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In this thesis, the suitability of different trackers for finger tracking in high-speed videos
was studied. Tracked finger trajectories from the videos were post-processed and analy-
sed using various filtering and smoothing methods. Position derivatives of the trajectories,
speed and acceleration were extracted for the purposes of hand motion analysis. Overall,
two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning trac-
king, performed better than the others in the tests. Both achieved high accuracy for the
selected high-speed videos and also allowed real-time processing, being able to process
over 500 frames per second. In addition, the results showed that different filtering methods
can be applied to produce more appropriate velocity and acceleration curves calculated
from the tracking data. Local Regression filtering and Unscented Kalman Smoother ga-
ve the best results in the tests. Furthermore, the results show that tracking and filtering

methods are suitable for high-speed hand-tracking and trajectory-data post-processing.
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Téassd tyossa tutkittiin kohteenseuranta-algoritmien soveltuvuutta sormen seuraamiseen
suurnopeusvideoiden perusteella. Kddenliikkeiden seurantatietoja analysoitiin suurnope-
usvideoista ja prosessoitiin kidyttden erilaisia suodatus- ja pehmennysmenetelmid. K-
den liikeanalyysid varten laskettiin paikkatiedon derivaattojen nopeuden ja kiihtyvyy-
den arvot. Kernelized Correlation Filters ja Spatio-Temporal Context Learning -seuranta-
algoritmit suoriutuivat testeissd paremmin kuin muut testatut menetelmét. Molempien
menetelmien tarkkuus oli hyvi ja ne pystyivit kisitteleméédn suurnopeusvideoita reaalia-
jassa, miki tarkoitti yli 500 kuvan késittelyd sekunnissa. Tuloksista voitiin ndhdd my®os,
kuinka eri suodatusmenetelmid voidaan kéyttdd selkeimpien nopeus- ja kithtyvyyskuvaa-
jien saavuttamiseksi seuranta-algoritmien tuottamista paikkatiedoista. Local Regression
-suodatus ja Unscented Kalman Smoother saavuttivat parhaat tulokset testeissd. Lisdksi
tuloksista voitiin havaita seuranta-algoritmien soveltuvuus kdden seurantaan suurnopeus-

videoissa ja suodatusmenetelmien soveltuvuus liikeratojen jilkikésittelyyn.
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1 INTRODUCTION

Hand tracking and gesture recognition from recorded videos and from real-time streams
have been popular research topics since 1990s. Tracking hands in real-time opens new
possibilities for different user interfaces in machines, computers, and operation tools, for
example. Using gestures and hand movements is natural for people. They are used, for
example, when telling stories or perhaps when someone is directed to the nearest auto-
mated teller machine. During the last ten years also consumers have observed possible
uses of gestures and hand tracking as machines like Microsoft Kinect [1] and Leap Mo-
tion [2] have arrived to the market. These machines use different techniques and sensors,
aiming to provide more natural human-computer interaction (HCI) than the game pads,

keyboards, or other controllers.

This research is aimed towards high-speed video tracking and post-processing the track-
ing data. The interest to use high-speed videos derives from the fact that the precision of
measurements with respect to time, that is, temporal resolution, is better than the mea-
surement precision of videos with standard frame rate. Thus, higher frame rate in camera
means that the magnitude of the motion between two frames is smaller than in videos cap-
tured with normal speed of around 30 to 60 frames per second (fps), and it is possible to
make more accurate measurements. Moreover, increased sharpness of images with fast-
moving objects and reduced motion blur is achieved thanks to faster shutter speed while
using high-speed cameras. Motion blur can be avoided by using faster shutter speeds for
normal speed videos: for high-speed videos this comes naturally because their shutter

speed needs to be faster than in the standard frame rate videos. [3]

1.1 Background

Real-time object tracking has been one of the most popular topics in computer vision [4,
5, 6, 7]. Especially hand tracking has received plenty of interest. At the moment, attention
is drawn towards a multitude of desktop and tablet computer software, gesture games, and
human computer interaction in a general level. Gesture games here are used to describe
the games like Microsoft Kinect games [1] where the user is the game controller, without
any other input devices. Hand tracking, on the other hand, is a very demanding subject.
The reasons behind the complexity are many, but the main reason is that almost every
section of the hand can have different appearances and the hand has many degrees of
freedom (DOF).



Maggio et al. [3] sum video tracking up as “The process of estimating over time the
location of one or more objects using a camera is referred to as video tracking.” The
definition explains the idea of video tracking, namely, following one or more objects
in an image sequence. General tracking pipeline includes the following steps: feature
extraction, target representation, localisation, and track management. And, as a result of
tracking, trajectories can be formed. In the feature extraction phase, the selected features
are extracted from the image, and they are used in the next step to represent the target.
The following step is to localise the target in the image, and, in the next phases, the
object trajectory is maintained and the high-level features from the trajectories can be
extracted. [3]

The application field for tracking is broad, as it can be used for media production and
augmented reality, medical applications and biological research, surveillance and business
intelligence, robotics and unmanned vehicles, tele-collaboration and interactive gaming,
and art installations and performances. In the media production field, one can add, modify
or remove certain elements of videos or image sequences. For augmented reality cases,
one can track movement of a moving animal or a person and make virtual scene changes
based on those movements. Medical applications can include analysis of gait of a patient
or even a virtual surgery. For surveillance, tracking can be used to detect unusual patterns
in the movement of people around some area. In the robotics field and with unmanned
vehicles, the results of tracking are essential because it is necessary to know what kinds

of objects are around in the vicinity and whether they move and how, or are stationary. [3]

This thesis is a part of the Computational Psychology of Experience in Human-Computer
Interaction (COPEX) project [8], which researches human-computer interaction through
touch and different gestures. The COPEX project is a collaborative work between the
Machine Vision and Pattern Recognition Laboratory (MVPR) [9] of Lappeenranta Uni-
versity of Technology and the Psychology of Evolving Media and Technology Research
Group (POEM) [10] of the University of Helsinki. The project aims to analyse and track
how different people use their hands while doing various tasks at a computer. Data gath-
ered from the experiments — trajectories, reaction times and accelerations — are then used
to analyse and process how different people use novel touch interfaces. Post-processing
of the tracking data is one of the main focuses of this research and various methods for
extracting features from the tracking data and filtering of data are explored during this

research.
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1.2 Objectives and Restrictions

The objective of this thesis is to study post-processing and analysis of tracked hand tra-
jectories, such as tracking hand movement, and to filter the hand-tracking data by using
different filters and smoothers. It is not the objective of this thesis to develop new meth-
ods for these problems but to research and analyse those that are currently available and
see if they provide answers for the objectives, which can be seen in Figure 1. On the top
row of that figure, tracking is applied to a high-speed video sequence, of which frames
300, 600, and 900 are shown (from left to right). The tracked position in this case is a
segmented area of the fingertip, which is illustrated with an area encircled with red colour.
On the second row, trajectory features’ speed and acceleration are plotted over the tracked
sequence. Movement trajectory is highlighted with red and blue colours following the fin-
ger tip, velocity is shown in red, green and white on top of another red, green and white
acceleration curve. Finally, on the bottom row, filtering is applied to the features of the
tracked high-speed sequence. There, the filtered trajectory of the hand movement is plot-
ted with yellow, the filtered velocity curve with green, and finally, the filtered acceleration
curve with cyan. Also, the time scale is plotted into the sequences with a span from 0.1 -

1.5 seconds and with 0.1 second intervals.

The practical purpose of the work is to collect applicable methods for post-processing and
filtering hand-tracking data so that a method can be developed to estimate the hand trajec-
tory in real-world coordinates. Also, different features, such as velocities, accelerations,

curvatures and other applicable features, are computed from hand-tracking data.

The limiting factors in selecting the trackers and the filtering methods are operation envi-
ronment and the availability of the trackers’ source code needed for modifying purposes in
this research. In the selection process, more recent tracking methods and those which have

performed well in various recent tracker evaluation papers are preferred [11, 12, 13, 4].

1.3 Structure of the Thesis

This thesis is organised as follows. Chapter 2 takes a look at existing object tracking
tools and results of some trackers based on various benchmark papers. Also, a short in-
troduction to tracking algorithms and meaningful parameters for the trackers are given.
In Chapter 3, the selection of post-processing methods for the hand-tracking data experi-
ments is justified. A look is taken into commonly-used smoothing and filtering methods

for digital signals. The signal-filtering toolset used in this research is introduced. Basic
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Figure 1. Post-processing of features in a hand-tracking sequence is shown here. From left to
right, the frames 300, 600 and 900 of a high-speed video sequence can be seen on all rows. The top
row illustrates tracking applied to the sequence. The second row contains the trajectory, velocity
and acceleration features which are drawn over the sequence, and, in the third row, filtering is
applied and the filtered features are drawn over the sequence.
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filtering equations are shown and short introduction to the mathematics behind the filter-
ing is given in this chapter. The reasoning behind the selection of coordinate transform
methods is explained. Feature extraction methods are selected and evaluated. A short
introduction to the needed features for the trajectory analysis is given, and ideas of any
additional features are brought up. The features required include acceleration, reaction

times, movement speed, time of touch and path of the movement.

Chapter 4 contains the results and reasons and justifications for the experiments. The first
part of the chapter defines the test environment and datasets used. The second part of the
chapter defines the evaluation metrics and presents the results for the tracking and filter-
ing experiments. Filtering methods are evaluated against non-processed data and against
manually annotated ground-truth trajectories. Camera calibration is tested by calculating
how close the measures from tracking are to the real-world coordinates and measure-

ments.

Chapter 5 provides a discussion about the findings and the results of the work conducted
during this research and, finally, Chapter 6 provides the concluding thoughts about this
research.
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2 OBJECT TRACKING

A broad selection of trackers developed for different purposes is available. They are used
to track rigid objects like cars and non-rigid objects like people and animals. There are
also trackers that can learn different poses for tracked objects and continue tracking, even
after lost tracking, by detecting the object again [14]. Only tracking methods which are
available with open source implementations were included in this research. Binary track-
ers were left out because it would have been necessary to modify the implementations to
get them equally tested with different initialisation parameters. The tracker selection con-
sisted of the state-of-the-art methods with real-time performance. Robust methods were

included for comparison.

2.1 Background

There are many challenges that trackers face with video materials. One group of chal-
lenges are variations of appearance which include object pose changes, occlusions, scene
changes and sensor noise. The object pose changes can arise from object rotation, trans-
lation or deformation. Occlusions happen when other objects in the scene block the view
of the tracked object, completely or partially. Scene changes can be due to, for example,
weather or illumination: for example, the scene stays the same but the shots or video of
the moving object is made in different times of the day or it starts raining in the middle of
shooting a video. Background clutter, which means that there are similar objects on the
background which can draw attention of the tracker to themselves, creates challenges for
most trackers [3]. The object appearance challenges are summed up in Figure 2, which
shows the effects of illumination, occlusion, deformation, noise corruption, out-of-plane
rotation, and motion blurring for object appearance [5]. Using a high-speed camera brings
also other issues for imaging: for example, the demand for light in high-speed imaging

increases as exposure time decreases.

Tracker algorithms usually consist of two parts: model and search. The model or rep-
resentation describes how the features of the object and/or the surroundings like the
background are represented. Many models are used, among them local, holistic, tem-
plate, intensity histogram, binary pattern, principal component analysis (PCA), sparse
PCA, sparse representation, discriminative model, and generative model [13]. Similar
to different object representation methods, there are also various searching methods, in-

cluding particle filters, Markov Chain Monte Carlo, local optimum search, and dense
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sampling search [3]. There are trackers which update the model during tracking based
on the object appearance changes, but also trackers which do not update the model dur-
ing tracking. Using some kind of updating function for object changes is more com-
mon because that can enable long-term tracking even when the appearance of the object
changes. [13, 15, 7, 16, 4, 3]

Deformation

Occlusion

Illumination

Figure 2. Object tracking challenges. [5]

2.2 Criteria for Selecting Trackers

As Cehovin et al. discuss in article [7], there is still lack of consensus about which per-
formance measures should be preferred in tracker evaluation. TThus, cross-paper tracker
comparison can be hard due to unequal performance measures and non-standard video
test sets. Tracker selection for this research included trackers for which source code was
available, which had appeared in the latest tracking benchmark articles or had provided
good results in their original papers. Also, the novelty value of each particular tracker in-
fluenced the decision of choosing among them, tracking algorithms having evolved quite
rapidly over the last few years. That is why also new trackers like High-Speed Tracking
with Kernelized Correlation Filters [11] and Fast Tracking via Spatio-Temporal Context
Learning [17] were included in this research, even though there were no collective online
benchmark results available for them at the time when the tracker selections were made.
The aim of this research was to find a tracker for high-speed videos, and that ruled out

some trackers. The selected trackers are shown in Table 1.
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Table 1. Trackers selected for the experiments.

Method Abbreviation | Implementation
Real-time Compressive Tracking [18] CT MATLAB [19]
Fast Compressive Tracking [20] FCT MATLAB [21]
High-Speed Tracking with Kernelized Correlation KCF MATLAB [22]
Filters [11]

Hough-based Tracking of Non-Rigid Objects [23] HT C++ [24]
Incremental Learning for Robust Visual Track- IVT MATLAB [26]
ing [25]

Robust Object Tracking with Online Multiple In- MIL MATLAB [28]
stance Learning [27]

Tracking Learning Detection [14] TLD MATLAB [29]
Robust Object Tracking via Sparsity-based Collabo- RSCM MATLAB [31]
rative Model [30]

Fast Tracking via Spatio-Temporal Context Learn- STC MATLAB [32]
ing [17]

Structured Output Tracking with Kernels [33] struck C++ [34]
Single and Multiple Object Tracking Using LRS MATLAB [36]
Log-Euclidean Riemannian Subspace and Block-

Division Appearance Model [35]

Online Object Tracking with Sparse Prototypes [37] SRPCA MATLAB [38]

The lack of generalised tracking evaluation sets has given rise to a couple of online object
tracking benchmarks [13, 15, 7, 16, 4] for the benefit of tracking algorithm researchers
searching for a good online platform with equal measures and easy-to-use tracking eval-
uation kits. In [13], there are 29 tracking algorithms and 50 fully annotated videos. An
evaluation kit for the tracker benchmark is available online, and the team is working on a

new version of an online tracker benchmark kit [39].

The Visual Object Tracking (VOT) challenges of 2013 and 2014 consist of a challenging
set of video sequences and novel performance measures for tracking, introducing robust-
ness and accuracy plot, as explained in [7]. The challenge benchmark of 2014 includes
a rotating bounding box for more accurate object position measures. VOT 2014 contains
also a broader range of videos, featuring 25 sequences selected from the initial set of
394 sequences in such a way that the various visual phenomena like occlusion were still
strongly present in the selection. [4] The VOT 2013 sequences went through a similar
selection process, but the final number of videos was 16 [16]. Performance measures of
accuracy and robustness are used for tracking performance evaluation. Accuracy tells how
well the trackers predict bounding-box overlaps with the ground-truth bounding-box. Ro-
bustness is a measure for losing the target, and in this case target is considered lost when
the overlap with the bounding box goes to zero [4]. Single-object, single-camera, model-

free, short-term, and causal trackers are included in the VOT challenge. Model-free means
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that a single training example is provided by the bounding box in the first frame of the
sequence. Short-term in this context means that the tracker is not allowed to perform re-
detection, as the tracking is considered to fail if it drifts off the target. Once the tracker
has lost its target, a complete reset is issued by the visual-object-tracking toolbox. Thus
the tracker is not allowed to use any information obtained before the reset. Causality is a
requirement in the experiments, and that is why trackers cannot use future frames for pose
estimation [4, 16]. VOT challenges are available online, and the team is also working on

a new online repository of sequences and results [40].

The work by Hiltunen et al. [41, 42] takes a good look into the tracking algorithms applied
to high-speed videos. Building on top of that research, the algorithm introductions in this
thesis are kept short for most of the algorithms. Also the scope of this research leans more
towards the post-processing of the tracking data. New methods included in this research
are High-Speed Tracking with Kernelized Correlation Filters (KCF) [11], Fast Tracking
via Spatio-Temporal Context Learning (STC) [17], Robust Object Tracking via Sparsity-
based Collaborative Model (RSCM) [30], and Structured Output Tracking with Kernels
(struck) [33].

2.3 Tracking Methods

Tracking methods with fixed models of a target usually fail at some point because of the
unavoidable changes of appearance. This is why online learning methods that update the
representation of a target incrementally over time are used to handle the variations in ap-
pearance. The learning methods used by online tracking can be divided into generative
and discriminative. In generative online learning methods, the appearance of the model
for the target is updated adaptively in response to appearance variations. Generative on-
line learning methods can be subcategorised into methods based on a template, subspace
analysis, and sparse representation [43]. Discriminative methods utilise information about
the target and background simultaneously and tracking is treated as a classification prob-
lem [43].

2.3.1 Real-time Compressive Tracking

Real-time Compressive Tracking (CT) uses a tracking-by-detection methodology, where
similar appearance of object is searched from the next frame with the help of the previ-

ous frame’s appearance model. The classifier is updated by using positive samples near
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the current target location and negative samples far away from the target location. The
location for the next frame is predicted by getting samples from around the last known lo-
cation and choosing the sample that gets the best classification score. The CT approach is
shown in Algorithm 1, and the main ideas and key components of the tracker can be seen
in Figures 3 and 4. Wu et al. [44] showed that the CT method could perform even better
by implementing motion estimation algorithm into the tracking algorithm with minimal

performance costs.

Algorithm 1 : CT tracking algorithm [18]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: for all frames do

2: Sample a set of image patches near the position where the target was in the previ-
ous frame.
3: Extract features from image patches.
Using classifier, find and update the current target position with the most similar
features.
5: Sample positive image patches near the current target position and negative
patches further away.
6: Extract the features from image patches.
Update the classifier with positive and negative features.
8: end for

2.3.2 Fast Compressive Tracking

Fast Compressive Tracker (FCT) is an improvement over Real-Time Compressive Tracker
(CT) [18] and FCT and CT share the same algorithm for most parts. The main ideas and
key components of the tracker, which are the same as for the CT algorithm, can be seen
in Figures 3 and 4. Speed improvement for this algorithm is gained by using a sparse to
a dense search method. First, object search is done by using a sparse detection with a
sparse sliding window followed by a dense detection, which is done with better accuracy
by using a dense sliding window within a smaller search area. The default parameters for
the sparse technique are search radius of 25 pixels and window shifting of four pixels at
a time. Dense search is done within 10 pixel radii with window shifting of one pixel at
a time [20]. A general level explanation of the steps needed can be seen in Algorithm 2.
This sparse to dense technique allows reduced computational complexity in the detection

procedure, thus allowing the tracking to be done faster than with an earlier method in [18].
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Figure 4. Tracking at the (t+1)-th frame. [20]

2.3.3 High-Speed Tracking with Kernelized Correlation Filters

High-Speed Tracking with Kernelized Correlation Filters (KCF) is an improved version
of the kernelized correlation filters introduced in [12]. Henriques et al. [11] showed that
by oversampling sliding windows the resulting data matrix can be simplified, the size
of the data reduced, and the computation made faster. This can be achieved by taking
advantage of Fast Fourier Transform (FFT). [11]

KCF is explained in Algorithm 3. First, a sub-window for the detection at the position
from the last frame is obtained and converted into usable features. Then a correlation
response is calculated at all possible sliding window shifts. After that, the target location
can be found from the maximal response where the correlation is highest. When a new
location is found, the object model is updated again. Being approximately three times
faster than the top two methods, the KCF algorithm took the 3rd place in visual object
tracking challenge of 2014. The KCF algorithm also took the 1st place in overall accuracy
rating. [4]

2.3.4 Hough-based Tracking of Non-Rigid Objects

Hough tracking is a tracking-by-detection approach. The method was developed for non-

rigid object tracking by Godec et al. [23]. The name Hough-based Tracking of Non-Rigid
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Algorithm 2 : FCT tracking algorithm [20]

Input: The initialised tracking window for the first frame and the video sequence as

frames.

Output: Tracked positions.

1:
2:

DA

10:
11:

for all frames do

Sample a sparse set of image patches near the position where the target was in the
previous frame.

Extract features from image patches.

Using classifier, find the current target location with the most similar features.

Sample a dense set of image patches near the position where the target was found
in the previous step.

Extract features from image patches.

Using classifier, find and update the current target position with the most similar
features.

Sample positive image patches near the current target position and negative
patches further away.

Extract the features from image patches.

Update the classifier with positive and negative features.
end for

Algorithm 3 : KCF tracking algorithm [11]

Input: The initialised tracking window for the first frame and the video sequence as

frames.

Output: Tracked positions.

1:
2:

3:
4.

for all frames do
Obtain the detection sub-window from the previous target position and convert it

into usable features (in Fourier domain).

Calculate the response of the correlation at all sliding window shifts.
Find the new target position with the maximal response (the place of the highest

correlation) and update the object model.

5: end for
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Objects (HT) comes from the fact that the method uses the generalised Hough-transform
as a feature extraction technique. The main difference to most of the tracking methods is
that HT uses segmentation of the target object region after it is given the bounding box.
The fact that the target region is presented as a segmented area instead of the normally
used bounding box, helps it to follow also non-rigid objects. The segmentation process is
shown in Figure 5, where, on the first frame on top left, the object is surrounded with a
bounding box. The object is then segmented and tracked in the subsequent scenes in the

sequence [23].The tracking procedure of HT is explained in Algorithm 3.

R

ATDAR TERE
Tted Bl Mot

Figure 5. HT segmentation process and tracking. In the first (top left) image, the initial bounding
box given is green, and the subsequent images (to the right and down), illustrate the segmentation
process with an area encircled with red. [23]

2.3.5 Incremental Learning for Robust Visual Tracking

The focus of Incremental Learning for Robust Visual Tracking (IVT) by Ross et al. [25]
is on how to deal with challenging appearance changes of the target. Adaption to changes
is achieved by incrementally learning the target representation and adapting online to
changes in the appearance of the target. For motion estimation, IVT uses a particle-
filtering approach [25], which is a method of estimating where the object will be in the
next frame. The method is based on a movement model and probability. The particles in
the particle-filtering approach can be thought as a set of possible locations. The method

tracks a bounding box that contains the object, and segmentation of the object region is
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Algorithm 4 : HT tracking algorithm [23]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: Use segmentation process for the target in the tracking window.
2: Train the classifier.
3: for all frames do

4: Use the classifier for the current frame to find the target again.
5: Find the foreground parts of the target.

6: Apply the segmentation process to acquire binary segmentation.
7: Update the classifier with the new segmentation result.

8: Get the target position.

9: end for

not done as in HT [23]. The IVT steps are explained in Algorithm 5.

Algorithm S : IVT tracking algorithm [25]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: Use a single particle to indicate this location.

2: repeat
3: Draw particles from the particle filter.
4 for each particle do
5 Extract a window from the current frame, corresponding to the particle.
6: Compute the likelihood of the particle, corresponding to the real position.
7 end for
8 Update the target position with the most likely particle.
9 if n frames since last update then
10: Perform incremental update of the representation.
11: end if

12: until no more frames

2.3.6 Robust Object Tracking with Online Multiple Instance Learning

Multiple Instance Learning (MIL) uses a tracking-by-detection approach for robust object
tracking. MIL uses multiple instance learning instead of traditional supervised learning
methods and shows improved robustness to inaccuracies of the tracker and to incorrectly
labelled training samples [27]. Multiple instance learning differs from traditional super-
vised learning methods in that it does not contain strictly one positive set of image patches

or one positive image patch: it has one positive bag which contains several image patches,



22

of which at least one is the correct image patch containing the true appearance of the tar-
get. The main objectives when developing MIL were that the algorithm should be able
to cope with partial occlusions and that not too many parameter adjustments would be

needed. The target region is presented via multiple bounding-boxes.

Algorithm 6 presents the main steps of the MIL algorithm. For the current frame, to up-
date the model, positive and negative samples are taken from around the predicted object
location. In the following frame, by classifying image patches around the predicted loca-
tion of the object, the tracker location is updated with a patch that best matches the current

model. After that, the model is updated with samples from the current location. [27]

Algorithm 6 : MIL tracking algorithm [27]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: for all frames do
2 Crop out a set of image patches within a specified search radius of the previous
target position.
Compute features for each image patch.
Classify image patches.
With the best matching image patch update the tracker position.
Crop out negative and positive sets of image patches.
With the positive set and the negative set, update the appearance model.
end for

e A R

2.3.7 Tracking-Learning-Detection

By decomposing the object tracking task into tracking, learning, and detection subtasks,
Kalal et al. [14] aim to realize long-term tracking of objects. The tracking algorithm tries
to track an object during the frame sequence while the detector localises all the appear-
ances observed in the frames, and if needed, the detector reinitialises the tracker. The
learning subtask estimates the errors of the detector and updates it accordingly. As it can
be seen in Figure 6, the learning subtask updates both the tracking and detection subtasks,
and the tracking output is a combination of tracking and detection.Tracking-Learning-
Detection (TLD) uses a P-N (Positive-Negative) learning method, which estimates the
errors. P-N learning defines two types of experts: P-expert is used to estimate missed
detections, meaning false negatives, and N-expert to estimate false alarms, meaning false
positives. [15, 14]
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The main points of the TLD algorithm are shown in Algorithm 7. The tracker part of the
algorithm follows the movement and tries to locate the target. The detector tries to locate
all similar targets from the image and selects the most probable. If both the tracker and
the detector fail to locate the target, it is declared invisible. [15, 14] TLD uses multiple
bounding-boxes to represent the target region, as can be seen from Algorithm 7. By using
both tracking and detection bounding boxes, the algorithm can easily deal with occlusions

if the target-object appearance does not change during occlusion.

Object B
state Tracking
—P
A update — B
Video froelicr v = | Object
frame % state
—|—’ Ob_]ECt model Learning ‘ :D
: : 3]
...................................... 2
update A B
v detector  EE—
—p Detection

Figure 6. Block diagram visualising the components of the TLD framework. [14]

2.3.8 Robust Object Tracking via Sparsity-based Collaborative Model

Robust Object Tracking via Sparsity-based Collaborative Model (RSCM) by Zhong et
al. [30] is based on a sparsity-based discriminative classifier (SDC) and a sparsity-based
generative model (SGM). SDC introduces an effective method to compute the confidence
value that assigns more weight to the foreground by extracting sparse and determinative
features that distinguish foreground and background better. SGM is a histogram-based
method that takes the spatial information of each patch into consideration with an occlu-
sion handling scheme [30]. The updater considers the latest observations and also the
original template, allowing the tracker to deal with appearance changes. Algorithm 8

simplifies the actual implementation of the RSCM tracker.

2.3.9 Fast Tracking via Spatio-Temporal Context Learning

Figures 7 and 8 and Algorithm 9 illustrate the Fast Tracking via Spatio-Temporal Context

Learning (STC) algorithm. Red rectangles represent local context regions, and yellow
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Algorithm 7 : TLD tracking algorithm [14]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: Use the initial bounding-box as the starting point for the tracker.
2: Learn an initial classifier and update the object model.
3: for all frames do

4 Estimate object motion by using the tracker.

5 if tracking failure detected then

6: Do not return a bounding-box.

7 else

8 Return the tracker bounding-box.

9 end if
10: With the detector, scan the frame by a scanning-window.
11: Output the detected object bounding-boxes.
12: Combine the bounding boxes of the tracker and the detector.
13: if no bounding boxes then

14: Declare the object invisible.
15: else
16: Output the most confident bounding-box position.
17: end if

18: Update the detector by using the P- and the N-expert.
19: if appropriate according to the update strategy then

20: Update the object model.
21: end if
22: end for

Algorithm 8 : RSCM tracking algorithm [30]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: Obtain positive (the target position) and negative samples (near the target) for the
original template.
2: for all frames do
With the particle filter obtain N candidates.
Calculate the confidence value of each candidate against the original template.
Obtain M patches for each candidate.
Calculate similarity between the original template and the candidates.
Select the candidate with max likelihood based on the confidence and similarity
and update the target position.
8: end for

N kAW
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rectangles indicate target locations. FFT stands for Fast Fourier Transform, and IFFT
is the inverse Fast Fourier Transform. H;'* and H;!9 represent spatio-temporal context
models in the current frame and in the next frame. h;¢ is the spatial context model. p
is a learning parameter with values smaller than 1, 0.075 is used as the default value.
First, a spatial context model /; between the target and its surrounding background is
learnt. In the following step, the learnt model A;¢ is used to update the spatio-temporal
context model H;* for the following frame H;!4. The tracking task is then formulated
by convolution as a computing task of a confidence map, and the best object location can
be estimated by maximising the confidence map. Computing FFT for the local context
region of M x N pixel is of complexity O(M N log(M N)). This makes the algorithm fast:
it reached 350 fps on average in an 18-sequence test set when run on 17 3.40 GHz machine
with 8 GB RAM. [17]

Evaluation of the Fast Tracking via Spatio-Temporal Context Learning (STC) algorithm
was done with the help of 18 video sequences and against 18 state-of-the-art tracking
methods in [17]. The evaluation metrics consisted of Success Rate (SR) and Centre Lo-
cation Error (CLE). Tracking was considered successful if the overlap of the bounding

boxes were more than 50%. [17]

IFFT

Frame(®)

Figure 7. Learning the spatial context model /;¢ at the t-th frame. The yellow rectangle depicts the
target location and the red rectangle the local context region. FFT denotes Fast Fourier Transform,
and IFFT denotes the Inverse FFT. [17]
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Tracking at frame (t+1)
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Figure 8. Detecting the object location at the (t+1)-th frame. Target locations are represented
with yellow rectangles and local context regions with red rectangles. FFT denotes Fast Fourier
Transform, and IFFT denotes the Inverse FFT. [17]
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Algorithm 9 : STC tracking algorithm [17]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: for all frames do
Learn spatial context model from the target location in the previous frame.
Update the spatio-temporal context model by using the learnt spatial context
model.

4 The object position is determined by maximising the confidence map.
5: For every Nth frame, update the scale.
6: end for

2.3.10 Structured Output Tracking with Kernels

Structured Output Tracking with Kernels (struck) extends the Learning to Localise Ob-
jects with Structured Output Regression tracking by Blascko and Lampert [45]. The main
idea of the tracker is to create positive samples from areas close to the object, containing
the object, and negative samples further away from the object, containing background.
It exploits the spatio-temporal context for visual tracking and finds statistical correlation
between the object of interest and its local context based on probabilities. Also, it uses a
confidence map and obtains the best location by maximising a location likelihood func-
tion of an object. In a test video, the positive and negative sampling at one particular

moment can be seen in Figure 9. [33]

Steps taken during tracking are explained in Algorithm 10. In the first frame, an object
model is created using the initialised tracking window. The target object in the image
and areas near the target object, still containing the target object, are classified as positive
samples and areas further away containing background and parts of the target are classi-
fied as negative samples, Based on these positive and negative samples, the target object
in the next frame can be detected by estimating the change in the target object location
and finding the most probable transformation based on a Support Vector Machine (SVM)
classifier. The classifier is then updated with the current position and budget maintenance
is carried out, limiting the number of SVM vectors, if exceeded, to a set amount. This
is done by removing the support vector with a minimum impact on the classifier. New
samples of the target object and background are taken. By checking the relevance of the
new samples against old samples, it is found out if the model needs to be updated. After

that, the samples get optimised and the bounding box is returned. [33]
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Figure 9. Use of positive (green) and negative samples (red) in struck illustrated. [33]

2.3.11 Single and Multiple Object Tracking Using Log-Euclidean Riemannian Sub-
space and Block-Division Appearance Model

Like IVT [25], the Single and Multiple Object Tracking Using Log-Euclidean Rieman-
nian Subspace and Block-Division Appearance Model (LRS) algorithm takes into account
affine parameters, translation, rotation, scale, aspect ratio, and skew [35]. Including the
affine parameters in the tracking framework makes the algorithm more robust to object

rotation and scale changes.

The main steps of the method are presented in Algorithm 11. To obtain the optimal object
state, an observation model and dynamic model are used. The observation model is used
to map the similarity between the image region and the learnt appearance model. The dy-
namic model is used to update the particle filter, and a particle filtering approach is used
to estimate the optimal state. Image region with the optimal state is used to incrementally
update the appearance model. During tracking, each image region is warped into a nor-
malised rectangular region by using the estimated affine parameters. [35] The five modes
in Figure 10 refer to the five modes of the object appearance: translation, rotation, scale,

aspect ratio, and skew.
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Algorithm 10 : struck tracking algorithm [33]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: for all frames do
2: Estimate change in the object position.
3 Find the most probable transformation based on SVM.
4 With the new position, update the discriminant function.
5 Use budget maintenance to limit the number of SVM vectors.
6: Take new samples and check the relevance.
7 Go through the old samples and optimise them.
8: Return the last bounding-box position and transformation similarity function.
9: end for

Algorithm 11 : LRS tracking algorithm [35]

Input: The initialised tracking window for the first frame, and the video sequence as
frames.
Output: Tracked positions.
1: for all frames do

2: Learn the appearance model.

3: Using the particle filtering approach estimate the optimal state.

4 With the image region associated with the optimal state, update the appearance
model.

5: Output the optimal state estimated by the particle filter and update the target po-
sition.

6: end for




29

Dynamic 7-1 Particle H\ Affine image
model [7/] Filtering \]L- warping

: =]

Extracting Affinely I J " Extracting
}

N [ ] . 0
covariance P.I MAP A Object HN warped | covariance
matrices in the five fy)/| estimation kA state [/l object [/ matrices of five
modes appearance modes

==

Incremental
. " og-Euclide;
Observation | /L _ Log-Euclidean
model N[ . Se—

Riemannian
subspace
learning

Figure 10. LRS tracking framework. [35]

2.3.12 Online Object Tracking with Sparse Prototypes

The online object tracking method, Online Object Tracking with Sparse Prototypes (SR-
PCA), developed by Wang et al. [37] takes into account affine parameters: translation,
rotation, scale, aspect ratio, and skew, as do IVT and LRS. Figure 11 and Algorithm 12
summarise the main steps of the SRPCA algorithm. After initialisation, candidate states
are sampled and evaluated using the observation model. In the next step, the best candi-
date is selected and the occlusion map is computed. For the final steps, samples are used
to update the observation model. The observation model can be fully updated, partially

updated, or not updated at all, according to the occlusion map from the previous step. [37]

Algorithm 12 : SRPCA tracking algorithm [37]

Input: The initialised tracking window for the first frame and the video sequence as
frames.
Output: Tracked positions.
1: for all frames do
2: Sample candidate states.
Using the observation model, evaluate the candidate states.
Obtain the best candidate and the related occlusion map.
Update the target position.
Based on the samples’ occlusion map, decide between full update, partial update,
and no update to the observation model.
7 Update the observation model.
8: end for

EANR A
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Figure 11. SRPCA tracking algorithms three main parts: dynamic model, observation model, and
update module. [37]

2.4 Problems with Tracking Data

The data provided by trackers is just a collection of locations of moving object(s) and
usually contains movement noise that is not included in the real movement of the object.
This noise is often staircase-like movement (Figure 12 (c)) which contains a zoomed
image of one part of the tracked hand trajectory. Pure tracking data is shown in cyan
colour, the ground-truth in white and various filtered results in red, green, and magenta.
There is also the question of pixel vs sub-pixel accuracy and how it affects velocity and
acceleration calculations. Trackers usually track the object using only pixel accuracy or
even less accurate measures. That is one reason why including filtering of trajectories is

necessary to accurately represent the trajectory.

Tracking errors can be minimized. If the limiting factor is the number of pixels moved
and there is no better material for the sequences, accuracy can be increased by upscaling
the current sequence or calculating some probability function to estimate the object’s
location. A probability function using pixel value changes of the edge pixels can give a
better estimate of the true object centre. Another possibility is to upscale the image by

resizing, with an upscaling factor, the object region or the whole image. This can lead to
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more accurate position measures, but it also increases the computational time for most of
the trackers. Still, the results would contain rough-edged transforms between the frames,

which would affect velocity and acceleration calculations.

It is also intriguing to see how many milliseconds it takes for a tracking bounding box to
move from one pixel region to another during hand movement in the slowest part of the
trajectory and also in the fastest part of the trajectory. This becomes an issue when trying
to get the accurate position and derivatives of position data out of the high-speed video
sequences. It was noted in particle tracking with high-speed cameras that one dust particle
needed 30 ms to cross from one pixel to another [46]. So with 500 fps there would have to
be 15 frames for the dust particle to move between pixels. This information could be used
to drop unmeaningful frames from video sequences, but then one would need to know
exactly when the particle moves between pixel regions, and that would cause problems,

too.
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I'racking Data
Filtered Tracking Data

(a) Full image. (b) Area marked in (a) zoomed.

Tracking Data
Filtered Tracking Data

(c) Area marked in (b) zoomed.

Figure 12. Tracking data and filtering applied to it. Tracking data shown in cyan, ground-truth in
red and filtered tracking data in yellow.
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3 POST-PROCESSING AND ANALYSIS OF TRAJEC-
TORY DATA

This chapter focuses on post-processing and analysis of trajectory data obtained from ob-
ject tracking results. Filtering and smoothing methods such as moving average, Savitzky-
Golay, and total variation denoising are introduced. A short introduction to camera cali-
bration, imaging and multiview geometry is given. Feature extraction methods and calcu-
lations for computing velocities and accelerations from tracking data are also introduced.
The methods presented in this chapter aim to provide smooth trajectory, velocity and ac-
celeration curves. The smoothness of the trajectory can be quantified as a function of jerk,
which is the time derivative of acceleration. Thus, jerk is the second time derivative of
velocity and third time derivative of position. In other words, jerk is the rate of change in

acceleration and defines how rapidly acceleration is perceived.

3.1 Filtering and Smoothing

Extracting higher level features from the tracking results, which are a collection of centre
location points collected from tracked image sequence or video, can be challenging. The
resulting matrix of centre locations of object over time is usable as such for checking
the position of the object at certain time, but, when higher level features such as velocity
or acceleration are needed, sub-pixel accuracy must be reached. Sub-pixel accuracy is
needed because trackers operate at pixel level accuracy, and in high-speed videos object
movement can be smaller than one pixel per frame advance. This causes large errors
when calculating velocities or accelerations for the tracked object, resulting in erratic

acceleration and deceleration curves, which are hard to read when evaluated.

The main goal for any experiment or test is to extract the information that quantifies the
phenomena. Noise is described as random errors that contaminate this information. It
is important to remove this noise as much as possible without weakening the underly-
ing signal or information [47]. “Filter” in common usage means a data processing al-
gorithm [48]. Filtering is used for many purposes, usually to remove unwanted noise
from measurements. A filter is an electronic circuit or algorithm that removes or atten-
uates some unwanted component or feature from a signal. Filters are used to eliminate
background noise, modifying digital images, and removing specific frequencies in data

analysis, among other things. [49]



34

Most of the signals which are measured in real situations get corrupted in some way or
another by some unwanted signals. For the purpose of signal processing and analysis, it
is imperative to get rid of these interferences, or at least reduce their effects. This can be

achieved by applying signal filtering techniques [49].

3.1.1 Moving Average

The moving average (MA) filter operates by averaging a number of points from the input
data to calculate the output. The data point to be filtered can be either from the start of the
averaging sequence or from the middle of the sequence so that the group of points to be
included in averaging are chosen symmetrically around the output point. Depending on
the implementation, end point(s) of the output signal cannot be smoothed because the span
cannot be defined for end point(s). Selecting the points symmetrically is more common

because it does not introduce a relative shift between the input and output signals. [50]

At the start of the dataset, the points get included one by one into the moving average
calculation until the full span window is achieved; similarly, at the end of the dataset,
the window for the moving average becomes smaller. At the last point, the moving av-
erage covers only that point because there must be an even number of samples on both
sides of the span. In general, moving average works by fixed number of points, adding
their ordinates together and dividing the result by the number of points. This approach
method attenuates peaks from data. One solution to preserve the peaks during smoothing

is discussed in Section 3.1.4.

In the moving average, y,() is the smoothed value for the ith data point which is calcu-

lated as:

ys(i):2N+1(y(z’+N)+y(i+N—1)+...+y(z‘—N)) (1)

where N is the number of neighbouring data points on both sides of y,(7), and 2N + 1 is

the size of the smoothing window, otherwise known as span. [51]

3.1.2 Kalman Filtering and Smoothing

A Kalman filter is an optimal recursive data processing algorithm. The system model of
the linear Kalman filter in Figure 13 shows how at each time step the state vector xy,

which is the estimate of the current true state, is extended to the new state estimation Xy,
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by multiplication with the constant state transition matrix A. The state vector X is fur-
thermore influenced by the control input vector uy,; multiplied by the control matrix B,
and the system noise vector wy1. A system state cannot be measured directly. Measure-
ment vector z; consists of the information contained within the state vector x; multiplied

by the observation matrix H, and the additional measurement noise vy. [52, 53]
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Figure 13. Kalman Filter System Model. A is a state transition matrix, B is a control matrix,
T_1 1s the latest estimate of the current state, and uy, is control vector [54].

Predicted state estimate ,cq;cteq 1S calculated as
Tpredicted = Axk—l + BUk, (2)

where A is a state transition matrix, x;_; is the latest estimate of the current state, B is a

control matrix, and wuy, is control vector. Predicted covariance P, ¢gicteq 18 calculated as
Ppredicted = APk—lAT + Q7 (3)

where Pj,_; is the latest estimate of the average error for each part of the state, 7' denotes

translation, and () is the estimated process error covariance. Innovation g is calculated as

,73 =2k — prredicted; (4)
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where 2, denotes the measurement at this time step, and H is the observation matrix.

Innovation covariance S is calculated as
S = HPyredgicteaH" + R, )
where I? is the estimated measurement error covariance. Kalman gain K is calculated as
K = Pyredicteal st (6)
Finally, the state update x; which is the new estimate of current position

Tk = Tpredicted + Kﬂ; (7)

is calculated by adding Kalman gain K into state prediction value Zp,cgicteq. Lastly, the

covariance update P is calculated as
Pk = (I - KKH)Ppredicteda (8)
where [ is identity matrix with ones on the main diagonal and zeros elsewhere.

The predefined values in the Kalman filter equation set are the state transition matrix A,
control matrix B, observation matrix H, estimated process error covariance matrix (),
and estimated measurement error covariance matrix 2. The inputs for the Kalman filter
calculations are the control vector U, and measurement vector Z; which contains the
measurements. The outputs from the Kalman filter are the estimate of the current true

state xy, and P, which is the estimate of the average error for each part of the state. [53]

The predictor predicts parameter values based on the current measurements. The filter es-
timates parameter values by using the previous and current measurements. The smoothing
algorithm estimates parameter values by using the previous, current, and future measure-
ments: that is, all available data can be used for filtering [52]. Future measurements can
be used because the Kalman smoother proceeds backward in time. This also means that

the Kalman filter needs to be run before running the smoother.

The process model models the current state at time k from the previous state at k-1. ()
is the process error covariance which contributes to the overall uncertainty. When () is
large, the Kalman filter tracks large changes in the data more closely than with smaller ().
The measurement error covariance R determines how much measurement information is
used. The Kalman filter considers the measurement not to be very accurate if R is high:

if R is smaller, then it follows the measurements more closely. [52, 53]
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Extended Kalman filter (EKF) is the nonlinear version of the Kalman filter. EKF has been
considered as the de-facto standard in nonlinear state estimation [55]. EKF uses first-order
terms of the Taylor series expansion of nonlinear functions. Large errors are introduced
when the models are highly nonlinear. Local linearity assumption breaks down when the
higher order terms become significant. For EKF, the three first steps of the process are:
linearising by Jacobian matrix, computing the predicted mean, and predicted covariances.
After these three simplified steps, the rest of the Kalman process calculates Kalman gain

and updates, with measurements, the state estimate. [55]

In Unscented Kalman Filter (UKF) [56], unscented transformation is used to calculate the
statistics of a random variable which undergoes a nonlinear transformation. It is built on
the principle that it is easier to approximate a probability distribution than an arbitrary
nonlinear function. In UKEF, the process starts with sigma point creation. Sigma points
are formed by selecting minimal set of carefully chosen samples that represent the state
distribution. After the sigma points creation, they are run through the process model
and, finally, transformed mean and covariance are computed. After these steps, the rest
of the Kalman process is similar to the last three steps of the EKF algorithm. UKEF is
highly efficient, has almost the same complexity as EKF, and only a constant factor slower
in typical practical applications. UKF achieves better linearisation than EKF, and it is
accurate in the first two terms of the Taylor expansion while EKF is accurate only in the
first term. UKF is derivative-free and there is no need to calculate the Jacobian matrix,

but the state estimation for nonlinear systems in UKF is still not optimal. [55, 56, 57]

3.1.3 LOESS, LOWESS and Robust Versions

LOESS (local regression) and LOWESS (locally weighted scatterplot smoothing) were
developed to enhance visual information on scatterplots by computing and plotting smoothed
points by using locally weighted regression [58]. LOESS and LOWESS are methods to
estimate the regression surface through a smoothing procedure. Estimation is done by fit-
ting a function inside a sliding window into the variables. The weight function in LOESS
and LOWESS works in such a way that the points closer to the curve play a larger role
in the determination of the smoothed values of the curve. Smoothed values are calculated
by fitting a polynomial of nth degree by using weighted least squares with certain weight
w; at point x;. Robust versions of LOESS and LOWESS give less weight to the points

further away from the curve than the standard versions. [58, 59]

As in the moving average method, each smoothed value is determined by neighbouring
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data points defined within the span, and the process is weighted since a regression weight
function is applied for the points included within the span. Robust weight function, which
makes the process more resistant to outliers, can also be used in addition to the regression
weight function. [58, 59]

The methods are separated by the regression model: LOWESS uses a linear polynomial
while LOESS uses a quadratic polynomial. This section considers the implementation
of LOWESS and LOESS methods proposed in [58]. Detailed explanations can be found
in [51]. If there are the same number of neighbouring data points available on each side
of smoothed data, the weight function is symmetric: if not, then the function is asym-
metric. Thus, unlike in the case of the moving average, the span never changes when
using LOESS, LOWESS, or their robust versions. This means that there can be phase
changes in the beginning and in the end of the data points before the centre of the window

is reached.

In LOESS the weight w; can be calculated as:

3
wi = (1— . )

d(x)

where z is the predictor value associated with the response value to be smoothed, x; are
the neighbours of z defined by the span, and d() is the distance from x to the most distant

predictor within the span [51].

Robust versions of LOESS and LOWESS add weights w; that are given by the bi-square

function defined as:

(10)

(1 - (r;/6MAD)®)? | Ir;l < 6MAD
w; =
0 , Ir;l > 6MAD,

where 7; is the residual of the ith data point produced by the regression smoothing pro-
cedure, and MAD is the median absolute deviation of the residuals: MAD=median (|r|).
The median absolute deviation measures how spread-out the residuals are. When 7; is
small compared to 6MAD, the robust weight is close to one. If r; is greater than 6MAD,

the weight goes to zero and the data point is excluded from the calculation. [51]

To calculate robust versions, the normal LOESS or LOWESS smoothing is calculated
first and then the robust weights are calculated according to Eq. 10. With the calculations
done, the data is smoothed again by using the robust weights. The final smoothed value is

calculated using both, the local regression weight and the robust weight. Robust weight



39

calculation and smoothing is then repeated for a total of five iterations. [51]

3.1.4 Savitzky-Golay

This section introduces the Savitzky-Golay (S-G) smoothing filter, also called the polyno-
mial smoothing or least-squares smoothing filter [49]. Savitzky-Golay smoothing reduces
noise while maintaining the shape and height of peaks. For Savitzky-Golay smoothing to
work, there needs to be at least as many data samples as there are coefficients in the poly-
nomial approximation. The Savitzky-Golay filter response of order N = 0 or N = 1 is

identical to the moving average filter response [47].

A Savitzky-Golay smoothing filter fits a polynomial to a set of input samples for each
input X, in a least-squares sense and uses the value of the polynomial at time n as the

filter output. A function f (x) describes a polynomial of order n:

K
fie(@) =Y bix' = boa® + by’ + bea® + ... + bra, (11)

i=0
where b;s are the coefficients in the polynomial. If N previous and M future samples are
used as the neighbouring samples, then the Savitzky-Golay filter finds b; coefficients that

minimise the term:
N

S (Xnei — fr(n—1))?, (12)

i=—M

where the polynomial value at time n is the filter output X, = frx(n). Thus, when the
polynomial describes the data accurately, there is minimal distortion in the curve. It has
been shown by Savitzky and Golay [47] that the filter can be expressed as a weighted

moving average filter:
N

Xo= Y aX,, (13)

i=—M
where the filtering coefficients a; are constants for all X,,. The coefficients a; can be
calculated using available algorithms or using available coefficient tables to check the

values for various ranges and polynomial degrees. [47]

Savitzky and Golay showed that, when one fits a polynomial to a set of input samples and
then evaluates the resulting polynomial at a point within the fitted interval, it is equivalent
to a discrete convolution with a fixed impulse response. Output from the Savitzky-Golay
filter is a zero phase so that the features of the signal are not shifted when the filtering

is applied. The smoothing effect of the Savitzky-Golay filter is not as aggressive as that
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of moving average, and the loss of signal information is smaller than with the moving
average [47, 49]. The idea behind the Savitzky-Golay smoothing filter is to find a filter
that preserves higher-order moments while smoothing the data. In particular positions,
heights, and widths of the peaks in the signal waveform are preserved [60]. The degree of
smoothing in Savitzky-Golay is controlled by the window size (span) and the degree of

the polynomial to be fitted into the data.

3.1.5 Total Variation Denoising

Total variation (TV) of a signal measures the changes in the signal between signal val-
ues. Total variation denoising (TVD) output is obtained by minimising a TV-based cost

function. It was developed to preserve sharp edges in the underlying signal. [61]

TVD was developed for image filtering and smoothing purposes. It is good for removing
noise from constant colour backgrounds but tends to remove also textures from textured
areas. Fine details in images can be lost due to filtering [62, 63]. There are versions
available which also correct these issues. This is done by adding a second round to the
filtering process. The first round is done normally, but on the second round, the filtering

is calculated again for the textured regions based on the loss of details. [64, 65]

TVD can introduce a staircase effect to the data on smooth slopes, the staircase effect in
this case meaning small flat regions in the slopes. These regions appear because the TV
regulariser promotes piecewise-constant behaviour. It is not usually the best denoising

method for more general piecewise-smooth signals. [62, 63]

TV for a digital N-point signal z(n), 1 <n < N is

TV (z) = Z:Q |z(n) —x(n —1)|. (14)

Assume that observed signal z is corrupted by additive white Gaussian noise n resulting
in signal y,
y=xz+n, y,z,necRY (15)

TV denoising approach estimates by finding the signal x minimising the objective func-
tion
J(x) =y —zll; + ATV ()], (16)

where the degree of smoothing is controlled by parameter A > 0. Increasing the A\ value
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gives more weight to the term that measures the fluctuation of the signal. Iteration count
is another variable in TVD and controls how many iterations the process will do if the

error criterion is not yet met in the algorithm.

3.1.6 Smoothing Trajectory Data

Position data that one gets from the trackers does not change until the object at hand has
moved enough to exceed a threshold, in this case, a pixel boundary. With high-speed
videos, pixel-based values might not be enough since the object can stay within a single
pixel region during multiple frame changes. This can also be the case for a slow moving
object in normal videos. These issues become problematic when accurate measurements
of velocities and accelerations are needed. There are situations where an object stays in
one place for multiple frames and then there is this sudden movement to another pixel
region. This shows as a peak in the acceleration and velocity curves. There is a need to
smooth these sudden movements, and this is where the filtering or data smoothing can

help.

The tracking noise from finger and hand-tracking data is not really real noise, but there
is a need to smooth the sharp edges that tracking on a pixel level causes to the tracking
data sequence. Sharp edges and whole pixel movements in the tracking data are the points

where the derivatives of position, velocity and acceleration start to fluctuate.

Tracked hand movement positions can be thought as a set of measures from the actual
hand movement trajectory containing a measurement error that is smaller than some vari-
able n. To get better results without filtering, there is need to get into sub-pixel tracking
with some marker which allows the tracker to calculate the exact tracked position at sub-

pixel level.

3.2 Camera Calibration

To get accurate measures from the images taken with a camera, there is the need to know
the camera parameters that define the image. The parameters are divided into intrinsic
(internal) and extrinsic (external) types. The intrinsic parameters contain a focal length,
principal point and image sensor format, which define the pixel size in x and y directions.
They link the pixel coordinates of an image point with the corresponding coordinates in

the camera reference frame. These parameters depend only on the camera characteris-
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tics. The extrinsic parameters contain rotation and translation. They define the location
and orientation of the camera reference frame with respect to a known world reference
frame. Extrinsic parameters depend only on the position of the camera. The camera cal-
ibration parameters can be calculated by known points in the images by using imaging
geometry. [66]

3.2.1 Imaging Geometry

The angle between the two rays back-projected from two points in the image can be
determined when a calibrated camera is used. Getting to know the intrinsic and extrinsic
parameters of the camera is crucial for calculating the corresponding world points from
the images. [67, 66]

The pinhole perspective projection model from the 15th century by Brunelleschi is still
mathematically convenient. Brunelleschi invented a small-aperture perspective device in
1425, and in his experiments, he was able to demonstrate that there is a vanishing point
in the three-dimensional space where specific lines of perspective converge in a point
furthest from the eye. [67]

Figure 15 shows, the basics of the pin-hole camera geometry. A pin-hole camera is de-
scribed by its optical centre (C), also known as the camera centre, and the image plane.
Focal length is the distance from the image plane to the optical centre C. Optical axis,
principal axis, or principal ray of the camera is the line perpendicular to the image plane
from the camera centre. The principal plane goes through the camera centre parallel to

the image plane of the camera. [66]

Figure 15 (a) illustrates the projection of the point M on the image plane. The projection
is done by drawing a line through the camera centre C and the point to be projected.
Figure 15 (b) shows the same situation in the YZ-plane, showing how similar triangles are
used to calculate the position of the projected point m on the image plane. The image point
being p = (u,v) and the scene point P = (X, Y, Z), perspective projection equations

u=fxX/Z,and v = f x Y/Z can be derived via the similar triangles rule.

Capital letters X,Y and Z are used to denote the world coordinates, and u and v are used
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Figure 14. Pinhole projection.

to denote image coordinates. The image plane coordinates can be computed as follows:

U fo 0 ¢\ (X
=10 f, | |Y ], (17)
1 0 0 1 Z

where f, and f, are the focal lengths in pixel units, ¢, and ¢, are the coordinates which
represent the principal point on the image plane, and X,Y and Z are the corresponding

world coordinates. The principal point is usually located at the image centre.

The full camera model containing the intrinsic and extrinsic parameters can be formed as

follows:

IS

Jo v e\ [ru T2 T3t
=10 fy cy||ru 7122 123 1ty

0 0 1 31 T32 T33 tz

: (18)

SN

= C[’f‘lT’QT’gt]P == C[Rt]P = CAL314P

where the value of v contains the skew, rotation parameters 7, define the image rotation,

and translation parameters ?, , . define translations.

Table 2 illustrates various image transforms. Translation contains two degrees of freedom
(DOF) and (rigid) Euclidean three, including rotation and translation. With higher degrees

of freedoms, Similarity has four DOF, including rotation, translation, and scale. With six
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Figure 15. Pin-hole camera geometry: (a) Projection of the point M on the XY-image plane; (b)
Projection of the point M on the YZ-image plane

DOF comes Affine transform, including rotation, translation, scale, aspect ratio, and skew.
Finally, there is also Projective transform with eight DOF, including rotation, translation,

scale, aspect ratio, skew, and perspective warp.

3.2.2 Position

Real world position can be calculated from the image coordinates or at least estimated
through different methods. The most commonly used method uses a stereo camera setup
where image from the same scene is taken simultaneously by two cameras that are aligned.
In this way, it is possible to find also the depth in the image. Because of the way that a
normal image is formed, it is impossible to find the depth from a single image. It is only
possible to estimate the depth from an image by using some scene points as reference

points, but for accurate measurements at least two views from the scene are needed.

The accuracy for the methods can be checked by evaluating the depths calculated from
the image against fixed real-world setting where the distances are known. The position
data tells where the object moves in real world or in pixel coordinates. With the position

information, it is possible to check where the features of interest are located.



Table 2. 2D image transformations.

Transform DOF Matrix form Image
U
Original Image (1) - v
1
a 0 0
Scale (s) 1 0 6 0|1
0 0 1
cosf sinf 0
Rotation (R) 1 —sinf cosf 0|1
0 0 1
1 0 a
Translation (t) 2 01 b1
0 0 1
cosf sinf a
Euclidean (R|t) 3 —sinf cosf b |1
0 0 1
acosf [eosh alacosf — bsinb)
Similarity (sR|t) 4 —asinf [cosh [B(asing +bceosh) | 1
0 0 1 I
ail a2 a3
Affine (A) 6 as1 a9 as3 I
0 0 1
a1 a2 a3
Projective (H) 8 as1 G asg | I
azy asz2 as3

3.3 Feature Extraction

45

Hand-tracking data can provide velocity, acceleration, position and accuracy measures

which can be calculated from 2D image points or from translated 3D real-world coordi-

nates. The following sections introduce the methods for calculating velocities, accelera-

tions, and features of interest from the tracking.

3.3.1 Velocity and Acceleration

The velocity of a moving object is calculated as the distance it travelled with respect

to time. The velocity in a given point is the movement of the object in pixels between

two consecutive frames. To calculate the distance between the sequences of frames the

Euclidean distance formula is used. Euclidean distance d in two-dimensional case is

calculated as

d(x,y) = /(w2 — 21)2 + (32 — 11)?,

19)
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where (1, y;) are the start-point coordinates, and (x5, y2) are the end-point coordinates.
Velocity can be negative or positive. The magnitude of velocity is speed, which can only

be positive. Velocity v can be calculated as

Ad  displacement 20)

T At change in time’

where Ad denotes displacement and At change in time.

Acceleration is the change of velocity between two measurements. Like velocity, it can
be calculated with a longer interval, but then there is also loss in the details of acceleration
data. Acceleration is the rate of the change in velocity; it is also a vector, as it implies a di-
rection. Negative acceleration is known as deceleration. Acceleration a can be calculated
as

Av  change in velocity (or speed)
a _

) 21

T At change in time

where Av denotes change in velocity.

3.3.2 Features of Interest for Hand Movement Analysis

Features of interest for hand movement analysis in this thesis come from goal-directed
aiming and a multiple-process model of limb control. The model is based on two-component
model of speed—accuracy relations in voluntary movement and consequences of a planned
movement. To find an accurate and fast movement to the target, the relationship between
movement speed and accuracy and the change in aiming behaviour between trials are

considered in the model. [68]

nteresting feature points (in time and space) in the hand movement are the moment of
the maximum velocity, maximal acceleration and deceleration. Points where deceleration
starts, as measured from the end point and/or from the starting position, also provide
useful information when defining the smoothness and continuity of the hand movement.
Also, the point where the movement stops and the accuracy of the movement hitting the
target are interesting. Earlier research on hand movements [68] in pointing actions has
shown that, in addition to the primary movement towards the target, there are corrective
sub-movements that one can observe from the acceleration or velocity changes during the

hand movement.

Figure 16 clearly shows that the movement is divided into two parts: primary and correc-

tive sub-movements. Corrective sub-movement is needed when the target is not reached
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or is overshot with the primary sub-movement [68]. Timing and relative positions of
these sub-movements are one part of the key features for the hand movement analysis.
According to earlier research, the deceleration part of the first sub-movement starts ap-

proximately 10 centimetres before the target [68].

Movement Events
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Pl Time Time I Interval
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Peak
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/ VAN |
/' '

Start of Signal to Movement
Trial Move Initiation

Peak
Deceleration

l

Processing Events
1) P———l|
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a) Specification of magnitude & timing of muscular forces; b) Formation of internal representation of expected efference; ¢ Formation
of internal representation of expected sensory consequences
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5) | |
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8) [&—|
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a) Processing of terminal feedback; b) Refinement of
strategy and intemal afferent and efferent representations

Figure 16. Multiple processing events associated with a single goal-directed movement. [68]
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4 EXPERIMENTS

In this chapter, the test environments and datasets are introduced. Parameters, perfor-
mance measures and evaluation methods used for each of the experiments are explained.
The results from various experiments conducted with selected evaluation methods and
performance metrics are presented. Tracking evaluation metrics are introduced and de-
scribed and the results are shown with the selected measurements. Filtering and smooth-
ing evaluation is explained and results are shown. The next section explains camera cal-
ibration procedure and the results. Finally, the section on measuring trajectory features
demonstrates computed trajectories, velocities and accelerations from tracked hand move-

ment.

4.1 Test Environment

Tracking, filtering, and smoothing performance tests were conducted using a desktop
computer with Intel i5-4570 CPU, 8 GB of memory, 1 TB Serial ATA (SATA) 3 7200rpm
Hard Drive, and a Linux operating system. The first dataset used in this research was
collected in various locations with different conditions during earlier high-speed hand-
tracking research [41, 42]; the second dataset was collected with a high-speed imaging
test-setup explained next. The focus of the second dataset was in the tracking of the
finger of the test subject. The high-speed imaging part and planning of the test setup
for the second dataset in this research were done in collaboration with POEM [10]. Hand
movements made during tests were recorded with a Mega Speed MS50K high-speed cam-
era [69], which was equipped with the Nikon 50mm F1.4D objective and C-mount adap-
tor. The camera was positioned on the right side of the test setup, and the distance to
the screen was approximately 1.5 meters. The lighting was arranged with the help of one
overhead LED light rack, with four LED modules including five power LEDs with a total
power of 60W, 85 cm above the table surface and 58 cm in depth. The test subject was sit-
ting at the distance of 65 cm from the touchscreen, and the trigger-box was placed 40 cm
away from it. The touchscreen was LG T1710 4:3, 177 with 1280x 1024 resolution. 3D
information was provided as stereoscopic 3D. The trigger-box contained a haptic dot to
define an accurate starting position for the test subject. The setup and its 3D construct can
be seen in Figure 17. For input sequence triggering and experiment control, a Microsoft

Windows operating system running on HP Z820 workstation with 3D GPU was used.

Finding the right settings for the second dataset, captured in the planned environment, was
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Camera

Figure 17. Test setup for high-speed sequence imaging.

done by testing different camera objectives, from 14 mm to 50 mm and zoom. Different
video frame rates were tested from 400 to 600 fps. Also, the different resolutions of
800x 600 and 1280x 1020 were included to find accurate enough testing videos for the

research. Light to the screen and around it was kept near 6000 luxes.

4.2 Datasets

In this section, two different datasets are introduced and the annotation process of the
ground-truth is explained. Dataset 1 is part of earlier research [41, 42]. Dataset 2 was

collected with the imaging environment described in Section 4.1.
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4.2.1 Dataset 1

Dataset 1 contained videos provided in [41, 42]. The dataset contains 6 videos with vary-
ing frame rates and situations. The video sequences are presented in Table 3. These videos
contain different scenes with various tasks and tracked targets varying from a thumbnail,
to a hand and a fingertip. The video sequence drawing contained originally only 47 an-
notations. For this research the video was re-annotated to have all the frames included in
the annotation. All other videos in this dataset were tested with the original annotations.

The number of ground-truth annotations used per video sequence is illustrated in Table 3.

Table 3. Video sequences used in Dataset 1.

Video Resolution Fps Target Posture  Frames/ Notes Colour
changes  Annotations

drawing [41] | 800x600 160 Thumbnail No 700/700 Drawing a stick fig- No
ure

drawing2 [41] | 640x480 30  Thumbnail No 136/28 drawing filmed with Yes
normal camera

touch2 [41] 640x480 80 Hand Yes 1101/56 Touching an object  Yes

finger2 [41] 720x574 250 Fingertip No 1328/54 Tablet gaming No

tablet2 [41] 640x650 250 Fingertip Minor 400727 Tablet gaming from No
different angle

cup [41] 640x480 80 cup Minor 325/33 Grab a cup and drink ~ Yes

Sample frames of Dataset 1 videos can be seen in Figure 18. The examples were taken
100 frames apart. The top-row images are from the cup video sequence, the second row
images from the drawing video sequence, the third row images from the finger2 video,
and the fourth row images from the tablet2 video sequence. The bounding-boxes defining

the target object region can be seen in the images as green rectangular regions.

4.2.2 Dataset 2

Test environment planning for Dataset 2 was done in collaboration with POEM [10], and
the execution of the imaging part was done by POEM using the environment described in
Section 4.1. Dataset 2 contained 6 high-speed videos with 800601 resolution recorded
at 500 fps. The 601 in the resolution is the result of one information row on the top
of the image. The row contains a time-stamp and other information about the imaging
situation. Table 4 summarises the dataset, which consists of videos with dark background
containing over 7000 frames of high-speed video material. Sample images of the Dataset

2 videos used in the experiments can be seen in Figure 19. The examples are extracted



51

Figure 18. The sample images are from Dataset 1 used in the experiments. The top row images are
from the Cup sequence, the second row images from drawing, the third row images from finger2,
and the fourth row images from the table2 sequence.
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from video sequences at frame 1000 of the respective videos A, B, C, D, E, and F. These
images illustrate the different end-points of the trajectories in this dataset. The start-point

for all the sequences was the same.

Table 4. Video sequences used in Dataset 2.

Video | Resolution Fps  Target  Posture changes Frames/Annotations
A 800x601 500 Fingertip Minor 1407/1407
B 800x601 500 Fingertip Minor 1319/1319
C 800x601 500 Fingertip Minor 1246/1246
D 800x601 500 Fingertip Minor 1208/1208
E 800x601 500 Fingertip Minor 1271/1271
F 800x601 500 Fingertip Minor 1086/1086

This dataset was used to test the trackers abilities to cope with a slowly moving object.
Videos contained a hand heading towards a monitor with relatively easy dark background
but with object movement which was less than one pixel per frame. Filming 1000 frames
with 500 fps produces only two seconds of real-time video, and, with 30 fps, which can
be considered as a normal speed camera, it would be only 60 frames. The motion between
frames in an ideal case should be at least one pixel to some direction so that it would be
quantifiable for the trackers. That is not always the case with high-speed videos and can

create challenges for the trackers and trajectory analysis.

4.2.3 Ground-Truth Generation

Ground truth is the desired tracking result. Generating the ground-truth is a time-consuming
process, and it can be very error prone. It is usually generated manually, but it can also
be formed automatically by using some gold-standard method [3], that is, a technique
that works nearly flawlessly for the data in question. The ground-truth annotation method
described in this section was used for annotating all the Dataset 2 videos and for re-
annotating the drawing video sequence from Dataset 1. Forming the ground-truth for
tracker performance evaluation was done by clicking the desired image region, which
was then zoomed in. This was done to make the next step more accurate. After zooming,
the fingernail edge line position was annotated as accurately as possible. The accuracy of
mouse movement with the selected zoom was 0.06 pixels, but, in a sub-pixel accuracy, it
is hard to tell whether the right position in each frame was clicked correctly or not. This
is why the accuracy of the ground-truth was assumed to be £0.5 pixels. In reality, the

accuracy of the ground-truth markings was found to be in the range of +0.2 pixels.
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Figure 19. The sample images are from Dataset 2 used in the experiments. The images were
all taken from frame number 1000 of respective videos A, B, C, D, E, and F. The ground-truth
bounding box-can be seen as a green rectangle in the images.
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Every 10th frame of the high-speed videos in Dataset 2 and every 5th frame of the Dataset
1 video drawing were annotated, and the annotations were interpolated using a spline
interpolation method to get the annotations for every frame. This was not done frame
by frame because it proved to be harder to see the differences during one frame change
and the ground-truth results were worse than with a 10-frame difference, in the sense
that there was much more fluctuation in the acceleration and velocity curves when the
annotations were made frame by frame. This is mostly explained by the fact that the
differences between frames are so small in high-speed video sequences that it is almost
impossible to see or pick the position where the object had moved in subsequent frames.
Also, the flickering light source added some noise to the image. These changes made the

tracking task harder even for the human eye.

4.3 Tracker Evaluation

Tracking a moving object from videos can be done with various tracking methods, but se-
lecting the most accurate and at the same time fast enough tracker for the purposes of this
thesis proved to be challenging task. Evaluating trackers for specific sequences is needed
when deciding which tracker to use for a specific video. This is because different kinds
of trackers usually work best in some particular situations, and a general, all-powerful

tracker is yet to be seen.

The performances of the selected trackers were compared against the ground-truth. The
comparison was done on position data of the tracked object and its velocity and accel-
eration, i.e., its different derivatives. The ground-truth was defined as the desired track-
ing result. Different types of error measures have already been established for tracking
evaluation: centre location error, bounding-box area overlap, normalised area overlap or
centre location error that takes the object size into account [13, 15, 7, 16, 4]. The most
common measure for the accuracy of the trackers is measurement of the distance from the
ground-truth centre point to the tracker’s centre point. This is known as the centre location
error. When success rate or tracking rate measures are used, a frame may be considered
correctly tracked if the predicted target centre is within a distance threshold of the ground-
truth. Ideas behind the error measures can be seen in Figure 20. The distance measure d
demonstrated in Figure 20 (a), explains the centre location error measure. Bounding-box
area overlap is demonstrated in Figure 20 (b). Scale changes of the target object, and how

they can affect tracking are shown in Figures 20 (a) and (b).

In this research, precision curves and average, mean, and standard deviation of centre
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Figure 20. Precision measures: (a) Centre location error; (b) Area overlap; (c) Object upscaling;
(d) Object downscaling.

location errors were used as the performance measures. Figure 21, illustrates what one can
achieve with precision curves and how different the tracking results shown for them can
be. The precision curves are formed with the precision on one axis and the centre location
threshold on the other. The centre location threshold starts from 0 and goes up to a set
number, in this research either to 10 or 25. This threshold defines the maximum centre
location error accepted. On the precision axis, the percentage of correctly tracked frames
at a given centre location error point are shown on the scale from zero to one, representing
the portion of correctly tracked frames at the given threshold. Precision curves are well
suited to situations where one needs to evaluate the accuracy and the tracking performance
at the same time. Also, a steep curvature tells that the tracker is relatively accurate, that
it is able to follow the tracked object with a minimal centre location error. Recently,

precision curves have been employed in several tracking papers [11, 12, 13].

In the evaluation of high-speed videos, the run-time or processing time of the trackers
became an issue. Frames per second (fps) measurements for most of the trackers in this
research were done by calculating the time needed for tracking while leaving out the
image loading, plotting results, or any other activities from the calculation. For some

trackers, this was not manageable: they had been implemented using C++, and it would
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Figure 21. Precision curve example. The top row shows the results of two trackers with the same
ground-truth data, and the bottom row shows the precision curves of those two.

have required many changes in the code in order to leave the image loading part outside
the time calculations.

During tracking tests, it was noted that, due to different randomisation factors for the
tracker initialisation, tracking results can change dramatically between the runs. That is
why the results shown in this thesis are averaged by running the trackers three times for

each sequence and using the same initialisation values for all the trackers.

4.3.1 Selection of tracker parameters

Most of the trackers were run with their default parameters set by their original authors,
but, for those trackers which performed well in the tests, the parameters were further tuned
when tests moved to Dataset 2. Explanation and the values used for all the parameters are

shown in Table 5. For the C++ implementation of struck, search areas were redefined
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to speed up the operation for Dataset 2. For the KCEF, the Dataset 2 tests were executed
by using the gray feature set, which gave faster execution time and also better accuracy.

Also, the padding value was decreased to speed up the method.

Table 5. The key parameters of the tracking algorithms.

Method Important parameters Used value (range)

CT [18], Learning rate 0.85 (0.7~0.95)

MIL [27] Search window size 20 (15~35)

Max no. of rectangle features 6 (4/6)

HT [23] Max scaling factor 1.0 (-)

IVT [25], Number of samples 400 (-)

LRS [35], Affsig [4.4,.02,.02,.005,.001] (-)

SRPCA [37] Batchsize 5()

Forgetting factor 1.0 (0~1)
Condenssig 0.01 (0~1)

KCF [11] Kernel gaussian (gaussian/linear)
Kernel Feature gray / hog (gray/hog)
cell_size 1/4(1~10)

Padding 0.25/1.5(0.25~2.5)

TLD [14] Min_win 20 (-)

Patchsize [17 171 (-)
Maxbbox 1(0~1)
Update_detector 1 (0/1)

STC [17] padding 1(0.25~2.5)
numer 5(2~10)
rho 0.075 (0.01~0.5)

RSCM [30] numsample 100 (50~500)
affsig [4.4,.02,.02,.005,.001]
rho 0.075 (0.01~0.5)

struck [33] searchRadius 10 (5~50)
svmBudgetSize 72 (20~200)
feature haar (haar /raw /histogram)
kernel gaussian

(gaussian/linear /intersection/chi2)

FCT [20] Learning rate 0.85 (0.7~0.95)

Sparse search window size 25 (15~35)
Sparse step size 5 (5~10)
Dense search window size 10 (5~15)
Dense step size 1(1~4)
Max no. of rectangle features 4 (2/4)
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4.3.2 Tracking results for Dataset 1

With Dataset 1 the purpose was to evaluate general hand/finger tracking capability of the
selected trackers in different environments. From the results shown in Table 6, it can
be seen how different sequences affect trackers’ performance. Overall, the best performer
with this dataset was struck with 96.8% correctly tracked frames, averaged centre location
error of 7.4 and standard deviation of errors 4.2 pixels, and average tracking speed of 85.5
frames per second. The second place went to HT with 92.1% correctly tracked frames,
and the third place to KCF with 87%. STC was the fastest method with average tracking
speed of 474 fps but struggled with almost all the videos in this dataset, managing only
50.6% correctly tracked frames. The second fastest method, KCF, was the third in terms
of overall accuracy and achieved 100% tracking rate for four out of six videos. The
hardest sequence for the trackers was touch2, with which none of the trackers’ achieved
100% tracking rate. The difficulty with that sequence is that the appearance of hand in
the scene changes a lot and one part of the background, an elastic mattress, can easily
confuse trackers when the hand slightly protrudes into the mattress. The easiest sequence
for these trackers was the drawing video, which is basically the same video as drawing2

but captured with higher frame rate and containing no colour information.

From the precision curves in Figure 22, the centre location threshold point where the dif-
ferent trackers start to achieve good precision can be seen. For two sequences, Touch2 and
Cup, full precision was not achieved with the location error threshold of 25 pixels. In the
drawing and tablet2 sequences, full precision was achieved with the centre location error
threshold of around 10 pixels for the best methods. For some sequences, the precision
curve is steep, and, for some, it is rising up slowly. Steep curves mean that the tracker
is accurate with the sequence. Slow rise in the curvature tells that the tracker might have
some fluctuation in the position. If 100% tracking result is not met, it indicates that the

target was lost.

4.3.3 Tracking results for Dataset 2

After the more general testing of trackers’ suitability for hand/finger tracking, Dataset 2
testing was conducted to find the best possible trackers for the purposes of this research.
Table 7 shows the results of trackers for Dataset 2. Tracking rate of 100% was met by four
of the trackers, struck coming first in overall results with the smallest centre location error
of 3.8 and standard deviation of errors 1.2. KCF was the second, with the respective val-
ues of 4.7 and 2.4, and STC third with the values of 4.8 and 2.7. Performance-wise, there
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59



60

Table 6. This table presents tracking results for Dataset 1. Frames per second (top left), percentage
of correctly tracked frames (top right), average centre location errors (bottom left), and standard
deviations of errors (in parentheses) (bottom right) for each method are shown in the cells. Best
results are shown in bold.

Video
Method cup drawing drawing2 finger2 tablet2 touch?2 average
CT [18] 95.6 78.1% | 64.0 100% | 132 100% | 113 100% | 107 11.5% | 128 25.5% | 107 69.2%
12.8 (12.5) | 12.5(3.2) 7.9 (5.0) 8.9 (5.6) 86.8 (49.8) | 80.5(61.3) | 34.9(22.9)
HT [23] 34 100% | 3.5 97.8% |45 100% | 4.4 100% | 4.6 100% | 3.4 54.5% | 4.0 92.1%
8.4 (3.2) 22.4(5.3) 10.7 (8.4) 7.9 @4.7) 9.0(5.3) 23.0 (8.7) 13.6 (5.9)
IVT [25] 58.6 25.0% | 53.7 100% | 58.0 37.1% | 60.1 100% | 54.3 96.2% | 57 41.8% | 56.9 66.7%
96.8 (87.3) | 2.1(1.3) 35.3(243) | 5.5(4.0) 153 (21.5) | 42.7(42.0) | 32.9 (30.1)
LRS [35] 75 100% | 7.4 100% | 6.9 29.6% | 6.7 92.5% | 6.7 61.5% | 6.7 673% | 7.0 75.1%
10.1 (6.7) 32(1.7) 51.1(35.2) | 15.1(9.7) 33.2(38.4) |47.1(59.0) | 26.6 (25.1)
MIL [27] 04 813% | 04 100% | 04 100% | 04 100% | 04 100% | 0.4 27.3% | 04 84.8%
12.7 (10.8) | 8.4(3.2) 11.8 (5.4) 114 (3.4) 8.4(4.9) 543 (424) | 17.8(11.7)
SRPCA [37] | 8.8 25.0% | 10.0 100% | 9.3  63% | 12.3 100% | 12.2 100% | 9.0  20% | 10.3 68.0%
36.6 (13.8) | 2.3(1.4) 26.5(26.6) | 5.3(3.8) 10.5 (6.1) 95.1(62.2) | 29.4(19.0)
TLD [14] 13.0 34.4% | 8.0 100% | 11.1 100% | 9.7 88.7% | 9.5 654% | 10 25.5% | 10.2 69.0%
37.9(20.3) | 4.5(2.3) 6.3(5.3) 15.8(11.6) | 27.6 (34.6) | 68.2 (58.0) | 26.7 (22.0)
FCT [20] 97.8 78.1% | 72.7 100% | 107 100% | 76.1 100% | 135 23.1% | 96 45.5% | 97.3 74.4%
16.8 (14.8) | 15.0(2.3) 13.9(5.5) 9544 65.5(39.8) | 26.5(15.0) | 24.5(13.7)
KCF [11] 153 75.0% | 239 100% | 235 100% | 245 100% | 242 100% | 86 47.3% | 200 87.0%
26.0(24.7) | 3.5(1.7) 6.3 (5.0 5.6 (2.6) 3.8(2.0) 52.2(48.6) | 16.2 (14.1)
RSCM [30] |22 87.5% |26 100% | 2.1 704% |24 100% |23 100% | 1.8 14.5% | 2.2 78.7%
15.1 9.4) 2.0(1.3) 19.2(23.2) | 3.8(2.3) 3.3(12.2) 111 (65.0) | 25.8(17.2)
STC [17] 316 3.1% | 873 100% | 816 66.7% | 389 88.7% | 257 30.8% | 194 14.5% | 474 50.6%
114 (69.1) | 4.8 (2.7) 26.8 (30.5) | 20.5(44.0) | 70.7 (63.1) | 130(71.8) | 61.2(46.9)
struck [33] | 42.9 87.5% | 63.7 100% | 68 100% | 75.2 100% | 51.8 100% | 40 92.7% | 85.5 96.7%
15.9 (8.5) 2.8 (1.3) 3.0 (1.2) 4.8 (1.6) 5.3 (4.0 12.2 (8.4) 7.4 (4.2)

were two methods that take advantage of FFT operations in their tracking algorithms.
They were ahead of others by achieving more than real-time performance for the given
sequences. STC was the fastest tracker with the average frame rate of 1649 and KCF the
second fastest with the average of 887 fps. Drifting from the finger tip to the knuckles
at the start of the tracking sequences in videos gave CT and FCT 0% correctly tracked
frames as the result. Nevertheless, they were still within reasonable centre location errors
and standard deviations as one can see from the results in Table 7. Trackers with major
changes in either centre location errors or standard deviation errors usually drift off com-
pletely from the finger tip and start chasing some background noise in the image. In the
case of CT and FCT, the drift from the finger-tip could have been corrected by carefully
adjusting the initial bounding box, but the sensitivity to the initial bounding-box would

make those two methods still fail in some videos.

The highest fps was measured for STC, which had over 1600 fps for some video se-
quences and for KCF which had the peak performance of around 1000 fps. Both achieved
processing speeds well over the videos’ frame rate, which was for these videos 500 fps.

For KCF, grey-scale features and smaller than the default padding and the adaption of the
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Table 7. This table presents tracking results for Dataset 2. Frames per second (top left), percentage
of correctly tracked frames (top right), average centre location errors (bottom left), and standard
deviations of errors (in parentheses) (bottom right) for each method are shown in the cells. Best
results are shown in bold.

Video
Method A B C D E F average
CT [18] 117 0.0% | 77.3 0.0% | 66.6 52.4% | 84.1 0.0% | 89.0 2.4% | 72.9 0.0% | 84.5 9.1%
50.1 (6.6) 51.1(6.6) 33.8(5.9) 653 (11.4) | 38.9(5.2) 51.2(7.1) 48.4 (7.1)
HT [23] 46 100% |47 100% | 4.8 100% | 4.6 100.0% | 4.6 100% | 4.5 100% | 4.6 100%
4.0 (2.0 44 3.2) 5.5@3.0) 4.7 (3.0) 542.7) 6.6 (3.75) 5.1(2.9)
IVT [25] 64.1 65% | 62.1 61.1% | 52.6 100% | 49.2 53.3% | 53.4 24.4% | 48.0 15.7% | 54.9 53.3%
41.5(52.0) | 41.3(53.2) | 9.2(3.9) 30.3 (19.7) | 361 (234) 448 (236) 155 (99.8)
LRS [35] 84 18.6% | 8.6 12.2% | 84 194% | 7.8 200% | 7.6 2.4% |78 157% | 8.1 14.7%
379 (242) 440 (281) 403 (223) 320 (170.1) | 317 (180) 455 (227) 386 (221)
MIL [27] 04 100% | 04 100% | 04 100% | 04 27.5% | 04 100% | 04 100% | 0.4 87.9%
49 (2.5) 6.0 (2.6) 4.6 (1.8) 38.0(23.4) | 3.3(1.5) 4.1 (2.0 10.1 (5.6)
SRPCA [37] | 11.9 27.1% | 9.2 100% | 11.6 100% | 11.2 100% | 11.8 24.4% | 11.1 68.5% | 11.1 70%
340 (229) 11.1(10.3) | 16.3(7.0) 17.3 (11.5) | 366 (236) 24.7 (15.7) | 129 (84.9)
TLD [14] 21.6 100% | 8.6 30.5% | 12.2 29.8% | 13.5 48.3% | 18.1 100% | 10.9 16.7% | 14.1 54.2%
4.9 (1.9) 115 (75.8) | 139(89.1) | 23.7(17.0) | 10.2(8.3) 110 (49.9) | 67.2(40.3)
FCT [20] 123 0.0% | 73.6 0.0% | 114 0.0% | 102 0.0% | 114 0.0% | 97.7 0.0% | 104 0.0%
53.4(8.4) 58.2(8.35) | 67.0(15.0) | 91.8(23.3) | 83.9(22.1) | 53.1(5.5) 67.9 (13.8)
KCF [11] 1107 100% | 813 100% | 1147 100% | 1131 100% | 1240 100% | 810 100% | 887 100%
42 (1.2) 6.5 (4.4) 6.3 (3.7) 4.0 (1.9) 24(1.1) 5.0(1.9) 4.72.4)
RSCM [30] | 3.0 0.0% |28 344% | 1.7 202% | 2.6 267% |26 213% |23 259% |25 214%
334 (158) 168 (125) 356 (204) 140 (96.1) | 258 (167) 69.8 (49.3) | 221 (133)
STC [17] 1700 100% | 1682 100% | 1664 100% | 1625 100% | 1605 100% | 1617 100% | 1649 100%
2.8 (1.1) 6.16 (5.10) | 6.5(3.3) 6.3 (3.3) 33 (1.7) 3.7(1.9) 4.8 (2.7)
struck [33] 129 100% | 115 100% | 118 100% | 96.7 100% | 110 100% | 110 100% | 113 100%
3.6 (0.8) 4.65 (1.31) | 3.9 (1.5) 4.1 (1.5) 2.5 (1.0) 4.1(1.0) 3.8(1.2)

FFTW (Fastest Fourier Transform in the West) [70] optimisation from STC’s source code
to optimise MATLAB’s Fast Fourier transform handling resulted in higher frame-rates.

That gave KCF a boost of around 300 fps for high-speed video sequences of Dataset 2.

The precision curves in Figure 23 for the high-speed video sequence dataset show that,
compared to the other dataset, the best trackers achieve 100% tracking rate with low
threshold values. Note that the location error threshold for these precision curves changed
from the maximum of 25 to 10 pixels because most of the trackers achieved high accuracy
with small thresholds in these sequences. For all the sequences, the precision of 100%
was achieved with the given location error threshold at least for some trackers. KCF, STC,
and struck achieved 100% precision with the smallest centre location error for most of the

test sequences in this high-speed video sequence dataset.
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4.3.4 Summary of the Tracking Results

The decision for the selection of the best trackers was made based on the speed and
precision. Precision differences in Dataset 2 were quite small, and tracking speed was
more important, considering that the purpose here was to track high-speed videos. The
algorithm speed for KCF and STC, both of which are based on FFT calculations, was
quite high when looking at the results of Dataset 1 and Dataset 2. In Dataset 1, KCF had
the average fps of 200 and, in Dataset 2, it was 887. STC had the average fps of 474 in
Dataset 1 and 1649 in Dataset 2. The overall winners in Dataset 2 were KCF and STC,
both of which performed better than real-time requirement with the high-speed videos,
and both tracked all frames of Dataset 2 videos correctly with a given threshold error.
KCF was selected for further study in this case because it had also done well in various
online benchmark trials like the visual object tracking challenge in 2014 [4]. Also, the
general level performance and adaption to different situations, as evidenced with Dataset

1, showed that the KCF algorithm can be used for a broader range of situations.

The fps measure used in the experiments was calculated without including the image
loading times in the calculations for all but two of the methods, struck and HT, both of
which are written in C++. The time spent on image loading can be considered to be
minimal when compared to the tracking procedures, but the error in frames per second
measures is hard to calculate because of the different implementations and compiling
procedures used. The image load time with MATLAB was on average 2.3 milliseconds.
This is not much, but when compared to the frame processing time of KCF algorithm, 1.1
milliseconds, it seems large. The KCF algorithm processing speed drops from an average
of 887 fps to 294 fps when image load time is added to the fps measurement. The image
load time of 2.3 milliseconds would also mean that the theoretical maximum processing

speed is 434 fps if the actual tracking process does not take any time at all.

4.4 Filtering Tests

Accuracy of selected filters was compared against ground-truth measures. The MATLAB
implementations of the filters introduced in Section 3.1 were used. Results with differ-
ent window sizes were compared to the ground-truth position, velocity and acceleration
curves. For filtering evaluation, the struck, KCF, and STC trackers were included based
on their good tracking results: . Filtering tests were done using Dataset 2. The data pro-
vided by the trackers was filtered with eight different filters and 90 filtering-window sizes.
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Window size in filtering means the number of samples included for one point-filtering.

The filtering-window size effect for mean location error and mean velocity errors for
Dataset 2 video A, tracked with KCF, is demonstrated in Tables 8 and 9. From the results,
it can be seen that robust versions of LOWESS and LOESS start to produce large errors
with larger filtering-window sizes. This leads to leaving out the robust versions of LOESS
and LOWESS from the rest of the experiments with filtering. Also, from the results, it can
be seen that some filtering methods produced the best results with the filtering-window
size 17, so further test were needed to find the best possible filtering-window sizes for
these filtering methods.

Table 8. Filtering window size effect on mean position error on Dataset 2 video A, tracked with
KCEF. 5.7068. Best results shown in bold and worse than unfiltered results are shown in italic.

Window size in frames
method 3 5 7 9 11 13 15 17
MA 5.7017 | 5.7002 | 5.6996 | 5.6995 | 5.6997 | 5.7002 | 5.7009 | 5.7019
LOWESS | 5.7068 | 5.7019 | 5.7007 5.7 5.6996 | 5.6995 | 5.6995 | 5.6996
LOESS 5.7068 | 5.7068 | 5.7032 | 5.7021 | 5.7013 | 5.7007 | 5.7002 | 5.6998
S-G 5.7068 | 5.7032 | 5.7019 | 5.7008 | 5.7001 | 5.6997 | 5.6994 | 5.6991
rLOWESS | 5.7068 | 6.0333 | 25.267 | 34.255 | 34.393 | 34.263 | 34.2397 | 34.0042
rLOESS | 5.7068 | 5.7068 | 25.320 | 27.780 | 34.391 | 34.256 | 34.1687 | 33.7751

Table 9. Filtering window size effect on mean velocity error on Dataset 2 video A, tracked with
KCF. Unfiltered value was 0.2648. Best results shown in bold and worse than unfiltered results
are shown in italic.

Window size in frames
method 3 5 7 9 11 13 15 17
MA 0.0977 | 0.0564 | 0.0461 | 0.0387 | 0.0375 | 0.0345 | 0.0336 | 0.034
LOWESS | 0.2648 | 0.0979 | 0.0601 | 0.0436 | 0.0359 | 0.0328 | 0.0312 | 0.0305
LOESS 0.2648 | 0.2648 | 0.1178 | 0.0862 | 0.0644 | 0.0515 | 0.0434 | 0.0381
S-G 0.2648 | 0.1179 | 0.079 | 0.0608 | 0.0503 | 0.0444 | 0.0397 | 0.038
rLOWESS | 0.2648 | 0.2306 | 0.5585 | 0.5276 | 0.6023 | 0.5948 | 0.6072 | 0.5483
rLOESS | 0.2648 | 0.2648 | 0.4938 | 0.4492 | 0.4863 | 0.4821 | 0.5025 | 0.4397

The results in Table 10 were calculated by averaging the results from all Dataset 2 trajec-
tories tracked with KCF tracker and searching for the best possible filtering-window size
in the range of 1 to 90 data points (frames). Filtering with Unscented Kalman Smoother
(UKS) and TVD is included for comparison. UKS was selected to represent Kalman
smoother algorithms since Extended Kalman Smoother and UKS produced similar re-

sults. Unscented Kalman smoother (UKS) results were obtained by making Kalman pa-
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rameter optimisations by hand, no automatic parameter-search algorithms were used. For
TVD, optimal \-parameter search was conducted before running the filter. Robust ver-
sions of LOESS and LOWESS were left out because they did not work well with this
large filtering window.

Table 10. Minimal mean and standard deviations of Position Errors (PE), Velocity Errors (VE),
and Acceleration Errors (AE) with different filtering methods. In parentheses is the filtering win-
dows size which gave the best result for the filter. Best results shown in bold.

Error Moving Average | LOWESS LOESS Savitzky-Golay | TVD UKS | unfiltered
Mean PE 4.9384 (3) 4.9383 (6) | 4.9364 (34) 4.9364 (27) 4.9509 | 49378 | 4.9410
Mean VE 0.0352 (17) 0.0336 (23) | 0.0331 (43) 0.0339 (37) 0.1569 | 0.0338 | 0.1595
Mean AE 0.0091 (83) 0.0075 (29) | 0.0076 (44) 0.0093 (85) 0.2262 | 0.0076 | 0.2298

std PE 1.3826 (6) 1.3824 (10) | 1.3781 (48) 1.3782 (37) 1.3984 | 1.3776 | 1.3969

std VE 0.0491 (15) 0.0468 (23) | 0.0456 (43) 0.0467 (35) 0.2615 | 0.0473 | 0.2654
std AE 0.0193 (86) 0.0163 (27) | 0.0161 (42) 0.0188 (85) 0.4504 | 0.0164 | 0.4542

The effect of using filtered position-data as a base can be seen in Table 11, where compar-
ison is made between unfiltered position-data and optimally filtered position-data while
filtering their derivatives. The results of Tables 10 and 11 can be directly compared, as

the same position-data was used for both.

Table 11. Minimal mean and standard deviations of Velocity Errors (VE), and Acceleration Errors
(AE) with different filtering methods. In parentheses after the name of the filter if applicable is
the filtering window size applied to position data, if it is missing then the filtering for position data
was not done for position data prior to filtering derivatives of it. Best results shown in bold and in
parentheses is the filtering windows size which gave the best result for the filter.

Error MA MA (3) | LOWESS | LOWESS (6) | LOESS | LOESS (34) SG S-G(27)
Mean VE | 0.0434 (19) | 0.0341 (13) | 0.0424 (24) | 0.0336(22) | 0.0425 (50) | 0.0332(36) | 0.0433 (39) | 0.0333 (25)
Mean AE | 0.0093 (83) | 0.0084 (41) | 0.0077 (32) | 0.0076 (28) | 0.0079 (60) | 0.0075 (27) | 0.0097 (85) | 0.0076 (29)
Std VE | 0.0601 (19) | 0.0476 (15) | 0.0588 (26) | 0.047 (22) | 0.0585 (50) | 0.0458 (34) | 0.0595 (37) | 0.0456 (17)
Std AE | 0.0193 (83) | 0.0178 (27) | 0.0164 (30) | 0.0163 (26) | 0.0163 (46) | 0.0161 (36) | 0.0191 (85) | 0.0162 (23)

For the three best tracking methods’ position data, optimal filtering windows were searched
by minimising the different errors, i.e., the position, velocity, and acceleration error.
Those varied from three points which is the size of the minimal filtering-window to 86
points, when 90 was the maximum filtering-window size for the tests committed. Opti-
mal filtering-window sizes varied from 3 to 34 in the case of position error minimisation.
For velocity error minimisation the size variation was from 17 to 43. Optimal filtering-
window sizes to minimise the acceleration errors were from 29 to 85. Changes in the
errors of position, velocity and acceleration relative to filtering-window sizes are illus-
trated in Figure 24. The results in the figure are calculated, with KCF tracker, by using

average errors of all the Dataset 2 videos.
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The filtering effects of three different window sizes on velocity curves can be seen in
Figure 25. The velocity data comes from a tracked hand movement sequence in Dataset
2 video C. The tracker used was KCF. Figure 25 shows how different window sizes affect
the velocity curves. The LOESS curves fluctuate the least with these window sizes. Also,
note that the curves are taken from the same point of the data but arranged to make it
easier to see the differences caused by different amounts of filtering applied. Therefore,
the curves are vertically shifted according to the filtering-window size used. The filtering
results for position, velocity, and acceleration curves generated by LOESS filtering, with
window size of 40 data points with Dataset 2 videos A, B, C, D, E, and F, are shown in
Figure 26.

Savitzky-Golay
Ground Truth

Velocity

Time

Figure 25. Filtering results of the same velocity curve with three different window sizes. The
curve on top has a window size of 7 frames, the curve in the middle has a window size of 23
frames, and the curve on the bottom has a window size of 41 frames.

From the results, it is obvious that different window sizes were optimal for each deriva-
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Figure 26. Filtering results with LOESS when using a 40 data points window size. Trajectory is
shown in yellow, velocity in green, and acceleration in cyan.
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tive of the position. The velocity and acceleration curves needed larger window sizes to
get better results than the position feature. LOESS filtering was the most stable in this
measure, with optimal filtering results from the filtering-window range of 34 to 48. The
problem with a large window size is that the position starts to drift off from ground-truth.
Therefore, filtering was performed after each stage of feature extraction. The position
was filtered with the average result of position feature optima. Velocities were calculated
from the filtered position results and then filtered again with smaller window sizes. For
the acceleration, again the same method was used, in other words, it was calculated us-
ing the filtered velocity and filtered again using a smaller window size. From the results
of filtering it can be seen that most filtering methods gain more out of filtering when
the derivatives are filtered separately. This applies to moving average, LOWESS and
Savitzky-Golay filtering methods, where the gains are reasonable. In the case of LOESS,

the gains were minimal or the results were almost the same.

4.5 Camera Calibration Tests

Camera calibration was done using 10 or 26 images taken from a fixed camera position
and A4-sized calibration pattern with a calibration grid where each block was the size of
1x1 inch. The calibration pattern board was held in different angles by a person, during
which video was taken using the high-speed camera from the scene so that it was possible
to image the calibration pattern from many angles. For the calibration procedure, the
toolbox available in [71] was used. The toolbox was constructed with the help of the
references available in the toolbox references website [72].

The calibration results shown in Table 12 were obtained using either 10 or 26 different
images from the calibration video. The same video sequence is used for both, but fewer
images were used from the set of available samples in carrying out 10 image calibration.
To make the reading of the results of the camera calibration easier, the following parame-
ters were used: focal Length fec, principal point cc, skew alpha,, distortion kc, and pixel
error err. The alpha,. parameter stayed the same 0.00 for each calibration round, meaning
that the angle of a pixel was 90 degrees. Distortion kc is a matrix of zeros after initiali-
sation but gets values after optimisation. The differences in the uncertainties reveal that

with 26 images the calibration results were more accurate.

The results show that the calibration of the camera was not yet really accurate with 10
images taken from high-speed video. After calibration with 26 images, the uncertainty

values approximately halved and the principal point got closer to the centre point. It would



Table 12. The calibration results.

Parameter Images Value

fcinitial 10 [2011.48, 2011.48]

cc initial 10 [399.50, 300.00]

fc optimised 10 [2038.17, 2035.90] £[44.11, 47.83]

cc optimised 10 [487.54, 237.41] £[67.86, 54.08]

kc optimised 10 [—0.128, 3.46, 0.004, 0.012, 0.0]
+£[0.213, 4.197, 0.011, 0.013, 0.0]

err optimised 10 [0.767, 0.744]

fcinitial 26 [1982.92, 1982.92]

cc initial 26 [399.50, 300.00]

fc optimised 26 [1999.89, 1997.94] £[17.88, 17.88]

cc optimised 26 [304.07, 333.45] £[25.53, 28.19]

kc optimised 26 [—0.023, 0.79, 0.007, 0.003, 0.0]
+[0.0621, 1.324, 0.005, 0.004, 0.0]

err optimised 26 [0.269, 0.192]
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be there if calculating with just pixel values, that is [400.0, 300.5], when the resolution of

800x601 was used. Figure 27 shows from where the actual calibration images were taken

in relation to the real world. The extrinsic camera illustration was calculated using the

calibration set with 26 images.

The results of camera calibration were used to calculate real-world measurements for

the trajectories computed from Dataset 2 videos. The results of speed and acceleration

measurements are shown in Appendix 1. The speed and acceleration measurements are

shown as a function of frames and as a function of distance to the touchscreen. The

distance was measured only on horizontal axis as the distance from the fingertip to the

screen surface. The movement starts from a start-point and moves towards an end-point

which is the screen surface (0-point). Depth in the sequences was assumed to be constant.
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Figure 27. The calibration patterns usage during calibration.
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S DISCUSSION

In this chapter, the results and information gained during this work are discussed. The
discussion starts with general notes that were made during the work conducted and then
moving to result analysis. Section 5.2 gives ideas for future research on this topic and on

how the results from this work could be applied there.

In the object-tracking field, the development of algorithms has seen major improvements
during the last 5 years. Trackers are getting more robust and more accurate than before.
Still, there are problems with targets that get occluded by some other object or subjected
to some dramatic illumination changes in the scene. The overall results of trackers against
online benchmarks are quite impressive, and it seems that there are new, faster and better
tracking methods coming out frequently. The recent developments in object tracking are
shown in various online object tracking challenges such as VOT 2013 and VOT 2014 [16,
4]. These results show that recent advances are significant and that the winners of the

challenge in 2013 were only reaching the average results level of the 2014 challenge.

5.1 Results

Tracking is still an unsolved problem for difficult cases like handling occlusions and com-
plicated backgrounds. Also, easier cases where the target is barely moving between the
frames proved to be difficult for some trackers trying to predict the movement of the object
between frames; when the object does not move between the frames, the tracker looses
the target because of these predictions. This is shown, in the experiment part of this work,

in high-speed videos with a black background.

Tracking results for Dataset 1 showed that there was no perfect tracker for more general
datasets with various scenes. The best performer in this dataset, struck, had 96.7% accu-
racy on average for all the videos. This required tracking four out of six videos with 100%
accuracy, the accuracy of 87.5% for the cup video and of 92.7% for the touch2 video. The
cup video in this dataset proved to be one of the most challenging videos mostly because,
in the start of the video, the cup in the video is almost completely occluded by hand.
Dataset 1 showed that the robust tracking methods were not robust for this dataset. This
could also have been due to the initialisation parameters used with the IVT, LRS, SRPCA,
and RSCM tracking methods because the number of samples used in the experiments was
limited to 400 for IVT, LRS, and SRPCA and to 100 with RSCM. This meant faster op-



73

eration but limited amount of positive and negative samples for the tracking methods to

use.

Tracking results for Dataset 2 showed that trackers might still have problems with videos
which seem to have a relatively easy dark background and no occlusions or lighting
changes. Yet, 4 tracking algorithms, HT, KCF, STC, and struck, achieved a 100% tracking
rate for Dataset 2. Parameter tuning for other trackers might have helped the situation,
but, as there was already a nice selection of trackers that performed well, the parameter

tuning was not done for the others.

Two tracking methods, STC and KCF, used in this work fulfilled the requirements for
real-time processing even for high-frame-rate videos. The availability of trackers which
satisfy the real-time requirement also for high-speed videos allows instant evaluation of
hand movement trajectories if there is enough memory bandwidth to get the data. The
high-speed videos presented challenges in the trackers’ accuracy when evaluating their
performance with different derivatives of position, velocity and acceleration. The ques-
tion of how to make the ground-truth as accurate as possible for high-speed videos came
up. Higher resolutions and precise markers for tracked positions would help the manual
ground-truth annotating process. Without high resolution footage and markers, selecting
the exact same position of the finger for each tracked frame proved to be a challenging
task and could have the accuracy of only 0.5 pixels. With the Dataset 2 videos, this would

roughly translate into 0.5-1 millimetres accuracy in real world units.

Filtering with the derivatives of position helps to get more meaningful results out of the
trajectory. Without filtering, the acceleration curves of trajectories were unclear and ob-
scured the force behind the real movement. When enough filtering was applied to the
data, the results started to correspond with the ground-truth results and made a lot more

sense to look at, thus helping the analysis of the real accelerations behind the movement.

From the experiments, it can be seen that with enough filtering applied to tracking data
one can find the underlying acceleration and velocity values. Filtering position-data only
was not enough for most of the filtering algorithms, but when filtering was applied also
to the velocity data obtained from filtered position-data the velocity curve smoothed out
much closer to the ground-truth data, which itself had some fluctuation. The best filtering
methods for tracking data were LOESS and UKS, both of which got good results out of

the tracking data even without additional velocity or acceleration component re-filtering.

The position of maximal speed on the trajectory provides information about how confident

the hand movement is. The acceleration curve tells us how the target was reached and
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Figure 28. Four images with filtered trajectories with velocity and acceleration curves. Trajectory
is plotted with green, velocity with cyan, and acceleration with yellow colour: (a) Video A; (b)
Video B; (¢) Video C; (d) Video D

whether corrective sub-movements in the trajectory were needed. What was interesting
to see from the results was how different target positions affect the commitment of the
hand movement towards the screen and how accurate the hits on the target position were.
Corrective sub-movements tell about hesitation in the trajectory. The results in Figure 28
show that, at the end of the trajectories, there are corrective sub-movements which can be

seen as changes in acceleration in the images.

5.2 Future work

The tracking performance of two trackers in case of Dataset 2 surpassed real-time re-
quirements when the image-loading times were not included into the calculations. It
would be interesting to see how Solid-State Drive (SSD) would change the MATLAB
image-loading time, which was 2.3 milliseconds with normal 1TB 7200rpm HDD. Also,
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it would be interesting to see whether the use of SSD would enable real-time tracking of

high-speed videos when the image-loading times are included.

Smoothing the trajectories produced by the trackers gave good results for the derivatives
of the position, velocity and acceleration, but sub-pixel accuracy for video sequences
which require precision could be another alternative way. Sub-pixel accuracy usually
requires some kind of marker from which one can calculate an accurate position for the
object. By having more accurate positions of the object, one would not need to smooth
the trajectories and more accurate results also for the velocities and accelerations of the

moving object would be generated.

Ground-truth annotation process proved to be a hard undertaking. Some gold-standard
method for sub-pixel tracking with the use of a marker would probably make the annota-
tions better and more accurate. There could be room also for a new tracking performance
measure such as normalised sum or average of bounding-box corners’ distance from the
ground-truth. That could help differentiate trackers which really follow the state change
of the object and would help to identify trackers that can update the scale of the object
being tracked. The videos used in this work did not have large scale changes, but adapting
to the scale changes on sub-pixel level could help to make the tracking process even more

accurate.

Automatic Kalman filter parameter selection was out of the scope of this research. It
would be interesting to see if the Kalman filter or smoother with optimal parameters
would perform better than it did with manually selected parameters in this research. With
automatic parameter selection, Kalman filtering could be easier to use than LOESS. The

Kalman filter would enable filtering the results in real-time.

Including a multi-camera setup for research like this would make 3D data option available,
and it would be interesting to see how filtering and feature extraction would work with
3D data, and how much the hand would move in the depth direction during the corrective
sub-movement part. In this work, the movement was assumed to be linear in the depth

direction.
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6 CONCLUSION

In this thesis hand tracking in high-speed videos, and post-processing and analysis of
the tracked hand trajectories were studied. The results showed that objects in high-speed
video feeds with almost black background can be tracked in real-time with two current
trackers. For this research, this meant reaching speeds of 887 (KCF) and 1649 (STC)
frames per second on average for Dataset 2 test video sequences which were recorded
at 500 frames per second. Thus, the trackers reached speeds well over real-time speeds.
Even though the performance evaluation for trackers in this setup did not include the
image-loading times, 2.3 milliseconds on average per image with MATLAB, the results

are still impressive.

Filtering helps to find smooth acceleration curves to allow us clearly see where the mo-
ments of maximum and minimal acceleration are. With a right amount of filtering, the
velocity and acceleration features of the trajectories got closer to the ground-truth. Two
filtering methods, LOESS and UKS, produced the most consistent results for all the tests.
Selecting one method as the winner came down to the question of which is the simpler
one to use, and that happened to be LOESS. To conclude, with filtering and smoothing
the hand-tracking data, it is possible to get to the underlying characteristics of the real

movement sequence.

The results provide observations about the suitability of tracking methods for high-speed
hand tracking and about how filtering can be applied to produce more appropriate velocity

and acceleration curves calculated from the tracking data.
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Appendix 1. Dataset 2 Results
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Figure A1.1. Dataset 2 video A: speed and acceleration curves as a function of frames and distance
to the screen.
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Appendix 1. (continued)

Speed Acceleration
900 T T T T T T T T T T T T T 15 T T T T T T T T T T T T T
800 b
700} ] 10y 1
600 1 «
%)
%] E 5’ 7
€ 500- 1 E
£ 5
k] k=3
©
%400— {1 o
7] [)
g 0 1
©
3001 k!
200 E sl ]
100 1
0 . . . . . . . . . . . . 10 . . . . . . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000 11001200 1300 0 100 200 300 400 500 600 700 800 900 100011001200 1300
frame frame
Speed as a function of distance Acceleration as a function of distance
10 B
~
1%
Es ]
c
o
2
©
Ko}
[
S
g 0
5_
. . . . . . . . . . . . . . . . . . . . . .
165 150 135 120 105 90 75 60 45 30 15 O 165 150 135 120 105 90 75 60 45 30 15 O
Distance mm Distance mm

Figure A1.2. Dataset 2 video B: speed and acceleration curves as a function of frames and distance
to the screen.
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Speed Acceleration
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Figure A1.3. Dataset 2 video C: speed and acceleration curves as a function of frames and distance

to the screen.
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Figure A1.5. Dataset 2 video E: speed and acceleration curves as a function of frames and distance
to the screen.
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to the screen.
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