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ABSTRACT	

Ming Li

Stiffness based trajectory planning and feedforward based vibration suppression
control of parallel robot machines

Lappeenranta 2014
116 p.
Acta Universitatis Lappeenrantaensis 611
Diss. Lappeenranta University of Technology
ISBN 978-952-265-702-2, ISBN 978-952-265-703-9 (PDF)
ISSN 1456-4491, ISSN-L 1456-4491

The dissertation proposes two control strategies, which include the trajectory planning
and vibration suppression, for a kinematic redundant serial-parallel robot machine, with
the aim of attaining the satisfactory machining performance.

For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set
of trajectories in the robot's joint space are generated based on the best stiffness
performance of the robot along the prescribed trajectory.

To construct the required system-wide analytical stiffness model for the serial-parallel
robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation.
The modified method is an evolution of Gosselin's lumped model that can account for the
deformations of a flexible link in more directions. The effectiveness of this VJM variant
is validated by comparing the computed stiffness results of a flexible link with the those
of a matrix structural analysis (MSA) method. The comparison shows that the numerical
results from both methods on an individual flexible beam are almost identical, which, in
some sense, provides mutual validation. The most prominent advantage of the presented
VJM variant compared with the MSA method is that it can be applied in a flexible
structure system with complicated kinematics formed in terms of flexible serial links and
joints. Moreover, by combining the VJM variant and the virtual work principle, a system-
wide analytical stiffness model can be easily obtained for mechanisms with both serial
kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a
kinematic redundant serial-parallel robot machine is constructed based on integration of
the VJM variant and the virtual work principle. Numerical results of its stiffness
performance are reported.

For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a
prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as



the constraint in the joints trajectory planning in the dissertation. For a prescribed
location of the end-effector, the robot permits an infinite number of inverse solutions,
which consequently yields infinite kinds of stiffness performance. Therefore, a
differential evolution (DE) algorithm in which the positions of redundant joints in the
kinematics are taken as input variables was employed to search for the best stiffness
performance of the robot. Numerical results of the generated joint trajectories are given
for a kinematic redundant serial-parallel robot machine, IWR (Intersector
Welding/Cutting Robot), when a particular trajectory of its end-effector has been
prescribed. The numerical results show that the joint trajectories generated based on the
stiffness optimization are feasible for realization in the control system since they are
acceptably smooth. The results imply that the stiffness performance of the robot machine
deviates smoothly with respect to the kinematic configuration in the adjacent domain of
its best stiffness performance.

To suppress the vibration of the robot machine due to varying cutting force during the
machining process, this dissertation proposed a feedforward control strategy, which is
constructed based on the derived inverse dynamics model of target system. The
effectiveness of applying such a feedforward control in the vibration suppression has
been validated in a parallel manipulator in the software environment. The experimental
study of such a feedforward control has also been included in the dissertation. The
difficulties of modelling the actual system due to the unknown components in its
dynamics is  noticed.  As a solution,  a back propagation (BP) neural  network is  proposed
for identification of the unknown components of the dynamics model of the target system.
To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can
utilize an experimental input-output data set of the entire dynamic system is introduced in
the dissertation. Validation of the BP neural network and the modified Levenberg-
Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a
second order system parameters estimation, and a friction model estimation of a parallel
manipulator, which represent three different application aspects of this method.

Key words: parallel robot, serial-parallel robot, hybrid robot, stiffness modelling, trajectory
planning, vibration suppression, feedforward control, dynamic parameters identification, artificial
neural network, Levenberg-Marquardt algorithm, matrix structural analysis, virtual joint method,
differential evolution.
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INTRODUCTION	

1.1	Background	and	Motivation	

The research work presented in this dissertation arises from control strategy development
for a hybrid serial-parallel kinematic redundant robot machine, the IWR (Intersector
Welding/Cutting Robot) used for the ITER (International Thermonuclear Experimental
Reactor) vacuum vessel (VV) assembly and maintenance [1]-[4]. The elements of the
control strategy discussed in the dissertation mainly encompass two aspects: trajectory
planning in the joint space for a prescribed trajectory of the robot end-effector and a
feedforward control method used to suppress chatter vibration of the robot during the
machining process. The aim of the work is to obtain better machining and handling
performance to meet the demanding requirements of ITER VV manufacture.

Fig.1  shows  ITER's  vacuum  vessel,  which  presents  a  toroidal  form  from  an  overall
perspective and consists of nine sectors from the manufacturing point of view.

a) Vacuum vessel of ITER b) Sector

Fig.1 Vacuum vessel of ITER. (19 meters across by 11 meters high.)

There exists an approximate 60 mm wide gap between any two adjacent sectors of the
vacuum vessel when all the sectors have been placed together in preparation for further
assembly work. In order to join the adjacent sectors together seamlessly, a mobile robotic
machine that can carry out the welding and machining work over the gap area from inside
the VV would appear to be the most promising solution.

To achieve such a task, the robotic machine must possess multi-function capabilities,
which include the integration of the handling functions for a heavy splice plate, heavy
TIG (tungsten inert gas) welding tool set and laser welding tool set, and the milling,
drilling and threading functions on hard materials and parts, such as the stainless steel
and tungsten stuffing slice.
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According to the manufacturing requirements of ITER VV, the positioning tolerance for
material handling is required to be under + 0.1 mm for a handling payload that may reach
around a maximum of 150 kg; concurrently, to guarantee a satisfactory machining
surface quality over the welded area, the trajectory tracking accuracy of the cutting tool
bit is expected to be under 0.01 mm for machining work implemented on hard splicing
materials; and the workspace of the machining device should reach all the inner surface
of the VV sector.

To meet these stringent requirements in the manufacture of ITER VV, a hybrid serial-
parallel 10 DOF robot machine – IWR (Intersector Welding/Cutting Robot) – has been
developed in the Laboratory of Intelligent Machines, Lappeenranta University of
Technology, Finland, who is also one of the official European Union participants in ITER.

To be able to handle the heavy materials involved and produce a satisfactory finished
result when machining the complex contoured inner surface of the VV sectors, the key
requirements of high payload ability, high stiffness performance and high dexterity have
to be taken into account and embraced in design of the robot machine, IWR. To meet
these aims, a well-known parallel structure – the Stewart platform – was adopted as the
front-end of IWR, which is hydraulically driven in view of the heavy payload ability
required and the need to be contamination-free. Such platform inherits the intrinsic high
stiffness characteristics of a parallel structure and can provide 6 DOF motion to the end-
effector, which endows the robot with the dexterity needed to machine free-from surfaces.

To overcome the weakness of the small workspace intrinsic to this parallel platform
structure and thus meet the large workspace requirement of manufacturing the ITER VV,
a compact 4 DOF serial structure based carriage was added, to which the Stewart
platform is attached. Fig.2 shows the prototype of IWR and its in-situ working position.

1. Vacuum vessel sector   2. Hybrid robot   3. Track  4. Carriage base  5. Moving plate   6. Rotation
table   7. Stewart base  8. End-effector
a. Driving motor on track   b. Linear movement motor for moving plate   c. Rotation drive motor   d.
Tipping driven cylinder   e. Stewart driving cylinder

Fig.2 10DOF IWR for assembly and maintenance of ITER VV: (i) vacuum vessel
sector and (ii) robot used for the assembly and maintenance of vacuum vessel

a

b

6

c

d

e
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The serial structure based carriage is mounted on a track equipped with racks, which
forms a closed loop path around the inner surface of the sector. The 4 DOF carriage
consists of the following motions: travel along the racks, driven by pinion; linear
movement perpendicular to the racks, driven by ball screw; rotation around the direction
vertical to the carriage plane; and tipping of the Stewart base by a hydraulically driven
cylinder.

It  is  well  known  that  to  achieve  the  best  surface  finish  in  a  machining  process  on  a
freeform surface, a 5-axes synchronized interpolation for the prescribed trajectory is a
necessary requirement of the end-effector of the robotic machine. This demand however
can be easily fulfilled by the 6 DOF Stewart platform. Indeed, the IWR possesses a total
of 10 DOF in the driving joints, which presents a redundancy in the inverse kinematics
for the prescribed trajectory. The issue thus arises how to solve the redundant inverse
kinematics in the control strategy of such a robot machine.

On the other hand, although the parallel structure of IWR can generally provide high
stiffness to its end-effector, the overall stiffness performance of the whole robot machine
is dominated by the serial carriage, the stiffness of which can be quite low in some
particular poses. The Stewart structure can also exhibit a low stiffness character under
certain poses, such as in the pose of fully stretched out driving limbs. It is known that for
a machine tool, stiffness is a very important factor in the attainment of good positioning
accuracy, good surface finish and long cutting tool life, and thus, the stiffness
performance must be taken into account and optimized in the control strategy of IWR.

Therefore, to accomplish a prescribed trajectory, it would be the best solution to conceive
a control strategy that can not only solve the problem of redundant inverse kinematics in
the trajectory planning in the joint space, but can also optimize the overall stiffness
performance of the robot machine. The redundant kinematics of the robot implies that for
a given location of end-effector, there exist multiple inverse kinematic solutions for the
position  of  the  driving  joints  that  can  form  the  various  poses  of  the  robot.  Since  the
stiffness performance of IWR depends on the pose configuration of the robot, the
stiffness can then be regarded as an objective of a cost function for an optimization in
which the various poses, namely the position of redundant joints, are regarded as input
variables. Therefore, the trajectory planning described in this work views the concept as
follows: for the prescribed trajectories of end-effector in the station frame of IWR, the
corresponding driving joints position values in the joint space of the robot are generated
based on the determination of the driving positions of redundant joints, which are
generated based on optimizing the overall stiffness performance of IWR.

Since the IWR carries out a machining task on hard material (tungsten), the cutting force
is considerably larger than on commonly used materials such as aluminum, steel etc. The
varying cutting force required for such machining causes chatter vibration in the end-
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effector during the machining process, which not only leads to a deterioration in the
trajectory tracking accuracy, but also jeopardizes the functional life of the cutting tool
and the robot's passive joints as well as damaging the welded area in the VV sector.

Based on the stiffness optimized trajectories generated in the joint space, the control
strategy needs to be further investigated to ensure that it is able to suppress the chatter
phenomenon during the machining process. Feedforward compensation control, in which
the external cutting force exerted on the tool bit is obtained and fed forward into the
corresponding driving joints for driving force compensation, using an inverse dynamics
model is a promising solution to achieve such an aim. The resulting extra output force on
the end-effector will cancel out the effect of the corresponding cutting force. The critical
issue in this feedforward method is accurate construction of the inverse dynamics model
of the robot. Thus, the question of how to construct an accurate inverse dynamics model
for such robot machines must be studied.

1.2	Objectives	of	the	Study	

The objective of the study consists of the following two parts:

a. To solve the redundant inverse kinematics problem for the prescribed trajectories of the
end-effector of IWR and generate a set of feasible trajectories in the robot driving joint
space. The maximum stiffness performance of IWR is taken as the optimization objective
for the generation of joint trajectories so as to guarantee optimal machining performance
from the static point of view.

b. To develop a control strategy to suppress chatter vibration in the end-effector of IWR
during the machining process and thus ensure a satisfactory finished surface from the
dynamic point of view. To meet this aim, an effective feedforward force compensation
method needs to be developed.

1.3	Contributions	to	the	Field	

The main contribution of this dissertation work lies in the development of control
strategies for a redundant kinematic robot machine that aim to deliver optimal machining
performance. The definition of control strategies in the dissertation straddle two aspects:
1. trajectories planning/generation in the joint space when a prescribed trajectory of the
end-effector of the robot is given; 2. a feedforward control strategy for trajectory tracking
that is used in addition to feedback control to suppress chatter vibration caused by
external disturbance forces.

Specifically, the contribution consists of the following original contributions, which were
developed in the course of the dissertation work:
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a. A method of constructing an analytical stiffness model for a hybrid serial-parallel robot
is proposed. A variant of the virtual joint method (VJM) is developed for stiffness
calculation of flexible links. The principle of virtual work is employed to evaluate the
stiffness for combined structures – the serial-parallel robot -- based on the component
stiffness computed by VJM. The final obtained stiffness model for the hybrid serial-
parallel robot is analytical- and computation-efficient and can easily be used for stiffness
evaluation in any deflection direction as well as in stiffness optimization for redundant
kinematics robots.

b. A new idea for trajectories generation in the driving joint space of redundant
kinematics robots is introduced for cases when the prescribed trajectory of the robot end-
effector is given. The trajectories in the joint space generated are termed maximum
stiffness trajectories in the dissertation, are determined by the positions of redundant
driving joints, and are obtained by optimizing the system-wide stiffness performance of
the robot machine.

c. A feedforward control strategy that is based on the derived inverse dynamics model of
a parallel manipulator is developed to suppress vibration phenomena of the end-effector
of the robot caused by varying external disturbance forces. The disturbance force exerted
on the end-effector of the robot is fed forward into the controllers of the joint actuators,
which consequently yield an additive compensation driving force against the effect of
disturbance.

d. A modified Levenberg-Marquardt (LM) algorithm is introduced for training of the
back propagation (BP) neural network in the dissertation. A new concept of utilizing the
BP neural network to identify the unknown components of the dynamics of the
mechanical system is proposed based on the modified Levenberg-Marquardt algorithm.
Such a modified LM algorithm can utilize the input-output data of the whole dynamics
system to train a BP neural network constructed to approximate the unknown parts of the
whole system. An accurate inverse dynamics model of a parallel manipulator is derived
by incorporating the neural network into the model when the friction models of the joints
in the inverse dynamics of the parallel manipulator are deemed as the unknown
components.

1.4	Organization	of	the	Dissertation	

The dissertation consists of two parts: the first part constitutes the larger part of this
dissertation and gives an introductory overview of the subject  of study and presents the
findings of the research; the second part is composed of two original peer reviewed
scientific journal papers and three peer reviewed conference papers.

For better understanding of the dissertation, the structure of the first part of the
dissertation, which consists of five chapters, is briefly described
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In chapter 2, the theoretical background of this dissertation is introduced. The chapter
consists of four sub-sections, which cover four different topics, namely: stiffness
modelling, trajectory planning, vibration suppression and dynamic model identification.
A short literature review of the state-of-the-art of theoretical knowledge of these topics is
given, and related innovations presented in the dissertation are introduced.

In chapter 3, stiffness based trajectory planning in the robot's driving joints is introduced
for a prescribed trajectory of the end-effector of IWR. The stiffness model of the hybrid
robot machine is investigated by employing matrix structural analysis (MSA), a variant
of VJM and the virtual work principle. Numerical results of stiffness performance over a
specified workspace of IWR are given. By employing a differential evolution (DE)
algorithm in which the stiffness performance is taken as the optimization objective,
feasible trajectories in the robot's driving joints are generated, along which the maximum
stiffness performance of IWR for the prescribed trajectory of end-effector is obtained.
Numerical results of the trajectories generated in the driving joints' space are also
presented.

Chapter 4 introduces the feedforward control strategy for vibration suppression of the
robot machine, which is constructed based on an inverse dynamics model of the target
robot. A case study for application of the proposed feedforward strategy with a parallel
manipulator is given. Issues related to construction of accurate inverse dynamics models
of such robots in practice are discussed in this chapter. To identify the unknown parts of
the  dynamics  system,  a  new  BP  neural  network  structure  is  proposed,  and  a  modified
Levenberg-Marquardt (LM) algorithm is introduced for training of the BP neural network.
For validation of the effectiveness of the proposed neural network and the modified LM
training algorithm, three examples from different application points of view are presented.

Chapter 5 concludes the dissertation and proposes further research directions.
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STATE	OF	THE	ART	--	THEORETICAL	BACKGROUND	AND	PROPOSED	

METHODS	

The theories applied in this dissertation relate to four different areas. The stiffness based
trajectory planning comprises elements of both stiffness modelling theory of mechanical
systems and trajectory planning theory of robotics. Additionally, algorithm-based
differential  evolution  (DE)  from  the  discipline  of  soft  computation  is  employed  in  the
trajectory planning process for optimization of the stiffness performance. For vibration
suppression control of the robotic machine, robust control theory is mainly employed. A
feedforward control strategy is utilized, the premise of which is successful application of
an  accurately  constructed  inverse  dynamics  model  of  the  robot  system.  Thus,  dynamic
model identification theory is introduced due to the existence of unknown components in
the  practical  robot  system.  As  a  solution  for  the  dynamics  model,  the  application  of  an
artificial neural network and its training algorithm for identification and approximation of
the dynamic system are investigated.

2.1	Stiffness	Modelling	

Stiffness modelling theories of mechanical systems can be divided into two broad
categories: matrix structural analysis (MSA) based methods and Jacobian matrix based
methods [5]-[12][70]. The finite element method (FEM) can be used to compute the
deflections of a mechanical structure if the external force is given, but it cannot obtain the
analytical stiffness matrix/model directly, thus it is often used to validate analytical
stiffness models constructed by MSA or Jacobian methods [13]-[16].

· Matrix structural analysis and Jacobian methods

In the MSA method, a mechanical structure is divided into several elements and nodes.
By applying the superposition principle, a final analytical stiffness matrix can be formed
by assembling all the stiffness matrices of the elements in an order that reflects the
relationship between the external force being exerted on the nodes and the corresponding
deflections of the nodes [17][18]. Clinton et al. (1997) have used the method to derive a
system-wide stiffness model of a Hexapod milling machine, and the modelling results
present a 9.0% error compared with experimental measurements [19]. The most probable
reason for the error is the postulation that the entire structure of the Hexapod machine can
be regarded as being constructed by 25 pin-jointed trusses, a number which could be
considered as being insufficient. However, if the number of postulated trusses is
increased significantly, a heavy calculation cost would be introduced. From the numerical
results of Clinton et al., it can be concluded that MSA modeling is more suited to small
size mechanisms that consist of a limited number of nodes and elements, rather than
entire robotic structures.
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Use of the Jacobian method in the stiffness modelling of robotics has been intensively
studied by Tsai [12]. In his stiffness modelling, the major links in industrial robots are
assumed to be perfectly rigid,  and the compliance of the robot is  mainly contributed by
the mechanical transmission mechanisms and control systems, which finally appears as
the compliance of the actuating joints of the robot. In the practical application of IWR
studied in this dissertation, due to the heavy payload exerted on the end-effector, the
deflection of the links in the robot cannot be ignored, especially the deflection from the
base  of  the  Stewart  platform.  Thus,  the  Jacobian  method  proposed  by  Tsai  needs  to  be
modified to account for the links deformations. In 2000, Gosselin et al. [20] proposed a
new stiffness modelling method based on a so-called lumped model. This approach
accounts for the flexibilities of both joints and links. In this lumped model, the flexibility
of a link is equivalent to the flexibility of a virtual torsional spring in the joint, assuming
that the torsional spring joint produces the same tip deflection as the flexible link. The
Jacobian  method  is  then  used  on  the  basis  of  this  lumped  model  and  a  final  stiffness
model of the target robot obtained that encompasses flexibilities from both joints and
links. However, such a lumped model can lead to a different orientation deformation of
the link tip. If the link length is large, and the links are connected serially, then the
accumulated orientation error cannot be ignored. Moreover, the lumped model only
accounts for links deformation along the directions of DH joints, whereas in practice a
deformation could occur in any direction of a link.

· Proposal of the variant of the virtual joint method

The lumped modelling approach of Gosselin is referred to as a virtual joint method (VJM)
since it converts the flexible manipulator components (links, joints and actuators) into
equivalent virtual localized spring joints. The concept of VJM is employed in this
dissertation, but with a modification that results in a novel variant of VJM. The link
deformation in this VJM variant is represented by the displacement of a virtual joint that
is attached to the end-tip of the link rather than the start-tip of the link as in the original
VJM, which accounts for both translational and orientation deformations at the link's end-
tip. The deflection of the link is computed based on the link's stiffness matrix, which is
obtained by applying the MSA method. The term of link in this case refers to links in
general  and  thus  not  only  represents  a  simple  slender  beam,  but  can  also  refer  to  a
composite  frame  structure  as  well  as  a  small  kinematic  chain.  Then  the  system-wide
stiffness model of IWR can be obtained by employing the virtual  work principle on the
virtual joints. The stiffness modelling method proposed in the dissertation consequently
encompasses both MSA and Jacobian approaches: the former in derivation of a numerical
stiffness matrix of an individual link for application in a virtual joint in a cost-efficient
calculation, due to the reduced number of assumed nodes and elements, which
nevertheless provides satisfactory accuracy; while the latter, which is essentially deduced
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from the virtual work principle, integrates the link deformations into an analytical
system-wide stiffness model.

2.2	Trajectory	Planning	

The concept of trajectory in robotics refers to a geometric path for the robot end-effector
under a time law in the Cartesian space, which usually covers a number of via points of
interest for a specific application [21]-[23]. Based on the number and distribution of the
via points in the path, the trajectory can be classified into two categories: the discrete
point-to-point trajectory and the continuous trajectory. It should be noticed that the
concept of point-to-point trajectory as used in this dissertation can include several via
points in the trajectory, whereas in other literature the point-to-point trajectory refers to a
path giving only the initial and final points. The term continuous trajectory as used in this
dissertation refers to a geometric path that contains a large number of sequential via
points. Such a continuous trajectory is often adopted in the contour machining process
and the corresponding via points can be considered as continuous interpolation points in
the control system.

Since the different types of trajectory impose different constraints on the motions of the
end-effector and driving joints, the strategies or approaches applied in trajectory planning
differ from one another.

· Point-to-point trajectory planning

For a point-to-point trajectory, a limited number of points of interest for a specific
application are prescribed for the end-effector of the robot to pass through, which are
often sparsely distributed in the workspace, and the motions of the end-effector at each
via point are often constrained by a desired position value under a time law or by a
specific velocity and acceleration profile [24]-[26]. Such point-to-point trajectories are
often adopted in material handling applications of industrial robots. In practice, the
eventual user of such robots is primarily concerned with the motions of the end-effector
at the via points of interest, thus the motions between the via points are not specified. The
trajectory planning as studied herein refers to generating a geometric path for the end-
effector of a robot that not only passes through all the via points of interest with
constraints-satisfactory motions but also optimizes the kinematic or dynamic
performance of the robot during the motions between the via points. Usually, it is
desirable for the motion of the robot to be smooth, thus the cubic polynomial spline is
often utilized for trajectory planning between two via points. In consideration of the
productivity demand of an industrial robot, minimum time or energy cost trajectories are
also often planned for the motions between the via points.

When a set of via points of interest is given, the point-to-point trajectory is also called a
prescribed trajectory; however, such a prescribed trajectory is actually incomplete or not
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strictly stipulated in the Cartesian space due to the existence of a great variety of motion
planning between the via points of interest. Nevertheless, the point-to-point trajectory
planning mainly focuses on the path generation of the end-effector in the Cartesian
workspace.

However, for robotic machine applications, the prescribed trajectory of the robot end-
effector is fully specified by the continuous interpolation points in the contour machining
process, thus the trajectory planning in the robotic machine takes place in the joint space
under the constraint of inverse kinematics, and the trajectory planning strategy differs
from that applied in point-to-point motion of the end-effector.

· Joint trajectory planning of robotic machine

For a robotic machine, the most significant characteristic in consideration of trajectory
planning is the system-wide stiffness performance, since it can directly affect actions like
machining precision. Taking maximum stiffness performance as the optimization
objective, Pugazhenthi et al. [27][28] studied optimal trajectory planning for a hexapod
machine tool during continuous contour machining for the case that locating the
prescribed contour trajectory in the workspace of the machine tool is deemed as a
redundant freedom that determines the pose of machine tool as well as the stiffness
performance of the entire machine. Clinton et al. [19] considered the same task, i.e.
stiffness based tool path planning, for a Stewart-platform based milling machine.

For the IWR in this dissertation,  four redundant kinematic DOF exist  in the joint  space,
therefore for a prescribed contour trajectory in the Cartesian workspace of the end-
effector, an infinite number of inverse solutions are admissible in the corresponding joint
position values, which consequently can form an infinite number of poses and present an
infinite number of stiffness performance values  in each interpolation point of the
prescribed trajectory. As a result, trajectory planning in this dissertation means that for a
given contour trajectory of the IWR end-effector, a set of optimized trajectories in the
IWR joint space is generated inversely, which, on the one hand, execute the robot's end-
effector in the prescribed contour trajectory and, on the other hand, provide the maximum
stiffness performance at each interpolation point of the prescribed contour trajectory.

A new issue thus arises, namely, how to define numerically the stiffness performance of a
robotic machine along the prescribed trajectory which is used as the optimization
objective for joint trajectories generation in the joint space. Since the system-wide
stiffness model of a robotic machine is defined by a 6x6 stiffness matrix, it cannot be
directly used as the optimization objective. In Pugazhenthi et al. [27], the sum of stiffness
values in a constant direction along the prescribed trajectory is taken as the performance
index for optimization, while in Clinton et al. [19], average stiffness values are used; both
approaches avoid use of the stiffness matrix directly. However in the case of IWR, such
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objectives from the entire prescribed trajectory are not applicable, because for every
interpolation point of a prescribed trajectory in the end-effector of IWR, even when the
location of the prescribed trajectory is fixed in the Cartesian workspace, the robot
stiffness performance is still uncertain and depends on the pose configuration of the
entire robot, which is shaped by the corresponding joints' position values and exists as
infinite possible inverse solutions due to the existence of redundant kinematic DOF in the
joint space; while in the work of Pugazhenthi et al. and Clinton et al., the stiffness
performance at each interpolation point is fixed, once the location of the prescribed
trajectory has been chosen. Thus, for the trajectory planning of IWR in the joint space,
the overall stiffness performance at each interpolation point needs to be optimized.
Consequently, the eigenvalue of the stiffness matrix is taken as the numerical
optimization objective. The least eigenvalue of the six eigenvalues of the stiffness matrix
represents the minimum stiffness performance in the direction of the eigenvector
compared with the stiffness in an arbitrary direction [10][29]-[31]. Thus, if the least
eigenvalues of the stiffness matrix of the end-effector at  all  the interpolation points of a
prescribed trajectory have been maximized by searching all the possible joint space under
the inverse kinematic constraint, it can be concluded that corresponding trajectories of
joints of IWR have been generated that can yield the maximum stiffness performance for
the prescribed trajectory of end-effector in the arbitrary direction.

Since the stiffness performance of the robotic machine depends on the pose of the robot
in a highly nonlinear relationship, an optimization algorithm that is capable of searching
for an optimum in a multi-dimensional variable space under multi-constraints is needed.
In  this  work,  a  differential  evolution  (DE)  algorithm  is  employed  due  to  its  global
optimization ability and fast convergence property [32].

2.3	Vibration	Suppression	Method	

Vibration suppression methods can be classified into two categories: passive control
methods and active control methods [33]-[36]. Passive control methods mainly focus on
the work of improving the structural properties of the target system, which is usually
achieved by considering three different aspects: stiffening, damping and isolation.
Stiffening refers to shifting the resonance frequency of the target system beyond the
frequency band of the external disturbance, which is often realized by optimizing the
structural design of the robotic machine, such as adopting a parallel structure rather than
a serial structure, Damping refers to dissipating the vibration energy into another energy
form so  that  it  no  longer  appears  in  terms  of  macro-motions  of  the  position  of  interest.
Fluid damping, which transfers the kinetic energy of the target system into thermal
energy of the damper fluid, is mostly adopted for such purposes. Isolation often means
introducing an extra-subsystem, that allows relative motion, into the propagation path of
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the external disturbance, thus preventing the disturbance from having an effect on the
sensitive part of the target system.

Intrinsically, passive control methods can only attenuate the vibration phenomenon
caused by the external disturbance, whereas active control methods are capable of
suppressing the vibration [37]-[39]. Active control strategies can be divided into two
approaches: feedback and feedforward. Feedback control can guarantee system stability,
but it is only effective when the frequency of the disturbance is within the bandwidth of
the control system. Moreover, feedback control is quite sensitive to phase lag. In
feedforward control, an adaptive filter is often adopted, and the disturbance signal is then
fed into the filter, which yields a secondary input signal for the target system. The filter
coefficient is deemed to be adapted or well-tuned when the error signal of the target
system is minimized at one or several points of interest. The principle behind this
approach is that the secondary input signal acts on the target system as a counterbalance
force that cancels out the effect of the external disturbance. One prominent advantage of
such feedforward control is that it can work at any frequency. Furthermore, the control
approach is less sensitive to phase lag. However, the performance of such adaptive filters
is not global, which means that the filter is only effective on a specific disturbance at
specific output points of interest.

Both passive and active control strategies are applied in the vibration suppression control
of IWR. From the perspective of passive control, the stiffness optimized trajectory
planning can be considered as applying a stiffening method of passive control; the
Stewart platform of IWR is driven by hydraulics, which also provide a damping effect on
external disturbances from the actuating limbs. Although both feedback and feedforward
vibration suppression approaches are employed in the active vibration control strategies
used in IWR, this dissertation only considers feedforward control.

An adaptive filter is not applied in the feedforward control discussed in this dissertation,
since it cannot guarantee global performance in relation to the external disturbance; in the
in-situ application, the IWR has to deal with a range of disturbances. Instead, an inverse
dynamics model based feedforward control method is investigated and employed. The
chatter vibration that occurs in the IWR during the machining process derives to a great
extent from the inferior control performance of the actuators, which employ only PID
based feedback control. Thus, in addition to the PID feedback control, an extra
compensation force should be added to the actuators by a feedforward loop that can
cancel out the effect of the external disturbance on the actuators. As a solution, the
inverse dynamics model is the most attractive approach (equivalent position as the
adapter filter) for such feedforward control since it can yield the same effective force as
the external disturbance through the practical system on the actuators. Therefore, the
issue to be solved is the question of how to build an accurate inverse dynamics model for
the practical robotic machine. Since some sub-models for the components in the inverse
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dynamics of a robotic machine are difficult to construct analytically, for example, friction
models for different working conditions in the joints and internal valve leakage models
for the hydraulic system, a feasible method for identification of the unknown components
of the dynamics model must be investigated.

2.4	Dynamic	Model	Identification	

Generally, dynamic model identification can be classified into two categories: parameter-
based model identification and nonparametric model approximation [40]-[44]. In
parameter-based model identification, the physical model or function of the dynamic
system is known and the identification work focuses on parameter identification of the
function using an input-output experimental data set of the target system [45]-[48]. For
instance, in dynamics parameter identification for a serial robotic system, an inverse
dynamics model that is linear with respect to the parameters being identified is often
developed. The dynamics parameters can then be estimated by utilization of numerical
optimization methods, such as weighted least squares estimation, Kalman filtering,
maximum-likelihood estimation etc., based on the measured data of the inverse dynamics
of the practical target system [42][49]. In the case of a parallel robot, although the inverse
dynamics model is highly nonlinear with respect to the dynamic parameters, a simplified
linear model can still be derived, albeit with a compromised accuracy [50]. In
nonparametric model approximation, on the other hand, either no physical insight of the
dynamic model is available for the target system or the modelling theory is still under
development, and the identification work thus focuses on constructing a mapping model
that can best approximate the input-outputs data set of the dynamic system over a domain
of interest. Such a knowledge-lacking dynamic system is often deemed a 'black box', and
artificial neural network (ANN) approaches are most frequently employed to approximate
such black box systems due to their powerful data fitting ability [51]-[54].

· Artificial neural network in the identification of 'black box'

In the scientific literature, several ANN structures have been the subject of intensive
research and some have been applied successfully in the 'black box' approximation of
dynamic systems; for example, the multiplayer perceptron (MLP) neural network, the
radial basis function neural network (RBFNN), and the functional link artificial network
(ALANN) [55]-[57]. Generally, all these ANN structures are meant for approximating
the  target  system  as  a  whole  entity,  and  a  prior  input-output  data  set  of  the  target
dynamical system must be measurable and have been obtained in advance. However, in
practical applications of the above mentioned neural networks, when the interest domain
of the target system covers a large area, and the target dynamic system contains many
parameters and exhibits highly nonlinear and time variant behavior, neither the training
process of the neural network is efficient, nor the accuracy of approximation of the target
dynamic system satisfactory.



CHAPTER	2	

32

In practice, comprehensive knowledge of most parts of the dynamics of a target system
are  available,  and  only  small  parts  or  subsystems of  the  dynamics  are  present  as  'black
boxes' or incomplete functions. Quite frequently, however, the small number of not-well-
known parts of the dynamics are coupled with the dynamic formulation of the entire
system and sometimes play a major role in the dynamics; thus, they cannot be ignored in
the computation. For instance, if a parallel robot is moving in slow motion under heavy
payload and the joints are not well lubricated, the effect of the friction force on the
dynamics of the robot cannot be simply ignored. However, deriving individual friction
models for such joints is not feasible in a parallel robot, since all the joints are coupled in
the entire parallel kinematics and it is impossible to implement an input-output data
measurement on an individual joint without inference from the dynamics of other joints.

· Proposal of a BP neural network for identification of the unknown sub-models

Currently, none of the ANN structures listed earlier can be applied directly to model or
approximate unknown sub-models coupled in the entire dynamics, such as the friction
model of a parallel robot, since direct training data for the neural network from the input-
output of such sub-models is not measurable. In the dissertation, a dynamics modelling
method is developed for dynamic systems containing linked unknown sub-models, in
which the analytical modelling method for the dynamics of the entire system is employed
based on the well-known knowledge of most parts of the dynamics, while the unknown
sub-models  are  included  as  variables.  A  BP  neural  network  is  then  employed  to  model
the unknown sub-models of the dynamic system and the neural network yields the value
for the variable in the constructed system-wide dynamics model. The input-output data of
the entire dynamic system, which is utilized to train the BP neural network, is referred to
as the indirect training data of the BP neural network. A modified Levenberg-Marquardt
algorithm, which inherits both the speed advantage and convergence ability of the
original Levenberg-Marquardt algorithm [58], is developed to train the BP neural
network based on such indirect training data. The principle behind the approach is to
derive a new Jacobian matrix between the errors of outputs of the entire dynamic system
and the weights of the neural network. Consequently, a new weights updating rule for
neural network training can be constructed that can utilize prior measured input-output
data of the entire dynamic system. Once the errors between the outputs of the constructed
model for the entire dynamic system and the outputs of the practical target system
converge and approach to zero, the dynamics model for the entire system can be deemed
to have been successfully constructed and the unknown sub-models in the system
dynamics can be deemed as having been identified accurately over the domain of the
training data.
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STIFFNESS	BASED	TRAJECTORY	PLANNING	

This chapter introduces stiffness-maximized trajectory planning for the serial-parallel
kinematics redundant robotic machine, IWR. Since 4 redundant DOF exist in the joint
space of IWR for a given location (consisting of position and orientation) of end-effector,
the robotic machine permits an infinite number of inverse kinematic solutions in the joint
space, which can form an infinite number of poses of robot and consequently yield
infinite kinds of stiffness performance of the robotic machine. The trajectory planning
refers to the trajectories generation in the robot's joint space at each interpolation point of
the prescribed continuous trajectory in the Cartesian space of the end-effector. The
generated trajectories of joints are constrained by the system-wide maximum stiffness
performance of the robot and the inverse kinematics at each interpolation point. The
maximum stiffness performance for a prescribed continuous trajectory of the end-effector
in the Cartesian space implies that the system-wide stiffness performance of the robotic
machine, which is represented by the least eigenvalue of the stiffness matrix, is
maximized at every interpolation point of a continuous trajectory.

3.1	Introduction	to	Matrix	Structural	Analysis	and	a	Variant	of	Virtual	
Joint	Method	

To develop the system-wide stiffness model of IWR, the MSA method [5] is  applied to
compute the stiffness matrix of the basic components of IWR, and a variant of the virtual
joint method is used to compute the system-wide stiffness model, combined with the
virtual work principle.

3.1.1	Matrix	Structural	Analysis	

In  MSA,  a  structure  is  defined  as  a  combination  of  several  basic  beam  elements  and
nodes. By applying the superposition principle, the stiffness matrix of the structure is
obtained by assembling the stiffness matrices of the basic beam elements at the connected
nodes in a specific order. In order to understand this method, the notions of nodal
displacement, nodal force and the stiffness matrix of a single beam need to first be
introduced.

A. Nodal displacement, nodal force and stiffness matrix of a single beam

In MSA, each basic beam element of a structure is defined by a number enclosed with a
circle, while its two end nodes are indentified by two numbers. As shown in Fig.3, an
arbitrary beam is represented by a circled number ○i , while its two ends are represented
by node i and node j, respectively.
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Fig.3 Single beam under external forces at both ends

In Fig 3, let two local reference frames, ),Z,Y(XR iiii  and ),Z,Y(XR jjjj , be attached to the

two nodes of the beam, while the beam is without any external force. Then, two external

forces, [ ]TT
i

T
ii mfF =  and [ ]TT

j
T
jj mfF =  expressed in the frame iR , are exerted on the

two nodes respectively, which are defined as nodal forces. Consequently, elastic
displacements occur on both nodes of the beam, and the original nodal locations are
transferred to new points, which are represented by the new coordinates frames

)Z,Y,X(R iiii ¢¢¢¢  and )Z,Y,X(R jjjj ¢¢¢¢ . At this point, the locations (consisting of position and

orientation) of the new frames iR ¢  and jR¢  with respect to the original frames iR  and jR

are defined as the nodal displacements, which are represented by TT
i

T
iiX ][ QD=¶  and

TT
j

T
jjX ][ QD=¶  respectively, expressed in the frame iR . Applying the equilibrium

equation of mechanics of material yields Eq. (1) as follows:
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In Eq. (1), ijK  stands  for  the  stiffness  matrix  of  a  single  beam  with  two  nodes  under

external forces and is expressed in the reference frame iR ; E and G represent the Young’s
modulus and the shear modulus of the beam, respectively; yI , zI  and pI  are the

quadratic and polar moments; A is the cross-section area; and L is the length of the beam.

Writing the stiffness matrix in the four sub-matrices yields Eq. (2):

, (2)

where the superscript i denotes the beam number, while the subscript i and j denote the
node numbers respectively. The entries of sub-matrices can be generalized in terms of i

xyK .

Physically, the stiffness matrix i
xyK  in the entry of the sub-matrices stands for the load on

the node x (referred to by the leading subscript x) while the node y (referred to by the
following subscript y) undergoes a specific unit displacement. Therefore for a separated
beam from a structure, the stiffness matrix i

xyK  can link the nodal force acting at nodal x
to the nodal displacement at nodal y that is caused by the effect of the force from nodal x.

B. Stiffness matrix transformation

The  stiffness  matrix  of  a  beam  such  as  the ijK  in  Eq.  (2)  is  often  expressed  in  a  local

reference frame of the beam, such as the local reference frame ),Z,Y(XR iiii . However, in
application  of  MSA,  all  the  stiffness  matrices  for  the  composing  beams  of  a  structure
have to be expressed in a global reference frame for the algebraic operation. Thus, the
stiffness matrix has to be transformed from the local reference frame to the global
reference frame. If the frame oR  is a global reference frame, and the 3x3 rotation matrix

i
oR  stands for the rotation matrix from the global reference frame oR  to the local
reference frame iR , then, the stiffness matrix ijK  expressed in the global reference frame

oR  can be obtained by Eq. (3) as follows:

1-= TTKK ijij
o (3)
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C. Stiffness matrix of a structure by MSA

Fig.4 shows a structure fixed in the ground and composed of two beams, ○1  and ○2 . Two
local reference frames oR  and 1R  are attached to the nodes 0 and 1 respectively.

Fig. 4 Structure composed of two beams

The  stiffness  matrix  of  this  structure  can  be  obtained  as  Eq.  (4)  by  applying  the
superposition principle of MSA:
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where the leading superscript 0 denotes in which reference frame the stiffness matrix is
expressed. The composing entries of K0  can be generalized in terms of i

xyK0 , which is

obtained by the stiffness matrix transformation from the local reference frame to the
global reference frame as shown in Eq. (5):
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where i
xyK  stands for the nodal stiffness matrix in the local reference frame, which is

computed from the corresponding entry of stiffness matrix in Eq. (2).

Based  on  Eq.  (4),  a  numerical  result  of  the  stiffness  matrix  for  this  two-beam structure
can be computed, shown in Table 2, on the basis of the geometrical and mechanical
parameters of the structure, summarized in Table 1.
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Table.1 Geometrical and mechanical parameters
Geometrical Parameters Mechanical Parameters

Length (mm) Cross-section Area (mm2) Young's Modulus (GPa) Shear Modulus (GPa)
49 45x18 210 80
41 45x18

Table.2 Numerical results of the stiffness matrix of the structure illustrated in Fig.4
9.751958551684694e8 0 -3.087681914430521e8 0 1.080121556617323e7 0

0 4.788952285024700e8 0 -1.349618697221210e7 0 -1.528232314069286e7
-3.087681914430518e8 0 1.951195464684377e8 0 5.833636585134454e4 0

0 -1.349618697221211e7 0 4.610798663224975e5 0 4.715075609541764e5
1.080121556617323e7 0 5.833636585134082e4 0 2.949294709930832e5 0

0 -1.528232314069288e7 0 4.715075609541766e5 0 6.659904969667222e5

Stiffness calculation of a simple beam structure by applying MSA is quite accurate with a
high calculation efficiency [68]. However, for complicated structures, especially
structures with many joints in its kinematics, the VJM method is often used to build up its
system-wide stiffness model.

3.1.2	Variant	of	Virtual	Joint	Method	

A. Gosselin's lumped model

The virtual joint method, which is also called the lumped modelling method, was
proposed by Gosselin in 2000 [20] to compute the stiffness of a parallel robot. In the
lumped model, the flexibility of the beam is replaced by a virtual spring joint, and the
beam is regarded as rigid, given that under the same external load, the virtual spring joint
produces the same tip translational deflection via the rigid beam as with the flexible beam.

Fig.5 Lumped model of a flexible beam

Fig. 5 shows the lumped model of a flexible beam under external load. With a force
applied on the tip of the beam, a resultant translational deformation is obtained by Eq. (6)
as follows:

EI
FL
3

3

=d , (6)

where L stands for the length of the beam; E is the Young's modulus; and I is the moment
of inertia of the cross-sectional area. Since the virtual spring joint yields the same tip
deflection, the equivalent rotational deflection in the virtual joint is obtained by Eq. (7):

EI

L F

δ

Flexible beam
δ

F

θKb

Virtual rigid beam
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EI
FL

L 3

2

==
dq . (7)

Thus, the stiffness of the virtual spring joint is expressed as in Eq. (8):

L
EIFLKb

3
==

q
. (8)

The lumped stiffness of a beam that is under a twist can be obtained analogously.

When using the lumped modelling method, a Denavit-Hartenberg (DH) geometric model
is often employed for the kinematics description of the robot, and thus a stiffness model
can be obtained by accounting for the links deformations of the robot through integration
into the flexibilities of the virtual joints represented by the DH parameters.

However, the lumped model will lead to a different orientation deflection at the tip of the
link. Moreover, the lumped model only accounts for the links deformation along the
directions of the DH joints, whereas in practice a deformation could occur in any
direction of a link. Since the geometric structure of the robot studied in the dissertation is
large and complicated, and there is no comparable research result available on how these
errors of orientation deflection and the limited deflection directions of the DH model
applied by the lumped model affect the accuracy of stiffness modelling, the lumped
model is not applied in the dissertation. However, the virtual joint concept is nevertheless
valuable  and  has  been  adopted  for  the  stiffness  modelling  of  IWR,  albeit  with
modification. As a result, a new stiffness modelling method is developed in the
dissertation,  which is  a variant of the virtual  joint  method and employs the virtual  work
principle.

B. Variant of virtual joint method

In the variant of the virtual joint method presented in this work, the virtual joint is
attached to the end-tip of the link, rather than the start tip of the link as in the lumped
model. Such a virtual joint accounts for deflections of both translation and orientation at
the tip of the link. If a flexible link undergoes a deformation in which the end tip of the
flexible link travels a translation displacement and an orientation displacement, a virtual
joint with '2 DOF' can be applied to the end tip of the link, given that the link is regarded
as rigid. The concept of '2 DOF' in this case means the translation and orientation
motions, which can cover 6 DOF adaptively for the specific application. Then, the actual
deformations taking place at the tip of the link can be considered as being accomplished
by the translation and orientation motions of such a '2 DOF' virtual joint. Fig. 6 shows a
decomposed deformation process of a two-beam structure with such integrated virtual
joints while the structure is under external forces.
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Fig.6 Variant of the virtual joint method

The continuous deformation process of the structure can be regarded as being
accomplished by the deformations of the two links sequentially. When the forces
[ ]TTT MF  are exerted on  point C of the structure, it is assumed that only the deformation
of link 1 takes place while the deformation of link 2 is assumed to be zero. Such
deformation of link 1 consists of a tip translation from point A to B and a tip rotation at
point B. By introducing a 2 DOF virtual joint in the end-tip of link 1, the deformation can
be deemed to be accomplished by the translational and rotational motions of this virtual
joint, which can be represented as [ ]TTT

11 QD  if the link is regarded as rigid. At this moment,
point C of the structure travels to the D position, as shown in Fig. 6. Then, link 2 can be
considered to be undergoing a deformation while link 1 and its virtual joint stay still. By
analogy, the deformation that takes place in link 2, which is represented as [ ]TTT

22 QD , can
also be deemed to be accomplished by a virtual joint introduced in the end-tip of link 2.
At this moment, the deformation of the whole structure is deemed to have finished, and
point C of the structure to have arrived at position E while the tool attached to the tip of
the structure undergoes an orientation displacement. The above sequential deformation
process can be described by Eq. (9) as follows:

î
í
ì

Q+Q=Q
D+´Q+D=D

12

1212 r , (9)

where D  and Q  stand for the system-wide translational and orientation displacements
taking place at point C of the structure; and 2r  is the length of link 2.

Writing Eq. (9) in matrix form, we obtain:
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or simply:
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J , (11)

where J denotes the Jacobian matrix between the system-wide deformations of the end-
tips in the structure and the local deformations in the connecting nodes of the links. In Eq.
(10), ´2r  represents the skew matrix of vector 2r .

Let 1K  denote the stiffness of the virtual joint 1 and 2K  denote the stiffness of the virtual

joint 2; [ ]TTTTT
2211 QDQD dddd  the virtual displacements at the virtual joints after the

links' deformation; and [ ]TTT QD dd  the virtual system-wide displacements at the end-tip
of the structure after the system-wide deformation. Applying the virtual work principle
then yields:
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where 1K  and 2K  can be computed according to the entry of i
iiK  in  Eq.  (2)  with  the

stiffness matrix transformation; and 60  denotes a 6x6 zero matrix.

Applying Eq. (11) in the vector [ ]TT QD dd of Eq. (12) yields:
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Since the vectors 1Dd , 1Qd , 2Dd  and 2Qd  are linearly independent, Eq. (13) can be
simplified as:
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or:
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Thus, the system-wide compliance and stiffness matrices of the structure become:
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C. Results comparison between MSA and the variant of the virtual joint method

Applying the variant of the virtual joint method developed above on the structure in Fig.4,
the numerical results of the system-wide stiffness matrix given in Table 3 are obtained.

Table.3 Numerical results of the stiffness matrix obtained by the variant of the VJM
9.751958551684697e8 0 -3.087681914430522e8 0 1.080121556617323e7 0

0 4.788952285024690e8 0 -1.349618697221207e7 0 -1.528232314069283e7
-3.087681914430522e8 0 1.951195464684374e8 0 5.833636585133802e4 0

0 -1.349618697221207e7 0 4.610798663224979e5 0 4.715075609541766e5
1.080121556617323e7 0 5.833636585133802e4 0 2.949294709930830e5 0

0 -1.528232314069283e7 0 4.715075609541766e5 0 6.659904969667220e5

A comparison of the results from the MSA method and the variant of the VJM is given in
Table 4.

Table.4 Comparison of the numerical results for the stiffness matrix when using MSA
and the variant of the VJM on the same structure

1e-7 x
2.384 0 1.192 0 0.019 0

0 10.133 0 0.279 0 0.279
3.586 0 2.384 0 0.065 0

0 0.354 0 0.004 0 0.002
0 0 0.038 0 0.002 0
0 0.428 0 0 0 0.002

From Table 4, it can be seen that the numerical results computed by the variant of the
virtual joint method are almost the same as the results computed by the MSA method,
which in some sense provides mutual validation of the two approaches.

The MSA method is especially suitable for stiffness analysis of large truss and beam
structures in civil engineering, in which the structural configuration is relatively stable
due to the absence of active joints. However, in robotic applications, active joints are
inevitably employed, which render the kinematics configuration of the robot variable and
complicated.  When  the  MSA  method  is  applied  in  such  situations  for  system-wide
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stiffness evaluation, error of around 9% is found in the stiffness calculation [19].
However,  the  VJM  variant  can  deal  with  such  kinematics  with  active  joints,  since  the
virtual joint is necessarily assumed to be an active joint that produces the equivalent
displacement as the deformation.

The following section will introduce system-wide stiffness modelling of the hybrid robot
IWR based on the variant of the virtual joint method when the stiffness matrix of the
basic components are computed by the MSA method.

3.2	Stiffness	Modelling	of	a	Hybrid	Robot	

Fig 7 shows a 3D model and schematic representation of the IWR. Prior to the stiffness
modelling process, the coordinates system needs to be established, as shown in Fig 7 and
8.

Fig.7 3D model of IWR and its schematic representation

Fig.8 Kinematic chain of IWR
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The coordinate system ggg ZYX 000  is attached to the track as the global reference frame
with its z-axis vertical to the track plane and x-axis pointing in the track direction.

ggg ZYX 111  is attached to the tip of the ball screw with its x-axis pointing in the track
direction and y-axis pointing in the ball screw direction. ggg ZYX 222  is attached to the nut of
the ball screw. ggg ZYX 333  is  attached  to  the  top  joint  of  the  rotating  table  with  its  origin
located at the joint pivot and its x-axis pointing in the pivot axis direction. ggg ZYX 444  is
attached to the base of the Stewart structure with its origin located at the centre of the
base. ggg ZYX 555  is attached to the end-effector as the tool frame.

The stiffness modelling process of IWR can be divided into two steps: first the stiffness
model for the Stewart structure is constructed by accounting for the flexibilities of the
driving limbs and the feet of the Stewart structure; then the entire Stewart structure is
regarded as a virtual flexible link. The robot as a whole entity can thus be considered a
serial structure, for which the system-wide stiffness model is obtained by applying the
VJM variant and the virtual work principle.

3.2.1	Stiffness	modelling	of	a	parallel	robot	

A. Stiffness modelling of the base of a Stewart structure

Fig. 9 shows a 3D model of the base of the Stewart structure.

Fig.9 3D model of the base of the Stewart structure (inverted compared with Fig.7)

The base of the Stewart structure consists of a bearing house and a U-shape joint, as
shown in Fig.10.
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Fig.10 Stewart base structure: (i) bearing house, (ii) U-shape joint (iii) base of the Stewart
structure

In  order  to  build  up  the  stiffness  model  for  the  base  of  the  Stewart  structure,  the  MSA
method needs to be first applied to compute the stiffness matrix of the basic components
of the structure – the bearing house and the U-shape joint.

When applying the MSA method, the bearing house, U-shape joint and composite base of
the Stewart structure are simplified into frame structures. Fig.11 shows a schematic
diagram of the simplified frame structures.

Fig.11 Schematic diagram of frame structures: (i) bearing house, (ii) U-shape joint and
(iii) base composed of a bearing house and U-shape joint

· Stiffness modelling of bearing house

The bearing house is simplified into an arc structure composed of 6 basic straight
elements, which are denoted by the circled numbers and connected by 5 nodes, as shown
in Fig.11 (i). b

i
b

i
b
i ZYX  are the local reference frames with i = 1, 2, ..., 5, of which bbb ZYX 111

is chosen as the global reference frame for the stiffness computation of the bearing house.

Applying the MSA on the bearing house yields Eq. (18) :
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and exchanging the positions of line 3 with line 5 obtains:

, (19)

where the leading superscript b denotes that all the vectors are expressed in the global
reference frame bbb ZYX 111 ; Vector i

bF  denotes the postulated external forces acting on the

nodes i, and i
bD  denotes the corresponding resultant deformations of node i, here i =  1,

2, ..., 5; The entries of the stiffness matrix in Eq. (19) can be generalized in terms of j
xy

bK

with j = 1, 2, ..., 6 and x, y = 1, 2, ..., 5, which can be computed according to the entries in
Eq. (2) and expressed in the global reference frame bbb ZYX 111  by applying the stiffness
matrix transformation technique.

Partitioning Eq. (19) according to the dashed lines gives:
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where Tb  stands for [ ]TTbTbTbTb FFFF 4521 ; Db  stands for [ ]TTbTbTbTb
4521 DDDD ; and

the entry -- xy
bK  with x = 1, 2 and y = 1, 2 -- in the stiffness matrix of Eq. (20) stands for

the corresponding block partitioned in the stiffness matrix of Eq. (19).

If it is assumed that the forces acting on the bearing house from the shaft of the U-shape
joint mainly focus on node 3 and the deformations of the bearing house are mainly
contributed by node 3, thus Tb  equals to zero vectors. Utilizing a static condensation
technique (Guyan Reduction) on Eq. (20) gives:

312
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1121223 )( D-= - bbbbbb KKKKF . (21)

Thus, the stiffness matrix of the bearing house in node 3 is obtained as follows:
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In practice, the shaft of the U-shape joint is assembled into the bearing house and can be
regarded as rigid due to its compact size. If, after the assembly, node 1 of the U-shape
joint (Fig.11.(ii)) is made coincident with a virtual position m in the bearing house
(Fig.11.(i)), the deformations taking place at node 3 of the bearing house will transfer to
position m, which consequently causes a displacement in node 1 of the U-shape joint.

Applying the VJM variant from node 3 of the bearing house to the virtual point m yields:

11
3 )( --= T

m
b

mm
b JKJK , (23)

where m
bK  stands for the stiffness matrix of the bearing house at the virtual position m;

and J stands for the Jacobian matrix, which can be obtained as Eq. (24):
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where 33 xI  stands for the 3x3 identity matrix; 33 xO  is the 3x3 zero matrix; r is the vector
from node 3 of the bearing house to the virtual  position m; and ´r  represents the skew
matrix of vector r.

In practice, the load from the U-shape joint acting on the virtual position m only consists
of 4 forces, that is, forces yf  and zf  presented in the 1Y  and 1Z  directions of the global

reference frame bbb ZYX 111 , and the torques xm  and zm  presented around the 1X  and 1Z

directions. Utilizing the static condensation technique on the deformation equilibrium
equation of the virtual position m gives:
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where m
bk  stands for the 4x4 stiffness matrix of the virtual position m in the bearing

house under the practical load from the U-shape joint; and the leading superscript b
denotes the vectors that are expressed in the global reference frame bbb ZYX 111 .

Table.  5  shows the  numerical  results  of  the  stiffness  matrix  of  the  virtual  position  m in
the bearing house expressed in the global reference frame bbb ZYX 111 .

Table.5 Numerical results of the stiffness matrix of the virtual position M of the bearing
house

1e5 x
3718.85 0 0 -66.96

0 2914.30 0 0
0 0 8.37 0

-66.96 0 0 3.28
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· Stiffness modelling of a U-shape joint

Utilizing the same technique – MSA and the static condensation technique – on the U-
shape joint, the deformation equilibrium equation of node 6 in the U-shape can be
obtained and expressed in the local reference frame uuu ZYX 111  as follows:

612
1

1121226 )( D-= - uuuuuu KKKKF , (26)

or simply:

666 D= uuu KF , (27)

where the leading superscript u denotes that the vectors are expressed in the reference
frame uuu ZYX 111 , which is taken as the global reference frame of the U-shape joint; 6Fu

stands for the external load acting on node 6 of the U-shape joint; 6D
u  stands for the

corresponding deformations; and the items -- xy
uK  with x = 1, 2 and y = 1, 2 -- stand for

the partitioned blocks of the stiffness matrix, which are obtained by applying the MSA on
the U-shape joint as follows:

. (28)

In practice, the forces acting on node 6 of the U-shape joint are constrained along the uX6

and uZ6  axes of the local frame uuu ZYX 666  (Fig. 11(ii)) due to the existence of two
rotational DOF in the U-shape joint. Thus, the deformation equilibrium equation on node
6 represented by Eq. (27) can be simplified further, as shown in Eq. (29), by employing
the static condensation technique:

[ ] [ ]Tz
u

x
uuT

z
u

x
u kff dd6= , (29)

where 6ku  stands for the 2x2 stiffness matrix of node 6 in the U-joint expressed in the

reference frame uuu ZYX 111 ; [ ]Tz
u

x
u ff  stands for the practical force acting on node 6; and

[ ]Tz
u

x
u dd  stands for the corresponding deformations.
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Table 6 shows the numerical results of the stiffness matrix of node 6 in the U-shape joint
expressed in the reference frame uuu ZYX 111 .

Table.6 Numerical results of the stiffness matrix of node 6 in the U-shape joint

1e8 x
2.50 0

0 1.39

· Stiffness modelling of a base structure composed of a bearing house and U-
shape joint

Since the base structure is composed of a bearing house and U-shape joint, a kinematic
chain can be formed by introducing the virtual joints into the virtual position m in the
bearing house and node 6 of the U-shape joint.

Fig. 12 shows the kinematic chain in the base structure of the Stewart platform, which
starts from the origin of Stewart base reference frame ggg ZYX 444 , passes through the origin
of reference frame bbb ZYX 111  and virtual position m in the bearing house, and finally ends
at node 6 of the U-shape joint.

Fig.12 Kinematic chain in the base structure of the Stewart platform

In the kinematic chain, the deformations of the virtual position m in the bearing house
and the deformations of node 6 in the U-shape joint can be assumed to be caused by the
motions of the corresponding virtual joints, thus the system-wide deformations of the
base can be described by Eq. (30) as follows:

m
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u
g

m
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where the leading superscript g4 denotes that the vectors in the equation are expressed in
the reference frame ggg ZYX 444  of the base of the Stewart structure; ft

g D4  stands for the

system-wide translational deformations taking place at node 6 of the U-shape joint; 6
4Dg

stands for the local translational deformations of node 6 of the U-shape joint; m
g D4  and

m
g Q4  stand for the local translation and orientation deformations at the virtual position m
of the bearing house; and u

g r4  stands for the length vector from the virtual position m of
the bearing house to node 6 of the U-shape joint.

Writing Eq. (30) in matrix form gives:

[ ]
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or simply:
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where ftJ  denotes the Jacobian matrix between the system-wide deformations of node 6

and the motions of the virtual joints. In Eq. (31) ´u
g r4  represents the skew matrix of u

g r4 .

Let m
g K4  and 6

4Kg denote the local stiffness matrices at the virtual position m of the
bearing house and node 6 of the U-shape respectively, which are both  expressed in the
Stewart platform frame ggg ZYX 444  and obtained by applying the stiffness matrix
transformation technique on m

bk  of Eq.(25) and 6ku  of Eq.(29) correspondingly. And let

ft
g D4d , 6

4Dgd , m
g D4d  and m

g Q4d  denote the virtual displacement based on the current

deformations; then, applying the virtual work principle in the kinematic chain of
deformations yields:
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44 dddd . (33)

By applying Eq. (32) in Eq. (33) the form is obtained:



CHAPTER	3	

50

[ ]
[ ] ft

ggT
ft

m
g

x

x
g

ft FJ
KO
OK

J D=ú
û

ù
ê
ë

é
-

´

´ 4
6

4

1

66
4

36

63336
4

, (34)

and thus, the system-wide stiffness of the base the Stewart structure, which is expressed
in the Stewart platform reference frame ggg ZYX 444 , is obtained as Eq. (35):
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B. Stiffness modelling of a hydraulic limb

Fig. 13 shows the detailed design of the hydraulic actuator used as the driving limb of the
Stewart structure.

Fig.13 Design of the hydraulics actuator of the Stewart structure

The assembly of components in the hydraulic actuator are deemed to be in a serial form,
and the actuator’s stiffness depends on the cylinder stroke x:

hhcwhhhcwh
hy BVBxlABVxlA

A
BVBxABVxA

Ak
//)(*/))(*(//*/)*( 22

2
2

11

2
1

+-++-
+

+++
= , (36)

where A is the area; V the volume; x the cylinder stroke; and l the cylinder length. wB , cB

and hB  are the bulk modulus of water, the cylinder and the hose respectively. Subscripts
1 and 2 denote the corresponding chambers of the double-acting cylinder.
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C. Stiffness modelling of a Stewart structure

Fig.14 shows a 3D model of the Stewart structure and its schematic diagram.

3D model of the Stewart structure

Schematic diagram of the Stewart structure

Fig.14 3D model of the Stewart structure and schematic diagram

Referring to the schematic diagram in Fig.14, a loop-closure equation for the ith limb of
the Stewart structure can be written as:

iii rabp +=+ , (37)
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where the subscript i denotes the ith limb of the Stewart limb; p the vector from the origin
of the Stewart platform reference frame ggg ZYX 444  to the origin of the end-effector
reference frame ggg ZYX 555 ; ib  the vector from the origin of the end-effector reference
frame to the up-joint; ia  the vector from the origin of the platform reference frame to the
kinematic end tip (node 6) of the base structure; and ir  the vector from the base structure
to the up-joint. Notice that all the vectors in Eq. (37) are expressed in the Stewart
platform reference fame.

Differentiating Eq. (37) gives:

iiiftiiftiiBB SlSlb *)( d+´Q+D=´Q+D , (38)

where BD and BQ  can be regarded as the system-wide translational and rotational
deformations of the end-effector with respect to the platform reference frame; ftiD  and

ftiQ  denote the translational and rotational deformations of the base structure in the ith

limb; il  denotes the length of the ith limb before the deformation; ild  denotes its linear
deformation; and iS  is the unit vector of the ith limb.

Dot-multiplying both sides of Eq. (38) by iS  and writing the obtained equation in matrix
form yields:
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or simply:
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where [ ]T
ii

T
ixi bSSJ )( ´-= , [ ]T

iqi SJ 1= , [ ]TT
ftiiLi l D=D d .

Applying Eq. (40) on all 6 limbs of the Stewart structure and assembling the obtained
equations into matrix form yields:
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where:
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If BDd , BQd  and LiDd  denote the virtual displacement of the end-effector and the ith
limb of the Stewart structure based on the current deformations, then applying the virtual
work principle in the kinematic chain of deformations yields:
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or simply:
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where hyik  stands for the stiffness of the ith hydraulic actuator; and ftiK  the stiffness

matrix of the base structure in the ith limb. In Eq. (45), [ ]ftihyili KkdiagK = .

By applying Eq. (41) in Eq. (45), the stiffness matrix of the Stewart structure is obtained
as Eq. (46):

[ ] 11 )*][*( --= T
stwlistwstw JKdiagJK . (46)

3.2.2	Stiffness	modelling	of	a	serial-parallel	robot	

From the overview of the IWR configuration, the entire Stewart structure can be
considered as a virtual link, therefore the kinematic configuration of the hybrid serial-
parallel robot can be deemed to be in a serial form. By applying the VJM variant on the
entire Stewart structure, the flexibility of this virtual link can be obtained by analyzing
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the motions of a virtual joint with 6 DOF attached at the centre of the end-effector
reference frame while the virtual link is regarded as rigid. Fig.15 shows a deformation
kinematics diagram of this serial-parallel robot by introducing the virtual joint variant
into all the flexible links.

Fig.15 Deformation kinematics of the serial-parallel robot

The deformation occurring in the tipping cylinder will transfer to the passive joint 3 as a
rotational flexibility, where the virtual joint 3 is introduced for the equivalence of this
flexibility. The translational deformation occurring in the ball screw and the rotational
deformation in the rotating table are postulated to be accomplished by the virtual joint 2
with 2 DOF motions. The deformation occurring between the pinion and rack on the
track is postulated to be accomplished by the virtual joint 1.

A. Stiffness modelling of the tipping joint

Fig.16 shows a 3D model of the tipping mechanism of the base of the Stewart  structure
and its schematic representation.

Fig.16 3D model of the tipping mechanism of the base of the Stewart structure and its
schematic representation
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In Fig.16, M, N and C denote the centers of the corresponding joints. c and b denote the
scalar lengths from joint M to C and from joint N to C, while d denotes the scalar vertical
distance from joint N to the line MC.

The deformation equilibrium equation of a tipping cylinder can be written as:

ckf t d*= , (47)

where tk  is the stiffness of the hydraulic actuator; f is the force acting along the cylinder
direction; and cd  is the deformation of the cylinder.

Let dq  denote  the  rotational  deformation  of  the  rigid  link NC, which results from the
deformation of the cylinder, then:

dqd *dc = . (48)

Substituting Eq. (48) into Eq. (47) and multiplying d on  both  sides  of  the  equation,  we
obtain:

dq**2
tkdm = , (49)

or simply:

dq*3km = , (50)

where m denotes the equivalent moment of f acting on the tipping joint; and tkdk *2
3 =

denote the rotational stiffness of the tipping joint. Expressing 3k  in the global reference
frame yields 3K , which is in the form of a 3x3 matrix.

B. Stiffness modelling of a serial-parallel robot

Let Dg and Qg  denote the system-wide translational and rotational deformations of the
end-effector with respect to the global reference frame ggg ZYX 000 ; 4Dg  and 4Qg  denote
the  local  translational  and  rotational  deformations  of  the  Stewart  structure  in  the  virtual
joint 4 with respect to the base reference frame ggg ZYX 444 ; 3Qg  denote the local rotational
deformation of the Stewart base in the virtual joint 3 with respect to the reference frame

ggg ZYX 333 ; 2Qg  and 2Dg  denote the local rotational deformation of the rotation table and
the translational deformation of the ball screw respectively with respect to the reference
frame ggg ZYX 222  , which are lumped into the virtual joint 2; and 1D

g  denote the
deformation of the robot along the rack with respect to the reference frame ggg ZYX 000 ,
which is lumped into the virtual joint 1. Referring to the deformation kinematics of the
serial-parallel robot in Fig.15, we can obtain:
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or simply:
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denotes the Jacobian matrix between the system-wide deformations of the end-effector
and the deformations of the virtual joints. In Eq. (51), 3r  and 4r  denote the vectors from
virtual joint 2 to virtual joint 3 and from virtual joint 3 to virtual joint 4, respectively;

´4r  and ´+ )( 43 rr  denote the skew matrices of vectors 4r  and 43 rr +  respectively.

Let 2K  and 1K  denote the stiffness of virtual joint 2 and virtual joint 1 expressed in the

global reference frame ggg ZYX 000  respectively (Fig.15); and [ ]TTgTg QD dd  and

[ ]TTgTgTgTgTgTg
122344 DQDQQD dddddd  denote the system-wide virtual displacements

of the end-effector and  the virtual displacements of the virtual joints based on the
occurred deformations. Applying the virtual work principle on the entire serial-parallel
robot gives:
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By applying Eq. (52) in Eq. (54), we obtain:

[ ][ ]( ) 11
123 **

--= T
IWRstwIWRIWR JKKKKdiagJK , (55)

which represents the analytical stiffness model of the entire serial-parallel robot.

3.2.3	Numerical	results	

Based on the obtained stiffness model, the stiffness performance of the IWR was
investigated along the border lines of a prescribed workspace, shown in Fig17.

Fig.17 Prescribed cubic volume workspace of IWR

The  workspace  is  450  mm  above  the  plane  of  the  end-effector,  and  in  the  form  of  a
200x200x200 mm3 cubic volume. The external load is exerted vertical to the end-effector
plane and has a value of 5 kN. In the numerical example, the prescribed workspace is
reached by the Stewart structure and the serial part of the robot remains still.

The numerical results of computation of the deformations of the robot are shown in Fig.
18.

planefront
planeback

planetop
planeleft

force
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(i). Deformation of the robot on the bottom plane of the workspace

(ii) Deformation of the robot on the top plane of the workspace

(iii) Deformation of the robot on the left plane of the workspace
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(iv) Deformation of the robot on the right plane of the workspace

(v). Deformation of the robot on the front plane of the workspace

(vi) Deformation of the robot on the back plane of the workspace

Fig.18 Deformation of the robot workspace: (i) on the bottom plane of the workspace; (ii)
on the top plane of the workspace; (iii) on the left plane of the workspace; (iv) on the
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right plane of the workspace; (v) on the back plane of the workspace; (vi) and on the
front plane of the workspace

In Fig.18, the continuous line denotes the borders of the prescribed workspace without
external load; the starred-line denotes the new border positions of the workspace
following deformation of the Stewart structure due to the external load, given that the
serial  part  in the robot is  assumed to be rigid;  and the line with circles denotes the new
border positions of the workspace due to the deformations of the entire robot, which
account for both deformations from the Stewart structure and from the serial parts of the
robot.

It should be noted that in some parts of the workspace in Fig.18 (iv) and Fig.18 (v), the
deformation  of  the  entire  robot  under  the  assumption  of  a  rigid  serial  part  is  larger  in
some directions than the deformation under the assumption of a flexible serial part. The
reason for this result is that the redundant flexibility in the serial part of the robot allows
the deformation of the robot to occur in other possible directions,  which to some extent
can mitigate the deformation of the parallel part along one direction. This phenomenon
can also be interpreted from the energy point of view, since the flexible serial parts can
absorb the external energy in other deformation directions. Moreover, it implies that the
system-wide stiffness performance of the robot can be optimized at the prescribed
workspace due to the existence of redundant flexible kinematics.

3.3	Stiffness-Maximum	Trajectory	Planning	of	a	Hybrid	Robot	

In this section, a set of trajectories in the robot joints space are generated for a prescribed
trajectory of the end-effector in the Cartesian space. The best stiffness performance along
the prescribed trajectory is taken as a constraint for the joints trajectory planning. In the
dissertation, the stiffness performance is evaluated by the least eigenvalue of the system-
wide stiffness matrix. Taking the maximum stiffness performance as the objective, the
differential evolution (DE) algorithm is employed to search for the global optimum in the
multi-dimensional joints space under the constraint of inverse kinematics. The numerical
results of the generated joints trajectories are presented for a prescribed end-effector
trajectory at the end of this section.

3.3.1	Index	of	stiffness	performance	

It is well known that the stiffness reflects the relationship between the external force and
the corresponding displacement experienced. Numerically, this property can be defined
by a 6x6 matrix. However, it is rather difficult to evaluate the stiffness performance in
terms of a matrix, since it is not comparable by means of vectors. An instinctive way to
evaluate the stiffness performance is the use of elements of interest inside the matrix.
However, an individual element only represents the relation between the force and the
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deformation in a certain direction without considering the coupling effects of other terms
in the matrix.

An applicable approach for stiffness performance evaluation is to investigate the
characteristics of the matrix in the form of scalars, i.e., the eigenvalues, the determinant,
the diagonal terms and the condition number of the matrix [71]. Of these commonly used
indicators, the eigenvalue is adopted here as the most reasonable index for the application
considered in this work.

To interpret the eigenvalue of the stiffness matrix geometrically, it is postulated that for a
6x6 stiffness matrix, a set of deformation vectors in arbitrary directions can be found and
the deformation vectors form a spherical shape in a 6-dimensional space, given that the
magnitude of each deformation vector is equal to unit length. The corresponding set of
causative force vectors then form an ellipsoid in the 6-dimensional space, in which the
lengths of the principle axes are the eigenvalues of the stiffness matrix and the related
eigenvectors represent the directions of the principle axes [29][30]. Based on this point,
the minimum eigenvalue represents the minimum stiffness performance in its eigenvector
direction.

For a specific stiffness matrix, it can be considered that the minimum stiffness
performance is dominated by the least eigenvalue of the matrix. If the least eigenvalue
can be as larger as possible, then we think the overall stiffness performance for such
specific matrix is maximized. Thus, for a fixed location of end-effector of IWR, the
optimum stiffness is defined by the maximum value in all possible least eigenvalues
generated based on the different kinematics configurations.

Mathematically, for an arbitrary kinematics configuration of IWR, the set of eigenvalues
for the corresponding stiffness matrix can be represented by Eq. (56) as follows:

)(}{ jji Keig=l , 621 , ...,,i = . (56)

where the subscript j denotes an arbitrary kinematics configuration of IWR; i denotes the
ith eigenvalue; }{ jil  denotes the set of eigenvalues for such an arbitrary kinematics

configuration j; and jK  denotes the corresponding stiffness matrix. Then, the least

eigenvalue in the set denoted by }{ jil  can be described by Eq. (57) as follows:

}min{_ jijleast ll = . (57)

Let R represent the set of all the possible kinematics configurations of IWR for the given
location  of  the  end-effector,  then  the  maximum stiffness  performance  of  IWR in  all  the
possible kinematics configurations R can be described by Eq. (58) as follows:
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}{max _ jleastRjbest ll
Î

= , (58)

where }{ _ jleastl  represents the set of corresponding least eigenvalues in the kinematics set
R.

3.3.2	Stiffness	optimization	and	trajectory	generation	

A. Differential evolution (DE) algorithm applied in stiffness optimization

For a prescribed location of end-effector, the robot system-wide stiffness performance
jleast _l  is taken as the objective of the optimization process, and the 4 redundant joint

position values in the serial parts of the robot, which actually determine the kinematics
configuration of IWR, are taken as the input variables of the DE algorithm.
Determination of the kinematics configuration in the redundant robot IWR involves 10
position values in the joints space. However, these 10 parameters are linear dependent for
a given location of end-effector and the 4 parameters from the serial parts of IWR can
form a linear independent set. This implies that for a given location of end-effector, once
the 4 position values of the joints in the serial parts are chosen, the remaining 6 position
values in the Stewart structure joints are consequently determined by the inverse
kinematics.

Fig.19 shows the abstract steps of the DE algorithm applied in the stiffness optimization
of IWR [32].

Initialize all the populations

Set DE control parameters

Evaluate cost values

Termination
criterion is met?

Producing new population by:
1. Mutation
2. Crossover
3. Selection

Generation=Generation+1
Replace the current population

End
Yes

No
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Fig.19 Flow chart of the DE algorithm

First, the populations and the control parameters of the DE algorithm are initialized by
some random values. Herein, the population consists of a set of joints position values in
the serial parts of IWR. For setting of the control variables of the DE, CR is assigned to
be 0.7, F is equal to 0.8; NP is set to be 40; and the standard deviation of the population
(1.0E-5) is regarded as the termination criterion. Then the algorithm starts to proceed and
check if the termination criterion for the optimization process is satisfied or not (e.g.
number of iterations performed, or adequate fitness reached). If the criterion is not met, a
new population, which is produced by the algorithm and which consists of mutation,
crossover and selection, will be taken to be compared with the old one by calculating the
cost values. The new population generation of the algorithm guarantees that all
individuals of the next generation are as good as or better than individuals of the current
population. The process is repeated until the termination criterion is reached.

B. Trajectory generation in joints space

Fig.20 shows the input variables of the DE algorithm in the kinematics of IWR.

Fig.20 Input variables of the DE algorithm in the kinematics of IWR

Let 1l  represent the linear displacement of frame ggg ZYX 111  along the rack on the track; 2l
the linear displacement of frame ggg ZYX 222  along the ball screw; 3a  the rotation angular of
frame ggg ZYX 333  around the gZ 2  axis; 4a  the rotation angular of frame ggg ZYX 444  around

the gX 3  axis; and for the parallel mechanism, let )..., (ihi 621=  denote the length of the
Stewart limb. Eq. (58) can then be written as:

),,,( 4321 aallfbest =l . (59)
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For the physical constraints in the robot joints, the values of the input variables in the
population ( 1l , 2l , 3a , 4a ) for the DE are limited to be in the ranges of [ ]4,0  m, [ ]0.50,  m,
[ ]3600,  degree and [ ]42-88,-  degree respectively, and the initial values of the population
are assigned by randomly selecting values within the range boundaries.

In practical application of IWR, when the trajectory of the end-effector is prescribed, by
applying the DE algorithm, all the 10 joints position values at the beginning point of the
path (assuming this is located at point A in Fig.20) can be obtained subject to the
maximum stiffness performance. We postulate that the frame ggg ZYX 111  moved to the
point B on the track according to the joints position values generated from the first
optimization results. However, during the rest machining process, the carriage, namely
the frame ggg ZYX 111 , will stop at point B of the track, and the rest path of the end-effector
trajectory will be accomplished by driving the rest 9 joints. The reason behind is that the
accuracy  of  the  position  control  on  the  rack  of  the  track  is  not  high  enough for  a  good
quality of finished surface during the machining process. In this case, the number of
redundant freedoms is reduced to three in the serial parts of IWR, and the population of
DE is also reduced to a new set, which consists of parameters 2l , 3a  and 4a . Therefore,
the objective function of DE for the rest machining trajectory is reconstructed as Eq.(60):

),,( 432 aalfbest =l . (60)

In other words, for the first work point A in the prescribed workspace, the optimum
stiffness performance is searched in the joint space of 10 freedoms. Thereafter, the robot
will be working under 9 freedoms, the workspace excluding point A, which is subject to
the best stiffness performance, is then reached by actuating 2l , 3a , 4a  as  well  as  the
Stewart limb ih  .

In order to validate the feasibility of applying the DE in the stiffness optimization of IWR,
an arbitrary start point A in the workspace is first chosen for the evaluation. Let the point
A be assigned with the coordinates of [ ]T150-0,150,0,1.0,1.5, , in which the first three
entries specify the position of the end-effector and the remaining three entries specify the
orientation by means of Roll-Pitch-Yaw angles in the global frame ggg ZYX 000 . Then, the
convergence process for searching for the optimum stiffness is as illustrated in Fig 21.
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Fig.21 Convergence of the DE for searching for the optimum stiffness at point A

It can be observed that the DE reaches convergence after around 50 iterations, and the
best  input  parameters,  which  are  the  position  values  of  the  joints  in  the  serial  parts  of
IWR, are obtained as .l 868211 =  m, 362102 .l =  m, 0

3 020630.a =  , and 0
4 932374.a -=

respectively. The lengths of the Stewart limbs can be computed by the inverse kinematics.

In the following step, the workspace is extended from the beginning point A to  a
200x200mm2 square, point A is located at the geometric centre of this area, and the height
of the end-effector and its orientation are maintained as at point A. DE to is then applied
to search for the best stiffness with the objective function (60) over this specific
workspace. The optimum stiffness surface found is shown in Fig 22.

Fig.22 Optimum stiffness surface over the 200x200mm2 square

In Fig 22, the x-axis direction is parallel to the track and the y-axis direction is
perpendicular to the track. It is found that the stiffness performance of point A exhibits
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the best results in the 200x200 mm2 plane workspace, because the best stiffness of point
A is searched for in the joint space of 10 degrees of freedom while the other points are
searched for in joint spaces of 9 degree of freedom due to the fixed carriage position on
the track. The stiffness decreases along both the positive and negative directions of the x-
axis when the end-effector moves away from point A, because the displacement of the
end-effector along the track is contributed mainly by the stretching of the Stewart, and
the stiffness of the Stewart becomes weaker if the limb stretches longer. The stiffness
also decreases along both directions of the y-axis, but the change is much smaller
compared with that of the x-axis, because the displacement along the y-axis is
implemented mainly by the ball  screw, which has much smaller stiffness deviation than
the hydraulic limbs in the Stewart.

In the following example, a set of trajectories in the joints space are generated for a
prescribed trajectory of end-effector, which is a straight line of 200 mm in length parallel
to the track on the x-y plane of the global frame ggg ZYX 000 , as shown in Fig.23.

Fig.23 Straight line path and best stiffness along the path

The  speed  of  the  end-effector  is  set  to  2mm/s.  The  middle  point  of  the  path  in  the
prescribed trajectory is selected as the initial point of the optimization under 10 joints
freedom, and the coordinate of the middle point is set to [ ]T, -,,,.,. 150015000151  with
respect to the global frame. Notice that although the generation of joints trajectories
begins from the middle point of the path, in the practical machining process the robot
end-effector starts to work from the tip of the prescribed trajectory. Utilizing the DE
algorithm to optimize the stiffness performance along the prescribed straight-line
trajectory of end-effector obtained the joints trajectories plotted in Fig 24.
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(i). Linear position trajectories of joints parallel to the track and vertical to the track

(ii). Rotation trajectories of the rotation table and Stewart base

(iii). Linear position trajectories of limb 1 and limb 2 in the Stewart
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(iv). Linear position trajectories of limb 3 and limb 4 in the Stewart

(v). Linear position trajectories of limb 5 and limb 6 in the Stewart

Fig.24 Position trajectories of the driving joints in the hybrid robot

From Fig.24 (i), it can be seen that the trajectory of the first joint is maintained constant,
because the carriage of IWR (serial part base) has been fixed on the track after the first
optimization. The figures show that all the generated trajectories in the joints space based
on the best stiffness performance are acceptably smooth, which indicates the feasibility of
their realization in the control system.

3.4	Conclusions	

This  section  described  the  construction  of  a  system-wide  stiffness  model  of  a  hybrid
serial-parallel robot machine by employing a variant of the virtual joint method and the
virtual work principle. In order to apply the variant of the virtual joint method, the MSA
method is utilized to compute a stiffness matrix of the elemental consisting flexible link
in the robot. In the dissertation, the variant of the virtual joint method is utilized to build
up  a  system-wide  stiffness  model  for  the  robotic  system  that  accounts  for  more
deformation directions than possible with the lumped modelling method.
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To evaluate the overall stiffness performance of the robot, the least eigenvalue of the
stiffness matrix, which represents the weakest stiffness performance of the robot, is taken
as the performance index. In order to get optimal stiffness performance of the robot in an
arbitrary direction, the least eigenvalue of the stiffness matrix has to be optimized to be as
large as possible. Thus, the least eigenvalue of the stiffness matrix is taken as the
optimization objective to obtain the maximum overall stiffness performance of the hybrid
robot  machine  IWR.  A  DE  algorithm,  in  which  the  joints  position  values  of  IWR  are
taken as the searching variables, is utilized in the optimization due to its global
optimization ability.

A set of feasible trajectories in the joints space of IWR along which the overall stiffness
performance of the robot has been maximized are generated for a prescribed trajectory of
end-effector. The numerical results of the generated trajectories indicate that joint
trajectories based on overall stiffness optimization of the robot are acceptably smooth for
realization in the control system. Furthermore, the results imply that the stiffness
performance of a robot machine deviates smoothly with respect to the kinematic
configuration in the adjacent domain of its best stiffness performance.
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FEEDFORWARD	BASED	VIBRATION	CONTROL	

In this chapter, a feedforward based control strategy is introduced for the suppression of
vibration in the end-effector of the robot machine, which is caused by the external
varying force. An inverse dynamics model is employed in the feedforward path. In order
to construct an accurate inverse dynamics model of the target system, a neural network is
employed to identify unknown parts in the dynamics modelling process. A modified
Levenberg-Marquardt algorithm is utilized to train the neural network using indirect
training data for the unknown models.

4.1	Feedforward	Control	Strategy	for	Vibration	Suppression	

Feedforward control is often used together with feedback control for disturbance
rejection in practice. Feedback control can provide satisfactory trajectory tracking
accuracy for a system without external disturbance and, to some extent, can guarantee
system stability when the external disturbance is within the bandwidth of the control
system. Although both feedback control and feedforward control are applied in the
systems discussed in this work, the dissertation research only considers feedforward
control.

In general, feedforward control can be introduced for disturbance rejection when the
disturbance signal on the target system is available. An adaptive filter is often adopted in
the feedforward control path. Fig.25 shows the basic principle of such feedforward
control strategies.

Fig.25 Principle of feedforward control based on an adaptive filter

The disturbance source is fed forward into an adaptive filter, which yields a compensative
source as the input signal of the system to cancel out the effect of the disturbance. The
filter coefficient is deemed to be well adapted or tuned when the error signal from the
target system is minimized at one or several points of interest. One prominent advantage
of such feedforward control is that it can work at any frequency; furthermore,
feedforward control is less sensitive to phase lag than feedback control. However, the
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performance of such adaptive filters is not global, which means that the adaptive filter is
only effective on a specific disturbance over well-tuned points. The principle behind this
sort of adaptive filter is akin to approximating an 'inverse dynamics model' from the
disturbance source to the input source of the system that can produce a result equal to the
disturbance but with the opposite sign to cancel out the disturbance.

In  the  IWR,  the  disturbance  source  acting  on  the  robot  system  mainly  stems  from  the
varying cutting force. Consequently, a wide range of disturbance exists, as machining is
done on different materials. An adaptive filter approach is thus not suitable for
feedforward control of the end-effector path, due to the localized performance of the
filters. However, the concept of feedforward control is still attractive for disturbance
rejection in the robotic machine, since an inverse dynamics model can be constructed and
applied in the feedforward control path instead of the adaptive filter. Fig.26 shows the
concept of such an inverse dynamics model based feedforward control strategy.

Fig.26 Feedforward control of the robot system

When the robotic machine in Fig.26 is controlled without the machining task, the
trajectory tracking accuracy obtained by the feedback controller is quite satisfactory [21].
However, when the machining process is undergoing, chatter vibration occurs. The
reason for the chatter vibration is that the frequency of the cutting force is slightly larger
than the natural vibration frequency of the robot system and thus surpasses the
suppression ability of the feedback controller. From Fig.26, the disturbance force dF  acts
as dt  on the actuators of the robot system through an inner inverse dynamics path. Thus,
if an inverse dynamics model is introduced into the feedforward controller path which
takes the disturbance dF  as the input signal the resultant extra output force from the
actuator can completely cancel out the disturbance force dt , since the extra compensation
force is also generated from the same inverse dynamic model. As a result, the vibration
caused by the machining force should vanish completely.

In order to validate the effectiveness of disturbance rejection by applying an inverse
dynamics based feedforward controller, a parallel manipulator is taken as a case study.
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4.2	Case	Study	of	a	Parallel	Manipulator	

The parallel manipulator under study, a Cassino Parallel Manipulator (CaPaMan), is
shown in Fig.27 [69]. The manipulator possesses 3 driven degrees of freedom (DOF) and
consists of a mobile platform, a base and three legs. The leg consists of a parallelogram
mechanism, which is driven by a servo motor in the left down-joint, and a vertical bar
which can only slide perpendicular to the parallelogram plane. The up-joint of the vertical
bar is a spherical joint.

Fig.27 Prototype and 3D model of CaPaMan: 1. mobile platform 2. vertical bar  3.
parallelogram mechanism  4. driven crank of parallelogram  5. servo motor  6.base  a.

passive freedom  b. active drive

Fig.28 Kinematic scheme of CaPaMan

4.2.1	Inverse	dynamic	modelling	of	CaPaMan	

In order to build up the inverse dynamics model, the kinematics should first be analyzed.
In the manipulator, all the reference frames and kinematic vectors are expressed as shown
in Fig.28: the global reference frame XYZ  is located in the center of the base; the local
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frame AAA ZYX  is fixed in the center of the mobile platform; the base joint frame iii ZYX  is
fixed in the middle of the bottom line of a parallelogram with the x-axis perpendicular to
the parallelogram plane and the z-axis vertical to the base; P represents the vector from
point O to AO ; 1B  the vector from O to 1O ; 1L  the vector from 1O  to 1E  ( 1E  is the middle
point of the up line of the parallelogram); 1H  the vector from 1E  to 1D ; 1K  the vector
from 1D  to 1C  ( 1D , 1C : two ends of a vertical bar); 1A  the vector from AO  to 1C ; and 1S
the vector from O to 1D .

A. Kinematic constraints

Since the configuration of the 3 legs in the CaPaMan is homogenous, analysis of one of
them is sufficient to deduce the kinematic constraints. From leg 1 in Fig.28, the close
loop kinematic equation is obtained as Eq.61:

111 KAPS -+= . (61)

As the vertical bar 1K  is always vertical to the base plane (X-Y plane), we assume there is
a virtual axis V through the point O vertically, and a plane N (in the right part of Fig.28)
is formed by this virtual axis V and 1K , which can only rotate around V. As the vector 1H
is always parallel to the vector 1B , the plane M is  formed, which can only rotate around

1B . The vector 1S  is the intersection of plane M and plane N.

Regardless of the rotation of plane M, the projections of vector 1S  on the 1Y  and 1Z  axes
of frame 111 ZYX  are always equal to the those of vector 1L  individually. The following
constraint equations are thus obtained:

0)2()2( 11
11 =- LS RR , (62)

0)3()3( 11
11 =- LS RR , (63)

where the leading superscript 1R  denotes that the vector is expressed in the reference
frame 111 ZYX ; the '2' in parentheses denotes the projection on the 1Y  axis; and the '3' the
projection on the 1Z  axis.

By analogy, the following equations are obtained from leg 2 and leg 3:

0)2()2( 22
22 =- LS RR , (64)

0)3()3( 22
22 =- LS RR , (65)

0)2()2( 33
33 =- LS RR , (66)
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0)3()3( 33
33 =- LS RR . (67)

Let the left parts of Eq. (62) to Eq. (67) be represented by 1C  to 6C  individually. Since
they are functions of the mobile platform coordinates ( xP , yP  , zP , a, b, c) and the rotation

angles of the parallelogram 1q , 2q , 3q , taking the partial derivatives of these constraint
functions iC  with respect to the 9 generalized coordinates yields:

. (68)

By matrix partition, Eq. (68) can be simplified to Eq. (69):

[ ] [ ]T
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. (69)

B. Lagrangian formulation

By taking account of the kinetic and potential energy of the mobile platform, vertical bar
and the parallelogram mechanism, a Lagrange function is obtained as in Eq. (70):

CVPCVP UUUKKKL ---++= , (70)

where pK  and pU  represent the kinetic and potential energy of the mobile platform; vK

and vU the kinetic and potential energy of the vertical bar (the slider of passive freedom
included); and cK  and cU  the  kinetic  and  potential  energy  of  the  parallelogram  (slider
base included).

Let the coordinates of the mobile platform be the redundant Lagrangian coordinates and
the rotations of the parallelogram be the independent coordinates, then 6 Lagrangian
multipliers are introduced as expressed in Eq. (71):

[ ]T654321 lllllll = . (71)
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If the first 6 Lagrangian equations of the first type are associated with the mobile
platform coordinates, then a set of system dynamic equations can be written in the form:

d
dd
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¶ , and [ ]Tzyxzyxd fffF ttt= , which

represents the external force acting on the mobile platform. When the position, velocity
and acceleration of the mobile platform and the external forces are given, the values of
the Lagrangian multipliers can be computed by solving the linear equations described by
Eq. (72).

Once the Lagrangian multipliers are found, the actuator torques in the driving joints of
the legs can be determined directly from the remaining Lagrangian equations.
Specifically, the second set of 3 Lagrangian equations for the system dynamics can be
written in the form:

lT
q

ii
i i

C
Q
L

Q
L

dt
dF -

¶
¶

-÷÷
ø

ö
çç
è

æ
¶
¶

= & , (73)
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[ ]TiF 321 ttt=  , which are the actuator torques needed from the servo motor.

4.2.2	Vibration	control	of	CaPaMan	

Fig.29 shows the control scheme applied in CaPaMan. The entire control strategy of
CaPaMan, as well as the forward dynamics behavior, are simulated in a software
environment, in which the control algorithms are implemented in MATLAB Simulink
and the forward dynamics behavior is computed and presented by ADAMS solver/viewer.
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Fig.29 Control scheme: I. Feedforward model-based nonlinear control, II. Feedback PV
control, III. Feedforward disturbance depressing control

The control scheme for this parallel manipulator consists of three parts, as shown in
Fig.29: I. Feedforward model-based nonlinear control, II. Feedback PV control, and III.
Feedforward external disturbance rejection control.

Due to the highly non-linear behavior of the dynamics in the parallel manipulator, it is
difficult to get satisfactory tracking performance, even without external disturbance,
using only a conventional PID controller with constant gains. Therefore, the model-based
feedforward and the feedback PV control are combined to relatively simplify the
nonlinearity  of  the  control  system  so  as  to  get  a  satisfactory  tracking  error,  and  the
feedforward disturbance rejection control is used to depress the effect from the external
disturbance force.

A. Model-based feedforward nonlinear control

For general rigid body dynamics, a universal form can be given as Eq. (74):

),()(),()( QQ+Q+QQ+QQ= &&&& FGVMt , (74)

where M is  the nn´  inertial matrix of the manipulator; V an 1´n  vector of the
centrifugal and Coriolis terms; G an 1´n  vector of gravity; and F the friction of the joints
and external load.
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By utilizing the linearizing and decoupling control law, the non-linear control term
),()(),( QQ+Q+QQ && FGV  can be taken into the control system to cancel out the

nonlinearity in the dynamics model, which yields a linear second order system,
QQ= &&)(Mf  , and an error model of the control system, 0=++ EKEKE pv

&&& .

However for a parallel mechanism, due to nonlinear kinematics coupling of actuated
joints, it is impossible to separate the term M from its dynamics model, and therefore the
above-mentioned linearizing law is not valid. To address this issue, a revised model-
based  control  is  employed  for  CaPaMan  control,  which  consists  of  two  parts,  I.
Feedforward and II. Feedback, as shown in Fig.29. If only part I and part II of the control
scheme are taken into consideration, the system equation can be written in the form:

),()(),()(

),()(),()(

QQ+Q+QQ+QQ=

++QQ+Q+QQ+QQ
&&&&

&&&&&

FGVM

EKEKFGVM pvddddddd , (75)

where Q-Q= dE . By simplifying Eq. (75) under the assumptions, )()( Q@Q MM d ,

),(),( QQ@QQ && VV dd , )()( Q@Q GG d and ),(),( QQ@QQ && FF dd , the error equations of the
system are found as:

0)()( 11 =Q+Q+ -- EKMEKME pv
&&& . (76)

Clearly, the feedforward control does not provide complete nonlinearity decoupling, and
the effective feedback gain changes as the configuration of the parallel manipulator
changes. However a good set of constant gains can still be found to guarantee a
reasonable damping performance [21].

B. Disturbance suppression by feedforward control

When the parallel manipulator is used in a machining task, the cutting force cF  is deemed
to be a varying disturbance. By applying the feedforward control loop (control part III in
Fig.29), compensation torque, which is used to cancel out the effect of cF  through the
manipulator, is computed based on the constructed inverse dynamics model. The
complete function diagram of the control scheme applied in CaPaMan is presented in Fig.
30.
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Fig.30 Implementation of the control system for CaPaMan

The control  system consists of two parts:  (1) in the part  of 1P , the torques acting on the
driving joints are taken as the input parameters of the system function, while the position,
velocity, and acceleration of the mobile platform as well as the driving joints are regarded
as outputs. The part of 1P  can be expressed by Eq. (77):

),(),,,,( 1 pCPPPP t=QQ &&&& , (77)

where pC  is the configuration of the manipulator from the previous computation step, P

and Q  represent the position vectors of mobile platform and joints; (2) in the part of 2P ,
the external load F is taken as the input parameter, while the resultant effective torque ft

in the driving joints is taken as the output of the system, which is expressed by Eq. (78):

),(2 cf CFP=t , (78)

where cC  is the current manipulator configuration.

The actual acting torque on the driving joints are formed by Eq. (79) as follows:

)(
.

fcvcd EKEK tttt -+++= , (79)

where ),,(1 dddd PPPD &&&=t  is the torque computed from the reference trajectory,

EKEK vc
&+  is the torque computed from the trajectory control error, and ),(2 cc CFD=t  is

the torque used for compensation of the external force. Substituting Eq. (79) into Eq. (77)
yields:

))),(((),,,,( 2211 pvc CPDEKEKDPPPP -+++=QQ &&&&& . (80)

From Eq. (80), when the established inverse dynamics model 2D  of the parallel
manipulator  in  the  control  system  approximates  to 2P  in the real system, the difference
between the compensation torque and the disturbing torque in the driving joints
approaches zero. Consequently, the effect of the external load is eliminated significantly,
or even completely, and the whole plant system is reduced to plant 1P , which is described
by Eq. (77) and can be easily controlled by the combination of the model-based nonlinear
control strategy and the feedback PV controller.

C. Results based on feedforward disturbance rejection control

Results for disturbance suppression based on the proposed control strategy are presented
in this section for a reference trajectory of the mobile platform, which is shown in Fig.31.
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Fig.31 Reference trajectory of mobile platform

In the given reference trajectory, the freedoms of the mobile platform consist of
translations along the y- and z-axes, and rotation around the x-axis.

The external disturbance force is a 10 Hz triangle wave with an amplitude of 20 N, as
shown in Fig.32.

Fig.32 External disturbance force of 10 Hz

When the feedforward model-based control is applied, with/without the feedforward
control path for disturbance depression (FDD) in the control system, the outputs of the
obtained trajectories are as shown in Fig.33.
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(a) Y-trajectory without FDD (b) Y-trajectory with FDD

(c) Z-trajectory without FDD (b) Z-trajectory with FDD



CHAPTER	4	

82

(e) AX-rotation without FDD  (f) AX-rotation with FDD

Fig.33 Comparison of trajectory outputs with and without the feedforward control path
for external disturbance supression under feedforward model-based control

In the figures, the dashed blue line represents the reference trajectory and the continuous
red line represents the actual obtained trajectory. From Fig. 33 (a), (c) and (e), it is clearly
seen that the chatter vibrations occurred in the same frequency as the external disturbance.
However, the results shown in Fig.33 (b), (d) and (f), suggest two outcomes: (1) the
feedforward control for external disturbance suppression applied based on the constructed
inverse  dynamics  model  of  the  target  manipulator  is  validated  to  be  very  effective;  (2)
using the feedforward model-based control enables a stable trajectory tracking error to be
obtained for the highly nonlinear dynamic system.

Although  software  simulation  of  CaPaMan  gives  a  good  result,  several  difficulties  still
remain as regards practical application of this method of vibration suppression. In the
example above, the friction force in the joints of CaPaMan are ignored in both the
ADAMS model and the constructed inverse dynamics model. However, in practice, the
friction model has to be taken into account due to the slow motion and the heavy payload
when the robotic machine is carrying out the machining task. In addition, dynamic
parameters of CaPaMan such as the inertial matrix are assumed to be ideal in the
simulation process, but in practice, these parameters have to be identified.

For a parallel robot, the kinematics chains are coupled with one another, which renders
direct measurement of the friction models in the joints, as well as measurement of the
dynamics parameters difficult, and thus, an indirect identification method has to be
developed to identify these unknown dynamics.
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4.3	Dynamics	Model	Identification	

In mechanical engineering applications, an accurate dynamic model for the target system
can be very beneficial to the control system design [59]-[62]. In some control systems
demanding high performance, such as systems with a requirement for high precision
position control under varying payload, industrial robots requiring accurate force control
or robotic systems requiring dynamic predictive control, the  accurate dynamic model of
the system is incorporated into the system controller design to satisfy the performance
requirement [63]-[65]. For vibration suppression of a robotic machine, incorporating an
accurate inverse dynamic model into a feedforward controller has been shown to be a
very efficient way to eliminate end-effector chatter [66][67].

In practice, especially in a parallel structure based mechanism, due to the complexity of
the multi-body dynamics and the difficulty in modeling certain components of the
dynamic system, it is either unrealistic or inaccurate to construct an analytical dynamic
model that can exactly match the actual dynamic behavior of the target system.
Sometimes  the  theory  itself  required  for  modelling  some  components  of  the  system
dynamics from physical insight is either still under development or inapplicable for a
specific application. For instance, in mechanical systems, various friction theories and
modeling methods exist for different working conditions; in parallel robot joints, the
friction forces are coupled with each other and have highly nonlinear, highly correlated
and time-variant characteristics, which render it even more difficult to build up the
individual theoretical model; and in a hydraulic system, accurately modelling the
dynamics between a cylinder and a valve also presents some difficulties, such as internal
valve leakage modeling, and friction and damping parameter identification. In some cases,
a constructed dynamic model of the mechanical system becomes inaccurate, because the
system parameters change – a variance which occurs in terms of perturbation of the
inertial matrix, changing of the friction coefficient etc, due to wear and deformation in
the mechanism assembly. Under such circumstances, direct measurement of these
dynamic parameters is not feasible.

However, abundant input-output data can be obtained by carrying out experiments on the
target dynamic system, and the acquired data set may cover various deterministic
trajectories  and  working  domains  of  the  dynamic  system.  Therefore,  discussion  of
dynamics modelling will focus on how to identify an approximate dynamic model based
on experimental data. During the past decades, artificial neural networks (ANN) have
been widely studied and employed for dynamic model identification of linear and
nonlinear systems.

To date, artificial neural networks have proven to be a very efficient tool for parameter
identification and model approximation, given that a prior measured input-output data set
of the target dynamic system is available. Several ANN types such as the multilayer
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perceptron (MLP) neural network [55], radial basis function neural network (RBFNN)
[56] and functional link artificial neural network (ALANN) [57] have been subject to
intensive research and have been applied successfully in dynamic model identification.
All these ANN methods are primarily designed for approximating the target system as a
whole  entity,  and  with  all  the  methods  the  prior  input-output  data  set  of  the  target
dynamical system must be measurable and have been obtained in advance. However, in
most practical cases, only some small amount of the unknown components of the whole
dynamic system need to be identified, and direct measurement of the required input-
output data of such unknown components is not feasible. Consequently, the above-
mentioned ANNs are not suitable for indentifying these unknown components of the
dynamic system.

This dissertation proposes a method for indentifying unknown components or subsystems
of  the  whole  dynamic  system  via  a  BP  neural  network  using  a  prior  measured  data  set
from the whole system. In order to utilize such measured input-output data to train the
ANN models for the unknown components, a modified Levenberg-Marquardt (LM)
algorithm is proposed and developed in the dissertation. Although the original LM
algorithm is regarded as a most efficient training algorithm for BP neural networks, it is
effective only when a prior measured training data set of the system under modelling is
available [58]. In the dissertation, it is assumed that some components or a subsystem of
the whole dynamic system need to be identified, and that only the input-output data set of
the whole dynamic system is measurable and available, which thereby is regarded as an
indirect training data set for the unknown components or subsystem of the entire
dynamics. Thus, the original LM algorithm needs to be modified to fit into such indirect
data.  In  the  modified  LM algorithm,  the  derivatives  of  the  output  data  set  of  the  whole
system with respect to the outputs of the neural network are deduced, and thereafter such
derivative information is incorporated into the Jacobian matrix of the neural network, and
a new Jacobian matrix is formed by chain rule that can represent the relationship between
the errors of the whole system output and the weights of the neural network. The prior
measured input-output data of the whole dynamic system is thus used to train the neural
network for the unknown components of the dynamic system.

4.3.1	Dynamics	identification	by	neural	network	using	indirect	error	

For model identification of a dynamic system by a BP neural network, the most common
approach is to use the neural network to approximate the outputs of the entire target
system over the domain of interest based on prior obtained input-output data sets, as
shown in Fig.34.
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Fig.34 Neural network as a dynamic model approximator

However, when the domain of interest of the target dynamic system spans a large area
and the dynamic system contains many parameters and is highly nonlinear and time
variant, the approximation of the neural network is neither efficient, nor its accuracy
satisfactory.

Nevertheless, for any dynamic system, some knowledge of most components of the
dynamics should be available, and only small components or subsystems of the dynamics
of the system exist as a 'black box' or an incomplete function. In such cases, the neural
network should be used to approximate these unknown components rather than the entire
dynamics. The well trained neural network for these unknown dynamical components can
then be incorporated into the entire dynamic system to substitute the unknown
components. The scheme of this concept is shown in Fig 35.

a) Identification/training process for unknown components: 1. Inputs of the unknown
components of the dynamics; 2. The outputs of the unknown components
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b) Identified model and the entire developed dynamics

Fig.35 Neural network as an approximator for part of a dynamic system

Practically, the unknown components of the dynamics shown in Fig. 35 (a) are embedded
into the entire system and coupled with the systems fore and aft.  It  is  difficult  to obtain
the prior input-output data set for such an unknown system. However, the inputs can be
obtained from the inputs of the entire system via its fore part system. The outputs of such
an unknown system are regarded as immeasurable and cannot be computed from the
outputs of the entire system due to the difficulty of implementing the inverse computation
of the other components of the dynamics as in Fig. 35 (a).

From  the  entire  system  dynamics  point  of  view,  if  the  BP  neural  network  for  the
unknown components in Fig. 35 (a) are well trained, the errors between the outputs of the
constructed entire dynamic model (Fig. 35 (b)) and the practical entire dynamic system
(Fig. 35 (a)) should approach zero. Since outputs measurement of the entire dynamic
system is feasible, it can be used to train the neural network for the unknown components
of the dynamics based on a modified LM algorithm that utilizes a chain rule to propagate
the errors from the entire system output to the weights of the neural network. The
Jacobian matrix in the chain rule in the modified LM, which consists of derivatives of the
outputs of the entire system with respect to the weights of the neural network, can be
easily computed discretely using data recording from both the outputs of the neural
network and the practical entire system along with the intrinsic mathematics of the neural
network. Thus, a rule for updating the weights of the neural network can be deduced by
using the outputs data set of the entire system. In the dissertation, such measurable data
from the practical entire system is therefore named indirect training data for the unknown
components of the dynamics, and the training process is named indirect error propagation.

4.3.2	Modified	Levenberg-Marquardt	algorithm	for	neural	network	training	

Since the modified LM algorithm is deduced based on the original LM algorithm, it is
necessary to introduce briefly the original algorithm.

A. Levenberg-Marquardt training algorithm

The original LM algorithm for training neutral networks evolved from the Gauss-Newton
algorithm. The LM algorithm inherits the speed advantage of the Gauss-Newton
algorithm, while also gaining advantage from adoption of convergence from the steepest
descent whenever the error in the training process tends to divergence [58][72].

The training process for a neural network can be represented by Eq. (81):

k
T

kkkk EJHWW 1
1

-
+ -= , (81)
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where, the subscripts k and k+1 indicate the current iteration and next iteration; kW  and

1+kW  represent the weight vectors consisting of all the individual weights of the neural
network; kH  is the Hessian matrix, which is a square matrix of second order partial
derivatives of the neural network output errors with respect to the weights; kJ  is the
Jacobian matrix of the errors of the neural network outputs with respect to the weights of
the neural network; and kE  is the error vector consisting of errors of outputs between the
target system and neural network.

The Jacobian matrix kJ  and the error vector kE  are represented by Eq. (82) and Eq. (83)
respectively:
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[ ]Tknk
t

kk eeeYYE L21=-= , (83)

where, ie  represents the error between the ith output of the target system and neural

network; iw  is the ith weight of the neural network; t
kY  is the output vector of the target

system; and kY  is the output vector of the neural network.

In order to avoid computation of second order partial derivatives, the Hessian matrix is
approximated in the Levenberg-Marquardt algorithm by Eq. (84):

IJJH k
T
kk m+= , (84)

where m  is always positive and called the combination coefficient; and I  is the identity
matrix and introduced to guarantee that the approximated Hessian matrix is always
invertible.

Substituting Eq. (84) into Eq. (81) yields:

k
T

kk
T
kkk EJIJJWW 1

1 )( -
+ +-= m , (85)

which represents the weights updating rule in each training iteration of the LM algorithm.
When the combination coefficient m  is very small, the Gauss-Newton algorithm
dominates Eq. (85), which gives the advantage of speed; when the updating error
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increases, then the combination coefficient m  increases, and the steepest descent method
starts to dominate Eq. (85), which can guarantee the correct convergence direction of the
training.

B. Modified training algorithm

In Eq. (85), the error is computed from the difference between the outputs of the target
system and the neural network. However, when the target system is a part of a larger
system, and the outputs of the target system are not measurable directly, as shown in Fig.
36, and the direct error of the neural network training cannot be obtained, the Jacobian
matrix in Eq.(85) cannot be computed and the LM algorithm is not applicable.

Fig.36 Neural network training by indirect error propagation: 1. Input of the target system;
2. Output of the target system (immeasurable)

However,  the  output  data  from  the  entire  dynamic  system  are  still  useful  to  train  the
neural network by a modified LM algorithm. In order to utilize the modified LM
algorithm on the output data of the entire system, a new Jacobian matrix and a new
Hessian matrix need to be deduced that can present the partial derivatives of the entire
system output errors with respect to the weights of the neural network. The following
notions are used throughout this section:

t
io : the ith output of the practical entire dynamic system;

io : the ith output of the constructed dynamic model;

oie : the ith error between the practical entire dynamic system and the constructed

dynamic model, i
t
ioi ooe -= ;

koE : the error vector consisting of all the errors oie  in the kth iteration;
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iy : the ith output of the neural network;

iw : the ith weight of the neural network;

kM : the partial derivatives of the entire dynamics system output errors with respect to the
outputs of the neural network in the kth iteration, which is represented by Eq. (86):
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kYJ : the Jacobian matrix between the outputs of the neural network and the weights in the
kth iteration, which is represented by Eq. (87):
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The updating rule for the weights of the neural network based on the modified LM
algorithm can therefore be represented by Eq. (88):

kkkk o
T

oo
T

okk EJIJJWW 1
1 )( -

+ +-= m , (88)

where
koJ  is  the  new  Jacobian  matrix  of  the  errors  of  the  entire  system  outputs  with

respect to the weights of the neural network, which is deduced by applying the chain rule
on Eq. (86) and Eq. (87), and represented by Eq.(89):
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The partial derivative matrix kM  is computed discretely from the data recording of both
the outputs of the neural network and the entire dynamic system, when the analytical
derivatives  of  the  outputs  of  the  other  parts  of  the  system  (Fig.  35)  with  respect  to  its
inputs are not applicable. Notice that the Jacobian matrix

kYJ  herein differs from the

Jacobian matrix kJ  in the original LM algorithm, in that
kYJ  is the derivatives of outputs

of the neural network with respect to the weights, but kJ  in the original LM algorithm is
the derivatives of the errors of the outputs of the neural network with respect to the
weights.

For batch training of the modified LM algorithm, an updating rule for the weights can be
obtained by augmenting the error vector

koE  and Jacobian matrix
koJ  in Eq. (88) in the

column direction respectively, as in Eq. (90):

kkkk B
T
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T

Bkk EJIJJWW 1
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+ +-= m , (90)

where
kBE  and

kBJ  represent the corresponding augmented error vector and Jacobian
matrix for the batch training;
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and the superscript p indicates the index of patterns or data samples in the batch data.

4.3.3	Case	study	

Validation of the method proposed in the dissertation is performed by a sinusoidal output
approximation, a second order system parameters estimation and a friction model
estimation of a parallel structure based manipulator, which respectively represent three
different applications of this method.
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A. Sinusoidal function approximation

For a general validation of the proposed method from the perspective of system
approximation,  a  system  with  an  unknown  part  is  employed  and  regarded  as  an  entire
system for the approximation by incorporation of the neural network, as shown in Fig.37.

Fig.37 Sinusoidal function approximation of a partially known system

It is assumed that the entire system takes a continuous time sequence as the input and
yields a sinusoidal signal f=sin(0.5*pi*t) as the output. The known part of the entire
system is a 5th order polynomial function, which makes the inverse computation from the
output of entire system to the output of neural network have multiple solutions. Thus,
obtaining direct training data for the target unknown system is not practical.

By applying the modified LM algorithm on the entire system input-output data set, a
neural network model for the unknown part can be identified and incorporated into the
derived model for the entire system approximation. The input and output signals of the
entire actual system, which are used for the neural network training, are shown in Fig.38.

Fig.38 Input and output signal for the entire real system

The input signal is a continuous time sequence from 0 to 4, and the output is a sinusoidal
function f=sin(0.5*pi*t), whose amplitude equals 1 and period equals 4.
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A single hidden layer neural network with 10 neurons is adopted for the unknown part
system identification, and 100 input-output data samples are utilized for neural network
batch training in each iteration. The identification results are shown in Fig. 39 and Fig. 40.

Fig.39 Root mean square (RMS) of errors between the actual and derived system during
the neural network training process

Fig.40 Comparison between the actual and derived system at the 100th iteration of the
training process

Since the neural network is trained based on a batch of samples in every iteration, the
root mean square of errors in Fig. 39 is also computed based on the data set of the batch
outputs in every iteration. In Fig. 39, the training process of the neural network converges
very fast at the beginning of the training, after which the error between the real system
and constructed model starts to become stable after around 10 training iterations. The
stable root mean square error of the batch training data is around 1.0e-3 after 100
iterations.

For validation of the constructed model, 200 random data samples spanning from 0-4
were inputted into the real system, which yielded the outputs as the sinusoidal function f=
sin(0.5*pi*t) of the input. At the same time, the same random samples were inputted into
the constructed model. A comparison between the results for the two systems is shown in
Fig. 41.
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a) Outputs comparison between the actual system and the model derived based on
random inputs

b) Errors between the actual system and the model derived based on random inputs

Fig.41 Comparison of the actual system and the model based on random inputs

The root mean square error between the practical system and the model based on random
inputs is under 0.01, which shows that the model constructed by the neural network for
the entire system can be deemed as accurate. The modelling accuracy can be improved
further if the training iteration continues.

B. Second order system estimation

In order to validate the proposed method in mechanical dynamic system identification, a
second order system is investigated in this section. The identification concept is shown in
Fig.42.
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Fig.42 Dynamic model identification of a second order system: I. Target output; II.
Constructed model output

It is assumed that in such a second order system the mass parameter M is known; and the
damping coefficient C and elastic coefficient K are unknown. The aim of dynamic model
identification in this example is to construct an accurate inverse dynamics model for the
second order system, which implies that given the acceleration X&& , velocity X&  and the
position X  information, the driven force F required by the system can consequently be
computed.  To  achieve  such  an  aim,  the  unknown  damping  and  elastic  terms  of  the
dynamics need to be identified.

In practice, an experiment can be carried out on the forward dynamics of this second
order  system  in  which  a  specific  driven  force  is  exerted  on  the  system  and  system
response results consisting of acceleration, velocity and position can hence be obtained.
For the inverse dynamic modelling process, such experimental data from the forward
dynamics can be utilized to train the neural network for the unknown terms of the inverse
dynamics, herein XKXC ** +& , by applying the modified LM algorithm. In the neural
network training process, the outputs of the forward dynamics, namely, acceleration,
velocity  and  position,  are  taken  as  the  input  data  of  the  inverse  dynamic  model  and  the
driving force F is taken as the target output data. The errors between the target output and
model output will converge towards zero if the neural network is well trained by the
modified LM algorithm. Thus, the unknown terms of the inverse dynamics and the whole
inverse dynamic model can be deemed to be identified correctly and constructed
successfully for the particular experiment data.

For detailed illustration, a sinusoidal input force was adopted as the input signal of the
forward dynamics of the system as a numerical example, which is shown in Fig. 43.
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Fig. 43 Input excitation force of the forward dynamics

The amplitude of the input force was 10 N and the period was 20 seconds. In the forward
dynamic system, the mass M equaled 1 kg; damping coefficient C equaled 5; and elastic
coefficient K equaled 10.

Along with the input signal, the output data of the forward dynamics were also collected
as training data and used to train the neural network so as to build up an inverse dynamic
model based on this particular excitation. A single hidden layer neural network, which
consisted  of  10  neurons,  with  two  inputs  and  one  output  was  utilized.  The  training
process the neural network underwent was based on batch data in each iteration. The
training process as well as the results of the constructed model are presented in Fig. 44.

a) RMS of errors between the target output and the constructed model output during
neural network training
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b) Comparison between target output data (F) and trained model output at the 60th

iteration

c) Errors between target output data (F) and trained model output at the 60th iteration

Fig.44 Neural network training process and results of trained model

In Fig.44.(a), the model converges fast at the beginning of the neural network training,
and after 10 iterations the error between the target output and model output reaches 1.0e-
3  and  starts  to  converge  slowly.  Fig.  44  (b)  and  Fig.44  (c)  present  a  comparison  of  the
results for the target output and the model output.

For validation of the built-up model, two different input signals, a sinusoidal signal with a
period of 40 seconds and a cosine signal with a period of 20 seconds, were exerted on the
system individually as the target output reference of the inverse dynamics model. The
corresponding outputs from the forward dynamics were input into the model with the
well trained neural network. A comparison of the results for the reference target and the
outputs of the model is shown in Fig. 45.
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a) Comparison between the target data and output data of the constructed model based on
sinusoidal signal

b) Error between the target data and output data of the constructed model based on the
sinusoidal signal

c) Comparison between the target data and output data of the constructed model based on
the cosine signal
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d) Error between the target data and output data of the constructed model based on the
cosine signal

Fig.45 Comparison of the results for the target data and the constructed model output
based on different excitation signals

In Fig.45 (b) and (d), the error results imply that the built-up model has less accuracy
based on the different excitation signals from the training signal. The reason for the
reduced accuracy is that the input data of the neural network yielded by the different
signals  were  outside  the  domain  of  the  training.  However,  the  yielded  outputs  from the
constructed model can still match the accuracy requirements for some applications, such
as a controller design based on inverse dynamics. Furthermore, in practice this accuracy
weakness can be overcome by augmenting the experimental data for the neural network
training to cover the whole possible domain of the application under study.

C. Friction model estimation of a parallel robot

In this section, an example of dynamic model identification by the modified LM training
algorithm is illustrated on a more complicated system – a parallel structure based
manipulator.

For inverse dynamics modelling of parallel robot/manipulators, Newton-Euler
formulation and Lagrangian formulation are widely employed in the literature [12]. In
both methods, the friction forces in the joints of the robot are ignored. However, in
practical cases, when the lubrication of robot joints is not well maintained and the robot is
under heavy duty payload or the pose of the robot is close to the singularity condition, the
friction forces play a significant role in the robot dynamics.

In this section, an inverse dynamics model is derived for a parallel manipulator,
CaPaMan, in which the friction model is approximated by the neural network using the
modified LM algorithm. The manipulator, as shown in Fig.46, possesses 3 driven degrees
of freedom (DOF) and consists of a movable end-effector, a base and three legs. The leg
consists of a parallelogram mechanism, which is driven by a servo motor, and a vertical
bar, which can only slide perpendicular to the parallelogram plane. The spherical joint is
used for the up-joint of the vertical bar.
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Fig.46 3D model and kinematic scheme of CaPaMan: 1. End-effector 2. Vertical bar 3.
Parallelogram mechanism 4. Driven crank of parallelogram 5. Servo motor 6. Base. I.

Passive freedom sliding joint II. Active drive

Since the sliding direction of the vertical bar (Fig. 46 I) is perpendicular to the driving
direction of the parallelogram, the friction force in this sort of joint is significantly large
compared  with  the  friction  force  of  other  joints  being  revolute  or  ball  joints,  thus  only
such friction forces are taken into account in the inverse dynamics modelling of the robot.
The forward dynamics of the parallel manipulator is simulated in MSC.ADAMS software,
and the control strategy is implemented in MATLAB Simulink.

The inverse dynamics modelling process of this parallel robot, which incorporates the
neural network modelling for the friction model, is shown in Fig.47.

Fig.47 Inverse dynamics modelling process

An experiment can be carried out on the target practical robot system over an interested
trajectory or a cluster of several interested trajectories. The corresponding driving torques
in the actuators, 1t , 2t  and 3t , the end-effector's acceleration Q&& , velocity Q& , position Q

and payload eF  can thus be measured. Based on the Newton-Euler formulation, an
inverse dynamics model can be derived, in which the unknown friction forces in the
sliding joints are included as variables and deemed as a 'black box'. The neural network is
then utilized to identify and substitute such a 'black box'. The training process of the
neural network is implemented based on the prior measured data from the whole forward
dynamics, namely 1t , 2t , 3t , eF , Q&& , Q&  and Q .  The  inputs  of  the  neural  network  are  the
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forces sF  acting on the sliding joints and the relative velocity sQ&  of the sliding joint,

which are computed inversely from the end-effector's payload eF  and velocity Q& . The
modified LM training algorithm is utilized herein for the neural network training. If the
neural network is well trained, the errors between the driving torques of the actuator and
the outputs of the constructed inverse dynamics model should converge towards zero. If
such convergence to zero occurs, the friction model and the inverse dynamic model can
be deemed to have been successfully identified and constructed for the specific
trajectories of interest.

For detailed demonstration, an example is illustrated based on the trajectory given in Fig.
48.

Fig.48 Experimental trajectory

The end-effector of the parallel manipulator was controlled to implement the trajectory in
Fig 48 along the Y-direction in the global reference frame of the manipulator base (in the
kinematic scheme of Fig. 46). To realize this trajectory, leg1 and leg2 are driven while
leg3 stays still.

In order to identify the friction models in the sliding joints of leg1 and leg2, a multi-
inputs-outputs neural network with a single hidden layer structure was employed, in
which the velocity of the sliding joints and the force acting on the sliding joints comprise
the 4 inputs of the neural network, the joints' friction forces comprise the 2 outputs, and
10 neurons are utilized in the hidden layer. 200 data set samples of the actuators' torques
and the corresponding end-effector outputs -- acceleration, velocity, position -- as well as
the payload were utilized to constitute the batch training data of the neural network,
which were generated from the implementation of the given trajectory.

Results for the training process and the constructed inverse dynamics model are shown in
Fig.49.
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a). RMS of errors between the actuator torques and the constructed inverse dynamics
output during the neural network training

b) Comparison between the torque of actuator1 (leg1) and the corresponding output of
the inverse dynamic model

c) Errors between the torque of actuator1 (leg1) and the corresponding output of the
inverse dynamic model
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d) Comparison between the torque of actuator2 (leg2) and the corresponding output of
the inverse dynamic model

e) Errors between torque of actuatot2 (leg2) and the corresponding output of inverse
dynamic model

Fig.49 Results for the constructed inverse dynamic model by incorporating the neural
network for a friction model

In Fig. 49 (a), the training process of the neural network and the process of the inverse
dynamic model converge fast at the beginning of the training, but start to converge more
slowly after around 12 iterations. The training process finishes at around the 30th iteration
since the parameter m  in  the  updating  rule  of  Eq.  (90)  reaches  the  maximum  value
1.0e15.  By this  point  of  the  training,  the  RMS of  the  errors  between  the  torques  of  the
actuators and the outputs of the inverse dynamic models equals 0.065. The RMS is
computed by comparing the two outputs of the inverse dynamics model and the actual
input torques of the two actuators over the whole batch training data in each iteration.

Fig. 49 (b) to (e) show the output results of the constructed inverse dynamics model of
the parallel manipulator over the given specific trajectory at the 30th training iteration, at
which point the neural network and the derived inverse dynamics are considered well
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trained and identified. A comparison between the actual input torques of the actuators,
the outputs of the constructed inverse dynamics model with the friction model of the
neural network, and the outputs of the inverse dynamics model without the friction model
is given in Fig. 49 (b) to (e). It can be seen that the friction model for this manipulator
along the particular trajectory of the end-effector can be well approximated by the neural
network using the modified LM algorithm, and a satisfactory inverse dynamics model
can be constructed.

In practice, the number of trajectories of a robot is limited according to its in-situ
applications. Thus, an applicable inverse dynamics model could be derived with the
method above by augmenting the neural network training to cover the complete possible
domain of the trajectories of interest.

4.4	Conclusion	

This chapter proposed a feedforward control strategy for suppression of vibration caused
by external disturbances acting on the end-effector of a parallel robot. An inverse
dynamics model was employed in the feedforward control path, which generates a
compensation signal on the actuators of the robot to cancel out the effect from the
external disturbance. Validation of the proposed method was performed on a parallel
manipulator in a software environment. Problems associated with applying such an
approach in practice were discussed. Complications arise from the difficulty of accurately
modelling the dynamics of the target system because of unknown parts of the dynamics
in the system.

As a solution, a BP neural network was proposed for identification of such unknown
parts of the system dynamics. A modified Levenberg-Marquardt algorithm was
developed that can utilize the experimental input-output data set of the entire dynamics
system to train the BP neural network for the unknown parts. Validation of an approach
utilizing such a BP neural network and modified Levenberg-Marquardt algorithm was
performed with three application examples. It was noticed that the accuracy of the
constructed dynamic model incorporating the BP neural network started to degenerate
when the testing data were outside the range of the experimental training. This finding
illustrates one of the intrinsic weaknesses of neural networks, namely that neural
networks are only effective within the training domain and cannot accurately extrapolate
behavior of a target system beyond the training domain [73].
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CONCLUSIONS	

5.1	Summary	of	the	Dissertation	

In order to obtain satisfactory machining performance for a kinematic redundant serial-
parallel robot machine, the dissertation proposes two control strategies including the
trajectory planning and vibration suppression.

For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set
of trajectories in the robot's joints space are generated based on the best stiffness
performance of the robot along the prescribed trajectory.

In order to construct the system-wide analytical stiffness model for the serial-parallel
robot  machine,  a  variant  of  the  virtual  joint  method  (VJM)  is  proposed  that  is  an
evolution of Gosselin's lumped model and can account for the deformations of a flexible
link in more directions. The prominent advantage of the VJM variant method compared
with  the  MSA  method  is  that  it  can  be  applied  in  a  flexible  structure  system  with
complicated kinematics formed in terms of flexible serial links and joints. Moreover, by
combining the VJM variant method and the virtual work principle, a system-wide
analytical stiffness model can be easily obtained for mechanisms with both serial
kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a
kinematic redundant serial-parallel robot machine is developed based on combining the
VJM variant and the virtual work principle. Numerical results on the stiffness
performance of the model are presented.

In order to generate a set of feasible joints' trajectories for a prescribed trajectory of the
end-effector of a kinematic redundant robot, the system-wide stiffness performance of the
robot is taken as the constraint in the joints trajectory planning. For a prescribed location
of end-effector, the robot permits an infinite number of inverse solutions, which
consequently yields infinite sorts of stiffness performance. Therefore, a differential
evolution (DE) algorithm is employed to search for the best stiffness performance of the
robot, in which the positions of redundant joints in the kinematics are taken as the input
variables. Numerical results of the generated joint trajectories are given for the kinematic
redundant serial-parallel robot machine, IWR, when a particular trajectory of its end-
effector has been prescribed.

For the suppression of vibration occurring in the robot machine during the machining
process – a result of the varying cutting force – a feedforward control strategy is
proposed that is constructed based on an inverse dynamics model of the target system.
The effectiveness of applying such feedforward control in vibration suppression is
validated in a software environment for a parallel manipulator. Problems associated with
utilizing the feedforward control in practical environments are discussed in the
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dissertation. Complications arise from difficulties in modelling the practical system due
to unknown components in its dynamics. As a solution, a BP neural network  is proposed
for identification of the unknown components of the dynamics of the target system. A
modified Levenberg-Marquardt algorithm is proposed for training such a BP neural
network for the unknown components of the system dynamics that can utilize an
experimental input-output data set of the entire dynamic system. Validation of the BP
neural network and the modified Levenberg-Marquardt algorithm is performed by a
sinusoidal output approximation, a second order system parameters estimation and a
friction model estimation of a parallel manipulator, which represent three different
applications of this method.

5.2	Conclusions	of	the	Dissertation	

The  validation  of  the  novel  VJM  variant  is  done  by  comparing  the  computed  stiffness
results of a flexible link with the those of matrix structural analysis. The comparison
shows that the numerical results from both methods on an individual flexible beam are
almost identical, which in some sense validates the two methods. The stiffness modelling
process of IWR shows that the VJM variant combined with the virtual work principle can
efficiently deal with the modelling case in which the complicated parallel and serial
structures are included, and the final obtained stiffness model is completely analytical
and computational-efficient.

The numerical results obtained from the stiffness model of IWR show that the stiffness
performance of entire robot under the assumption of a rigid serial part is possibly weaker
in some interested directions than the those under the assumption of a flexible serial part.
The reason behind is that the redundant flexibility in the serial part of the robot allows the
deformation of the robot to occur in other possible directions, which to some extent can
mitigate the deformation of the parallel part along one direction. This phenomenon can
also be interpreted from the energy point of view, since the flexible serial parts can
absorb the external energy in other deformation directions. Moreover, it implies that the
system-wide stiffness performance of the robot can be optimized at the prescribed
trajectory due to the existence of redundant flexible kinematics.

The numerical results of the joints trajectories which are generated based on the stiffness
optimization shows that they are feasible for realization in the control system, since they
are acceptably smooth. This finding also implies that the stiffness performance of the
robot machine deviates smoothly with respect to the kinematic configuration in the
adjacent domain of its best stiffness performance.

The results of applying the feedforward control approach to suppress the chatter vibration
on a parallel manipulator indicate that it is an effective method to reject the vibrations of
robot, which are caused by the varying external payload force. The premise of applying
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such an approach regarding the practical application is to construct an accurate inverse
dynamics model for the target robotic system.

The results of applying the BP neural network for the identification of the unknown
components of the dynamics of a target system show that the modified Levenberg-
Marquardt algorithm is effective for the training of such BP neural network based on the
experimental input-output data set of the entire dynamic system. It should be noticed that
the accuracy of the constructed dynamic model incorporation the BP neural network
started to degenerate when the testing data were outside the range of the experimental
training. In order to get a stable accuracy of such BP neural network for the target system,
more training data which covers more interested domains of the target system should be
utilized.

5.3	Future	Work	

Although numerical results on the stiffness performance of IWR are given in the
dissertation for the proposed VJM variant method and the virtual principle work,
experimental measurement on the robot still needs to be carried out to validate the
accuracy of the proposed method. For a given prescribed trajectory of end-effector of
IWR, the corresponding joints' trajectories were generated in the dissertation based on the
maximized stiffness performance. However, the practical machining performance needs
to be compared with other kinematics configurations by experimental measurement that
is not obtained under the constraint of maximized stiffness.

In the third example of dynamics model identification using the BP neural network and
the modified Levenberg-Marquardt algorithm, the friction model of the joints in the
parallel manipulator is deemed to have been identified, but the identified model is locally
limited, since it is obtained only based on one prescribed trajectory of the parallel
manipulator. In order to cover all the trajectories of interest in the target system, more
training over a larger domain of interest needs to be carried out. In the BP neural network
training process in the dissertation, it is found that the identification results for the
unknown components in the dynamics can be even better if extra weights are adopted
between the outputs layer of the neural network and the following parts of the dynamics
system; online adjustment of the size of the neural network can also contribute greatly to
the training efficiency of the neural network, since selection of the proper size of neural
network has a big influence on the accuracy of the constructed model. A well trained
neural network can also present some extrapolation character for the constructed
dynamics model. Future research work could focus on these incomplete findings.
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ABSTRACT 
Due to the high stiffness, high dynamic performance, the 

parallel manipulator presents great advantages in the industrial 
manufacture. However in the machining process, the external 
low frequency disturbance, e.g. the varying cutting force, has a 
significant effect on the control system of parallel manipulator, 
which presents a chatter phenomenon on the end-effector of 
manipulator. 

In this paper, a feed forward control strategy is proposed to 
eliminate the effect of the random external disturbance on the 
control system of parallel manipulator. By applying the external 
disturbance force on the inverse dynamic model, the 
compensation torque is calculated and fed forward into the 
manipulator driving joints to cancel out the effect of the 
disturbance acting on the manipulator end-effector. The key 
issue herein is to be able to establish the accurate dynamic 
model for the parallel manipulator. 

Furthermore, in order to guarantee the position precision of 
the manipulator, a feed forward model-based control strategy 
combined with the feedback loop PV (position and velocity) 
control has been developed based on the reference trajectory, 
which could relatively simplify the highly nonlinear control 
system of the parallel manipulator and obtain a stable tracking 
error model. 

The whole research has been carried out on a parallel 
manipulator named CaPaMan which has been built in the 
laboratory of robotics and mechatronics in university of Cassino 
and South Latium. The results show that the chatter 
phenomenon could be utterly depressed by the force 
compensation from the feed forward path of the external 

disturbance; meanwhile the model-based controller can 
guarantee the trajectory tracking accuracy within a stable error 
by choosing the suitable PV gains. 

1. INTRODUCTION
 Due to the high dynamics performance, improved stiffness 
and light moving mass as well as the relatively more degrees of 
freedom in the end-effector, the parallel kinematic robot 
machine has been considered as the most potential replacement 
of the conventional machine tools. However, after many 
researchers have dedicated to the industrial application of 
parallel mechanism for many years, only few parallel robot 
concept has survived in the practical applications, such as the 
Gough/Stewart structure, delta robot. Even fewer parallel robot 
has succeeded in the machining application.  

Theoretically the parallel robot can achieve great kinematic 
accuracy based on the established error model by taking into 
account the manufacturing and assembly errors [1][2], however 
in practice the obtained accuracy is not satisfying due to its 
highly nonlinear dynamics which would bring the difficulties in 
the robust controller design. Although the corresponding 
nonlinear controllers could been developed and also studied by 
many researchers either when the robot is unloaded or under the 
stable load [3][4][5][6]. Nevertheless when the random external 
varying load is exerted on the end-effector, the developed 
nonlinear controller becomes incompetent in such situation, and 
the accuracy of the end-effector will deteriorate seriously due to 
the chatter vibration of the robot machine. In the machining 
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process, due to the different cutting speed, depth of cut as well 
as the feed speed, the varying cutting force is inevitable and the 
chatter phenomenon occurs consequently, which does not only 
jeopardize the machining surface quality and the tracking
precision, but also cause the sever damage to the robot joints, 
the functional life of the cutting tool as well as the under-
machining product material. 

In order to solve the problem of chatter vibration of parallel 
mechanism, abundant research has been carried on during the
past decades, and the methodologies could be generally divided 
into two categories: (a) optimizing the parallel robot structure in 
the design stage and (b) employing the active robust control 
strategy. 

By optimizing the parallel kinematic structure, the static 
and dynamic performance of robot machine could be relatively 
improved, some researchers have already proposed several 
approaches [7][8][9]. Meanwhile some other researchers also 
have proposed another way, by which the online optimization of 
robot configuration is executed to get the best robot static 
stiffness along the reference machining trajectory while the 
redundant freedoms exist in the parallel robot machine [10]. 
However, these approaches can only alleviate the vibration, but 
not eliminate the causative mechanism. 

Regarding the active control strategy, most of the current 
research has concentrated on the vibration depression which has 
been yielded only by the robot system itself. Some researchers 
have proposed the method of dynamics compensation which is 
used in the control loop to cancel out the nonlinear 
characteristic [11]. Some other researchers have proposed the
method of optimizing the reference model by various digital
filters such as notch filter, Bessel filter etc. [12][13], the essence 
of which is still trying to attenuate the external varying load 
caused by the spiky acceleration in the trajectory. 

In the machining process, when a robot machine is 
designed for an extensive cutting parameters and for various 
material machining [14][15][16], even as the trajectory of end-
effector is quite smooth (without any spiky acceleration), the 
considerable varying cutting force still exists which can't be
dealt with by the digital filters mentioned above.  

In this paper, a feed forward control strategy is proposed to
eliminate the chatter vibration caused by the random external 
disturbance/force on the end-effector of parallel manipulator. 
The external varying load is measured and input into the inverse 
dynamic model of the parallel manipulator as a part of control 
system. Consequently, the compensation torque could be 
calculated and fed forward into the manipulator driving joints to 
cancel out the disturbing effect of the external force acting on
manipulator end-effector. Furthermore, in order to guarantee the 
position precision of the manipulator, a model-based feed 
forward control strategy has been developed based on the
reference trajectory, which could simplify the highly nonlinear 
control system of the parallel manipulator into a relatively 
linear close loop control. The research has been simulated and 
validated on a parallel manipulator named CaPaMan (Cassino 
Parallel Manipulator) [17], which has been built in the 

laboratory of robotics and mechatronics in university of Cassino 
and South Latium. The rest parts of this paper are organized as 
following: the second section describes the dynamics model of 
parallel manipulator CaPaMan; the third part elaborates the 
control strategy; the fourth part gives the chatter depressed 
results and the future open work; the last parts are
acknowledgments and reference. 

2. DYNAMICS OF THE PARALLEL MANIPULATOR
The parallel manipulator under research is shown in Fig.1, 

which possesses 3 driven degrees of freedom (DOF) and 
consists of a movable end-effector, a basement and three legs. 
The leg consists of a parallelogram mechanism, which is driven 
by a servo motor in the left down joint, and a vertical bar which 
can only slide perpendicular to the parallelogram plane. The up 
joint of the vertical bar is a spherical joint. 

Figure 1. 3D model of CaPaMan: 1. end-effector  2. vertical bar  
3. parallelogram mechanism  4. driven crank of parallelogram
5. servo motor  6.basement  I. passive freedom  II. active drive

Figure 2. Kinematic scheme of CaPaMan 
In the most of current parallel robots, if the end-effector 

was declaimed to posses certain number of DOF, e.g. 3 DOF --- 
translations along the x, y axes and rotation around z axis, it is 
believed that in the workspace the value of coordinates of end-
effector only changes in these 3 DOF. However in the parallel
manipulator of this paper, even there are only 3 driven DOF in 
the CaPaMan, its end-effector can still cover 6 DOF in the 
workspace because of the varying of DOF presentation in some 
specific points. It means that in a specific trajectory, the end-
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effector presents 3 certain freedoms, e.g. translations along x, y 
axes and rotation around z axis; however in another specific 
trajectory, the end-effector may present another 3 different 
freedoms, e.g. translations along y, z axes and rotation around x 
axis. This phenomenon is hereafter named heterogeneity of 
workspace in this paper. 

Due to the heterogeneity, the available freedom of end-
effector of CaPaMan varies in some different workspace point. 
Consequently, the general fixed-term Jacobin matrix of 
covering the full 6 DOF does not exist in the workspace. The 
conventional methods of dynamics analysis, e.g. the principle of 
virtual work, cannot be employed. Herein the method of 
adopting the Lagrangian equations of the first type has been 
taken for the dynamics analysis. 

In order to build up the dynamics model, the kinematics 
should be analyzed first. In this paper, all the reference frames 
and the kinematic vectors are expressed as shown in Fig.2: the 
global reference frame OXYZ is located in the center of 
basement; the local frame OAXAYAZA is fixed in the center of 
end-effector; the base joint frame OiXiYiZi is fixed in the 
middle of the bottom line of parallelogram with the x axis 
perpendicular to the parallelogram plane and z axis vertical of 
basement; P represents the vector from point O to OA; B1 the 
vector from O to O1; L1 the vector from O1 to E1 (E1 is the 
middle point of up line of parallelogram); H1 the vector from E1 
to D1; K1 the vector from D1 to C1 (D1, C1: two ends of vertical 
bar); A1 the vector from OA to C1; S1 the vector from O to D1; 
Let the end-effector coordinates are represented by the vector 
(Px, Py, Pz, a, b, c), in which the (Px, Py, Pz) represents the 
position of end-effector while (a, b, c) represents Euler angles. 
a. Kinematic Constraints 

Since the configuration of 3 legs in the CaPaMan is 
homogenous, the analysis on one of them is sufficient to deduce 
the kinematic constraints. From leg 1 in Fig.2, the close loop 
kinematic equation is obtained as Eq.1. 

111 KAPS −+=      (1) 
As the vertical bar K1 is always vertical to the basement 

plane (XY plane), we assume there is a virtual axis V through 
the point O vertically, and a plane N (in the right part of Fig.2) 
is formed by this virtual axis V and K1, which can only rotate 
around V. As the vector H1 is always parallel to the vector B1, 
the plane M is formed, which can only rotate around B1. The 
vector S1 is the intersection of plane M and N. 

Regardless the rotating of plane M, the projections of 
vector S1 on the Y1 and Z1 axes of frame O1X1Y1Z1 are always 
equal to the ones of vector L1 individually. The following 
constraint equations are obtained: 

0)2()2( 11
11 =− LS RR (2) 

0)3()3( 11
11 =− LS RR (3) 

where the leading superscript R1 denotes that the vector is 
expressed in the reference frame O1X1Y1Z1; the '2' in 
parenthesis denotes the projection on Y1 axis and the '3' the 
projection on Z1 axis. 

By analogy the following equations are obtained from leg 2 
and leg 3.  

0)2()2( 22
22 =− LS RR (4) 

0)3()3( 22
22 =− LS RR (5) 

0)2()2( 33
33 =− LS RR (6) 

0)3()3( 33
33 =− LS RR (7) 

Let the left part of Eq.(2) to (7) be represented by the Ct1 to 
Ct6 individually. Since they are the functions of end-effector 
coordinates (Px, Py, Pz, a, b, c) and the rotation angles of 
parallelogram 1θ , 2θ ,

3θ , taking the partial derivatives of these 
constraint functions Cti with respect to the 9 generalized 
coordinates yields 

(8). 
By the matrix partition, the Eq.(8) could be simplified as Eq.(9) 
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b. Lagrangian Formulation
By taking account of the kinetic and potential energy of 

end-effector, vertical bar and the parallelogram mechanism, the 
Lagrange function is obtained in Eq.(10): 

CVPCVP UUUKKKL −−−++= (10) 
where Kp and Up represent the kinetic and potential energy of 
end-effector, Kv and Uv the kinetic and potential energy of 
vertical bar (slider of passive freedom included), Kc and Uc the 
kinetic and potential energy of parallelogram (slider base 
included). 

Let the coordinates of end-effector be the redundant 
Lagrangian coordinates, the rotations of parallelogram be the 
independent coordinates, then the 6 Lagrangian multipliers are 
introduced as expressed in Eq.(11). 
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Let the first 6 Lagrangian equations of first type be 

associated with the end-effector coordinates, then a set of 
system dynamic equations can be written in the form: 
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which presents the external force acting on the end-effector. 
When the position, velocity and acceleration of end-effector as 
well as the external forces are given, the values of Lagrangian 
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multipliers could be calculated by solving the linear equations 
described by Eq.(12). 

Once the Lagrangian multipliers are found, the actuator 
torques in the driving joints of legs can be determined directly 
from the remaining Lagrangian equations. Specifically the 
second set of 3 Lagrangian equations for system dynamics 
could be written as the form: 
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and [ ]TiF 321 τττ=  which are the actuator torques needed from 
the servo motor. 

3. CONTROL STRATEGY
After the dynamic model has been built up, the whole 

control simulation for CaPaMan is implemented by combining 
the Matlab SIMULINK and MSC_ADAMS environment, in 
which the control strategy is developed and running in the 
SIMULINK while the forward dynamics of parallel manipulator 
is calculated and presented by the ADAMS solver/viewer. The 
whole simulation architecture is presented by the Fig.3. 

Figure 3. Simulation architecture 
The 3D model of the parallel manipulator is developed in 

ADAMS, then the state variables, which are used for the 
interaction between SIMULINK and ADAMS/solver, of the 
model are exported to the SIMULINK as a module called 
ADAMS subsystem plant. By this way, both the advantages of 
mechanical dynamics behavior simulation in ADAMS and 
controller design in SIMULINK are utilized. 

In order to obtain the good machining performance of 
parallel manipulator, the chatter vibration suppression is not the 
only objective for the control system design, but the trajectory 
precision is also an important factor. The control scheme for 
parallel manipulator in this paper consists of three parts as
shown in Fig.4: I. feed forward model-based nonlinear control, 
II. feedback PV control and III. feed forward external 
disturbance depressing control. 

Due to the highly nonlinear characteristic of dynamics in 
CaPaMan, it is difficult to get the satisfied tracking performance 
even without the external disturbance only by using the 
conventional PID controller with constant gains. In the paper, 
the model-based feed forward and the feedback PV control are
combined to relatively simplify the nonlinearity of control 
system so as to get the stable tracking error. 

Since the machining process in the end-effector would
incur the severe disturbance load which would result in the 
serious chatter phenomenon in the manipulator, the inverse 

dynamics based feed forward control is taken to cancel out any 
random extra load in the driving joints caused by the end-
effector disturbance. 

Figure 4. Control scheme: I. Feedforward model-based non-
linear control, II. Feedback PV control, III. Feedforward 

disturbance depressing control 
a. Model-based Nonlinear Control 

For a general rigid body dynamics, an universal form could 
be given as the Eq.14. 

),()(),()( ΘΘ+Θ+ΘΘ+ΘΘ=  FGVMτ  (14) 
where M is the nxn inertial matrix of manipulator, V an nx1 
vector of centrifugal and Coriolis terms, and G an nx1 vector of 
gravity, F the friction of joints and external load. 

By utilizing the linearizing and decoupling control law, the 
nonlinear control term ),()(),( ΘΘ+Θ+ΘΘ  FGV  could be taken 
into control system to cancel out the nonlinearity in the 
dynamics model, which yields a linear second order system 

ΘΘ= )(Mf  and an error model of control system 0=++ EKEKE pv
 . 

However for a parallel mechanism, due to the complicated 
kinematic coupling of joints, it is impossible to separate the 
term M from its dynamics model, the above mentioned 
linearizing law is not available. A revised model-based control 
is employed in this paper for CaPaMan control. Only take the 
part I and part II of control scheme in Fig.4 into consideration, 
the system equation could be written in the form: 

),()(),()(

),()(),()(

ΘΘ+Θ+ΘΘ+ΘΘ=

++ΘΘ+Θ+ΘΘ+ΘΘ




FGVM

EKEKFGVM pvddddddd  (15) 

where Θ−Θ= dE . By simplifying Eq.(15) under the assumptions 
)()( Θ≅Θ MM d , ),(),( ΘΘ≅ΘΘ  MV dd , )()( Θ≅Θ GG d and ),(),( ΘΘ≅ΘΘ  FF dd , 

the error equation of system is found as Eq.(16). 
0)()( 11 =Θ+Θ+ −− EKMEKME pv

  (16) 
Clearly, the feed forward control doesn't provide complete 

nonlinearity decoupling, and the effective feedback gain 
changes while the configuration of the parallel manipulator 
changes. However a good set of constant gains can still been 
found to guarantee a reasonable damping performance of error. 
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b. Disturbance Depressing by Feed forward Control 
While the parallel manipulator is used in the machining, the 

cutting force F could be deemed as a varying disturbance. By 
applying the feed forward control loop (control part III in 
Fig.4), then the compensation torque, which is used to cancel 
out the effect of F through the manipulator, is calculated based 
on the built up inverse dynamics model. The whole function 
diagram of the control scheme is presented in Fig.5. 

Figure 5. Implementation of control system 
The plant consists of two parts: (1) for the P1, the torques 

acting on the driving joints are taken as the input parameters of 
system function, while the position, velocity, and acceleration of 
end-effector and driving joints are regarded as the output, and it 
can be expressed by the Eq.(17) 

),(),,,,( 1 pCPPPP τ=ΘΘ  (17) 
where Cp is the configuration of manipulator from the previous 
calculation step; (2) for the P2, the external load is taken as the 
input parameter while the causable effective torque in the 
driving joints is taken as the output of the system, which is 
expressed by the Eq.(18) 

),(2 cf CFP=τ (18) 
where Cc is the current manipulator configuration. 

The actual acting torque on the driving joints are formed by 
the Eq.(19) as follows, 

)(
.

fcvcd EKEK ττττ −+++=  (19) 
where ),,(1 dddd PPPD =τ  is the torque calculated from reference 
trajectory, EKEK vc

+  the torque calculated from trajectory control 
error, ),(2 cc CFD=τ  the torque used for compensation due to the 
external force. Substituting Eq.(19) into (17) yields 

))),(((),,,,( 2211 pvc CPDEKEKDPPPP −+++=ΘΘ  (20) 
From Eq.(20), while established inverse dynamics model 

D2 of parallel manipulator in control system approximates to P2 
in ADAMS, the difference between the compensation torque 
and the disturbing torque in the driving joints would approach 
to zero. Then the effect of the external load could be eliminated 
significantly or even completely. 

4. RESULTS, CONCLUSION AND FUTURE WORK
Based on the proposed control strategy, while a reference 

trajectory of end-effector is given, which is shown as the Fig.6, 
several results are obtained and presented in this section. 

Figure 6. The reference trajectory of end-effector 

Figure 7. The external disturbance force of 10 Hz 

(a) Y trajectory without FDD (b) Y trajectory with FDD 

(c) Z trajectory without FDD (b) Z trajectory with FDD 

(e) AX rotation without FDD (f) AX rotation with FDD 
Figure 8 The comparison of the trajectory outputs with and 

without the feedforward control path for external disturbance 
depression under feed forward model-based control 
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In the given reference trajectory in Fig.6, the freedoms of 
end-effector keeps consistent and consists of translations along 
y and z axes and rotation around x axis. 

The external disturbance force is simulated by a 10 Hz 
triangle wave with the amplitude of 10 N, as shown in Fig.7. 

While the feed forward model-based control is applied, 
with/without the feed forward control path for the disturbance 
depression (FDD) in the control system, the outputs of obtained 
trajectories are as shown in Fig.8.  

In the figures the dash blue line represents the reference 
trajectory and the continuous red line represents the actual 
obtained trajectory. From the Fig.8(a),(c),(e), it is clearly 
demonstrated that the chatter vibrations occurred in the same 
frequency of the external disturbance. However, from the results 
of Fig.8(b),(d),(f), two outcomes could be concluded: (1). the 
feedforward control for external disturbance depression applied 
in this paper is validated to be very effective based on the built 
up inverse dynamics model of the objective manipulator; (2). by 
the feed forward model-based control, a stable trajectory 
tracking error could be obtained for the highly nonlinear 
dynamic system. 

Although a good result could be obtained by the software 
simulation in this paper, several difficulties are still open for us 
to apply this methodology into the practical application, and our 
future research would be on: (1) how to build up the theoretical 
dynamics model close to the actual manipulator? Such as the 
friction model, the deformation model as well as the inertial 
matrix identification need to be built up very accurately. As a 
solution, the intelligent algorithms such as the genetic 
algorithm, Markov Chain Monte Carlo method etc. would be 
applied to indentify the dynamics parameters of the parallel 
manipulator from its highly nonlinear model; (2) since the 
configuration of robot varies, how to obtain the robust PV gains 
becomes a very critical issue; (3) for the reference trajectory 
based control, several kinds of digital filter could be 
incorporated into the system to attenuate the vibration from the 
input, however the phase lagging phenomenon would occur to 
aggravate the control performance, how to utilized the zero 
phase lagging filter in the actual control system is also a 
promising research topic.  
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a b s t r a c t

This paper presents a modeling method to study the stiffness of a hybrid serial–parallel robot IWR (Inter-
sector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element
in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism
is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness
of the whole integrated robot is evaluated by employing the virtual joint method and the principle of
virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results
of the robot workspace under certain external load are presented.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The ITER vacuum vessel sectors are made of 60 mm-thick stain-
less steel which are joined together by the high efficiency structural
and leak tight welds. The stringent tolerances of assembly, ±5 mm,
are expected, while high dynamic machining force and high accu-
racy are required for cutting, weld repair and weld preparation. To
satisfy the machining capacity of mobility and flexibility in a lim-
ited space inside the ITER vacuum vessel, a hybrid parallel robot
(IWR in Fig. 1) has been developed, which has ten degrees of free-
dom (DOF); six degrees of freedom are contributed by a Stewart
parallel mechanism and the rest by the serial mechanism [1].

Generally, in the high dynamic force application of assembly of
ITER, the deflection of robot will be getting big and the accuracy
will be getting poor. To compensate or to limit the deflection, the
stiffness of robot should be studied. This paper focuses on the stiff-
ness modeling of the robot. The developed model can be used for
compensating the deflection of robot to reach high accuracy, and
it can also be used for trajectory planning to find higher stiffness
poses of the motion.

In this paper, a stiffness modeling method is developed for the
proposed hybrid robot IWR. Based on this method, the matrix
structural analysis (MSA) [2] approach is employed to calculate
the stiffness of the basic element in the Stewart of robot, e.g., the
universal joint (U-joint) and the bearing house; the virtual joint
method (VJM) [3,4] combined with the principle of virtual work
is also applied to evaluate the stiffness of the combined structure,
e.g., the base of the Stewart; the stiffness of the Stewart is evalu-

∗ Corresponding author at: CEID-Center, Lappeenranta University of Technology,
Faculty of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland.
Tel.: +358 465941828.

E-mail address: hackingming@gmail.com (M. Li).

ated by taking account of the deformations of six base joints and
the hydraulic limb deformations; the stiffness of the whole inte-
grated robot is obtained by considering the Stewart and the serial
basement as connected in serial.

The remainder of this paper is organized as follows: Section 2
introduces a general methodology of the MSA; Section 3 describes
the modeling of the typical Stewart structure; Section 4 gives a
finial stiffness model by integrating the parallel mechanism and
the serial mechanism; Section 5 presents the numerical results of
stiffness; and Section 6 summarizes the main contributions of this
work.

2. Description of matrix structural analysis

The schematic representation of the kinematic chain of the IWR
is presented in Fig. 2.

The coordinate Xg
0 Yg

0 Zg
0 is defined as the global frame, and all

local coordinates are related to the global frame: Xg
1 Yg

1 Zg
1 moves

along the gear track and Xg
2 Yg

2 Zg
2 along the ball screw; Xg

3 Yg
3 Zg

3
rotates around the Zg

2 axis; Xg
4 Yg

4 Zg
4 is the basement coordinate of

the Stewart and rotates around the Xg
3 axis; Xg

5 Yg
5 Zg

5 is fixed in the
centre of the end-effector as the tool frame.

The analytical stiffness model of the basic element evaluated in
this paper is based on MSA. In order to illustrate the application
of the MSA on the multi-beam structure, the stiffness modeling of
bearing house and U-joint in the base side of Stewart platform in
the robot is taken into account (Fig. 3).

For simplification, the bearing house, U-joint and the base are
described by the frame structure in Fig. 4.

For applying the MSA method we firstly define the elements of
structure and their nodes. Each element of structure is defined by a
number enclosed with a circle, and its two nodes by two numbers.
A local coordinate is given for each element.

0920-3796/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.fusengdes.2011.01.018
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Fig. 1. 10DOF hybrid robot for the assembly of ITER: (i) vacuum vessel and (ii) robot used for the assembly of vacuum vessel.

Fig. 2. Schematic diagram of hybrid robot.

Fig. 3. Base of Stewart: (i) bearing house, (ii) U-joint, and (iii) base of Stewart.

In Fig. 4(iii), Ob
0A is the base frame of Stewart platform, Ou

1Ou
6

the frame of U-joint, and ABOu
1 the frame of bearing house includ-

ing the U-joint shaft. Firstly, we decompose the bearing house and
the U-joint into separate beams in Fig. 4(i) and (ii), and then we
obtain the stiffness matrix for each beam by applying the MSA.
Finally all these stiffness matrices are assembled according to the
node connectivity by the superposition principle and expressed
in the local coordinate system. Herein, the stiffness modeling

of U-joint is:

(1)

Fig. 4. Schematic diagram of frame structure: (i) bearing house, (ii) U-joint, and (iii) base of Stewart.
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Fig. 5. Schematic diagram of the Stewart structure.

where the 6 × 1 vector Fi is the external force exerting on node i,
� the corresponding deformation of node i, O the 6 × 6 zero matrix
and Kn

ij
the 6 × 6 stiffness matrix of beam n. The deformation of

beam 1 in the U-joint is not taken into account, because beam 1
(U-joint shaft) is assembled into the bearing house in the base and
considered as rigid.

Eq. (1) was obtained assuming the whole structure of the U-
joint is a frame. However, there are two rotational freedoms in the
U-joint, and the external forces each are equal to zeros except the
forces acting on node 0 and node 6. Therefore, by employing the
static condensation technique, further simplification on Eq. (1) is
obtained as

F6 = (K22 − K21K−1
11 K12)�6 (2)

where K11 stands for the upper-left matrix block in Eq. (1), K12 the
upper-right matrix block, K21 the lower-left matrix block and K22
the lower-right matrix block.

The force F6 acting on node 6 is always constrained in the plane
crossing the line Ou

1Ou
6 and perpendicular to the U-joint plane.

Using the static condensation method and substituting the physical
parameters of the U-joint into Eq. (2) gives:

Fu = Ku × �u (3)

where Fu = [fu x fu z]T and �u = [du x du z]T represent the external
force and the corresponding deformation of node 6 in U-joint in
the local frame Xu

1 Yu
1 Zu

1 , and Ku is the 2 × 2 stiffness matrix of node
6 in the U-joint.

Similarly substituting the physical parameters of the bearing
house, the stiffness of point b in the bearing house is formulated in
the frame Xb

1Yb
1 Zb

1 as follows

Fbearh = Kbearh × �bearh (4)

where Fbearh = [fbearh y fbearh z mbearh x mbearh x]T and
�bearh = [dbearh y dbearh z �bearh x �bearh z]T represent the external
force and the corresponding deformation in node b of the bearing
house in frame Xb

1Yb
1 Zb

1 . The force fbearh x and the moment mbearh y
are equal to zeros and suppressed in the equation since the force
fbearh x acting on the base frame causes no deformation and the
moment mbearh y does not exist around the axis of the bearing
house.

3. Stiffness modeling of parallel mechanism

To evaluate the stiffness of the parallel mechanism, the paral-
lel structure is decomposed into the basement frame, the bearing
house in the base, the U-joint in the base, the hydraulic limb and
the up joint in the end-effector (Fig. 5). The basement frame is
considered as rigid structure. The bearing house and the U-joint
form the base of Stewart platform, and each has configuration-
independent stiffness, while the stiffness of the base of the Stewart
platform is configuration-dependent as a function of the orienta-
tion of the hydraulic limb. The stiffness of the hydraulic limb is also
configuration-dependent as a function of its length. The up-joint in
the end-effector is considered as rigid.

Fig. 6. Kinematic chain of the base in the Stewart.

3.1. Stiffness evaluation of base in parallel mechanism

The composition of the base by the bearing house and the U-joint
is in a serial form. Herein, its stiffness is investigated by employ-
ing the virtual joint method and the principle of virtual work. The
kinematic chain of the base is shown in Fig. 6.

The hexagon in the figure is the basement of the Stewart, in
which the frame Xg

4 Yg
4 Zg

4 is defined as the local reference coor-
dinate. Under the external force Fft applied to the point Ou

6, the
compliance of the base will cause the point Ou

6 to experience a twist[
�T

ft
�T

ft

]T
in terms of translational and rotational deformations

in the frame Xg
4 Yg

4 Zg
4 . Applying the kinematic relationship in the

base results in:

�ft = Jft[ �T
u �T

bearh ]
T
,

Jft = [ Ju dx Ju dz Jbearh dy Jbearh dz Jbearh �x Jbearh �z ] (5)

where �u and �bearh represent the deformations of the U-joint
and the bearing house while Ji is the Jacobian of the ith local joint
deformation.

Employing the principle of virtual work in kinematic chain of
the base leads to:

[ı�T
ft][Fft] = [ ı�T

u ı�T
bearh ]

[
[Ku]2×2 O2x4

O4x2 [Kbearh]4×4

]
[ �T

u �T
bearh ]

T

(6)

where ı represents the virtual displacement of the deformations,
Ku and Kbearh represent the stiffness matrices of the U-joint and the
bearing house. Substituting Eq. (5) into Eq. (6) gives:

Fft = Kft�ft (7)

Kft =
(

Jft

[
Ku O2×4

O4×2 Kbearh

]−1

JT
ft

)−1

(8)

For convenience, Kft i denotes the stiffness matrix of the ith base
in the Stewart later on.

3.2. Stiffness of hydraulic limb

The assembly of components in the hydraulic limb is deemed to
be serial, and the limb’s stiffness varies with the cylinder stroke:

Khy = A2
1

(A1x + Vh)/Bw + A1x/Bc + Vh/Bh

+ A2
2

(A2(l − x) + Vh)/Bw + A2(l − x)/Bc + Vh/Bh
(9)

where A is the area, V the volume, x the cylinder stroke, and l
the cylinder length. Bw , Bc and Bh are the bulk modulus of water,
cylinder and hose respectively. Subscripts 1 and 2 denote the cor-
responding chambers of the double-acting cylinder.
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Fig. 7. Deformation of robot workspace: (i) on bottom plane of workspace; (ii) on top plane of workspace; (iii) on left plane of workspace; (iv) on right plane of workspace
(v); on back plane of workspace (vi) and on front plane of workspace.

3.3. Stiffness evaluation of parallel mechanism

In Fig. 4, the coordinate frame Xg
4 Yg

4 Zg
4 is attached to the base-

ment in the geometric centre. The coordinate frame B (Xg
5 Yg

5 Zg
5 ) is

attached to the moving platform, and its origin is located at the mass
centre. Taking account of the deformations in the six base joints and
hydraulic limbs, the stiffness matrix of the parallel mechanism is
obtained in the same way achieving Eq. (8)

Kstw = (Jstw[diag[Kli]]
−1JT

stw)
−1

(10)

where Jstw is the Jacobian matrix of the Stewart, and
Kli = diag[Khy i Kft i].

4. Stiffness modeling of hybrid robot

The hybrid robot (Fig. 2) is composed of the Stewart, the elevat-
ing part and the track basement. Through the mechanism analysis,
the elevating part is considered as a crank-slider mechanism: the
base frame of Stewart platform is regarded as the crank while the
hydraulic limb is the actuator of the mechanism. The stiffness of
the actuator is transformed into the local compliant spring located
at the crank joint Og

3 and denoted by k�4. The stiffness of the gear
pair in the track is denoted by kx1. The rotation around Zg

2 axis is
driven by an epicycle gear, and its stiffness is denoted by k�3. The
stiffness of the ball screw, ky2, is the sum of the nut stiffness and
the shaft stiffness.

Analyzing the kinematics of the robot results in:

[ �gT

5 �gT

5
]
T = J�q (11)

where [ �gT

5 �gT

5
]
T

is the deformation of end-effector, J the Jaco-
bian matrix of the robot, and �q the deformation vector of all joints

�q = [ �T
5 �T

5 d�4 d�3 dy2 dx1 ]T .
Employing the principle of virtual work on the hybrid robot

joints leads to:

C = J�−1JT (12)

where C is the 6 × 6 compliance matrix of the whole hybrid robot,
and � = diag[Kstw k�4 k�3 ky2 kx1] is a 10 × 10 diagonal matrix of the
stiffness of all joints. The stiffness of the whole hybrid robot is
obtained as the inverse of the compliance matrix: K = C−1.

5. Numerical evaluation results

Based on the above model, the deformations of some certain
workspace are investigated under the external loads. One exam-
ple is given for demonstration. The work space of the end-effector
was a 200 mm × 200 mm × 200 mm cube (Fig. 2); the end-effector
frame has no rotation with respect to the basement frame of the
Stewart. The robot worked along the borders of the workspace and
the external load of 5 kN was vertical to the Stewart basement. The
deformations are illustrated in Fig. 7.
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Due to the redundant freedom in the robot, the configuration
of the serial part in the robot is pre-determined, while the cubic
workspace is reached by the Stewart.

In Fig. 7, the continuous line denotes the borders of the ideal
work plane in the cubic workspace without load; the star-line
denotes the border positions of Stewart cubic workspace after
the deformations, assuming the serial part in the robot to be
rigid; the circle-line denotes the border positions of the end-
effector workspace after the deformations, taking into account
both the stiffness of the Stewart and the serial part of the
robot.

By analyzing the data obtained from the stiffness of the
robot, it is testified that the deformations of the robot are
mainly contributed by the hydraulic limbs in the Stewart and
the hydraulic driver in the elevating component of the serial
part of IWR. However, all these deformations of hydraulics
could be compensated by the closed-form controller in the
robot.

6. Conclusions

This paper presents a stiffness modeling method for a hybrid
robot machine. In the built model, all the deformations of the base
joints in the Stewart platform are taken into account. By applying
the MSA, the VJM and the principle of virtual work, the analyti-
cal stiffness of the robot can be achieved, and the final numerical
results have verified that the model is valid and one advantage of
the model is the low calculation consumption.
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a b s t r a c t

In the process of assembly and maintenance of ITER vacuum vessel (ITER VV), various machining tasks
including threading, milling, welding-defects cutting and flexible hose boring are required to be per-
formed from inside of ITER VV by on-site machining tools. Robot machine is a promising option for
these tasks, but great chatter (machine vibration) would happen in the machining process. The chatter
vibration will deteriorate the robot accuracy and surface quality, and even cause some damages on the
end-effector tools and the robot structure itself. This paper introduces two vibration control methods, one
is passive and another is active vibration control. For the passive vibration control, a parallel mechanism
is presented to increase the stiffness of robot machine; for the active vibration control, a hybrid control
method combining feedforward controller and nonlinear feedback controller is introduced for chatter
suppression. A dynamic model and its chatter vibration phenomena of a hybrid robot is demonstrated.
Simulation results are given based on the proposed hybrid robot machine which is developed for the ITER
VV assembly and maintenance.

© 2014 Elsevier B.V. All rights reserved.

1. Background

The assembly and maintenance of ITER vacuum vessel (ITER VV)
involves lots of machining operations, such as boring, threading,
milling and drilling. These operations need to be carried out from
inside of ITER VV. Commercially available CNC machining center
cannot be used for this purpose due to its big size and high weight.
Furthermore, the general industrial robot cannot be used due to
its poor stiffness in the heavy duty machining process. Therefore,
one of the most suitable options should be a light weight mobile
robot which has the ability of moving around inside of VV and per-
forming different machining tasks by replacing different cutting
tools. Some special heavy duty robots have been designed by other
research groups for the application of transporting heavy parts of

∗ Corresponding author. Tel.: +358 5 6212462; fax: +358 5 6212499.
E-mail addresses: yongbo.wang@lut.fi, yongbo.wang@hotmail.com (Y. Wang).

ITER VV, but very few of them can be used to carry out machin-
ing tasks. During the machining process, the main issue would be
the chatter vibration since it will cause not only bad accuracy and
surface quality but also some damages on the tool and even the
robot structures. Consequently, it is important to investigate the
mechanism of chatter vibration and find a way to suppress it.

The investigation of vibration control on flexible manipula-
tors and mechanisms has been conducted by many researchers
over several decades [1–4]. Generally, it can be divided into two
categories, one is passive vibration control and another is active
vibration control. The passive vibration control has three types:
(i) the mechanism itself has superior damping characteristics and
higher stiffness to weight ratios; (ii) the vibration of the mechanism
is dissipated by introducing additional damping materials; and (iii)
the vibration of the mechanism is attenuated through optimizing
the cross-sectional geometry of the mechanism links [1–3]. The
active vibration control, probably the most effective method for
suppressing vibrations of a robot, has been investigated by several

http://dx.doi.org/10.1016/j.fusengdes.2014.02.007
0920-3796/© 2014 Elsevier B.V. All rights reserved.



2358 H. Wu et al. / Fusion Engineering and Design 89 (2014) 2357–2362

Fig. 1. Mock-up of ITER VV and CAD model of the hybrid robot.

researchers [5–7]. This paper studies both passive and active
methods for the vibration control of a hybrid robot [11], which
is developed in Lappeenranta University of Technology (LUT) in
Finland.

The hybrid robot (Fig. 1) is an inter-sector welding/cutting robot,
which is used for the ITER VV assembly and maintenance. This
redundant serial-parallel hybrid robot consists of two relatively
independent sub-structures: the front-end part is a hexapod par-
allel mechanism driven by six water hydraulic cylinders which can
provide full six degrees of freedom (DOF) to the end-effector; the
second part is a serial multi-link mechanism which can support the
parallel mechanism and provide four additional redundant degrees
of freedom.

For the passive vibration control method, the hexapod parallel
mechanism is considered since it can provide not only a relatively
high stiffness to weight ratios but also a high position accuracy
which is required in the processes of milling, welding and trans-
porting materials, etc.

For the active control method, a hybrid robust controller is
considered. It is well believed that the stiffness and the dynamic
behavior of parallel robot should be better than that of serial robot
but lower than that of CNC machine. However, in real applica-
tions, the parallel robot has not been widely used. One of the
major hurdles to prevent the adoption of parallel manipulator for
machining purposes lies in the chatter vibration. Consequently, it
has to be eliminated or suppressed in a high-accuracy-requirement
machining process. Based on the controller architectures, the active
vibration control algorithm can be categorized into three types:
feedforward, feedback, and hybrid controller. To improve the qual-
ity of the mentioned active methods, one of the solutions is to add
some fast and high accuracy motion actuators (e.g. Piezo-ceramic
actuator) or micro manipulators. These actuators can be integrated
within a link or on the end-effector of the manipulator. On their
integrated spot they can limit or eliminate the residual elastic oscil-
lation [5–9]. But one drawback of this method is that the additional
actuators and their accessories are required, therefore, it may not
be a cost-effective solution from the economical perspective. Fur-
thermore, the chatter vibration is subject to occur in the continuous
motion, while the residual vibration is liable to happen in the point-
to-point motion. The residual vibration in point-to-point process
can be predicted and eliminated easily than the chatter vibration
in machining process. Currently most of the vibration suppression
methods have focused on the residual vibration suppression rather
than the continuous path control for chatter suppression [10]. This
paper will concentrate on the continuous path control to suppress
the chatter vibration.

To limit the chatter vibration of the proposed hybrid robot,
this paper first studies the dynamics of the robot imposed with
machining force, and then presents a hybrid control algorithm for
suppressing chatter by using nonlinear feedback technique and
feedforward control method.

2. Dynamic analysis

The kinematics of the hybrid robot is shown in Fig. 2. A nonlinear
dynamic model of the robot can be written as Eq. (1):

� = D(q)q̈ + H(q, q̇) + K(q)q + G(q), q = [y, x1, x2, . . ., q1, q2, . . .]T ,

�=[0, F1, F2, . . ., �1, �2, . . .]T (1)

where y is the generalized coordinates of the end-effector; x1, x2,
the prismatic displacements of parallel structure limbs; q1, q2, the
prismatic and revolute displacements of serial structure joints; F1,
F2, the forces applied to the limbs of parallel mechanism; �1, �2,
the forces and torques applied to joints of serial mechanism; D the
inertial matrix of all robot mechanical links; H the matrix in terms of
damping, centrifugal and Coriolis coefficients; K the stiffness matrix
of joint links and G the gravity matrix.
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Fig. 2. Kinematics of the hybrid robot (d1, d2, �3 and �4 are prismatic and revolute
joints of the serial mechanism; l1 to l6 are prismatic joints of the parallel mechanism).
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Fig. 3. Cutting force.

The dynamic model of the hybrid manipulator can be further
divided into two sub-dynamic models by taking the external force
into account. For serial mechanism it can be expressed as:

�s = Ds(qs)q̈s + Hs(qs, q̇s) + Ks(qs)qs + Gs(qs) + fps, (2)

and for parallel mechanism it can be written as:

�p = Dp(qp)q̈p + Hp(qp, q̇p) + Kp(qp)qp + Gp(qp) + fep, (3)

where qs is the generalized coordinates of the serial mechanism; qp

is the generalized coordinates of the parallel mechanism; fps is the
force of parallel mechanism acting on the serial mechanism at point
O4; and fep is the external force acting at point O5 of the end-effector
of parallel mechanism.

If the serial mechanism of the hybrid robot is fixed to a certain
configuration during the machining process, then only the parallel
manipulator contributes to motion. Consequently the dynamics of
serial mechanism can be neglected and the dynamics of parallel
mechanism dominates the vibrations.

3. Machining force

The milling process is shown in Fig. 3.
The machining force can be expressed as

Fc = kc

m∑
i=1

(fx sin(ωt + ı�i) +
√

fx sin(ωt + ı�i) + R2 − f 2
z ) − R)ap,

(4)

where kc is machining constant; ap the cutting depth; fx the feeding
rate; ω the cutting frequency; R the tool radius.

The dominated parameters in dynamic cutting force are feed-
ing speed, cutting depth, cutting speed and the number of teeth
z. Because of the work-hardening capability and low thermal con-
ductivity of stainless steel (austenitic), the cutting speed cannot
be very high. The cutting frequency is mainly determined by the
tool rotation speed and the number of teeth. Here an off-the-shelf
disk milling cutter is chosen for testing: the tool radius R = 100 mm;
the number of teeth z = 51. The cutting parameters are as follows:
feeding speed is 85 mm/min, cutting depth 10 mm, rotation speed
60 rpm. Fig. 4 shows the dynamic machining force. The frequency
of the cutting force is about 51 Hz. However, when reduce the cut-
ter teeth number or the rotation speed, the frequency of the cutting
force will increase accordingly.

4. Chatter analysis

Regenerative chatter is a self-excited vibration in machining
operation, and it is the consequence of interference of wavy surface
generated between current machining pass and previous machin-
ing passes. All self-excited chatter analysis techniques are started
with the development of a force model for machining process and
a dynamic model for machine tool workpiece structure [11], and

Fig. 4. Calculated cutting force.

then the two models are combined together to form a closed-loop
dynamic model for a machining operation. By mounting a work-
piece on strong steel table (e.g. the ITER VV), the structure of the
workpiece can be regarded as relatively stiff, and its deformation
can be ignored in the analysis since its stiffness is much larger
than that of robot-tool structure. Typically, the self-excited chat-
ter frequency of a robot is slightly larger than its natural vibration
frequency.

Generally, the dynamic model of a robot system can be formu-
lated from Eqs. (2) and (3) as:

� = D(q)q̈ + H(q, q̇) + C(q) + Fc, (5)

where q is the vector of general coordinates of actuators.
The stability of the system depends on the eigenvalues of the

above equations. The dynamic model of the robot contains non-
linear items from coupling structures of the parallel mechanism,
the traditional linear control method will be difficult to achieve
required performance, thus a robust controller need to be consid-
ered.

5. Controller design

The control strategy of chatter suppression is developed by
using a hybrid controller combining state feedback controller
and adaptive feedforward controller. The feedback controller can
achieve promising position accuracy when the dynamics of whole
robot machine is linearized. To suppress the chatter vibration,
feedforward controller can significantly eliminated the external
disturbance based on the inverse dynamics of robot machine when-
ever a disturbance signal is available [10]. Nevertheless, a tracking
error will increase due to the delay of feedforward, therefore, a crit-
ical task in the future research is to minimize its phase lag effect.
Fig. 5 shows the hybrid control strategy.

Fig. 5. Hybrid control strategy.
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Fig. 6. Feedback linearization control.

Fig. 7. Feedforward control.

5.1. Feedback linearization

To linearize the dynamic model Eq. (5), feedback linearization
technique is applied to the state feedback controller (Fig. 6) by
introducing⎧⎨
⎩

� = ˛f + ˇ

˛ = D(q)

ˇ = H(q, q̇) + C(q)

(6)

then the linearized dynamic model of Eq. (5) (without the external
force Fc) becomes

f = q̈ (7)

and the linear control law in Fig. 6 can be written as

f d = q̈d + kv(q̇d − q̇) + kp(qd − q) (8)

By combining Eqs. (7) and (8), the characteristic equation of this
linear controller can be written as

(q̈d − q̈) + kv(q̇d − q̇) + kp(qd − q) = 0 (9)

5.2. Feedforward controller

Compared to a single feedback controller, the hybrid control
strategy combining the feedback and feedforward controllers can
significantly improve the performance of a robot whenever a cou-
pled disturbance is available, since the feedforwad controller can
completely eliminate the effect of measured disturbance on the
system. The machining force, which is deemed as the external
disturbance herein, can be calculated from the measurement of a
3D acceleration sensor mounted on the machine header. Then the
machining force is manipulated by an inverse dynamic model and
fed forward to the output of feedback controller as illustrated in
Fig. 7.

If without the external disturbance, which is the varying cutting
force Fc, the robot end-effector reference trajectory y, ẏ, ÿ could be
obtained by applying the driving torques � in the actuators, which is

Fig. 8. Machining force in lower frequency.

Fig. 9. Result of feedback controller.

Fig. 10. Result of feedback–feedforward controller.
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Fig. 11. Machining force in high frequency.

calculated by the feedback position-velocity (PV) controller as well
as the feedback linearization as shown in Fig. 6. Then the forward
dynamics of the end-effector is expressed by Eq. (10):

(y, ẏ, ÿ) = forward dyn(�) (10)

Whenever the disturbance (cutting force) is applied to the end-
effector of robot system, the corresponding joints disturbance �c

is yielded from the internal inverse dynamics of the robot system,
which will cause the actual trajectory be deviated from the refer-
ence. However, by applying the feedforward controller from the
cutting force, the compensation torque �f can be produced, and the
actual torque acting on the driving joints can be expressed as:

�sum = � + (�f − �c) (11)

While the inverse dynamics of the robot system is built accu-
rately in the feedforward controller, then the feedforward output
�f equals the joints disturbance �c, consequently the causative dis-
turbance on the robot driving joints due to the external cutting
force would be eliminated completely, and the chatter vibration
phenomenon of end-effector also vanishes.

5.3. Simulation results

To evaluate the algorithm, a one degree-of-freedom disturb-
ance force with a frequency closes to the robot natural vibration

Fig. 12. Result of feedback controller (High frequency force).

Fig. 13. Result of feedback–feedforward controller (High frequency).

frequency is applied to the system as shown in Fig. 8. For the feed-
back control without feedforward, the output of control system
vibrates as shown in Fig. 9. However, the vibration can be elimi-
nated (Fig. 10) when the feedforward path is introduced, regardless
of any frequency change in the disturbance force. If the force fre-
quency is changed to be much higher (0.1 s period shown in Fig. 11)
than the nature frequency of robot, then the chatter will not happen
even without a feedforward path. Therefore, there is no difference
between the feedback controller and feedback–feedforward con-
troller as seen in Figs. 12 and 13. A feedback controller is easy to
be built up in simulation as the parameters of the studied dynamic
model are known. However, the performance of feedforward con-
troller may not be as sound as the simulations results in a real
system since the parameter errors may occur and acceleration sen-
sor signals may have a delay.

6. Conclusion

In ITER VV assembly and maintenance, lots of machining tasks
need to be carried out by on-site robot machine. Chatter vibration
will be inevitable during the machining process when using a low
stiffness robot. The vibration would deteriorate surface quality and
even cause some damages to the robot system. To suppress the
vibration, dynamic models of a hybrid robot with machining force
were developed and a hybrid controller was studied. According to
the simulation results, the vibration can be eliminated by employ-
ing a hybrid controller which combines feedforward and feedback
controller. The experimental validation of the control algorithm for
a real robot will be carried out in near future.
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Abstract-The paper presents an approach for the trajectory 
planning of a hybrid serial-parallel redundant robot by 
investigating the best stiffness performance. The robot under 
study has 10 degrees of freedom (DOF); six DOF are
contributed by a parallel mechanism, and four DOF from serial-
link carriage. Due to these redundant degree freedoms, the robot 
body configuration is under constrained even when the position 
and orientation of the end-effector has been fixed. In this case, 
the stiffness of robot varies in all the possible joints
configurations. When the path of the end-effector has been 
prescribed, the robot body configuration can be dominated by 
taking into account of the stiffness of robot, i.e. among of all the 
possible configurations, the joints take a value when the stiffness 
of robot reaches maximum. To solve the stiffness optimization 
problem differential evolution (DE) algorithm is employed. In
the paper the stiffness model as an object function has been 
built. The evaluation results demonstrate that the DE is an 
effective method for searching joints parameters in optimum
stiffness, and the results with respect to the optimum stiffness
show that the joints trajectory planning is feasible for the robot
control. 

I. INTRODUCTION 

The hybrid kinematic redundant robot machine under study 
is developed to carry out welding, machining and remote
handling for the assembly of vacuum vessel (VV) of ITER 
(International Thermonuclear Experimental Reactor) which 
consists of nine sectors made of 60mm thick stainless steel 
(Fig. 1) [1]. In order to join two adjacent sectors together by 
continuous welding, the robot has the ability to work along
the track mounted on the inner surface of VV sector and can
provide full six degrees of freedom in task space by end-
effector tool bit. Because of great machining force and heavy
E-beam gun, the robot is demanded to possess high stiffness 
performance while the stringent accuracy tolerances of
assembly, ±5mm, are expected. To satisfy all these special
requirements, a hybrid kinematic redundant robot is built
which possesses 10 degrees of freedom (DOF) (Fig.1). The 
robot consists of two sub-structures — the Stewart-platform-
based parallel mechanism driven by six water hydraulic
cylinders contributes the full six degrees of freedom for the
end-effector; the H-driven carriage with two rotating motions 
offers additional four degrees of freedom to the robot. For the 
H-driven carriage, the motion along the track is driven by a
pair of motors with pinion; the motion perpendicular to the
track is driven by the ball screw; the rotation table rotates 

around the direction vertical to the carriage plane; the Stewart 
base is tipped by another water hydraulic cylinder. 

Although plenty of research works have been done on the 
parallel mechanism, the acceptance of parallel robot by the
industry as manufacturing equipment is quite slow. One of
the major reasons is the small workspace, and another is that
the stiffness of parallel mechanism varies in different 
configurations and even is rather weak near the edge of the
workspace constrained by kinematic-bounded posture [2] - [4]. 
Regard to this hybrid serial-parallel robot, the workspace has 
been relatively enlarged, but the stiffness performance is 
dominated not only by the parallel mechanism but also by the
serial system. Based on this point, the stiffness performance
of the hybrid robot needs to be investigated intensively so as 
to guarantee the better machining performance. 

For this hybrid robot, the kinematic redundancy occurs
since the 10DOF possessed by the robot is more than the 
demanded (6DOF) in the task space. Hereby, the four degrees 
of freedom contributed by the carriage base are referred to the 
redundant driving joints. Consequently, during the robot 
control process the joints trajectory admits an infinite number
of solutions even while the path of end-effector is prescribed.
Meanwhile, the stiffness varies depending on the robot body 
configuration determined by the joints trajectory. This paper
presents a stiffness-maximum-based trajectory planning for
such hybrid kinematic redundant robot machine in the joint 
space. The objective of this work is to provide an optimal
joints trajectory such that it offers the best stiffness 
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Fig. 1.  10DOF hybrid robot for assembly of ITER: (i) vacuum vessel sector 
and (ii) robot used for the assembly of vessel. 
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performance while the end-effector tool moves along a
prescribed path. 

In this paper, the analytical stiffness model of the hybrid 
robot is derived and the minimum eigenvalue of the stiffness
matrix is preferred to be the reasonable index to evaluate the 
stiffness performance. It is found that the stiffness is 
restricted in between the minimum and maximum
eigenvalues of the stiffness matrix [5]. In order to get the 
better stiffness performance, we should get the larger index 
value. When the position and orientation of end-effector is 
fixed, the stiffness varies over the underconstrained body 
configuration dominated by redundant joints. In the particular
robot body configuration when the index value is maximum, 
the stiffness performance is better than the one in any other
configurations, the robot is then regarded to hold the best 
stiffness performance. Hence, the objective function for
optimizing stiffness is subject to maximum index values. The
DE is proposed for searching the input parameters of the
redundant joints, while the position and orientation of the
end-effector has been fixed. 

The remainder paper is organized as follows: Section 2
describes the stiffness modeling of such a redundant freedom
robot machine; Sections 3 discusses the most suitable
stiffness performance index by analyzing the stiffness matrix 
characteristics; Section 4 demonstrates the application of DE 
and presents the best stiffness surface in a 200x200mm2 
Cartesian workspace; Section 5 presents the example of the 
joints trajectory of hybrid robot subject to the best stiffness
along a straight line path of end-effector within the
200x200mm2 workspace. 

II. STIFFNESS MODELING OF HYBRID SERIAL-PARALLEL 
ROBOT 

Since the robot consists of parallel mechanism and serial 
mechanism in a serial manner, the Stewart structure can be
deemed as a lumped virtual link in view of serial robot, and 
the stiffness of hybrid robot can be derived by taking account 
of the serial joints compliance. 

The schematic diagram of the hybrid robot is presented in 
Fig. 2. 

The coordinate ggg ZYX 000  is defined as the global frame, 
located at a fixed point on the gear track, and all other local
coordinates are related to the global frame. ggg ZYX 111  is fixed 
on the carriage base and can move along the gear track; 

ggg ZYX 222 is fixed on the screw nut and moves along the ball 
screw; ggg ZYX 333 is fixed on the support frame, and rotates
around the gZ2  axis driven by the motor on the rotation table; 

ggg ZYX 444 is the coordinate of the Stewart base and rotates
around the gX 3 axis driven by the elevating part (crank-slider
mechanism); ggg ZYX 555 is fixed at the center of the end-
effector as the tool frame. 

A. Stiffness evaluation of Stewart structure 

To evaluate the stiffness of the parallel mechanism, the 
parallel limb is decomposed into the up joint in the end-
effector, the hydraulic limb, and the base of Stewart which
consists of bearing house and U-shape joint (Universal-joint)
(Fig 3). 

The matrix structural analysis (MSA) is widely used to 
calculate the stiffness of the frame-based structure [6] [7]. By 
applying the MSA on the frame elements of bearing house 
and U-joint, the corresponding stiffness matrices have been 
calculated. Based on these results, the stiffness matrix of the 
base joint of Stewart in the i’th limb, denoted by iftK _ , can
be deduced by employing principle of virtual work [8]. The 
up-joint in the end-effector is considered to be perfectly rigid
and the stiffness of the i’th hydraulic limb is represented 
by ihyk _ . 

For the purpose of analysis, as demonstrated in the Fig. 4,
let the coordinate frame ggg ZYX 444 be attached to the Stewart 
base in the geometric centre, the coordinate frame ggg ZYX 555  
be attached to the moving platform, and its origin be located 
at the mass centre. 

Hence, the stiffness matrix of the parallel mechanism in the 
frame ggg ZYX 444 is generated by taking account of the 
deformations in the six base joints and hydraulic limbs: 

[ ] 11 )*][*( −−= T
stwlistwstw JKdiagJK (1)

where stwJ  is the Jacobian matrix of the Stewart with 

[ ]iftihyli KkdiagK __= , 1,2...6i = . 

B. Stiffness evaluation of hybrid robot 
From Fig. 2, we can see that the hybrid robot is composed 

of the Stewart, the elevating part and the carriage base.

robot of chain Kinematic

joint1th

gO0

gX0

gZ0
gY0

gO1

gX1

gZ1
gY1 gO2

gY2

gZ 2

gZ3

gY3

gO3

gY4

gZ4

gO4

gZ5
gO5

gY5g
4Θ

g
3Θ

joint2th

joint4th

joint3th

joint5th

 workspacesquare

Stewartbase Stewart
part Elevating

track Gear
 screwBall

frame Support

table Rotation

gO0

gX0

gZ0
gY0

gO1

gX1

gZ1
gY1 gO2

gY2

gZ2

gZ3

gY3

gO3

gY4

gZ4

gO4

gZ5
gO5

gY5

N

M

C

Fig. 2.  Schematic diagram of hybrid robot 

(i) Bearing house  (ii) U-joint       (iii) Base joints of Stewart 

Fig. 3.  Base of Stewart 

joint Up

Limb

joint-U

house Bearing

 Stewartof  Baseframe

gO4 gX 4

gY4

gZ5

gX 5
gO5

gY5
gZ5

gO4 gX 4

gY4

p

ia

ir

iftK _

ihyk _

Fig. 4.  Schematic diagram of the Stewart structure 

284



Through the mechanism analysis, the elevating part is 
considered as a crank-slider mechanism: the Stewart base is 
regarded as the crank while the hydraulic limb is the actuator 
of the mechanism. For convenience, the stiffness of crank-
slider mechanism dominated by the hydraulics driver is 
transformed and lumped into a virtual rotatory spring which 
is located at the crank joint gO3  and denoted by 4θk . For the 
deformations of rest joints in the carriage base, let 1xk be the 
stiffness of the robot along the gear track in the gX0

 direction, 

2yk  represent the stiffness of the ball screw in the gY0

direction, and 3θk  denote the rotation table stiffness around 
the gZ2

 axis. 
Analyzing the kinematics of the robot results in: 

[ ] q

TTgTg J Δ=ΘΔ *55
 (2)

where [ ]TTgTg
55 ΘΔ is the deformation of end-effector, J the Jacobian 

matrix of the hybrid robot in terms of serial manner, and 
qΔ

the deformation vector of all joints [ ]Txy
TT

q dddd 123455 θθΘΔ=Δ . 

Then, employing the principle of virtual work on the hybrid 
robot joints leads to: 

TJJC ** 1−= χ (3) 

where C is the 6x6 compliance matrix of the whole hybrid
robot, and [ ]1234 xystw kkkkKdiag θθχ =  is a 10x10

diagonal matrix of the stiffness of all joints. The stiffness of 
hybrid robot is obtained as the inverse of the compliance
matrix: 1−= CK . 

III. INDEX OF STIFFNESS PERFORMANCE FOR HYBRID 
REDUNDANT ROBOT  

It is well known that the stiffness reflects the certain
relationship between the external force and the corresponding
displacement experienced. Numerically this property is 
defined by a 6x6 matrix. However, it is rather difficult to 
distinguish the stiffness performance in terms of matrix, since 
it is not comparable by the means of vectors. An instinctive
way to evaluate the stiffness performance is the use of interest 
elements inside the matrix. However, the individual element 
only represents the relation between the force and the
deformation in a certain direction without considering the 
coupling effects of other terms in the matrix. 

The applicable approach for the stiffness performance 
evaluation is to investigate the characteristics of matrix in the 
form of scalar, i.e., the eigenvalues, the determination, the 
diagonal terms as well as the condition number of matrix. 
Among all these usually used indicators, the eigenvalue is 
adopted as the most reasonable index in the application of this 
paper. 

To Interpret the eigenvalue of the stiffness matrix 
geometrically, let the set of displacement vectors is 
“spherical”, in other words, the magnitude of each 
displacement vector is equal to unit length, as a result, the

corresponding set of force vectors is an ellipsoid, in which the 
lengths of the principle axes are the eigenvalues of the
stiffness matrix while the related eigenvectors represent the 
principle axes directions. Based on this point, the minimum
eigenvalue represents the minimum stiffness performance. 

Since the stiffness is the most important aspect in the robot 
performance to ensure the accuracy of the end-effector, the
minimum stiffness of the robot machine tool should be higher 
than a specific value over all the possible body configurations 
in the redundant robot. Thus, for a fixed position and
orientation of end-effector in the robot, the optimum stiffness 
is defined by the maximum value in all the minimum 
eigenvalues which are depending on the different body
postures. Mathematically, the optimum stiffness is described
by bestλ  in Eq. (6). 

)(}{ jji Keig=λ , 2...6 1,i = (4)

}min{min_ jij λλ = (5)

}{max min_ jRjbest λλ
∈

= (6)

In above equations, jK is the stiffness matrix of the 
redundant robot, the subscript j denotes one of the all possible 
body configurations (R) after the posture of end-effector is 
fixed; { jiλ } is the set of six eignvalues of matrix jK . and 

jmin_λ  represents the minimum value in the set of six
eigenvalues of the stiffness matrix in current specified 
configuration.  

Therefore, for a given position and orientation (posture) of 
end-effector, taking the configuration J, which is described by 
the driving joints parameter, as the input argument in (6), the
best stiffness performance can be obtained when bestλ  
reached the maximum. Consequently, the control values for
driving the joints can be obtained for the required posture in 
the path of end-effector. While the stiffness performances 
along the path of end-effector are optimized, the joints 
trajectory is also deduced. In the following context, the 
maximum bestλ  is adopted as the optimality criteria so as to 
get the best joints value for a prescribe end-effector 
coordinate. 

IV. STIFFNESS OPTIMIZATION VIA DIFFERENTIAL 
EVOLUTION 

Considering the properties (highly nonlinear, non-
differentiable) of the stiffness performance model obtained in 
(6), the DE is a desirable choice to be used to search the
optimum stiffness performance since the advantages of DE 
fulfill the requirements for solving the problems concerned 
with this model optimization [9].  

The basic DE algorithm steps can then be described as 
follows in Fig. 5: 
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Firstly, initialize all the populations with random positions 
in the search space and set the control parameters for the DE
algorithm (e.g. D, NP, F, and CR). Herein, the population
represents a set of driving joints values. Then check if the
termination criterion is satisfied or not (e.g. number of 
iterations performed, or adequate fitness reached). If the 
criterion is not met, the new population, produced by the
following algorithm: Mutation, Crossover and Selection, 
would be taken to be compared with the old one by 
calculating the cost values. Using this procedure, all
individuals of the next generation are as good as or better
than individuals of the current population. Repeat this process 
until the criterion is reached. 

A Input variables and objective function for DE 
The configuration determination of the redundant robot 

involves 10 driving joints parameter: as shown in Fig.6, let 1l  
represent the linear displacement of frame ggg ZYX 111 along the 

gear track, 2l  the linear displacement of frame ggg ZYX 222  

along the ball screw, 3a  the rotation angular of frame
ggg ZYX 333 around the gZ2  axis, 4a  the rotation angular of 

frame ggg ZYX 444  around the gX 3  axis; for the parallel 

mechanism, let 1,2...6)(i hi = denote the length of Stewart 
limb. The full six DOF of end-effector required by the task 
space can be satisfied only by the Stewart, while the rest four 
degrees are considered as the redundant freedoms. When the
position and orientation of end-effector are fixed, the Stewart
limbs length depends on the determination of redundant 4
joints values, namely 1l , 2l , 3a  and 4a . It means that the 
robot body configuration can be decided by the selection of a
set of redundant 4 joints values if the path of end-effector is 
prescribed. For this reason, the independent parameters 

1l , 2l , 3a  and 4a  are selected to construct the population of 

DE while the optimum stiffness performance bestλ  is 
regarded as the objective function and demonstrated by (7): 

),,,( 4321 aallfbest =λ  (7) 

Concerning the physical constrains in the robot joints, the 
values of input variables in population ( 1l , 2l , 3a , 4a ) for 
the DE are limited to be in the ranges of [ ]4m ,m0 , [ ]0.5m 0m, , 

[ ]0360 0,  and [ ]00 42- ,88-  respectively, and the initial values
of population are assigned by randomly picking up in 
between the range boundaries. 

In the practical application of this redundant robot 
machine, when the path of the end-effector is given, we firstly 
calculate all the 10 driving joints value at the beginning point 
of the path (assuming located at the point A in Fig.6) subject
to the optimized stiffness performance by adopting DE 
algorithm. We postulate that the robot ( ggg ZYX 111 ) has moved 
to the point B. During the machining along the end-effector 
path, the carriage, however, will be stopped on the track, and

the path of end-effector will be accomplished by driving the 
rest 9 joints due to the lower position control accuracy on the 
track under the external machining force. In this case, the
number of redundant freedoms is reduced to three, and the 
population of DE is reduced to a set of parameters 2l , 3a  and

4a . Therefore, the objective function of DE for the rest 
points of the path is reconstructed as (8). 

),,( 432 aalfbest =λ (8)

In another word, for the first work point A in workspace,
the optimum stiffness performance is searched in the joint
space of 10 freedoms. Thereafter, the robot will be working 
under 9 freedoms, the workspace excluding point A is 
reached by driving 2l , 3a , 4a  as well as the Stewart limb ih
subject to the best stiffness performance. 

In order to apply the DE to optimize the objective function, 
several critical issues need to be determined firstly. For the
control variables of DE, CR is assigned to be 0.7, F is equal 
to 0.8 and NP is set to be 40 for the first optimization, 30 for 
the rest optimization procedures. The standard deviation of
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the population (1.0E-5) is regarded as the termination 
criterion. 

B Optimum results 
For the purpose of demonstration, the best stiffness

performance for a random point within the workspace is 
investigated. Herein, postulate the point of end-effector
(frame ggg ZYX 555 ) located at the point A (Fig. 6) with the 
coordinate of [ ]T00 150- 0, ,150 0m, 1.0m, 1.5m,  in which the first
three entries specify the position of end-effector while the rest 
three entries specify the orientation by means of Roll-Pitch-
Yaw angles in the global frame ggg ZYX 000 . The convergence
process for searching the optimum stiffness is illustrated in 
Fig 7. 

It is observed that the DE reaches the convergence after 
around 50 iterations. In addition, the best input parameters are 
obtained as m 1.8682l1 = , m 0.3621l2 = , 0

3 30.0206a =
, 0

4 74.9323a −=  respectively. The length of Stewart limb 
could be calculated by the inverse kinematics. 

In following step, we extend the workspace from the 
beginning point A to a 200x200mm2 square and let point A 
locate at the geometric centre of this area, the height of the
end-effector and its orientation maintain the same as what in
point A. Thereafter, applying the DE to search the best 
stiffness with the objective function (8) over this specific 
workspace, the optimum stiffness surface is found and shown 
in Fig 8. 

In Fig 8, the x axis direction is parallel to the track while 
the y axis direction is perpendicular to the track. It is found 
that the stiffness performance of point A is the best in the
200x200mm2 plane workspace, because the best stiffness of
point A is searched in the joint space of 10 freedoms while
the others are searched in the joint spaces of 9 freedoms due 
to the fixed carriage position on the tack. The stiffness 
decreases along both positive and negative directions of x
axis when the end-effector moves away from point A, 
because the displacement of the end-effector along the track
is contributed mainly by the stretching of Stewart, and the 
stiffness of Stewart becomes weaker if the limb stretches 
long. The stiffness also decreases along the both directions of 
y axis, but the change is much slighter compared with the one 
in the x axis, because the displacement along the y axis is 
implemented mainly by the ball screw which has much 
smaller stiffness deviation than the hydraulic limb’s in the 
Stewart. 

V. TRAJECTORY PLANNING EXAMPLES 

In the following example, the end-effector moves along a 
straight line of 200mm length which is parallel to the track on 
the xy plane in global frame ggg ZYX 000

(Fig 9).The speed of the 
end-effect is set to 2mm/s. The middle point of the path is 
selected as the optimization initial point under 10 joints
freedom, the coordinate of middle point is set to 
[ ]T00 150- 0, ,150 0m, 1.0m, 1.5m,  with respect to the global frame.

Although the optimization of joint trajectory begins from the
middle point of the path, in the practical machining process 
the robot end-effector starts to work from one end of the line.
Adopting DE algorithm to optimize the stiffness performance
along the straight line-path of end-effector, the corresponding 
joints trajectories are obtained and plotted in Fig 10. 

From Fig.10(i), the trajectory of the first joint maintains 
constant because the carriage base is fixed on the track after
the first optimization. 

Fig.7 Convergence of DE for searching the optimum stiffness 

A

Fig 8 Optimum stiffness surface over the 200x200mm2 square 

g
0Y

path effector-end

g
0X

point middle

g
0O

 startmachining end machining

Fig 9 Straight line path and best stiffness along the path 
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VI. CONCLUSIONS

Due to the redundant kinematics in the hybrid serial-
parallel robot machine, when the coordinate of the end-
effector is given, the robot body configuration is 
underconstrained. Meanwhile, the stiffness of end-effector
varies depending on the body configuration over all the
possible body configurations. Taking the redundant driving

joints values as the input parameters in DE algorithm and the 
best stiffness performance as the optimized objective, the 
joints driving values for the robot are obtained. Repeating
such procedure along the path, the optimized joints 
trajectories are finally plotted while the end-effector is subject 
to the best stiffness performance along the machining path. 

In this paper, if the end-effector path is prescribed, the 
corresponding joints trajectories are deduced subject to the
best stiffness performance. However, such trajectory only 
contains the position information for robot controlling, 
because the stiffness performance only reflects the static
property of the robot. In order to control the robot in the 
practical machining, the velocity and acceleration of the 
driving joints are needed to be investigated. The future work
will concentrates on the velocity and acceleration as constrain 
condition in the trajectories planning subject to the stiffness,
energy-efficient and time-efficient strategy [10] – [12]. 

The main contribution of this paper is to have proposed a 
method for the controlling of kinematic redundant robot 
machine based upon the best stiffness performance. 
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(i). Linear position trajectory of joints parallel to the tack and vertical 
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(iv). Linear position trajectory of limb3 and limb4 in Stewart 

(v). Linear position trajectory of lim5 and limb6 in Stewart 
Fig.10  Position trajectories of the driving joints in hybrid robot 
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Abstract

This paper proposes a stiffness modeling method for a novel 10 degree-of-freedom
hybrid parallel robot machine which consists of a parallel mechanism and a
movable serial basement. The stiffness matrix of the basic element in the robot is
evaluated by matrix structural analysis and the stiffness of the whole robot is
evaluated by employing the virtual joint method and the principle of virtual work.
The stiffness analysis of parallel mechanism is investigated by taking account of
both hydraulic limb translational deformation and the joint deformation. The
obtained stiffness model of the hybrid robot is analytical and can be used to
optimize the trajectory of machining.

1 Introduction

Stiffness is a very important property of the robot machine which can directly affect
the performance of machining. During recent years, parallel robots have been
prevailing in industrial applications for having higher structural rigidity compared
with serial manipulators. However, the stiffness of parallel robot cannot be finite
high.

The robot under study is a hybrid parallel robot machine named IWR [1] which
merges the advantages of both the serial and parallel mechanisms (Stewart
platform) as shown in Fig. 1. To investigate the stiffness matrix of the robot, several
approaches have already been proposed in the robot engineering, such as finite



element analysis [2], the matrix structural analysis (MSA) [3], and the virtual joint
method (VJM) [4]. In addition, the analytical method of calculating the Jacobian
matrix of the robot is also widely used.

Figure 1: 10DOF hybrid robot in Lappeenranta University of Technology

In our study, the MSA approach is employed to calculate the stiffness of the basic
element in the robot, such as U-joint, bearing house, etc. It provides an analytical
stiffness matrix as a function of the structure posture according to the global
coordinate; the VJM method combined with the principle of virtual work is also
applied to evaluate the stiffness of the structure, such as feet composed of basic
elements in the parallel mechanism.

2 Description of matrix structural analysis

The analytical stiffness model developed in this paper is based on matrix structural
analysis. In order to illustrate the application of the MSA on multi-beam structure,
the stiffness modeling of bearing house and U-joint in the foot of Stewart platform in
our robot is taken into account (Fig. 2).

Figure 2: bearing house, U-joint and foot of Stewart

For the convenience of analyzing, the bearing house, U-joint and the foot are
simplified into the frame structure described in Fig. 3.

(i) Bearing house      (ii) U-joint       (iii) Foot of Stewart



Figure 3: Schematic diagram of bearing house and U-joint in the foot of Stewart platform

The first step for applying the MSA method is to define the elements of the structure
and their nodes. Each element of the structure is defined by a number enclosed
with a circle, and its two nodes are indentified by two numbers.

In Fig. 3(iii), O0A is the base frame of Stewart platform, ABO2 the frame of bearing
house including the U-joint shaft, and O2O3 the  frame  of  U-joint.  Firstly,  we
decompose the bearing house and U-joint into separate beams in Figs. 3(i) and
3(ii), and then we can get the single stiffness matrix of each beam according to
application of MSA on single beam [3], finally we assemble all these stiffness
matrices according to their nodes connectivity by using superposition principle and
express in the local coordinate. Herein, the stiffness modeling of U-joint is stated in
Eq. (1) as follows:

(1)

where vector Fi is the external force exerting on the node i, ∆i the corresponding
deformation of node i, O the 6x6 zero matrix and Kij

n the 6x6 stiffness matrix of the
single beam.
In this example, the deformation of Beam ○;1 in the U-joint is not taken into
account, because the beam ○;1 (U-joint shaft) is assembled into the bearing house
in the foot and considered as rigid.

Equation (1) is obtained under the assumption that the whole structure of the U-joint
is considered as a rigid frame. However, there are two rotational freedoms in the U-
joint and the force acting on Node 6 is always constrained in the plane which is
crossing the line of O1

uO6
u and perpendicular to the U-joint plane in Fig. 3.

(i) Bearing house (ii) U-joint (iii) Foot of Stewart
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Therefore, by employing the static condensation technique, further simplification on
Eq. (1) is obtained as

612
1

1121226 )( D-= - KKKKF (2)

where K11 stands for the left-upper matrix block stroke with the dash line in Eq. (1),
K12 stands for the right-upper matrix block, K21 stands for the left-lower matrix block
and K22 stands for the right-lower matrix block.

In the same way, by using the static condensation method and substituting the
physical parameters of the U-joint into Eq. (2) it gives

uuu KF D= * (3)

where Fu=[fu_x fu_z]T and ∆u=[du_x du_z]T represent the external force and the
corresponding deformation in Node 6 of U-joint in its own frame X1

uY1
uZ1

u, and Ku

stands for the 2x2 stiffness matrix of Node 6 in U-joint.

Similarly, by substituting the physical parameters of the bearing house, the stiffness
of the point b in the bearing house is calculated and expressed in the frame X1Y1Z1

in Eq. (4) as follows

bearhbearhbearh KF D= * (4)

Where Fbearh=[fbearh_y fbearh_z mbearh_x mbearh_z]T and ∆bearh=[dbearh_y dbearh_z θbearh_x

θbearh_z]T represent the external force and the corresponding deformation in Node b
of the bearing house in frame X1Y1Z1. The force fbearh_x and the moment mbearh_y are
equal to zero and suppressed in the equation since the force fbearh_x acting on the
base frame causes no deformation and the moment mbearh_y does not exist around
the axis of the bearing house.

3 Stiffness modeling of parallel mechanism

To evaluate the stiffness of the parallel mechanism, the parallel mechanism is
decomposed into the basement frame, the bearing house in the foot, the U-joint in
the foot, the hydraulic limb and the up joint in the end-effector (Fig. 4). Among these
components, the basement frame is considered as rigid structure; the bearing
house and the U-joint comprise the foot of Stewart platform, and their stiffness



matrices are configuration-independent separately, but the stiffness of the feet of
Stewart platform is configuration-dependent as a function of the orientation of the
hydraulic limb; the stiffness of the hydraulic limb is also configuration-dependent as
the function of its length; the up-joint in the end-effector is considered as rigid.

Figure 4: Schematic diagram of the Stewart structure

3.1 Stiffness evaluation of foot in parallel mechanism
The composition of the foot by the bearing house and the U-joint is considered to be
in a serial manner. Herein, its stiffness is investigated by employing the virtual joint
method and the principle of virtual work. The kinematic chain of the foot is shown in
Fig. 5.

Figure 5: Kinematic chain of the foot in the Stewart

The hexagon in the figure is the basement of the Stewart, in which the frame
X4

gY4
gZ4

g is defined as the local reference coordinate. Under the external force Fft

applied to the point O3, the compliance of the foot will cause the point O3 to
experience a twist [∆ft

T Θft
T]T in terms of translational and rotational deformations in

the frame X4
gY4

gZ4
g. Applying the kinematic relationship in the foot results
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where ∆u and ∆bearh represent the deformations of the U-joint and the bearing house
and Ji stands for the Jacobian of the ith local joint deformation.
Employing the principle of virtual work in the foot kinematic chain leads to
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where, δ represents the virtual displacement (small perturbation) on the basis of the
deformations, Ku and Kbearh represent the stiffness matrices of the U-joint and
bearing. Substituting the Eq. (5) into (6) and simplifying the result gives

ftftft KF D= * (7)
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where Jft is equal to [Ju_dx Ju_dz Jbearh_dy Jbearh_dz Jbearh_θx Jbearh_θz]. For convenience,
the symbol Kft_i is used to stand for the stiffness matrix of ith foot in Stewart in the
later part of this paper.

3.2 Stiffness of hydraulic limb
The assembly of components in the hydraulic limb is deemed to be in serial, and its
stiffness varies depending on the cylinder stroke:

hhcwhhhcwh
hy BVBxlABVxlA
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11

2
1

+-++-
+

+++
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(9)

where A is the area, V the volume, x the cylinder stroke, and i the cylinder length.
Bw,  Bc and Bh are the bulk modulus of water, cylinder and hose respectively.
Subscripts 1 and 2 denote the corresponding chambers of the double-acting
cylinder.

3.3 Stiffness evaluation of parallel mechanism
In Fig. 4, the coordinate frame X4

gY4
gZ4

g is attached to the basement in the
geometric centre. The coordinate frame B(X5

gY5
gZ5

g) is attached to the moving



platform, and its origin is located at the mass centre. By taking account of the
deformations in the feet and hydraulic limbs, the stiffness matrix of the parallel
mechanism is obtained by the same way as Eq. (8)

[ ] 11 )*][*( --= T
stwlistwstw JKdiagJK (10)

where Jstw is the Jacobian matrix of the Stewart, and Kli=diag[Khy_i Kft_i].

4 Stiffness modeling of hybrid robot

The schema of the hybrid robot, shown in Fig. 6, is composed of a parallel
structure, a support frame, an elevating part and a basement.

Figure 6: Schematic diagram of the hybrid robot and its kinematic chain

Through the mechanism analysis, the elevating part is considered as a crank-slider
mechanism, the base frame of Stewart platform is regarded as the crank while the
hydraulic limb is regarded as the actuator of the mechanism. The stiffness of the
actuator is transformed into the local compliant spring located at the crank joint and
denoted by kθ4. The stiffness of the gear pair in the track is denoted by kx1 while the
stiffness of the rotation around Z2

g axis is denoted by kθ3 which is driven by an
epicycle gear. The stiffness of the ball screw is the sum of the nut and shaft
stiffness, denoted by ky2.

Analyzing the kinematics of the robot results in

[ ] q

TTgTg J D=QD *55 (11)

where [ ]TTgTg
55 QD  is the deforamtion of end-effector, J the Jacobian matrix of the

hybrid robot, and ∆q the vector of each joint deformations ∆q=[∆5 Θ5 dθ4 dθ3 dy2 dx1].
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Employing the principle of virtual work on the hybrid robot joints leads to

TJJC ** 1-= c (12)

where C is the 6x6 compliance matrix of the whole hybrid robot, and χ=diag[Kstw kθ4

kθ3 ky2 kx1] is an 10X10 diagonal matrix consisted of the stiffness of each joint. The
stiffness of the whole hybrid robot is obtained equal to the inverse of the compliance
matrix, K=C-1.

5 Conclusion

This paper presents a stiffness modeling method for a hybrid robot machine. In the
built model, all the deformations of the foot joints in the Stewart platform are taking
into account. By applying the MSA, the VJM and the principle of virtual work, the
analytical stiffness of the robot can be achieved, and another advantage of this
method is the low calculation consumption.
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