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Time series analysis can be categorized into three different approaches: classical,
Box-Jenkins, and State space. Classical approach makes a basement for the analysis
and Box-Jenkins approach is an improvement of the classical approach and deals
with stationary time series. State space approach allows time variant factors and
covers up a broader area of time series analysis.
This thesis focuses on parameter identifiablity of different parameter estimation
methods such as LSQ, Yule-Walker, MLE which are used in the above time series
analysis approaches. Also the Kalman filter method and smoothing techniques are
integrated with the state space approach and MLE method to estimate parameters
allowing them to change over time.
Parameter estimation is carried out by repeating estimation and integrating with
MCMC and inspect how well different estimation methods can identify the optimal
model parameters. Identification is performed in probabilistic and general senses and
compare the results in order to study and represent identifiability more informative
way.
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1 INTRODUCTION

Time series analysis is an important tool in vast range of fields such as medicine,
engineering, economic, social. Global climate studies, dynamical system behaviour,
and stock market fluctuations are some examples where time series analysis is com-
monly used. More examples can be found in Harvay(1989), West Harrison(1997),
Durbin and Koopman(2001), Kunsch, and [1]. Therefore, its interesting and impor-
tant to know how time series analysis is applied in these kind of applications.
Considering the development of time series analysis, only few impotent stages are
mentioned here. Yule (1926) proposed a method to observe correlation between
time series variables. Box and Jenkins (1970) proposed improved version of Yule’s
method later called Box-Jenkins approach, but Commandeur and Koopman (2007)
argued that Box-Jenkins is problematic in some cases. Also, Kalman introduced
Kalman filter method in 1960. Later, DLMs, Kalman filter with Bayesian frame-
work offered much more flexibility in wide range of time series applications.
Basically, model identification and model building, parameter estimation, and fore-
casting are the main stages of all time series analysis applications [2]. In order to
achieve desired goals from time series analysis, strong knowledge about these stages
is very helpful.

1.1 Purpose of the Thesis

Among the above mentioned stages, model parameter estimation has a considerable
impact on final results and conclusions because they are based on the estimated
model. Since the availability of many different estimation methods, parameter iden-
tifiabillity may differ from method to method. Therefore, the basic purpose of this
thesis is to study the parameter identifiability of different time series model param-
eter estimation methods.
Basically, ARMA models and DLMs parameter estimation is studied using common
estimation methods such as LSQ, Yule-Walker, MLE, Kalman filter with MLE, and
Smoothing techniques. Then, parameter identifiability of each estimation method
is studied in two ways: repeating estimation process and Bayesian inference with
MCMC approach.
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1.2 Structure of the Thesis

To fulfil the objectives, this study is organized in a way that first, we precisely explain
the basic background of time series analysis. Second, based on that background,
the main time series analysis approaches and their different parameter estimation
methods are discussed. Third, simulation exercises and different real world cases are
taken into consideration to study how parameter estimation methods contribute to
parameter identification process.
The theoretical part consists of the main time series analysis approaches; Classical,
Box-Jenkins, State space with DLM and their parameter estimation methods. Also,
a short discussion about Bayesian framework with MCMC in parameter estimation
is included in the first five sections.
The practical part includes simulations and real world examples based on ARMA
models and DLMs in order to study the parameter identifiability. Then identifiability
is studied in two ways; repeating the estimation and performing MCMC analysis
and then comparing how estimations close to their true values, relation with other
parameters as well.
Matlab software with GARCH and dlmtbx Matlab toolboxes are used to perform
the simulation examples and the real data problems in the practical part.



2 TIME SERIES ANALYSIS APPROACHES 10

2 TIME SERIES ANALYSIS APPROACHES

All analysis methods have their own objectives and they depend on the purpose of
analysis. According to [2], there are three main objectives in time series analysis and
they explain how the analysis is conducted and what are the intended outcomes:

(1) Description: The first step is to have a look at the given time series and get
rough idea of the behaviour of data by using simple statistical plots and mea-
sures. Then extract basic properties of time series such as trend, seasonality,
turning points, extreme behaviours.

(2) Explanation: Identifying the dynamic mechanism that generates the process
of which sequence of observations are available.

(3) Prediction: The typical aim of time series analysis is to make predictions for
future observations.

To conduct a time series analysis, it is necessary to have some statistical models
which should be able to explain the given process well. Basically, there are two
statistical models called Error model and Stochastic model. According to [2],
they are

(1) Error Model
Xt = f(t) + εt, t = 1, 2, · · · , N, (1)

where εt ∼ iid(0, σ2), f is an explicit mathematical function can describe the
mean behaviour of the observations .

(2) Stochastic Model
Xt = g(εt, εt−1, · · · ), (2)

where g is a function of stochastic variables.
This model is totally stochastic since the mechanism that generates ε is stochas-
tic

According to time series analysis methods in literature, there are three main ap-
proaches called classical approach , Box Jenkins approach , and State Space
approach to achieve these objectives. First, the classical approach is explained
following Section. The basic concept of this approach is used in the two other
approaches are discussed in Sections (4), (5), and (6).
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3 CLASSICAL APPROACH

In the classical approach, under the Equation (1), every time series is considered as a
combination of unobserved factors called components of time series. Basically, there
are four components: Trend (T), Cycle (C), seasonality(S), Irregular fluctuations(I)
and the main purpose of this decomposition is to analyse them component wise.
The decompositions can be Additive or Multiplicative, but this decomposition is not
unique since number of assumptions have to be made based on the behaviour of the
given time series.

xt = Tt + Ct + St + It Additive,

xt = TtCtStIt Multiplicative. (3)

3.1 Trend

Trend is the long term change in the mean level of time series. In practice, trend
is not directly estimated and the analysis focuses on trend-cycle. Trend-cycle is the
variation low frequency in time series when medium and high frequency fluctuations
have been filtered out and it is estimated by removing seasonal and irregular com-
ponents from the original data [19].
The error model is used to estimate trend and it may take linear or polynomial form
such as linear, quadratic, exponential. The trend estimation process consists of three
different cases:

(a) If the functional form, f is known, then we only need to estimate the param-
eters. For example, Figure 1 represents a linear case and regression method
can be used to estimate f .

(b) If the functional form of f is unknown, first, approximate a good functional
form for f and then follow the part (a).

(c) If (a) or (b) is not possible, use smoothing techniques such as exponential
smoothing, or moving average to remove the random behaviour of time series.
These techniques are non-parametric and have the same functional behaviour
over the entire time period.
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3.2 Seasonality

The same pattern in fixed time interval is repeating in the entire time period, as in
Figure 1. Mathematically this is expressed x(t) = x(t+ s) = x(t+ 2s) = · · · , where
x- data, t - time, s-seasonal time period. If s = 4, 6, 12, then it can be called as
quarter, semi-annual or annual seasonal effect respectively.
The regression method can also be used to estimate the seasonal component of a
given time series. Suppose a periodic function is denoted by g(t) and the model is
given by Equation (1). We can use g to express the data generation process instead
of f in Equation (1). There are two ways to estimate g:

(a) Representing g as a sum of dummy variables

g(t) =
∑S

j=1 γjdjt,

where djt = 1 at jth period and zero otherwise, γj is the level of phenomenon
at jth period of the entire period.

(b) Seasonal components as a sum of harmonic components.
For more details of these two methods follow [4].

Figure 1: Trend and seasonal behaviours of beer selling process
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3.3 Cycle

Cyclic component contain other cyclic behaviours besides seasonality. This is cal-
culated in different ways, such as by elimination or averaging out trend effect by
residual method [19]. Examples can be found in Chapter 8, [3].

3.4 Irregular fluctuations

The symmetric or random fluctuations except seasonal and cyclic components are
considered as irregular fluctuations. If the process is extremely irregular, then it
is difficult to apply any analytic methodologies. The moving average and other
non-parametric method can be used for this type of time series. This method does
not need to define any functional form since it is non-parametric approach and it
captures the dynamic behavior well of a given time series. More details about this
method can be found in [19, 3]

Component wise analysis is more informative but different methods have to be
used to analyze each component. Therefore, this approach is coupled with other
approaches and makes good basis for other approaches to start the analysis with
well defined mathematical model to carry out better analysis.
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4 BOX-JENKINS APPROACH

George Box and Gwilym Jenkins (1979) introduced this method to analyze station-
ary time series data. This is a collection of statistical concepts and principles in
order to find best fit model and make forecast on time series data.
Here, time series is considered as a finite realization of a stochastic process and the
method focuses on the stochastic behaviour of the data. Moreover, the error term is
considered simultaneously with other components since it has a considerable impact
on the behaviour of time series. Therefore, the stochastic model given by Equation
(2) is used to describe the process in a stochastic point of view. This approach
also helps to recognize the dynamic behaviour as well, but the problem is that the
classical approach overcome here [2].
Basically, the procedure consists of four stages: identification, estimation, validation
and forecasting. These stages give clear path to express time series by a mathe-
matical model and do prediction and forecasting. Mathematical concepts such as
seasonality, correlation, ARMA models are used commonly to explain these stages.
Therefore, first, we will briefly discuss these concepts.

4.1 Stationary Data

If the statistical properties such as mean, variance, auto correlation structure of
a time varying process do not change over time a process is called stationary. If
the given data is not stationary, regular differencing, transformations can be
used to make the data stationary. Moreover, statistical tests such as Dickey-Fuller,
Phillips-Perron can be used to check the stationary condition [15].

Differencing: A simple mathematical concept to make a new data series
is taking the difference between each two consecutive data points. Suppose
{Xt}Nt=1 is a non-stationary time series and stationary series {Yt}Nt=1 is obtained
by Yt = 5Xt = Xt − Xt−1 for t = 2, · · · , N . Usually, two differencing are
enough to obtain stationary but it is not a rule.

Note: Trend and irregularities can be adjusted by applying differencing and log
or inverse transformations. Moreover, seasonal non-stationarity is adjusted by sea-
sonal differencing [2]. For instance, Figure 2a shows a strong trend and seasonality
and data is transformed into a stationary form by applying log transformation to
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achieve seasonal stationary and by differencing for trend stationary. Figure 2b shows
stationary version of the original data.
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(a) Non-stationary time series
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(b) Stationary time series

Figure 2: Stationary version of non-stationary time series is obtained by log trans-

formation and differencing

4.2 Auto-correlation and Partial Auto-correlation

Auto-correlation and partial auto correlation describe dependency or relationship
between random variables based on covariance. Covariance measures how random
variables change/behave together and it is defined for random variables X and Y as

cov(X, Y ) = E[(X − µx)(Y − µy)], (4)

where µx, µy are means of X and Y respectively and E denotes the expectation.
Correlation is an extended version of Equation (4) to quantify the strength of the
relationship and it is defined for arbitrary two random variables X and Y as

ρxy =
cov(X, Y )

σxσy
, (5)

where σx and σy are the standard deviations of X and Y respectively.

Auto-correlation Function (ACF)
ACF represents the dependency between time series observations. Sometimes
the terms lagged correlation and serial correlation are used. Mathematically,
ACF at time lag k is defined as

γk =
E[(Xt − µ)(Xt+k − µ)]

σ2
x

=
cov(Xt, Xt+k)

σ2
x

, (6)
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where Xt are time series observations, µ and σ2
xare the mean and variance of

series {Xt}Nt=1.
Usually, ACF is expressed in auto-covariance terms as

ρk =
γk
γ0
. (7)

Partial Auto-correlation Function (PACF)
PACF measures the correlation between two lags when the mutual dependency
of lags between those two lags has been removed. For instance, the partial cor-
relation between Xt and Xt+k is the correlation between these two lags when
the mutual linear dependency between Xt+1, · · · , Xt−(k−1) has been removed.
This is also called as the conditional correlation ( cov(Xt, Xt+k|Xt+1, · · · , Xt−(k−1))
and usually denoted by rkk and defined as

rkk =
γk − γ2k−1
1− γ2k−1

, (8)

where γk is the auto correlation at lag k.
Generally, these two statistical measures measure the correlation between time
lags but, in partial autocorrelation procedure the correlation of time lags be-
tween the two times is being removed. One example where these functions are
used to identify model order of ARMA are explained later. Figure 3 presents
ACF and PACF of ARMA(3,5) process. The order of the process can be iden-
tified by the number of significant lags in each graph. Details about this will
be given later in Subsection 4.4
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Figure 3: ACF and PACF of ARMA(3,5)
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4.3 ARMA Models

The mathematical models which are used in Box-Jenkins approach are called as
ARMA models and they are used for stationary data only. There are two basic
models: AR and MA and the other models such as ARAM, ARIMA, ARMAX are
just combinations of them. Here, we discuss only ARMA model out them of and
details about other models can be found in [20].

(1) Auto Regressive (AR) model: AR process of order p, AR(p), is defined
by

Xt = C +

p∑
i=1

φiXt−i + εt, εt ∼ N(0, σ2
ε ), (9)

where Xt is the observation at time t, C is a constant, φi, i = 1 : p are the auto
regressive parameters that describe the effect of unit change in two consecutive
observations, εt is error disturbance, and σ2

ε is called innovative variance.

(2) Moving Average (MA) model: The MA process of order q, MA(q), is
defined by

Xt = C +

q∑
i=1

θiεt−i + εt, εt ∼ N(0, σ2
ε ), (10)

where Xt is observation at time t, C is a constant, θi’s are moving average
parameters which describe the unit change of two consecutive time series ob-
servations, εt is error disturbance.
Furthermore, a MA(q) process has a property called invertibility if the roots of
the characteristic equation of MA(q) process in Equation (11) lie inside a unit
circle [15]. Every invertible MA(q) processes can be written as a infinite-order
AR process [7].

1 =
∞∑
i=1

= θ1L+ θ2L
2 + · · ·+ θqL

q + · · · . (11)

For example, consider a MA(1) process. According to Equation (10), MA(1)
can be written as Yt = εt + θ1εt−1. Then εt = Yt − θ1εt−1 and replacing t by
t−1, t−2, · · · it can be written as εt−1 = Yt−1−θ1εt−2, εt−2 = Yt−2−θ1εt−3 = · · ·
Finally, combining all these values and substituting them to εt = Yt − θ1εt−1,

εt = Yt − θ1(Yt−1 − θ1εt−2) = Yt − θ1Yt−1 − θ21εt−2
= Yt − θ1Yt−1 − θ21(Yt−2 − θ1εt−3) = Yt − θ1Yt−1 − θ21Yt−2 − θ31εt−3

...

= Yt − θ1Yt−1 − θ21Yt−2 − θ31Yt−3 − · · · .
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If |θ1| < 1, this can continue further and finally the result becomes

Yt = θ1Yt−1 + θ21Yt−2 + θ31Yt−3 + · · ·+ εt.

It is clear that this is of the form of AR(∞).

(3) Auto Regressive Moving Average (ARAM) model: The ARMA process
is a combination of AR(p) and MA(q) processes it is denoted by ARMA(p, q)
and defined as

Xt = C +

p∑
i=1

φiXt−i + εt +

q∑
i=1

θiεt−i, εt ∼ N(0, σ2
ε ), (12)

where C is a constant, φi’s and θi’s are AR and MA parameters respectively,
εt are the iid error terms and p and q refer to the AR part order and MA part
order respectively.
This model is applied for well behaved time series and explains how the current
observation linearly depends on the past observations and on current and past
error disturbances.

Now, based on above discussed concepts, the stages of Box-Jenkins are discussed.

4.4 Model Identification

Model selection is the first step in Box-Jenkins procedure. Since there might be
many possible models for one data set, there should be a formal way to find most
suitable model. There are different methods such as graphical methods, Bayesian
information criteria (BIC), Akaike information criteria (AIC), and Reversible Jump
MCMC (see [3, 15]). Here, we used the first two, only.

(a) Bayesian information criteria (BIC)
BIC was introduced by Schwartz (1978) to select a suitable model for a given
data set. Even though BIC is related with the Bayesian and MLE estimation
methods, it is possible to use in ARMA model selections as well. The model
which has highest posterior probability (i.e minimum BIC) is selected as the
most suitable model from set of models. BIC is calculated as

BIC = −lnL(θ̂|y) + kln(n), (13)
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where y are observations, L is likelihood function for y based on model Mk, θ̂
is the MLE estimate of model parameter vector θk of the model Mk, obtained
by maximizing L(θk|y) over Θ(k), where Θ(k) is the parameter space and
θk ∈ Θ(k), k ∈ {k1, k2, · · · , kL} for L > 1, n is sample size.
Here we only represents the BIC formula by Equation (13). More details about
AIC and BIC can be found in [14] and [3].

(b) Graphical method
Plot data and extract rough idea about the components and check whether
the stationary condition holds. Apply necessary modification to transform to
stationary if needed. Then, use ACF and PACF of stationary data to identify
model order. PACF is used to identify order of AR processes, while the ACF
is used to identify MA order. Table 1 presents summarized information how
this can be done more precisely .

Table 1: ARMA model order identification statements by ACF and PACF

Model ACF PACF

AR(p) (ARMA(p,0)) decreasing towards zero significant util pth lag

MA(p) (ARMA(0,q)) significant until qth lag decreasing towards zero

ARMA(p,q) decreasing towards zero decreasing towards zero

4.5 Model Estimation

Model estimation is very impotent because fitted model is obtained via estimating
the model parameters. There are different methods to the estimate parameters such
as Yule-Walker, LSQ, and MLE and they can be used according to the type of
ARMA model. The selection of estimation method depends on many factors such
as the model, computational efficiency, accuracy, intended final outcomes. Next
Section (5) explains more precisely the parameter estimation methods.

4.6 Model Validation

After model identification and estimation, adequacy of the estimated model or ability
to explains the given process and the model assumptions are checked. Further
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modifications to the current model are then applied if necessary. This is performed
by diagnosis (residual) analysis.

4.6.1 Residual Analysis

Basically, in residual analysis we check some conditions such as whether the fitted
model explains the entire process well, are the model assumptions fulfilled, accuracy
of the predictions and forecasts. If they seem to be on satisfactory levels, then it is
confirmed that an adequate model has been selected for the given data. Statistical
tools such as scatter plot of residuals, residual standard error, coefficient of determi-
nation (R2), normal qq plot, and some statistical tests (t test, z test) are commonly
used here. Residual analysis and some diagnosis are listed below.

(a) Check model assumptions: Plot estimated residuals {r∗t (θ̂)} to see if the resid-
uals are stationary and also check that they are iid with mean zero and vari-
ance one. The independence of auto correlations ρ̂ε’s can be checked by using
following test statistic. More details are in [2].

Q2 =
m∑
k=1

(√
Nρ̂ε(θ̂)(k)

)2
∼ χ2

m−n. (14)

(b) The significant of the estimated parameters can be checked by t tests.

(c) R2 value tells that how much estimated model explains original data and
should be close to one if the best fit model has been selected.

(d) Linear behaviour of normal qq-plot of residuals checks the normality assump-
tion of the errors.

If all these criteria verified, it can be said that a good, or adequate model has been
selected. On the other hand, if some of these are not satisfied, it means that some
modification is needed. We start again from the first stage and repeat until get the
best model.

4.7 Forecasting

The last stage of the Box-Jenkins procedure is forecasting. When the best fit model
has been identified, it can be used for forecasting future observation. One way to
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check predictive ability ts to divide the data into two sets called training and testing
sets, and then confirm that the current model perform well with the training data.
Finally, use the testing set to forecast future data. There different ways to carry out
this, with more details, can be found in [15].

4.8 Discussion

The Box-Jenkins procedure gives methodology to analyze stationary time series.
On the other hand, Durbin and Koopman (2001, p.53) pointed out that, it is not
possible to achieve the stationary behaviour to all time series. The reasons are time
varying factors that are considered as nuisance factors and removed (or assume as
constants) before the start of analysis. Therefore, it is not possible to analyse the
dynamic behaviours of time series by ARMA methods. Section 6 explains how to
solve these problems and gives a comprehensive approach for time series analysis.
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5 BOX-JENKINS APPROACH MODEL PARAM-

ETER ESTIMATION METHODS

The purpose of discussing the Box-Jenkins approach for model parameter estimation
is to discuss the basic concepts of different estimation methods in order to select the
most suitable method. Here, three main methods Yule-Walker, LSQ and MLE are
discussed

5.1 Yule-Walker Estimation

In Yule-Walker method, the population moments are equated with the sample mo-
ments to obtain a set of equations whose solution gives the estimator. Therefore it is
also known as Method of Moments Estimation. This method is an efficient estimator
for AR model, but not for MA and ARMA process [7]. Consider the general AR(p)
model given in Equation (9) and multiply both sides by Xt−k and then take the
expectations:

xtxt−k = φ1xt−1xt−k + φ2xt−2xt−k + · · ·+ φpxp−kxt−k + εtxt−k

E[xtxt−k] = φ1E[xt−1xt−k] + φ2E[xt−2xt−k] + · · ·+ φpE[xt−pxt−k],

where E[(xt − x̄)(xt−k − x̄)] = cov(xt, xt−k) = ct−k and E[x(t−p)x(t−k)] = 0, x̄ = 0

(stationarity of AR). Dividing the above expression by N − 1, we get

ck = φ1ck−1 + φ2ck−2 + · · ·+ φpcp−k ( cov = c, c−l = cl).

Dividing this by c0, according to Equation (6), we get

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγp−k.

Finally, writing the above expression for all time points t = 1, · · · , N , it can be
expressed in matrix form

γp = ΓpΦ, (15)

where γp = (γ1, γ2, · · · , γp)T , Γp = {γi−j}i,j=1,2,··· ,p (variance covariance matrix of
X), Φ = (φ1, γ2, · · · , φp−1, γp)T .
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Next, replace the population covariance γ by sample covariances γ̂(k). Then param-
eters φ can be estimated by solving Equation 15.

φ̂ = Γ̂−1p γ̂p, where γ̂(k) =
1

n

n−k∑
t=1

(xt+k − x̄)(xt − x̄). (16)

This set of equations is called Yule-Walker equations. They are often expressed in
terms of the auto correlation function rather than the auto covariance function as
φ̂ = Γ̂−1p ρ̂p. Durbin-Levinson method can be used to solve this set of equations [2].

5.2 Least Square Estimation (LSQ)

The basic idea behind this method is to estimate parameters which minimize the
sum of squares of errors; where errors are the difference between predicted model
values and observed values. Here, the general procedure is explained using AR(2)
process. According to Equation (9),

Yt = θ1Yt−1 + θ2Yt−2 + θpYt−p + εt for t = 1, 2, 3, · · · , N .

Since this process is linear, the residual sum of squares is calculated by

SS(r̂∗t ) =
N∑
t=1

(r̂∗t )
2, (17)

where r̂∗t = Yt − (θ1Yt−1 + θ2Yt−2).
If εt’s are truly white noises, then their ACF has no spikes and PACF values would
be small. It would help to obtain the most reasonable estimators for θ1 and θ2 [15].
Now find the parameter values which minimize Equation (17) using some suitable
numerical minimization method. Similar procedure can be followed in matrix form
and this is computationally quite easy and fast. First, write the AR(2) model for
each time step for t = 1, 2, · · · , N Y3 = θ1Y2 + θ2Y1, Y4 = θ1Y3 + θ2Y2, · · · , YN =

θ1YN−1 + θ2YN−2. Second, put above set of linear equations into matrix form

Y = XΘ, (18)

where Y =
(
Y3 Y4 · · · YN

)T
, X =

 Y2 Y3 · · · YN−1

Y1 Y2 · · · YN−1

T

,Θ =
(
θ1 θ2

)T
.

Third, since Equation (18) of the form Y = Xb, it can be solved by applying simple
matrix operations. The solution is given by

b̂ = (XTX)−1XTY. (19)
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In literature, the Direct Inversion method is also used to estimate AR parameters,
but mathematically it is same as the LSQ [5]. Also, LSQ is not able to apply on
ARMA models because then the Equation (17) has stochasticity since the random
error term is included and error term is not known in practice. The Psuedo-likelihood
is a good alternative method that can be used in this case [2].

5.3 Maximum Likelihood Estimation (MLE)

MLE is a general estimation method and it can also be used to estimate model
parameters of all ARMA models. Moreover, this method can be considered as a
special case of Bayesian approach [11]. Even though MLE is comparatively com-
plicated method compared to earlier methods, it allows analyzer to go beyond the
simple problems and offers comprehensive methodology to deal with stochastic time
series processes. Main steps of the general MLE process are given bellow.

(a) If data set is iid with marginal PDF f(y; θ) then the joint PDF of the sample
of data YN = (Y1, Y2, · · · , YN) is simply the product of marginal PDFs of each
observation.

f(y; θ) = f(y1, y2, · · · , yN) = ΠN
i=1f(yi; θ). (20)

(b) The likelihood function (L) is the joint density function of Y given θ

L(y|θ) = ΠN
i=1f(yi; θ). (21)

(c) The log-likelihood (l) is the log value of Equation (21)

l(θ) = log(L(y|θ)) =
N∑
i=1

log f(yi; θ). (22)

(d) Finally, the estimated θ which maximizes L is usually denoted by θ̂ and defined
as

θ̂ = arg max
θ

N∑
i=1

log f(yi; θ). (23)

Consider the general ARMA process is given by Equation (12). A random variable
YN |YN−1 contains only εN as a random component at time N and does not depend
on anything since its a white noise. Therefore yN |YN−1 and YN are independent,
hence the PDF of YN is

f(yN |θ, σ2
ε ) = f(yN |yN−1, θ, σ2

ε )f(yN−1|θ, σ2
ε ), (24)
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where θ is set of all ARMA model parameters.
The joint PDF of ARMA model, given in Equation (12), can be calculated by
factorizing the joint PDF into conditional PDFs and PDF of initial values as follows:

f(y1, y2, · · · , yN ,Θ) = f(y1|Θ)f(y2|y1,Θ) · · · f(yt|yt−1, · · · , y1,Θ) · · ·

f(yN |yt−N , · · · , y1,Θ)

= f(y1|θ)f(y2|Y1,Θ) · · · f(yt|Yt−1,Θ) · · · f(yN |YN−1,Θ)

= ΠN
t=p+1f(yt|Yt−1,Θ)f(Yp|θ,Θ), (25)

where p is AR model order of ARMA(p, q), and Θ = (θ, σ2
ε ).

The likelihood function is calculated from Equation (25) as

L(YN ; Θ) =
(
ΠN
t=p+1f(yt|Yt−1,Θ)

)
f(Yp|Θ). (26)

The Equation (26) is called the exact likelihood function of ARAM(p, q) and with-
out the part f(Yp|θ, σ2

ε ) it is called the conditional likelihood . The log-likelihood
function can be calculated following the Equations (22) and (26) as

l(θ|Y ) = ln(f(Yp|Θ)) +
N∑

t=p+1

f(yt|Yt−1; Θ), (27)

where Yt = (yt−1, · · · , y1).
These two likelihoods can be used to calculate MLE of given model, but according
to [13], both functions give same answer for stationary models. It may differ in
finite samples because of non-stationary and non-invertibility of time series. In
practice, the conditional likelihood is used more often than the exact likelihood
because computationally it is easier to calculate.

5.3.1 Conditional Likelihood Function

Since special attention is needed to estimate f(Yp|θ, σ2
ε ), the likelihood given by

Equation (26) is not used commonly. The conditional likelihood function:

L(yN ; Θ) =
(
ΠN
t=p+1f(yt|Yt−1,Θ)

)
(28)

is used for estimation processes. When the size of data set is large enough, there
is no much difference between MLE estimates which come from likelihood given by
Equations (26) or (28).
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5.3.2 Evaluation of Conditional Likelihood

Let θ be all model parameters as θ and let σ2
ε be the error variance of ARMA

model which is assumed to be known. Then, one step ahead forecast ŷt|t−1 is the
mean of yt|Yt−1. According to the Equation (12), the prediction error is r∗t = yt −
ŷt|t−1(residuals) and its variance is σ2

ε . Since ε is assumed as white noise, the PDF
of Yt is

f(yt|yt−1, θ, σ2
ε ) =

1

σε
√

2π
exp

(
((yt − ŷt|t−1)(θ))2

2σ2
ε

)
. (29)

The conditional likelihood of YN can be written following Equations (28) and (29),

L(YN , θ, σ
2
ε ) = (σ2

ε2π)(
N−p

2
) exp

(
− 1

2σ2
ε

N∑
t=p+1

((r∗t (θ))
2

)
. (30)

5.3.3 MLE Estimates

The MLE estimate θ̂ is the parameter value which maximizes (30). Equation (30)
gets its maximum when

∑N
t=p+1(r

∗
t (θ))

2 is minimum. Therefore, we find θ̂ which
minimizes

SSE(θ) =
N∑

t=p+1

(r∗t (θ))
2. (31)

This is the same as what we discussed in LSQ method. It reveals that in this sense
LSQ and MLE are same. Moreover, if σ2

ε is assumed as unknown parameter in the
beginning, it can also be estimated by differentiating the Equation (30) with respect
to σ2

ε which gives an unbiased estimator

σ̂2
ε =

SSE(θ̂)

N − p
. (32)

In order to understand this method more clearly, two examples are given below how
MLE is carried out for AR and MA models

MLE for AR(1) processes: The model can be written using Equation (9)

yt = c+ φyt−1 + εt , where εt ∼ N(0, σ2
εt), |φ| < 1, t = 1, 2, 3, · · · , N .

First, calculate the mean and variance of each yt. According to Equation (9),
it can be shown that yt is also Gaussian as given in Equation (33)

y1|θ ∼ N

(
c

1− φ
,
1− φ2

2σ2

)
,

yt|(yt−1, · · · , y1; θ) ∼ N(c+ φyt−1, σ
2), t = 2, 3, · · · , N. (33)



5 BOX-JENKINS APPROACH MODEL PARAMETER ESTIMATION METHODS27

Let θ = (c, φ, σ2) be the set of all parameters that has to be estimated. Ac-
cording to the Equation (33), the PDFs of y1 and yt for t = 2, · · · , N are

f(y1|θ) =

(
2π

σ2

1− φ2

)− 1
2

exp

(
−1− φ2

2σ2
(y1 −

c

1− φ
)2
)
,

f(yt|yt−1, · · · , y1; θ) = (2πσ2)−
1
2 exp

(
− 1

2σ2
(yt − c− φyt−1)2

)
. (34)

Finally, the exact log likelihood is calculated using Equations (27) and (34) as

l(θ|y) =

[
−
(
N − 1

2

)
log(2πσ2)− 1

2σ2

N∑
i=2

(yt − c− φyt−1)2
]

+

[
−1

2
log(

2πσ2

(1− φ2)
)− 1− φ2

2σ2
(y1 −

c

1− φ
)2
]
. (35)

Since the exact log-likelihood in (35) is not a linear function in of θ, numerical
maximization methods, such as Newton-Raphson, have to be used to estimate
MLE of θ as mentioned in [11]. When the second part of (35) is ignored, then
(35) becomes the conditional log-likelihood of AR(1):

l(θ|y) = −N − 1

2
log(2σ2)− 1

2σ2

N∑
t=2

(r∗t )
2, (36)

where r∗t = yt − (c+ φ̂yt−1) is residual, φ̂ MLE estimete of φ.
It is clear that

∑N
t=2(r

∗
t )

2 has to minimize to maximize (36). This error mini-
mization is same as in the LSQ procedure in Section 5.2

MLE for MA(1) processes: As in AR(1) case, same procedure is followed
to get MLE for MA parameters. Therefore, only the final result is given bellow

l(θ|y) = log
(
fyN ,··· ,y1|ε0=0(yN , yt−1, · · · , |ε0 = 0; θ)

)
= −N

2
log(2π)− N

2
ln(σ2)− 1

2σ2

N∑
t=1

e2t . (37)

It is clear that the Equations (37) and (36) are different. Also, this is not same
as LSQ method and an iterative process has to be used [12].

MLE is the most general estimation method. In ARMA model case, the exact
probabilities of the first p observations of an AR(p) or the first q observations of
MA(q) have to be included explicitly. In conditional MLE, all first p or q observations
are assumed to be known and used as inputs to the estimation process [5]. Next,
state space approach withKalman filter method will give more flexible way of time
series analysis in state space approach, MLE is used to estimate the parameters, also.
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6 DYNAMIC LINEAR MODEL APPROACH

The dynamic linear model (DLM) approach gives comprehensive explanation of the
behavior of time variant processes. This approach is based on state space method-
ology (because DLM is a special case of state space method).

6.1 State Space representation of Time Series

The unobserved components of time series at a certain time point are called states.
Analysis of dynamics of components, as well as other time variant factors, can be
carried out by the state space method. Therefore, this method gives an explicit
explanation of the dynamic behavior of time series as well as solutions for the chal-
lenges and problems that have been arisen in Box-Jenkins procedure.
The state space approach gives an explicit structure for decomposition of time se-
ries. It allows to change time variant factors such as components of time series over
time in order to capture their dynamic in uni-variate and multivariate cases. Also
it allows for missing data, and can tackle with stationary and non stationary prob-
lems. DLMs are used to model the components and Kalman filter recursion with
MLE and smoothing techniques are used to estimate model parameters, compute
predictions of states and to reconstruct the behavior and forecast.

6.2 Dynamic Linear Models

The general DLM is specified by the state space representation with Gaussian error
assumptions, but these extensions are not always necessary [3]. Here we consider the
Gaussian case only. Gaussian linear state space model is expressed by Equations
(38a), (38b) called observation equation and state equation, respectively, with the
assumption of independence of vt and wt:

Yt = Ftφt + vt, vt ∼ N(0, Vt), (38a)

φt = Gtφt−1 + wt, wt ∼ N(0,Wt), (38b)

where Yt are observations, φt is state at time t. We assume that φ0 ∼ N(µ0, C0),
Gt and Ft are known system matrices, vt and wt are mutually independent random
vectors for t ≥ 1 with mean zero and known covariances Vt and Wt, respectively.
The Equation (38) facilitates a structural framework to model time variant processes
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and analyze them together. The following two examples demonstrate how to de-
compose time series its time variant factors and model them to study their dynamic
behaviors.

Examples for DLMs

(1) Local level model: This is a simple DLM where the local level is allowed
to change over time:

Yt = µt + εt(obs), εt ∼ N(0, σ2
ε ),

µt = µt−1 + ξt(level), ξt ∼ N(0, σ2
ξ ), (39)

where µt is the local level and Yt are the observations, and ε, ξ are the random
disturbances with mean zero and variances σ2

ε , σ
2
ξ respectively.

The Equations (39) and (38) are equal when Gt = Ft = 1, Vt = σ2
ε , and

Wt = σ2
ξ .

(2) Trend model: This model allows to change the local level (µt) and the trend
(λt) over time and is very useful in trend analysis problems:

Yt = µt + εt(obs), εt ∼ N(0, σ2
ε ),

µt = µt−1 + λt−1 + ξt(level), ξt ∼ N(0, σ2
ξ ),

λt = λt−1 + γt(trend), γt ∼ N(0, σ2
γ). (40)

This model can be expressed in the form of Equation (38), when

Gt =

 1 1

0 1

 , Ft = [1 0], φt = [µt λt]
T , W =

 σ2
ε 0

0 σ2
ξ

 , Vt = σ2.

Similarly, it is possible to build DLMs for the other components seasonal, irregular-
ities, and cycles, examples can be found in [1, 3, 8].
In the above examples, the entries of the system matrices Ft, Gt and the error co-
variances matrices Vt, Wt are constants. These kind of DLMs are known as the time
invariant. Special case of time invariant DLMs are the ARMA models [1].

6.3 DLM Representation of ARMA Models

Since ARMA models can be expressed in DLM from without changing the distri-
bution of measurement process (Yt), the DLM form of ARMA can apply for any
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non-stationary case without applying any modification on data. The DLM repre-
sentations of ARMA is not unique. The following representation is used over this
thesis. Consider the general ARMA(p, q) model,

yt = C +

p∑
i=1

φiyt−i + εt +

q∑
i=1

θiεt−i + εt. (41)

Let r = max(p, q + 1), φi = 0 for i > p, and θi = 0 for i > q and then rewrite the
above equation as

yt = φ1yt−1 + φ2yt−2+· · ·φryt−r + εt + θ1εt−1+· · ·+θr−1εt−(r−1). (42)

According to [1], the DLM form of the Equation (42) is expressed by the measure-
ment equation: yt = FΘt + vt and the state equation: Θt = GΘt−1 +Rεt,

where Θt =



yt

φ2yt + · · ·+ φryt−r+1 + θ1εt + · · ·+ θr−1εt−r+2

...

φr−1yt−1 + φryt−2 + θr−2εt + θr−1εt−1

φryt−1 + θr−1εt


,

Ft =
(

1 [0]1×r−1

)
, Gt =



φ1 1 0 · · · 0

φ2 0 1 · · · 0
...

...
... . . . ...

φr−1 0 0 · · · 1

φr 0 0 · · · 0


,W = R×R′×σ2, V = 0 (since

ARMA is a stationary model vt = 0), R =
(

1 θ1 · · · θr−1

)T
, εt ∼ iid(0, σ2)

Example: Consider the ARMA(2,2) model.
Classical model: yt = φ1yt−1 + φ2yt−2 + εt + θt−1εt−1 + θ2εt−2.
DLM representation:

yt = Ftθt, θt = Gtθt−1 +Rεt,

whereGt =


φ1 1 0

φ2 0 1

φ3 0 0

, Ft =
(

1 0 0
)
, Vt = 0,Wt = RR

′
σ2, R =

(
1 θ1 θ2

)T
,

εt ∼ N(0, σ2), and φ3 = 0.
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The two different DLM representations of the AR(2) process, yt = φ1yt−1+φ2yt−2+εt,
where εt ∼ N(0, σ2) given bellow is an example to prove that there is no unique DLM
representation for ARMA models.

(a) The transition equation is θt =

 φ1 φ2

1 0

 θt−1+

 εt

0

, where θt =

 yt

yt−1

.

Then the evolution equation system matrices are

Gt =

 φ1 φ2

1 0

, wt =

 εt

0

, W =

 σ2
t 0

0 0

.

The measurement equation is yt = Ftθt, where Ft =
(

1 0
)
, vt = 0.

(b) Another representation is yt = Ftθt,

where Ft =
(

1 0
)
, θt =

 yt

yt−1

 , θt =

 φ1 1

φ2 0

 yt−1

yt−2

+

 εt

0

.

Different examples can be found in [8].

6.4 DLM Representation of Linear Regression Model

A linear regression model, with dynamic regression parameters, i.e. those that can
depend on time, can be put in DLM form. A simple dynamic linear regression model
is

yt = βt,0 + βt,1xt + εt, εt ∼ N(0, σ2), (43)

where xt is the independent variable, y is the explanatory variable, and εt is the
error term. The system matrices DLM corresponding to the Equation (38) are

φt = [βt,0, βt,1]
T , Ft = [1, xt], Gt = I2×2, V = σ2, and Wt = diag(σ2

βt,0
, σ2

βt,1
).

On the other hand, when V = σ2 and Wt = 0, the DLM of this regression model
becomes equal to its classical form. Moreover, when the error terms ξt = 0 and
γt = 0 of the Equations (39) and (40), they also represent linear regression models.
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According to the Subsections 6.2, 6.3, and 6.4, it can be said that the state space
approach has great flexibility of applying in many applications. Next, the challenge
is to estimate DLM states and their model parameters. The states are estimated
recursively by the Kalman filter method, given the data and MLE is used to estimate
the other parameters such as error variances. Also smoothing techniques are used
to reconstruct time series when the current states of a given process are known.

6.5 Kalman Filter Estimation Method

This recursive estimation method was invented by R. E. Kalman, 1960 and can be
used to study the dynamics of systems such as control of complex dynamic problems
and analysis of measurements and estimation problems [10]. This method gives an
efficient way to study many time variant process as well.
The main idea behind this method is to estimate the optimal current state of a
dynamic system based on the past and current observations. The next state is
predicted based on the previous observations and together with new observations,
the prediction is used to update the next state to an optimal estimate. Therefore,
this is also called predictor-corrector method. According to [1], three main filtering
steps in the whole process are recursion, forecasting observation, updating state, and
forecasting next state.
Consider the general filtering steps with the state space given by Equation (38).
The aim of this filtering is to estimate the optimal state value φt at every time step
(t = 1, 2, 3, ..., N). The iteration can be used to estimate the model parameters via
MLE at the same time, also [1].

(a) The predictive distribution of next state p(φt|Yt=1:t−1) is computed from the fil-
tering distribution p(φt−1|Y1:t−1) and the conditional distribution of p(φt|φt−1)

p(φt|Yt=1:t−1) =

∫
p(φt|φt−1)p(φt−1|Y1:t−1)dφt−1 . (44)

In the linear Gaussian case, suppose that the estimated state and its covariance
at (t− 1)th step are φestt−1 and Cest

t−1. Then the predicted state φPt at the tth step
has Gaussian distribution and whose mean and covariance are given below.

φpt = Gtφ
est
t−1, Cp

t = cov(Gkφ
est
t−1 + wpk) = GtC

est
t−1G

T
t +Wt. (45)

(The recursion starts assuming the initial state φ0 ∼ N(φest0 , Cest
0 ))
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(b) One-step ahead predictive distribution of observations is computed.

p(yt|y1:t−1) =

∫
p(yt|φt)p(φt|y1:t−1)dφt . (46)

The results φpt and C
p
t , that come from the part a, are used to update the new

observation Y p
t . According to the Equation (38a), Y p

t has Gaussian distribu-
tion and according to the Equation (38a), its mean and variance are

Y p
t = Ftφ

p
t , var(Y p

t ) = FtC
p
t F

T
t + Vt. (47)

(c) The filtered distribution p(φt|Y1:t) is computed by using the Bayesian theorem,
using p(φt|y1:t−1), and likelihood L(yt|φt).

p(φt|y1:t) =
p(yt|φt)p(φt|y1:t−1)

L(yt|φt)
. (48)

Now the filtered state is computed, the distribution φestt |Y1:t is Gaussian with
mean and variance

φestt = φpt +Rt(Yt − Ftφpt ), Cest
t = Cp

t −RtFtC
p
t , (49)

where the matrix Rt = Cp
t F

T
t (FtC

p
t F

T
t +Wt)

−1 is known as Kalman Gain.

According to the above discussion, a summarized version of the recursive computa-
tion of the Kalman filter state estimation is given below.

6.5.1 Kalman Algorithm

According to the results from Section 6.5, Kalman filter algorithm can be sum-
marized as follows

(1) Prediction: use φestt−1 and Cest
t−1 to compute

(a) φpt = Gtφ
est
t−1

(b) cov(Gtφ
est
t−1 + wpt ) = GtC

est
t−1 +Wt

(2) Updating: Combine the prior current state (φpt ) with observation Yk to com-
pute

(a) Rt = Cp
kF

T
t (FtC

p
t F

T
t + Vt)

−1

(b) φestt = φpt +Rt(Yt − Ftφpt )
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(c) Cest
t = Cp

t −RtFtC
p
t

Increase time step t to go to step 1. Follow [1] and [6] for more details.
Moreover, only the states can be estimated by assuming that all the other parameters
such as error variances (Wt, Vt) are known. It is not possible always and MLEmethod
can be used to estimate them assuming the Markov properties of given system [16].

6.5.2 Parameter Estimation

According to [16], there are three ways to estimate parameters

(a) Subject level knowledge with trial and error to fix parameters without any
algorithmic tuning.

(b) Maximum likelihood function with a numerical optimization routine to find
MLE of the parameters and plug the estimations back to the equation and
re-fit the DLM model.

(c) MCMC sampling from the posterior distribution of the parameters to estimate
the parameters or to integrate out their uncertainty.

Here, we use (b) and (c) only and part (c) is explained in Section (7). Using
the marginal likelihood function l(y1:N |Θ) and assuming the Markov properties of
the system, the likelihood function can be obtained sequentially by Kalman filter
method:

−2log(p(y1:N |Θ)) = c+
N∑
t=1

[
(Yt − Ftφestt )TCY

t (Yt − Ftφestt ) + log(|CY
t |)
]
, (50)

where Θ is set of all parameters which have to be estimated, c is a constant. It
depends on the model prediction covariance CY

t . With this likelihood, a numerical
optimization method can be used to estimate the parameters. More details and
proofs of these formulas can be found in [1, 6, 16].

6.6 Smoothing

Smoothing is used to reconstruct the underlying behaviour of time dependent pro-
cess when data is given. For instance, this can be used in economic studies when
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somebody wants to understand the behavior of consumption of a consumer product
backward from certain day to its history within certain past few years. This is carried
out by computing the conditional distribution of states, given data (p(φ1:N |y1:N))
and estimate all states backward in history. The general steps of smoothing are
summarized below as given in [1].

(1) Calculate the conditional distribution of states, given data y1:N and the state
sequence {φ0, φ1, · · · , φN}. The Bayesian formula is used here.

p(φt|φt+1, y1:N) =
p(φt+1|φt)p(φt|y1:t)

p(φt+1|y1:t)
. (51)

(2) The smoothing distribution of states given data is computed according to the
following backward recursion at t, starting from p(φt|y1:N), where we remove
the dependency of φt on φt+1 by integrating it out:

p(φt|y1:N) = p(φt|y1:t)
∫

p(φt+1|φt)
p(φt+1|y1:t)

p(φt+1|y1:N)dφt+1. (52)

Now, the smoothing steps for the state space given by Equation (38) are stated below
following the above two steps. Since it has been assumed that states have Gaussian
distribution, the distribution of states is Gaussian, also. That is, if φt+1|y1:N ∼
N(µt+1, Ct+1), then φt|y1:N ∼ N(µt, Ct) for t = N,N − 1, · · · , 2, 1, where

µt = φestt + Cest
t G

′

t+1R
−1
t+1(µt − φ

p
t ),

Ct = Cest
t − Cest

t Gt+1R
−1
t+1(Rt+1 − Ct+1)R

−1
t+1Gt+1C

est
t .

Proofs and further information about methods can be found in [1]. Here, we only
use these results to estimate states. As it has mentioned above, the state space
approach has great advantages such as solving the problems that we faced in Box-
Jenkins approach, as well as looking back and reconstructing time series behavior,
and flexibility of applying it in wide variety of applications. In some cases, such
as censored (binary) data, these general formulas cannot be used, because the dis-
tribution of errors is not Gaussian, but maybe Binormial or Poisson. Details and
examples can be seen in [17]
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7 TIME SERIES ANALYSIS WITH MARKOV CHAIN

MONTE CARLO

The estimation methods that have been discussed so far do not give much prob-
abilistic sense for the parameters. Probabilistic explanation helps to understand
behavior of the parameters precisely. It can be used to improve the reliability of
outcomes of analysis. In Bayesian inference framework, the parameters are treated
as random variables. Combined with MCMC methodology we can give derive fully
probabilistic analysis for the parameters.

7.1 Bayesian Inference Method

The Bayesian inference method facilitates to study the revised belief when the actual
belief is given with prior information. Suppose a parameter θ, estimated by data
Y = {y1, y2, · · · , yn}, is described by a PDF p(y|θ). The Bayesian philosophy states
that the θ can not be determined exactly but uncertainty about the parameter is
expressed through probability statements and distributions. Following steps describe
the essential elements of the Bayesian inference.

(1) The probability distribution of θ, p(θ) is known as the prior belief (existing
statistical information such as mean, variance, skewness).

(2) Given the observations Y , choose a suitable statistical model p(y|θ) to describe
the distribution of Y given θ, p(y|θ). This defines the likelihood function.

(3) Update the belief of θ combining information from the prior distribution and
data and calculating posterior distribution p(θ|y) using the Bayes’ theorem
as follows

p(θ|y) =
p(θ, y)

p(y)
=
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

, (53)

where
∫
p(y|θ)p(θ)dθ is a normalizing constant. According to the Equation

(21), the likelihood function (L(θ|y)) of θ is proportional to p(y|θ), Equation
(53) can be written as p(θ|y) = L(θ|y)p(θ)∫

L(θ|y)p(θ)dθ .

Example: Consider the model Y = g(x, θ) + ε expresses a certain process with
ε ∼ N(0, σ2). According to the Equation(21),
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l(y|θ) ∝ exp
(
− 1

2σ2

∑N
i=1(yi − g(xt, θ))

2)
)
.

Now this result is integrated with the prior information p(θ) to calculate the pos-
terior of θ, p(θ|y). The Equation (53) can be used to do it. It is clear that the
Bayesian inference methods gives comprehensive explanation for parameters and
some advantages of this method are:

(1) It provides a way of combining prior information within a solid decision theo-
retical framework.

(2) It incorporates past information about the parameters by a prior distribution
for future analysis, when new data become available.

(3) The posterior, p(θ|y) gives fully probabilistic descriptions about θ and it can
be used as a prior in future analysis.

All inferences in the Bayesian method utilize the posterior distribution p(θ|y). In
practice, MCMC is used to obtain the posterior distribution and the following Sec-
tion explains integration of Bayesian inference with the MCMC methodology.

7.2 Markov Chain Monte Carlo (MCMC) Method

Simulation on random variables from Markov chain based on Monte Carlo methods
is called MCMC. The simulations created by MCMC depend only on the previous
stage of simulation, so the series has the Markov property. This method is very
popular and has great flexibility and advantages in many applications.
The MCMC method quite a successful way of calculating the distribution of the
model parameters, i.e. the posterior distribution. Sometimes it is difficult by ana-
lytically, but it is possible to generate samples from an arbitrary posterior density
by MCMC. Several other aspects of Markov chain method also contribute to its
success. When the simulation algorithms have been implemented correctly, MCMC
guarantees to converge to the target distribution regardless of where the chain has
been initialized [6].
Simple and most commonly used algorithm is the Metropolis algorithm, but there
are other improved versions such as Metropolis-Hasting algorithm, Gibbs sampling.
Details can be found in [6, 15].
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7.2.1 Metropolis Algorithm

American physicist and computer scientistNicolas C. Metropolis invented this method
which is simple and practical. It is used to obtain samples from any complicated
target distribution of even with high dimension. Suppose we want to obtain N sam-
ples from uni-variate distribution with PDF p(θ|y) and θn is the nth sample, already
obtained. To use this algorithm, let the initial value be θ0 and let q(θn+1|θn) be a
symmetric proposal density. According to [6], the main steps are:

(1) set n = 0, choose a starting point θ0, this can be arbitrary any point as long
as p(θ0|y) > 0.

(2) generate a new sample θnew using a symmetric proposal distribution q(: |θn)

(in many cases a Gaussian distribution).

(3) calculate r = min{p(θ
new|y)

p(θn|y)
, 1}

(4) sample u from the uniform distribution U(0, 1).

(5) set θn+1 = θnew if u < r; otherwise set θn+1 = θn

(6) set n = n + 1 if n < N , the number of desired samples, return to step 2 or
otherwise stop

Selecting the proposal distribution q is important because if it is not suitable, it
would lead to inefficient implementations. In most cases, a Gaussian distribution
is used. Because it is symmetric, the probability of moving from the current point
θn to the proposed point θnew is the same as moving backwards from the proposed
point θnew to the current point θn. More details can be found in [6, 15].
Finally, it is clear that MCMC can be used to give a comprehensive analysis in
the parameter estimation process because the posterior of parameters obtained by
MCMC gives full probabilistic representation of the parameters. Therefore, when
this is cooperated with time series analysis, it would yield better analysis results
such as in study of states of DLMs, reconstruction of underlying behaviour, model
fitting, parameter estimation, and forecasting with DLMs as well as ARMA models.
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8 SIMULATION EXAMPLES AND REAL WORLD

APPLICATIONS

ARMA models and DLMs parameter identifiablility of different estimation methods
are discussed with synthetic and real examples. The identification of the parameters
is studied by two separate approaches. First, we generate data sets with know
parameter values and perform the parameter estimation for each set. The collection
of estimated parameters defines the overall behavior of the method and we can study
how close the estimated parameters are to the known values. Second, we analyze
one fixed data set with MCMC. This provides us with the posterior distribution
given one data set and we can check whether the Bayesian analysis of one data set
corresponds to that obtained by repeated simulation in the first approach. MATLAB
is used to implement simulations with GARCH and dlmtbx toolboxes.

8.1 Simulation Examples

Three different ARMA models are used: AR(2), Yt = 0.2Yt−1 +0.3Yt−2 + εt , MA(2),
Yt = εt + 0.2εt−1 − 0.2εt−2, and ARMA(2,1), Yt = 0.2Yt−1 + 0.3Yt−2 + εt + 0.2εt−1.
We assume that the initial data points for these models are zero and ε ∼ N(0, 1).
First, pre-analysis is carried out by simulating data samples from these models to
understand the model identification. Second, we discuss the contribution of each
estimation method in parameter identification of these ARMA models.

8.1.1 Pre-analysis

Data samples are generated from the above ARMA models. Therefore, the sta-
tionarity of data and initial ARMA model order identification have to be studied.
Graphical methods are used to check the stationary. Since the model orders are
already known, we can confirm the ARMA model order identification statements in
Table 1 are true and BIC works well (see Subsection 4.4).

(1) Graphical method: Plot the data samples and check the stationary con-
dition. Also check the significant number of lags of ACF and PACF plots
given in Figure 4b corresponding to the each data sample. The results are
summarized in Table 2.
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Table 2: AR(2), MA(2), and ARMA(2,1) models ACF and PACF properties

Model ACF PACF

AR(2) decreasing towards zero significant until 2nd lag

MA(2) significant until 2nd lag decreasing towards zero

ARMA(2,1) decreasing towards zero decreasing towards zero

(2) Calculation of BIC: BIC is calculated only from MA(2) model for different
p and q values and the outcomes are tabulated in Table 3. It is clear that the
minimum BIC 2.8417 occurs at p = 0, q = 2. It confirms that BIC can also be
used to select most suitable model for a given data set.

8.1.2 Matlab garchfit Gstimation Method

This function in MATLAB GARCH toolbox is used in time series analysis for Gen-
eralized Autoregressive Conditional Heteroskedasticity (GARCH) processes. Espe-
cially, GARCH is used for the time-varying variance (volatility) processes in econo-
metric applications, but it also gives a platform to deal with ARMA models [20].
Garchfit estimates ARMA parameters with the initial model specification structure
is made by the garchset function. Then very precise output specification structure
of the estimations is returned with their significance, variance, as well as total ade-
quacy of the fitted model.
First, generate data samples of size 200 from the above ARMA models and then
estimate the parameters and the error variance σ2 by the garchfit. Second, the same
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Table 3: Estimated BIC from MA(2) data set for 25 different models

(p,q) 0 1 2 3 4 5

0 2.9327 2.8714 2.8417 2.8479 2.85178 2.8552

1 2.8542 2.8586 2.8481 2.8517 2.8563 2.8618

2 2.8564 2.8557 2.8494 2.8551 2.8580 2.8676

3 2.8439 2.8492 28549 2.8613 2.8677 2.8689

4 2.8509 2.8559 2.8616 2.8726 2.8743 2.8797

5 2.85230 2.8633 2.8722 2.8782 2.8809 2.8798

procedure is repeated for 1000 times to check how the estimations are concentrated
around their true values. The means of outcomes are given in Table 4 and they
are approximately close to their true values in one realization case as well as 1000
realization case.

Table 4: Estimated parameter values of AR(2), MA(2), and ARMA(2,1) models by

garch function

Model parameter One realization mean of 1000 realizations

AR(2)
θ1 = 0.2000 0.1698 0.1915

θ2 = 0.3000 0.2869 0.2879

MA(2)
φ1 = 0.2000 0.1991 0.1935

φ2 = −0.2000 -0.2347 -0.2017

ARMA(2,1)

θ1 = 0.2000 0.1770 0.2071

θ2 = 0.3000 0.2779 0.2921

φ1 = 0.2000 0.2063 0.1880

Pairwise scatter plots of all parameter combinations and a normalized histogram
corresponding to the each parameter are shown by Figures 5a, 6a, 7a respectively.
The true values of the parameters are close to the means of estimates. Also the
normalized histograms of the estimated parameters are distributed around their
true values. Moreover, Figures 5b, 6b, and 7b depict that the normalized error
estimates of each model has a normal distribution with mean zero and variance
one. Therefore, the parameter identification performances are quite good in this
approach.
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(a) AR(2) estimation
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(a) Normalized histograms and scatter plot
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(b) Normalized histogram of σ2

Figure 5: AR(2) parameter estimation results from garchfit function

(b) MA(2) estimation
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Figure 6: MA(2) parameter estimation results from garchfit function
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(c) ARMA(2,1) estimation
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Figure 7: ARMA(2,1) parameter estimation results by garchfit function

The MSE of the parameters are in the Table (5).

Table 5: MSE of garchfit estimated parameters of AR(2), MA(2), and ARMA(2,1)

models

Model parameter One realization

AR(2)
θ1 = 0.2000 0.03916

θ2 = 0.3000 0.0309

MA(2)
φ1 = 0.2000 0.0302

φ2 = −0.2000 0.0316

ARMA(2,3)

θ1 = 0.2000 0.1549

θ2 = 0.3000 0.0731

φ1 = 0.2000 0.1623
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8.1.3 ARMA Parameter Estimation

The same procedure of repeated simulation is continued as in earlier section. Since
the LSQ and MLE methods are computationally same, we use only MLE and Yule-
Walker. Table 6 presents the means of estimated parameters by Yule-walker and
MLE methods. When closely looking at the results, estimates are close to their true
values. Also the estimated error variance σ2 close to its true value.

Table 6: Means of estimated parameters of AR(2), MA(2), and ARMA(2,1) from

1000 realizations

aaaaaaaaaaaa
Model

Estimation

Method
parameter

with true value

Yule-Walker

method

MLE

method

AR(2)

θ1 = 0.2000 0.1907 0.2004

θ2 = 0.3000 0.2885 0.2985

σ2 = 1.000 0.9789 0.9921

MA(2)

φ1 = 0.2000 - 0.2010

φ2 = −0.2000 - -0.2040

σ2 = 1.000 - 0.9603

ARMA(2,1)

θ1 = 0.2000 - 0.2029

θ2 = 0.3000 - 0.2905

φ1 = 0.2000 - 0.1917

σ2 = 1.000 - 0.9926

Pairwise scatter plots of estimates given in Figures 8, 10, and 11. Actual parameter
values close to the means of their estimates. Also the normalized histograms of the
corresponding parameters are also distributed around their true parameter values.
Moreover, the normalized histograms of estimated σ2 from each estimation method
are shown in Figures 9, 10b, and 11b are almost close to its true value and hold the
normality assumption.



8 SIMULATION EXAMPLES AND REAL WORLD APPLICATIONS 45

(1) AR(2) parameter estimation
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(a) Estimations via Yule-Walker method
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(b) Estimations via MLE method

Figure 8: Normalized histograms and scatter plot of AR(2) parameter estimation

results via Yule-Walker and MLE methods
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(a) σ2 from Yule-Walker method
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(b) σ2 from MLE method

Figure 9: Normalized histograms of σ2 estimations via Yule-Walker and MLE
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(2) Scatter plots and normalized histograms of MA(2) model parameter estimation
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(a) Estimations via MLE method
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(b) Normalized histogram of σ2

Figure 10: MA(2) parameter estimation results via MLE estimation results

(3) Scatter plots and normalized histograms of ARMA(2,1) model parameter es-
timation
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(a) Estimations via MLE method

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6

Normalized histogram of σ
2
 by MLE

(b) σ2 estimations via MLE method

Figure 11: ARMA(2,1) parameter estimation results from MLE method

Finally, we can say that Yule-Walker, LSQ, and MLE methods performs well in
parameter identification by repetition estimation process.
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8.1.4 DLM Estimation

First, we transform all the above ARMA model into DLMs and start estimation ac-
cording to the discussion in the Section 6.3. The estimation is carried out by Kalman
filter method once only since the high computational time. In the next subsection,
this estimation is integrated with MCMC. Table 7 summarizes the estimates and
they are close to the true values. It means that in the DLM approach identifies the
parameters quite well.

Table 7: DLM parameter estimations for one sample

aaaaaaaaaaaa

Model

parameter

Model
AR(2) MA(2) ARMA(2,1)

θ1 = 0.2000 0.1793 - 0.1969

θ2 = 0.3000 0.3032 - 0.3001

φ1 = 0.2000 - 0.2109 0.2126

φ2 = -0.2000 - -0.2025 -

σ2 = 1.000 0.8959 0.9120 1.0320

8.1.5 MCMC Analysis

MCMC analysis is performed on the DLMs of the above ARMA models and the
model parameters are estimated by MLE method. We use MCMC to find the op-
timal estimates for the parameters. They are obtained by calculating the posterior
distributions of each parameter using only one data set. The results are presented as
point estimates and in graphical representations to understand how MCMC works
with DLM in parameter identification process.
According to the estimation results given in Table 8, posterior means of the param-
eters are the optimal estimates and they are close to their true values.
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Table 8: Means of MCMC chains of ARMA parameters are estimated by DLM

estimation method

aaaaaaaaaaaa

Model

parameter

Model
AR(2) MA(2) ARMA(2,1)

θ1 = 0.2000 0.17492 - 0.2137

θ2 = 0.3000 0.30038 - 0.2118

φ1 = 0.2000 - 0.2014 0.2289

φ2 = -0.2000 - -0.1899 -

σ2 = 1.000 0.9573 1.0010 1.0275

(a) AR(2) estimations: Figure 12 shows the pairwise scatter plot of MCMC
estimates and normalized histograms of each parameter from DLM approach.
The MCMC means give the optimal parameter values according to the pos-
terior. Also the posterior distributions of the parameters are presented in
Figure 13a. Figure 13b presents estimates of the error variance σ2, which are
distributed around its true value.
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Figure 12: Scatter of MCMC estimates and normalized histograms of θ1 and θ2 of

AR(2)
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Figure 13: MCMC posterior distribution of θ1 and θ2 of AR(2) and histogram of σ2

estimates by DLM approach

(b) MA(2) estimations: Same as in AR(2) estimation case, the MCMC es-
timates results presented in Figures 14 and 15. The posterior means of the
parameters are close to their true values and the uncertainty of estimates are
not high.
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MA(2)

(c) ARMA(2,1) estimations: Pairwise scatter plots and normalized histograms
of the parameters are presented in Figure 16 with their true values. There is
some diverge of MCMC means of estimates from their true values but it is not
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Figures 17a and 17b show posteriors of the parameters and histogram of the er-
ror variance σ2 estimations respectively and they are closely distributed around
their true values. Also the uncertainty of each distribution is not too high.

−1 0 1 2

φ
1

−0.5 0 0.5 1

φ
2

−1 0 1 2

ψ
1

(a) posteriors of θ1, θ2, and φ1

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

1

(b) histogram of σ2 estimations

Figure 17: MCMC results of θ1, θ2, φ2, and σ2 of ARMA(2,1) with DLM

According to the results in Table (8) and Figures from 12 to 17, it seems to be that
the parameter identifiability of DLM with MCMC performances are quite good.
Also MSE of the each parameter given in Table 9 are small.

Table 9: MCMC yielded MSE of estimated parameters

aaaaaaaaaaaa

Model

parameter

Model
AR(2) MA(2) ARMA(2,1)

θ1 = 0.2000 0.0274 - 0.1491

θ2 = 0.3000 0.0302 - 0.0748

φ1 = 0.2000 - 0.0283 0.1515

φ2 = -0.2000 - 0.0289 -

Moreover, the other result that can be seen from the MCMC analysis; there is no
unique value for a given model parameter and there are many possibilities. For
example, the MCMC simulations on the ARMA(2,1) parameters shown in Figure
18, there are many values close to their true values. It means that there could be
many possible parameter values to explain same data sample.
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Figure 18: MCMC chains of θ1, θ2, and φ2 of ARMA(2,1) with DLM

Finally, all the simulations reveal that the parameter identifiability of these meth-
ods differs the way how we carry out the estimation and the estimation method as
well. Therefore, the spread of estimates around their true values varies in the scatter
plots.
When the estimation is repeated with in new data each time, we get totally inde-
pendent collection of estimates for each parameters. The means of these estimates
are close to their true values. In MCMC analysis, we use only one data sample
and generates series of estimates converging towards the most optimum estimator
of each parameter. Therefore, the means of MCMC chains give the most suitable
estimates and they may differ from their true parameter values. Also true value
could be outside from the 95% confidence contour of MCMC points but it happens
rarely.

8.2 Real World Examples

Three different real world examples which represent stationary, strong seasonality
and trend, and sharp fluctuations respectively, are discussed here. The DLM ap-
proach is used to build models and parameter identification is carried out by MCMC.
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8.2.1 Internet Server Logging Example

The number of users logged on Internet server were recorded and then the difference
of number of users in each minute were calculated. Figure 19a shows the data and
it looks stationary. Therefore, ARMA model can be used to analyze this data set
and the main steps are given below.
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(b) ACF and PACF

Figure 19: ACF and PACF of user logging data on Internet server

(1) ARMA model order identification: First, BIC is calculated for different
ARMA(p, q) and the outcomes are tabulated in Table (10). The minimum
BIC (5.16302) occurs when p = 1, q = 1.

Table 10: BIC for different ARMA models for user logging data on Internet server

(p,q) 0 1 2 3 4 5

0 6.399 5.6060 5.3299 5.3601 5.3773 5.3983

1 5.3983 5.2736 5.3195 5.3288 5.3603 5.3984

2 5.3532 5.3199 5.3569 5.3671 5.3677 5.4089

3 5.2765 5.3224 5.3656 5.4071 5.4039 5.4563

4 5.3223 5.3675 5.4130 5.4529 5.4450 5.4997

5 5.3222 5.3675 5.4130 5.4529 5.4450 5.4997

Also the ACF and PACF plots given in Figure 19b indicates that ACF and
PACF are significant till 1th lag. Therefore the best fit model is selected as
ARMA(1,1).
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(b) MCMC parameter estimation: The parameter estimation is carried out
by DLM with MCMC. The parameter estimates are φ1 = 0.65623, θ1 =

0.50662, σ2
ε = 3.2044. Also the posterior distributions and pairwise scatters

of estimates of the parameters are shown in Figure 20. Moreover, the scatter
plots of θ1 and φ1 with σ2

ε do not depict correlation means that σ2
ε estimates

are independent.
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Figure 20: MCMC parameter estimation results

Moreover, different ARMA models were fitted on the data and checked how
DLM works in parameter identification with MCMC. The summarized results
are given in Table 11. Of course, when model order is being increased, the
likelihood is increasing and model over fit the data.

Table 11: Estimates of four different ARMA model parameters

ARMA(2,1) ARMA(3,1) ARMA(1,2) ARMA(1,3) ARMA(2,3)

φ1 0.5961 1.0548 0.6743 0.8136 0.6280

φ2 0.0446 -0.5528 0.4870 - 0.1706

φ3 - 0.2998 - - -

θ1 0.5414 0.1040 -0.0191 0.3848 0.5685

θ2 - - - -0.2017 -0.1816

θ3 - - - -0.2143 -0.2741

Also Table 12 presents the correlation between the ARMA(2,3) parameters.
We can see that the AR parameters are strongly correlated with the first MA
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parameter than the other two. It means that the best fit model order should
be less than this model order.

Table 12: Correlation between ARMA(2,3) model parameters

φ1 φ2 θ1 θ2 θ3

φ1 1.0000 -0.9491 -0.9438 -0.7191 -0.0892

φ2 -0.9491 1.0000 0.8677 0.5247 -0.0730

θ1 -0.9438 0.8677 1.0000 0.7767 0.0884

θ2 -0.7191 0.5247 0.7767 1.0000 0.5319

θ3 -0.0892 -0.0730 0.0884 0.5319 1.0000

(c) Prediction: Predictions via MCMC analysis given Figure 21 seems that the
prediction lines covers the behavior of the original data well.
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Figure 21: ARMA(1,1) predictions for user logging on Internet server data

Finally, we can say that the estimation method has been identified the model pa-
rameters quite well.

8.2.2 Airline Passenger Example

The data set given in Figure 22a is about the airline passengers in thousands from
January 1949 to December 1960 was taken from, Hyndman, R.J., time series data
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library. According to Figure 22b, the data depicts strong trend and seasonal be-
haviour The basic model for the data set and models for its components are given
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(a) Airline passenger data
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Figure 22: Airline passenger data form January 1949 to December 1960

below.
yt = µt + γt + εt, (54)

where

µt = µt−1 + βt−1 + ηt,

βt = βt−1 + ζt,

γt =
s−1∑
j=1

γj,t−1 + ωt.

indicate the level, trend, and seasonal components, respectively. εt, ηt, ζt, and ωt are
random disturbances with zero mean and variances σ2

ε , σ
2
η, σ

2
ζ , and σ2

ω respectively
and these are the model parameters have to be estimated, s = 12 indicates number
of seasons.
First, above model was fitted to the data but the residual diagnosis given in Figure
23a did not look optimal. This may happens because of non-modeled feature has
some unknown effect with correlated noise [16]. Therefore, AR(1) component is
added into the model. The new model fits well since the residual diagnosis given
in Figure 23b seem to be optimum. And the MLE estimates of the parameters are
(σε, ση, σω, σφ1 , φ1) = (1.0312, 0.0004, 0.0020, 0.0239, 0.8056).
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(a) Residual diagnosis without AR
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(b) Residual diagnosis with AR(1)

Figure 23: Residual diagnosis of the airline data

Posterior distributions of the parameters given in Figure 24a looks well compared
to their priors. It means that there is some relation between the parameter values
and the observations. Also pairwise scatter plots given in Figure 24b) show how the
parameters are related each other. Table 13 quantifies the correlation between the
parameters and we can see that σω and σφ1 are highly correlated compared to all
the other parameters. It means that there is an effect of the AR component on the
seasonal behaviour of the data.

−5 0 5 10

Vfact

−2 0 2 4 6

x 10
−3

w2

0 1 2 3 4

x 10
−3

w3

0.01 0.02 0.03 0.04

w14

0 0.5 1

g1

(a) Prior with posterior of the parame-

ters

−2 0 2 4 6

x 10
−3

−5

0

5

10

0 1 2 3 4

x 10
−3

−5

0

5

10

0 1 2 3 4

x 10
−3

−5

0

5
x 10

−3

0.01 0.02 0.03 0.04
−5

0

5

10

0.01 0.02 0.03 0.04
−5

0

5
x 10

−3

0.01 0.02 0.03 0.04
0

2

4
x 10

−3

0.2 0.4 0.6 0.8 1 1.2
−5

0

5

10

0.2 0.4 0.6 0.8 1 1.2
−5

0

5
x 10

−3

0.2 0.4 0.6 0.8 1 1.2
0

2

4
x 10

−3

0.2 0.4 0.6 0.8 1 1.2
0.01

0.02

0.03

0.04

 

 

99% confi

95% confi

estimations

(b) Pairwise scatters of parameters

Figure 24: MCMC analysis results of the parameters

In order see the performances of the estimates in the predicting process, data and
trend component were predicted from the estimated model. Figures 25a and 25b
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Table 13: Correlation between model the parameters

σε ση σω σφ1 φ1

σε 1.0000 -0.0190 -0.0191 -0.0107 -0.0390

ση -0.0190 1.0000 -0.0135 -0.0739 -0.3885

σω -0.0191 -0.0135 1.0000 -0.7060 0.3428

σφ1 -0.0107 -0.0739 -0.7060 1.0000 -0.2895

φ1 -0.0390 -0.3885 0.3428 -0.2895 1.0000

show the prediction results and we can see that they cover the underlying behaviour
of the data well.

(a) DLM fit(blue line) with data (blue dot)

and trend (solid blue line)

(b) Simulated samples(green) of the trend

component

According to the above results, the estimates perform well in different analysis steps
such as model fitting, component analysis, and simulations. Therefore, it can be
said that DLM with MCMC has been identified the model parameter well and
gives much more flexibility in analysing time series which have strong trend and
seasonality without applying any modification on the original data.
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8.2.3 Seat Belt Example

This example is about the road accidents in United Kingdom from January 1969 to
December 1984. Many factors were taken into account, but here we consider only two
factors. The number of divers who killed or seriously injured in road accidents and
the monthly petrol prices. These two series are used to demonstrate the parameter
identification of uni-variate structural time series by DLM approach. More details
about this example can be found in [3, 17].
Figure 26a shows divers series and the overall trend. The trend looks constant but
it breaks around 1974 and 1983 with seasonal pattern as well. The full DLM given
by Equation (55) is used to analyse the drivers data with the petrol prices.

yt = µt + γt + βxt + εt, (55)

where the level and seasonal parts are modeled as

µt = µt−1 + ηt,

γt =
s−1∑
j=1

γj,t−1 + ωt,

respectively, and εt, ηt, ωt are the error components with zero mean and variances
σ2
ε , σ

2
η, σ

2
ω respectively and these are the model parameters. The price of petrol is

included as a regression and intervention component βxt, s = 12 is the number of
seasons.
First, the analysis is carried out with the seasonal and level components and second,
include the petrol price factor to the model to check how well the model covers
general behaviour of the data.
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Parameter estimates are σε, ση, σω = 1.8856, 0.0320, 0.0005 and Figures 26b and 27
show the DLM predicted data with general behaviour (level), smoothed, and predic-
tive residuals, respectively. Since the estimated level component follows the general
pattern well except at the sharp breaks, residuals are quite high at those points only.
Also the spread of simulated samples from the level components given in Figure 28a
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Figure 27: One step ahead residuals from smoothing and prediction

is quite high. It means that the posteriors have not been well identified distribution
of the parameters. Moreover, Figure 28b shows pairwise scatters of MCMC chains
of the parameters and some estimations are outside from the confidence contours.
Therefore the estimated parameters do contribute well in the model prediction pro-
cess except at the break points. The reasons for these two breaks around mid 1974
and 1984 were the introduction of seat belt laws and the increase of petrol prices
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(a) simulated samples of level (green)
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(b) Pairwise scatter plots of the parameters

respectively. Therefore, including the petrol price as a regression and intervention
variable to the above model, analysis can be continued further to get better result.
Since the ’dlmtbx ’ toolbox has no direct facility to model intervention variables,
analysis is stopped at this stage. The ’ssm-1.0.1 ’ Matlab toolbox has that facility
and detailed description for this example can be found in [4].
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9 DISCUSSION

The aim of this thesis was to study the parameter identifiability of different param-
eter estimation methods which are used in time series analysis. In order to build a
sufficient theoretical basis for this study, time series analysis approaches were cate-
gorized into three main approaches classical, Box-Jenkins, and state space to study
them separately. In addition to that, MCMC analysis concepts in the parameter
estimation processes were discussed to present estimation results in probabilistic
sense and more informative ways.
In some cases, ARMA models cannot be used because it is difficult to achieve the
stationarity for some data. DLMs with Kalman filter method facilitate to analyze
many different time series and data is not necessary to be stationary. Furthermore,
the basic ARMA model identification methods: ACF, PACF, and BIC have been
addressed in this study. These methods returned the expected outcomes from the
pre-selected ARMA models. Therefore, these methods can be recommended to use
in ARMA model identification.
Basically, ARMA model parameter identifiability was studied with Yule-Walker,
LSQ, and MLE methods. Yule-Walker is an efficient method to estimate AR pa-
rameters but not for ARMA and MA models whereas LSQ and MLE can use for any
ARMA model. Also LSQ and MLE are computationally same under the Gaussian
assumption of errors. Moreover, LSQ can only be used in simulation cases because
the error term in ARMA models is not observed in practice and it add stochasticity
to the LSQ objective function. Pseudo likelihood method is an alternative method
which can be used to estimate parameters in real cases. When there are many local
maximas, MLE method faces some problems such as flat likelihood. We have to how
likelihood values change with different initial parameters.
First, parameter identifiability of the above estimation methods was discussed while
repeating the estimation for several times with simulated data sets were generated
by known AR(2), MA(2), and ARMA(2,1) models. Since data change in each re-
alization, estimates also change every time. Finally, we get mutually independent
series of estimates concentrated around their true values. Even though means of
estimates approximate the true parameter values, these estimates suffer with un-
certainty. Furthermore, these series of estimates do not provide much probabilistic
sense for the parameters.
The parameter identification by DLM with MCMC analysis gives very good out-
comes. The difference from the repeating case is that the MCMC means of the
parameters are not always close to their true values. Also the posteriors of the
parameters represent them probabilistically well and not always symmetric around
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their true values. The reason is MCMC returns the most optimum estimations and
they are not just a collection of single estimations as in earlier case. Since DLMs
allows to include all time variant parameters, the estimation results are more in-
formative and has more precise interpretation to understand clearly the underlying
phenomena of time series.
Since DLM with MCMC performs well in parameter identification with simulated
data and offers much more flexibility, this estimation approach was applied on three
different real data sets. DLM facilitates to combine classical decomposition of time
series and characterize the time variant components by allowing them to change
over time to study their behaviours well. The posteriors and scatter plots depict the
distributions and relationships of the parameters, respectively. Moreover, the pre-
dictions of data and simulations on components approximate the original behaviours
well. It means that DLM with MCMC has been identified model parameter well.

10 CONCLUSIONS

According to the simulation and real world examples results, we can say that DLM
modeling of time series together with MCMC for parameter estimation performs
well and offers much flexibility in the parameter identification process while giving
fully probabilistic representation for the parameters. On the other hand, since the
recursive identification also gives good approximations, but it does not fully con-
tribute explain the given process well. Furthermore, the DLM approach handles the
challenges arising in the Box-Jenkins approach and also provides extensive expla-
nation for the time variant factors. In addition, the classical approach makes good
basis to start well organized analysis and to reach desired goals more effectively.
There are some future directions that come up from this study. When the Gaussian
assumption is not possible, as for binary data, the Kalman filter formulation has
to be changed in an appropriate way. The particle filtering approach is one way to
handle such cases. Since bi-variate cases are common in real world, it is a way to
continue this study further, starting with the basic background described here. Also,
if time series consists of interval valued data, these estimation methods need to be
adjusted to identify parameters to carry out analysis results. Finally, when there is
stochasticity in the LSQ estimation cases, the pseudo likelihood estimation method
is a popular approach to estimate the parameters. Therefore, these extensions could
be studied with the state space approach as well.
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