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Sto
hasti
 approximation methods for sto
hasti
 optimization are 
onsidered. Reviewed

the main methods of sto
hasti
 approximation: sto
hasti
 quasi-gradient algorithm,

Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation

sto
hasti
 approximation (SPSA) algorithm. Suggested the model and the solution

of the retailer's pro�t optimization problem and 
onsidered an appli
ation of the SQG-

algorithm for the optimization problems with obje
tive fun
tions given in the form of

ordinary di�erential equation.
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Symbols and abbreviations

• CDF - 
umulative distribution fun
tion.

• PDF - probability density fun
tion.

• SQG - sto
hasti
 quasi-gradient algorithm.

• VaR - value-at-risk.

• CVaR - 
onditional value-at-risk.

• w.r.t - with respe
t to.

• a.s. - 
onvergen
e almost sure.

• σ{X1, X2, ..., Xn} - sigma-algebra, generated by the distribution of random vari-

ables X1, X2, ..., Xn.

• MC - Monte-Carlo simulation.

• MCMC - Markov Chain Monte-Carlo simulation.

• LP - linear programming.

• SPSA - Simultaneous perturbation sto
hasti
 approximation.

• SA - Sto
hasti
 approximation.

• KW - Kiefer-Wolfowitz algorithm.

• ODE - Ordinary di�erential equation.
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1 Introdu
tion

Optimization problems under un
ertainty have been intensively studied by many re-

sear
hes during the last 50 years. In fa
t mathemati
al models based on sto
hasti


theory are more approa
hed to the real life then deterministi
 be
ause the random pa-

rameters whi
h 
onsidered in obje
tive fun
tion or in 
onstraints re�e
t the nature of

un
ertainty during the de
ision making.

Sto
hasti
 models are widely used in insuran
e, �nan
ial and portfolio optimization

where the behavior of market 
annot be pre
isely fore
asted or in aerospa
e te
hnologies

where it is required to obtain robust results.

Generally the solution of the sto
hasti
 optimization problems looks as follows: �rstly

resear
her attempts to derive a deterministi
 equivalent and use deterministi
 method

of linear or nonlinear optimization depending on the 
ase. If the 
ost fun
tion is quite


ompli
ated but if the gradient 
an be expli
itly found for the given realization of the

random parameters or su

essfully approximated with �nite di�eren
es, then sto
has-

ti
 approximation (SA) will be a good 
hoi
e as a solution te
hnique. Finally if the

method fails (example: an obje
tive fun
tion is multimodal, 
ontains both dis
rete and


ontinuous arguments), then the Monte-Carlo simulation, geneti
 algorithms, simulated

annealing or other methods of global optimization are used.

Robustness, simpli
ity and 
omputation speed makes sto
hasti
 approximation a very

popular algorithm for the wide 
lass of optimization problems therefore development of

SA is an important and demanded resear
h area.

1.1 Obje
tive of the thesis

The main purpose of the thesis is to study and develop sto
hasti
 approximation algo-

rithms whi
h are used in sto
hasti
 optimization.

1.2 Stru
ture of the thesis

The material of the thesis is organized as follows: the �rst 3 
hapters are devoted for

the de�nitions, theoreti
al ba
kground of the sto
hasti
 approximation and are mainly

needed to prepare the reader for the appli
ation problems that are studied in the 
hapters

4-5.
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1.3 S
ienti�
 novelty

The thesis 
ontains several new theoreti
al results: deterministi
 equivalents of the op-

timization problems with mean-value and CVaR - ele
tri
ity retailer pro�t optimization

problem (see theorems in the 
orresponding se
tion) and interesting 
omputational idea:

equation in variations used in SQG-algorithm for the obje
tive fun
tions given in ODE-

form.

The �rst result gives an opportunity to substitute the solution of the sto
hasti
 problem

with deterministi
 one and instantly get the result using a well-known simplex-method

for the linear-programming.

The se
ond result signi�
antly in
reases 
omputational speed of the sto
hasti
 approx-

imation pro
edure for the 
onsidered problem.
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2 Optimization 
riteria, used in sto
hasti
 program-

ming

Let Φ(u,X) further in this se
tion denotes a 
ost fun
tion, where u ∈ U ⊂ R
n
is an

optimization strategy and X is a random ve
tor with the realizations belonging to the

set E ⊆ R
m
.

2.0.1 Mean-value 
riterion

Histori
ally the �rst was a mean-value 
riterion whi
h 
an be de�ned as follows:

min
u∈U

E[Φ(u,X)]. (1)

Intuitively the 
riterion means to 
hose those strategy, whi
h minimizes average loses,

represented by the obje
tive fun
tion.

The main properties of the mean-value 
riterion that allows one to derive a solution and

build e�e
tive algorithms are:

• Linearity:

E[aX + bY + c] = aE[X ] + bE[Y ] + c, (2)

where X, Y are random variables and parameters a, b, c ∈ R;

• Simple representation for the dis
rete distribution with �nite number of realiza-

tions:

E[X ] =
n∑

i=1

xipi, (3)

where xi, i = 1, .., n are realisations of the random ve
tor X, and pi, i = 1, .., n are the


orresponding probabilities, so that P(X = xi) = pi.

Unfortunately, the mean-value 
riterion together with su
h attra
tive properties has a

number of 
ases when it fails: to get a basi
 idea one 
an imagine the situation when the

de
ision about the 
onditions of the patients in a 
lini
 are made, based on the average

temperature among them. The nonsense is obvious - it is possible to have the value of

the 
riterion 36, 6◦ but all the patients will be about to die: the �rst half with ∼ 34C◦

and the rest with ∼ 40C◦
.

3



2.0.2 Minimax 
riterion

The minimax 
riterion 
omes from the game theory and in the statisti
al analysis means

to 
hose those strategy, whi
h attains the minimum of loses in the worst possible 
ase:

min
u∈U

max
X∈E

Φ(u,X). (4)

The problem statement 
an be treated as a game against an aggressive nature all the

time forming the worst possible 
ase for the de
ision maker. The positive side of the

strategy 
hosen a

ording to minimax is an assuran
e that the losses will be always

below fore
asted. Drawba
k e�e
ts are obvious: su
h strategy 
ould be too 
autious

and wasteful and often una
hievable. For example in the book [4℄ the 
hapter devoted

to optimization of the air
raft runway area 
ontains a joke that in order to solve the

problem with the minimax 
riterion it is required to 
on
rete the whole globe together

with o
eans and sees.

2.0.3 Value-at-Risk (VaR) 
riterion

To show an idea behind the VaR 
riterion let us de�ne two 
on
epts: the probability

fun
tion Pφ(u) and the quantile fun
tion φα(u) [4℄.

Pφ(u) = P{Φ(u,X) ≤ φ}, (5)

φα(u) = min {ϕ : Pϕ(u) ≥ α}. (6)

The probability fun
tion represents probability that the 
ost fun
tion Φ(u,X) does not

ex
eed the level φ for a 
hosen �xed strategy u, while the quartile fun
tion indi
ates the


orresponding minimal level. Finally, to get the VaR-strategy, the following optimization

task have to be solved:

min
u∈U

φα(u). (7)

Unfortunately VaR la
ks of some desirable theoreti
al properties. Firstly, it does not

preserve 
onvexity, i.e. 
onvexity of the obje
tive fun
tion w.r.t. to a strategy, does

not always results in a 
onvexity of the quantile fun
tion. Se
ondly, there are quite a

small number of 
ases when it is possible to derive a gradient w.r.t to a strategy of the

VaR expli
itly. This makes the solution pro
ess of VaR problems extremely 
ompli
ated

and therefore the Monte-Carlo simulation is often used. One approa
h to deal with the

quantile 
riterion is to build an upper-value estimate, based on the 
on�den
e set.
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A

ording to [4℄ the problem (7) may be solved if one gets a solution of the following

minimax problem:

φα(u) = min
E∈Eα

max
x∈E

Φ(u, x),

where Eα is a family of the 
on�dent sets P (E) ≥ α, E ∈ Eα. Obviously if instead of the

optimal 
on�dent set E∗
will be used an arbitrary one Ê, then an upper estimate to the

optimal solution will be found. Based on that observation there were many appli
ation

problem solved [23, 24, 25℄.

2.0.4 Conditional Value-at-Risk (CVaR) 
riterion

The 
riterion was 
reated as an enhan
ement to VaR and represents an average rate of

loses ex
eeding the level φα(u):

ψα(u) = E[Φ(u,X) | Φ(u,X) ≥ φα(u)] =
1

1− α

∫

Φ(u,X(w))≥φα(u)

Φ(u,X(w))dP (w), (8)

A

ording to [7℄, a minimization of CVaR over the strategy u ∈ U equals to the solution

of the following optimization problem:

ψ∗ = min
(u,φ)∈U×R

Fα(u, φ), (9)

where

Fα(u, φ) = φ+
1

1− α
· E[max{F (u, Z)− φ, 0}. (10)

This results opens wide possibilities for the CVaR-optimization via well-known te
h-

niques of the mean-value minimization.

2.0.5 Demonstration example

Let us 
onsider a simple example to show the di�eren
e between the foregoing 
riteria

in pra
ti
e. Assume that a 
ost fun
tion is de�ned as presented below:

Φ(u,X) = u2 +X (11)

and a random parameter is a normally-distributed X ∼ N(0, 1).

• Mean-value solution:

min
u∈R

{E[u2 +X ]}. (12)

5



Using a linearity of the mathemati
al expe
tation, we get the following determin-

isti
 equivalent:

min
u∈R

u2 (13)

and the 
orresponding solution is u∗ = 0, E[u∗, X ] = 0.

• Minimax solution:

min
u∈R

max
X

{u2 +X}. (14)

The Normal distribution has a 
ontinuous CDF, therefore ∀ C ∈ R: P(X > C) >

0. As a result, the left hand side of the previous equation is a non-restri
ted and

the problem does not have a solution.

• VaR-solution:

min
u∈R

{φα(u)}. (15)

The probability fun
tion looks as follows:

Pφ(u) = P(u2+X ≤ φ) = P(X ≤ φ−u2) = FX(φ−u2), where FX is a CDF of X

The quantile fun
tion:

φα(u) = min{φ : Pφ(u) ≥ α} = min{φ : FX(φ− u2) ≥ α}

By the de�nition CDF is a monotoni
ally non-de
reasing fun
tion, therefore:

FX(φ− u2) ≥ α ⇐⇒ φ− u2 ≥ xα =⇒ φ ≥ u2 + xα =⇒ φα(u) = u2 + xα
Finally, the deterministi
 equivalent assumes the shown below form:

min
u∈R

{u2 + xα}. (16)

As it 
an be 
learly seen: u∗ = 0, φα(u
∗) = xα.

• CVaR-solution: Considering the previous VaR soultion:

ψα(u) = E[Φ(u,X) | Φ(u,X) ≥ φα(u)] = E[u2 + x | u2 + x ≥ u2 + xα] =

u2 +E[x | x ≥ xα] = u2 + yα, where yα = α− CV aRN(0,1). Finally, the determin-

isti
 equivalent assumes the following form:

min
u∈R

{u2 + yα} (17)

and the solution: u∗ = 0, ψα(u
∗) = yα.

It is worth to note, that in this parti
ulary example, the strategy u = 0 is an optimal

simultaneously for the mean-value, VaR, and CVaR 
riteria.
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Figure 1: Illustration of the solution.
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3 Sto
hasti
 approximation

A history of the sto
hasti
 approximation starts from the arti
le of Robbins and Monro

[20℄ where authors applied a re
ursive SA pro
edure to �nd a root of the equation

observing noisy data. As it has been dis
overed, there is no need to know exa
t values

of the fun
tion, be
ause during the solution we are only interested in the dire
tion of

the root. As a result of this observation, the pro
ess 
an work with noisy values instead

of the exa
t data.

Let us review several illustrative appli
ation problems from the real life where the

sto
hasti
 approximation algorithms 
an be quite useful.

• During the testing of inse
ti
ides there are a problem of determining the maximum

dose whi
h guarantee the intensity of the rea
tion.

• The hardness of the iron-
opper alloy depends on the time of temperature impa
t.

Let u denotes a time, and Y (u) - the hardness of alloy. The 
omputation problem

is to determine su
h u when the hardness of alloy Y (u) rea
hes α. It is also a

well-known fa
t that the hardness of alloy varies over the items.

• The sensitivity of the explosive substan
e to the physi
al impa
t are measured by

hitting. The small item of the substan
e are pun
hed by solid obje
t thrown from

the �xed height. Some samples will explode and some of them not. The problem

is to determine the 
riti
al height for the substan
e.

• A grain �eld are fertilized by some 
hemi
als. Let u denotes an amount of the

fertilizer and Y(u) denotes a 
orresponding amount of grain gathered from the

�eld. It 
an be 
learly seen that la
k of the fertilizer (as well as over-fertilization)

yields to a redu
tion of the 
rops. Only some optimal amount of 
hemi
als leads

to a signi�
ant out
ome. Moreover the proli�
ness of the �eld are 
hanging over

the years even if an amount of the fertilizer u remains the same.

The solution of the �rst three 
ases 
an be organized a

ording to the pro
edure of

Robins and Monro: a tester pi
ks an arbitrary value x1 from the admissible area, 
on-

du
ts an experiment and observes a realisation y(x1) of the random variable Y (x1) with

expe
tation M(x1) = E{Y (x1)}, where M is some in
reasing fun
tion. The tester also


hooses a de
reasing sequen
e an = c
n
, where c is a positive 
onstant and n is a number

of the step. The problem to be solved is to determine su
h θ, that M(θ) = α. For the

next experiment he takes x a

ording to the rule:

xn+1 = xn − an(y(xn)− α). (18)
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To understand the main idea of the method assume α = 0. In this 
ase the previous

statement yields

xn+1 = xn −
c

n
y(xn). (19)

If y(xn) > 0, then xn+1 < xn, and y(xn) < 0 leads 
orrespondingly to xn+1 > xn,

meaning that the equation (19) looks reasonable sin
e we are sear
hing for θ :M(θ) = 0.

The solution of the last problem 
an be organized with the help of sto
hasti
 quasi-

gradient method whi
h is studied in details further in the thesis.

Kiefer and Wolfowitz (in 1d-
ase) [17℄ and Blum [21℄ (in multidimensional 
ase) applied

sto
hasti
 approximation to optimize mean-value fun
tionals.

The books of Ermoliev [9℄, Powel [22℄ 
ontain easy understandable proofs and motivation

of using sto
hasti
 approximation.

Kan and Kibzun [4℄ have applied sto
hasti
 approximation for the optimization problems

with VaR 
riterion.

Spall [19℄ have suggested to use random perturbations in the 
lassi
al KW-pro
edure

and de
rease the number of evaluations of the obje
tive fun
tion. Moreover his personal

page [19℄ lists a large number of referen
es regarding appli
ations of SPSA.

Let us list several di�erent areas of s
ien
e where the SPSA-algorithms have been su
-


essfully applied [19℄:

• Air
raft modeling and 
ontrol

• Atmospheri
 and planetary modeling

• Cardiologi
al data analysis

• Noise 
an
ellation

• Queuing network design

• Robot 
ontrol

• Sensor pla
ement

• Tra�
 signal timing or other transportation problems

• Underground mine dete
tion

9



Grani
hin and Polyak [29℄ made a generalization of the SPSA-method, estimated the


onvergen
e speed and suggested several di�erent versions of the pro
edure.

The next se
tion 
ontains explanations of the sto
hasti
 approximation pro
edures whi
h

are used for the optimization of 
ost-fun
tions.

The presentation is organized as follows: �rstly we introdu
e 
onditional expe
tation,

then on its basis some de�nitions from martingale theory will be shown. Having insight

in the martingale 
onvergen
e theory we gradually start the main proof regarding the


onvergen
e of the SQG-pro
edure. At the end of the se
tion we des
ribe a relatively new

area of sto
hasti
 approximation - the SPSA algorithm and dis
uss adaptive pro
edures

that pra
ti
ally enhan
e 
onvergen
e.

3.1 Conditional mathemati
al expe
tation

Let {Ω,F ,P} denotes a probability spa
e, G is a σ-algebra of random events G ⊆ F

and ξ is a random variable E[ξ] <∞. A random variable E[ξ | G] is 
alled a 
onditional

mathemati
al expe
tation of ξ w.r.t. G if the following 
onditions are valid:

1. E[ξ | G] is a G-measurable fun
tion,

2. for every set A ⊆ G,

∫

A

ξ(ω)P(dω) =

∫

A

E [ξ | G] (ω)P(dω). (20)

The main properties of the 
onditional mathemati
al expe
tation, that is used in the

next paragraphs are [13℄:

1. if ξ = C = const, then

E[ξ | G] = C (a.s.), (21)

2. if ξ ≤ η (a.s) then

E[ξ | G] ≤ E[η | G] (a.s.), (22)

3. if the random variable ξ is measurable with respe
t to σ-algebra G, then

E[η | G] = ξ (a.s.), (23)

10



4. 
onne
tion with un
onditional expe
tation:

E [E[ξ | G]] = E[ξ] (a.s.), (24)

5. linearity. If a, b ∈ R and E [ξ] <∞, E [η] <∞ then

E [aξ + bη | G] = aE [ξ | G] + bE [η | G] (a.s.), (25)

6. if the random variable ξ does not depend on σ-algebra G, then

E[ξ | G] = E[ξ] (a.s.), (26)

7. 
onditional mathemati
al expe
tation with respe
t to a random variable is de�ned

as an expe
tation w.r.t. the σ-algebra, generated by this variable:

E [ξ | Fn] = E [ξ | η] , Fn = σ{η}. (27)

To get intuitive sense regarding 
onditional mathemati
al expe
tation, one 
an imagine

E [X | F ] as a rough, averaged version of X, be
ause on the arbitrary set A ∈ F random

variable X 
an assume any values, but E [X | F ] gets only one �xed value: E [X |A]

what is an average value of X on the set A ∈ F .

3.2 Dis
rete time martingales

Assume that F0 ⊆ F1 ⊆ ... ⊆ F is a non-de
reasing family of σ-algebras, de�ned on a

probability spa
e {Ω,F ,P}. For example if {ξn}, n ≥ 0 is a set of random variables given

on {Ω,F ,P} and F l
n = σ{ξ0, ... , ξn} is a sigma-algebra, generated by {ξk, k = 0, ... , n},

then {F l
n} is a non-de
reasing family of σ-algebras.

Let {Xn, n ≥ 0} is a sequen
e of random variables de�ned on {Ω,F ,P}. If for all n ≥ 0

Xn is Fn-measurable, then {Xn,Fn} is 
alled a sto
hasti
 sequen
e.

If for all n ≥ 0 Xn is Fn−1-measurable, then the sequen
e {Xn,Fn−1} is 
alled a sto
has-

ti
 sequen
e.

Sto
hasti
 sequen
e {Xn,Fn}, E [|Xn|] <∞ is 
alled:

• a martingale, if E [Xn+1 | Fn] = Xn (a.s.),

• a submartingale, if E [Xn+1 | Fn] ≥ Xn (a.s.),

• a supermartingale, if E [Xn+1 | Fn] ≤ Xn (a.s.).

11



3.3 Convergen
e of the supermartingales

It 
an be 
learly seen that supermartingales are sto
hasti
 analogues of non-in
reasing

sequen
es of the real numbers. As a result, supermartingales (as well as submartin-

gales) under some 
onditions 
an have a limit (what is in fa
t a random variable). The


orresponding statement are shown in the following theorem [9℄.

Theorem 3.1 (Convergen
e theorem). If {Xn,Fn} is a supermartingale, su
h that

inf
n
E [X−

n ] > −∞, X−
n = min{Xn, 0} then

| lim
n→∞

Xn| <∞. (28)

From the theorem above it is possible to 
on
lude: if {Xn,Fn} is a non-negative super-

martingale, then a.s. (with probability 1) there exists its limit.

3.4 Convergen
e of the random variables

Let {X1, ..., Xn, ...} is a sequen
e of random variables, whi
h are de�ned on the same

probability spa
e {Ω,F ,P}.

1. Xn
P
−→ X (in probability) if ∀ǫ > 0 lim

n→∞
P(|Xn −X| > ǫ) = 0,

2. Xn
m.s.
−−→ X (in mean square) if lim

n→∞
E{|Xn −X|2} = 0,

3. Xn
a.s.
−−→ X (almost sure) if P

(

w ∈ Ω : lim
n→∞

Xn(w) = X(w)
)

= 1,

4. Xn
d
−→ X (in distribution or weakly) if lim

n→∞
Fn(x) = F (x) for every x ∈ R at whi
h

F (x) is 
ontinuous. Here Fn(x) and F are the 
umulative distribution fun
tions

(CDF) of the random variables Xn and X respe
tively.

Let Xn is a sequen
e of random variables distributed as follows: P(Xn = 0) = 1 − 1
n
,

P(Xn = 1) = 1
n
. This sequen
e 
onverges in mean-square and therefore in probability

but does not 
onverges almost sure. [26℄
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Figure 2: Convergen
e of the random variables in mean-square.

Let Xn is a sequen
e of random variables distributed as follows: P(Xn = 0) = 1 − 1
n2 ,

P(Xn = 1) = 1
n2 . This sequen
e 
onverges almost sure and therefore in probability but

does not 
onverges in mean-square. [26℄
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Figure 3: Convergen
e of the random variables almost sure.

As it 
an be seen from the �gures, in the �rst 
ase even after 5000 steps, there 
an be

outliers from the a

umulation point, but in the 
ase of the 
onvergen
e almost sure it
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does not happen, as for any w ∈ Ω we 
annot have values beyond the arbitrary given

epsilon-neighborhood of the limited point.

3.5 Sto
hasti
 quasi-gradient method

Having understanding of the foregoing 
on
epts we will pro
eed des
ribing the sto
hasti


quasi-gradient algorithm for the optimization problems with mean-value 
riterion, whi
h

is formulated below.

min
u∈U

F (u),

F (u) = E{Φ(u,X)}.
(29)

Here Φ(u,X) as before denotes an obje
tive fun
tion dependent on a random ve
tor X

and the strategy u whi
h should be 
hosen from the set U ⊆ R
n
.

If the gradient ∇F (u) was known we 
ould use the 
lassi
al gradient-des
ent method,

starting from some initial point u0. The main statement of the algorithm is written

below:

uν+1 = ΠU (uν − ρν∇F (u
ν)) , (30)

where ΠU(u) denotes a proje
tion operator onto the set U :

ΠU(u) = argmin
y∈U

||u− y||. (31)

The proje
tion operator are used here to restri
t the lo
ation of the points u0,...,un
generated by the algorithm to the admissible area U .

The problem to �nd a proje
tion of the point onto the set is not always an easy task.

Generally the set U has to be 
losed and 
onvex in order to have a unique proje
tion

(it might happen that the proje
tion does not exists at all if the set U is open and the

proje
tion might be non-unique in the 
ase of non-
onvex U).

The proje
tion 
an be found instantly for the elementary types of the set U . Su
h 
ases

are listed below.

1. A non-negative orthant:

U = En
+ = {u : u ∈ R

n, uj ≥ 0, j = 1, .., n}. (32)
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Let us denote pj the j-th 
oordinate of the proje
tion ΠU(u), then

pj =

{
0, uj < 0,
uj, uj ≥ 0.

(33)

2. n-dimensional parallelepiped:

U = {u : u ∈ R
n, aj ≤ uj ≤ bj , j = 1, .., n} (34)

pj =







aj, uj < aj ,
uj, aj ≤ uj ≤ bj ,
bj , uj > bj .

(35)

where pj as usuall the j-th 
oordinate of the proje
tion ΠU(u).

3. A sphere with the radius r:

U = {u : u ∈ R
n, ||u|| ≤ r}. (36)

The proje
tion 
an be found as follows:

ΠU(u) =

{
u, u ∈ U,
r

||u||
u, u /∈ U,

(37)

4. A hyperplane:

U = {u : u ∈ R
n, 〈c, y〉 = b}, (38)

where c ∈ En
, b ∈ R.

ΠU(u) = u+
b− 〈c, u〉

||c||2
c. (39)

5. A halfspa
e:

U = {u : u ∈ R
n, 〈c, y〉 ≤ b}, (40)

ΠU(u) =

{

u, u ∈ U,

u+ b−〈c,u〉
||c||2

c, u /∈ U,
(41)

Considering the remark regarding proje
tion operator a gradient des
ent algorithm 
an

be writtern:

1. Initialize the step ν = 0, 
hoose the initial point u0.
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2. Compute the next point uν+1
using the previous point uν and an equation:

uν+1 = ΠU (uν − ρν∇F (u
ν)) , (42)

To �nd a proje
tion onto the set U use above mentioned remarks regarding the

proje
tion operator.

3. Che
k the stopping 
riterion. If the stopping 
ondition is satis�ed, put u∗ = uν+1
,

otherwise assign ν = ν + 1 and go the step 2.

Let f(u) is a fun
tion, de�ned on the set U ⊂ R
n
. The ve
tor ∂(u0) ⊂ R

n
is 
alled a

subgradient of the fun
tion f(u) at the point u0 ∈ U if ∀u ∈ U

f(u) ≥ f(u0) + 〈∂(u0), u− u0〉. (43)

The formula above geometri
ally means that the graph of the fun
tion f(u) lo
ated

above the linear fun
tion f(u0)+ 〈∂(u0), u−u0〉 and at the point u0 the graphs 
oin
ide.

Obviously if the fun
tion is di�erentiable there is only one su
h ve
tor ∂(u0) equals to

the gradient ∇f(u0). For a non-di�erentiable fun
tion at the point (u0) there exists a

set of the subgradients, that is 
alled subdi�erential set.

From the point of view of optimization methods, if the obje
tive fun
tion F (u) is not

di�erentiable, the gradient ∇F (u) is substituted by the subgradient ∂F (u) and the rest

of the gradient des
ent method is used without any 
hanges. Su
h method is 
alled

subgradient algorithm.

In 
ase of the sto
hasti
 obje
tive fun
tion an exa
t gradient is unknown, and therefore

its sto
hasti
 version is used:

uν+1 = ΠU(u
ν − ρν∇uΦ(u

ν , xν)), (44)

where xν , (ν = 1, ...) is a realization of X at the step ν of the algorithm. So that xν is

a random variable, be
ause we do not know the value whi
h assumes X at the step ν.

Moreover the point uν , (ν = 1, ...) is also a random variable, be
ause it depends on xν

and the previous point uν−1
.

Finally note that an expression (44) des
ribes a random pro
ess starting from the initial

point u0 and under some further formulated 
onditions should lead us to the optimal

value of the optimization problem (29).

A detailed des
ription of the sto
hasti
 gradient method looks as shown below.
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1. Initialize the step ν = 0, 
hoose the initial point u0.

2. Generate a realization xν of the random ve
tor X . Compute a sto
hasti
 gradient

∇uΦ(u
ν , xν) using the previous point uν and the realization xν .

3. Cal
ulate the next point uν+1
using the previous point uν and an equation:

uν+1 = ΠU(u
ν − ρν∇uΦ(u

ν , xν)), (45)

To �nd a proje
tion onto the set U use the mentioned remarks regarding the

proje
tion operator.

4. Che
k the stopping 
riterion. If the stopping 
ondition is satis�ed, put u∗ = uν+1
,

otherwise assign ν = ν + 1 and go the step 2.

If the fun
tion Φ(uν , xν) is not di�erentiable with respe
t to variable u a sto
hasti


gradient is substituted by the quasi-gradient:

E
[
ζν | u0, ..., uν−1

]
∈ ∂uE [Φ(uν , X)] . (46)

Intuitively the above mentioned statement means that the 
onditional expe
tation of

the sto
hasti
 quasi-gradient at the point uν with respe
t to all previous points should


oin
ide almost sure (a.s.) with one of the subgradients of the obje
tive fun
tion at

the point uν (i.e. belonging to the subdi�erential set). And the main statement of the

sto
hasti
 quasi-gradient method looks as follows:

uν+1 = ΠU(u
ν − ρνζ

ν). (47)
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Figure 4: Illustration of the SQG-algorithm.

When we are dealing with a deterministi
 problem the step size ρν+1 
an be obtained

from the solution of a one-dimensional optimization problem:

ρν+1 = min
ρ

{F (uν − ρ∇uF (u
ν))}, (48)

meaning that in every step we should move towards the gradient dire
tion to minimize

the obje
tive fun
tion as mu
h as possible.

In the sto
hasti
 version there are several problems whi
h do not allow to use above

shown te
hnique. Firstly we do not know exa
tly an expe
ted value of Φ(u,X) for the

given u (we know only Φ(u, x)). Se
ondly the sto
hasti
 gradient at some steps 
an even

give a wrong dire
tion, so any positive value ρ leads to the worse point than previous

one.

The next �gures show the 
lassi
al gradient des
ent method and the sto
hasti
 version.

In the �rst 
ase we expli
itly 
an �nd the gradient and 
omputing an optimal step size

rea
h an optimum with 1 step. In the se
ond 
ase we only observe noisy data and get

an optimum of the mean-value 
riterion applying sto
hasti
 gradient method, what is

of 
ause requires more steps.
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Figure 5: Illustration of the 
lassi
al gradient des
ent method.
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Figure 6: Illustration of the sto
hasti
 gradient method.

To proof the 
onvergen
e a.s. (47) of the algorithm we have to make several assumptions

[11℄:

• the fun
tion E [Φ(uν , X)] is a 
onvex �nite-valued fun
tion;

• the set U is a 
onvex and 
ompa
t;

• the parameters ρ and γ satisfy a.s.:

ρν ≥ 0,

∞∑

ν=0

ρν = ∞,

∞∑

ν=0

E
[
ρν |γν |+ ρ2ν‖ζ

ν‖2
]
<∞. (49)

The �rst two 
onditions is 
lassi
al requirements for an existen
e and a uniqueness of the

solution in 
onvex optimization. The last two requirements mostly a�e
t the sequen
e

of the step size. The sequen
e has to be very spe
ial: it should 
onverge, but not so

fast so that the point generated by the algorithm will be able to rea
h an optimum

independently of the initial point where the algorithm starts.

In order to highlight the main steps of the proof [12℄, let us assume the following nota-

tions:

u∗ ∈ U is an optimal solution of the problem (29),

Fν = σ{u0, ..., uν} - a sigma-algebra, generated by the random variables {u0, ..., uν}.
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The main idea of the proof is to show that under 
onditions of the theoremE [|uν+1 − u∗‖ |Fν]

is a non-negative supermartingale, therefore a.s. it has some limit and then to proof

that the limit is 0, meaning uν → u∗ a.s.

• Proje
tion implyes:

‖uν+1 − u∗‖2 ≤ ‖uν − u∗‖2 − 2ρν〈ζ
ν, uν − u∗〉+ ρ2ν‖ζ

ν‖2.

• Take 
onditional expe
tation w.r.t. Fν :

E [‖uν+1 − u∗‖2 |Fν ] ≤ ‖uν − u∗‖2 − 2ρν〈E [ζν |Fν] , u
ν − u∗〉+ ρ2νE [‖ζν‖2 |Fν].

• By the 
onditions of the theorem:

γν + 〈E [ζν |Fν] , u
∗ − uν〉 ≥ E [Φ(u∗, X)]− E [Φ(uν , X)] ≥ 0 =⇒

〈E [ζν |Fν] , u
∗ − uν〉 ≥ −γν .

• Two previous steps together results in:

E [‖uν+1 − u∗‖2 |Fν ] ≤ ‖uν − u∗‖2 + 2ρνγν + ρ2νE [‖ζν‖2 |Fν ] ≤

‖uν − u∗‖2 + 2ρν |γν |+ ρ2νE
[
‖ζν‖2 |Fν

]

︸ ︷︷ ︸

Rν

= ‖uν − u∗‖2 +Rν .

• Assume Y ν = ‖u∗ − uν‖2 +
∞∑

k=0

Rk, hen
e:

E [Y ν+1 |Fν ] ≤ Y ν , Y ν ≥ 0 =⇒ Y ν → Y (a.s.) - 
onvergen
e theorem for

supermartingales.

• Re
ursively, taking the full expe
tation:

E [‖uν+1 − u∗‖2] ≤ ‖u0 − u∗‖2 +
ν∑

k=0

ρ2kE
[
‖ζk‖2

]
− 2

ν∑

k=0

ρk〈E
[
ζk
]
, uk − u∗〉 =⇒

E [‖uν+1 − u∗‖2]−E [‖u0 − u∗‖2]−
ν∑

k=0

E [Rk] ≤ 2
ν∑

k=0

ρk
(
E [Φ(u∗, X)]− E

[
Φ(uk, X)

])
.

• Considering 
onditions of the theorem:

∞∑

k=0

E [Rk] <∞ and E [Φ(u∗, X)] < E
[
Φ(uk, X)

]
we have:

−∞ <
∞∑

k=0

ρk
(
E [Φ(u∗, X)]− E

[
Φ(uk, X)

])
≤ 0, therefore

E
[
Φ(uk, X)

]
→ E [Φ(u∗, X)].

3.6 Kiefer-Wolfowitz algorithm

If the subgradient ∂uΦ(u, x) or even the gradient ∇uΦ(u, x) of the fun
tion Φ(u, x) w.r.t.

variable u 
an be expli
itly found, then in every step of the SQG-algorithm ∂uΦ(u, x)
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or ∇uΦ(u, x) is usually used as a quasi-gradient estimate, otherwise a �nite-di�eren
e

approximation is employed.

ζk =
1

2δk

n∑

j=1

[
Φ(uk + δkej , x

k)− Φ(uk − δkej , x
k)
]
ej. (50)

where xk is as usual a realization of the random ve
tor X at the step k of the algorithm,

ej , j = 1, ..., n are the unit ve
tors dire
ted along the 
oordinate axes.

Considering the formula above the method of Kiefer and Wolfowitz assumes the following

form:

1. Initialize the step k = 0, 
hoose the initial point u0.

2. Generate a realization xk of the random ve
tor X . Compute a sto
hasti
 quasi-

gradient ζk via formula (50) using the previous point uk and the realization xk.

3. Cal
ulate the next point uk+1
using the previous point uk a

ording to the formula:

uk+1 = ΠU(u
k − ρkζ

k), (51)

To �nd a proje
tion onto the set U use the mentioned remarks regarding the

proje
tion operator.

4. Che
k the stopping 
riterion. If the stopping 
ondition is satis�ed, put u∗ = uk+1
,

otherwise assign k = k + 1 and go the step 2 .

As it 
an be seen the algorithm requires 2n evaluations of the obje
tive fun
tion Φ(u,X)

in every step of the method, where n is a dimension of the 
ontrol varaible u.

The 
onvergen
e theorem of Kiefer-Wolfowits [17℄ and its generalization 
an be found

in [4, 9℄.

Theorem 3.2. If the below 
onditions are valid:

• the fun
tion f(u) = E[Φ(u,X)] has only extremum u∗ ∈ int{U};

• the se
ond derivatives of f(u) are 
ontinuous and bounded;

• the varian
e D[Φ(u,X)] ≤ C <∞ for all u ∈ U ;

• the sequen
es ρk and δk satisfy

ρk ≥ 0,
∞∑

k=1

ρk = ∞,
∞∑

k=1

(
ρk
δk

)2

<∞,
∞∑

k=1

ρk|δk| <∞. (52)

then the sequen
e generated by Kiefer-Wolfowits algorithm 
onverges to the optimal so-

lution of the mean-value problem almost sure (uk → u∗ a.s.).
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3.7 Re
ipes for step sizes

As it was mentioned the step size is a very important feature dire
tly a�e
ting perfor-

man
e of the method. As it often happens the theoreti
al results regarding 
onvergen
e

of the method do not suggest the way to in
rease performan
e and therefore empiri
al

s
hemes are used. An opposite side of su
h pro
ess is that adaptive algorithms should

be theoreti
ally justi�ed otherwise there exist a risk to fa
e the spe
ial 
ase when an

ina

urate adaptive method fails. As an example: a sto
hasti
 approximation adap-

tive rule for the step size have to satisfy step size 
onditions to guarantee 
onvergen
e

otherwise all the proof must be revised.

Additionally adaptation should not signi�
antly in
rease 
omplexity of the original

method and preferably do not have a lot of tuning parameters to be adjusted. Despite

this 
hallenges several su

essful results regarding adaptive sto
hasti
 approximation

are known.

3.7.1 Kesten Rule

The �rst idea to use adaptive step size in sto
hasti
 approximation belongs to Kesten.

His method based on the simple idea that if we are far from the optimum, the errors

tend to have the same sign but when we are getting 
loser, the errors start alternate.

Under the error here it is assumed the di�eren
e between the previous un−1
and the


urrent un point. Kesten suggested the following rule:

ρn−1 =
a

a+Kn − 1
, (53)

where a is a parameter to be 
alibrated. Kn
is a parameter, whi
h 
ounts the number

of times that the sign of the errors have been 
hanged.

Kn =

{
n n = 1, 2,
Kn−1 + 1{〈ǫn,ǫn−1〉<0} n > 2,

(54)

where

ǫn = un−1 − un. (55)

To asses the performan
e of the adaptive method let us have a look at the following

example:

min
u1,u2∈[−10;10]

E
{
u21 + u22 +max(u21, u

2
2) + u1X

}
, X ∈ N(0, 1). (56)
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Obviously, the optimum of the fun
tion is u∗1 = 0, u∗2 = 0, be
ause ∀u1, u2 u
2
1 + u22 +

max(u21, u
2
2) ≥ 0 and all terms u21 ≥ 0, u22 ≥ 0, max(u21, u

2
2) ≥ 0.
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Figure 7: Optimization fun
tion.

The sto
hasti
 gradient 
an be written expli
itly in the form:

ξ(u,X) =

[
2u1 + 2u1Iu2

1
>u2

2
+X

2u2 + 2u2Iu2
1
≤u2

2

]

. (57)

Let us 
hoose the step size ρk a

ording to the rule: ρk = 0.1 · 1
k
. In the standard 
ase

the steps will be too small, and the adaptive rule will preserve the step size from the

rapid drop enhan
ing 
onvergen
e.

On the next �gures we 
an see how the 
ontrol variables where 
hanging towards the

optimum over the steps. Initial value of the step size were 
hosen the same for adaptive

and non-adaptive methods. In fa
t non-adaptive algorithms even after 1000 iterations

were relatively far from the optimum, while the adaptive s
hemes were able to ri
h the

steady state after 100 steps.
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Figure 8: Small step size. Sto
hasti
 Gradient Des
ent (left). Sto
hasti
 Gradient

Des
ent with adaptive Kesten rule (right).
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Figure 9: Kiefer-Wolfowitz algorithm (left). Kiefer-Wolfowitz algorithm with adaptive

Kesten rule (right).

As it 
an be seen the test results agree with the theoreti
al reasoning.

Now let us test the adaptive rule for the large step lengths on the same test example,

so ρk = 10 · 1
k
. At the beginning when k is relatively small, the steps will be too large

and the points, generated by the algorithms will try to leave the admissible area U but

due to the proje
tion operator they will be returned to the border of the set U . When

the step size assumes the reasonable values, the pro
edures will start 
onverge to the

optimum. Here the adaptive rule does not enhan
e 
onvergen
e as it does not de
rease

the steps faster than in standard versions.
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Figure 10: Sto
hasti
 Gradient Des
ent (left). Sto
hasti
 Gradient Des
ent with adap-

tive Kesten rule (right).
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Figure 11: Kiefer-Wolfowitz algorithm (left). Kiefer-Wolfowitz algorithm with adaptive

Kesten rule (right).

The test examples again agree with theoreti
al reasoning. This example also demon-

strates the behaviour of the sto
hasti
 approximation methods: the 
onvergen
e tra
es

w.r.t. 
oordinate u2 are smoother, then w.r.t to u1 as a sto
hasti
ity mostly a�e
ts the

�rst 
oordinate due to the term u1X in the obje
tive fun
tion.

Finally regarding Kesten rule we 
an 
on
lude that it reasonable to use for the relatively

small or middle step length as it 
ombines 
onstant step size rule (when we are far from

the optimum) with the usual step size rule (when we are 
lose to the end).
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3.7.2 Adaptive rule of Uryasev

Uryasev [28℄ suggested more advan
ed adaptive rule whi
h 
an de
rease the steps as

well as in
rease them depending on the generated sequen
e of points:

ρk+1 = min(ρ̄, ρka
−〈ξk+1,∆k+1〉−δρk),

∆k+1 = uk+1 − uk,
ak > 1, δ > 0,

(58)

To understand the meaning of the terms in the mentioned above rule let us have a look

at the main formula of SQG-algorithm:

uk+1 = uk − ρkξ
k. (59)

It would be logi
al to 
hoose the step, that minimizes the fun
tion Fk(ρ) w.r.t ρ:

Fk(ρ) = E[Φ(uk − ρξk) | Fk]. (60)

A 
omputation of Fk(ρ) is a very di�
ult task, therefore let us di�erentiate Φ(uk − ρξk)

w.r.t ρ at the point ρk.

∂ρΦ(uk − ρξk)|ρk = −〈ξk, ∂Φ(uk − ρkξ
k)〉 = −〈ξk, ξk+1〉. (61)

Hen
e −E[〈ξk, ξk+1〉 | Fk] ∈ ∂Fk(ρk) and the following gradient pro
edure 
an be used

to modify the step size:

ρk+1 = ρk + λk〈ξ
k, ξk+1〉. (62)

The adaptive pro
edure (58) dire
tly 
omes from the previous formula and works as

follows: the term 〈ξk+1,∆k+1〉 gives information wether or not the minimum of Fk(ρ)

w.r.t ρ has been rea
hed. If −〈ξk+1,∆k+1〉 > 0 then with high probability we 
an say

that the minimum has not been a
hieved yet and the step ρk will be in
reased, otherwise

it de
reases.

Let us test this adaptive rule on the previous model example.
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Figure 12: Sto
hasti
 Gradient Des
ent (left). Sto
hasti
 Gradient Des
ent with adap-

tive Uryasev rule (right).
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Figure 13: Kiefer-Wolfowitz algorithm (left). Kiefer-Wolfowitz algorithm with adaptive

Uryasev rule (right).

It is worth to note, the adaptive rule of Uryasev is a very sensitive to the parameters ∆

and a, and their tuning brings an additional 
omplexity to the algorithm.

3.8 Simultaneous perturbation sto
hasti
 approximation

One spe
ial bran
h of the sto
hasti
 quasi-gradient method is simultaneous perturbation

sto
hasti
 approximation (SPSA) algorithms. Generally speaking sto
hasti
 approxima-

tion pro
edures used for the optimization of the 
ost-fun
tions di�ers mostly in a way

how the gradient estimate is 
al
ulated.
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The SPSA-algorithms use arti�
ially generated random noise independent of the un-

known random parameters therefore is 
alled simultaneous perturbations. By virtue

of su
h approa
h, methods require only 2 measurements of the obje
tive fun
tion for

the quasi-gradient estimation regardless of the dimension size, and under general 
ondi-

tions, the SPSA and the standard �nite-di�eren
e sto
hasti
 approximation algorithm

(i.e. Kiefer-Wolfowitz algorithm) a
hieve the same level of statisti
al a

ura
y [19℄. The

method look as follows:

1. Initialize the step k = 0, 
hoose the initial point u0.

2. Generate a realization xk of the random ve
tor X . Generate a ve
tor ∆k
dis-

tributed a

ording to the Bernoulli law ±1 with the probability 0.5 for every

out
ome. The dimension of the ve
tor ∆k
is n, so that

∆k =





∆k
1

...
∆k

n



 . (63)

3. Compute a sto
hasti
 quasi-gradient using the previous point uk and the realiza-

tions xk, ∆k
a

ording to the formula:

gk(u
k, xk) =







Φ(uk+ck∆
k,xk)−Φ(uk−ck∆k,xk

2ck∆
k
1

)
.

.

.

Φ(uk+ck∆
k,xk)−Φ(uk−ck∆k,xk)

2ck∆k
n






, (64)

where ∆k is a random perturbation ve
tor, independent ofX and ck is a de
reasing

non-random sequen
e:

ck =
1

k−1
, (65)

4. Cal
ulate the next point uk+1
using the previous point uk a

ording to the formula:

uk+1 = ΠU(u
k − ak · gk(u

k, xk)), (66)

where

ak =
1

(A+ k)−1
. (67)

To �nd a proje
tion onto the set U use the mentioned remarks regarding the

proje
tion operator.

5. Che
k the stopping 
riterion. If the stopping 
ondition is satis�ed, put u∗ = uk+1
,

otherwise assign k = k + 1 and go the step 2 .
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The random perturbation ve
tor ∆k
is used for the 
omputation of u+ = uk + ck∆

k
and

u− = uk − ck∆
k
.

The values u+ and u− are then used to 
al
ulate the quasi-gradient estimate: gk, that

follows by the standard sto
hasti
 approximation step where the next point uk+1
is

obtained.

As it 
an be seen from the remark above in the step k the method requires only 2

evaluations of the obje
tive fun
tion to 
al
ulate u+ and u−.

On the next �gure the 
omparison of the 
lassi
al sto
hasti
 quasi-gradient method and

SPSA is shown. The 
al
ulations are done on the basis of the previous test-example (a


ontour plot of the obje
tive fun
tion are shown on the pi
ture as well).

u
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u
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Figure 14: Comparison of the SQG and SPSA 
onvergen
e tra
es.

Both methods started from the same initial point u = (7, 7)T and after 1000 steps

su

essfully rea
hed an optimum u = (0, 0)T . The sequen
e of the points, produ
ed by

the 
lassi
al method looks more smooth and predi
table and one 
an hardly say that the

method 
onne
ted with randomness are used here, while the tra
e of SPSA-algorithm

is de�nitely sto
hasti
 due to arti�
ial perturbations in
orporated in ∆k
.

The following �gure shows how the values of the 
ontrol variables u1 and u2 were 
hang-

ing over the steps. Sto
hasti
 nature of the method is 
learly seen from here as well.
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Figure 15: Illustration of the SPSA 
onvergen
e.

The main advantage of the method in 
omparison with the algorithm of Kiefer and

Wolfowitz is a 
onstant number of fun
tion evaluations (only 2) needed in every step of

the algorithm, independently of the optimization problem's dimension. This fa
t might

be 
ru
ial when the obje
tive fun
tion has a 
ompli
ated stru
ture (see the last se
tion

where the speed of 
omputation is 
ompared on the model example).
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4 Appli
ation problem: Ele
tri
ity Retailer Pro�t Op-

timization

Assume that an energy retailer is needed to supply ele
tri
ity whi
h he buys from the

global supplier (ele
tri
ity market) to its 
ustomers. Energy 
onsumption even during

a short term 
an not be exa
tly predi
ted, therefore possible in
ome of the retailer


ontains un
ertainty. Moreover ele
tri
ity market does not imply that the pri
es for the

energy will be �xed even during a short period of time.

Ele
tri
ity nature does not allow to store its relatively large amount like for instan
e liq-

uid, hen
e every global supplier (ele
tri
ity market) introdu
es penalties for the positive

as well as for the negative imbalan
e what are 
orrespondingly positive and negative

di�eren
e between the pur
hased and 
onsumed energy [1℄. Large penalties for the im-

balan
e for
e the retailer to 
hoose a 
autious and less pro�table strategy rather than

risky one.

In this se
tion we 
onsider a simple sto
hasti
 model re�e
ting retailer's pro�t opti-

mization with mean value and CVaR 
riteria and demonstrate how to get deterministi


equivalents in the form of linear programming (LP) problems. Also we 
ompare sto
has-

ti
 approximation solution with the mentioned above deterministi
 equivalents.

A possibility to obtain deterministi
 equivalent in a simple form is a distinguishing

feature of this work. There are many sto
hasti
 models des
ribing similar optimization

pro
esses, but the majority of them are solved by de
ision tree [2℄ or sto
hasti
 qvasi-

gradient method [3℄, what is undoubtedly mu
h slowly then the solution of a well-known

deterministi
 task.

The model and solution te
hnique 
an be used not only for the ele
tri
ity retailer opti-

mization, but with suitable modi�
ations for any retailing (reselling) pro
esses.

4.1 Model building

Let us introdu
e the following notations:

cs - the pri
e of sold ele
tri
ity from the retailer to the 
onsumer;

X - the random demand of energy by the 
onsumer (ele
tri
ity sales);

Y - the random pri
e for the pur
hased ele
tri
ity from the supplier;

cd - the pri
e of the additional pur
hased ele
tri
ity from the supplier in 
ase when the

random demand is more than amount of the pur
hased energy (a pri
e for the negative

imbalan
e);

cu - the pri
e for the positive imbalan
e (when the 
onsumer's demand is less than
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amount of the pur
hased energy by the retailer);

u - an amount of energy whi
h retailer buys in order to subsequently resell it to the


onsumer, (u ≥ 0);

In the notations above the retailer pro�t is a�e
ted by the terms:

cs ·min{X, u} - the bene�ts from the sold energy to the 
onsumer;

Y · u - the payment for the pur
hased energy from the global supplier;

cd ·max{X − u, 0} - the losses for the negative imbalan
e;

cu ·max{u−X, 0} - the losses for the positive imbalan
e.

Subsequently the random in
ome of the retailer 
an be expressed in the following form:

Φ(u,X, Y ) = cs ·min{X, u} − Y · u− cd ·max{X − u, 0} − cu ·max{u−X, 0}. (68)

In order to restri
t the negative and the positive imbalan
e let us introdu
e two proba-

bility 
onstraints:

∆1 - a threshold for the positive imbalan
e. If the di�eren
e between the o�er u and

the demand X is more than the positive value ∆1 then the retailer is heavily penalized.

β - the 
on�dent level for the positive imbalan
e. Retailer is interested to trade without

violation of the de�ned by the supplier threshold with probability β.

∆2 and γ - a threshold for the negative imbalan
e and the 
orresponding 
on�dent level

are de�ned similarly.

The probability 
onstraint for the positive imbalan
e looks as follows:

P{X − u ≤ ∆1} ≥ β. (69)

The probability 
onstraint for the negative imbalan
e:

P{u−X ≤ ∆2} ≥ γ. (70)

The 
on�dent levels β and γ de�ne how wide will be an admissible area established by

the 
orresponding probability 
onstraint. There is no exa
t te
hnique to determine β

and γ, but one 
an use the following idea.

Assume that we have solved the problem for some parameters β and γ, and got an

estimate for the pro�t φ∗(β, γ). Interpreting probability as a frequen
y we have that in

(1−β−γ) 
ases our retailer got (1−β−γ)φ∗(β, γ), but lost βCβ in β 
ases and γCγ in

γ 
ases. Introdu
ing the 
onstant C ≥ 0 given by an expert to get an equality between

the total pro�t and the total loss it is possible to tune 
on�dent levels β and γ:

C(1− β − γ)φ∗(β, γ) = βCβ + γCγ. (71)
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Note that in this 
ase the initial problem have to be solved parametri
ally as an optimal

solution φ∗(β, γ) depends on β and γ.

Figure 16: Distribution of the imbalan
e.

4.2 Solution with mean-value 
riterion

The following se
tion 
ontains a solution with mean-value 
riterion.

4.2.1 Deterministi
 equivalent

Considering all foregoing, an optimization problem with mean value 
riterion and prob-

ability 
onstraints reads as follows:

max
u

E {cs ·min{X, u} − Y · u− cd ·max{X − u, 0} − cu ·max{u−X, 0}} ,

P{X − u ≤ ∆1} ≥ β,
P{u−X ≤ ∆2} ≥ γ,
u ≥ 0.

(72)

Theorem 4.1. If the random variables X and Y have dis
rete distributions with �nite

number of realizations xi ∈ R, P (xi) = pix, i = 1, ..., n, yi ∈ R, P (yi) = piy, i = 1, ..., m,

then:

1. Obje
tive fun
tion Φ(u,X, Y ), de�ned a

ordingly to (68) is a 
on
ave w.r.t. vari-

able u on R.
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2. Optimization problem (72) has a deterministi
 equivalent in the form of the linear

programming (LP) problem:

max
r1
1
,..,r1n

s1
1
,...,s1n

r21,..,r
2
n

s21,...,s
2
n

u

,

{

(cs −
m∑

i=1

yi · piy) · u− (cs + cu) ·
n∑

i=1

pix · s
1
i − cd ·

n∑

i=1

pix · s
2
i

}

,

r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

1
i , s

1
i ≥ 0,

i = 1, .., n,
u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0,

(73)

where xβ and x1−γ are 
riti
al values of the distribution of X.

Proof. 1. Φ(u,X, Y ) = cs ·min{X, u}−Y ·u−cd ·max{X−u, 0}−cu ·max{u−X, 0} =

cs ·min{X, u} − Y · u+ cd ·min{u−X, 0}+ cu ·min{X − u, 0}

The fun
tions

f1(u,X, Y ) = min{u−X, 0},
f2(u,X, Y ) = min{u−X, 0},
f3(u,X, Y ) = min{u−X, 0}

(74)

are 
on
ave w.r.t. u-variable as a minimum of the 
on
ave w.r.t. u fun
tions

f1(u,X, Y ), f2(u,X, Y ), f3(u,X, Y ).

The fun
tion

f4(u,X, Y ) = −Y · u (75)

is a 
on
ave w.r.t. u be
ause it is a linear fun
tion. Therefore Φ(u,X, Y ) is a


on
ave w.r.t. u as a linear 
ombination of the 
on
ave fun
tions with nonneg-

ative 
oe�
ients (cs, cd, cu having the meaning of pri
es, hen
e all of them are

nonnegative).

2. Let us 
onsider the fun
tion

f5(u) = min{f6(u), 0}. (76)

The value of f6(u) ∀u ∈ R 
an be always split on the positive r and the negative

s 
omponents [5℄,

f6(u) = r − s,
r ≥ 0,
s ≥ 0,

(77)
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therefore the value of f5(u) for the �xed u equals to the optimum value of the

following optimization problem:

f5(u) = max
r,s∈R

{−s},

f6(u) = r − s,
r ≥ 0,
s ≥ 0.

(78)

The following representation 
an be used to substitute the fun
tion

f7(u) = min{f8(u), f9(u)} = min{f8(u)− f9(u), 0}+ f9(u) (79)

with a smooth 
onstrained optimization problem:

f7(u) = max
r,s∈R

{f9(u)− s},

f8(u)− f9(u) = r − s,
r ≥ 0,
s ≥ 0.

(80)

Considering all mentioned above:

E{Φ(u,X, Y )} = E{cs ·min{X, u} − Y · u+ cd ·min{u−X, 0}+ cu ·min{X − u, 0}} =
E{cs ·min{X − u, 0}+ cs · u− Y · u+ cd ·min{u−X, 0}+ cu ·min{X − u, 0}} =
E{(cs + cu) ·min{X − u, 0}+ (cs − Y ) · u+ cd ·min{u−X, 0}} =

(cs + cu) ·
n∑

i=1

pix ·min{xi − u, 0}+ (cs −
m∑

i=1

yi · piy) · u+ cd ·
n∑

i=1

pix ·min{u− xi, 0} =

max
r11,..,r

1
n

s11,...,s
1
n

r2
1
,..,r2n

s2
1
,...,s2n

{

(cs −
m∑

i=1

yi · piy) · u− (cs + cu) ·
n∑

i=1

pix · s
1
i − cd ·

n∑

i=1

pix · s
2
i

}

,

r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

1
i , s

1
i ≥ 0,

i = 1, .., n.
(81)

Let's look at the probability 
onstraints.

P{X − u ≤ ∆1} ≥ β ⇐⇒ P{X ≤ u+∆1} ≥ β ⇐⇒
F (u+∆1) ≥ β ⇐⇒ u+∆1 ≥ xβ ⇐⇒ u ≥ xβ −∆1,

(82)

where F is a CDF of the random variable X and xβ is β-
riti
al value of the

distribution of X .

Similarly

P{u−X ≤ ∆2} ≥ γ ⇐⇒ u ≤ x1−γ +∆2. (83)
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Combining (81) with (82) and (83) we get proposed deterministi
 equivalent in

the form of a linear programming problem.

The �rst result regarding a 
onvex property of the fun
tion Φ(u,X, Y ) w.r.t. variable u

means that E{Φ(u,X, Y )} will be a 
on
ave fun
tion as well [6℄, hen
e every lo
al max-

imum of E{Φ(u,X, Y )} will be automati
ally a global, therefore various optimization

algorithms for the non-smooth 1-d fun
tions 
an be su

essfully applied in order to �nd

a global optimum.

The se
ond result opens a possibility to �nd an exa
t solution of the problem applying

a simplex method for the linear programming problems.

Let us introdu
e the following notations:

b1 =
[
x1 . . . xn x1 . . . xn

]T
,

z =
[
u s11 ... sn1 r11 ... rn1 s12 ... sn2 r12 ... rn2

]T
,

C =

[

cs −
m∑

i=1

yi · piy −p1x · (cs + cu) ... −pnx(cs + cu) 0 ... 0 −cdp
1
x ... −cdp

n
x 0 ... 0

]

.

I - an identity-matrix (n× n),

e - a ve
tor (n× 1), e =
[
1 . . . 1

]T
,

0n×n - a zero-matrix (n× n),

A1 =

[
e −I I 0n×n 0n×n

e 0n×n 0n×n I −I

]

,

A2 =



 1

4n
︷ ︸︸ ︷

0 ... 0
−1 0 ... 0




,

b2 =
[
x1−γ +∆2 ∆1 − xβ

]T
.

Using the notations above the problem (73) assumes the following standard form of the

LP-problem whi
h is traditionally solved by the simplex-method.

max
z

{CTz},

A1z = b1,
A2z ≤ b2,
zi ≥ 0,
i = 1, ..., 4n+ 1.

(84)
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Finally it is worth to show the main te
hnique used to proof the deterministi
 equivalent

on the test example. Let

ψ = min(f, 0) (85)

and the 
orresponding optimization problem:

ψ = max
s,r

{−s},

f = r − s,
r ≥ 0,
s ≥ 0.

(86)

Assume that f = 5 and therefore ψ = min(5, 0) = 0. Let us 
he
k that the optimization

problem gives the same result:

ψ = max
s,r

{−s},

5 = r − s,
r ≥ 0,
s ≥ 0.

(87)

Obviously s = r − 5 and

ψ = max
r

{−(r − 5)},

r − 5 ≥ 0,
r ≥ 0.

(88)

ψ = max
r

{5− r},

r ≥ 5,
r ≥ 0.

(89)

ψ = max
r

{5− r},

r ≥ 5.
(90)

{
ψ = 0,
r = 0.

(91)

Now assume f = −5 and therefore ψ = min(−5, 0) = −5.

ψ = max
s,r

{−s},

−5 = r − s,
r ≥ 0,
s ≥ 0.

(92)
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Obviously s = r + 5 and

ψ = max
r

{−5 − r},

r + 5 ≥ 0,
r ≥ 0.

(93)

ψ = max
r

{−5 − r},

r ≥ 0.
(94)

{
ψ = −5,
r = 0.

(95)

4.2.2 SQG-solution

Assume now, that the random variables are given with 
ontinuous distributions. In this


ase to solve the problem one 
an use the Monte-Carlo simulation and the 
omputation

might be time 
onsuming. More elegant way is to use sto
hasti
 approximation.

Let us derive a subgradient of the obje
tive fun
tion in order to employ the SQG-

algorithm. Firstly we transform the 
ost fun
tion to the pie
e-wise form:

Φ(u,X, Y ) =

{
csu− Y u− cd(X − u), u ≤ X
csX − Y u− cu(u−X), u ≥ X.

(96)

A subgradient of the obje
tion fun
tion reads as follows:

∂uΦ(u,X, Y ) =







cs − Y − cd, u < X
∀ ∈ [−Y − cu ; cs − Y − cd] , u = X
−Y − cu, u > X.

(97)

Now, to solve the problem, we just need to sample random numbers a

ordingly to the

given distribution and apply (47), using ∂uΦ(u,X, Y ) as a quasi-gradient and proje
ting

to the admissible area U = [max{xβ −∆1, 0} ; x1−γ +∆2].

4.3 Solution with CVaR 
riterion

A previous result with mean-value 
riterion does not assess the probability of getting

the solution whi
h is less than mean-value, depending on the realization of random

parameters, therefore it is quite useful to obtain a solution with VaR or CVaR 
riterion.
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Let G(u, Z(w)) denote a 
riterion 
ost fun
tion dependent on a random ve
tor Z(w) and

the strategy u whi
h should be 
hosen from some set U ⊂ R
n
in order to optimize the


ost fun
tion a

ording to a 
ertain 
riterion. For the given �xed strategy u the random

variable G(u, Z(w)) usually having the meaning of the random losses, asso
iated with

the 
hosen strategy u. If we denote P{·} as a probability measure, generated by the

distribution of the random ve
tor Z(w), we 
an de�ne the probability fun
tion Pφ(u)

and the VaR 
riterion denoted by the quantile fun
tion φα(u):

Pφ(u) = P{G(u, Z(w)) ≤ φ}, (98)

φα(u) = min {ϕ : Pϕ(u) ≥ α}. (99)

The probability fun
tion represents a probability that our 
ost fun
tion G(u, Z(w))

does not ex
eed a level φ for a �xed strategy u while the qunatile fun
tion indi
ates the


orresponding minimal level.

The CVaR 
riterion, de�ned by the fun
tion ψα(u), estimates an average rate of the

losses ex
eeded φα(u):

ψα(u) = E[G(u, Z(w))|G(u, Z(w)) ≥ φα(u)] =
1

1− α

∫

G(u,Z(w))≥φα(u)

G(u, Z(w))dP (w).

(100)

A

ording to [7℄ the CVaR-minimization over the strategy u ∈ U equals to the solution

of the following optimization problem:

ψ∗ = min
(u,φ)∈U×R

Fα(u, φ), (101)

where

Fα(u, φ) = φ+
1

1− α
· E[max{G(u, Z(w))− φ, 0}. (102)

The present 
ase deals with the retailer's pro�t maximization, therefore in order to apply

mentioned above theoreti
al properties, we put "-" sign before the obje
tive fun
tion

and further solve minimization problem as it is required by the original de�nitions. As a

result we get an average pro�t of the retailer whi
h is less or equal to the 
riti
al value,

de�ned by VaR.

Applying (102) to the obje
tive fun
tion (68), we get:

ψ∗ = −min
u,φ

{
φ+ 1

1−α
· E[max{−Φ(u,X, Y )− φ, 0}]

}
,

u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0,

(103)
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where

Φ(u,X, Y ) = cs ·min{X, u} − Y · u− cd ·max{X − u, 0} − cu ·max{u−X, 0}. (104)

The random demand X and the global pri
e Y 
an be treated as independent random

variables (at least during the short term) without big limitations, be
ause between the

retailer and the 
onsumer there is a 
ontra
t with �xed pri
e for the ele
tri
ity cs.

4.3.1 Deterministi
 equivalent

Considering the remark above, the next result is valid.

Theorem 4.2. If the random variables X an Y are independent and have dis
rete

distributions with �nite number of realizations xi ∈ R, P (xi) = pix, i = 1, ..., n, yi ∈

R, P (yi) = piy, i = 1, ..., m, then (103) has a deterministi
 equivalent in the linear

programming (LP) form:

ψ∗ = max
u,φ,
r1i ,r

2
i ,

s1i ,s
2
i ,

Ψij ,
i=1,...,n,
j=1,...,m

{

−φ− 1
1−α

·
∑m·n

i,j=1 p
i
xp

j
y ·Ψij

}

,

− ((cs − yj) · u− (cs + cu) · s
1
i − cd · s

2
i )− φ ≤ Ψij ,

Ψij ≥ 0,
r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

2
i , s

2
i ≥ 0,

i = 1, .., n,
j = 1, .., m,
u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0.

(105)

Proof. Transforming minimization into maximization:

ψ∗ = max
u,φ

{
−φ − 1

1−α
· E[max{−Φ(u,X, Y )− φ, 0}]

}
,

u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0.

(106)

Dis
rete random variables X and Y are independent, therefore mathemati
al expe
tation
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an be 
omputed a

ording to the rule:

ψ∗ = max
u,φ

{

−φ− 1
1−α

·
mn∑

i,j=1

pixp
j
y ·max{−Φ(u, xi, yj)− φ, 0}

}

,

u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0.

(107)

where the obje
tive fun
tion substituted by the 
onstrained optimization problem:

Φ(u, xi, yj) = max
r1i ,r

2
i ,s

1
i ,s

2
i

{(cs − yj) · u− (cs + cu) · s
1
i − cd · s

2
i } ,

r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

2
i , s

2
i ≥ 0.

(108)

Combining (107) and (108) together, 
hanging the order of maximization, we get:

ψ∗ = max
u,φ,
r1i ,r

2
i ,

s1i ,s
2
i

i=1,..,n

{

−φ − 1
1−α

·
∑m·n

i,j=1 p
i
xp

j
y ·max{− ((cs − yj) · u− (cs + cu) · s

1
i − cd · s

2
i )− φ, 0}

}

,

r1i − s1i = xi − u,
r2i − s2i = u− xi,
r1i , s

1
i , r

2
i , s

2
i ≥ 0,

i = 1, .., n,
u ≤ x1−γ +∆2,
u ≥ xβ −∆1,
u ≥ 0.

(109)

Finally, to get rid of an internal maximization in the last expression, we introdu
e extra

variables Ψij and obtain a large size linear programming problem (105).

It is worth to note, that a

ording to [7℄

φα(u) = min{argmin
φ∈R

Fα(u, φ)}, (110)

therefore an optimal value of φ∗
a
quired from (105) 
an be treated as an estimate of the

solution with VaR-
riterion and for instan
e used as a good starting point for iterative

algorithms.

For 
onvenien
e we introdu
e the following notations :

φ1 − φ2 = φ,
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φ1, φ2 ≥ 0,

z =
[
u φ1 φ2 s11 ... sn1 r11 ... rn1 s12 ... sn2 r12 ... rn2 Ψ11 ... Ψmn

]T
,

C =
[
0 −1 1 0 ... 0 0 ... 0 0 ... 0 0 ... 0 − 1

1−α
· p1xp

1
y ... − 1

1−α
· pnxp

m
y

]T
,

b1 =
[
x1 . . . xn x1 . . . xn

]T
.

I - an identity-matrix (n× n),

e - ve
tor (n× 1), e =
[
1 . . . 1

]T
,

0n×n - zero-matrix (n× n).

A1 =



 e 0n×2 −I I 0n×n 0n×n

mn
︷ ︸︸ ︷

0 ... 0
e 0n×2 0n×n 0n×n I −I 0 ... 0




,

A2 =













−(cs − y1) −1 1 (cs + cu)

n−1
︷ ︸︸ ︷

0 ... 0

n
︷ ︸︸ ︷

0 ... 0 cd

n−1
︷ ︸︸ ︷

0 ... 0

n
︷ ︸︸ ︷

0 ... 0 −1

mn−1
︷ ︸︸ ︷

0 ... 0
... ... ... ... ... ... ... ... ... ... ...

−(cs − ym) −1 1

n−1
︷ ︸︸ ︷

0 ... 0 (cs + cu)

n
︷ ︸︸ ︷

0 ... 0

n−1
︷ ︸︸ ︷

0 ... 0 cd

n
︷ ︸︸ ︷

0 ... 0

mn−1
︷ ︸︸ ︷

0 ... 0 −1
1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0













,

b2 =

[
mn

︷ ︸︸ ︷

0 ... 0 x1−γ +∆2 ∆1 − xβ

]T

.

In the notations above the problem (105) again assumes standard form of the LP-

problem whi
h is solved by simplex-method.

maxCT z
A1z = b1,
A2z ≤ b2,
zi ≥ 0,
i = 1, ..., mn+ 4n+ 3.

(111)

4.3.2 SQG-solution

To apply the SQG-algorithm for the present 
ase let us slightly transform the fun
tion

(106) using linearity of the mathemati
al expe
tation:

F1(u, φ) = max
u,φ

{

E[−φ−
1

1− α
·max{−Φ(u, Z)− φ, 0}]

}

. (112)

Having su
h representation, we are ready to employ a �nite-di�eren
e approa
h to get

the quasi-gradient estimate:
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{

ζku = F2(uk+δk,φk,Zk)−F2(uk−δk,φk,Zk)
2δk

,

ζkφ = F2(uk ,φk+δk ,Zk)−F2(uk,φk−δk,Zk)
2δk

,
(113)

where F2(u, φ, Z) de�ned as follows:

F2(u, φ, Z) = −φ−
1

1− α
·max{−Φ(u, Z)− φ, 0}. (114)

Now, to solve the problem, we just need to sample random numbers a

ordingly to the

given distribution and apply (47).

4.4 Numeri
al examples

The following numeri
al values has been arti�
ially 
hosen (in the 
ase of dis
rete dis-

tribution we used deterministi
 equivalent, and for the 
ontinuous 
ase a sto
hasti


approximation algorithm has been employed).

cs cd cu ∆1 ∆2 α β γ
2.2 0.3 0.1 40 35 0.7 0.6 0.7

Table 1: Numeri
al values.

xi 10 20 30 40 50 60 70 80 90 100
pix 0.05 0.05 0.05 0.05 0.1 0.2 0.2 0.15 0.1 0.05

Table 2: Dis
rete distribution of the random demand.

yi 0.1 0.2 0.3 0.4 0.5 0.6
piy 0.1 0.2 0.3 0.2 0.15 0.05

Table 3: Dis
rete distribution of the random pri
e.

In the 
ontinuous 
ase the random demand and the pri
e were 
hosen normally dis-

tributed X ∼ N(70, 102) and Y ∼ N(0.4, 0.12).

Optimal solutions with mean-value and CVaR 
riteria are shown on the Figures (17-22):

A solution with mean-value 
riterion (by the 
orresponding deterministi
 equivalent):

u∗ = 80,

E{Φ(u∗, X, Y )} = 103.4.
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A solution with CVaR 
riterion:

u∗ = 58,

φ∗ = 91.8,

ψ∗ = 50.5.
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Figure 17: Solution with mean-value 
riterion for the dis
rete distribution.
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Figure 18: Solution with mean-value 
riterion for the 
ontinuous distribution.
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Figure 19: SQG-algorithm for the 
ontinuous distribution.

0 20 40 60 80 100
−30

−20

−10

0

10

20

30

40

50

60

u

C
V

aR
(u

)

 

 

Theoretical result
Simulated result
Admissible area

Figure 20: Solution with CVaR 
riterion for the dis
rete distribution.
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Figure 21: Solution with CVaR 
riterion for the 
ontinuous distribution.
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Figure 22: SQG-solution.

4.5 Analysis of the results

As it 
an be seen from the model examples, a mean-value solution are more optimisti


than a α-CVaR solution for the high 
on�dent levels α. The strength of the CVaR
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omparing with the mean-value is a reliability and as a result it gives more adequate

measure of the risk.

5 Appli
ation problem: SQG-algorithm for the obje
-

tive fun
tions in ODE-form

Modern engineering optimization te
hniques employ the Markov-Chain-Monte-Carlo

(MCMC) simulation in order to obtain a distribution of the random parameters using

the limited set of measurements during the experiment. There have been quite many

algorithms developed so far [16℄, but all of them as an output produ
e large samples of

the parameters' realizations.

Considering foregoing it is logi
ally to use sto
hasti
 approximation te
hniques together

with the MCMC-simulation be
ause the results of the parameter estimation pro
edure

are perfe
tly suitable for the subsequent optimization.

One spe
ial brun
h of the engineering optimization 
an be represented via pro
esses

given as a solution of ordinary di�erential eqations (ODE). Su
h fun
tions often 
ome

from the 
hemi
al or biologi
al resear
h problems [8℄ and as it is shown in the next

se
tions, the SQG-algorithm 
an be quite su

essfully applied to get an optimal solution

in these 
ases.

5.1 Problem formulation

Let Φ(u,X) denotes an obje
tive fun
tion dependent on the random ve
tor X and the

strategy u whi
h should be 
hosen from the set U ⊂ Rn
in order to optimize the 
ost

fun
tion a

ording to a 
ertain 
riterion.

Assume that the obje
tive fun
tion is given as a solution of the di�erential equation or

dependent on this solution:

Φ(u, x) = Φ (S1(t, v1, ..., vl, x1, ..., xr), ..., Sm(t, v1, ..., vl, x1, ..., xr)) , (115)

u =

(
t
v

)

,

where 





dSi

dt
= fi(t, S1, ..., Sm, v1, ..., vl, x1, ..., xr),

Si(t0, v1, ..., vl, x1, ..., xr) = S0
i (v1, ..., vl, x1, ..., xr),

i = 1, ..., m.
(116)
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Further for a 
onvenien
e the previous system will be written shortly:

Φ(u, x) = Φ(S(t, v, x)),
(117)







dSi

dt
= fi(t, S, v, x),

Si(t0, v, x) = S0
i (v, x),

i = 1, ..., m.
(118)

Here x ∈ Rr
is a realization of the random ve
tor X whi
h 
ontains information about

parameter's un
ertainty of the model, u ∈ Rn, (n = l + 1) denotes a 
ontrol variable.

Obje
tive fun
tions in su
h form are often used to represent transformations of the


omponents in 
hemi
al rea
tions where the distribution of the random parameter X is

a posterior distribution π(X|Y ) estimated by the MCMC-simulation [8℄ for the given

set of experimental measurements Y.

From the pra
ti
al point of view after the MCMC-parameter estimation pro
edure we

have a large sample representing π(X|Y ). The next step is usually an optimization of

the 
ost fun
tion whi
h depends on the random parameters and the 
ontrol variables.

Therefore e�e
tive pro
edures whi
h use large samples for optimization are highly de-

manded resear
h area in de
ision making and pro
ess optimization theory.

Di�erent 
riteria 
an be used in optimization of the fun
tion (117): minimax, mathemat-

i
al expe
tation, value-at-risk, 
onditional value-at-risk. The 
hoi
e of the optimization


riterion is usually determined by the features of a problem to be solved. Further in this

se
tion we 
onsider a mean-value 
riterion (1):

min
u∈U

E{Φ(u,X)}.
(119)

5.2 Solution te
hnique

To �nd a solution we applied sto
hasti
 approximation pro
edures des
ribed in the

se
tion 3.5 and 
ompare their out
omes.

The �rst algorithm is a 
lassi
al Kiefer-Wolfowitz pro
edure [17℄. In every step of the

algorithm a sto
hasti
 quasi-gradient is estimated with a �nite-di�eren
e approxima-

tion, so the pro
edure requires 2n evaluations of the obje
tive fun
tion (also in every

evaluation we have to solve an ODE-system).

The se
ond solution is based on the sto
hasti
 gradient algorithm with the gradient,
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estimated using an equation in variations. Instead of the �nite di�eren
e approa
h

to estimate a sto
hasti
 gradient we 
ompose additional equations to the initial ODE-

system and de
rease the number of evaluations to the 1.

Finally we 
onsider simultaneous perturbation sto
hasti
 approximationmethod (SPSA),

whi
h requires 2 fun
tion evaluations in every step of the pro
edure.

5.2.1 Equation in variations

Assume that we have a system of ordinary di�erential equations (ODE-system) with

parameters µ1, ..., µn
.

dxl

dt
= f(t, x1, ..., xn, µ1, ..., µl),

l = 1, ..., n.
(120)

The previous system 
an be written in the ve
tor-notation as follows:

dx
dt

= f(t,x, µ), (121)

where x and µ are ve
tors. Sometimes it is needed to get an information about deriva-

tives of the solution φ(t, µ) of the system with respe
t to the parameters µk
for a �xed

value of µ = µ∗
. One obvious way to get it is to �nd a solution φ(t, µ) for a varying µ

and then di�erentiate it with respe
t to µk
. But it turns out that there is no need to

do so, and it is possible to get unknown di�erentials 
onsidering some extended ODE-

system. Let φ(t, µ) = (φ1(t, µ), ..., φn(t, µ)) is a solution of the initial ODE-system for

initial 
onditions t0, x0 and m1 < t < m2 is an interval where the solution is de�ned for

a �xed value of the parameter µ = µ∗
.

The fun
tions, whi
h we need to �nd at the point µ∗
:

ψi
k(t) =

∂φi(t,µ∗)
∂µk . (122)

Let us introdu
e several notations:

f i
j(t,x, µ) =

∂f i(t,x,µ)
∂xj , (123)

f i
j(t) = f i

j(t, φ(t, µ
∗), µ∗),

(124)

gik(t,x, µ) =
∂f i(t,x,µ)

∂µk , (125)
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gik(t) = gik(t, φ(t, µ
∗), µ∗).

(126)

Assuming that the partial derivatives of the right-hand sides

∂f i(t,x,µ)
∂µk are 
ontinuous at

some area G, the following linear ODE-system

dyi

dt
=

n∑

j=1

f i
j(t)y

i + gik(t) (127)

is 
alled an equation in variations [10℄ and the system of the fun
tions

y1 = ψ1
k(t), ..., y

n = ψn
k (t) (128)

is a solution of the equations (127) with the initial 
onditions ψi
k(t0) = 0.

Note, that in the formulas (123-126) the fun
tion φ(t, µ∗) is expli
itly found solution of

the initial system for the given value of parameter µ∗
, pra
ti
ally meaning that to solve

the equation in variations we still need to keep the initial system in order to su

essfully

get φ(t, µ∗).

To show how the mentioned above theory is working, let us 
onsider the following

example.

dx
dt

= µx,
x(0) = 1.

(129)

Let the solution of this equation is φ(t, µ). We need to �nd

∂φ(t,µ)
∂µ

for µ∗ = 3.

Obviously the result is 
learly seen without any additional 
al
ulations:

φ(t, µ) = eµt (130)

and

∂φ(t, µ)

∂µ
= teµt, (131)

so that the answer:

∂φ(t, µ)

∂µ
|µ=3 = te3t. (132)
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Having the answer to 
ompare with, we 
an write an equation in variations for the

present 
ase.

Keeping the notations:

f(t, x, µ) = µx, (133)

f 1
1 (t, x, µ) =

∂f(t, x, µ)

∂x
= µ, (134)

f 1
1 (t) = f 1

1 (t, φ(t, µ
∗), µ∗) = 3, (135)

g11(t, x, µ) =
∂f(t,x, µ)

∂µ
= x, (136)

g11(t) = g11(t, φ(t, µ
∗), µ∗) = φ(t, µ∗). (137)

To �nd φ(t, µ∗) we write the initial system, substituting µ with µ∗ = 3:

dφ

dt
= φ,

φ(0) = 1.
(138)

Assembling all together we get the equation in variations for the 
onsidered 
ase:







dy

dt
= 3y + φ,

dφ

dt
= 3φ,

φ(0) = 1,
y(0) = 0.

(139)

Solving this system we get an answer 
oin
iding with the previously given theoreti
al

reasoning:

y(t) = te3t. (140)

5.2.2 Appli
ation of the equation in variations in the 
onsidered 
ase

Let us re
all that we are dealing with the obje
tive fun
tion in ODE-form and therefore

it is possible to get rid of the �nite di�eren
e's approa
h by applying an equation in
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variations [10℄ for the unknown di�erential's estimation and obtain a sto
hasti
 gradient

with less 
omputation error.

The result of su
h te
hnique might enhan
e 
onvergen
e and might not. The out
ome

depends on the 
on
rete optimization task. For example in the 
ase when the data


ontains large rate of noise and if in every step of the SQG we are using only one

realization of random ve
tor for the gradient estimation, the �nite di�eren
e approa
h

will give a better des
ent dire
tion.

But in pra
ti
e it is important to have several 
omputation possibilities in order to be

able to 
ompare the results, espe
ially in the 
ompli
ated 
ases.

Another bene�t of using the suggested te
hnique 
ould be a 
omputational speed: some-

times it is faster or even more 
onvenient to solve a slightly extended ODE-system than

to 
ondu
t several 
omputations with original one what is required in the 
ase when we

are employing �nite di�eren
es.

Di�erentials with respe
t to t-variable 
an be found expli
itly from the initial ODE

a

ording to the rule of the 
omplex fun
tion's di�erentiation:

∂Φ(S(t,v,x))
∂t

| t=t1

v=v1

x=x1

=

(
m∑

i=1

∂Φ(S(t,v,x))
∂Si

∂Si(t,v,x)
∂t

)

| t=t1

v=v1

x=x1

.
(141)

Considering the theorem from [10℄, an extended ODE-system based on the equation in

variations for unknown di�erentials' estimation

∂Φ(S(t,v,x))
∂vj

| t=t1

v=v1

x=x1

=

(
m∑

i=1

∂Φ(S(t,v,x))
∂Si

∂Si(t,v,x)
∂vj

)

| t=t1

v=v1

x=x1

,

j = 1, ..., l

(142)


an be written as follows:







dSi

dt
= fi(t, S, v, x)|v=v1

x=x1

,

yi,k =
∂Si(t,v,x)

∂vk
|v=v1

x=x1

,

dyi,k
dt

=
l∑

j=1

(
∂fi(t, S, v, x)

∂Sj
yj +

∂fi(t, S, v, x)
∂vk

)

|v=v1

x=x1

,

dSi

dt
= fi(t, S, v, x)|v=v1

x=x1

,

S0
i (t0, v, x)|v=v1

x=x1

= S0
i (v, x)|v=v1

x=x1

,

yi,k(0) =
∂S0

i (t,v,x)

∂vk
|v=v1

x=x1

,

i = 1, ..., m,
k = 1, ..., l.

(143)
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An extended ODE-system has the following stru
ture: it 
ontains the initial ODE-

system and m × l additional equations, where again m is a number of equations in the

initial ODE-system and l is a dimension of the 
ontrol variable v.

Finally the sto
hasti
 quasi-gradient algorithm enhan
ed by the equation in variations


an be written as follows:

1. Obtain a posterior distribution of the unknown parameters using MCMC or other

parameter estimation method (i.e. bootstrap by residuals) for the given measure-

ments and the model of the pro
ess. The distribution in that 
ase will be in the

form of a large array or a 
hain, and every 
omponent of su
h 
hain 
an be treated

as a realisation x of the unknown parameters.

2. Compose an extended ODE-system for the estimation of unknown di�erentials

and solve it taking the realisation xk from the 
hain and the 
urrent point uk. The

result of the solution will be an estimate of the sto
hasti
 gradient ξk(uk, xk).

3. Find the next point uk+1
using the main equation of the sto
hasti
 quasi-gradient

algorithm:

uk+1 = uk − ρkξ
k(uk, xk). (144)

Go to the step 2 assuming uk+1
as a 
urrent point of the algorithm.

4. The algorithm stops when the number of iterations ex
eeds the prede�ned limit,

other stopping 
riteria are also admissible.

Measurements

MCMC-simulation Posterior distribution

Cost-function

SQG-algorithm

Quasi-gradient  

OptimumModel (ODE)

Extended ODE
estimate

Figure 23: The s
heme of the solution te
hnique.
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5.3 Numeri
al examples

Let us test the foregoing methods on the model examples. Consider the following 
hem-

i
al rea
tion that 
an be found in [8℄:

A
k1→ B

k2→ C. (145)

Given the measurements of 
omponents 
on
entrations {A1, ..., Am}, {B1, ..., Bm} at

the moments {t1, ..., tm} and initial 
on
entrations A(0) and B(0) at the beginning of

the experiment. Required to determine the 
olle
tion time that maximizes an average


on
entration of the 
omponent B.

time 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
A 1 0.504 0.185 0.217 0.023 0.101 0.058 0.064 0 0.082
B 0 0.415 0.488 0.594 0.505 0.493 0.457 0.394 0.334 0.309

Table 4: Measurements of the rea
tion.

To �nd the solution �rstly we derive the di�erential equation, re�e
ting the 
hemi
al

rea
tion with the main meaning that the speed of the rea
tion is proportional to the

mass of the intera
ting 
omponents with the 
oe�
ients k1 and k2.







dA
dt

= −k1A,
dB
dt

= k1A− k2B,
A(0) = A0,
B(0) = 0.

(146)

To get the posterior distribution Π(k1, k2 |A1, ..., Am, B1, ..., Bm) of the parameters for

the given set of measurements we employ MCMC-simulation [8℄ and further X denotes

the ve
tor having su
h distribution X ∼ Π(k1, k2 |A1, ..., Am, B1, ..., Bm).

The next �gure shows the results of the MCMC-pro
edure: the distribution is almost

spheri
al with the mean value attaining at the point k1 = 0.6, k2 = 0.17.

54



0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.05

0.1

0.15

0.2

0.25

0.3

k 2

k
1

Figure 24: Distribution of the parameters estimated by MCMC for the �rst example.

The sto
hasti
 optimization problem in that 
ase will be written as shown below.

max
t
E{B(t, X)}, (147)

where ve
tor X here as before represents posterior distribution of the parameters X ∼

Π(k1, k2 |A1, ..., Am, B1, ..., Bm).

Obviously this problem is a one-dimensional be
ause we have only time (t) as a 
ontrol

variable and therefore it 
an be simply solved by plotting the pi
ture, but to demonstrate

sto
hasti
 approximation methods we are employing here the sto
hasti
 quasi-gradient

algorithm.

Note, that in this 
ase the di�erential

dB(t,k1,k2)
dt

|t=tn is already given expli
itly in the

ODE-system for any point t = tn and known realizations of the parameters k1 = kn1 ,

k2 = kn2 and there is no need to estimate it via the �nite di�eren
e approximation,

meaning that everything is ready to apply the sto
hasti
 quasi-gradient method:

tn+1 = tn + ρn
dB

dt
|t=tn (148)

and substituting

dB
dt

with the right-hand side of the initial equation we are getting the

following iterative pro
ess:

tn+1 = tn + ρn(k
n
1A(t

n)− kn2B(tn)). (149)

The values of A(tn) and B(tn) are found via the solution of the ODE-system (146)

taking the 
orresponding to the step's number n random parameters kn1 and kn2 from

the MCMC-
hain. The values A(tn) and B(tn) depend on the realisations kn1 and kn2
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of the random parameters, therefore in every step of the algorithm we are required to

solve the initial ODE.

The results of the 
al
ulations and the 
onvergen
e tra
e are shown on the next �gure,

where we 
an see that the pro
ess starting from the initial point t0 = 10 qui
kly a
hieves

the optimum value t∗ = 2.3. For 
omparison purposes the bun
h of obje
tive fun
tions

were drawn for all realizations of the random parameters from the MCMC 
hain.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

B
(t

,k
1,k

2)

Figure 25: Obje
tive fun
tion and the tra
e by the algorithm for the �rst test-
ase.

The next pi
ture shows the 
onvergen
e of the method, i.e. how the 
ontrol variable t

depends on the step. As it 
an be 
learly seen 250 steps were enough to get the stable

solution.

0 200 400 600 800 1000
2
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Step(N)

t

Figure 26: Convergen
e of the method for the �rst test-
ase.
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To illustrate an appli
ation of the equation in variations lets have a look at the extended

example [8℄.







dA
dt

= −k1(T )A,
dB
dt

= k1(T )A− k2(T )B,

ki(T ) = aiexp
[

−Ei

R
( 1
T
− 1

T0
)
]

, i = 1, 2,

A(0) = A0,
B(0) = 0.

(150)

Given the measurements of 
on
entrations {A1, ..., Am}, {B1, ..., Bm} at the moments

{t1, ..., tm} for the �xed temperature T1. For the sake of simpli
ity the values of variables

R, Ei, T0 are known. Required to determine a 
olle
tion time and the temperature

attaining maximum of the B-
omponent 
on
entration.

time 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
A 100 50.4 18.5 21.7 2.3 10.1 5.8 6.4 0 8.2
B 0 41.5 48.8 59.4 50.5 49.3 45.7 39.4 33.4 30.9

Table 5: Measurements of the rea
tion

The main di�eren
e between the previous example and the present is that the se
ond


ontains two 
ontrol variables time (t) and temperature (T). Let us denote for this

example u = [t T ]T - the ve
tor of 
ontrol variables, and X = [a1 a2]
T
- random

parameters with the posterior distribution obtained by MCMC simulation.
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Figure 27: Distribution of the parameters estimated by MCMC for the se
ond test-
ase.
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In this example the di�erential

dB(t,T,a1,a2)
dt

| t=tn

T=Tn
is known expli
itly from the initial

ODE-system for any points t = tn, T = T n
and realizations a1 = an1 , a2 = an2 , while

dB(t,T,a1,a2)
dT

| t=tn

T=Tn
is unknown. Therefore to get it we follow suggested above te
hnique

and derive an extended ODE-system:







ki(T ) = ani exp
[

−Ei

R
( 1
T
− 1

T0
)
]

, i = 1, .., 2,
dA
dt

= −k1(T )A|a1=an1
a2=an2
T=Tn

,

dB
dt

= k1(T )A− k2(T )B|a1=an1
a2=an

2

T=Tn

,

y1 =
dA
dT
|a1=an

1

a2=an
2

T=Tn

,

y2 =
dB
dT

|a1=an1
a2=an2
T=Tn

,

dy1
dt

= −k1(T )y1 − k
′

1(T )A|a1=an1
a2=an2
T=Tn

,

dy2
dt

= k1(T )y1 − k2(T )y2 − k
′

1(T )A− k
′

2(T )B|a1=an1
a2=an2
T=Tn

,

A(0) = A0, B(0) = 0,
y1(0) = 0, y2(0) = 0.

(151)

From the system above we get unknown di�erential y2(t) = dB(t,T )
dT

required for the

gradient estimation and apply the main formula of the sto
hasti
 quasi-gradient method:

un+1 = un + ρnξ
n, (152)

where

un =

(
tn

T n

)

, (153)

ξn =
(

dB(t,Xn)
dt

dB(t,Xn)
dT

)T

|t=tn,T=Tn, (154)

Xn =

(
an1
an2

)

. (155)

For the 
omparison purposes all tested algorithms started from the same initial point

u0 = [100 100]T and the same de
reasing step sequen
e has been used ρn = 20 1
n−0.6 .

The next table 
ontains 
omparison results of the 
al
ulations whi
h were 
ondu
ted on

the usual laptop (Pro
essor Intel Celeron B810 1.6GHz 
ore duo with 2GB of RAM).

In fa
t, the fastest were enhan
ed by an equation in variations the SQG-algorithm.

The se
ond pla
e took the SPSA, meaning that in the 
onsidered 
ase the fun
tion's
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evaluation 
onsumed the majority of the time. This result looks reasonable, as in the


ase of the proposed method in every iteration we were solving only one ODE-system

(but extended), for the SPSA-algorithm it was required to solve the ODE-system twi
e,

and for the Kiefer-Wolfowitz method four times.

Algorithm Nsteps T ime(sec) t T topt Topt
SQG

100
2.2 20.6 79.1

100.0 18.5

KW 8.4 22.4 60.5
SPSA 4.0 39.1 32.6
SQG

1000
10.0 21.2 73.3

KW 47.5 46.6 28.3
SPSA 23.5 44.6 29.3
SQG

5000
58.1 20.0 65.5

KW 228.7 94.9 18.7
SPSA 125.3 99.8 18.4

Table 6: Cal
ulation results
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Figure 28: SQG with equation in variations enhan
ement for the se
ond example.

The next �gure depi
ts how the 
ontrol variables were 
hanging over the steps.
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Figure 29: Convergen
e of the SQG-algorithm for the se
ond example.
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Figure 30: Kefer-Wolfowitz algroithm for the se
ond test-
ase.
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Figure 31: Convergen
e of the KW-algorithm for the se
ond example.
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Figure 32: SPSA-algorithm for the se
ond example.
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Figure 33: Convergen
e of the SPSA-algorithm for the se
ond test-
ase.

5.4 Analysis of the results

As it 
an be seen from the �gures the fun
tion E{B(t, T, a1, a2)} has a 
ompli
ated

stru
ture: it is a ravine and not a 
on
ave, therefore the 
onvergen
e tra
es have su
h

shape.

Initially all three methods rapidly found the bottom of the ravine and started the path

to the optimum but with the di�erent speed.

The reason of su
h behavior is that the SQG-algorithm with equation in variations

enhan
ement estimates the gradient exa
tly for the given realization of the random

parameters and as at the bottom of the ravine the gradient is very 
lose to zero, the

method 
annot �nd the as
ent dire
tion and therefore slowly 
onverges to the optimum.

the SPSA and KW-algorithm estimates the gradient based on the values of the obje
-

tive fun
tion (�nite di�eren
es in the 
ase of the KW and the expression (64) for the

SPSA). The distan
e between the points that will determine the gradient estimate are

toughly de�ned in the algorithms (the sequen
e {δk} in the KW 
ase and the parameters

ck∆ki, i = 1, ..., n in the SPSA 
ase). Therefore these algorithms 
an easily �nd as
ent

dire
tion and as a result 
onverge faster in that 
ase to the optimal point.

From the table we 
an also 
on
lude that an appli
ation of the equation in variations

indeed in
reases 
omputational speed. Su
h observation means that in the present 
ase
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it is faster to solve one slightly extended ODE-system (to get the unknown di�erential),

than to 
al
ulate the values of the obje
tive fun
tion twi
e (to get the �nite-di�eren
e

approximation).

6 Con
lusion and main results

The following main results have been a
hieved in the thesis:

• Review, des
ription and implementation (see an appli
ation at the end of the

thesis) of the sto
hasti
 approximation algorithms for sto
hasti
 optimization.

• A
quired new deterministi
 equivalents (73, 105) for the ele
tri
ity retailer pro�t

optimization problem with mean-value and CVaR 
riteria.

• Suggested to use an equation in variations enhan
ement (143) for the obje
tive

fun
tions in the ODE-form, that in
reases the 
omputational speed of the sto
has-

ti
 approximation pro
edure.

• Using implemented Matlab-library in the present work it has been found and 
om-

pared solutions of the sto
hasti
 optimization problem with an obje
tive fun
tion

given in ODE-form with parameter un
ertainty given by the sample of posterior

distribution.
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7 Appendi
es

7.1 Implementation of the sto
hasti
 approximation algorithms

f un
 t i on [ r e s u l t ℄ = sqgrun ( grad ient fun , 
ost fun , rhofun , de l ta fun ,

pro j fun , Nsteps , u0 , 
hain , dim_name , flag_method)

% fun
 t i on r e s u l t = sqgrun ( grad ient fun , 
ost fun , rhofun , de l ta fun ,

% pro j fun , Nsteps , u0 , 
hain , dim_name , flag_method)

% The fun
 t i on 
 a l 
 u l a t e s an optimal s o l u t i on o f the mean−va lue minimizat ion

% problem by the s t o 
 h a s t i 
 approximation method

%

% INPUT:

% grad i en t fun (u ,X) − I f the s t o 
 h a s t i 
 g rad i en t may be

% 
omputed e xp l i 
 i t y l y , then 
os t fun and de l ta fun

% 
an be l e f t empty [ ℄ as they are needed only f o r

% the approximation by f i n i t e d i f f e r n 
 e s

%

%

% 
os t fun (u ,X) − Cost fun
t ion , where u − s t r a t e g i e s , X − random

% params

%

% rhofun (k ) − De
reas ing step−s i z e fun
t ion , 1/k i s s u i t a b l e

%

%

% de l ta fun (k ) − De
reaing fun
 t i on to 
ompute f i n i t e d i f f e r e n 
 e s

% 1/k i s s u i t a b l e

%

% pro j fun − Pro j e 
 t i on onto the admi s s ib l e s e t fun
 t i on .

% For the g iven po int u i t should return an

% or t op r o j e 
 t i on onto the s e t U

%

%

% Nsteps − Number o f s t eps to 
 a l 
 u l a t e

% u0 − Star t ing po int

% 
hain − array o f r e a l i z a t i o n s o f the random ve
 to r X

% dim_name − ax i s l a b e l s f o r the sqgp lo t

%

% flag_method − SGD: S t o 
ha s t i 
 Gradient Des
ent

% − KW: Kie fer−Wolfowitz

% − SPSA: Simulateneous Perturbat ion S t o 
ha s t i 


% Approximation

% − KestenSGD : S t o 
ha s t i 
 Gradient Des
ent with

% Adaptive Keste Rule

% − KestenKW: Kie fer−Wolfowitz with Adaptive

% Keste Rule

% − UryasevSGD: S t o 
ha s t i 
 Gradient Des
ent with

% Adaptive Uryasev Rule

% − UryasevKW : Kie fer−Wolfowitz with Adaptive

% Uryasev Rule

%

% OUTPUT: The sequen
e o f po in t s generated by the a lgor i thm
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u=u0 ;

dim=s i z e (u0 , 1 ) ;

r e s u l t (1 , : )=u ;

h = waitbar ( 0 , ' 1 ' , 'Name' , ' Ca l
u lat ion ' ) ;

7.1.1 Implementation of the SQG-algorithm with expli
itly de�ned gradient

i f ( str
mp ( flag_method , 'SGD' ) )

f o r k=1:Nsteps

X=
hain (k , : ) ;

u=pro j fun (u−rhofun (k )∗ grad i en t fun (u ,X) ) ;

r e s u l t (k , : )=u ;

i f (mod(k ,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

end ;

end ;

7.1.2 Implementation of the SQG-algorithm with expli
itly de�ned gradient

and adaptive Kesten rule

i f ( str
mp ( flag_method , ' KestenSGD ' ) )

n=1;

f o r k=1:Nsteps

X=
hain (k , : ) ;

u=pro j fun (u−rhofun (n)∗ grad i en t fun (u ,X) ) ;

r e s u l t (k , : )=u ;

i f (k>2)

eps_
urr=r e s u l t ( end , : ) ' − r e s u l t ( end −1 , : ) ' ;

eps_prev=r e s u l t ( end−1 ,:) '− r e s u l t ( end −2 , : ) ' ;

%inne r produ
t o f the 
ur r en t and prev ious

i f ( sum( eps_
urr .∗ eps_prev)<0)

n=n+1;

end ;

e l s e

n=n+1;

end ;

i f (mod(k ,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

end ;

end ;

7.1.3 Implementation of the SQG-algorithm with expli
itly de�ned gradient

and adaptive Uryasev rule

i f ( str
mp ( flag_method , ' UryasevSGD ' ) )

rho=1;

X=
hain ( 1 , : ) ;

x i=grad i en t fun (u ,X) ;
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r e s u l t (1 , : )=u ;

s tep (1)=rho ;

f o r k=2:Nsteps

X=
hain (k , : ) ;

xi_next=grad i en t fun (u ,X) ;

lambda=k^(−1);

rho=rho+lambda∗sum( x i .∗ xi_next ) ;

s tep (k)=rho ;

x i=xi_next ;

u=pro j fun (u−rho∗xi_next ) ;

r e s u l t (k , : )=u ;

i f (mod(k ,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

end ;

f i g u r e ( 100 ) ;

p l o t ( 1 : Nsteps , s tep ) ;

end ;

7.1.4 Implementation of the Kiefer-Wolfowitz algorithm

i f ( str
mp ( flag_method , 'KW' ) )

n=1;

f o r k=1:2: Nsteps

X1=
hain (k , : ) ;

X2=
hain ( k+1 , : ) ;

u=pro j fun (u−rhofun (n)∗QGradient ( 
ost fun , u ,X1 ,X2 , de l ta fun (n ) ) ) ;

r e s u l t (n , : )=u ;

i f (mod(k−1,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

n=n+1;

end ;

end ;

7.1.5 Implementation of the Kiefer-Wolfowitz algorithmwith adaptive Kesten

rule

i f ( str
mp ( flag_method , ' KestenKW ' ) )

n=1;

i =1;

f o r k=1:2: Nsteps

X1=
hain (k , : ) ;

X2=
hain ( k+1 , : ) ;

u=pro j fun (u−rhofun (n)∗QGradient ( 
ost fun , u ,X1 ,X2 , de l ta fun (n ) ) ) ;

r e s u l t ( i , : )=u ;

i f ( i >2)

eps_
urr=r e s u l t ( i , : ) ' − r e s u l t ( i −1 , : ) ' ;

eps_prev=r e s u l t ( i −1 ,:) '− r e s u l t ( i −2 , : ) ' ;

%inne r produ
t o f the 
ur r en t and prev ious

i f ( sum( eps_
urr .∗ eps_prev)<0)

68



n=n+1;

end ;

e l s e

n=n+1;

end ;

i=i +1;

i f (mod(k−1,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

end ;

end ;

7.1.6 Implementation of the Kiefer-Wolfowitz algorithmwith adaptive Urya-

sev rule

i f ( str
mp ( flag_method , ' UryasevKW ' ) )

rho=1;

X1=
hain ( 1 , : ) ;

X2=
hain ( 2 , : ) ;

x i=QGradient ( 
ost fun , u ,X1 ,X2 , de l ta fun ( 1 ) ) ;

r e s u l t (1 , : )=u ;

s tep (1)=rho ;

n=2;

f o r k=3:2:2∗Nsteps

X1=
hain (k , : ) ;

X1=
hain ( k+1 , : ) ;

xi_next=QGradient ( 
ost fun , u ,X1 ,X2 , de l ta fun ( 1 ) ) ;

lambda=n^(−1);

rho=rho+lambda∗sum( x i .∗ xi_next ) ;

s tep (n)=rho ;

x i=xi_next ;

u=pro j fun (u+rho∗xi_next ) ;

r e s u l t (n , : )=u ;

i f (mod(n,100)==0)

waitbar (n/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , n ) ) ;

end ;

n=n+1;

end ;

f i g u r e ( 100 ) ;

p l o t ( 1 : Nsteps , s tep ) ;

end ;

7.1.7 Implementation of the SPSA algorithm

i f ( str
mp ( flag_method , ' SPSA ' ) )

n=1;

f o r k=1:2: Nsteps

X1=
hain (k , : ) ;

X2=
hain ( k+1 , : ) ;

d e l t a=2∗round ( rand (dim ,1)) −1 ;

u_plus=u+de l ta fun (n)∗ de l t a ;
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u_minus=u−de l ta fun (n)∗ de l t a ;
QG=(
os t fun ( u_plus ,X1)− 
o s t fun (u_minus ,X2) ) . / ( 2 ∗ de l ta fun (n)∗ de l t a ) ;
u=pro j fun (u−rhofun (n)∗QG) ;

r e s u l t (n , : )=u ;

i f (mod(k−1,100)==0)

waitbar ( k/Nsteps , h , s p r i n t f ( ' Step : %12.0 f ' , k ) ) ;

end ;

n=n+1;

end ;

end ;

d e l e t e (h ) ;

sqgp lo t ( r e su l t , dim_name ) ;

7.1.8 The fun
tion whi
h 
al
ulates �nite di�eren
e approximation of the

sto
hasti
 quasi-gradient

f un
 t i on QG=QGradient ( fun , u , sample1 , sample2 , d e l t a )

n=s i z e (u , 1 ) ;

f o r i =1:n

u1=u ;

u2=u ;

u1 ( i , : )= u1 ( i , : )+ de l t a ;

u2 ( i , : )= u2 ( i , : ) − de l t a ;

QG( i , : )= ( fun (u1 , sample1)− fun (u2 , sample2 ) )/ (2∗ de l t a ) ;
end ;

7.1.9 The fun
tion displaying the 
onvergen
e rate

f un
 t i on sqgp lo t ( t ra
e , dim_name ) ;

%p lo t r e s u l t

dim=s i z e ( t ra
e ( 1 , : ) , 2 ) ;

s t ep s=s i z e ( t ra
e ( : , 1 ) ) ;

Ny=
 e i l ( s q r t ( dim ) ) ;

i f (Ny==dim)

Nx=1;

e l s e

Nx=Ny;

end ;

r=1: s t eps ;

f o r k=1:dim

subplot (Ny, Nx , k ) ;

p l o t ( r , t ra
e ( r , k ) ) ;

x l ab e l ( ' Step (N) ' ) ;

y l ab e l (dim_name(k ) ) ;

end ;

7.1.10 Ele
tri
ity retailer pro�t optimization - solution with mathemati
al

expe
tation.


 l 
 ;
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 l e a r a l l ;


 l o s e a l l ;


_buy=.4;


_s e l l =2.2;


_ l e f t =0.1;


_def=.3;

alpha =0.6;

beta =0.7;

de l t a1 =40;

de l ta2 =35;

PDF_X=[0.05 0 .05 0 .05 0 .05 0 .1 0 . 2 0 . 2 0 .15 0 .1 0 . 0 5 ℄ ;

X=[10 20 30 40 50 60 70 80 90 1 0 0 ℄ ;

PDF_Y=[0.1 0 .2 0 . 3 0 . 2 0 .15 0 . 0 5 ℄ ;

Y=[0.1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 ℄ ;

CDF_X=
umsum(PDF_X) ;

CDF_Y=
umsum(PDF_Y) ;

Num_sim=1000; %number o f days to s imulate

f o r u=1:100 %try d i f f e r e n t s i z e o f s to rage

f o r i a =1:Num_sim

req=inv
d f (X,CDF_X, 1 , 2 ) ;

%Sample ( i a )=req ;


_buy=inv
d f (Y,CDF_Y, 1 , 2 ) ;

P r o f i t 1 ( i a)=−u∗
_buy ; %p r o f i t in the beg inn ing

N_sell=min ( req , u ) ; %the number he s e l l s

N_left=max(u−req , 0 ) ; %the number o f newsp . l e f t

N_def=max( req−u , 0 ) ; %d e f i 
 i t papers

P ro f i t 1 ( i a )=Pro f i t 1 ( i a )+N_sell∗ 
_se l l−N_left∗ 
_le f t−N_def∗
_def ;

%p r o f i t without pena l ty

end ;

X1(u)=mean( Pro f i t 1 ) ; %mean va lue o f the p r o f i t in 
ase a

end ;

spare=X(CDF_X>=alpha ) ;

x_alpha=spare ( 1 ) ;

spare=X(CDF_X>=1−beta ) ;
x_1_beta=spare ( 1 ) ;

i=x_alpha−de l ta1 : 1 : x_1_beta+de l ta2 ; %admi s s ib l e area

%%f=�(u , x )min (x , u )∗ 
_se l l−u∗y−max(u−x , 0 )∗ 
_le f t−max(x−u , 0 )∗ 
_def ; we have

%%s p l i t the fun
 t i on on 2 par t s

f 1=�(u , x )min (x , u )∗ 
_se l l−max(u−x , 0 )∗ 
_le f t−max(x−u , 0 )∗ 
_def ;

f o r u=1:100

S=0;

f o r j =1:10

S=S+f1 (u ,X( j ) )∗PDF_X( j ) ;
end ;

R=0;

f o r j =1:6

R=R+u∗PDF_Y( j )∗Y( j ) ;
end ;

S=S−R;

Expe
tat ion (u)=S ;

end ;
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u=1:100;

p l o t (u , Expe
tat ion , '− bla
k ' , u , X1 , ' g . ' , i ,−20 , ' r ∗ ' ) ; hold on ;

l egend ( ' Theore t i 
a l r e s u l t ' , ' Simulated r e su l t ' , ' Admiss ible area ' ) ;

x l ab e l ( ' u ' ) ;

y l ab e l ( 'E\{\Phi (u ,X,Y) \ } ' ) ;

g r id on ;

% Theore t i 
a l r e s u l t by the l i n e a r programming

n=10;

e=ones (n , 1 ) ;

I=eye (n , n ) ;

E=zero s (n , n ) ;

A1=[e −I I E E

e E E I −I ℄ ;

b1=[X X℄ ' ;


_buy=sum(PDF_Y.∗Y) ;

C=[( 
_se l l−
_buy ) ℄ ;
f o r i =1:n

C=[C −PDF_X( i )∗ ( 
_s e l l+
_le f t ) ℄ ;

end ;

C=[C ze ro s (1 , n ) ℄ ;

f o r i =1:n

C=[C −PDF_X( i )∗ 
_def ℄ ;

end ;

C=[C ze ro s (1 , n ) ℄ ;

lb = ze ro s (4∗n+1 ,1) ;

A2=[−1 ze ro s (1 ,4∗n)
1 ze ro s (1 ,4∗n ) ℄ ;

b2=[x_alpha−de l ta1
x_1_beta+de l ta2 ℄ ;

[ x , f va l , e x i t f l a g , output , lambda ℄ = l i np r og (−C,A2 , b2 ,A1 , b1 , lb ) ;

u=x (1 )

f=−f v a l

p l o t (u , f , ' b . ' , ' markers ize ' , 2 0 ) ;
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