (2.1.18) 

 

where   is the volume of a shell with radius  and thickness  . 

Substituting the charge density 

24 r dr r dr

e  from equation (2.1.17), we get: 

 

 
*

2 4 exp i

a

A r r dr   


  z e             (2.1.19) 

 

Integrating by parts or using the integral formula 
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   
2

exp
exp ( 1)

ax
x ax dx ax

a
              (2.1.20) 

 

we get the following result to constant A: 

 

*

*

exp

4 1
i

az e
A

a



 

  


             (2.1.21) 

 

Substituting (2.1.21) in to (2.1.16) we get the following equation for the potential: 

 

 *

*

exp exp

4 1
i

i

a rz e

a r

 


 

   


            (2.1.22) 

 

This Debye screened potential is the expression for the time average potential at 

point with a distance  from the ion i. The closest distance between ion pairs in 

the solution space is . Because ions are assumed to be charged dots (spheres 

with zero radius)  is not the actual radius of an ion, but is an extended distance 

caused by the electrostatic interactions and water molecules surrounding the ion. 

Thus the ions in the solution space can be described as hard spheres with radius 

, assuming that spherical symmetry holds. Experimental studies show tha *a  

is usually larger than actual radius of an ion, because of the attached water 

molecules. The schematic view of ions in solution described the Debye–Hückel 

model is presented in Figure 1. 

r

*a

*a

*a t 
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Figure 1. Schematic view of two ions in solution space described by the Debye–Hückel model, 

where a* is the distance of closest approach and R’ is the actual radius of an ion. The sizes of ions 

are over emphasized for clarity. 

 

Let us then study how the electrostatic interactions between ions contribute to the 

Gibbs free energy of the electrolyte solution by imagining a large volume of 

extremely dilute electrolyte solution. Let us remove the charges of ions, and the 

energy required to do this being equivalent to work . Next the discharged 

“ions” are transferred reversibly at a constant temperature to a new, actual 

volume of the solution. This is the non-electric contribution to the change of 

Helmholtz free energy noted as

1w

nonelectricalA . In this new solution, the average 

concentration of the discharged ion species is . In the third part of this Debye 

charging process (ions treated as classical capacitors) we recharge the ions 

simultaneously to their previous (real) charge levels. The energy of this part of 

the process is set to be equal to work . Now we can write the following 

equation for the change of Helmholtz free energy 

c

3w

 

electrical nonelectricalA A A                                               (2.1.23) 

 

where the term non-ideality describing can be written as follows: electricalA

 

electrical 1 3A w   w              (2.1.24) 
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For the work , the central ion i is influenced by the potential given in a 

equation (2.1.22). For calculating the work  for ion i, we must omit from 

(2.1.22) the potential due to ion i . The potential for ion i without interactions is  

3w

3w

 

own 1

4
i

i

z e

r



              (2.1.25)  

 

Thus, the potential associated with the work  is 3w

 

 *

own
*

exp
1

4 1
i

i i

a rz e

r a


  

 

       
 

 
           (2.1.26) 

 

Since  is the closest distance between the central ion i and any other ion in the 

solution and due to the sphere symmetry, the potential caused by the other ions 

inside a sphere with the radius  must be constant. This can be calculated by 

setting   to equation (2.1.26). This leads to equation 

*a

r

*a

*a

 

other ions
* 1

1

4 1
i

i

z e

a


 
     

            (2.1.27) 

 

where additionally is denoted that 1  , which is the Debye–Hückel inverse 

screening length. In this calculation, we need the potential difference between the 

shield where  is , and the potential associated with the ion i itself.  This work 

is given by 

r *a

 

 other ions own
3,

0

iz e

i i iw d    iq             (2.1.28) 

 

and for the work  for ion i can be expressed as 1w
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 
0

own
1,

i

i i

z e

w d  iq

i

             (2.1.29) 

 

In equations (2.1.28) and (2.1.29),  is the charge differential during removing 

and restoring the charges. Summing (2.1.28) and (2.1.29) and using some 

calculus, we get for the total work equation 

idq

 

 other ions
3, 1,

0

iz e

i i iw w dq               (2.1.30) 

 

At any time during the process for the equation (2.1.30), the fraction of the final 

charge possessed any ion j in the solution can be defined in the following way. 

Let us set the charge for ion j to be j jq z e , where  is a bounded parameter 

varying from 0 to 1. From this definition results for the charge differential 

that j jdq z ed . Additionally during the charging process, we must replace   in 

equation (2.1.11) by 1 . Substituting these results into (2.1.30) and summing 

over all the ions  j we get: 

 

2 2 1 2

3 1 A * 1
04 1

j
j

j

z e
w w N n d

a

 
    

             (2.1.31) 

 

where  is the Avogadro number and   the amount of ion  j. Applying the 

partial fraction method in the integration, we get the final form for the change in 

Helmholtz free energy concerning electrostatic interactions: 

AN jn

 

*
2

electrical 12 j j
j

Fe a
A 

 
 

   
 

 z n             (2.1.32) 

 

where the function   is defined by equation 

 



 

 

13

  
 

   2

3

3
ln 1

2

x
x x x

x


 
    

  
                      (2.1.33) 

 

electricalA  in equation (2.1.32) is also called the molar excess Helmholtz free 

energy for solution of charged ions. It considers the non-ideality of long-range 

electrostatic forces, but it does take into account the non-ideality caused by short-

range forces such as molecule-molecule interactions.  

 

From Helmholtz free energy, we get the chemical potential of species i at 

constant temperature and constant volume: 

 

, , i j

i
T V ni

A

c V




      
             (2.1.34) 

 

Substituting equation (2.1.31) to equation (2.1.33) leads to the following 

equation: 

  

*
2

,electrical

, ,
12

i j

i
ji T V n

Fe a
z c

c
 

  j j



   
      

             (2.1.35) 

 

Remembering equation (2.1.12) and after long differentiation procedure, we get 

the final equation for electrical interactions contributing to the chemical potential: 

 

2

,electrical * 1

1

8 1
i

i

z Fe

a


 

     
                                (2.1.36) 

 

For ideally dilute electrolyte solution, the chemical potential of ion i on a 

concentration scale is the following: 

 

ideallydilute 0
0

ln i
i i

c
RT

c
      

 
            (2.1.37) 
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Considering the chemical potential in a real solution, it is necessary to take into 

account term, which describes the non-ideality. The term is called the excess 

chemical potential. For ion species i, the excess chemical potential is denoted as 

 . The chemical potential of ion i in a real solution can then simply be 

written as a sum of ideal and non-ideal terms: 

excess
i

 

ideally dilute excess
i i i                 (2.1.38) 

 

The activity coefficient of ion i on the concentration scale is defined by using 

excess chemical potential in the following way 

 

 excess
,lni iRT c               (2.1.39) 

 

Since the non-ideality is caused by electrostatic interactions, equation (2.1.38) 

can be written as follows: 

 

ideally dilute
,electricali i i                 (2.1.40) 

 

From equations (2.1.36), (2.1.39) and (2.1.40), it is easy to discover the 

connection between the activity coefficient and electrostatic interactions: 

 

 
2

,c * 1

1
ln

8 1
i

i

z Fe

RT a


 

     
            (2.1.41) 

 

Obtaining  from equation (2.1.11) and replacing1  1   , we get the Debye–

Hückel model for the activity coefficient of ion i : 

 

 
2

c c
,c *

c c

ln
1

i
i

z I

a I





 


             (2.1.42) 
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where 
 

2

c 3/2

2

8

F e

RT


 
   and 

 c 1/2

2F

RT



 . For further use, it is preferable to 

change the ionic strength cI  to a more useful quantity that is the ionic strength on 

the molality scale ( mI ). mI  is more reliable, because the volume of solution can 

vary when temperature changes, but the mass of the solvent remains the same. 

The equation for mI  is analogous to that of equation (2.1.12), and the 

concentration is simply replaced by the molality. The concentrations of ion i in 

dilute solutions can be expressed as 

 

*
*A
A

A

i
i i

n
c m

w

                (2.1.43) 

 

where *
A  is the density of solvent,   is the mass of the solvent, and  is the 

molality of the ion i . Substituting these results to (2.1.42) gives  

Aw im

 

 
2

m
,m *

m

ln
1

i
i

z I

a I





 


             (2.1.44) 

 

 where 
 

* 2
A

3/2

2

8

F e

RT




 
   and 

 

*
A

1/2

2 F

RT





 .  

 

After derivation of the Debye–Hückel model for ion i, it is good to derive also the 

equation for a strong electrolyte. It dissociates in the following way: 

 

 M X

M X M X
z z

v vM X v M v M              (2.1.45) 

 

 

 

M

M

X

X

cation

number of cations in the electrolyte

charge number of the cation positive

anion

number of anions in the electrolyte

charge number of the anion negative

M

v

z

X

v

z
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For this electrolyte: 

 

              (2.1.46)    MM X
M X

vv v  
  Xv

 

After taking the natural logarithm from both sides of the equation (2.1.46), we 

get: 

 

       M X M M X Xln ln lnv v v v                (2.1.47) 

 

Substituting equation (2.1.44) into equation (2.1.47), the result is: 

 

    m 2 2
M X M M X X*

m

ln
1

I
v v v z v z

a I




      
           (2.1.48) 

 

Simplifying equation (2.1.48) and taking into account electrical neutrality 

condition 

 

              (2.1.49) M M X X 0v z v z 

 

we get the final form of the Debye–Hückel equation for mean molal activity 

coefficient of the electrolyte considered: 

 

   M X m

*
m

ln
1

z z I

a I




  


             (2.1.50) 

 

2.2 The Debye screened potential from Statistical Mechanics 

The Debye screened potential in Chapter 2.1 was derived classically by 

introducing Boltzmann distribution for charge density and plugging it into 

Poisson equation and then solving the screened potential with given boundaries. 

The result is presented in equation (2.1.22). This (and the entire Debye–Hückel 
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model) can be derived using purely statistical mechanics, namely solving the 

integral equations of ion interactions in dielectric continuum media (Kirkwood 

and Poirier, 1954; Lee, 2008; Xiao and Song, 2011). This is presented by the 

Ornstein–Zernike integral equation: 

 

       MX MX X Mr ' r r ' dr'l l l
l

h r c r c h   
   

           (2.2.51) 

 

 
 

 

MX

MX

X

total correlation function between cation M and anion X

direct correlation function between cation M and anion X

ion in solution space, can be cation or anion

density of species 

r ' indirect 
l

l

h r

c r

l

l

c




 M

correlation function between anion and 

r r ' indirect correlation function between cation and l

l

h l
 

 

 

The equation (2.2.51) is exact, if correlation functions are known. Generally, this 

is not the case and even if they are known, however, the integrals are too 

complicated to be solved analytically. For deriving Debye screened potential, low 

concentration conditions and Boltzmann distribution have to be assumed. From 

equation (2.1.1), we can find the Coulombic potential: 

 

 
2

1 2( )
z z e

u r
r              (2.2.52) 

 

where for simplicity 
0 r

1

4  
 . Thus, the direct correlation function between 

cation and anion can be approximated to be 

 

  
2

M X
MX

B B

( ) z z eu r
c r

k T k T r
                (2.2.53) 

 

and the corresponding indirect correlation function is 
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  
2

X
X

B B

( )
'

'
l

l

z z eu r
c r

k T k T r
   


            (2.2.54) 

 

The total correlation function between cation and anion (or generally the total 

correlation function for any particles) is defined via radial distribution function 

 as follows:  g r

 

    MX 1h r g r               (2.2.55) 

 

Now using the radial distribution function, namely the Boltzmann factor in 

equation (2.1.4) and Taylor expansion (2.1.7), we can approximate equation 

(2.2.55): 

 

   M M
MX X Xexp ( ) 1 ( )

z e z e
h r r r

k T k T


 
     

 B B

                      

(2.2.56) 

 

and for the indirect correlation: 

 

   M
M r r ' r r 'l l

z e
h

k T
   

B

                                                    (2.2.57) 

  

Plugging these into (2.2.51) gives: 

  

 

 

22
XM M X M

X
B B

2 2
M X X M

M X

( ) r r ' dr'
'

( ) r r ' dr'
'

l
l l

l

l
l l

l

z z ez e z z e z e
r

k T k T r k T r k T

z z e z z e z e
z e r

r r k T

 

 

   

   

    

     

 

 

B B

B

  

  

 

 

Now let us try to guess the solution with a help of charge free radial term f : 

 

    ( ) ( ) and r r ' r r 'l l l lr z ef r z ef       
   

                (2.2.58) 
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Substituting these into equation (2.2.58) and simplifying: 

 

 
   2 r r ' dr'1

( )
'

l
l

l

fz e
f r

r k T r



    

B

  

           (2.2.59) 

 

Remembering the equation for the Debye-inverse screening length, the equation 

above becomes: 

 

 2 r r ' dr'1
( )

4 '

f
f r

r r





    

  

            (2.2.60)  

 

The integral can be written as convolution of two functions ( )f f r  and 

1
( )f f r

r   : 

 

  
21

( ) ( )
4

f r f
r 




     f r                                 (2.2.61) 

 

Taking three dimensional Fourier transform of (2.2.61), we get: 

 

 
2

(k) (k) (k) (k)
4

F F F F



                                                (2.2.62) 

 

where k is the inverse space of r. Now it is easy to solve : (k)F

 

 
2

(k)
(k)

1 (
4

F
F

F






k)





             (2.2.63) 

 

One can do the transforms by integrating; using the following formulae (Hankel 

transforms), which are Fourier transforms in sphere symmetrical space: 
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0

4
(k) ( ) sin(k )

k
r r r dr

 

                                   (2.2.64) 

 3
0

4
( ) (k)k sin(k ) k

2
r

r






    r d            (2.2.65) 

 

Thus using equation (2.2.64) for 
1

( )f r
r    yields:  

 

 

 

0

0
0

(k) (k)

4 1
sin(k )

k

4
lim exp sin(k )

k s

F

r r dr
r

sr r dr

















 







  

 

where  exp sr  is introduced so that  converges when , and 

enabling to calculate the integral with Laplace transform. Taking Laplace 

transform of the integral gives: 

(k)F r 

 

 
2 2 20

4 k
(k) lim

k ks
F

s
4

k

 


    
 

 

Plugging this into (2.2.63) gives: 

 

 
2 2

4
(k)

k
F







                                 (2.2.66) 

 

The inverse transform can be calculated plugging (2.2.66) into (2.2.65): 
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 

 

3 2 2
0

2 2
0

4 4
( ) k sin k k

k2

2 k sin k
k

k

exp

f r d
r

d
r

r

r

 


 







 
 
    









  

 

Thus for the potential 

 

 
 exp

( )l l

r
r z e

r


 


                                  (2.2.67) 

 

and furthermore 

 

 
 exp

( )
4

i
i

rz e
r

r







              (2.2.68) 

 

This is exactly the Debye screened potential in equation (2.1.22) when is zero. 

The distance of closest approach can be easily introduced into (2.2.68), by 

multiplying (2.2.68) with a constant, let say A’ and doing the same rumbling as in 

chapter 2.1 starting with the charge density integral (2.1.18). Ultimately the final 

outcome is the same as equation (2.1.22). From this point on thermodynamics 

would be introduced, which also can be done with statistical mechanics. 

*a

 

This chapter was included to show that there is a concrete background behind 

Debye–Hückel theory, which stands still in critics. The theory is studied even 

currently and different derivation methods have been presented. Recently an 

elegant derivation of Debye–Hückel theory was presented by Xiao and Song 

(2011), by building a connection between Maxwell’s equations and dispersion 

relation, which is familiar equation in the field of modern optics. Mathematically 

the most correct derivation, according to author’s knowledge, is the one presented 

by Li (2009). 
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 2.3 The Hückel model   

 

The Hückel model is an adaptation of the Debye–Hückel model. It contains one 

additional term, i.e, 1 0

m
b

m
 where  depends on the electrolyte. Hückel (1925) 

added this term because he believed that the permittivity of the electrolyte 

solution is a linear function of the ionic strength. Although this has been proven 

to be incorrect (Helgeson, Kirkham and Flowers, 1981), the Hückel model is a 

major improvement to the Debye–Hückel model and it gives good values for 

activity coefficients even in medium high molalities. This equation can be 

presented in the form 

1b

 

  M X m m
1 0*

m

ln
1

z z I I
b

ma I





       

            (2.3.69) 

 

The equation was also discovered by Helgeson, Kirkham, and Flowers (1981), 

but from different reasoning. They started with the Debye–Hückel model (2.1.50) 

and replaced the Helmholtz free energy used by Debye and Hückel with the one 

discovered by Born (1920). The Born term in equation (2.3.70) describes the 

electrostatic interactions contributing to the Helmholtz free energy of ion i. 

 

2 2

08
i

r i

Z e
A

r 
                         (2.3.70) 

 

The detailed derivation of the Hückel model using the Debye-Hückel model, and 

the Born term can be found in the article of Helgeson, Kirkham, and Flowers 

(1981). 

 

In this work, the thermodynamic properties of aqueous hydrobromic and 

hydriodic acids were studied. HBr and HI are uni-univalent electrolytes, which 

means that hydrogen ion has the charge number +1 and bromide and iodide ions 

have the same charge number, but opposite in sign. Taking this into account and 
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replacing term *a  with a parameter B that is related to the size of the solvated 

ions, equation (2.3.69) reduces to: 

 

  1 0
ln

1

m m
b

mB m

 
       

            (2.3.71) 

 

This is the final form of the Hückel model used in this study. The parameters 

B and  proved to be independent of temperature and were obtained using linear 

regression analysis from galvanic cell data via Nernst equation, see below. Thus 

the only temperature dependent parameter needed is the Debye–Hückel 

parameter

1b

 . 

2.4 The Pitzer model 

One of the most often used models for electrolyte solutions is nowadays the 

Pitzer model (Pitzer, 1973). The model is intended to work over a wide range of 

electrolytes, temperatures, pressures and over of wide range of molalities by 

introducing empirically obtainable virial coefficients. In this study, the Pitzer 

model is used in comparison with the Hückel model. The basic equation of the 

Pitzer model is the definition of excess Gibbs free energy by means of virial 

coefficients. This is explained in more details later. Here the activity coefficient 

equations are first introduced. 

 

For activity coefficient of a uni-univalent electrolyte, the Pitzer equation has the 

following form (Pitzer, 1973): 

 

      20 3
ln / /

2
0f B m m C m m                  (2.4.72) 

 
0

00

2
ln 1 1.2

3 1.21 1.2 /

m m
f

mm m

  m  
    

   
              (2.4.73) 

1 0
0

0 0

2
2 1 exp 2 1 2

2

m m m
B

m m m
 

0

m

m

                  
       (2.4.74) 
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where f  is the Debye–Hückel term, see equation (2.1.50). It sometimes 

mentioned as the Pitzer–Debye–Hückel term and it is general. B  is a function 

that depends on the electrolyte. Parameters 0 , 1  and C  are specific for each 

electrolyte. 

3 PROPERTIES OF REVERSIBLE CELLS  

In order to understand the electromotive-force measurements, one must 

understand the thermodynamics of the galvanic cells without liquid junctions. 

These electrochemical measurements are widely used and most precise methods 

but not without problems. For instance the materials of the electrodes have to be 

of top quality and the solubility of the electrode material into the electrolyte 

solution has to be taken into account.    

3.1 Harned cell 

 

The Harned cell introduced by Harned and Ehlers (1932; 1933) is a cell used very 

often in high quality studies of hydrochloric acid in aqueous solutions. It is a 

hydrogen–silver silver chloride cell: 

 

( ) ( )
2H ,Pt HCl(aq) | AgCl Ag                      (A)

                                 

where platinum–hydrogen electrode is the anode. The platinum–hydrogen 

electrode is also called standard hydrogen electrode, when the partial pressure of 

hydrogen inside the electrode equals to . This condition is most 

often used in practical studies. The half cell reaction for the standard hydrogen 

electrode is the following: 

0 101.325 kPap 

 

2

1
H (g) H (aq) e

2
                                    (3.1.75) 
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The cathode in the Harned cell is the silver–silver chloride electrode for which 

the half cell reaction can be presented as 

 

AgCl(s) e Ag(s) Cl (aq)                                    (3.1.76) 

 

The full cell reaction is sum of reactions (3.1.75) and (3.1.76) in the way that 

electrons cancel each other: 

 

2

1
H (g) AgCl(s) H (aq) Ag(s) Cl (aq)

2
                (3.1.77) 

 

In order to study the electromotive force of the cell, we have to use the Nernst 

equation: 

 

0 (molal activities of the products)
ln

(molal activities of the reactants)

RT
E E

nF

 
   

  




         (3.1.78) 

 

where  is the standard electromotive force and  is the number of cancelled 

electrons in moles. The molal activity of substance i is . For reaction (3.1.77), 

the Nernst equation has the form 

0E n

( )a i

 

+ -
0

1/2
2

(H ) (Cl ) (Ag)
ln

(AgCl) (H )

RT a a a
E E

F a a

 
   

 
            (3.1.79) 

 

Taking into account that activity for each pure solid phase is 1 and also changing 

the notations: 

 

 
 

 
2

+ 0
M M

0
X X

1/20
2 H

(H ) /

(Cl ) /

(H ) / 1 for standard hydrogen electrode

a m m

a m m

a p p









 

 

 

we get the Nernst equation into the following form: 
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 
0 M X M X

20
ln

m mRT
E E

F m

  
  
 
 

            (3.1.80) 

 

Remembering equation (2.1.46) and noting that Mm m mX  , the Nernst 

equation simplifies after some logarithmic operations to the following, final 

equation: 

 

0
0

2
ln

mRT
E E

F m

      
             (3.1.81) 

 

This equation is valid for galvanic cells used to measure aqueous hydrobromic 

and hydriodic acids, since both of these electrolytes are uni-univalent, like 

hydrochloric acid. 

3.2 Hydrogen–silver bromide cell 

 

The main cell which is used to study thermodynamics of hydrobromic acid is the 

hydrogen–silver bromide cell: 

 

( ) ( )
2H ,Pt HBr(aq) | AgBr Ag                      (B) 

 

where the standard hydrogen electrode is the anode and the silver–silver bromide 

electrode is the cathode. In this study, the electromotive force data obtained for 

hydrogen–silver bromide cells by Harned, Keston and Donelson (1936); Hetzer, 

Robinson and Bates (1962); and Macaskill and Bates (1983). Biermann and 

Yamasaki (1955) stated that the solubility of silver bromide in concentrated 

hydrobromic acid is significant, and in the three molal solution the equilibrium 

was achieved not earlier than after three days. Thus their data used in this study 

are limited to a molality of 2.017 . The cell reaction is analogous to that -1mol kg
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presented in chapter 3.1. The silver chloride is only replaced by silver bromide 

and the chloride ion by bromide ion.  

 

3.3 Hydrogen–silver iodide cell 

 

Hetzer, Robinson, and Bates (1964) studied the thermodynamics of hydrogen –

silver iodide cell: 

 

( ) ( )
2H ,Pt HI(aq) | AgI Ag                    (C) 

 

where the standard hydrogen electrode is the anode and the silver-silver iodide 

electrode is the cathode. In these data, it is good note that the absolute value of 

electromotive force is relatively small through the used temperature range from (0 

to 55) ºC. When the hydriodic acid molality is close to 0.06 , the 

electromotive force changes from positive to negative, meaning that at this point 

the solution is not conductive. This is problematic since the value of 

electromotive force closes to the precision of the measurement.  However, this is 

not commented in the article. According to Hetzer, Robinson and Bates (1964), 

the solubility of silver iodide into the HI solution was significant when the 

quantity of this electrolyte was higher than 0.2 . The data were used for 

studying the thermodynamic properties of hydriodic acid. Also for this cell the 

reactions are analogous to those presented in chapter 3.1 for HCl. 

-1mol kg

-1mol kg

 

3.4 Hydrogen–mercurous bromide cell 

Gupta, Hills, and Ives (1962) studied the thermodynamic properties of HBr 

solutions by measuring the electromotive forces of hydrogen–mercurous bromide 

cell: 

 

( ) ( )
2 2H ,Pt HBr(aq) | Hg Br Hg

2
                     (D) 
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where the standard hydrogen electrode is the anode and the mercury–mercurous 

bromide electrode is the cathode. The half cell reaction for the anode is same as in 

the cells mentioned above, but that the half cell reaction for cathode differs and 

has the form 

 

2 2

1
Hg Br (s) e Hg(s) Br (aq)

2
                (3.4.82) 

 

However, the full cell reaction gives the same Nernst equation as that presented in 

(3.1.81), since the activity of  is 1. One of the characteristics of this 

cell is short operational range. According to Gupta, Hills and Ives (1962) mercury 

in the mercurous form takes part in anionic complexes with bromide ions. This 

was problematic and has disturbed the electromotive-force measurements. The 

short operational range of this cell is due to the fact that if hydrobromic acid 

concentration is increased, there will be more bromide anions in the form of 

complex anions. This group stated that 0.2  is the upper limit for the 

HBr molality. Measurements in higher molalities would not be reliable. The data 

were used for studying the thermodynamic properties of aqueous hydrobromic 

acid. 

2 2Hg Br (s)

-1mol kg

4 REGRESSION ANALYSIS WITH THE GALVANIC CELL DATA  

In order to perform linear regression with the cell data, the equation for the mean 

activity coefficient has to be introduced into the Nernst equation. The procedure 

used in this study is the same as that presented by Partanen and Covington 

(2002a; b) and by Partanen, Juusola, Vahteristo and de Mendonça (2007) for 

hydrochloric acid. Substituting the Hückel equation (2.3.71) into equation 

(3.1.81) gives 

 

  0
1 0

2
ln

1

RT m m m
E E b

F mB m

                     
0m

              (4.83) 
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Rearranging terms we get: 

 

 0
1 0 0

2 2
ln

1

RT m RT m m
E b E

F m F m B m

                
              (4.84) 

 

Generally, it is known that the parameter B  is often lying between 1.2 and 

1.7  . Let the left-hand side of equation (4.84) to be defined as 

quantity y as follows: 

-1/2-1mol kg

 

 
0

2
ln

1

RT m m
y E

F m B m

         
               (4.85) 

 

where   is the parameter depending on temperature. Listed values of   at 

various temperatures are presented in Appendix IV. Linear regression of y with a 

fixed value of B against the molality of the electrolyte enables us to calculate the 

error of each experimental point. From these values, the standard error for the set 

under consideration can be obtained and it is denoted as S(y). Parameter B was 

chosen so that S(y) is minimized, and also some aspects associated with the actual 

sizes of cation M and anion X of the electrolyte were taken into account in this 

choosing (Bates and Bower, 1954). The values of parameter B seems to be 

reasonable to report with two significant digits. 

4.1  Aqueous hydrobromic acid 

 

The method mentioned in the previous chapter is first applied to aqueous 

hydrobromic acid data. For these data the lowest standard error 0.148 mV was 

obtained with B value 1.5  -1/2-1mol kg  from the data of Macaskill and Bates 

(1983) at 25 ºC. The B values and corresponding standard errors used in 

determination are presented in Table 1.  
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Table 1. Values of parameter B and the corresponding standard error S(y) obtained from the data 

measured by Macaskill and Bates (1983) on cell (B) for aqueous hydrobromic acid at 25 ºC. 

 -1/2-1mol kgB     S(y) [mV] 

1.2 0. 582 

1.3 0. 360 

1.4 0. 173 

1.5 0. 148 

1.6 0. 301 

1.7 0. 473 

 

he values presented in Table 1 are also plotted in Figure 2. 

 

T

 

 
Figure 2. The standard error S(y) as a function of B (red dots) obtained from data of Macaskill 

points are situate

 

and Bates (1983) on cell (B) for aqueous hydrobromic acid at 25 ºC. It can be seen that B value 

1.5  -1/ 2-1mol kg gives the lowest value for standard error. The drawn parabola describes how the 

calculated d on B,S(y) plane.  
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From equations (4.84) and (4.85), it can obtained the following for a straight line 

 

0
1 0

2RT m
y E b

F m
    
 

              (4.1.86) 

 

rom the performed linear regression data, the value of parameter  is given by F 1b

equation 

 

1 slope
2

F
b

RT
    
 

              (4.1.87) 

 

he standard error of parameter  is T 1b

 

   1 slope
2

F
S b S

RT
   
 

                                  (4.1.88) 

 

rom equations (4.1.87) and (4.1.88), it was determined from data of Macaskill F

and Bates (1983) at 25 ºC that 1 0.348 0.002b   . Preliminary calculations 

revealed that these parameter values data. To show this, the 0E  

values for each data set must be determined to be the best values. The standard 

electrode potential 0E  by linear optimization using equation (4.83) and setting 

the sum of all errors  cell equal to zero, i.e. 

 

apply to all HBr 

of

 measured calculated

cell potential error 

0
E

E E


 
              (4.1.89) 

 

here the sum goes through all data points,  is the right-hand side of w calculatedE

ted as(4.83), and the cell potential error is deno  E . Using parameters 

 -1/2-11.5 mol kgB    and 0.384b1   the cell poten  errors tial E  were 

ills, and Ives (1963), Harned, K on, and 

Donelson (1936), Hetzer, Robinson, and Bates (1962), and Macaskill and Bates 

determined from the data of Gupta, H est

(1983), and these errors are presented in Figures 3–6, respectively. 
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Figure 3. The cell potential errors in millivolts as a function of the molality for aqueous 

hydrobromic acid at temperatures (5 to 20) ºC from the data of Gupta, Hills and 963). Ives (1

Green solid circle, 5 ºC; diamond, 10 ºC; solid diamond, 15 ºC; red diagonal cross, 20 ºC. It can 

be seen that the absolute potential errors are lower than 0.25 mV and that there are no trends. 
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Figure 4. The cell pontential errors in millivolts calculated as a function of molality for aqueous 

hydrobromic acid at temperatures (25 to 45) ºC from the data of Gupta, Hills and Ives (1963). 

Circle, 25 ºC;  green solid circle, 30 ºC; diamond, 35 ºC; solid diamond, 40 ºC; red diagonal cross, 

45 ºC. It can be seen that the absolute potential errors are lower than 0.5 mV and that there are no 

trends. 
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Figure 5. The cell potential errors in millivolts calculated as a function of molality for aqueous 

hydrobromic acid at temperatures (0 to 25) ºC from the data of Harned, Keston and Donelson 

(1936). Circle, 0 ºC; green solid circle, 5 ºC; diamond, 10 ºC; solid diamond, 15 ºC; red diagonal 

cross, 20 ºC; box, 25 ºC. It is noticeable that there are trends in all temperatures on molality range 

[0.5, 1.0] . Also the cell potential error exceeds 0.5 mV at temperatures 20 and 25 ºC at 

molality 1 . These results suggest that the data of Harned, Keston and Donelson (1936) 

are described only up to 0.5

1mol kg

1mol kg

1mol kg  with the chosen parameters for the Hückel equation. 
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Figure 6. The cell potential differences in millivolts calculated as a function of molality for 

aqueous hydrobromic acid at temperatures (30 to 60) ºC from the data of Harned, Keston and 

Donelson (1936). Circle, 30 ºC; green solid circle, 35 ºC; diamond, 40 ºC; solid diamond, 45 ºC; 

red diagonal cross, 50 ºC; box, 55 ºC; cross, 60 ºC. Again trends are noticeable at all temperatures 

in the molality range [0.5, 1.0] 1mol kg

1l kg

. The cell potential error exceeds 0.75 mV at all 

temperatures at the molality 1 mo 

mol kg

. In the same way as in Figure 5, the results obtained here 

suggest that with the chosen parameters the Hückel equation describes the data of Harned, Keston 

and Donelson (1936) only up to 0.5 1 . This can result from systematic measurement error 

in the data of Harned, Keston and Donelson (1936) between molalities 0.5 and 1 1mol kg . Thus, 

in further studies above 0.5 1kgmol  it is necessary to determine the upper limit of the new 

model. 
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Figure 7. The cell potential errors in millivolts calculated as a function of molality for aqueous 

hydrobromic acid at temperatures (0 to 20) ºC from the data of Hetzer, Robinson and Bates 

(1963). Circle, 0 ºC; green solid circle, 5 ºC; diamond, 10 ºC; solid diamond, 15 ºC, red diagonal 

cross, 20 ºC. No trends are observed and absolute values of cell potential errors are below 0.35 

mV. 
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Figure 8. The cell potential errors in millivolts calculated as a function of molality for aqueous 

hydrobromic acid at temperatures (25 to 50) ºC from the data of Hetzer, Robinson and Bates 

(1963). Circle, 25 ºC; green solid circle, 30 ºC; diamond, 35 ºC; solid diamond, 40 ºC; red 

diagonal cross, 45 ºC; box, 50 ºC. No trends are observed and absolute values of cell potential 

errors are below 0.35 mV. 
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Figure 9. The cell potential differences in millivolts calculated as a function of molality for 

aqueous hydrobromic acid at temperature 25 ºC from data Macaskill and Bates (1983). Absolute 

values of cell potential differences are below 0.20 mV.  

4.2  Aqueous hydriodic acid 

 

The same procedure as that used above for the data of aqueous hydrobromic acid 

was done to the data of aqueous hydriodic acid. For hydriodic acid at 35 ºC, the 

standard error of 0.0494mV was obtained with B value 1.6   from 

data of Hetzer, Robinson and Bates (1964). However, the B value of 

1.5   gave a smaller standard error of 0.0488 mV. The former value 

was chosen because parameter B is associated with the size of ions in aqueous 

solutions (it is related to the distance of closest approach , see above) and the 

Shannon effective radius of iodide ion is larger than bromide ion. These radii are 

2.2 Å and 1.96 Å, respectively (Shannon, 1976). Thus, the  for iodide ion can 

be assumed to be bigger and therefore larger B was chosen. However, it is 

important that the Shannon effective radii for ions have been determined using x-





-1/2-1mol kg

*

-1/2-1mol kg

*a

a
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ray crystallography from solid materials. Thus they are not equal to the radii of 

dissolved ions in water. The B value 1.6  -1/2-1mol kg  is also strongly supported 

analysis made at temperature 40 ºC, with smaller standard error (0.0709 mV) than 

that of B value 1.5  (0.0762 mV). Since there was 26 data points at 

temperature 40 ºC (18 points at 35 ºC), and the molality range goes up to 1 

 (only up to 0.15  at 35 ºC), the results obtained at temperature 

40 ºC are emphasized. Different B values and corresponding standard errors are 

resented in Table 2. 

-1/2-1mol kg

mol kg

-1/2-1g 


-1mol kg

B

-1

  

Table 2. Values of parameter B and the corresponding standard error S(y) obtained from the data 

of Hetzer, Robinson and Bates (1964) on cell (C) for hydriodic acid at 35 ºC and at 40 ºC. 

mol k 
 S(y) [mV] at 35 ºC S(y) [mV] at 40 ºC 

1.2 0.0591 0.2545 

1.3 0.0539 0.1856 

1.4 0.0503 0.1234 

1.5 0.0488 0.0762 

1.6 0.0494 0.0709 

1.7 0.0520 0.1087 

 

The values presented in Table 2 are also plotted in Figure 10. 
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Figure 10. The standard error S(y) plotted as a function of B (red dots) obtained from data of 

Hetzer, Robinson and Bates (1964) for aqueous hydriodic acid at 35 ºC on the left and those 

obtained at 40 ºC (orange dots) on the right. It can be seen that B value 1.5 gives the lowest value 

for standard error at temperature 35 ºC, but not at 40 ºC. As mentioned above, B value 1.6 was 

chosen, since iodide is known to be larger than bromide from crystallographic data of solids 

(Shannon, 1976), and because at 40 ºC value 1.6  -1/2-1mol kg works better. The drawn parabolas 

describe how the calculated points are situated on B,S(y) planes. 

 

For parameter  three good candidates were obtained: , 

 and 

1b

 

1(1) 0.3897 0.0013b  

1(2) 0.3886 0.0014b 1(3) 0.3919 0.0009b  

1g

 at temperatures 10, 25 and 

40 ºC, respectively (Hetzer, Robinson and Bates, 1964). Only these three data sets 

contain points up to 1 mol k  . Thus the mean value with corresponding error 

was chosen to be the best candidate.  The result is 1b 0.390 0.0010  . 

 

Using the determined parameter  -1/2-11.6 mol kgB    and , the cell 

potential error  and the standard electrode potential  were determined from 

data of Hetzer, Robinson and Bates (1964) as above for the HBr data. 

1 0.390b 

E 0E
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Figure 11. The cell potential errors in millivolts calculated as a function of molality for aqueous 

hydriodic acid at temperatures (0 to 20) ºC from data of Hetzer, Robinson and Bates (1964). 

Circle, 0 ºC; green solid circle, 5 ºC; diamond, 10 ºC; solid diamond, 15 ºC; red diagonal cross, 20 

ºC. It can be seen that the absolute potential errors are lower than 0.2 mV and that there are no 

trends. 
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Figure 12. The cell potential errors in millivolts calculated as a function of molality for aqueous 

hydriodic acid at temperatures (25 to 50) ºC from data of Hetzer, Robinson and Bates (1964). 

Circle, 25 ºC; green solid circle, 30 ºC; diamond, 35 ºC; solid diamond, 40 ºC; red diagonal cross, 

45 ºC; box, 50 ºC. It can be seen that the absolute potential errors are lower than 0.2 mV except at 

point (0.9507 , -0.340 mV). No trends are observed. The results here together with the 

results in Figure 11 suggest that the Hückel model for aqueous hydriodic acid works very well at 

least up to 0.5  at all temperatures studied. 

1mol kg

1mol kg

5 ISOPIESTIC MEASUREMENTS 

The isopiestic measurement for solvent activity was introduced by Bousfield in 

1918 and since has been widely used. In the method, the sample is brought to 

thermodynamic equilibrium (isopiestic means equal pressures) in vapour phase 

with a reference solution of known water activity. This means that the water 

activity will be the same for the sample and reference solutions. The known 

amount of the tested salt and the reference salt (usually sodium or potassium 

chloride) are put in separate dishes, which are placed in a container, usually a 

desiccator. The method allows studying several samples of different salts at the 

same time and thus the container is usually fully loaded. Then water is added to 

each dish and the container is closed. The dishes are made of material with high 
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thermal conductivity as silver. If the electrolyte is extremely corroding like 

hydriodic acid, platinum is used (Harned and Robinson, 1941). Underneath the 

dishes there is a block of metal also with high thermal conductivity, usually of 

copper or silver. The isopiestic condition is achieved since the water will distill 

from solutions with higher water activity and condense in solutions with lower 

water activity. The measurement may take even weeks in very dilute solutions. 

After the equilibrium is achieved, the amount of water is determined from each 

dish. 

 

The isopiestic measurement does not work well at molalities lower than 0.1 

1mol kg  since the water activity in dilute solutions is close to unity. This also 

means that the time to achieve the equilibrium is increased in dilute solutions. 

Another disadvantage is that the water activity in the sample solution is 

determined relative to the water activity of the reference solution, which has to be 

determined with great precision using direct vapor pressure or electrochemical 

measurements.  

 

Properties of the salt under consideration have to be taken into account. For 

instance, if the substance is highly volatile, it will distill off instead of the water. 

For example, the vapor pressure of HCl in aqueous solution at 25 ºC and at a 

molality of 6  is 0.140 mmHg (Bates and Kirschmann, 1919). This kind 

of magnitude in the vapor pressure would lead to unreliable results, since the 

substance is participating in the vapour pressure. In the article of Bates and 

Kirschmann ar given that the vapor pressure values of HBr(aq) and HI(aq) in the 

same conditions are 0.00151 mmHg and 0.00057 mmHg, respectively. Thus, the 

isopiestic method can be used for these solutions. The isopiestic data obtained by 

Harned and Robinson (1941) was used here for hydriodic acid and those by 

Macaskill and Bates (1983) for hydrobromic acid. 

-1mol kg
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6  OSMOTIC COEFFICIENTS 

6.1  The Hückel equation for Osmotic Coefficients 

In order to study isopiestic data and relate it to cell data, the relationship between 

the mean activity coefficient    and osmotic coefficient , which is defined in 

terms of the solvent (water) activity, has to be derived. The idea is to obtain the 

necessary parameter values B  and  for the Hückel model from the cell data and 

then using the Hückel model with the same parameters for predicting osmotic 

coefficients and vapor pressures and then comparing the latter values to those 

obtained from isopiestic data.  

1b

 

The definition of osmotic coefficient was formulated by Bjerrum (1918) and later 

a more practical definition for the osmotic coefficient suggested by Guggenheim 

(1935) has been often accepted in the literature. In the present study where water 

is solvent, the following definition is used: 

 

 
 w

w

ln a

M vm



               (6.1.90) 

 

where w w wa x 

w

 is activity of water, and it is the product of mole fraction of 

water x  and the activity coefficient of water w . wM  is the molar mass of water,  

M Xv v v  , and m  is the molality of the el ro . Equation (6.1.90) can be 

m equation: 

 

ect lyte

used in Gibbs–Duhe

0 i i
i

n d                (6.1.91) 

 

here  is the amount of substance i in solution and  in idw  is the differential of 

thechemical potential of species i. This equation is valid at  constant temperature 

and pressure. For water containing only a single electrolyte this equation 

becomes: 
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w w s s 0n d n d                 (6.1.92) 

ow writing the chemical potentials in full extension yields: 

 

N

 

 0 0
w w w s sln( ) ln 0n d RT a n d vRT m                        (6.1.93) 

ince the standard state chemical potentials are constant and the mean molality is 

 

S

defined by    M X M X
1/ 1/v vv v v vm m m m v v  , equation (6.1.93) after some 

simplifications

 

M X s M X

 gives: 

   w s w s sln 0d M vm M vm d m                    (6.1.94) 

valuation of the integrals in the integral form of equation (6.1.94) yields: 

 

E

 

 w s w s w s ln 0M vm M vm M v m d                  (6.1.95) 

fter some simplifications and setting the integral limits to be 0 and , replacing 

(2.  w

 

 

A m

sm  by m , and taking the mean activity coefficient as expressed in equation 

3.52), e get: 
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         (6.1.96) 

 

he integral can be computed by change of variable and then using the method of T

partial fractions. Ultimately the final outcome is 
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6.2  The Pitzer equation for Osmotic Coefficients 

The Pitzer (1973) model for activity coefficients was introduced in Chapter 2.4. 

Now the equation for the osmotic coefficients is derived. As earlier, the molality 

scale is used for the solute. First the general expression for Gibbs free energy is 

given in an ideal solution where all activity coefficients are unity: 

 

    ideal 0 0
w w w s

water ions

ln lni i iG n RT x n v RT m    
 

           (6.2.98) 

 

The osmotic coefficient of water in an ideal solution is unity (as also the activity 

coefficient of water). This result substituted in the definition presented in 

equation (6.1.90) and plugging the outcome in equation (6.2.98) leads to: 

 

    ideal 0 0
w w w s s lni i iG n RTM vm n v RT m                 (6.2.99) 

 

Gibbs free energy in a non-ideal solution is the following: 

 

      0 0
w w w s

water ions

ln lni i i iG n RT a n v RT m     
 

        (6.2.100) 

 

Next the water activity is replaced with the one in the definition of osmotic 

coefficient (6.1.90): 

 

     0 0
w w w s s lni i i iG n RT M vm n v RT m             (6.2.101) 

 

Thus the famous equation for excess Gibbs free energy can be created just by 

subtracting the ideal Gibbs free energy from non-ideal Gibbs free energy: 

 

  excess
s 1 lni iG RTn v               (6.2.102) 
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This was a short introductory to the background of Pitzer model for osmotic 

coefficients, and complete derivation is given in the original papers (Pitzer, 1973; 

Pitzer and Mayorga, 1973). The equation has the form 

 

  
2

0 1
00

1 ( )
3 1 1.2 /

m m
e m C

m mm m

             
   

0

m
 (6.2.103) 

 

where 0( ) exp 2 /e m m m 

  and 0 , 1 , and C  are electrolyte specific 

parameters as above. 

  

7  PREDICTING THE VAPOR PRESSURE OF WATER   

Using the parameters B  and  obtained from the cell data, the Hückel model 

(6.1.97) is used to predict the vapor pressures for the isopiestic data of HBr(aq) 

and HI(aq). From equation (6.1.90), we see: 

1b

 

   w wln a M vm                (7.104) 

 

Using w *

p
a

p
  , where p  is the vapor pressure water over the reference 

electrolyte solution and *p  is the vapor pressure that of pure water (at 25ºC , it is 

23.766 mmHg), and using the fact that the electrolytes are here uni-univalent, we 

obtain: 

 

 w s*
ln 2

p
M m

p


 
  

 
              (7.105) 

 

Getting rid of the natural logarithm gives 

 

  *
w sexp 2p p M m                 (7.106) 
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Then we compare the predicted pressures of HBr and HI solutions to those 

obtained from isopiestic measurements using the Pitzer equation (6.2.103) for the 

reference electrolyte. Thus the following deviation quantity is calculated: 

 

               (7.107) ref
Pitzer predictedp p p  

 

where predictedp  is the vapor  pressure of water above the tested electrolyte 

solutions given by equation (7.106). Since both solutions are in isopiestic 

equilibrium, the vapor pressure of water over reference solutions and over the 

tested electrolyte solution must be equal.  So for a good osmotic coefficient 

model, p  should be as close to zero as possible. 

 

For aqueous hydrobromic acid, the data of Macaskill and Bates (1983) up to 1.0 

 were used to calculate vapor pressure over the reference solutions 

(NaCl) using Pitzer model in equation (6.2.103). Calculated vapor pressures of 

water over the reference electrolyte solutions were compared to those predicted 

by the Hückel model (6.1.97) and the Pitzer model (6.2.103) for tested HBr 

solutions. The results are presented in Figure 13. 

-1mol kg
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Figure 13. The difference between measured and predicted vapor pressures of water as a function 

of the molality of hydrobromic acid at 25 ºC. The vapor pressures over the reference solution 

(NaCl) have calculated from the isopiestic data of Macaskill and Bates (1983) using the Pitzer 

model. Solid diamonds,  values for the Hückel model; circles, delta  values for the Pitzer 

model. It can be seen in the case of Hückel model that vapor pressure differences are all positive, 

while they are all negative for the Pitzer model, except for one point. 

p p

 

For aqueous hydriodic acid the data of Harned and Robinson (1941) up to 1.0 

 were used to calculate vapor pressure over the reference solutions 

(KCl) using Pitzer model in equation (6.2.103). Calculated vapor pressures of 

water over the reference electrolyte solutions were compared to those predicted 

by the Hückel model (6.1.97) and the Pitzer model (6.2.103) for tested HI 

solutions. The results are presented in Figure 14. 

-1mol kg

 

 



 

 

50

 
Figure 14.  The difference between measured and predicted vapor pressures of water as a function 

of the molality of hydriodic acid at 25 ºC. The vapor pressures of water above reference 

electrolyte solution (KCl) are calculated from the isopiestic data of Harned and Robinson (1941) 

using the Pitzer model. Solid diamonds, p  values for the Hückel model; circles,  values for 

the Pitzer model.  It can be seen that the Hückel model gives good predictions when compared to 

the Pitzer model since there are no trends and all except two points are within 

p

p = 0.007 

mmHg. No trends are observed. However, these results support that our model for hydriodic acid 

works very well up to 1.0 1mol kg .  

8  RECOMMENDED THERMODYNAMIC ACTIVITIES 

In the previous chapters, it was established that a two-parameter Hückel, see 

equation (2.3.71), works for both aqueous hydrobromic and hydriodic acids at 

least up to 0.5  at all temperatures studied. In Figures 15 and 16 the mean 

activity coefficients of HBr and HI are presented as a function of temperature at 

some rounded molalities, respectively. 

-1mol kg

 

 



 

 

51

 
Figure 15.  Mean activity coefficients for aqueous hydrobromic acid as a function of temperature 

on the basis of the new Hückel equation. The parameters used are and 

. Legend informs how the symbols correspond to the molalities in

 -1/2-11.5 mol kgB  

mol kg1 0.348b  1

1l kg

. 

Recommended mean activity coefficients are valid at least up to 0.5 . It can be seen that 

all values are between 0.760 and 0.920 and that they are linearly decreasing with temperature. 

mo
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Figure 16. Mean activity coefficients for aqueous hydroiodic acid as a function of temperature on 

the basis of the new Hückel equation. The parameters used are and 

. Legend informs how the symbols correspond to the molalities in 

 -1/2-11.6 mol kgB  

mol kg1 0.390b  1

1l kg

. 

Recommended mean activity coefficients are valid at least up to 0.5 . It can be seen that 

all mean activity coefficient values are between 0.775 and 0.960 and that they are linearly 

decreasing with temperature. 

mo

  

 

In Tables 3 and 4, the recommended mean activity coefficients of the electrolyte, 

osmotic coefficients, and vapor pressures of water as functions of the molality are 

presented at some rounded molalities at 25 ºC. 
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Table 3. Recommended mean activity coefficients  , osmotic coefficients   and vapor 

pressures  p  for aqueous hydrobromic acid at 25 ºC as functions of molality m .  

1mol kgm           mmHgp  

0.1 0.805 0.949 23.6849 

0.2 0.783 0.955 23.6030 

0.3 0.780 0.967 23.5188 

0.4 0.785 0.982 23.4322 

0.5 0.795 0.997 23.3430 

 

 

Table 4. Recommended mean activity coefficients  , osmotic coefficients   and vapor 

pressures p  for aqueous hydriodic acid at 25 ºC as functions of molality .  m

1mol kgm           mmHgp  

0.1 0.813 0.953 23.6845 

0.2 0.796 0.963 23.6017 

0.3 0.798 0.978 23.5162 

0.4 0.823 0.994 23.4278 

0.5 0.823 1.012 23.3365 

 

9  CONCLUSION 

In this bachelor’s thesis, the Debye–Hückel model was derived in detail. Also the 

Hückel model, which was here, was thoroughly explained and a short 

introduction to the Pitzer model was given. As the main result of this 

investigation, the simple Hückel model with two temperature independent 

parameters can describe the thermodynamic properties of aqueous hydrobromic 

and hydriodic acids at least up to 0.5  at temperatures from (0 to 50) and 

(0 to 60) ºC, respectively.   

-1mol kg
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For future aspects the Hückel model could be introduced to more concentrated 

solutions and mixtures of electrolyte solutions. For instance in the recent studies 

involving such solutions, the Pitzer–Debye–Hückel term is used to describe long- 

range electrostatic interactions (Hsieh and Lin, 2010; Wang, Song, Chen, 2011; 

and latest Ingram, Gerlach, Mehling and Smirnova (2012)). This term could be 

possibly replaced with two-parameter Hückel equation. Another possibility for 

electrolyte system might be a model for mean activity coefficient that is 

composed of Hückel equations for single ions in solutions studied. 
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Appendix I 

Cell data for aqueous hydrobromic acid. 

 

Table 5. Electromotive force measurements in Volts by Gupta, Hills and Ives (1963) for aqueous 

hydrobromic acid at at temperatures (5 to 45) ºC. Molalities are in units . 1mol kg

HBrm  5 ºC 10 ºC 15 ºC 20 ºC 25 ºC 30 ºC 35 ºC 40 ºC 45 ºC 

0.005064 0.39782 0.40244 0.40669 0.41082 0.41464 0.41842 0.42222 0.42589 0.42956 

0.007546 0.37940 0.38351 0.38749 0.39129 0.39494 0.39842 0.40177 0.40513 0.40847 

0.010140 0.36572 0.36957 0.37329 0.37682 0.38022 0.38349 0.38657 0.38959 0.35687 

0.020010 0.33453 0.33786 0.34103 0.34401 0.34685 0.34953 0.35208 0.35453 0.33581 

0.030070 0.31602 0.31901 0.32186 0.32452 0.32708 0.32952 0.33169 0.33385 0.30986 

0.049620 0.29331 0.29592 0.29836 0.30068 0.30280 0.30478 0.30659 0.30827 0.29142 

0.070880 0.27718 0.27952 0.28167 0.28373 0.28554 0.28734 0.28879 0.29014 0.27932 

0.089400 0.26652 0.26857 0.27055 0.27242 0.27407 0.27560 0.27685 0.27816 0.24128 

0.098290 0.26203 0.26427 0.26616 0.26792 0.26958 0.27092 0.27225 0.27337 0.42956 

0.184700 0.23312 0.23451 0.23592 0.23734 0.23830 0.23927 0.24000 0.24064 0.40847 

 

Table 6a. Electromotive force measurements in international Volts by Harned, Keston and 

Donelson (1936) for aqueous hydrobromic acid at temperatures (0 to 30) ºC. Data is calculated 

using function given in the original article. Molalities are in units . (1 int Volt =1.00034 

V) 

1mol kg

HBrm  0 ºC 5 ºC 10 ºC 15 ºC 20 ºC 25 ºC 30 ºC 

0.001 0.40822 0.41244 0.41651 0.42043 0.42421 0.42784 0.43133 

0.005 0.33416 0.33703 0.33975 0.34233 0.34477 0.34707 0.34922 

0.01 0.30269 0.30498 0.30713 0.30913 0.31100 0.31273 0.31432 

0.02 0.27144 0.27315 0.27473 0.27617 0.27748 0.27864 0.27968 

0.05 0.23044 0.23143 0.23229 0.23301 0.23359 0.23404 0.23435 

0.1 0.19967 0.20010 0.20039 0.20055 0.20059 0.20050 0.20028 

0.2 0.16807 0.16798 0.16776 0.16740 0.16692 0.16630 0.16556 

0.5 0.12411 0.12333 0.12240 0.12135 0.12016 0.11884 0.11739 

1.0 0.08631 0.08494 0.08344 0.08181 0.08005 0.07817 0.07615 
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Table 6b. Electromotive force measurements in international Volts by Harned, Keston and 

Donelson (1936) for aqueous hydrobromic acid at temperatures (35 to 60) ºC. Data is calculated 

using function given in the original article. Molalities are in units . (1 int Volt =1.00034 

V). 

1mol kg

HBrm  35 ºC 40 ºC 45 ºC 50 ºC 55 ºC 60 ºC 

0.001 0.43786 0.44090 0.44380 0.44655 0.44916 0.43786 

0.005 0.35309 0.35482 0.35640 0.35783 0.35913 0.35309 

0.01 0.31707 0.31823 0.31926 0.32014 0.32088 0.31707 

0.02 0.28132 0.28194 0.28243 0.28277 0.28298 0.28132 

0.05 0.23456 0.23446 0.23422 0.23384 0.23333 0.23456 

0.1 0.19945 0.19884 0.19811 0.19725 0.19625 0.19945 

0.2 0.16367 0.16253 0.16126 0.15985 0.15832 0.16367 

0.5 0.11408 0.11223 0.11024 0.10813 0.10587 0.11408 

1.0 0.07172 0.06931 0.06677 0.06410 0.06130 0.07172 
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Table 7a. Electromotive force measurements in Volts by Hetzer, Robinson and Bates (1962) for 

aqueous hydrobromic acid at temperatures (0 to 25) ºC. Data point shaded with red is omitted as 

an erroneous point. Molalities are in units 1mol kg . 

HBrm  0 ºC 5 ºC 10 ºC 15 ºC 20 ºC 25 ºC 

0.005125 0.33291 0.33592 0.33865 0.34129 0.34368 0.34594 

0.005140 0.33268 0.33566 0.33843 0.34110 0.34349 0.34582 

0.007617 0.31471 0.31735 0.31978 0.32209 0.32420 0.32611 

0.010021      0.31265 

0.010065 0.30209 0.30454 0.30681 0.30882 0.31070 0.31238 

0.012389 0.29279 0.29500 0.29703 0.29894 0.30065 0.30229 

0.015158 0.28366 0.28577 0.28761 0.28931 0.29084 0.29225 

0.019876 0.27162 0.27344 0.27516 0.27663 0.27787 0.27898 

0.02533      0.26718 

0.03006 0.25325 0.25482 0.25613 0.25726 0.25825 0.25901 

0.03041 0.25247 0.25400 0.25533 0.25649 0.25744 0.25825 

0.03999 0.24025 0.24165 0.24271 0.24353 0.24429 0.24492 

0.04974 0.23045 0.23170 0.23264 0.23343 0.23407 0.23449 

0.04980      0.23426 

0.05030      0.23385 

0.06015 0.22188 0.22284 0.22364 0.22428 0.22473 0.22498 

0.06586 0.21773 0.21871 0.21945 0.21996 0.22036 0.22063 

0.06985 0.21529 0.21614 0.21679 0.21726 0.21758 0.21778 

0.07578 0.21155 0.21325 0.21296 0.21337 0.21360 0.21382 

0.08048 0.20894 0.20969 0.21026 0.21064 0.21085 0.21093 

0.09035 0.20356 0.20432 0.20482 0.20512 0.20524 0.20524 

0.10082 0.19886 0.19943 0.19982 0.20003 0.20006 0.19994 

0.10085 0.19886 0.19945 0.19983 0.19996 0.20001 0.19993 
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Table 7b. Electromotive force measurements in Volts by Hetzer, Robinson and Bates (1962) for 

aqueous hydrobromic acid at temperatures (30 to 50) ºC. Molalities are in units 1mol kg . 

HBrm  30 ºC 35 ºC 40 ºC 45 ºC 50 ºC 

0.005125 0.34804 0.35004 0.35189 0.35359 0.35521 

0.005140 0.34782 0.34981 0.35172 0.35337 0.35496 

0.007617      

0.010021      

0.010065 0.31399 0.31529 0.31664 0.31777 0.31880 

0.012389 0.30354 0.30488 0.30603 0.30706 0.30789 

0.015158 0.29347 0.29454 0.29552 0.29624 0.29689 

0.019876 0.28005 0.28098 0.28172 0.28228 0.28275 

0.02533      

0.03006 0.25976 0.26020 0.26072 0.26098 0.26112 

0.03041 0.25897 0.25950 0.25991 0.26018 0.26033 

0.03999 0.24537 0.24566 0.24589 0.24596 0.24575 

0.04974 0.23479 0.23497 0.23499 0.23486 0.23450 

0.04980      

0.05030      

0.06015 0.22514 0.22519 0.22501 0.22471 0.22429 

0.06586 0.22066 0.22054 0.22036 0.22007 0.21963 

0.06985 0.21780 0.21773 0.21741 0.21708 0.21656 

0.07578 0.21367 0.21351 0.21319 0.21283 0.21224 

0.08048 0.21085 0.21064 0.21026 0.20979 0.20919 

0.09035 0.20506 0.20478 0.20432 0.20382 0.20316 

0.10082 0.19970 0.19934 0.19833 0.19821 0.19745 

0.10085      
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Table 8. Electromotive force measurements in Volts by Macaskill and Bates (1983) for aqueous 

hydrobromic acid at temperature 25 ºC. Data point shaded with yellow is omitted, since its 

molality is too high for this study. Molalities are in units 1mol kg . 

HBrm  25 ºC 

0.01 0.31290 

0.1 0.20053 

0.5 0.11859 

1 0.07764 

2 0.02705 

3 -0.01113 
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Appendix II 

Cell data for aqueous hydriodic acid. 

 

Table 9a. Electromotive force measurements in Volts by Hetzer, Robinson and Bates (1964) for 

aqueous hydriodic acid at temperatures (0 to 25) ºC. Data points shaded with red are omitted as 

erroneous points. Molalities are in units 1mol kg . 

HIm  0 ºC 5 ºC 10 ºC 15 ºC 20 ºC 25 ºC 

0.01746 0.04977 0.05258 0.05520 0.05759 0.05987 0.06184 

0.02502 0.03354 0.03605 0.03839 0.04054 0.04249 0.04421 

0.02932 0.02649 0.02883 0.03102 0.03302 0.03484 0.03646 

0.03556      0.02716 

0.03612 0.01720 0.01940 0.02138 0.02326 0.02490 0.02630 

0.03997 0.01256 0.01472 0.01664 0.01841 0.02002 0.02136 

0.04509 0.00723 0.00927 0.01113 0.01278 0.01429 0.01560 

0.04960      0.01095 

0.05072 0.00205 0.00399 0.00571 0.00728 0.00863 0.00981 

0.05526 -0.00196 -0.00008 0.00162 0.00311 0.00445 0.00557 

0.06065 -0.00599 -0.00420 -0.00266 -0.00121 0.00005 0.00106 

0.06628 -0.01009 -0.00833 -0.00679 -0.00545 -0.00422 -0.00325 

0.06725      -0.00383 

0.06782 -0.01100 -0.00926 -0.00775 -0.00643 -0.00525 -0.00432 

0.06982      -0.00576 

0.07282 -0.01432 -0.01268 -0.01117 -0.00988 -0.00876 -0.00790 

0.08077 -0.01896 -0.01735 -0.01603 -0.01481 -0.01378 -0.01295 

0.08560 -0.02132 -0.01983 -0.01851 -0.01740 -0.01640 -0.01568 

0.08980 -0.02358 -0.02210 -0.02082 -0.01972 -0.01875 -0.01802 

0.09989 -0.02840 -0.02704 -0.02582 -0.02483 -0.02399 -0.02332 

0.10106 -0.02880 -0.02745 -0.02629 -0.02530 -0.02442 -0.02383 

0.10341      -0.02486 

0.13463      -0.03797 

0.13749      -0.03901 

0.15177 -0.04746 -0.04644 -0.04559 -0.04487 -0.04434 -0.04411 

0.2061   -0.06026   -0.05944 

0.3238   -0.08251   -0.08280 

0.3897   -0.09212   -0.09270 

0.4697       

0.5122   -0.10651   -0.10789 

0.5256   -0.10789   -0.10934 

0.6327   -0.11835   -0.12024 

0.7229   -0.12589   -0.12824 

0.8463   -0.13576   -0.13828 

0.9507   -0.14298   -0.14612 



 

 

66

Table 9b. Electromotive force measurements in Volts by Hetzer, Robinson and Bates (1964) for 

aqueous hydriodic acid at temperatures (30 to 50) ºC. Molalities are in units . 1mol kg

HIm  30 ºC 35 ºC 40 ºC 45 ºC 50 ºC 

0.01746 0.06392 0.06573 0.06742 0.06898 0.07043 

0.02502 0.04597 0.04750 0.0489 0.05018 0.05134 

0.02932 0.03804 0.03944 0.04073 0.04189 0.04294 

0.03556      

0.03612 0.02778 0.02900 0.03012 0.03110 0.03200 

0.03997 0.02278 0.02395 0.02488 0.02569 0.02652 

0.04509 0.01689 0.01792 0.01887 0.01971 0.02043 

0.04960      

0.05072 0.01096 0.01192 0.01279 0.01349 0.01415 

0.05526 0.00672 0.00760 0.00839 0.00905 0.00959 

0.06065 0.00209 0.00291 0.00359 0.00418 0.00467 

0.06628 -0.00226 -0.00149 -0.00083 -0.00028 0.00009 

0.06725      

0.06782 -0.00338 -0.00263 -0.00199 -0.00148 -0.00108 

0.06982      

0.07282 -0.00697 -0.00627 -0.00569 -0.00525 -0.00489 

0.08077 -0.01214 -0.01152 -0.01106 -0.01065 -0.01038 

0.08560 -0.01488 -0.01435 -0.0139 -0.01360 -0.01341 

0.08980 -0.01728 -0.01675 -0.01634 -0.01604 -0.01587 

0.09989 -0.02267 -0.02222 -0.02187 -0.02168 -0.02158 

0.10106 -0.02317 -0.02275 -0.02241 -0.02222 -0.02215 

0.10341      

0.13463      

0.13749      

0.15177 -0.04375 -0.04364 -0.04363 -0.04379 -0.04400 

0.2061   -0.05985   

0.3238   -0.08435   

0.3897      

0.4697   -0.10553   

0.5122   -0.11072   

0.5256      

0.6327   -0.12373   

0.7229   -0.13219   

0.8463   -0.14257   

0.9507   -0.15032   
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Appendix III 

Isopiestic data for aqueous hydrobromic and hydriodic acids. 

 

Table 10. The isopiestic data of Macaskill and Bates (1983) for aqueous hydrobromic acid and 

sodium chloride solutions. Molalities are in units 1mol kg . Only the green shaded values were 

used. 

HBrm  NaClm  

0.7239 0.8025 

0.8214 0.9203 

0.9071 1.0276 

0.9241 1.0485 

1.0188 1.1666 

1.0383 1.1893 

1.1183 1.2937 

1.2320 1.4415 

1.3306 1.5677 

1.3805 1.6333 

1.5574 1.8708 

1.6081 1.9398 

1.8246 2.2408 

2.0037 2.4846 

2.0790 2.5965 

2.3156 2.9264 

2.6402 3.3978 

2.7819 3.6089 

2.9325 3.8283 

3.1563 4.1557 

3.3653 4.4697 

3.6502 4.8896 

3.7964 5.1143 

3.9439 5.3283 

4.1459 5.6405 

4.3889 6.0105 

4.4731 6.1452 
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Table 11. The isopiestic data of Harned and Robinson (1941) for aqueous hydriodic acid and 

potassium chloride solutions. Molalities are in units 1mol kg . Only the green shaded values were 

used. 

HIm  KClm  

0.1072 0.1115 

0.1238 0.1276 

0.1787 0.191 

0.2062 0.2195 

0.2617 0.2825 

0.4378 0.4934 

0.554 0.6272 

0.6013 0.7016 

0.6233 0.724 

0.6734 0.7824 

0.7178 0.844 

0.7326 0.867 

0.8002 0.9548 

0.876 1.061 

1.063 1.329 

1.087 1.371 

1.127 1.419 

1.239 1.595 

1.479 1.963 

1.592 2.14 

1.788 2.443 

1.878 2.63 

2.003 2.813 

2.083 2.973 

2.135 3.092 

2.252 3.275 

2.434 3.596 

2.503 3.715 

2.711 4.124 

2.882 4.452 

2.893 4.469 

3.002 4.676 
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Appendix IV 

Results of least-squares fitting 

 

Table 12. Results of least-squares fitting for data of Macaskill and Bates (1983) for aqueous 

hydrobromic acid. and  0S E  1S b  are the standard deviations of  and , respectively.  

is the recalculated and recommended standard electrode potential using parameter values 

0E 1b 0
reE

 -1/ 2
b-11.5 mol kgB    and 1 0.348 .  

o Ct     
1/21mol kg
    0 mVE   0 mVS E 1b   1S b   0

re mVE

25 1.1744 71.18 0.09 0.348 0.002 71.19 

 

 

Table 13. Results of least-squares fitting for data of Gupta, Hills and Ives (1963), Harned, Keston 

and Donelson (1936) and Hetzer, Robinson and Bates (1962) for aqueous hydrobromic acid. 

 ,  and  are the recalculated and recommended standard electrode potential 

using parameter values 

0
re GHIE 0

re HKDE 0
re HRBE

 -1/ 2-11.5 mol kg B  and 1 0.348b  . Sub indeces GHI, HKD and HRB 

correspond to Gupta, Hills and Ives (1963), Harned, Keston and Donelson (1936) and Hetzer, 

Robinson and Bates (1962), respectively. 

o Ct     
1/21mol kg
    0

re GHI mVE  0
re HKD mVE   0

re HRB mVE

0 1.1293  81.41 81.12 

5 1.1376 141.04 79.65 79.49 

10 1.1462 140.82 77.70 77.61 

15 1.1552 140.45 75.63 75.56 

20 1.1646 139.94 73.42 73.33 

25 1.1744 139.22 71.06 70.97 

30 1.1848 138.37 68.49 68.42 

35 1.1956 137.35 64.84 65.74 

40 1.2068 136.25 63.04 62.93 

45 1.2186 135.07 60.10 59.97 

50 1.2308  57.02 56.86 

55 1.2436  53.79  

60 1.2568  50.41  
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Table 14. Results of least-squares fitting for data of Hetzer, Robinson and Stokes (1964) for 

aqueous hydroiodic acid.  0S E and  1S b  are the standard deviations of  and , 

respectively.  is the recalculated and recommended standard electrode potential using 

parameter values 

0E 1b

0
reE

 -1/2
1.6B  -1mol kg  and 1 0.390b  . Temperatures 10, 25 and 40 are 

emphasized in studies, by taking more digits to deviation values, since there are more data points 

at these temperatures. 

o Ct     
1/21mol kg
    0 mVE   0 mVS E 1b   1S b   0

re mVE

0 1.1293 -146.33 0.04 0.361 0.013 -146.24 

5 1.1376 -147.14 0.04 0.370 0.011 -147.08 

10 1.1462 -148.122 0.018 0.3897 0.0013 -148.12 

15 1.1552 -149.39 0.03 0.378 0.007 -149.35 

20 1.1646 -150.78 0.03 0.378 0.008 -150.74 

25 1.1744 -152.34 0.024 0.3886 0.0014 -152.33 

30 1.1848 -154.02 0.03 0.382 0.007 -153.99 

35 1.1956 -155.87 0.03 0.382 0.007 -155.84 

40 1.2068 -157.805 0.018 0.3919 0.0009 -157.83 

45 1.2186 -159.97 0.04 0.377 0.010 -159.92 

50 1.2308 -162.18 0.03 0.378 0.009 -162.14 
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Appendix V 

Pitzer parameters. 

 

Table 15. Pitzer parameters used in this study obtained from Pitzer and Mayorga (1973). 

electrolyte 0  1  C  A  

HBr 0.196 0.3564 0.00827 0.392 

HI 0.2362 0.392 0.0011 0.392 

KCl 0.04835 0.2122 -0.00084 0.392 

NaCl 0.0765 0.2664 0.00127 0.392 
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