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Stohasti approximation methods for stohasti optimization are onsidered. Reviewed

the main methods of stohasti approximation: stohasti quasi-gradient algorithm,

Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation

stohasti approximation (SPSA) algorithm. Suggested the model and the solution

of the retailer's pro�t optimization problem and onsidered an appliation of the SQG-

algorithm for the optimization problems with objetive funtions given in the form of

ordinary di�erential equation.
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Symbols and abbreviations

• CDF - umulative distribution funtion.

• PDF - probability density funtion.

• SQG - stohasti quasi-gradient algorithm.

• VaR - value-at-risk.

• CVaR - onditional value-at-risk.

• w.r.t - with respet to.

• a.s. - onvergene almost sure.

• σ{X1, X2, ..., Xn} - sigma-algebra, generated by the distribution of random vari-

ables X1, X2, ..., Xn.

• MC - Monte-Carlo simulation.

• MCMC - Markov Chain Monte-Carlo simulation.

• LP - linear programming.

• SPSA - Simultaneous perturbation stohasti approximation.

• SA - Stohasti approximation.

• KW - Kiefer-Wolfowitz algorithm.

• ODE - Ordinary di�erential equation.
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1 Introdution

Optimization problems under unertainty have been intensively studied by many re-

searhes during the last 50 years. In fat mathematial models based on stohasti

theory are more approahed to the real life then deterministi beause the random pa-

rameters whih onsidered in objetive funtion or in onstraints re�et the nature of

unertainty during the deision making.

Stohasti models are widely used in insurane, �nanial and portfolio optimization

where the behavior of market annot be preisely foreasted or in aerospae tehnologies

where it is required to obtain robust results.

Generally the solution of the stohasti optimization problems looks as follows: �rstly

researher attempts to derive a deterministi equivalent and use deterministi method

of linear or nonlinear optimization depending on the ase. If the ost funtion is quite

ompliated but if the gradient an be expliitly found for the given realization of the

random parameters or suessfully approximated with �nite di�erenes, then stohas-

ti approximation (SA) will be a good hoie as a solution tehnique. Finally if the

method fails (example: an objetive funtion is multimodal, ontains both disrete and

ontinuous arguments), then the Monte-Carlo simulation, geneti algorithms, simulated

annealing or other methods of global optimization are used.

Robustness, simpliity and omputation speed makes stohasti approximation a very

popular algorithm for the wide lass of optimization problems therefore development of

SA is an important and demanded researh area.

1.1 Objetive of the thesis

The main purpose of the thesis is to study and develop stohasti approximation algo-

rithms whih are used in stohasti optimization.

1.2 Struture of the thesis

The material of the thesis is organized as follows: the �rst 3 hapters are devoted for

the de�nitions, theoretial bakground of the stohasti approximation and are mainly

needed to prepare the reader for the appliation problems that are studied in the hapters

4-5.
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1.3 Sienti� novelty

The thesis ontains several new theoretial results: deterministi equivalents of the op-

timization problems with mean-value and CVaR - eletriity retailer pro�t optimization

problem (see theorems in the orresponding setion) and interesting omputational idea:

equation in variations used in SQG-algorithm for the objetive funtions given in ODE-

form.

The �rst result gives an opportunity to substitute the solution of the stohasti problem

with deterministi one and instantly get the result using a well-known simplex-method

for the linear-programming.

The seond result signi�antly inreases omputational speed of the stohasti approx-

imation proedure for the onsidered problem.
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2 Optimization riteria, used in stohasti program-

ming

Let Φ(u,X) further in this setion denotes a ost funtion, where u ∈ U ⊂ R
n
is an

optimization strategy and X is a random vetor with the realizations belonging to the

set E ⊆ R
m
.

2.0.1 Mean-value riterion

Historially the �rst was a mean-value riterion whih an be de�ned as follows:

min
u∈U

E[Φ(u,X)]. (1)

Intuitively the riterion means to hose those strategy, whih minimizes average loses,

represented by the objetive funtion.

The main properties of the mean-value riterion that allows one to derive a solution and

build e�etive algorithms are:

• Linearity:

E[aX + bY + c] = aE[X ] + bE[Y ] + c, (2)

where X, Y are random variables and parameters a, b, c ∈ R;

• Simple representation for the disrete distribution with �nite number of realiza-

tions:

E[X ] =
n∑

i=1

xipi, (3)

where xi, i = 1, .., n are realisations of the random vetor X, and pi, i = 1, .., n are the

orresponding probabilities, so that P(X = xi) = pi.

Unfortunately, the mean-value riterion together with suh attrative properties has a

number of ases when it fails: to get a basi idea one an imagine the situation when the

deision about the onditions of the patients in a lini are made, based on the average

temperature among them. The nonsense is obvious - it is possible to have the value of

the riterion 36, 6◦ but all the patients will be about to die: the �rst half with ∼ 34C◦

and the rest with ∼ 40C◦
.
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2.0.2 Minimax riterion

The minimax riterion omes from the game theory and in the statistial analysis means

to hose those strategy, whih attains the minimum of loses in the worst possible ase:

min
u∈U

max
X∈E

Φ(u,X). (4)

The problem statement an be treated as a game against an aggressive nature all the

time forming the worst possible ase for the deision maker. The positive side of the

strategy hosen aording to minimax is an assurane that the losses will be always

below foreasted. Drawbak e�ets are obvious: suh strategy ould be too autious

and wasteful and often unahievable. For example in the book [4℄ the hapter devoted

to optimization of the airraft runway area ontains a joke that in order to solve the

problem with the minimax riterion it is required to onrete the whole globe together

with oeans and sees.

2.0.3 Value-at-Risk (VaR) riterion

To show an idea behind the VaR riterion let us de�ne two onepts: the probability

funtion Pφ(u) and the quantile funtion φα(u) [4℄.

Pφ(u) = P{Φ(u,X) ≤ φ}, (5)

φα(u) = min {ϕ : Pϕ(u) ≥ α}. (6)

The probability funtion represents probability that the ost funtion Φ(u,X) does not

exeed the level φ for a hosen �xed strategy u, while the quartile funtion indiates the

orresponding minimal level. Finally, to get the VaR-strategy, the following optimization

task have to be solved:

min
u∈U

φα(u). (7)

Unfortunately VaR laks of some desirable theoretial properties. Firstly, it does not

preserve onvexity, i.e. onvexity of the objetive funtion w.r.t. to a strategy, does

not always results in a onvexity of the quantile funtion. Seondly, there are quite a

small number of ases when it is possible to derive a gradient w.r.t to a strategy of the

VaR expliitly. This makes the solution proess of VaR problems extremely ompliated

and therefore the Monte-Carlo simulation is often used. One approah to deal with the

quantile riterion is to build an upper-value estimate, based on the on�dene set.
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Aording to [4℄ the problem (7) may be solved if one gets a solution of the following

minimax problem:

φα(u) = min
E∈Eα

max
x∈E

Φ(u, x),

where Eα is a family of the on�dent sets P (E) ≥ α, E ∈ Eα. Obviously if instead of the

optimal on�dent set E∗
will be used an arbitrary one Ê, then an upper estimate to the

optimal solution will be found. Based on that observation there were many appliation

problem solved [23, 24, 25℄.

2.0.4 Conditional Value-at-Risk (CVaR) riterion

The riterion was reated as an enhanement to VaR and represents an average rate of

loses exeeding the level φα(u):

ψα(u) = E[Φ(u,X) | Φ(u,X) ≥ φα(u)] =
1

1− α

∫

Φ(u,X(w))≥φα(u)

Φ(u,X(w))dP (w), (8)

Aording to [7℄, a minimization of CVaR over the strategy u ∈ U equals to the solution

of the following optimization problem:

ψ∗ = min
(u,φ)∈U×R

Fα(u, φ), (9)

where

Fα(u, φ) = φ+
1

1− α
· E[max{F (u, Z)− φ, 0}. (10)

This results opens wide possibilities for the CVaR-optimization via well-known teh-

niques of the mean-value minimization.

2.0.5 Demonstration example

Let us onsider a simple example to show the di�erene between the foregoing riteria

in pratie. Assume that a ost funtion is de�ned as presented below:

Φ(u,X) = u2 +X (11)

and a random parameter is a normally-distributed X ∼ N(0, 1).

• Mean-value solution:

min
u∈R

{E[u2 +X ]}. (12)
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Using a linearity of the mathematial expetation, we get the following determin-

isti equivalent:

min
u∈R

u2 (13)

and the orresponding solution is u∗ = 0, E[u∗, X ] = 0.

• Minimax solution:

min
u∈R

max
X

{u2 +X}. (14)

The Normal distribution has a ontinuous CDF, therefore ∀ C ∈ R: P(X > C) >

0. As a result, the left hand side of the previous equation is a non-restrited and

the problem does not have a solution.

• VaR-solution:

min
u∈R

{φα(u)}. (15)

The probability funtion looks as follows:

Pφ(u) = P(u2+X ≤ φ) = P(X ≤ φ−u2) = FX(φ−u2), where FX is a CDF of X

The quantile funtion:

φα(u) = min{φ : Pφ(u) ≥ α} = min{φ : FX(φ− u2) ≥ α}

By the de�nition CDF is a monotonially non-dereasing funtion, therefore:

FX(φ− u2) ≥ α ⇐⇒ φ− u2 ≥ xα =⇒ φ ≥ u2 + xα =⇒ φα(u) = u2 + xα
Finally, the deterministi equivalent assumes the shown below form:

min
u∈R

{u2 + xα}. (16)

As it an be learly seen: u∗ = 0, φα(u
∗) = xα.

• CVaR-solution: Considering the previous VaR soultion:

ψα(u) = E[Φ(u,X) | Φ(u,X) ≥ φα(u)] = E[u2 + x | u2 + x ≥ u2 + xα] =

u2 +E[x | x ≥ xα] = u2 + yα, where yα = α− CV aRN(0,1). Finally, the determin-

isti equivalent assumes the following form:

min
u∈R

{u2 + yα} (17)

and the solution: u∗ = 0, ψα(u
∗) = yα.

It is worth to note, that in this partiulary example, the strategy u = 0 is an optimal

simultaneously for the mean-value, VaR, and CVaR riteria.
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Figure 1: Illustration of the solution.
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3 Stohasti approximation

A history of the stohasti approximation starts from the artile of Robbins and Monro

[20℄ where authors applied a reursive SA proedure to �nd a root of the equation

observing noisy data. As it has been disovered, there is no need to know exat values

of the funtion, beause during the solution we are only interested in the diretion of

the root. As a result of this observation, the proess an work with noisy values instead

of the exat data.

Let us review several illustrative appliation problems from the real life where the

stohasti approximation algorithms an be quite useful.

• During the testing of insetiides there are a problem of determining the maximum

dose whih guarantee the intensity of the reation.

• The hardness of the iron-opper alloy depends on the time of temperature impat.

Let u denotes a time, and Y (u) - the hardness of alloy. The omputation problem

is to determine suh u when the hardness of alloy Y (u) reahes α. It is also a

well-known fat that the hardness of alloy varies over the items.

• The sensitivity of the explosive substane to the physial impat are measured by

hitting. The small item of the substane are punhed by solid objet thrown from

the �xed height. Some samples will explode and some of them not. The problem

is to determine the ritial height for the substane.

• A grain �eld are fertilized by some hemials. Let u denotes an amount of the

fertilizer and Y(u) denotes a orresponding amount of grain gathered from the

�eld. It an be learly seen that lak of the fertilizer (as well as over-fertilization)

yields to a redution of the rops. Only some optimal amount of hemials leads

to a signi�ant outome. Moreover the proli�ness of the �eld are hanging over

the years even if an amount of the fertilizer u remains the same.

The solution of the �rst three ases an be organized aording to the proedure of

Robins and Monro: a tester piks an arbitrary value x1 from the admissible area, on-

duts an experiment and observes a realisation y(x1) of the random variable Y (x1) with

expetation M(x1) = E{Y (x1)}, where M is some inreasing funtion. The tester also

hooses a dereasing sequene an = c
n
, where c is a positive onstant and n is a number

of the step. The problem to be solved is to determine suh θ, that M(θ) = α. For the

next experiment he takes x aording to the rule:

xn+1 = xn − an(y(xn)− α). (18)

8



To understand the main idea of the method assume α = 0. In this ase the previous

statement yields

xn+1 = xn −
c

n
y(xn). (19)

If y(xn) > 0, then xn+1 < xn, and y(xn) < 0 leads orrespondingly to xn+1 > xn,

meaning that the equation (19) looks reasonable sine we are searhing for θ :M(θ) = 0.

The solution of the last problem an be organized with the help of stohasti quasi-

gradient method whih is studied in details further in the thesis.

Kiefer and Wolfowitz (in 1d-ase) [17℄ and Blum [21℄ (in multidimensional ase) applied

stohasti approximation to optimize mean-value funtionals.

The books of Ermoliev [9℄, Powel [22℄ ontain easy understandable proofs and motivation

of using stohasti approximation.

Kan and Kibzun [4℄ have applied stohasti approximation for the optimization problems

with VaR riterion.

Spall [19℄ have suggested to use random perturbations in the lassial KW-proedure

and derease the number of evaluations of the objetive funtion. Moreover his personal

page [19℄ lists a large number of referenes regarding appliations of SPSA.

Let us list several di�erent areas of siene where the SPSA-algorithms have been su-

essfully applied [19℄:

• Airraft modeling and ontrol

• Atmospheri and planetary modeling

• Cardiologial data analysis

• Noise anellation

• Queuing network design

• Robot ontrol

• Sensor plaement

• Tra� signal timing or other transportation problems

• Underground mine detetion

9



Granihin and Polyak [29℄ made a generalization of the SPSA-method, estimated the

onvergene speed and suggested several di�erent versions of the proedure.

The next setion ontains explanations of the stohasti approximation proedures whih

are used for the optimization of ost-funtions.

The presentation is organized as follows: �rstly we introdue onditional expetation,

then on its basis some de�nitions from martingale theory will be shown. Having insight

in the martingale onvergene theory we gradually start the main proof regarding the

onvergene of the SQG-proedure. At the end of the setion we desribe a relatively new

area of stohasti approximation - the SPSA algorithm and disuss adaptive proedures

that pratially enhane onvergene.

3.1 Conditional mathematial expetation

Let {Ω,F ,P} denotes a probability spae, G is a σ-algebra of random events G ⊆ F

and ξ is a random variable E[ξ] <∞. A random variable E[ξ | G] is alled a onditional

mathematial expetation of ξ w.r.t. G if the following onditions are valid:

1. E[ξ | G] is a G-measurable funtion,

2. for every set A ⊆ G,

∫

A

ξ(ω)P(dω) =

∫

A

E [ξ | G] (ω)P(dω). (20)

The main properties of the onditional mathematial expetation, that is used in the

next paragraphs are [13℄:

1. if ξ = C = const, then

E[ξ | G] = C (a.s.), (21)

2. if ξ ≤ η (a.s) then

E[ξ | G] ≤ E[η | G] (a.s.), (22)

3. if the random variable ξ is measurable with respet to σ-algebra G, then

E[η | G] = ξ (a.s.), (23)
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4. onnetion with unonditional expetation:

E [E[ξ | G]] = E[ξ] (a.s.), (24)

5. linearity. If a, b ∈ R and E [ξ] <∞, E [η] <∞ then

E [aξ + bη | G] = aE [ξ | G] + bE [η | G] (a.s.), (25)

6. if the random variable ξ does not depend on σ-algebra G, then

E[ξ | G] = E[ξ] (a.s.), (26)

7. onditional mathematial expetation with respet to a random variable is de�ned

as an expetation w.r.t. the σ-algebra, generated by this variable:

E [ξ | Fn] = E [ξ | η] , Fn = σ{η}. (27)

To get intuitive sense regarding onditional mathematial expetation, one an imagine

E [X | F ] as a rough, averaged version of X, beause on the arbitrary set A ∈ F random

variable X an assume any values, but E [X | F ] gets only one �xed value: E [X |A]

what is an average value of X on the set A ∈ F .

3.2 Disrete time martingales

Assume that F0 ⊆ F1 ⊆ ... ⊆ F is a non-dereasing family of σ-algebras, de�ned on a

probability spae {Ω,F ,P}. For example if {ξn}, n ≥ 0 is a set of random variables given

on {Ω,F ,P} and F l
n = σ{ξ0, ... , ξn} is a sigma-algebra, generated by {ξk, k = 0, ... , n},

then {F l
n} is a non-dereasing family of σ-algebras.

Let {Xn, n ≥ 0} is a sequene of random variables de�ned on {Ω,F ,P}. If for all n ≥ 0

Xn is Fn-measurable, then {Xn,Fn} is alled a stohasti sequene.

If for all n ≥ 0 Xn is Fn−1-measurable, then the sequene {Xn,Fn−1} is alled a stohas-

ti sequene.

Stohasti sequene {Xn,Fn}, E [|Xn|] <∞ is alled:

• a martingale, if E [Xn+1 | Fn] = Xn (a.s.),

• a submartingale, if E [Xn+1 | Fn] ≥ Xn (a.s.),

• a supermartingale, if E [Xn+1 | Fn] ≤ Xn (a.s.).

11



3.3 Convergene of the supermartingales

It an be learly seen that supermartingales are stohasti analogues of non-inreasing

sequenes of the real numbers. As a result, supermartingales (as well as submartin-

gales) under some onditions an have a limit (what is in fat a random variable). The

orresponding statement are shown in the following theorem [9℄.

Theorem 3.1 (Convergene theorem). If {Xn,Fn} is a supermartingale, suh that

inf
n
E [X−

n ] > −∞, X−
n = min{Xn, 0} then

| lim
n→∞

Xn| <∞. (28)

From the theorem above it is possible to onlude: if {Xn,Fn} is a non-negative super-

martingale, then a.s. (with probability 1) there exists its limit.

3.4 Convergene of the random variables

Let {X1, ..., Xn, ...} is a sequene of random variables, whih are de�ned on the same

probability spae {Ω,F ,P}.

1. Xn
P
−→ X (in probability) if ∀ǫ > 0 lim

n→∞
P(|Xn −X| > ǫ) = 0,

2. Xn
m.s.
−−→ X (in mean square) if lim

n→∞
E{|Xn −X|2} = 0,

3. Xn
a.s.
−−→ X (almost sure) if P

(

w ∈ Ω : lim
n→∞

Xn(w) = X(w)
)

= 1,

4. Xn
d
−→ X (in distribution or weakly) if lim

n→∞
Fn(x) = F (x) for every x ∈ R at whih

F (x) is ontinuous. Here Fn(x) and F are the umulative distribution funtions

(CDF) of the random variables Xn and X respetively.

Let Xn is a sequene of random variables distributed as follows: P(Xn = 0) = 1 − 1
n
,

P(Xn = 1) = 1
n
. This sequene onverges in mean-square and therefore in probability

but does not onverges almost sure. [26℄
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Figure 2: Convergene of the random variables in mean-square.

Let Xn is a sequene of random variables distributed as follows: P(Xn = 0) = 1 − 1
n2 ,

P(Xn = 1) = 1
n2 . This sequene onverges almost sure and therefore in probability but

does not onverges in mean-square. [26℄
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Figure 3: Convergene of the random variables almost sure.

As it an be seen from the �gures, in the �rst ase even after 5000 steps, there an be

outliers from the aumulation point, but in the ase of the onvergene almost sure it
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does not happen, as for any w ∈ Ω we annot have values beyond the arbitrary given

epsilon-neighborhood of the limited point.

3.5 Stohasti quasi-gradient method

Having understanding of the foregoing onepts we will proeed desribing the stohasti

quasi-gradient algorithm for the optimization problems with mean-value riterion, whih

is formulated below.

min
u∈U

F (u),

F (u) = E{Φ(u,X)}.
(29)

Here Φ(u,X) as before denotes an objetive funtion dependent on a random vetor X

and the strategy u whih should be hosen from the set U ⊆ R
n
.

If the gradient ∇F (u) was known we ould use the lassial gradient-desent method,

starting from some initial point u0. The main statement of the algorithm is written

below:

uν+1 = ΠU (uν − ρν∇F (u
ν)) , (30)

where ΠU(u) denotes a projetion operator onto the set U :

ΠU(u) = argmin
y∈U

||u− y||. (31)

The projetion operator are used here to restrit the loation of the points u0,...,un
generated by the algorithm to the admissible area U .

The problem to �nd a projetion of the point onto the set is not always an easy task.

Generally the set U has to be losed and onvex in order to have a unique projetion

(it might happen that the projetion does not exists at all if the set U is open and the

projetion might be non-unique in the ase of non-onvex U).

The projetion an be found instantly for the elementary types of the set U . Suh ases

are listed below.

1. A non-negative orthant:

U = En
+ = {u : u ∈ R

n, uj ≥ 0, j = 1, .., n}. (32)
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Let us denote pj the j-th oordinate of the projetion ΠU(u), then

pj =

{
0, uj < 0,
uj, uj ≥ 0.

(33)

2. n-dimensional parallelepiped:

U = {u : u ∈ R
n, aj ≤ uj ≤ bj , j = 1, .., n} (34)

pj =







aj, uj < aj ,
uj, aj ≤ uj ≤ bj ,
bj , uj > bj .

(35)

where pj as usuall the j-th oordinate of the projetion ΠU(u).

3. A sphere with the radius r:

U = {u : u ∈ R
n, ||u|| ≤ r}. (36)

The projetion an be found as follows:

ΠU(u) =

{
u, u ∈ U,
r

||u||
u, u /∈ U,

(37)

4. A hyperplane:

U = {u : u ∈ R
n, 〈c, y〉 = b}, (38)

where c ∈ En
, b ∈ R.

ΠU(u) = u+
b− 〈c, u〉

||c||2
c. (39)

5. A halfspae:

U = {u : u ∈ R
n, 〈c, y〉 ≤ b}, (40)

ΠU(u) =

{

u, u ∈ U,

u+ b−〈c,u〉
||c||2

c, u /∈ U,
(41)

Considering the remark regarding projetion operator a gradient desent algorithm an

be writtern:

1. Initialize the step ν = 0, hoose the initial point u0.
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2. Compute the next point uν+1
using the previous point uν and an equation:

uν+1 = ΠU (uν − ρν∇F (u
ν)) , (42)

To �nd a projetion onto the set U use above mentioned remarks regarding the

projetion operator.

3. Chek the stopping riterion. If the stopping ondition is satis�ed, put u∗ = uν+1
,

otherwise assign ν = ν + 1 and go the step 2.

Let f(u) is a funtion, de�ned on the set U ⊂ R
n
. The vetor ∂(u0) ⊂ R

n
is alled a

subgradient of the funtion f(u) at the point u0 ∈ U if ∀u ∈ U

f(u) ≥ f(u0) + 〈∂(u0), u− u0〉. (43)

The formula above geometrially means that the graph of the funtion f(u) loated

above the linear funtion f(u0)+ 〈∂(u0), u−u0〉 and at the point u0 the graphs oinide.

Obviously if the funtion is di�erentiable there is only one suh vetor ∂(u0) equals to

the gradient ∇f(u0). For a non-di�erentiable funtion at the point (u0) there exists a

set of the subgradients, that is alled subdi�erential set.

From the point of view of optimization methods, if the objetive funtion F (u) is not

di�erentiable, the gradient ∇F (u) is substituted by the subgradient ∂F (u) and the rest

of the gradient desent method is used without any hanges. Suh method is alled

subgradient algorithm.

In ase of the stohasti objetive funtion an exat gradient is unknown, and therefore

its stohasti version is used:

uν+1 = ΠU(u
ν − ρν∇uΦ(u

ν , xν)), (44)

where xν , (ν = 1, ...) is a realization of X at the step ν of the algorithm. So that xν is

a random variable, beause we do not know the value whih assumes X at the step ν.

Moreover the point uν , (ν = 1, ...) is also a random variable, beause it depends on xν

and the previous point uν−1
.

Finally note that an expression (44) desribes a random proess starting from the initial

point u0 and under some further formulated onditions should lead us to the optimal

value of the optimization problem (29).

A detailed desription of the stohasti gradient method looks as shown below.
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1. Initialize the step ν = 0, hoose the initial point u0.

2. Generate a realization xν of the random vetor X . Compute a stohasti gradient

∇uΦ(u
ν , xν) using the previous point uν and the realization xν .

3. Calulate the next point uν+1
using the previous point uν and an equation:

uν+1 = ΠU(u
ν − ρν∇uΦ(u

ν , xν)), (45)

To �nd a projetion onto the set U use the mentioned remarks regarding the

projetion operator.

4. Chek the stopping riterion. If the stopping ondition is satis�ed, put u∗ = uν+1
,

otherwise assign ν = ν + 1 and go the step 2.

If the funtion Φ(uν , xν) is not di�erentiable with respet to variable u a stohasti

gradient is substituted by the quasi-gradient:

E
[
ζν | u0, ..., uν−1

]
∈ ∂uE [Φ(uν , X)] . (46)

Intuitively the above mentioned statement means that the onditional expetation of

the stohasti quasi-gradient at the point uν with respet to all previous points should

oinide almost sure (a.s.) with one of the subgradients of the objetive funtion at

the point uν (i.e. belonging to the subdi�erential set). And the main statement of the

stohasti quasi-gradient method looks as follows:

uν+1 = ΠU(u
ν − ρνζ

ν). (47)
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Figure 4: Illustration of the SQG-algorithm.

When we are dealing with a deterministi problem the step size ρν+1 an be obtained

from the solution of a one-dimensional optimization problem:

ρν+1 = min
ρ

{F (uν − ρ∇uF (u
ν))}, (48)

meaning that in every step we should move towards the gradient diretion to minimize

the objetive funtion as muh as possible.

In the stohasti version there are several problems whih do not allow to use above

shown tehnique. Firstly we do not know exatly an expeted value of Φ(u,X) for the

given u (we know only Φ(u, x)). Seondly the stohasti gradient at some steps an even

give a wrong diretion, so any positive value ρ leads to the worse point than previous

one.

The next �gures show the lassial gradient desent method and the stohasti version.

In the �rst ase we expliitly an �nd the gradient and omputing an optimal step size

reah an optimum with 1 step. In the seond ase we only observe noisy data and get

an optimum of the mean-value riterion applying stohasti gradient method, what is

of ause requires more steps.
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Figure 5: Illustration of the lassial gradient desent method.
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Figure 6: Illustration of the stohasti gradient method.

To proof the onvergene a.s. (47) of the algorithm we have to make several assumptions

[11℄:

• the funtion E [Φ(uν , X)] is a onvex �nite-valued funtion;

• the set U is a onvex and ompat;

• the parameters ρ and γ satisfy a.s.:

ρν ≥ 0,

∞∑

ν=0

ρν = ∞,

∞∑

ν=0

E
[
ρν |γν |+ ρ2ν‖ζ

ν‖2
]
<∞. (49)

The �rst two onditions is lassial requirements for an existene and a uniqueness of the

solution in onvex optimization. The last two requirements mostly a�et the sequene

of the step size. The sequene has to be very speial: it should onverge, but not so

fast so that the point generated by the algorithm will be able to reah an optimum

independently of the initial point where the algorithm starts.

In order to highlight the main steps of the proof [12℄, let us assume the following nota-

tions:

u∗ ∈ U is an optimal solution of the problem (29),

Fν = σ{u0, ..., uν} - a sigma-algebra, generated by the random variables {u0, ..., uν}.
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The main idea of the proof is to show that under onditions of the theoremE [|uν+1 − u∗‖ |Fν]

is a non-negative supermartingale, therefore a.s. it has some limit and then to proof

that the limit is 0, meaning uν → u∗ a.s.

• Projetion implyes:

‖uν+1 − u∗‖2 ≤ ‖uν − u∗‖2 − 2ρν〈ζ
ν, uν − u∗〉+ ρ2ν‖ζ

ν‖2.

• Take onditional expetation w.r.t. Fν :

E [‖uν+1 − u∗‖2 |Fν ] ≤ ‖uν − u∗‖2 − 2ρν〈E [ζν |Fν] , u
ν − u∗〉+ ρ2νE [‖ζν‖2 |Fν].

• By the onditions of the theorem:

γν + 〈E [ζν |Fν] , u
∗ − uν〉 ≥ E [Φ(u∗, X)]− E [Φ(uν , X)] ≥ 0 =⇒

〈E [ζν |Fν] , u
∗ − uν〉 ≥ −γν .

• Two previous steps together results in:

E [‖uν+1 − u∗‖2 |Fν ] ≤ ‖uν − u∗‖2 + 2ρνγν + ρ2νE [‖ζν‖2 |Fν ] ≤

‖uν − u∗‖2 + 2ρν |γν |+ ρ2νE
[
‖ζν‖2 |Fν

]

︸ ︷︷ ︸

Rν

= ‖uν − u∗‖2 +Rν .

• Assume Y ν = ‖u∗ − uν‖2 +
∞∑

k=0

Rk, hene:

E [Y ν+1 |Fν ] ≤ Y ν , Y ν ≥ 0 =⇒ Y ν → Y (a.s.) - onvergene theorem for

supermartingales.

• Reursively, taking the full expetation:

E [‖uν+1 − u∗‖2] ≤ ‖u0 − u∗‖2 +
ν∑

k=0

ρ2kE
[
‖ζk‖2

]
− 2

ν∑

k=0

ρk〈E
[
ζk
]
, uk − u∗〉 =⇒

E [‖uν+1 − u∗‖2]−E [‖u0 − u∗‖2]−
ν∑

k=0

E [Rk] ≤ 2
ν∑

k=0

ρk
(
E [Φ(u∗, X)]− E

[
Φ(uk, X)

])
.

• Considering onditions of the theorem:

∞∑

k=0

E [Rk] <∞ and E [Φ(u∗, X)] < E
[
Φ(uk, X)

]
we have:

−∞ <
∞∑

k=0

ρk
(
E [Φ(u∗, X)]− E

[
Φ(uk, X)

])
≤ 0, therefore

E
[
Φ(uk, X)

]
→ E [Φ(u∗, X)].

3.6 Kiefer-Wolfowitz algorithm

If the subgradient ∂uΦ(u, x) or even the gradient ∇uΦ(u, x) of the funtion Φ(u, x) w.r.t.

variable u an be expliitly found, then in every step of the SQG-algorithm ∂uΦ(u, x)
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or ∇uΦ(u, x) is usually used as a quasi-gradient estimate, otherwise a �nite-di�erene

approximation is employed.

ζk =
1

2δk

n∑

j=1

[
Φ(uk + δkej , x

k)− Φ(uk − δkej , x
k)
]
ej. (50)

where xk is as usual a realization of the random vetor X at the step k of the algorithm,

ej , j = 1, ..., n are the unit vetors direted along the oordinate axes.

Considering the formula above the method of Kiefer and Wolfowitz assumes the following

form:

1. Initialize the step k = 0, hoose the initial point u0.

2. Generate a realization xk of the random vetor X . Compute a stohasti quasi-

gradient ζk via formula (50) using the previous point uk and the realization xk.

3. Calulate the next point uk+1
using the previous point uk aording to the formula:

uk+1 = ΠU(u
k − ρkζ

k), (51)

To �nd a projetion onto the set U use the mentioned remarks regarding the

projetion operator.

4. Chek the stopping riterion. If the stopping ondition is satis�ed, put u∗ = uk+1
,

otherwise assign k = k + 1 and go the step 2 .

As it an be seen the algorithm requires 2n evaluations of the objetive funtion Φ(u,X)

in every step of the method, where n is a dimension of the ontrol varaible u.

The onvergene theorem of Kiefer-Wolfowits [17℄ and its generalization an be found

in [4, 9℄.

Theorem 3.2. If the below onditions are valid:

• the funtion f(u) = E[Φ(u,X)] has only extremum u∗ ∈ int{U};

• the seond derivatives of f(u) are ontinuous and bounded;

• the variane D[Φ(u,X)] ≤ C <∞ for all u ∈ U ;

• the sequenes ρk and δk satisfy

ρk ≥ 0,
∞∑

k=1

ρk = ∞,
∞∑

k=1

(
ρk
δk

)2

<∞,
∞∑

k=1

ρk|δk| <∞. (52)

then the sequene generated by Kiefer-Wolfowits algorithm onverges to the optimal so-

lution of the mean-value problem almost sure (uk → u∗ a.s.).
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3.7 Reipes for step sizes

As it was mentioned the step size is a very important feature diretly a�eting perfor-

mane of the method. As it often happens the theoretial results regarding onvergene

of the method do not suggest the way to inrease performane and therefore empirial

shemes are used. An opposite side of suh proess is that adaptive algorithms should

be theoretially justi�ed otherwise there exist a risk to fae the speial ase when an

inaurate adaptive method fails. As an example: a stohasti approximation adap-

tive rule for the step size have to satisfy step size onditions to guarantee onvergene

otherwise all the proof must be revised.

Additionally adaptation should not signi�antly inrease omplexity of the original

method and preferably do not have a lot of tuning parameters to be adjusted. Despite

this hallenges several suessful results regarding adaptive stohasti approximation

are known.

3.7.1 Kesten Rule

The �rst idea to use adaptive step size in stohasti approximation belongs to Kesten.

His method based on the simple idea that if we are far from the optimum, the errors

tend to have the same sign but when we are getting loser, the errors start alternate.

Under the error here it is assumed the di�erene between the previous un−1
and the

urrent un point. Kesten suggested the following rule:

ρn−1 =
a

a+Kn − 1
, (53)

where a is a parameter to be alibrated. Kn
is a parameter, whih ounts the number

of times that the sign of the errors have been hanged.

Kn =

{
n n = 1, 2,
Kn−1 + 1{〈ǫn,ǫn−1〉<0} n > 2,

(54)

where

ǫn = un−1 − un. (55)

To asses the performane of the adaptive method let us have a look at the following

example:

min
u1,u2∈[−10;10]

E
{
u21 + u22 +max(u21, u

2
2) + u1X

}
, X ∈ N(0, 1). (56)
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Obviously, the optimum of the funtion is u∗1 = 0, u∗2 = 0, beause ∀u1, u2 u
2
1 + u22 +

max(u21, u
2
2) ≥ 0 and all terms u21 ≥ 0, u22 ≥ 0, max(u21, u

2
2) ≥ 0.

−10

−5

0

5

10

−10
−5

0
5

10

0

50

100

150

200

250

300

u
2u

1

F
(u

1,u
2)=

E
{u

12 +u
22 +m

ax
(u

12 ,u
22 )+

u
1X

}

Figure 7: Optimization funtion.

The stohasti gradient an be written expliitly in the form:

ξ(u,X) =

[
2u1 + 2u1Iu2

1
>u2

2
+X

2u2 + 2u2Iu2
1
≤u2

2

]

. (57)

Let us hoose the step size ρk aording to the rule: ρk = 0.1 · 1
k
. In the standard ase

the steps will be too small, and the adaptive rule will preserve the step size from the

rapid drop enhaning onvergene.

On the next �gures we an see how the ontrol variables where hanging towards the

optimum over the steps. Initial value of the step size were hosen the same for adaptive

and non-adaptive methods. In fat non-adaptive algorithms even after 1000 iterations

were relatively far from the optimum, while the adaptive shemes were able to rih the

steady state after 100 steps.
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Figure 8: Small step size. Stohasti Gradient Desent (left). Stohasti Gradient

Desent with adaptive Kesten rule (right).
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Figure 9: Kiefer-Wolfowitz algorithm (left). Kiefer-Wolfowitz algorithm with adaptive

Kesten rule (right).

As it an be seen the test results agree with the theoretial reasoning.

Now let us test the adaptive rule for the large step lengths on the same test example,

so ρk = 10 · 1
k
. At the beginning when k is relatively small, the steps will be too large

and the points, generated by the algorithms will try to leave the admissible area U but

due to the projetion operator they will be returned to the border of the set U . When

the step size assumes the reasonable values, the proedures will start onverge to the

optimum. Here the adaptive rule does not enhane onvergene as it does not derease

the steps faster than in standard versions.
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Figure 10: Stohasti Gradient Desent (left). Stohasti Gradient Desent with adap-

tive Kesten rule (right).
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Figure 11: Kiefer-Wolfowitz algorithm (left). Kiefer-Wolfowitz algorithm with adaptive

Kesten rule (right).

The test examples again agree with theoretial reasoning. This example also demon-

strates the behaviour of the stohasti approximation methods: the onvergene traes

w.r.t. oordinate u2 are smoother, then w.r.t to u1 as a stohastiity mostly a�ets the

�rst oordinate due to the term u1X in the objetive funtion.

Finally regarding Kesten rule we an onlude that it reasonable to use for the relatively

small or middle step length as it ombines onstant step size rule (when we are far from

the optimum) with the usual step size rule (when we are lose to the end).
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3.7.2 Adaptive rule of Uryasev

Uryasev [28℄ suggested more advaned adaptive rule whih an derease the steps as

well as inrease them depending on the generated sequene of points:

ρk+1 = min(ρ̄, ρka
−〈ξk+1,∆k+1〉−δρk),

∆k+1 = uk+1 − uk,
ak > 1, δ > 0,

(58)

To understand the meaning of the terms in the mentioned above rule let us have a look

at the main formula of SQG-algorithm:

uk+1 = uk − ρkξ
k. (59)

It would be logial to hoose the step, that minimizes the funtion Fk(ρ) w.r.t ρ:

Fk(ρ) = E[Φ(uk − ρξk) | Fk]. (60)

A omputation of Fk(ρ) is a very di�ult task, therefore let us di�erentiate Φ(uk − ρξk)

w.r.t ρ at the point ρk.

∂ρΦ(uk − ρξk)|ρk = −〈ξk, ∂Φ(uk − ρkξ
k)〉 = −〈ξk, ξk+1〉. (61)

Hene −E[〈ξk, ξk+1〉 | Fk] ∈ ∂Fk(ρk) and the following gradient proedure an be used

to modify the step size:

ρk+1 = ρk + λk〈ξ
k, ξk+1〉. (62)

The adaptive proedure (58) diretly omes from the previous formula and works as

follows: the term 〈ξk+1,∆k+1〉 gives information wether or not the minimum of Fk(ρ)

w.r.t ρ has been reahed. If −〈ξk+1,∆k+1〉 > 0 then with high probability we an say

that the minimum has not been ahieved yet and the step ρk will be inreased, otherwise

it dereases.

Let us test this adaptive rule on the previous model example.
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Figure 12: Stohasti Gradient Desent (left). Stohasti Gradient Desent with adap-

tive Uryasev rule (right).
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Figure 13: Kiefer-Wolfowitz algorithm (left). Kiefer-Wolfowitz algorithm with adaptive

Uryasev rule (right).

It is worth to note, the adaptive rule of Uryasev is a very sensitive to the parameters ∆

and a, and their tuning brings an additional omplexity to the algorithm.

3.8 Simultaneous perturbation stohasti approximation

One speial branh of the stohasti quasi-gradient method is simultaneous perturbation

stohasti approximation (SPSA) algorithms. Generally speaking stohasti approxima-

tion proedures used for the optimization of the ost-funtions di�ers mostly in a way

how the gradient estimate is alulated.
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The SPSA-algorithms use arti�ially generated random noise independent of the un-

known random parameters therefore is alled simultaneous perturbations. By virtue

of suh approah, methods require only 2 measurements of the objetive funtion for

the quasi-gradient estimation regardless of the dimension size, and under general ondi-

tions, the SPSA and the standard �nite-di�erene stohasti approximation algorithm

(i.e. Kiefer-Wolfowitz algorithm) ahieve the same level of statistial auray [19℄. The

method look as follows:

1. Initialize the step k = 0, hoose the initial point u0.

2. Generate a realization xk of the random vetor X . Generate a vetor ∆k
dis-

tributed aording to the Bernoulli law ±1 with the probability 0.5 for every

outome. The dimension of the vetor ∆k
is n, so that

∆k =





∆k
1

...
∆k

n



 . (63)

3. Compute a stohasti quasi-gradient using the previous point uk and the realiza-

tions xk, ∆k
aording to the formula:

gk(u
k, xk) =







Φ(uk+ck∆
k,xk)−Φ(uk−ck∆k,xk

2ck∆
k
1

)
.

.

.

Φ(uk+ck∆
k,xk)−Φ(uk−ck∆k,xk)

2ck∆k
n






, (64)

where ∆k is a random perturbation vetor, independent ofX and ck is a dereasing

non-random sequene:

ck =
1

k−1
, (65)

4. Calulate the next point uk+1
using the previous point uk aording to the formula:

uk+1 = ΠU(u
k − ak · gk(u

k, xk)), (66)

where

ak =
1

(A+ k)−1
. (67)

To �nd a projetion onto the set U use the mentioned remarks regarding the

projetion operator.

5. Chek the stopping riterion. If the stopping ondition is satis�ed, put u∗ = uk+1
,

otherwise assign k = k + 1 and go the step 2 .
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The random perturbation vetor ∆k
is used for the omputation of u+ = uk + ck∆

k
and

u− = uk − ck∆
k
.

The values u+ and u− are then used to alulate the quasi-gradient estimate: gk, that

follows by the standard stohasti approximation step where the next point uk+1
is

obtained.

As it an be seen from the remark above in the step k the method requires only 2

evaluations of the objetive funtion to alulate u+ and u−.

On the next �gure the omparison of the lassial stohasti quasi-gradient method and

SPSA is shown. The alulations are done on the basis of the previous test-example (a

ontour plot of the objetive funtion are shown on the piture as well).

u
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Figure 14: Comparison of the SQG and SPSA onvergene traes.

Both methods started from the same initial point u = (7, 7)T and after 1000 steps

suessfully reahed an optimum u = (0, 0)T . The sequene of the points, produed by

the lassial method looks more smooth and preditable and one an hardly say that the

method onneted with randomness are used here, while the trae of SPSA-algorithm

is de�nitely stohasti due to arti�ial perturbations inorporated in ∆k
.

The following �gure shows how the values of the ontrol variables u1 and u2 were hang-

ing over the steps. Stohasti nature of the method is learly seen from here as well.
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Figure 15: Illustration of the SPSA onvergene.

The main advantage of the method in omparison with the algorithm of Kiefer and

Wolfowitz is a onstant number of funtion evaluations (only 2) needed in every step of

the algorithm, independently of the optimization problem's dimension. This fat might

be ruial when the objetive funtion has a ompliated struture (see the last setion

where the speed of omputation is ompared on the model example).
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4 Appliation problem: Eletriity Retailer Pro�t Op-

timization

Assume that an energy retailer is needed to supply eletriity whih he buys from the

global supplier (eletriity market) to its ustomers. Energy onsumption even during

a short term an not be exatly predited, therefore possible inome of the retailer

ontains unertainty. Moreover eletriity market does not imply that the pries for the

energy will be �xed even during a short period of time.

Eletriity nature does not allow to store its relatively large amount like for instane liq-

uid, hene every global supplier (eletriity market) introdues penalties for the positive

as well as for the negative imbalane what are orrespondingly positive and negative

di�erene between the purhased and onsumed energy [1℄. Large penalties for the im-

balane fore the retailer to hoose a autious and less pro�table strategy rather than

risky one.

In this setion we onsider a simple stohasti model re�eting retailer's pro�t opti-

mization with mean value and CVaR riteria and demonstrate how to get deterministi

equivalents in the form of linear programming (LP) problems. Also we ompare stohas-

ti approximation solution with the mentioned above deterministi equivalents.

A possibility to obtain deterministi equivalent in a simple form is a distinguishing

feature of this work. There are many stohasti models desribing similar optimization

proesses, but the majority of them are solved by deision tree [2℄ or stohasti qvasi-

gradient method [3℄, what is undoubtedly muh slowly then the solution of a well-known

deterministi task.

The model and solution tehnique an be used not only for the eletriity retailer opti-

mization, but with suitable modi�ations for any retailing (reselling) proesses.

4.1 Model building

Let us introdue the following notations:

cs - the prie of sold eletriity from the retailer to the onsumer;

X - the random demand of energy by the onsumer (eletriity sales);

Y - the random prie for the purhased eletriity from the supplier;

cd - the prie of the additional purhased eletriity from the supplier in ase when the

random demand is more than amount of the purhased energy (a prie for the negative

imbalane);

cu - the prie for the positive imbalane (when the onsumer's demand is less than
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amount of the purhased energy by the retailer);

u - an amount of energy whih retailer buys in order to subsequently resell it to the

onsumer, (u ≥ 0);

In the notations above the retailer pro�t is a�eted by the terms:

cs ·min{X, u} - the bene�ts from the sold energy to the onsumer;

Y · u - the payment for the purhased energy from the global supplier;

cd ·max{X − u, 0} - the losses for the negative imbalane;

cu ·max{u−X, 0} - the losses for the positive imbalane.

Subsequently the random inome of the retailer an be expressed in the following form:

Φ(u,X, Y ) = cs ·min{X, u} − Y · u− cd ·max{X − u, 0} − cu ·max{u−X, 0}. (68)

In order to restrit the negative and the positive imbalane let us introdue two proba-

bility onstraints:

∆1 - a threshold for the positive imbalane. If the di�erene between the o�er u and

the demand X is more than the positive value ∆1 then the retailer is heavily penalized.

β - the on�dent level for the positive imbalane. Retailer is interested to trade without

violation of the de�ned by the supplier threshold with probability β.

∆2 and γ - a threshold for the negative imbalane and the orresponding on�dent level

are de�ned similarly.

The probability onstraint for the positive imbalane looks as follows:

P{X − u ≤ ∆1} ≥ β. (69)

The probability onstraint for the negative imbalane:

P{u−X ≤ ∆2} ≥ γ. (70)

The on�dent levels β and γ de�ne how wide will be an admissible area established by

the orresponding probability onstraint. There is no exat tehnique to determine β

and γ, but one an use the following idea.

Assume that we have solved the problem for some parameters β and γ, and got an

estimate for the pro�t φ∗(β, γ). Interpreting probability as a frequeny we have that in

(1−β−γ) ases our retailer got (1−β−γ)φ∗(β, γ), but lost βCβ in β ases and γCγ in

γ ases. Introduing the onstant C ≥ 0 given by an expert to get an equality between

the total pro�t and the total loss it is possible to tune on�dent levels β and γ:

C(1− β − γ)φ∗(β, γ) = βCβ + γCγ. (71)
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Note that in this ase the initial problem have to be solved parametrially as an optimal

solution φ∗(β, γ) depends on β and γ.

Figure 16: Distribution of the imbalane.

4.2 Solution with mean-value riterion

The following setion ontains a solution with mean-value riterion.

4.2.1 Deterministi equivalent

Considering all foregoing, an optimization problem with mean value riterion and prob-

ability onstraints reads as follows:

max
u

E {cs ·min{X, u} − Y · u− cd ·max{X − u, 0} − cu ·max{u−X, 0}} ,

P{X − u ≤ ∆1} ≥ β,
P{u−X ≤ ∆2} ≥ γ,
u ≥ 0.

(72)

Theorem 4.1. If the random variables X and Y have disrete distributions with �nite

number of realizations xi ∈ R, P (xi) = pix, i = 1, ..., n, yi ∈ R, P (yi) = piy, i = 1, ..., m,

then:

1. Objetive funtion Φ(u,X, Y ), de�ned aordingly to (68) is a onave w.r.t. vari-

able u on R.
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2. Optimization problem (72) has a deterministi equivalent in the form of the linear

programming (LP) problem:

max
r1
1
,..,r1n

s1
1
,...,s1n

r21,..,r
2
n

s21,...,s
2
n

u

,

{

(cs −
m∑

i=1

yi · piy) · u− (cs + cu) ·
n∑

i=1

pix · s
1
i − cd ·

n∑

i=1

pix · s
2
i

}

,

r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

1
i , s

1
i ≥ 0,

i = 1, .., n,
u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0,

(73)

where xβ and x1−γ are ritial values of the distribution of X.

Proof. 1. Φ(u,X, Y ) = cs ·min{X, u}−Y ·u−cd ·max{X−u, 0}−cu ·max{u−X, 0} =

cs ·min{X, u} − Y · u+ cd ·min{u−X, 0}+ cu ·min{X − u, 0}

The funtions

f1(u,X, Y ) = min{u−X, 0},
f2(u,X, Y ) = min{u−X, 0},
f3(u,X, Y ) = min{u−X, 0}

(74)

are onave w.r.t. u-variable as a minimum of the onave w.r.t. u funtions

f1(u,X, Y ), f2(u,X, Y ), f3(u,X, Y ).

The funtion

f4(u,X, Y ) = −Y · u (75)

is a onave w.r.t. u beause it is a linear funtion. Therefore Φ(u,X, Y ) is a

onave w.r.t. u as a linear ombination of the onave funtions with nonneg-

ative oe�ients (cs, cd, cu having the meaning of pries, hene all of them are

nonnegative).

2. Let us onsider the funtion

f5(u) = min{f6(u), 0}. (76)

The value of f6(u) ∀u ∈ R an be always split on the positive r and the negative

s omponents [5℄,

f6(u) = r − s,
r ≥ 0,
s ≥ 0,

(77)
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therefore the value of f5(u) for the �xed u equals to the optimum value of the

following optimization problem:

f5(u) = max
r,s∈R

{−s},

f6(u) = r − s,
r ≥ 0,
s ≥ 0.

(78)

The following representation an be used to substitute the funtion

f7(u) = min{f8(u), f9(u)} = min{f8(u)− f9(u), 0}+ f9(u) (79)

with a smooth onstrained optimization problem:

f7(u) = max
r,s∈R

{f9(u)− s},

f8(u)− f9(u) = r − s,
r ≥ 0,
s ≥ 0.

(80)

Considering all mentioned above:

E{Φ(u,X, Y )} = E{cs ·min{X, u} − Y · u+ cd ·min{u−X, 0}+ cu ·min{X − u, 0}} =
E{cs ·min{X − u, 0}+ cs · u− Y · u+ cd ·min{u−X, 0}+ cu ·min{X − u, 0}} =
E{(cs + cu) ·min{X − u, 0}+ (cs − Y ) · u+ cd ·min{u−X, 0}} =

(cs + cu) ·
n∑

i=1

pix ·min{xi − u, 0}+ (cs −
m∑

i=1

yi · piy) · u+ cd ·
n∑

i=1

pix ·min{u− xi, 0} =

max
r11,..,r

1
n

s11,...,s
1
n

r2
1
,..,r2n

s2
1
,...,s2n

{

(cs −
m∑

i=1

yi · piy) · u− (cs + cu) ·
n∑

i=1

pix · s
1
i − cd ·

n∑

i=1

pix · s
2
i

}

,

r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

1
i , s

1
i ≥ 0,

i = 1, .., n.
(81)

Let's look at the probability onstraints.

P{X − u ≤ ∆1} ≥ β ⇐⇒ P{X ≤ u+∆1} ≥ β ⇐⇒
F (u+∆1) ≥ β ⇐⇒ u+∆1 ≥ xβ ⇐⇒ u ≥ xβ −∆1,

(82)

where F is a CDF of the random variable X and xβ is β-ritial value of the

distribution of X .

Similarly

P{u−X ≤ ∆2} ≥ γ ⇐⇒ u ≤ x1−γ +∆2. (83)
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Combining (81) with (82) and (83) we get proposed deterministi equivalent in

the form of a linear programming problem.

The �rst result regarding a onvex property of the funtion Φ(u,X, Y ) w.r.t. variable u

means that E{Φ(u,X, Y )} will be a onave funtion as well [6℄, hene every loal max-

imum of E{Φ(u,X, Y )} will be automatially a global, therefore various optimization

algorithms for the non-smooth 1-d funtions an be suessfully applied in order to �nd

a global optimum.

The seond result opens a possibility to �nd an exat solution of the problem applying

a simplex method for the linear programming problems.

Let us introdue the following notations:

b1 =
[
x1 . . . xn x1 . . . xn

]T
,

z =
[
u s11 ... sn1 r11 ... rn1 s12 ... sn2 r12 ... rn2

]T
,

C =

[

cs −
m∑

i=1

yi · piy −p1x · (cs + cu) ... −pnx(cs + cu) 0 ... 0 −cdp
1
x ... −cdp

n
x 0 ... 0

]

.

I - an identity-matrix (n× n),

e - a vetor (n× 1), e =
[
1 . . . 1

]T
,

0n×n - a zero-matrix (n× n),

A1 =

[
e −I I 0n×n 0n×n

e 0n×n 0n×n I −I

]

,

A2 =



 1

4n
︷ ︸︸ ︷

0 ... 0
−1 0 ... 0




,

b2 =
[
x1−γ +∆2 ∆1 − xβ

]T
.

Using the notations above the problem (73) assumes the following standard form of the

LP-problem whih is traditionally solved by the simplex-method.

max
z

{CTz},

A1z = b1,
A2z ≤ b2,
zi ≥ 0,
i = 1, ..., 4n+ 1.

(84)
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Finally it is worth to show the main tehnique used to proof the deterministi equivalent

on the test example. Let

ψ = min(f, 0) (85)

and the orresponding optimization problem:

ψ = max
s,r

{−s},

f = r − s,
r ≥ 0,
s ≥ 0.

(86)

Assume that f = 5 and therefore ψ = min(5, 0) = 0. Let us hek that the optimization

problem gives the same result:

ψ = max
s,r

{−s},

5 = r − s,
r ≥ 0,
s ≥ 0.

(87)

Obviously s = r − 5 and

ψ = max
r

{−(r − 5)},

r − 5 ≥ 0,
r ≥ 0.

(88)

ψ = max
r

{5− r},

r ≥ 5,
r ≥ 0.

(89)

ψ = max
r

{5− r},

r ≥ 5.
(90)

{
ψ = 0,
r = 0.

(91)

Now assume f = −5 and therefore ψ = min(−5, 0) = −5.

ψ = max
s,r

{−s},

−5 = r − s,
r ≥ 0,
s ≥ 0.

(92)
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Obviously s = r + 5 and

ψ = max
r

{−5 − r},

r + 5 ≥ 0,
r ≥ 0.

(93)

ψ = max
r

{−5 − r},

r ≥ 0.
(94)

{
ψ = −5,
r = 0.

(95)

4.2.2 SQG-solution

Assume now, that the random variables are given with ontinuous distributions. In this

ase to solve the problem one an use the Monte-Carlo simulation and the omputation

might be time onsuming. More elegant way is to use stohasti approximation.

Let us derive a subgradient of the objetive funtion in order to employ the SQG-

algorithm. Firstly we transform the ost funtion to the piee-wise form:

Φ(u,X, Y ) =

{
csu− Y u− cd(X − u), u ≤ X
csX − Y u− cu(u−X), u ≥ X.

(96)

A subgradient of the objetion funtion reads as follows:

∂uΦ(u,X, Y ) =







cs − Y − cd, u < X
∀ ∈ [−Y − cu ; cs − Y − cd] , u = X
−Y − cu, u > X.

(97)

Now, to solve the problem, we just need to sample random numbers aordingly to the

given distribution and apply (47), using ∂uΦ(u,X, Y ) as a quasi-gradient and projeting

to the admissible area U = [max{xβ −∆1, 0} ; x1−γ +∆2].

4.3 Solution with CVaR riterion

A previous result with mean-value riterion does not assess the probability of getting

the solution whih is less than mean-value, depending on the realization of random

parameters, therefore it is quite useful to obtain a solution with VaR or CVaR riterion.
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Let G(u, Z(w)) denote a riterion ost funtion dependent on a random vetor Z(w) and

the strategy u whih should be hosen from some set U ⊂ R
n
in order to optimize the

ost funtion aording to a ertain riterion. For the given �xed strategy u the random

variable G(u, Z(w)) usually having the meaning of the random losses, assoiated with

the hosen strategy u. If we denote P{·} as a probability measure, generated by the

distribution of the random vetor Z(w), we an de�ne the probability funtion Pφ(u)

and the VaR riterion denoted by the quantile funtion φα(u):

Pφ(u) = P{G(u, Z(w)) ≤ φ}, (98)

φα(u) = min {ϕ : Pϕ(u) ≥ α}. (99)

The probability funtion represents a probability that our ost funtion G(u, Z(w))

does not exeed a level φ for a �xed strategy u while the qunatile funtion indiates the

orresponding minimal level.

The CVaR riterion, de�ned by the funtion ψα(u), estimates an average rate of the

losses exeeded φα(u):

ψα(u) = E[G(u, Z(w))|G(u, Z(w)) ≥ φα(u)] =
1

1− α

∫

G(u,Z(w))≥φα(u)

G(u, Z(w))dP (w).

(100)

Aording to [7℄ the CVaR-minimization over the strategy u ∈ U equals to the solution

of the following optimization problem:

ψ∗ = min
(u,φ)∈U×R

Fα(u, φ), (101)

where

Fα(u, φ) = φ+
1

1− α
· E[max{G(u, Z(w))− φ, 0}. (102)

The present ase deals with the retailer's pro�t maximization, therefore in order to apply

mentioned above theoretial properties, we put "-" sign before the objetive funtion

and further solve minimization problem as it is required by the original de�nitions. As a

result we get an average pro�t of the retailer whih is less or equal to the ritial value,

de�ned by VaR.

Applying (102) to the objetive funtion (68), we get:

ψ∗ = −min
u,φ

{
φ+ 1

1−α
· E[max{−Φ(u,X, Y )− φ, 0}]

}
,

u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0,

(103)
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where

Φ(u,X, Y ) = cs ·min{X, u} − Y · u− cd ·max{X − u, 0} − cu ·max{u−X, 0}. (104)

The random demand X and the global prie Y an be treated as independent random

variables (at least during the short term) without big limitations, beause between the

retailer and the onsumer there is a ontrat with �xed prie for the eletriity cs.

4.3.1 Deterministi equivalent

Considering the remark above, the next result is valid.

Theorem 4.2. If the random variables X an Y are independent and have disrete

distributions with �nite number of realizations xi ∈ R, P (xi) = pix, i = 1, ..., n, yi ∈

R, P (yi) = piy, i = 1, ..., m, then (103) has a deterministi equivalent in the linear

programming (LP) form:

ψ∗ = max
u,φ,
r1i ,r

2
i ,

s1i ,s
2
i ,

Ψij ,
i=1,...,n,
j=1,...,m

{

−φ− 1
1−α

·
∑m·n

i,j=1 p
i
xp

j
y ·Ψij

}

,

− ((cs − yj) · u− (cs + cu) · s
1
i − cd · s

2
i )− φ ≤ Ψij ,

Ψij ≥ 0,
r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

2
i , s

2
i ≥ 0,

i = 1, .., n,
j = 1, .., m,
u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0.

(105)

Proof. Transforming minimization into maximization:

ψ∗ = max
u,φ

{
−φ − 1

1−α
· E[max{−Φ(u,X, Y )− φ, 0}]

}
,

u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0.

(106)

Disrete random variables X and Y are independent, therefore mathematial expetation
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an be omputed aording to the rule:

ψ∗ = max
u,φ

{

−φ− 1
1−α

·
mn∑

i,j=1

pixp
j
y ·max{−Φ(u, xi, yj)− φ, 0}

}

,

u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0.

(107)

where the objetive funtion substituted by the onstrained optimization problem:

Φ(u, xi, yj) = max
r1i ,r

2
i ,s

1
i ,s

2
i

{(cs − yj) · u− (cs + cu) · s
1
i − cd · s

2
i } ,

r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

2
i , s

2
i ≥ 0.

(108)

Combining (107) and (108) together, hanging the order of maximization, we get:

ψ∗ = max
u,φ,
r1i ,r

2
i ,

s1i ,s
2
i

i=1,..,n

{

−φ − 1
1−α

·
∑m·n

i,j=1 p
i
xp

j
y ·max{− ((cs − yj) · u− (cs + cu) · s

1
i − cd · s

2
i )− φ, 0}

}

,

r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

2
i , s

2
i ≥ 0,

i = 1, .., n,
u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0.

(109)

Finally, to get rid of an internal maximization in the last expression, we introdue extra

variables Ψij and obtain a large size linear programming problem (105).

It is worth to note, that aording to [7℄

φα(u) = min{argmin
φ∈R

Fα(u, φ)}, (110)

therefore an optimal value of φ∗
aquired from (105) an be treated as an estimate of the

solution with VaR-riterion and for instane used as a good starting point for iterative

algorithms.

For onveniene we introdue the following notations :

φ1 − φ2 = φ,
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φ1, φ2 ≥ 0,

z =
[
u φ1 φ2 s11 ... sn1 r11 ... rn1 s12 ... sn2 r12 ... rn2 Ψ11 ... Ψmn

]T
,

C =
[
0 −1 1 0 ... 0 0 ... 0 0 ... 0 0 ... 0 − 1

1−α
· p1xp

1
y ... − 1

1−α
· pnxp

m
y

]T
,

b1 =
[
x1 . . . xn x1 . . . xn

]T
.

I - an identity-matrix (n× n),

e - vetor (n× 1), e =
[
1 . . . 1

]T
,

0n×n - zero-matrix (n× n).

A1 =



 e 0n×2 −I I 0n×n 0n×n

mn
︷ ︸︸ ︷

0 ... 0
e 0n×2 0n×n 0n×n I −I 0 ... 0




,

A2 =













−(cs − y1) −1 1 (cs + cu)

n−1
︷ ︸︸ ︷

0 ... 0

n
︷ ︸︸ ︷

0 ... 0 cd

n−1
︷ ︸︸ ︷

0 ... 0

n
︷ ︸︸ ︷

0 ... 0 −1

mn−1
︷ ︸︸ ︷

0 ... 0
... ... ... ... ... ... ... ... ... ... ...

−(cs − ym) −1 1

n−1
︷ ︸︸ ︷

0 ... 0 (cs + cu)

n
︷ ︸︸ ︷

0 ... 0

n−1
︷ ︸︸ ︷

0 ... 0 cd

n
︷ ︸︸ ︷

0 ... 0

mn−1
︷ ︸︸ ︷

0 ... 0 −1
1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0













,

b2 =

[
mn

︷ ︸︸ ︷

0 ... 0 x1−γ +∆2 ∆1 − xβ

]T

.

In the notations above the problem (105) again assumes standard form of the LP-

problem whih is solved by simplex-method.

maxCT z
A1z = b1,
A2z ≤ b2,
zi ≥ 0,
i = 1, ..., mn+ 4n+ 3.

(111)

4.3.2 SQG-solution

To apply the SQG-algorithm for the present ase let us slightly transform the funtion

(106) using linearity of the mathematial expetation:

F1(u, φ) = max
u,φ

{

E[−φ−
1

1− α
·max{−Φ(u, Z)− φ, 0}]

}

. (112)

Having suh representation, we are ready to employ a �nite-di�erene approah to get

the quasi-gradient estimate:
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{

ζku = F2(uk+δk,φk,Zk)−F2(uk−δk,φk,Zk)
2δk

,

ζkφ = F2(uk ,φk+δk ,Zk)−F2(uk,φk−δk,Zk)
2δk

,
(113)

where F2(u, φ, Z) de�ned as follows:

F2(u, φ, Z) = −φ−
1

1− α
·max{−Φ(u, Z)− φ, 0}. (114)

Now, to solve the problem, we just need to sample random numbers aordingly to the

given distribution and apply (47).

4.4 Numerial examples

The following numerial values has been arti�ially hosen (in the ase of disrete dis-

tribution we used deterministi equivalent, and for the ontinuous ase a stohasti

approximation algorithm has been employed).

cs cd cu ∆1 ∆2 α β γ
2.2 0.3 0.1 40 35 0.7 0.6 0.7

Table 1: Numerial values.

xi 10 20 30 40 50 60 70 80 90 100
pix 0.05 0.05 0.05 0.05 0.1 0.2 0.2 0.15 0.1 0.05

Table 2: Disrete distribution of the random demand.

yi 0.1 0.2 0.3 0.4 0.5 0.6
piy 0.1 0.2 0.3 0.2 0.15 0.05

Table 3: Disrete distribution of the random prie.

In the ontinuous ase the random demand and the prie were hosen normally dis-

tributed X ∼ N(70, 102) and Y ∼ N(0.4, 0.12).

Optimal solutions with mean-value and CVaR riteria are shown on the Figures (17-22):

A solution with mean-value riterion (by the orresponding deterministi equivalent):

u∗ = 80,

E{Φ(u∗, X, Y )} = 103.4.
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A solution with CVaR riterion:

u∗ = 58,

φ∗ = 91.8,

ψ∗ = 50.5.
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Figure 17: Solution with mean-value riterion for the disrete distribution.
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Figure 18: Solution with mean-value riterion for the ontinuous distribution.
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Figure 19: SQG-algorithm for the ontinuous distribution.
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Figure 20: Solution with CVaR riterion for the disrete distribution.
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Figure 21: Solution with CVaR riterion for the ontinuous distribution.
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Figure 22: SQG-solution.

4.5 Analysis of the results

As it an be seen from the model examples, a mean-value solution are more optimisti

than a α-CVaR solution for the high on�dent levels α. The strength of the CVaR
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omparing with the mean-value is a reliability and as a result it gives more adequate

measure of the risk.

5 Appliation problem: SQG-algorithm for the obje-

tive funtions in ODE-form

Modern engineering optimization tehniques employ the Markov-Chain-Monte-Carlo

(MCMC) simulation in order to obtain a distribution of the random parameters using

the limited set of measurements during the experiment. There have been quite many

algorithms developed so far [16℄, but all of them as an output produe large samples of

the parameters' realizations.

Considering foregoing it is logially to use stohasti approximation tehniques together

with the MCMC-simulation beause the results of the parameter estimation proedure

are perfetly suitable for the subsequent optimization.

One speial brunh of the engineering optimization an be represented via proesses

given as a solution of ordinary di�erential eqations (ODE). Suh funtions often ome

from the hemial or biologial researh problems [8℄ and as it is shown in the next

setions, the SQG-algorithm an be quite suessfully applied to get an optimal solution

in these ases.

5.1 Problem formulation

Let Φ(u,X) denotes an objetive funtion dependent on the random vetor X and the

strategy u whih should be hosen from the set U ⊂ Rn
in order to optimize the ost

funtion aording to a ertain riterion.

Assume that the objetive funtion is given as a solution of the di�erential equation or

dependent on this solution:

Φ(u, x) = Φ (S1(t, v1, ..., vl, x1, ..., xr), ..., Sm(t, v1, ..., vl, x1, ..., xr)) , (115)

u =

(
t
v

)

,

where 





dSi

dt
= fi(t, S1, ..., Sm, v1, ..., vl, x1, ..., xr),

Si(t0, v1, ..., vl, x1, ..., xr) = S0
i (v1, ..., vl, x1, ..., xr),

i = 1, ..., m.
(116)
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Further for a onveniene the previous system will be written shortly:

Φ(u, x) = Φ(S(t, v, x)),
(117)







dSi

dt
= fi(t, S, v, x),

Si(t0, v, x) = S0
i (v, x),

i = 1, ..., m.
(118)

Here x ∈ Rr
is a realization of the random vetor X whih ontains information about

parameter's unertainty of the model, u ∈ Rn, (n = l + 1) denotes a ontrol variable.

Objetive funtions in suh form are often used to represent transformations of the

omponents in hemial reations where the distribution of the random parameter X is

a posterior distribution π(X|Y ) estimated by the MCMC-simulation [8℄ for the given

set of experimental measurements Y.

From the pratial point of view after the MCMC-parameter estimation proedure we

have a large sample representing π(X|Y ). The next step is usually an optimization of

the ost funtion whih depends on the random parameters and the ontrol variables.

Therefore e�etive proedures whih use large samples for optimization are highly de-

manded researh area in deision making and proess optimization theory.

Di�erent riteria an be used in optimization of the funtion (117): minimax, mathemat-

ial expetation, value-at-risk, onditional value-at-risk. The hoie of the optimization

riterion is usually determined by the features of a problem to be solved. Further in this

setion we onsider a mean-value riterion (1):

min
u∈U

E{Φ(u,X)}.
(119)

5.2 Solution tehnique

To �nd a solution we applied stohasti approximation proedures desribed in the

setion 3.5 and ompare their outomes.

The �rst algorithm is a lassial Kiefer-Wolfowitz proedure [17℄. In every step of the

algorithm a stohasti quasi-gradient is estimated with a �nite-di�erene approxima-

tion, so the proedure requires 2n evaluations of the objetive funtion (also in every

evaluation we have to solve an ODE-system).

The seond solution is based on the stohasti gradient algorithm with the gradient,
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estimated using an equation in variations. Instead of the �nite di�erene approah

to estimate a stohasti gradient we ompose additional equations to the initial ODE-

system and derease the number of evaluations to the 1.

Finally we onsider simultaneous perturbation stohasti approximationmethod (SPSA),

whih requires 2 funtion evaluations in every step of the proedure.

5.2.1 Equation in variations

Assume that we have a system of ordinary di�erential equations (ODE-system) with

parameters µ1, ..., µn
.

dxl

dt
= f(t, x1, ..., xn, µ1, ..., µl),

l = 1, ..., n.
(120)

The previous system an be written in the vetor-notation as follows:

dx
dt

= f(t,x, µ), (121)

where x and µ are vetors. Sometimes it is needed to get an information about deriva-

tives of the solution φ(t, µ) of the system with respet to the parameters µk
for a �xed

value of µ = µ∗
. One obvious way to get it is to �nd a solution φ(t, µ) for a varying µ

and then di�erentiate it with respet to µk
. But it turns out that there is no need to

do so, and it is possible to get unknown di�erentials onsidering some extended ODE-

system. Let φ(t, µ) = (φ1(t, µ), ..., φn(t, µ)) is a solution of the initial ODE-system for

initial onditions t0, x0 and m1 < t < m2 is an interval where the solution is de�ned for

a �xed value of the parameter µ = µ∗
.

The funtions, whih we need to �nd at the point µ∗
:

ψi
k(t) =

∂φi(t,µ∗)
∂µk . (122)

Let us introdue several notations:

f i
j(t,x, µ) =

∂f i(t,x,µ)
∂xj , (123)

f i
j(t) = f i

j(t, φ(t, µ
∗), µ∗),

(124)

gik(t,x, µ) =
∂f i(t,x,µ)

∂µk , (125)
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gik(t) = gik(t, φ(t, µ
∗), µ∗).

(126)

Assuming that the partial derivatives of the right-hand sides

∂f i(t,x,µ)
∂µk are ontinuous at

some area G, the following linear ODE-system

dyi

dt
=

n∑

j=1

f i
j(t)y

i + gik(t) (127)

is alled an equation in variations [10℄ and the system of the funtions

y1 = ψ1
k(t), ..., y

n = ψn
k (t) (128)

is a solution of the equations (127) with the initial onditions ψi
k(t0) = 0.

Note, that in the formulas (123-126) the funtion φ(t, µ∗) is expliitly found solution of

the initial system for the given value of parameter µ∗
, pratially meaning that to solve

the equation in variations we still need to keep the initial system in order to suessfully

get φ(t, µ∗).

To show how the mentioned above theory is working, let us onsider the following

example.

dx
dt

= µx,
x(0) = 1.

(129)

Let the solution of this equation is φ(t, µ). We need to �nd

∂φ(t,µ)
∂µ

for µ∗ = 3.

Obviously the result is learly seen without any additional alulations:

φ(t, µ) = eµt (130)

and

∂φ(t, µ)

∂µ
= teµt, (131)

so that the answer:

∂φ(t, µ)

∂µ
|µ=3 = te3t. (132)
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Having the answer to ompare with, we an write an equation in variations for the

present ase.

Keeping the notations:

f(t, x, µ) = µx, (133)

f 1
1 (t, x, µ) =

∂f(t, x, µ)

∂x
= µ, (134)

f 1
1 (t) = f 1

1 (t, φ(t, µ
∗), µ∗) = 3, (135)

g11(t, x, µ) =
∂f(t,x, µ)

∂µ
= x, (136)

g11(t) = g11(t, φ(t, µ
∗), µ∗) = φ(t, µ∗). (137)

To �nd φ(t, µ∗) we write the initial system, substituting µ with µ∗ = 3:

dφ

dt
= φ,

φ(0) = 1.
(138)

Assembling all together we get the equation in variations for the onsidered ase:







dy

dt
= 3y + φ,

dφ

dt
= 3φ,

φ(0) = 1,
y(0) = 0.

(139)

Solving this system we get an answer oiniding with the previously given theoretial

reasoning:

y(t) = te3t. (140)

5.2.2 Appliation of the equation in variations in the onsidered ase

Let us reall that we are dealing with the objetive funtion in ODE-form and therefore

it is possible to get rid of the �nite di�erene's approah by applying an equation in
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variations [10℄ for the unknown di�erential's estimation and obtain a stohasti gradient

with less omputation error.

The result of suh tehnique might enhane onvergene and might not. The outome

depends on the onrete optimization task. For example in the ase when the data

ontains large rate of noise and if in every step of the SQG we are using only one

realization of random vetor for the gradient estimation, the �nite di�erene approah

will give a better desent diretion.

But in pratie it is important to have several omputation possibilities in order to be

able to ompare the results, espeially in the ompliated ases.

Another bene�t of using the suggested tehnique ould be a omputational speed: some-

times it is faster or even more onvenient to solve a slightly extended ODE-system than

to ondut several omputations with original one what is required in the ase when we

are employing �nite di�erenes.

Di�erentials with respet to t-variable an be found expliitly from the initial ODE

aording to the rule of the omplex funtion's di�erentiation:

∂Φ(S(t,v,x))
∂t

| t=t1

v=v1

x=x1

=

(
m∑

i=1

∂Φ(S(t,v,x))
∂Si

∂Si(t,v,x)
∂t

)

| t=t1

v=v1

x=x1

.
(141)

Considering the theorem from [10℄, an extended ODE-system based on the equation in

variations for unknown di�erentials' estimation

∂Φ(S(t,v,x))
∂vj

| t=t1

v=v1

x=x1

=

(
m∑

i=1

∂Φ(S(t,v,x))
∂Si

∂Si(t,v,x)
∂vj

)

| t=t1

v=v1

x=x1

,

j = 1, ..., l

(142)

an be written as follows:







dSi

dt
= fi(t, S, v, x)|v=v1

x=x1

,

yi,k =
∂Si(t,v,x)

∂vk
|v=v1

x=x1

,

dyi,k
dt

=
l∑

j=1

(
∂fi(t, S, v, x)

∂Sj
yj +

∂fi(t, S, v, x)
∂vk

)

|v=v1

x=x1

,

dSi

dt
= fi(t, S, v, x)|v=v1

x=x1

,

S0
i (t0, v, x)|v=v1

x=x1

= S0
i (v, x)|v=v1

x=x1

,

yi,k(0) =
∂S0

i (t,v,x)

∂vk
|v=v1

x=x1

,

i = 1, ..., m,
k = 1, ..., l.

(143)
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An extended ODE-system has the following struture: it ontains the initial ODE-

system and m × l additional equations, where again m is a number of equations in the

initial ODE-system and l is a dimension of the ontrol variable v.

Finally the stohasti quasi-gradient algorithm enhaned by the equation in variations

an be written as follows:

1. Obtain a posterior distribution of the unknown parameters using MCMC or other

parameter estimation method (i.e. bootstrap by residuals) for the given measure-

ments and the model of the proess. The distribution in that ase will be in the

form of a large array or a hain, and every omponent of suh hain an be treated

as a realisation x of the unknown parameters.

2. Compose an extended ODE-system for the estimation of unknown di�erentials

and solve it taking the realisation xk from the hain and the urrent point uk. The

result of the solution will be an estimate of the stohasti gradient ξk(uk, xk).

3. Find the next point uk+1
using the main equation of the stohasti quasi-gradient

algorithm:

uk+1 = uk − ρkξ
k(uk, xk). (144)

Go to the step 2 assuming uk+1
as a urrent point of the algorithm.

4. The algorithm stops when the number of iterations exeeds the prede�ned limit,

other stopping riteria are also admissible.

Measurements

MCMC-simulation Posterior distribution

Cost-function

SQG-algorithm

Quasi-gradient  

OptimumModel (ODE)

Extended ODE
estimate

Figure 23: The sheme of the solution tehnique.
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5.3 Numerial examples

Let us test the foregoing methods on the model examples. Consider the following hem-

ial reation that an be found in [8℄:

A
k1→ B

k2→ C. (145)

Given the measurements of omponents onentrations {A1, ..., Am}, {B1, ..., Bm} at

the moments {t1, ..., tm} and initial onentrations A(0) and B(0) at the beginning of

the experiment. Required to determine the olletion time that maximizes an average

onentration of the omponent B.

time 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
A 1 0.504 0.185 0.217 0.023 0.101 0.058 0.064 0 0.082
B 0 0.415 0.488 0.594 0.505 0.493 0.457 0.394 0.334 0.309

Table 4: Measurements of the reation.

To �nd the solution �rstly we derive the di�erential equation, re�eting the hemial

reation with the main meaning that the speed of the reation is proportional to the

mass of the interating omponents with the oe�ients k1 and k2.







dA
dt

= −k1A,
dB
dt

= k1A− k2B,
A(0) = A0,
B(0) = 0.

(146)

To get the posterior distribution Π(k1, k2 |A1, ..., Am, B1, ..., Bm) of the parameters for

the given set of measurements we employ MCMC-simulation [8℄ and further X denotes

the vetor having suh distribution X ∼ Π(k1, k2 |A1, ..., Am, B1, ..., Bm).

The next �gure shows the results of the MCMC-proedure: the distribution is almost

spherial with the mean value attaining at the point k1 = 0.6, k2 = 0.17.
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Figure 24: Distribution of the parameters estimated by MCMC for the �rst example.

The stohasti optimization problem in that ase will be written as shown below.

max
t
E{B(t, X)}, (147)

where vetor X here as before represents posterior distribution of the parameters X ∼

Π(k1, k2 |A1, ..., Am, B1, ..., Bm).

Obviously this problem is a one-dimensional beause we have only time (t) as a ontrol

variable and therefore it an be simply solved by plotting the piture, but to demonstrate

stohasti approximation methods we are employing here the stohasti quasi-gradient

algorithm.

Note, that in this ase the di�erential

dB(t,k1,k2)
dt

|t=tn is already given expliitly in the

ODE-system for any point t = tn and known realizations of the parameters k1 = kn1 ,

k2 = kn2 and there is no need to estimate it via the �nite di�erene approximation,

meaning that everything is ready to apply the stohasti quasi-gradient method:

tn+1 = tn + ρn
dB

dt
|t=tn (148)

and substituting

dB
dt

with the right-hand side of the initial equation we are getting the

following iterative proess:

tn+1 = tn + ρn(k
n
1A(t

n)− kn2B(tn)). (149)

The values of A(tn) and B(tn) are found via the solution of the ODE-system (146)

taking the orresponding to the step's number n random parameters kn1 and kn2 from

the MCMC-hain. The values A(tn) and B(tn) depend on the realisations kn1 and kn2
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of the random parameters, therefore in every step of the algorithm we are required to

solve the initial ODE.

The results of the alulations and the onvergene trae are shown on the next �gure,

where we an see that the proess starting from the initial point t0 = 10 quikly ahieves

the optimum value t∗ = 2.3. For omparison purposes the bunh of objetive funtions

were drawn for all realizations of the random parameters from the MCMC hain.

0 2 4 6 8 10 12 14 16 18 20
0

0.1
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Figure 25: Objetive funtion and the trae by the algorithm for the �rst test-ase.

The next piture shows the onvergene of the method, i.e. how the ontrol variable t

depends on the step. As it an be learly seen 250 steps were enough to get the stable

solution.
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Figure 26: Convergene of the method for the �rst test-ase.
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To illustrate an appliation of the equation in variations lets have a look at the extended

example [8℄.







dA
dt

= −k1(T )A,
dB
dt

= k1(T )A− k2(T )B,

ki(T ) = aiexp
[

−Ei

R
( 1
T
− 1

T0
)
]

, i = 1, 2,

A(0) = A0,
B(0) = 0.

(150)

Given the measurements of onentrations {A1, ..., Am}, {B1, ..., Bm} at the moments

{t1, ..., tm} for the �xed temperature T1. For the sake of simpliity the values of variables

R, Ei, T0 are known. Required to determine a olletion time and the temperature

attaining maximum of the B-omponent onentration.

time 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
A 100 50.4 18.5 21.7 2.3 10.1 5.8 6.4 0 8.2
B 0 41.5 48.8 59.4 50.5 49.3 45.7 39.4 33.4 30.9

Table 5: Measurements of the reation

The main di�erene between the previous example and the present is that the seond

ontains two ontrol variables time (t) and temperature (T). Let us denote for this

example u = [t T ]T - the vetor of ontrol variables, and X = [a1 a2]
T
- random

parameters with the posterior distribution obtained by MCMC simulation.
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Figure 27: Distribution of the parameters estimated by MCMC for the seond test-ase.
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In this example the di�erential

dB(t,T,a1,a2)
dt

| t=tn

T=Tn
is known expliitly from the initial

ODE-system for any points t = tn, T = T n
and realizations a1 = an1 , a2 = an2 , while

dB(t,T,a1,a2)
dT

| t=tn

T=Tn
is unknown. Therefore to get it we follow suggested above tehnique

and derive an extended ODE-system:







ki(T ) = ani exp
[

−Ei

R
( 1
T
− 1

T0
)
]

, i = 1, .., 2,
dA
dt

= −k1(T )A|a1=an1
a2=an2
T=Tn

,

dB
dt

= k1(T )A− k2(T )B|a1=an1
a2=an

2

T=Tn

,

y1 =
dA
dT
|a1=an

1

a2=an
2

T=Tn

,

y2 =
dB
dT

|a1=an1
a2=an2
T=Tn

,

dy1
dt

= −k1(T )y1 − k
′

1(T )A|a1=an1
a2=an2
T=Tn

,

dy2
dt

= k1(T )y1 − k2(T )y2 − k
′

1(T )A− k
′

2(T )B|a1=an1
a2=an2
T=Tn

,

A(0) = A0, B(0) = 0,
y1(0) = 0, y2(0) = 0.

(151)

From the system above we get unknown di�erential y2(t) = dB(t,T )
dT

required for the

gradient estimation and apply the main formula of the stohasti quasi-gradient method:

un+1 = un + ρnξ
n, (152)

where

un =

(
tn

T n

)

, (153)

ξn =
(

dB(t,Xn)
dt

dB(t,Xn)
dT

)T

|t=tn,T=Tn, (154)

Xn =

(
an1
an2

)

. (155)

For the omparison purposes all tested algorithms started from the same initial point

u0 = [100 100]T and the same dereasing step sequene has been used ρn = 20 1
n−0.6 .

The next table ontains omparison results of the alulations whih were onduted on

the usual laptop (Proessor Intel Celeron B810 1.6GHz ore duo with 2GB of RAM).

In fat, the fastest were enhaned by an equation in variations the SQG-algorithm.

The seond plae took the SPSA, meaning that in the onsidered ase the funtion's
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evaluation onsumed the majority of the time. This result looks reasonable, as in the

ase of the proposed method in every iteration we were solving only one ODE-system

(but extended), for the SPSA-algorithm it was required to solve the ODE-system twie,

and for the Kiefer-Wolfowitz method four times.

Algorithm Nsteps T ime(sec) t T topt Topt
SQG

100
2.2 20.6 79.1

100.0 18.5

KW 8.4 22.4 60.5
SPSA 4.0 39.1 32.6
SQG

1000
10.0 21.2 73.3

KW 47.5 46.6 28.3
SPSA 23.5 44.6 29.3
SQG

5000
58.1 20.0 65.5

KW 228.7 94.9 18.7
SPSA 125.3 99.8 18.4

Table 6: Calulation results
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Figure 28: SQG with equation in variations enhanement for the seond example.

The next �gure depits how the ontrol variables were hanging over the steps.

59



0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Step(N)
t

0 1000 2000 3000 4000 5000
60

70

80

90

100

Step(N)

T

Figure 29: Convergene of the SQG-algorithm for the seond example.
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Figure 30: Kefer-Wolfowitz algroithm for the seond test-ase.
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Figure 31: Convergene of the KW-algorithm for the seond example.
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Figure 32: SPSA-algorithm for the seond example.
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Figure 33: Convergene of the SPSA-algorithm for the seond test-ase.

5.4 Analysis of the results

As it an be seen from the �gures the funtion E{B(t, T, a1, a2)} has a ompliated

struture: it is a ravine and not a onave, therefore the onvergene traes have suh

shape.

Initially all three methods rapidly found the bottom of the ravine and started the path

to the optimum but with the di�erent speed.

The reason of suh behavior is that the SQG-algorithm with equation in variations

enhanement estimates the gradient exatly for the given realization of the random

parameters and as at the bottom of the ravine the gradient is very lose to zero, the

method annot �nd the asent diretion and therefore slowly onverges to the optimum.

the SPSA and KW-algorithm estimates the gradient based on the values of the obje-

tive funtion (�nite di�erenes in the ase of the KW and the expression (64) for the

SPSA). The distane between the points that will determine the gradient estimate are

toughly de�ned in the algorithms (the sequene {δk} in the KW ase and the parameters

ck∆ki, i = 1, ..., n in the SPSA ase). Therefore these algorithms an easily �nd asent

diretion and as a result onverge faster in that ase to the optimal point.

From the table we an also onlude that an appliation of the equation in variations

indeed inreases omputational speed. Suh observation means that in the present ase
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it is faster to solve one slightly extended ODE-system (to get the unknown di�erential),

than to alulate the values of the objetive funtion twie (to get the �nite-di�erene

approximation).

6 Conlusion and main results

The following main results have been ahieved in the thesis:

• Review, desription and implementation (see an appliation at the end of the

thesis) of the stohasti approximation algorithms for stohasti optimization.

• Aquired new deterministi equivalents (73, 105) for the eletriity retailer pro�t

optimization problem with mean-value and CVaR riteria.

• Suggested to use an equation in variations enhanement (143) for the objetive

funtions in the ODE-form, that inreases the omputational speed of the stohas-

ti approximation proedure.

• Using implemented Matlab-library in the present work it has been found and om-

pared solutions of the stohasti optimization problem with an objetive funtion

given in ODE-form with parameter unertainty given by the sample of posterior

distribution.
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7 Appendies

7.1 Implementation of the stohasti approximation algorithms

f un t i on [ r e s u l t ℄ = sqgrun ( grad ient fun , ost fun , rhofun , de l ta fun ,

pro j fun , Nsteps , u0 , hain , dim_name , flag_method)

% fun t i on r e s u l t = sqgrun ( grad ient fun , ost fun , rhofun , de l ta fun ,

% pro j fun , Nsteps , u0 , hain , dim_name , flag_method)

% The fun t i on  a l  u l a t e s an optimal s o l u t i on o f the mean−va lue minimizat ion

% problem by the s t o  h a s t i  approximation method

%

% INPUT:

% grad i en t fun (u ,X) − I f the s t o  h a s t i  g rad i en t may be

% omputed e xp l i  i t y l y , then os t fun and de l ta fun

% an be l e f t empty [ ℄ as they are needed only f o r

% the approximation by f i n i t e d i f f e r n  e s

%

%

% os t fun (u ,X) − Cost funt ion , where u − s t r a t e g i e s , X − random

% params

%

% rhofun (k ) − Dereas ing step−s i z e funt ion , 1/k i s s u i t a b l e

%

%

% de l ta fun (k ) − Dereaing fun t i on to ompute f i n i t e d i f f e r e n  e s

% 1/k i s s u i t a b l e

%

% pro j fun − Pro j e  t i on onto the admi s s ib l e s e t fun t i on .

% For the g iven po int u i t should return an

% or t op r o j e  t i on onto the s e t U

%

%

% Nsteps − Number o f s t eps to  a l  u l a t e

% u0 − Star t ing po int

% hain − array o f r e a l i z a t i o n s o f the random ve to r X

% dim_name − ax i s l a b e l s f o r the sqgp lo t

%

% flag_method − SGD: S t o ha s t i  Gradient Desent

% − KW: Kie fer−Wolfowitz

% − SPSA: Simulateneous Perturbat ion S t o ha s t i 

% Approximation

% − KestenSGD : S t o ha s t i  Gradient Desent with

% Adaptive Keste Rule

% − KestenKW: Kie fer−Wolfowitz with Adaptive

% Keste Rule

% − UryasevSGD: S t o ha s t i  Gradient Desent with

% Adaptive Uryasev Rule

% − UryasevKW : Kie fer−Wolfowitz with Adaptive

% Uryasev Rule

%

% OUTPUT: The sequene o f po in t s generated by the a lgor i thm
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u=u0 ;

dim=s i z e (u0 , 1 ) ;

r e s u l t (1 , : )=u ;

h = waitbar ( 0 , ' 1 ' , 'Name' , ' Ca lu lat ion ' ) ;

7.1.1 Implementation of the SQG-algorithm with expliitly de�ned gradient

i f ( strmp ( flag_method , 'SGD' ) )

f o r k=1:Nsteps

X=hain (k , : ) ;

u=pro j fun (u−rhofun (k )∗ grad i en t fun (u ,X) ) ;

r e s u l t (k , : )=u ;

i f (mod(k ,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

end ;

end ;

7.1.2 Implementation of the SQG-algorithm with expliitly de�ned gradient

and adaptive Kesten rule

i f ( strmp ( flag_method , ' KestenSGD ' ) )

n=1;

f o r k=1:Nsteps

X=hain (k , : ) ;

u=pro j fun (u−rhofun (n)∗ grad i en t fun (u ,X) ) ;

r e s u l t (k , : )=u ;

i f (k>2)

eps_urr=r e s u l t ( end , : ) ' − r e s u l t ( end −1 , : ) ' ;

eps_prev=r e s u l t ( end−1 ,:) '− r e s u l t ( end −2 , : ) ' ;

%inne r produt o f the ur r en t and prev ious

i f ( sum( eps_urr .∗ eps_prev)<0)

n=n+1;

end ;

e l s e

n=n+1;

end ;

i f (mod(k ,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

end ;

end ;

7.1.3 Implementation of the SQG-algorithm with expliitly de�ned gradient

and adaptive Uryasev rule

i f ( strmp ( flag_method , ' UryasevSGD ' ) )

rho=1;

X=hain ( 1 , : ) ;

x i=grad i en t fun (u ,X) ;
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r e s u l t (1 , : )=u ;

s tep (1)=rho ;

f o r k=2:Nsteps

X=hain (k , : ) ;

xi_next=grad i en t fun (u ,X) ;

lambda=k^(−1);

rho=rho+lambda∗sum( x i .∗ xi_next ) ;

s tep (k)=rho ;

x i=xi_next ;

u=pro j fun (u−rho∗xi_next ) ;

r e s u l t (k , : )=u ;

i f (mod(k ,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

end ;

f i g u r e ( 100 ) ;

p l o t ( 1 : Nsteps , s tep ) ;

end ;

7.1.4 Implementation of the Kiefer-Wolfowitz algorithm

i f ( strmp ( flag_method , 'KW' ) )

n=1;

f o r k=1:2: Nsteps

X1=hain (k , : ) ;

X2=hain ( k+1 , : ) ;

u=pro j fun (u−rhofun (n)∗QGradient ( ost fun , u ,X1 ,X2 , de l ta fun (n ) ) ) ;

r e s u l t (n , : )=u ;

i f (mod(k−1,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

n=n+1;

end ;

end ;

7.1.5 Implementation of the Kiefer-Wolfowitz algorithmwith adaptive Kesten

rule

i f ( strmp ( flag_method , ' KestenKW ' ) )

n=1;

i =1;

f o r k=1:2: Nsteps

X1=hain (k , : ) ;

X2=hain ( k+1 , : ) ;

u=pro j fun (u−rhofun (n)∗QGradient ( ost fun , u ,X1 ,X2 , de l ta fun (n ) ) ) ;

r e s u l t ( i , : )=u ;

i f ( i >2)

eps_urr=r e s u l t ( i , : ) ' − r e s u l t ( i −1 , : ) ' ;

eps_prev=r e s u l t ( i −1 ,:) '− r e s u l t ( i −2 , : ) ' ;

%inne r produt o f the ur r en t and prev ious

i f ( sum( eps_urr .∗ eps_prev)<0)
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n=n+1;

end ;

e l s e

n=n+1;

end ;

i=i +1;

i f (mod(k−1,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

end ;

end ;

7.1.6 Implementation of the Kiefer-Wolfowitz algorithmwith adaptive Urya-

sev rule

i f ( strmp ( flag_method , ' UryasevKW ' ) )

rho=1;

X1=hain ( 1 , : ) ;

X2=hain ( 2 , : ) ;

x i=QGradient ( ost fun , u ,X1 ,X2 , de l ta fun ( 1 ) ) ;

r e s u l t (1 , : )=u ;

s tep (1)=rho ;

n=2;

f o r k=3:2:2∗Nsteps

X1=hain (k , : ) ;

X1=hain ( k+1 , : ) ;

xi_next=QGradient ( ost fun , u ,X1 ,X2 , de l ta fun ( 1 ) ) ;

lambda=n^(−1);

rho=rho+lambda∗sum( x i .∗ xi_next ) ;

s tep (n)=rho ;

x i=xi_next ;

u=pro j fun (u+rho∗xi_next ) ;

r e s u l t (n , : )=u ;

i f (mod(n,100)==0)

waitbar (n/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , n ) ) ;

end ;

n=n+1;

end ;

f i g u r e ( 100 ) ;

p l o t ( 1 : Nsteps , s tep ) ;

end ;

7.1.7 Implementation of the SPSA algorithm

i f ( strmp ( flag_method , ' SPSA ' ) )

n=1;

f o r k=1:2: Nsteps

X1=hain (k , : ) ;

X2=hain ( k+1 , : ) ;

d e l t a=2∗round ( rand (dim ,1)) −1 ;

u_plus=u+de l ta fun (n)∗ de l t a ;
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u_minus=u−de l ta fun (n)∗ de l t a ;
QG=(os t fun ( u_plus ,X1)− o s t fun (u_minus ,X2) ) . / ( 2 ∗ de l ta fun (n)∗ de l t a ) ;
u=pro j fun (u−rhofun (n)∗QG) ;

r e s u l t (n , : )=u ;

i f (mod(k−1,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

n=n+1;

end ;

end ;

d e l e t e (h ) ;

sqgp lo t ( r e su l t , dim_name ) ;

7.1.8 The funtion whih alulates �nite di�erene approximation of the

stohasti quasi-gradient

f un t i on QG=QGradient ( fun , u , sample1 , sample2 , d e l t a )

n=s i z e (u , 1 ) ;

f o r i =1:n

u1=u ;

u2=u ;

u1 ( i , : )= u1 ( i , : )+ de l t a ;

u2 ( i , : )= u2 ( i , : ) − de l t a ;

QG( i , : )= ( fun (u1 , sample1)− fun (u2 , sample2 ) )/ (2∗ de l t a ) ;
end ;

7.1.9 The funtion displaying the onvergene rate

f un t i on sqgp lo t ( t rae , dim_name ) ;

%p lo t r e s u l t

dim=s i z e ( t rae ( 1 , : ) , 2 ) ;

s t ep s=s i z e ( t rae ( : , 1 ) ) ;

Ny= e i l ( s q r t ( dim ) ) ;

i f (Ny==dim)

Nx=1;

e l s e

Nx=Ny;

end ;

r=1: s t eps ;

f o r k=1:dim

subplot (Ny, Nx , k ) ;

p l o t ( r , t rae ( r , k ) ) ;

x l ab e l ( ' Step (N) ' ) ;

y l ab e l (dim_name(k ) ) ;

end ;

7.1.10 Eletriity retailer pro�t optimization - solution with mathematial

expetation.

 l  ;
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 l e a r a l l ;

 l o s e a l l ;

_buy=.4;

_s e l l =2.2;

_ l e f t =0.1;

_def=.3;

alpha =0.6;

beta =0.7;

de l t a1 =40;

de l ta2 =35;

PDF_X=[0.05 0 .05 0 .05 0 .05 0 .1 0 . 2 0 . 2 0 .15 0 .1 0 . 0 5 ℄ ;

X=[10 20 30 40 50 60 70 80 90 1 0 0 ℄ ;

PDF_Y=[0.1 0 .2 0 . 3 0 . 2 0 .15 0 . 0 5 ℄ ;

Y=[0.1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 ℄ ;

CDF_X=umsum(PDF_X) ;

CDF_Y=umsum(PDF_Y) ;

Num_sim=1000; %number o f days to s imulate

f o r u=1:100 %try d i f f e r e n t s i z e o f s to rage

f o r i a =1:Num_sim

req=invd f (X,CDF_X, 1 , 2 ) ;

%Sample ( i a )=req ;

_buy=invd f (Y,CDF_Y, 1 , 2 ) ;

P r o f i t 1 ( i a)=−u∗_buy ; %p r o f i t in the beg inn ing

N_sell=min ( req , u ) ; %the number he s e l l s

N_left=max(u−req , 0 ) ; %the number o f newsp . l e f t

N_def=max( req−u , 0 ) ; %d e f i  i t papers

P ro f i t 1 ( i a )=Pro f i t 1 ( i a )+N_sell∗ _se l l−N_left∗ _le f t−N_def∗_def ;

%p r o f i t without pena l ty

end ;

X1(u)=mean( Pro f i t 1 ) ; %mean va lue o f the p r o f i t in ase a

end ;

spare=X(CDF_X>=alpha ) ;

x_alpha=spare ( 1 ) ;

spare=X(CDF_X>=1−beta ) ;
x_1_beta=spare ( 1 ) ;

i=x_alpha−de l ta1 : 1 : x_1_beta+de l ta2 ; %admi s s ib l e area

%%f=�(u , x )min (x , u )∗ _se l l−u∗y−max(u−x , 0 )∗ _le f t−max(x−u , 0 )∗ _def ; we have

%%s p l i t the fun t i on on 2 par t s

f 1=�(u , x )min (x , u )∗ _se l l−max(u−x , 0 )∗ _le f t−max(x−u , 0 )∗ _def ;

f o r u=1:100

S=0;

f o r j =1:10

S=S+f1 (u ,X( j ) )∗PDF_X( j ) ;
end ;

R=0;

f o r j =1:6

R=R+u∗PDF_Y( j )∗Y( j ) ;
end ;

S=S−R;

Expetat ion (u)=S ;

end ;

71



u=1:100;

p l o t (u , Expetat ion , '− blak ' , u , X1 , ' g . ' , i ,−20 , ' r ∗ ' ) ; hold on ;

l egend ( ' Theore t i a l r e s u l t ' , ' Simulated r e su l t ' , ' Admiss ible area ' ) ;

x l ab e l ( ' u ' ) ;

y l ab e l ( 'E\{\Phi (u ,X,Y) \ } ' ) ;

g r id on ;

% Theore t i a l r e s u l t by the l i n e a r programming

n=10;

e=ones (n , 1 ) ;

I=eye (n , n ) ;

E=zero s (n , n ) ;

A1=[e −I I E E

e E E I −I ℄ ;

b1=[X X℄ ' ;

_buy=sum(PDF_Y.∗Y) ;

C=[( _se l l−_buy ) ℄ ;
f o r i =1:n

C=[C −PDF_X( i )∗ ( _s e l l+_le f t ) ℄ ;

end ;

C=[C ze ro s (1 , n ) ℄ ;

f o r i =1:n

C=[C −PDF_X( i )∗ _def ℄ ;

end ;

C=[C ze ro s (1 , n ) ℄ ;

lb = ze ro s (4∗n+1 ,1) ;

A2=[−1 ze ro s (1 ,4∗n)
1 ze ro s (1 ,4∗n ) ℄ ;

b2=[x_alpha−de l ta1
x_1_beta+de l ta2 ℄ ;

[ x , f va l , e x i t f l a g , output , lambda ℄ = l i np r og (−C,A2 , b2 ,A1 , b1 , lb ) ;

u=x (1 )

f=−f v a l

p l o t (u , f , ' b . ' , ' markers ize ' , 2 0 ) ;
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