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ABSTRACT  
 
 
 
Multibody simulation model of the roller test rig is presented in this work. The roller test rig 

consists of a paper machine’s tube roll supported with a hard bearing type balancing machine. 

The simulation model includes non-idealities that are measured from the physical structure. 

These non-idealities are the shell thickness variation of the roll and roundness errors of the shafts 

of the roll. These kinds of non-idealities are harmful since they can cause subharmonic 

resonances of the rotor system. In this case, the natural vibration mode of the rotor is excited 

when the rotation speed is a fraction of the natural frequency of the system. With the simulation 

model, the half critical resonance is studied in detail and a sensitivity analysis is performed by 

simulating several analyses with slightly different input parameters. The model is verified by 

comparing the simulation results with those obtained by measuring the real structure. 

Comparison shows that good accuracy is achieved, since equivalent responses are achieved 

within the error limit of the input parameters. 

 

Keywords: tube roll, multibody simulation, subharmonic vibrations. 
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1 INTRODUCTION 
 
This work report summarizes the ADAMS simulation model of the roller test rig used in the 
PyöriVÄRE project. The studied structure is a tube roll of a paper machine, which is located at 
the laboratory of Machine Design at Helsinki University of Technology. The tube roll is 
supported with a hard bearing type balancing machine. The purpose of this report is to describe 
all the important properties of the ADAMS simulation model. Modeling assumptions and the 
theory behind various calculations are presented.  Simulation results are compared to those 
obtained by measurement from the existing roll.  
 
The half critical resonance is studied in detail. After comparison to measurements, a sensitivity 
analysis is performed by simulating several analyses with slightly different parameters. These 
parameters are the amplitudes and phase angles of the 2nd order waviness of the shaft of the roll, 
bending stiffness variation of the roll and modal damping ratio of the first vertical bending mode. 
 
The ADAMS simulation model of the roller test rig is shown in Figure 1. The model contains 5 
flexible parts and 7 rigid parts. Parts are connected with constraints, spring-damper forces and 
contact forces. The used ADAMS version is 10.0. 
 

 
Figure 1. The ADAMS simulation model of the roller test rig. 

 
This report is organized as follows: In chapter 2 the modeling of the flexible parts is reported. 
The flexibility of the parts is imported from FE-models to ADAMS. Chapter 3 deals with contact 
forces between the roll and the pedestal of the balancing machine and waviness of the shaft and 
support rollers. The assembled model and optimization of the modal parameters are discussed in 
chapter 4. In chapter 5, the simulation results are compared to measurements and the effect of 
variation in the initial parameters to half-critical vibration response is studied. The comparison 
shows that excellent agreement between the simulated and measured results is obtained. In 
chapter 6, few additional simulations are performed. Modeling aspects, such as mode selection 
of the flexible bodies and inertia modeling of the roll, are studied in these simulations.  
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2 FLEXIBLE BODIES 
 
 
Structural flexibility of the flexible parts is imported from detailed FE-models to the dynamics 
simulation model. The simulation model contains five flexible parts, but only three different 
kinds of parts. These are: the roll, the steel plate and the frame. 
 

2.1 The roll 
Geometry of the modeled paper machine’s tube roll is shown in Figure 2. The roll is made of 
steel by welding and turning. The coordinate system of the roll is shown in Figure 3. This 
coordinate system is used in the FE-model as well as in the ADAMS model. 
 

 
Figure 2. Geometry of the roll. The roll is symmetric. 
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Figure 3. The right-handed coordinate system is at the service side end of the roll 
and the attitude angleα increases counterclockwise. Rotation direction is negative 
around Z-axis. 
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2.1.1 FE-model of the roll 
 
The FE-model of the roll (Figure 4) is created by using ANSYS 5.5 finite element software. 
Since the ADAMS implementation of Craig-Bampton substructuring technique uses lumped 
masses, a detailed solid element mesh is created. By using a dense finite element mesh, 
approximately correct rotational inertias are obtained. The roll is modeled using 8-node brick 
shaped solid elements with rotational degrees-of-freedom (SOLID73). The element type 
SOLID73 is degenerated from 20-node solid element by condensing out the motions of the 
midside nodes and then converting them to rotational motions of the corner nodes [2]. The 
properties of the FE-model are shown in Table 1. The bearing locations of the roll are stiffened 
by using stiff and low mass beam elements (BEAM4), whose Young’s modulus is 2.07E+13 
N/m2 and the mass density is 0.7801 kg/m3. In ADAMS, the bearing forces are applied to only 
one node and thus unstiffened solid element mesh would give corrupted results. 
 

 
Figure 4. The FE-model of the studied roll. 

 

Table 1. Properties of the FE-model of the roll. 

Number of nodes 8744 
Number of elements 5536 
Material Properties: 

Young’s Modulus 2.07E+011 N/m2 

Mass Density 7801 kg/m3 
Poisson’s Ratio 0.3 
 
In the FE-model the thickness of the shell is in accordance with the measured results and because 
of that the mass and stiffness distribution of the roll is taken into account in the simulation 
model. This non-ideality causes a so-called weight resonance, which means that stiffness 
variation excitates symmetrical modes. This resonance occurs when the rotating speed is one half 
of the symmetrical critical speed. 
 
The variation of the shell thickness in paper machine’s tube rolls is, in general, in the inner 
surface of the shell. Usually the outer surface of the roll is manufactured accurately. This is also 
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true in the case of the studied roll, as can be seen from the initial curvature measurement of the 
roll [1]. Figure 5 shows the shape of the outer surface at different attitude angles. The only 
significant form error in the outer surface is crowning. This crowning is modeled in the FE-
model by moving nodes at the outer surface of the roll.  
 

 
Figure 5. Results of the outer surface measurement of the test roll [1]. Dashed line is the 
maximum difference between measurements. 

 
The shell thickness of the roll is measured in 740 points. The number of evenly distributed 
measurement points in circumferential direction is 20 and in longitudinal direction 37, 
respectively. The measured shell thickness is shown in Figure 6. The used finite element mesh is 
not the same size as the grid used in the measurement. Because of that, a cubic interpolation 
method is used to obtain the shell thickness at the nodal points (Figure 7). The procedure of 
modeling the non-ideal roll is shown in Figure 8 as a flow chart. 
 

 
Figure 6. The measured shell thickness map. Thickness varies between 

17.86 – 19.59 mm, an average value is 18.72 mm.  
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Figure 7. The interpolated shell thickness map. 
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Figure 8. The procedure of modeling the non-ideal roll. 

 

2.1.2 Solved modes and selection 
 
By using a technique described in the references [3, 4, 5], the Craig-Bampton modes are solved. 
At first, a total of 56 fixed interface modes and 12 static correction modes are extracted from the 
FE-model of the roll. This set of modes is then orthonormalized and a set of approximate free-
free modes and boundary modes is obtained. The quality of the final set of modes depends on the 
quality of the first set. If the first set is corrupted, the final set is also corrupted. Furthermore, the 
use of lumped mass formulation decreases the accuracy of the solution. Due to these facts, the 
quality of the approximate free-free modes is investigated by solving free-free modes directly 
from the full FE-model. Comparison between the natural frequencies of the free-free modes is 
shown in Table 2. It can be seen that the accuracy of the solution is excellent. 
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Table 2. Comparison between the 20 lowest orthonormalized Craig-Bampton 
frequencies and the frequencies solved from the full FE-model. 

Mode Craig-Bampton Lumped Mass Difference Consistent Mass Difference
Freq. [Hz] Freq. [Hz] Freq. [Hz]

7 77,76 77,75 -0,01 % 77,79 0,04 %
8 77,90 77,90 -0,01 % 77,93 0,04 %
9 199,95 199,76 -0,10 % 199,98 0,01 %
10 200,17 199,98 -0,10 % 200,19 0,01 %
11 279,64 278,79 -0,30 % 279,26 -0,13 %
12 279,74 278,89 -0,30 % 279,36 -0,13 %
13 348,53 347,78 -0,21 % 348,39 -0,04 %
14 348,65 347,91 -0,21 % 348,52 -0,04 %
15 354,49 354,46 -0,01 % 356,33 0,52 %
16 464,54 463,85 -0,15 % 463,88 -0,14 %
17 523,26 522,89 -0,07 % 523,86 0,11 %
18 523,54 523,17 -0,07 % 524,14 0,11 %
19 545,60 545,60 0,00 % 545,85 0,05 %
20 546,17 546,17 0,00 % 546,42 0,05 %  

 
For the dynamic analysis a set of bending and longitudinal modes is selected. Torsion modes as 
well as shell vibration modes i.e. local vibration modes are disabled. The mass properties and 
selected modes and their frequencies are shown in Table 3. The non-ideality of the roll can be 
seen from the mass properties and from the natural frequencies of the roll. The location of the 
center of mass is not in the neutral axis and the cross products of inertia are not equal to zero. 
The frequencies of the bending mode pairs are not equal as they would be in the case of ideal 
roll.  
 
During operation the roll is subjected to high inertia forces and thus all nine mass inertia 
invariants are used in the simulation. 
 

Table 3. Mass properties and selected modes of the roll. 

24
791.11 Mode Freq. [Hz] Mode Freq. [Hz]

7 77.76 29 779.04
Center of mass (relative to service side end) 8 77.90 34 982.45

X [mm] Y [mm] Z [mm] 9 199.95 35 1054.41
-0.010 -0.053 2499.705 10 200.17 36 1054.60

11 279.64 42 1301.37
Inertia tensor [kgm2] 12 279.74 43 1301.65

13 348.53 44 1460.24
6649.988 0.005 0.024 14 348.65 45 1460.94

6650.008 0.070 16 464.54 57 1595.25
symm. 14.525 17 523.26 58 1596.37

18 523.54 65 11941.95
28 778.75 66 11982.07

Mass [kg]:

Mass Properties of the Roll Selected modes of the Roll
Number of Selected Modes:

 
 
 
As mentioned before, the shell thickness variation of the roll leads to the so-called weight 
resonance. In order to study the effect of stiffness variation to the half critical resonance, the 
shell thickness variation is doubled and corresponding modes are solved. The thickness of the 
shell at node i is calculated as follows: 

)(22_ meanimeanxi tttt −⋅+=  (2.1) 
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where  is an average shell thickness and  is the original thickness at the node i. The 
resulted mass properties and selected modes are shown in Table 4 below. 

meant it

 

Table 4. Mass properties and selected modes of the roll, when shell thickness variation is 
two-fold. 

24
791.18 Mode Freq. [Hz] Mode Freq. [Hz]

7 77.69 29 779.09
Center of mass (relative to service side end) 8 77.97 34 981.13

X [mm] Y [mm] Z [mm] 9 199.80 35 1053.66
-0.019 -0.106 2499.416 10 200.24 36 1054.04

11 279.54 42 1301.17
Inertia tensor [kgm2] 12 279.74 43 1301.70

13 348.43 44 1457.36
6648.110 0.010 0.047 14 348.68 45 1459.85

6648.149 0.141 16 464.82 57 1594.53
symm. 14.526 17 522.83 58 1596.75

18 523.40 65 11886.71
28 778.48 66 11965.07

Mass [kg]:

Mass Properties of the Roll Selected modes of the Roll
Number of Selected Modes:

 
 
 

2.1.3 Comparison with the Experimental Modal Analysis 

 
The natural frequencies of the test roll were measured with experimental modal analysis [6]. The 
roll was lifted up with lifting belts and a flexible spring set. The measured rigid body modes 
were very near to zero. The results of the experimental modal analysis are shown in Table 5. 
Incorrect damping ratios for modes 2, 3 and 6 are due to lifting belts, which increased damping 
in vertical direction. Because of that, lower damping value is used for each mode pair. Only 
frequencies are determined from the Frequency Response Function (FRF) for modes 7-14, the 
modes and damping ratios were not measured 
 

Table 5. The results of the rolls modal analysis.  

Mode Freq. [Hz] ζ [%] Comments 
1 78.048 0.018  
2 78.285 0.138 Damping incorrect 
3 196.67 0.035 Damping incorrect 
4 196.93 0.016  
5 270.27 0.023  
6 270.35 0.034 Damping incorrect 
7 342.6 - Vertical FRF  
8 342.5 - Horizontal FRF 
9 525.6 - Vertical FRF  
10 523.9 - Horizontal FRF 
11 784.2 - Vertical FRF  
12 784.4 - Horizontal FRF 
13 1059 - Vertical FRF  
14 1059 - Horizontal FRF 

 
Because the roll is non-ideal, the frequencies of two similar bending modes are not equal. When 
presented in the XY-plane these bending modes are approximately perpendicular to each other. 
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Comparison between the measured modes and those obtained from model is shown in Figure 9. 
It can be seen that the directions of the two lowest bending modes differ. This indicates that the 
lowest and the highest bending stiffnesses are not in the same attitude angle in the model and in 
the real roll. Discrepancies in direction can be also seen from other two bending mode pairs. 
 

Model

77.76 Hz 77.90 Hz 199.95 Hz 200.17 Hz 279.63 Hz 279.73 Hz

Measured

78.05 Hz 78.29 Hz 196.67 Hz 196.93 Hz 270.27 Hz 270.35 Hz

Free modes presented in XY-plane

 
Figure 9. Comparison between the measured and calculated modes of the roll. 

 
Due to non-ideality, the roll has minimum and maximum bending stiffnesses. This stiffness 
variation is not measured from the real roll, but it can be estimated from two lowest frequencies. 
If we assume that the vibrating mass of the roll is constant and bending stiffness is directly 
proportional to the square of bending mode frequency, we can calculate percentage stiffness 
variation as follows 
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2

max

min

max

min ⋅




















−=⋅








−

f
f

k
k  (2.2) 

The approximate stiffness variations of different rolls are: 
- Model, normal thickness variation 0.36 % 
- Model, two-fold thickness variation 0.73 % 
- Measured from the real roll  0.60 %. 

It seems that the real roll has larger stiffness variation than the model with normal thickness 
variation. Model with two-fold thickness variation is nearer to measured result. The real roll has 
other non-idealities than shell thickness variation, such as welds and uneven modulus of 
elasticity. It must be pointed out that this calculation method is not accurate, but it gives an 
approximation of the stiffness variation.  
 
Bending stiffness variation can be measured from the FE-model of the roll. A force of 5000 N is 
applied at the middle of the roll and all displacements as well as rotation around Z-axis are 
constrained at bearing nodes. Force direction rotates full circle by 2 degree increments. The 
following results are obtained: 

Normal shell thickness variation: 
- Minimum Bending Stiffness = 17.163 MN/m2  @ 74° 
- Maximum Bending Stiffness = 17.220 MN/m2  @ 164° 
- Variation percentage = 0.33 % 
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Two-fold variation: 
- Minimum Bending Stiffness = 17.147 MN/m2  @ 76° 
- Maximum Bending Stiffness = 17.262 MN/m2  @ 166° 
- Variation percentage = 0.67 % 

These values corresponds well with those calculated from frequencies.  
 

2.2 Other flexible parts 
 
The pedestal of the balancing machine is modeled with two flexible parts and three rigid bodies 
as shown in Figure 10. Modeling of the flexible parts steel plate and frame is described in detail 
in the following sections. 
 

Steel plate (Flex.)

Frame (Flex.)

Support

rollers (rig.)

Base plate (rig.)

 
Figure 10. Parts in the pedestal of the balancing machine. 

 

2.2.1 The steel plate 
 
In the real balancing machines pedestal, the support rollers are connected to the steel plate with 
needle roller bearings. The steel plate carries all bearing loads and therefore its flexibility is 
important to take into account. The FE-model of the steel plate is shown in Figure 11 and model 
properties are listed in Table 6. The used element type is SOLID73. The attachment locations are 
stiffened by using stiff beam elements (BEAM4) and by using constraint equations. A total of 5 
attachment nodes are defined. A total of 36 fixed interface modes and 30 static correction modes 
are extracted from the FE-model. 
 

Table 6. Properties of the FE-model of the steel plate. 

Number of nodes 1404 
Number of elements 812 
Calculated Mass 6.47 kg 
Material Properties: 

Young’s Modulus 2.10E+011 N/m2 

Mass Density 7801 kg/m3 
Poisson’s Ratio 0.3 
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Frame attachment nodes

Support roller 

attachment nodes

 
Figure 11. The FE-model of the steel plate. 

 

2.2.2 The Frame 
 
The frame part is an assembly of a base part made of cast iron and steel parts, which are bolted to 
the base part. The attachment locations are stiffened by using constraint equations. The used 
element types are SOLID73, SHELL63 and BEAM4. A total of 36 fixed interface modes and 36 
static correction modes are extracted from the FE-model. The FE-model of the frame is shown in 
Figure 12 and model properties are listed in Table 7. 
 

Base plate attachment nodes

Steel plate 

attachment nodes

 
Figure 12. The FE-model of the frame part.  Steel parts (purple) are bolted to cast iron (cyan) 
base part. 

Table 7. Properties of the FE-model of the frame. 

Number of nodes 1816 
Number of elements 5403 
Material Properties: Cast iron Steel 
Young’s Modulus 1.00E+011 N/m2 2.10E+011 N/m2 

Mass Density 7080 kg/m3 7801 kg/m3 
Poisson’s Ratio 0.221 0.3 
Calculated Mass 40.96 kg 
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eq. 

2.2.3 Mode selection of the frame and the steel plate 

 
The selection of the modes of two flexible parts in the pedestal is based on the strain energy of 
the modes. Since orthogonal modes are used it is possible to calculate the strain energy 
contribution of the individual modes to the total strain energy [8]. Selection of vibration modes is 
done by simulating a typical analysis with all modes selected. After that the modes, which 
contribute more than 0.1 % to the total strain energy, are selected. Selected modes and their 
natural frequencies are shown in Table 8. 
 

Table 8. The selected modes of the steel plate and the frame. 

24 Selected Modes 34 Selected Modes
Freq. Freq. Freq. Freq. Fr
[Hz] [Hz] [Hz] [Hz] [Hz]

7 349 22 6762 8 229 34 3311 52 7151
9 966 26 7152 9 419 35 3420 53 7443
10 1609 32 9071 12 683 36 3636 55 8184
11 1754 34 9721 13 891 37 3667 56 11065
12 2041 35 10287 15 994 39 3712 57 11753
13 2701 39 11575 17 1081 40 3713 58 12480
14 2827 44 13632 23 2048 42 4293 59 14186
15 3814 46 14400 28 2896 45 5209 68 32181
16 4318 48 16918 29 2932 47 5560 69 33272
17 4505 52 20580 30 2972 48 5627 70 34608
19 5373 54 21470 31 3058 49 5688
20 6250 62 43876 33 3232 50 5779

Steel Plate Frame

ModeMode Mode Mode Mode

 
 
It can be seen from the natural frequencies that both flexible parts in the pedestal assembly are 
quite stiff. The deformations are not expected to be large in these parts. Because of that, the mass 
matrices of the steel plate and the frame are selected to be constant during simulation. High 
frequency modes are boundary modes i.e. static correction modes after orthonormalization. 
Dynamics of these modes are excluded by defining their damping ratio as 100 %, which means 
critical modal damping. However, contribution of these modes to the deformation of the parts is 
included. 
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3 CONTACT FORCES BETWEEN ROLL AND PEDESTAL 
 
The contact forces between the shaft and the pedestal are described in this chapter. These forces 
are important, because waviness of the shafts causes excitations to the roll. These excitations 
contain harmonic components, which are multiples of the rotation speed. Waviness of the shaft is 
thus the main reason to the so-called sub-harmonic resonances.  Firstly, the calculation of the 
contact force parameters is described. Second part of this chapter deals with the modeling of the 
shafts and support roller waviness. 
 

3.1 Contact force between shaft and support rollers 
 
The roll is supported by two rollers in the balancing test rig (Figure 13). Simple springs or 
constraints cannot be used to model this kind of support, because the roll can lift off freely.  That 
is why contact forces are defined between the roll and the support rollers. These forces are 
important to model accurately, because the sub-harmonic vibration excitations come mainly 
from them. The contact force is a function of contact penetration and penetration velocity 
according to the equation (3.1) [8]. 
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11max11
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where ki is the spring constant, x1 is the contact distance and x is the distance between contacting 
bodies. A STEP-function is used to obtain a continuous contact force. A parameter d is the 
penetration, when the maximum damping constant c  is achieved. As shown in Figure 13, the 
support rollers are connected to the steel plate by needle roller bearings. In order to calculate the 
stiffness coeffient k

max

i, the flexibility of the roll-support roller contact as well as the flexibility of 
the needle roller bearing must be taken into account. These two non-linear springs are connected 
as series. 
 

Shaft of the roll

Needle roller 
bearing

Support 
roller

 
Figure 13. Support rollers and shaft of the roll. 

 
The first contact is between the shaft and the support roller. This problem can be solved using 
Hertzian theory related to the contact between elastic solids [7]. In this case the type of contact is 
cylinder-cylinder and the contact area is rectangular. The force-deflection relationship can be 
solved from equations (3.2) and (3.3) 
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where b is the semiwidth of the contact, F is the force, L1 is the length of the cylinder, ν and E 
are the Poisson’s ratio and the modulus of elasticity of the material and D1 and D2 are the 
diameters of the cylinders. The total deflection between the cylinders is: 
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The second contact is between the support roller and needle roller bearing. The stiffness of the 
needle roller bearing can be calculated as described by Eschmann [9]. In a needle roller bearing, 
the total load is carried by contact forces between needles and races. The number of contacting 
needles depends on the diametral play of the bearing and deformation. The load-carrying angle 
can be calculated as  









= −

r

dc
δ

ψ
2

cos2 1 , (3.4) 

where  is the diametral play and dc rδ  is the displacement in radial direction. It can be seen from 
the above equation that the load-carrying angle is 180°, when the diametral play is zero.  
 
The stiffness coefficient for the contact between one needle and both inner and outer race of the 
bearing can be calculated from equation (3.5) [9] 

92.026200 rneedle lk ⋅= , (3.5) 
where  is the length of the roller. The elastic deformation in needle i is calculated from the 
radial displacement 

rl

rδ  between the inner and the outer race (Figure 14) as follows 

2
cos d

iri
c

−⋅= φδδ , (3.6) 

where iφ  is the attitude angle of the needle i. The total force of the needle roller bearing can be 
calculated from the following equation 

1.08

1
cos

z

nr needle i i
i

F k δ φ
=

=∑ , (3.7) 

where summation includes only those needles in which iδ  is greater than zero.  
 

dc

iφ

rδ

 
Figure 14. Schematic picture of the needle roller bearing. 
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Both above-mentioned contacts have nonlinear force-displacement relationships. The force-
deflection relationship between two cylinders can be solved for a given force without iteration, 
while corresponding relationship for needle roller bearing can be solved for given displacement. 
This fact causes difficulties when combining these two stiffnesses.   Therefore, both force-
deflection relationships are first calculated in Matlab program. Resulted data series are fitted by 
least squares method to the power equation . The results of the fitting procedure are 
shown in Figure 15 and the numerical values used in calculation are shown in Table 9. 

ekF δ=

 

 
Figure 15. The force-deflection relationships of the cylinder-cylinder contact and the needle 
roller bearing. 

 

Table 9. Numerical values used in contact parameter calculation. 

Cylinder-Cylinder contact Needle Roller Bearing 
Length L1 25.0 mm Length of the needle lr 24.0 mm 
Diameter D1 115.0 mm Diametral play cd 50.0 µm 
Diameter D2 125.0 mm Number of needles z 26 
Materials properties: 
Young’s Modulus 206000 N/mm2 

Poisson’s Ratio 0.3 
 
The total deformation can be calculated by using the fitted coefficients as follows 

nrcc e

nr

e

cc
tot k

F
k
F

11









+








=∆  (3.8) 

where subscripts cc and nr refers to cylinder-cylinder contact and needle roller bearing, 
respectively. To obtain the final stiffness coefficient ki and the exponent for force-deflection 
relationship e, the points obtained from equation (3.8) are once again fitted. The resulted values 
are 

- ki  = 0.2146 kN/µm1.2173 
- e  = 1.2173. 
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The fitting result is very good as can be seen from Figure 16, where calculated and fitted points 
are plotted. Damping in rolling element bearings is usually negligible. According to Krämer 
[10], the damping of rolling element bearing is 









⋅= −

m
Nskc i µ

510)5.2...25.0( , (3.9) 

where ki is in N/µm. Thus the contact damping coefficient is selected to be cmax = 2.5⋅10-5⋅ ki. The 
penetration depth d is selected to be 5.0 µm, which is approximately the penetration in the static 
equilibrium. 
 

 
Figure 16. The combined force-deflection relationship. 

 

3.2 Modeling of shafts and support rollers’ waviness 

The measured roundness profiles of shaft necks and support rollers are analyzed with FFT. As a 
result the amplitudes and phase angles of the harmonic components are obtained. The roundness 
profile can be presented as Fourier cosine series by using equation (3.10). 

(∑
=

+⋅=
n

k
kk kcR

1
cos)( φαα ) , (3.10) 

where ck  is the amplitude and φk is the phase angle of the  kth harmonics and α is the attitude 
angle of the roll. In the simulation model attention is paid to the harmonic components of only 1st 
- 4th order because the amplitudes of higher components are insignificantly small. 
 
The roundness errors of the support rollers are distinctly smaller than those of the shafts necks. 
Furthermore, the impulses, which come from them, are not repeated similarly on every rotation 
of the roll because the diameter of the shaft necks is 125 mm and the diameter of the support 
rollers is 115 mm. It is not possible to model the throw of the support rollers exactly because 
there may be differences of the amount of one tenth millimetre in the diameters of the rollers. In 
that case the rotation angle of one support roller will not change in the same relation with other 
support rollers and the rotation angle of the roll. Therefore it is decided to model the roundness 
error of the support rollers without the phase angles. The measuring accuracy of the roundness is 
± 1 µm for the shaft and ± 0.2 µm for the support rollers. The error estimate for the phase angles 
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of the harmonic components is ± 20 degrees. The waviness of the shaft is shown graphically in 
Figure 17. 
 

Table 10. The measured roundness errors of the rolls shaft and support rollers. 

1 31.89 0.6021 1 43.38 5.2360
2 2.75 0.0349 2 4.05 0.0873
3 0.50 1.4312 3 0.35 1.1170
4 0.20 1.3963 4 0.25 0.2443

Front Roll Rear Roll Front Roll Rear Roll
1 2.50 4.00 1 2.00 2.00
2 0.20 0.25 2 0.15 0.15
3 0.10 - 3 - -

SUPPORT ROLLERS
Drive Side Service Side

k Amplitude c k   [µm] k Amplitude c k   [µm] 

SHAFT OF THE ROLL
Drive Side Service Side

k
Amplitude c k  

[µm] 
Phase φk  [rad] k

Amplitude c k  

[µm] 
Phase φk  [rad]

 
 

 
Figure 17. Graphical representation of the shafts waviness. 
 
The waviness of the contacting bodies is modeled with splines in ADAMS. The roundness 
profiles of the shafts and support rollers are first calculated by using equation (3.10) in Matlab. 
The resulting roundness profiles as a function of rolls attitude angle α are imported to the 
ADAMS model. During simulation, these spline values are called by the Akima -spline fitting 
function. The usage of the splines is computationally very efficient; CPU times decreased about 
50 % compared to direct calculation of the equation (3.10). The contact force function in 
equation (3.1) needs displacement variable and velocity variable. Examples of these are shown 
below. 
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Displacement_Variable= 
1e3*DM(MAR,MAR_SFO) 
+AKISPL(-YAW(MAR, MEA_cen)+pi/2-atan(77./92.),0,SPL_shaft, 0) 
+AKISPL((MOD(115.0/125.0*-AZ(MAR, MEA_cen)+PI,2*PI)-PI),0,SPL_supp_roll, 0) 
 
Velocity_Variable= 
VR(MAR, MAR_SFO, MAR_SFO) 
+1E-3*(AKISPL(-YAW(MAR, MEA_cen)+pi/2-atan(77./92.),0, SPL_shaft, 1)+ 
AKISPL((MOD(115.0/125.0*-AZ(MAR, MEA_cen)+PI,2*PI)-PI),0, SPL_supp_roll, 1))* 
(-WZ(MAR, MEA_cen, MEA_cen)) 

 
Functions DM and VR are used to measure distance and velocity between the roll and support 
roller.  Two splines are called in the displacement variable; the first spline is waviness of the 
shaft and the second is waviness of the support roller. Rolls attitude angle is measured with the 
YAW-function and given as an input to the spline function. Difference in diameters between 
shaft and support roller is taken into account. Unit of the displacement variable is intentionally 
selected to be µm, because the first and the second derivative of the power equation  is 
almost infinite, when δ ≈ 0. An average contact force in this case is 2500 N, which results in 
5 µm penetration (see Figure 16). Thus the usage of micrometers is numerically more stable than 
the usage of millimeters. The waviness must be compensated from the velocity variable, because 
penetration velocity is required in equation (3.1). The spline fitting function AKISPL in the 
velocity variable returns the first derivative of the waviness with respect to rolls attitude angle. 
This must be multiplied by rolls angular velocity to obtain the line-of-sight velocity caused by 
waviness. 

ekF δ=
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4 ASSEMBLED MODEL AND OPTIMIZATION 
 
The model of the roller test rig is assembled by importing the flexible bodies described in 
chapter 2 and by defining rigid bodies as well as forces and constraints, which connect parts. The 
driving torque of the electric motor is not modeled. Instead of that a motion constraint is defined 
to drive the roll at the desired speed. The assembled model has following properties: 
 

 113 Gruebler Count (approximate degrees of freedom) 
   9 Moving Parts (not including ground) 
   5 Flexible_Bodys 
  17 Fixed Joints 
   2 Inplane Primitive_Joints 
   2 Orientation Primitive_Joints 
   1 Motions 
 
 113 Degrees of Freedom for .Roller 

 
In ADAMS, modal damping ratios are used to describe internal damping of the flexible bodies. 
The modal damping ratios are defined in the DMPSUB subroutine as a function of modes 
frequency. However, these damping ratios are unknown, except the modal damping of the six 
lowest modes of the roll (see Table 5). Furthermore, the stiffness and damping coefficients of 
spring-damper forces are also unknown. 
 
An experimental modal analysis was done also to the whole roller test rig [6]. Frequencies and 
damping ratios of 13 modes were measured (Table 11). In order to have a good agreement 
between the roller test rig and the simulation model, the modal parameters should be quite 
equivalent. ADAMS/Linear module calculates the same modal parameters from the full ADAMS 
model as resulted from measurement. The result set includes the natural frequencies, damping 
ratios and mode shapes. The theory of the linearization technique used in ADAMS/Linear is 
described in reference [11].  
 

Table 11. Results of experimental modal analysis of the roll test rig [6]. 
N Freq. ζ % comments N Freq. ζ % comments 

1 29.83 0.608  2 32.16 1.06  
3 65.34 1.33  4 77.10 1.86 1) 
5 87.36 3.01 1) 6 111.59 1.59  
7 137.62 1.99 2) 8 142.35 1.70 2) 
9 159.56 1.42  10 179.04 2.10  

11 206.62 2.03  12 267.00 1.54  
13 282.78 1.12      

1) Modes are almost identical.  However, two modes exists. 
2) Modes are almost identical.  Might be only one mode. 
 
It must be noted that not all modes are found in simulation model; modes 4 and 5 are only one 
mode in the model as well as modes 7 and 8. Average values of these modes are used in the 
optimization. Mode 9 does not exist in the simulation model, which leaves only 10 similar modes 
to optimize. 
 

4.1 Optimization of modal parameters 
 
To find the unknown parameters of the model, a Differential Evolution (DE) -algorithm is used. 
Differential Evolution is a quite recently developed optimization algorithm for stochastic non-
linear optimization [12, 13]. The DE algorithm can be categorized into a class of evolutionary 
optimization algorithms. The functioning of DE is illustrated by simple example in Appendix I. 
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The optimization is performed by using the Optimize –program, which is developed in the 
Laboratory of Steel Structures in Lappeenranta University of Technology.  
 
The optimization problem in this case can be summarized as follows: Find the optimum vector 
X=(x1,…,xn) of input parameters such that error Y between the modal parameters in the 
simulation model and measurement is minimal. The simulation model can be considered as a 
“black box” that receives the input vector X and returns an output Y. The main reasons for 
selecting the DE algorithm are: 

- The target function is non-linear 
- The number of input parameters is quite high 
- No derivative information of target function is available, which prevents using gradient 

methods 
- No analytical form of the target function is available 
- Calculation of the target function is computationally costly, which prevents the usage of 

direct search.  
 
The objective of optimization is to find input parameters, which results in similar damping ratios 
and frequencies of 10 modes. The selected target function Y for the optimization is 
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 (4.1) 

where yi is the target function value for mode i, Ci is the weighting factor of the mode i (see 
Table 12), ci is the modal damping ratio in the model and cmea i is the measured damping ratio, fi 
and fmea i are  model and measured frequencies, respectively. Error estimate for the measured 
damping is ± 10% and because of that the error in damping is neglected if it is less than 10 %. 
Because absolute error is used the error in damping is multiplied by 10 in order to increase its 
significance. 
 
Selection of optimization design variables i.e. input parameters is not a trivial task. Design 
variables should have a significant effect to the target function. Furthermore they should be 
unambiguous, not like spring coefficient in serial connection, where the combined spring 
constant is achieved with infinite number of solutions. The selected design variables (Figure 18) 
are stiffness and damping coefficients of the spring-damper forces and modal damping ratios of 
the flexible parts. Modal damping ratios are defined according modes frequency. The modes 
whose frequency is higher than shown in Figure 18 are critically damped i.e. damping ratio is 
100 %. 
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DV_7_c1_roll, 300Hz<f <1600Hz

DV_1_KX_ground
DV_2_KY_ground
DV_3_CX_ground
DV_4_CY_ground

DV_5_K_piezo
DV_6_C_piezo

DV_11_c1_stpl, 0Hz<f <1500Hz 
DV_12_c2_stpl, 1500Hz<f <4000Hz 
DV_13_c3_stpl, 4000Hz<f <8000Hz

DV_8_c1_frame, 0Hz<f <400Hz 
DV_9_c2_frame, 400Hz<f <500Hz 
DV_10_c3_frame, 500Hz<f <4000Hz

 
Figure 18. Design variables. 

 
The optimization procedure works as follows: 

1. Optimize –program calculates parameters for one individual 
2. ADAMS reads in input parameters 
3. Static Equilibrium analysis 
4. Calculation of linear modes 
5. Find frequencies and damping ratios and calculate target values yi 
6. Calculate final target function value Y and write it to a file end.txt 
7. Optimize –program reads the result from end.txt and calculates parameters for the next 

individual 
 
The optimization was run with the following parameters for 248 generations: 

- Population size   20 
- Mutation probability   0.98 
- Differential factor   0.60. 

The optimization results are shown in Table 12. Improvement in target function is more than 70 
% and 9 of 10 damping ratios are within 10 % error limit. Lowest 6 frequencies agree very well. 
The results are presented graphically in Figures 19 and 20. 
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Table 12. Optimization results 

Weight.
Mode factor

Damp. % Freq. [Hz] Damp. % Error % Freq. [Hz] Error % Damp. % Error % Freq. [Hz] Error % C Before After
1 ( h ) 0.608 29.83 0.344 43.4% 29.43 1.4% 0.580 4.6% 29.83 0.0% 10 30.432 0.021
2 ( v ) 1.060 32.16 0.286 73.0% 32.02 0.4% 1.137 -7.3% 32.08 0.2% 10 78.841 0.787
3 ( h ) 1.330 65.34 1.515 -13.9% 63.79 2.4% 1.388 -4.4% 65.68 -0.5% 5 16.977 1.681
4 ( v ) 1.680 82.23 1.406 16.3% 79.95 2.8% 1.847 -9.9% 81.09 1.4% 2 10.034 2.278
5 ( h ) 1.590 111.59 1.893 -19.1% 108.43 2.8% 1.748 -9.9% 110.93 0.6% 5 30.963 3.284
6 ( v ) 1.850 140.00 1.553 16.1% 138.82 0.8% 1.408 23.9% 140.15 -0.1% 2 8.300 9.143
7 ( h ) 2.100 179.04 1.927 8.2% 182.40 -1.9% 2.278 -8.5% 185.27 -3.5% 1.25 4.201 7.783
8 ( h ) 2.030 206.62 1.413 30.4% 224.18 -8.5% 1.884 7.2% 226.35 -9.6% 1.25 29.668 24.666
9 ( v ) 1.540 267.00 1.551 -0.7% 258.21 3.3% 1.694 -10.0% 259.24 2.9% 0.625 5.493 4.853
10 ( h ) 1.120 282.78 0.682 39.1% 307.97 -8.9% 1.011 9.7% 308.41 -9.1% 0.625 18.481 16.017

h = horizontal mode Mean: 26.0% Mean: 3.3% Mean: 9.5% Mean: 2.8% Sum: 233.39 70.51
v = vertical mode Improvement: 69.8%

Target function
(absolute error)

Measured Simulated
Before Optimization After Optimization

 
 
The values of optimized parameters as well as their allowed range are shown in Table 13. The 
optimized values are quite reasonable, it was expected that modal damping ratios for high 
frequency modes are quite high.  
 

Table 13. Optimized parameters. 
Parameter Initial Optimal Units

min max value Value
DV_1_KX_ground 100.00 2500.00 700.00 108.67 MN/m
DV_2_KY_ground 100.00 2500.00 700.00 302.74 MN/m
DV_3_CX_ground 1.00 100000.00 1000.00 8873.62 Ns/mm
DV_4_CY_ground 1.00 100000.00 1000.00 2238.97 Ns/mm
DV_5_K_piezo  60.00 80.00 70.00 75.69 MN/m
DV_6_C_piezo  1.00 100.00 5.00 9.32 Ns/mm
DV_7_c1_roll 0.01 10.00 0.50 0.72 %
DV_8_c1_frame 0.05 20.00 0.50 10.61 %
DV_9_c2_frame 0.05 20.00 0.50 6.61 %
DV_10_c3_frame 0.05 20.00 0.50 20.00 %
DV_11_c1_stpl 0.05 20.00 0.50 18.78 %
DV_12_c2_stpl 0.05 20.00 0.50 16.77 %
DV_13_c3_stpl 0.05 20.00 0.50 18.11 %

Range
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Figure 19. Damping and frequency of the vertical modes. Error estimate in damping is ± 10 %. 
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Figure 20. Damping and frequency of the horizontal modes. Error estimate in damping is ± 10 
%. 
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5 VERIFICATION AND RESULTS 
 
The simulation results are compared with those obtained by measuring the real structure. 
Horizontal and vertical throw is measured from three sections both from the simulation model 
and from the real structure. The results are compared by analysing the measured results of the 
throw with FFT in the frequency domain. The harmonic components of throw are used to 
generate data for the roll orbit plots in XY-plane. 
 

5.1 Measurement in the roll test rig  
 
The measuring equipment comprises a PC based data acquisition system, six laser sensors with 
amplifiers, connection panel and a guide bar in which the sensors have been installed. The throw 
of the roll is measured by using laser sensors whose function is based on the movement of the 
intensity maximum of the diffuse reflection of the laser beam with the detector. From the 
measured bend line, the throw and its harmonic components and resonance sections are 
analyzed. From the throw signal the sizes of the components, the mutual relations and phase 
angles and changes are perceived as a function of speed. The measurement points are shown in 
Table 14 and in Figure 21 [14]. 
 

Table 14. Measurement points in the roll test rig. 

# Measurement quantity Sensor type Unit 
1 Drive side horizontal throw Laser µm 
2 Drive side vertical throw “ µm 
3 Middle horizontal throw “ µm 
4 Middle vertical throw “ µm 
5 Service side horizontal throw “ µm 
6 Service side vertical throw “ µm 
7 Drive side pedestal acceleration Acceleration m/s2 

8 Service side pedestal acceleration “ m/s2 
p Pulse sensor (1/r and 1/1024r) Pulse sensor - 
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Figure 21. Measurement points of the roll. 
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5.2 Measurement in the simulation model 

 
Throw is measured from the simulation model at the same locations than from the real roll. One 
of the disadvantages with flexible bodies in ADAMS is that measurements can be defined only 
on the nodal points.  That is why the throw is measured differently than in reality. A 
measurement marker is defined on the top surface of the roll (Figure 22). Horizontal throw is 
measured with the following function: 

THROW_X=1e3*(DX(MAR_MEA, MAR_ground, MAR_ground)+ 
R_roll*(sin(YAW(MAR_MEA, MAR_ground)))) 

Correspondingly, the vertical throw is measured with the function: 
THROW_Y=1e3*(DY(MAR_MEA, MAR_ground, MAR_ground)- 

R_roll*(cos(YAW(MAR_MEA, MAR_ground)))) 
Displacement is measured between the roll marker MAR_MEA and the ground marker MAR_ground. 
Displacement caused by roll rotation is compensated with trigonometric functions. The 
parameter R_roll is the outer radius of the roll. The YAW-function is used to measure roll 
rotation angle α. This measurement method causes errors if the radius of the roll changes. 
However, the selected modes of the roll do not contain local shell vibration modes and thus 
changes in the roll radius are unlikely.  
 

α

MAR_ground

 

Y

XMAR_MEA

Figure 22. Measurement marker in the roll. 

 

5.3 Data handling 

 
The following signal processing procedures are applied both in the measured and simulated time 
domain data: 
- Hanning –window averaging to time domain signal  
- FFT (Fast Fourier Transform), 16384 points for measurement and 8192 for simulation 

results, both 8.192 s. 
- Multiplication of the amplitude by 2 (Hanning correction) 
- Spectrum maps 
- Search of lowest 4 harmonics of the rotation speed 
- Picket Fence correction for the frequency, amplitude and phase 
- Generation of roll orbits in xy-plane 
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5.4 Simulation cases 

 
The following simulation cases are analyzed: 
 
CASE 1: 

- Roll model with the parameters before optimization. 
CASE 2: 

- Roll model with the parameters after optimization. 
CASE 3: 

- The phase angles of the 2nd harmonics in shafts waviness is increased +220 degrees in 
both ends. This makes the phase angle of the minimum stiffness and the phase angle of 
waviness approximately same in the model and in the real roll. (See Figure 9 and Figure 
17) 

- Parameters after optimization. 
CASE 4: 

- Optimization is performed with slightly different target values; the modal damping of the 
first vertical bending mode (Mode 2) is decreased to 0.90 %. The optimization results are 
shown in Appendix III. This variation is almost within 10 % error of measured damping. 

- Shaft waviness is as in CASE 3. 
CASE 5:  

- The shell thickness variation of the roll is two-fold (see Table 4). Stiffness variation is 
nearer to the real roll (see chapter 2.1.3). 

- Other parameters are same as in CASE 3. 
CASE 6: 

- The amplitude of 2nd harmonics in shafts waviness is increased by  +1 µm in both ends. 
This variation is within the error tolerance of the roundness measurement. 

- Other parameters are same as in CASE 3. 
CASE 7: 

- Modal damping of the first vertical bending mode (Mode 2) is decreased to 0.90 %. 
- The shell thickness variation of the roll is two-fold (see Table 4) 
- The amplitude of 2nd harmonics in shafts waviness is increased by  +1 µm in both ends 
- Other parameters are same as in CASE 3. 
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5.5 Results 
 
The simulation results are compared to measurements in this chapter. The measured spectrum 
map of the vertical throw in the middle of the roll is shown in Figure 23 and the corresponding 
horizontal spectrum map is shown in Figure 24. Equivalent spectrum maps of simulation cases 1 
- 3 and 7 are shown in Figures 25-32. The spectrum maps in cases 4-6 are very similar than those 
of CASE 3 and thus they are not presented here.  
 
All the modeled excitations can be seen from the simulated spectrum maps. Since the ratio 
between diameters of the shaft and support roller is 0.9, there are peaks at the frequencies 0.9, 
1.8 and 2.7 times the rotation speed. The roll in the simulation model is not balanced as can be 
seen from the first harmonic component of the throw. However, the amount of imbalance does 
not affect to the higher harmonic components and thus imbalance is not considered in this study. 
 
In all simulation as well as in measurements cases the amplitudes of horizontal 2nd harmonics is 
greater than the vertical. This is caused by support of the roll and 2nd order waviness of the shaft. 
In Figure 13 it is shown that the angle between the support rollers is 80°. When elliptical shaft 
rotates on this kind of support, the first contact is in peak and the second is in the valley of the 
waviness. This causes larger excitation in the horizontal direction than in the vertical direction. 
Furthermore, the support is more flexible in horizontal direction. 
 
One-third critical resonance (3X-resonance) is not visible in the measured spectrum. However, 
from the simulated spectrum maps the resonance can be seen clearly. The simulated resonance 
amplitudes are quite large compared to half-critical resonance, because 3rd order amplitudes of 
the waviness are less than 1 µm, whereas 2nd order amplitudes are 2-4 µm. It is possible that the 
3rd order amplitude is zero in reality, because the error estimate in measurement is ±1 µm. The 
reason for relatively high response in simulation results is probably caused by the type of support 
of the roll. When triangular shaft rotates on this kind of support, both contacts are near of peaks 
of the waviness. After 30° rotation of the roll both contacts are in valleys, respectively. This 
causes larger movement in vertical direction than equal sized 2nd order waviness. 
 
In the simulation CASE 1 the maximum amplitudes of 2nd harmonics agree well with the 
measurement (see Table 15). However, there is two equal sized peaks in horizontal direction and 
the shape of the vertical resonance is wrong. The resonance peak is too sharp, which is due to 
small damping of the mode 2. This case was not expected to perform well, because parameters 
before optimization are used. 
 
In the CASE 2 the horizontal amplitude of the 2nd harmonics is very near of the measured one, 
but the frequencies do not agree. Horizontal half-critical resonance can be seen as a disturbance 
in the vertical spectrum map.  Vertical maximum amplitude is smaller than the measured one. 
Spectrum map CASE 3 is similar to the CASE 2, but the amplitude of the vertical 2nd harmonics 
is increased.   
 
Spectrum map of the vertical throw in CASE 7 (Figure 31) is very similar to the measured one, 
except the 1st harmonics which is increased due to increased imbalance. Shape and amplitude of 
the 2nd harmonics agree very well both in horizontal and vertical direction. 
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Figure 23. The measured (TP0) spectrum map of vertical throw in the middle of the roll. 

 

 
Figure 24. The measured (TP0) spectrum map of horizontal throw in the middle of the roll. 
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Figure 25. The simulated (CASE 1) spectrum map of vertical throw in the middle of the roll. 

 

 
Figure 26. The simulated (CASE 1) spectrum map of horizontal throw in the middle of the roll. 
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Figure 27. The simulated (CASE 2) spectrum map of vertical throw in the middle of the roll. 

 

 
Figure 28. The simulated (CASE 2) spectrum map of horizontal throw in the middle of the roll. 
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Figure 29. The simulated (CASE 3) spectrum map of vertical throw in the middle of the roll. 

 

 
Figure 30. The simulated (CASE 3) spectrum map of horizontal throw in the middle of the roll. 
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Figure 31. The simulated (CASE 7) spectrum map of vertical throw in the middle of the roll. 

 

 
Figure 32. The simulated (CASE 7) spectrum map of horizontal throw in the middle of the roll. 
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Orbits of roll movement at different sections (Service Side, Middle, Drive Side) and at different 
speeds are shown in Figures 33 and 34. Data for orbit plots is generated from FFT results of the 
throw by taking into account 1st to 4th harmonic components of the throw. Rolls zero attitude 
angle is marked with a circle (o) and attitude angle increases to the direction of the blue line. 
There are small discrepancies between the phase angles of the harmonic components as well as 
amplitudes. This causes slightly different orbits in measurement and simulation, but the general 
movement of the roll is alike.  
 
Amplitudes of 2nd harmonics in different simulation cases at the middle of the roll are shown in 
figures 35 and 36. The maximum amplitudes are listed in Table 15. The simulated horizontal 
amplitudes correspond very well to the measured ones. Variations in the simulation cases do not 
affect to the horizontal amplitude much. The measured maximum amplitude occurs at the 
rotation speed 14.6 Hz, which means that the first horizontal natural frequency is in reality 29.2 
Hz, not 29.8 Hz as measured with modal analysis.  
 
Vertical amplitudes vary in different simulation cases, which was expected. Variations to relative 
phase angle between stiffness variation of the roll and phase angle of the 2nd order waviness 
change the amplitudes significantly. According to the simulation results, the excitations caused 
by 2nd order waviness of the shaft and stiffness variation of the roll are in the same phase when 
the peaks of the 2nd order waviness are coincident with the minimum stiffness direction. In the 
CASE 2, these two excitations are acting against each other and in the CASE 3 they are acting in 
the same phase. Thus maximum amplitude of the vertical half critical resonance is increased by 
30 µm from CASE 2 to CASE 3. 
 
Maximum amplitudes in cases 4 to 6 are practically same. It seems that decrease in damping of 
the first vertical bending mode (CASE 4), increase in stiffness variation (CASE 5) and increase 
in 2nd order waviness (CASE 6) causes similar increase in response. Increase in maximum 
amplitude is about 15 µm in each case. In the CASE 7, all the above-mentioned variations are 
combined and the maximum amplitude is very near to the measured one.  
 
It can be said that the simulation model can predict half critical responses accurately. Variations 
in different simulation cases are within error limit of the measured initial data. Especially the 
stiffness variation of the roll can be larger than in the simulation model.  
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Figure 33. Measured (TP0) roll orbits at horizontal half critical speed (top row), between half 
critical speeds (middle row) and at vertical half critical speed (bottom row). SS=Service Side, 
MID=Middle, DS=Drive Side. 

 
Figure 34.  Simulated (CASE3) roll orbits at horizontal half critical speed (top row), between 
half critical speeds (middle row) and at vertical half critical speed (bottom row). SS=Service 
Side, MID=Middle, DS=Drive Side. 
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Figure 35. Amplitudes of the horizontal 2nd harmonics at middle. 

 

 
Figure 36. Amplitudes of the vertical 2nd harmonics at middle. 
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Table 15. Maximum amplitudes of 2nd harmonics. 
Channel      

Drive Side Horizontal 176 @ 14.6 158 @ 14.6 173 @ 15.0 147 @ 15.0
Drive Side Vertical 66 @ 15.8 62 @ 16.0 18 @ 16.0 33 @ 16.0
Middle Horizontal 289 @ 14.6 273 @ 14.8 307 @ 15.0 263 @ 15.0
Middle Vertical 114 @ 15.8 122 @ 16.0 35 @ 16.0 64 @ 16.0
Service Side Horizontal 167 @ 14.6 159 @ 14.6 171 @ 15.0 147 @ 15.0
Service Side Vertical 56 @ 15.8 62 @ 16.0 18 @ 16.0 33 @ 16.0
Channel      

Drive Side Horizontal 154 @ 15.0 147 @ 14.8 154 @ 15.0 139 @ 14.6
Drive Side Vertical 41 @ 16.0 41 @ 16.0 40 @ 16.0 61 @ 16.0
Middle Horizontal 274 @ 15.0 255 @ 14.8 273 @ 15.0 242 @ 14.6
Middle Vertical 81 @ 16.0 80 @ 16.0 78 @ 16.0 120 @ 16.0
Service Side Horizontal 153 @ 15.0 144 @ 14.8 153 @ 15.0 141 @ 14.6
Service Side Vertical 42 @ 16.0 41 @ 16.0 40 @ 16.0 61 @ 16.0

µm @ Hz µm @ Hz µm @ Hz µm @ Hz
CASE 4 CASE 5 CASE 6 CASE 7

µm @ Hz µm @ Hz µm @ Hz
CASE 3Measured

µm @ Hz
CASE 1 CASE 2
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6 ADDITIONAL SIMULATIONS 
 
The results of various types of simulations are presented in this chapter. These simulations are 
not directly compared to measurements, since variations are mainly in modeling aspects. Mode 
selection of the flexible bodies is studied in CASE 8 and inertia modeling of the roll is studied in 
Cases 9 and 10. Vertical half critical resonance is caused by stiffness variation of the roll and 2nd 
order waviness of the shafts. These excitations cannot be excluded from the existing roll. That is 
why the effects of stiffness variation of the roll and waviness of the shafts are studied separately 
in cases 11-15. 
 
 

6.1 Selection of the modes 
  
Mode selection of the flexible parts is discussed in chapter 2. Mode selection in dynamic 
analysis is a very demanding task, and the set of selected modes affect to results greatly. To 
ensure the validity of the selected modes, a simulation with all modes in all flexible parts is 
performed. Model degrees-of-freedom are increased from 113 to 287, which means considerable 
increase in CPU-time. The simulation CASE 8 can be summarized as follows 
 
CASE 8 
- All modes in flexible parts are selected  
- Otherwise same as CASE 3  
 
Natural frequencies of the model are almost same, except for the first horizontal mode. Its 
frequency is decreased from 29.8 Hz to 28.9 Hz. Furthermore, more vibration modes is found 
from the model, which is explained by the increase in degrees-of-freedom. The frequency of the 
first horizontal mode corresponds well with the measured spectrum, but not with the 
experimental modal analysis. Change in frequency is probably due to increased flexibility of the 
pedestal parts. 
 
Spectrums of the vertical throw at the middle of the roll in cases 3 and 8 are compared in Figure 
37, where the absolute value of amplitude difference is presented. The only significant difference 
is the shift in the frequency of the first horizontal mode. First harmonic component is practically 
same in cases 3 and 8. According to this result, the selection of vibration modes is correct. 
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Figure 37. Absolute difference between vertical throw at middle in cases 3 and 8. The only 
significant discrepancy is the shift in the frequency of the first horizontal mode. Otherwise 
spectrums are identical.  

 

6.2 Inertia modeling of the roll 
 
The mass matrix of the flexible body is a highly non-linear function of the generalized 
coordinates of the body reference frame as well as deformation of the body. ADAMS computes 
the time varying mass matrix by using nine inertia invariants [4, 8]. The selection of invariants is 
shown in Figure 38. All the previous cases were run with all invariants in the roll enabled. 
However, invariants I5 and I9 are computationally most expensive, but their contribution to the 
results is sometimes negligible.  
 

 
Figure 38. Selection of the inertia invariants in ADAMS. 
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Cases 9 and 10 can be summarized as follows:  
CASE 9  
- Same as CASE 3, but invariants I5 and I9 are disabled (Partial Coupling) 
CASE 10  
- Same as CASE 3, but invariant I9 is disabled (Custom Inertia modeling) 
 
The spectrum map of the vertical throw in the CASE 9 is shown in Figure 39. This spectrum 
differs from the measured one as well as from the CASE 3 significantly. A very strong cross 
coupling between the vertical and the horizontal direction is visible. This phenomenon can be 
seen also from Figure 40, where roll orbits are shown. CASE 10 is run with inertia invariant 9 
disabled, but invariant 5 enabled. The spectrum map of the vertical throw in the CASE 10 is 
shown in Figure 41. Spectrum corresponds very well with the CASE 3, which means that inertia 
invariant I5 is significant in the roll system modeling. Invariant I5 is a second-order correction of 
the rotation and deformation cross coupling and invariant I9 is a second-order correction to the 
inertia tensor of the flexible body. 
 
 

 
Figure 39. The simulated (CASE 9) spectrum map of vertical throw in the middle of the roll. 
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Figure 40. Simulated (CASE9) roll orbits at horizontal half critical speed (top row), between 
half critical speeds (middle row) and at vertical half critical speed (bottom row). SS=Service 
Side, MID=Middle, DS=Drive Side. 

 
Figure 41. The simulated (CASE 10) spectrum map of vertical throw in the middle of the roll. 
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6.3 Effect of stiffness variation of the roll and waviness of the shaft 

 
As mentioned before, the half critical resonance is caused by the stiffness variation of the roll 
and the 2nd order waviness of the shaft necks. The effect of these two reasons is studied in the 
cases 11-15, which are summarized below. 
 
CASE 11  

- Ideal roll (no shell thickness variation) 
- Waviness of the shaft same as in the CASE 3 

 
CASE 12  

- Normal shell thickness variation 
- Ideal shafts (no waviness) 

 
CASE 13  

- Shell thickness variation two-fold 
- Ideal shafts (no waviness) 

 
CASE 14  

- Phase angles of the 2nd and 3rd harmonic components of the shaft waviness are opposite 
in the service and drive side. Phase angles are increased by +180 degrees at the service 
side (see Figure 46). 

- The roll is ideal i.e. no shell thickness variation is modeled 
- 1st harmonic component in shaft waviness is removed 

 
CASE 15  

- The amplitudes of the 2nd and 3rd order waviness is increased by +2 µm at both sides 
- The roll is ideal i.e. no shell thickness variation is modeled 
- 1st harmonic component in shaft waviness is removed 

 
The spectrum map of the vertical throw in the CASE 11 is shown in Figure 42 and corresponding 
horizontal spectrum is shown in Figure 43. These spectrums are very similar than those of the 
CASE 3. It seems that stiffness variation has not significant effect to the half critical vibration 
response in this case. Spectrums of the vertical throw in the middle of the roll in cases 12 and 13 
are shown in Figures 44 and 45. Second order response is small compared to the CASE 11. 
 
Amplitudes of the second order harmonics are quite small in the CASE 14 (Figure 47), where the 
phase angles of the waviness are opposite. First order harmonics does not exist, small peaks are 
due to support roller waviness and their frequency is 0.9⋅Ω. Amplitudes of the 3rd harmonics are 
also negligible. 
 
In the CASE 15 (Figure 49 and Figure 50), the amplitudes of the 3rd harmonics are increased 
greatly compared to the CASE 11. The amplitude of the vertical 3rd harmonics is almost equal as 
the amplitude of the 2nd harmonics. 
 
Amplitudes of the horizontal 2nd harmonics at middle of the roll in cases 11-15 are shown in 
Figure 51 and corresponding vertical amplitudes are shown in Figure 52. 
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Figure 42. The simulated (CASE 11) spectrum map of vertical throw in the middle of the roll. 

 

 
Figure 43. The simulated (CASE 11) spectrum map of horizontal throw in the middle of the roll. 
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Figure 44. The simulated (CASE 12) spectrum map of vertical throw in the middle of the roll. 

 

 
Figure 45. The simulated (CASE 13) spectrum map of vertical throw in the middle of the roll. 
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Figure 46. Waviness of the shafts in the CASE 14. 

 

 
Figure 47. The simulated (CASE 14) spectrum map of vertical throw in the middle of the roll. 
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Figure 48. The simulated (CASE 14) spectrum map of horizontal throw in the middle of the roll. 

 

 
Figure 49. The simulated (CASE 15) spectrum map of vertical throw in the middle of the roll. 
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Figure 50. The simulated (CASE 15) spectrum map of horizontal throw in the middle of the roll. 

 

 
Figure 51. Amplitudes of the horizontal 2nd harmonics at middle in cases 11-15. 
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Figure 52. Amplitudes of the vertical 2nd harmonics at middle in cases 11-15. 

 
 

6.4 CPU-times 
 
Total simulation time in cases 1-7 was 517.4 seconds, which is a relatively long simulation. All 
the simulations were performed with a stand-alone solver (version 10.0.0 Patch APN-10-55). 
Error tolerance of the integrator (gear stiff) was 1e-5 and maximum time step size was 2.5e-4 s. 
All the simulations were performed with Pentium4 1700 MHz processor in the Windows2000 
operating system. An average ratio between the CPU-time and the simulated time (Real-Time 
Ratio) was 204, which means that one spectrum map is calculated in 29 hours. In the CASE 3 
this ratio was 183. 
 
An average Real-Time Ratio in the CASE 8 was 823, which was expected because all modes 
were selected. The increase in CPU-time is not linearly dependent on the number of model 
degrees of freedom. Degrees of freedom were 2.5 times larger than in the CASE 3 but CPU-time 
was 4.5 times larger. 
 
As mentioned before, the invariants I5 and I9 are computationally expensive. Real-Time Ratio in 
the CASE 9 (I5 and I9 disabled) was 145, where as in the CASE 10 (I9 disabled) it was 154. 
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7 CONCLUSIONS 
 
The construction of the ADAMS simulation model of the roller test rig is presented in detail. The 
flexibility of the parts is imported from detailed FE-models. In ADAMS, the simulation model is 
assembled and joints as well as forces are defined. 
 
Differential Evolution -optimization algorithm was used to improve the accuracy of the 
simulation model. The error between the modal parameters in the model and those obtained by 
experimental modal analysis was minimized.  Frequency and modal damping of the 10 vibration 
modes were used in the optimization. It was shown that DE-algorithm is suitable for this kind of 
multi-parameter nonlinear optimization. 
 
The modeled non-idealities were shell thickness variation of the roll and roundness errors i.e. 
waviness of the shafts of the roll. It was proven with the simulation model that the subharmonic 
resonances are due to these non-idealities. Shell thickness variation causes the weight resonance, 
which means that symmetrical modes are excited at rotational frequencies 2f, where f is the 
frequency of the symmetrical mode. Waviness of the shafts causes subharmonic resonances of 
order 2Ω, 3Ω, 4Ω, …, NΩ.  
 
In this study, the shell thickness variation of the real roll was measured and modeled in the FE-
model. Thus the bending stiffness variation of the roll in the simulation model was due to shell 
thickness variation only. It seems that the stiffness variation in the real roll is greater, which 
means that shell thickness is not the only non-ideality of the roll. There can be other non-
idealities in the real roll, such as uneven modulus of elasticity or welds, which affect to the 
stiffness variation. However, measurement of the rolls geometry is not necessary, percentage 
variation of the bending stiffness can be used instead. Two different variation percentages were 
used in the simulations, namely 0.33 % and 0.67 %.  
 
The simulation results were compared to those obtained by measuring the real structure. 
Comparison shows that very good accuracy is achieved. The half critical subharmonic resonance 
was studied in detail. Vibration responses are due to very small non-idealities in the real 
structure and these non-idealities are difficult or even impossible to measure. Several simulation 
cases were run where values of the initial parameters were varied. These variations were within 
the error estimates of the measured data. The simulation results show that equivalent responces 
are achieved within the error limit of the initial parameters. It can be said that the simulation 
model can predict the responses of the half-critical resonances accurately.  
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APPENDIX I.  The functioning of DE is here illustrated in case of a simple objective 

function f(X) = x1 + x2 + x3 + x4 + x5. [12] 
 

Differential Evolution (DE)

individual 1 individual 2 individual 3 individual 4 individual 5 individual 6

cost value 1.84 2.30 2.10 1.74 1.99 2.26
parameter 1 0.02 0.13 0.05 0.24 0.47 0.68 CURRENT
parameter 2 0.38 0.55 0.42 0.24 0.65 0.71 POPULATION
parameter 3 0.64 0.60 0.28 0.57 0.69 0.04
parameter 4 0.77 0.32 0.97 0.64 0.05 0.07
parameter 5 0.02 0.69 0.39 0.04 0.14 0.76

weighted
difference difference

vector vector

-0.11 -0.09
0.31 0.25
0.03 0.02
-0.32 -0.26
0.64 0.52

noisy vector

0.59
0.96
0.06
-0.19
1.28

trial vector

cost value 3.66
parameter 1 0.59
parameter 2 0.38

parameter 3 0.64 control variables of DE
parameter 4 0.77 number of dimensions D 5
parameter 5 1.28 population size NP 6

mutation constant F 0.80
crossover constant CR 0.50

individual 1 individual 2 individual 3 individual 4 individual 5 individual 6

cost value 1.84
parameter 1 0.02 POPULATION
parameter 2 0.38 FOR NEXT
parameter 3 0.64 GENERATION
parameter 4 0.77
parameter 5 0.02

+ -

+
+

1.
Choose target vector

2.
Randomly choose two 
other vectors

3.
Third randomly chosen 
vector, subject of mutations

CROSSOVER:
With probability CR  select 
parameter value from noisy 
vector, otherwise select value 
from target vector

SELECTION:
Select target vector or trial 
vector, the one with the lower 
cost survive

x F

MUTATION:
Add difference vector 
weighted with F  to third 
randomly chosen vector

EVALUATION OF 
COST FUNCTION:
Evaluation of cost 
function value for 
trial vector takes 
it's place here
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APPENDIX II.  The user interface of the Optimize –program. 
 
 

 
Figure II.1. The model-building environment in Optimize -program. Roller –block is the ADAMS 
model, which reads in the parameters and return the value of the target function. 

 
 

 
Figure II.2. The solver window of the Optimize program. Sum of standard deviations of 
parameters is used as a measure of fitness. 
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APPENDIX III.  Optimization results used in the simulation CASE 4. 
 
 

Table III.1. Optimization results. 
Weight.

Mode factor
Damp. % Freq. [Hz] Damp. % Error % Freq. [Hz] Error % Damp. % Error % Freq. [Hz] Error % C Before After

1 ( h ) 0.608 29.83 0.344 43.4% 29.43 1.4% 0.556 8.6% 29.79 0.1% 10 30.432 0.420
2 ( v ) 0.900 32.16 0.286 68.2% 32.02 0.4% 0.901 -0.1% 32.03 0.4% 10 62.841 1.331
3 ( h ) 1.330 65.34 1.515 -13.9% 63.79 2.4% 1.361 -2.3% 65.46 -0.2% 5 16.977 0.613
4 ( v ) 1.680 82.23 1.406 16.3% 79.95 2.8% 1.845 -9.8% 80.88 1.6% 2 10.034 2.698
5 ( h ) 1.590 111.59 1.893 -19.1% 108.43 2.8% 1.731 -8.9% 110.58 0.9% 5 30.963 5.025
6 ( v ) 1.850 140.00 1.553 16.1% 138.82 0.8% 1.382 25.3% 140.01 0.0% 2 8.300 9.375
7 ( h ) 2.100 179.04 1.927 8.2% 182.40 -1.9% 2.246 -7.0% 184.75 -3.2% 1.25 4.201 7.132
8 ( h ) 2.030 206.62 1.413 30.4% 224.18 -8.5% 1.851 8.8% 225.92 -9.3% 1.25 29.668 24.120
9 ( v ) 1.540 267.00 1.551 -0.7% 258.21 3.3% 1.414 8.2% 259.15 2.9% 0.625 5.493 4.905

10 ( h ) 1.120 282.78 0.682 39.1% 307.97 -8.9% 0.800 28.6% 308.32 -9.0% 0.625 18.481 17.960
h = horizontal mode Mean: 25.5% Mean: 3.3% Mean: 10.8% Mean: 2.8% Sum: 217.39 73.58
v = vertical mode Improvement: 66.2%

Measured Simulated
Before Optimization After Optimization

Target function
(absolute error)

 

Table III.2. Optimized parameters. 

Parameter Range Initial Optimal Units 
  min max value Value   
DV_1_KX_ground 100.00 2500.00 700.00 119.74MN/m 
DV_2_KY_ground 100.00 2500.00 700.00 410.20MN/m 
DV_3_CX_ground 1.00 100000.00 1000.00 9673.37Ns/mm 
DV_4_CY_ground 1.00 100000.00 1000.00 1960.04Ns/mm 
DV_5_K_piezo   60.00 80.00 70.00 73.93MN/m 
DV_6_C_piezo   1.00 100.00 5.00 8.52Ns/mm 
DV_7_c1_roll  0.01 10.00 0.50 0.45% 
DV_8_c1_frame 0.05 20.00 0.50 3.99% 
DV_9_c2_frame 0.05 20.00 0.50 19.72% 
DV_10_c3_frame 0.05 20.00 0.50 19.78% 
DV_11_c1_stpl  0.05 20.00 0.50 19.56% 
DV_12_c2_stpl  0.05 20.00 0.50 0.63% 
DV_13_c3_stpl  0.05 20.00 0.50 18.04% 
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