

Leeds Beckett University
Faculty of Arts, Environment & Technology
PERCCOM Master Program

Master’s Thesis in
Pervasive Computing & COMmunications
for sustainable Development
Cristea Vlad Vasile

Energy Consumption of Applications on Mobile Phones

2015

Supervisor(s) : Professor Colin Pattinson (Leeds Beckett University)
 Doctor Ah-Lian Kor (Leeds Beckett University)

Examiners: Eric Rondeau (University of Lorraine)
Jari Porras (Lappeenranta University of Technology)
Karl Andersson (Luleå University of Technology)

This thesis is prepared as part of an European Erasmus Mundus programme PERCCOM - Pervasive
Computing & COMmunications for sustainable development.

This thesis has been accepted by partner institutions of the consortium (cf. UDL-DAJ, n°1524, 2012 PERCCOM
agreement).
Successful defence of this thesis is obligatory for graduation with the following national diplomas:
 Master in Master in Complex Systems Engineering (University of Lorraine)
 Master of Science in Computer Science and Engineering, Specialization: Pervasive Computing and
Communications for Sustainable Development (Lulea University of Technology)
 Master of Science (Technology) in Computer Science (Lappeenranta University of Technology)

Cristea Vlad Vasile
Title: Energy Consumption of Mobile Phones
Faculty of Arts, Environment & Technology
Leeds Beckett University, Leeds LS1 3HE, United Kingdom
Pervasive Computing and Communications for Sustainable development Master Program
Examiners: Professor Eric Rondeau,
 Professor Jari Porras,
 Professor Karl Andersson
134 Pages, 25 Appendixes, 26 Charts, 108 Tables, 113 Figures
Keywords: energy efficiency, Windows Phone, smartphone’s energy consumption
Abstract
 Battery consumption in mobile applications development is a very important aspect and
has to be considered by all the developers in their applications. This study will present an analysis
of different relevant concepts and parameters that may have impact on energy consumption of
Windows Phone applications. This operating system was chosen because there is limited research
even though there are related studies for Android an iOS operating systems. Furthermore, another
reason is the increasing number of Windows Phone users. The objective of this research is to
categorise the energy consumption parameters (e.g. use of one thread or several thread for the same
output). The result for each group of experiment will be analyzed and a rule will be derived. The
set of derived rules will serve as a guide for developers who intend to develop energy efficient
Windows Phone applications. For each experiment, one application is created for each concept
and the results are presented in two ways: a table and a chart. The table presents the duration of
the experiment, the battery consumed by the experiment, the expected battery lifetime and the
energy consumption, while the charts display the energy distribution based on the main threads:
UI thread, application thread and network thread.

Acknowledgment
This work was supported by the PERCCOM programme and Erasmus+ programme.
I would like to express my gratitude to my supervisors Colin Pattinson and Ah-Lian Kor for the
useful comments, remarks and engagement through the learning process of this master thesis.

5

Contents

1. Introduction ... 7
1.1. Aim and Research Objectives .. 9
1.2. Contributions .. 9
1.3. Dissertation structure ..10
2. Related Work ...11
2.1. Tools ...11
2.2. Overall consumption ...11
2.3. Cloud services ..13
2.4. Network measurements ..13
3. Methodology ..18
3.1. Application Development Tools ...18
3.1.1. Visual Studio 2013 ...18
3.1.2. Windows Phone Application Analysis ..20
3.1.3. Microsoft Expression Design 4 ...22
3.2. Experimental approach ...22
3.2.1. Experiment components ..23
3.2.2. Hypotheses ..25
3.2.3. Experiment template ..27
3.2.4. Experiment configurations..28
3.2.5. Experiment description ..29
3.2.6. Elements used in experiments ...30
4. Results ...38
5. Conclusions ...45
References ...47
Appendix ...53
Appendix 1. Experiment 1 – Background color ..53
Appendix 2. Experiment 2 – Image format (JPG vs PNG)..56
Appendix 3. Experiment 3 – Visual object storing ..59
Appendix 4. Experiment 4 – Decoding threads ..62
Appendix 5. Experiment 5 – Animated vs Static object ..66
Appendix 6. Experiment 6 – Image decoding...69
Appendix 7. Experiment 7 – Image loading ...73
6

Appendix 8. Experiment 8 – Control hiding ..77
Appendix 9. Experiment 9 – ProgressBar consumption ...80
Appendix 10. Experiment 10 – List control ...83
Appendix 11. Experiment 11- Build type property ..86
Appendix 12. Experiment 12 – Image format ...90
Appendix 13. Experiment 13 – Loop instructions ...94
Appendix 14. Experiment 14 – Threads ...96
Appendix 15. Experiment 15 – Method for data loading ...99
Appendix 16. Experiment 16 – Function type... 103
Appendix 17. Experiment 17 – StackPanel control .. 106
Appendix 18. Experiment 18 – Assemblies .. 109
Appendix 19. Experiment 19 – Animations .. 113
Appendix 20. Experiment 20 – Storing images .. 116
Appendix 21. Experiment 21 – Playing videos ... 119
Appendix 22. Experiment 22 – Playing audio files ... 121
Appendix 23. Experiment 23 – Image format (JPG vs PNG) in clouds 124
Appendix 24. Experiment 24 – Images – multiple access .. 128
Appendix 25. Experiment 25 – Heavy processing operations .. 131

7

1. Introduction

In recent years, the smartphones market had a significant boost. According to eMarketer, the
number of smartphone users has grown from 1.13 billion in 2012 to 2.03 billion in 2015
(Emarketer.com, 2015). This ascending trend has determined the same publication to predict that
the number of smartphone users will be around 2.5 billion in 2017. This means that around 30%
from the world’s population will own such a device. The main producers of smartphones in the
last quarter of 2014, according to International Data Corporation (IDC) (www.idc.com, 2015) are:
Samsung with 19.9% of the market, Apple with 19.7%, Lenovo with 6.5%, Huawei with 6.3% and
Xiaomi with 4.4%. There are two dominant operating systems that run on these smartphones: iOS
and Android. According to the same source, in the last quarter of 2014 the percentage of
smartphones which support Android was 76.6%, while the smartphones which support iOS
represent only 19.7%. The rest of 3.7% is split between Windows Phone operating system with
2.8%, BlackBerry operating system with 0.4% and others operating systems.
Although the difference between the first two operating systems and the rest is large, in the future
these statistics will change. Staistica portal predicts that operating system market in 2017 will look
like this: the Android market will decrease to a value around 68.3%, the iOS market will decrease
to a value around 17.9% and the Windows Phone market will increase up to 10.2%. These data
suggest the fact that Windows Phone operating system is in continual development and in the
future it can be a competitor for Android and iOS operating systems.

Chart 1 Operating systems distribution
0
20
40
60
80
100
Android iOS Windows Phone
2014 2017
8

According to Statistica portal in October 2014 (www.statistica.com, 2014) there were a number of
1.3 million applications in App Store, 1.3 million applications in Google Play and only around
300.000 applications in Windows Store. TheNextWeb.com presents an article (Protalinski, 2014)
in which a spokesperson from Microsoft confirms that the number of application from Windows
Store reached 300.000 in June 2014 and the fact that “in the past year alone the Windows and
Windows Phone app catalog has grown 94%, while the number of active developers has grown by
50%.”. According to newest statistics from Microsoft (news.microsoft.com, 2015), in March 2015,
there was a number of 585.000 applications in Windows Store. It can be noticed that the increasing
rate of applications’ development is very high, promoting Windows Store to become a competitor
for App Store and Google Play. This is the reason for the objective of this thesis: to analyze in
details the concepts and controls used by the developers of Windows Phone.
According to Smart2020 report (Webb, 2008) the information technology and communication
(ICT) consumes around 2% of the world’s energy. This number can be compared to the total
energy consumed by airline industry. The mobile phones will represent in 2020 1% from the ICT
footprint and the mobile network will represent 13%. It is very difficult to calculate very precise
the energy consumed by a smartphone, because this is not only an object used for communication.
When a user charges his phone every day or maybe two times per day the total amount of energy
consumed by a smartphone will become considerable. Another important factor that should be
considered when the energy consumption is calculated, is the whole internet infrastructure.
Nowadays the data generated by smartphones transferred across the internet is significant and it
grows continually, because the number of users that access the internet through a smartphone is in
an upward trend. According to (Spectrum.ieee.org, 2015), the total amount of energy used by a
smartphone in a year is bigger than the amount of energy consumed by two new Energy Star
refrigerators in the same time frame. The smartphone’s energy consumption is the second reason
of this research.
A smartphone’s battery is discharged by the applications that are used every day by the user. As it
was mentioned before, the number of applications from stores is growing really fast and if
developers neglect to optimize the battery consumption, the effect will be seen in the total energy
consumption. The objective of this thesis is to compare concepts and controls that are used for
developing Windows Phone applications, and to establish a set of rules that can be used by any
9

developer that wants an energy efficiency application. There will be a predefined number of rules
that will be tested and which will cover the UI part, the processing part and the network part.
1.1. Aim and Research Objectives

The goal of this research is to create a set of 25 evidence-based rules that aim to improve the
energy consumption of mobile phone applications. The following research objectives will help
achieve this aim:
 Research Objective 1: Create a set of 25 hypotheses (tabulated in Table 2) relating to the
front-end, back-end and web services of mobile phone applications.
 Research Objective 2: Write two applications for each hypothesis.
 Research Objective 3: Collect data, analyze and evaluate the energy consumption of each
application.
 Research Objective 4: Evaluate the hypotheses tabulated in Table 2 based on findings in
Research Objective 3.

1.2. Contributions

This thesis makes the following contribution:
- It investigates the energy consumption of Nokia smartphones running on Windows
Phone 8.1 operating system.
- It investigates the energy consumption of specific Windows Phone controls.
- It investigates the energy consumption of specific programming concepts.
- It provides a set of rules, which will optimize the energy consumption of a mobile
application.

10

1.3. Dissertation structure

This thesis has the following structure:
- Chapter 2 will present some researches that are related to the current one;
- Chapter 3 will discuss the methodology used for obtaining the results, the tools that
were used and the concepts that were tested;
- Chapter 4 will contain a brief overview of each experiment and a general discussion
about all the experiments;
- Chapter 5 will included the conclusions of this thesis and the future work;
- Appendix presents each experiment in details.

11

2. Related Work

The previous chapter introduces the topic of this thesis: an analysis of the energy consumption of
different controls offered by Windows Phone SDK combined with different concepts used in
programming. Smartphones’ energy efficiency is a new research domain and it is growing in
parallel with the development of the smartphones. Nowadays there are many components like
processor or screen that can be optimized, but the battery is not one of them yet. This is why it is
very important to have control over the battery and to know exactly which part of the application
consumes more energy and why.
Related studies with the current paper are in the following directions: tools that measure energy
consumption, comparisons between different network types, cloud services, and an overview
analysis of an application.

2.1. Tools

The tool described in (Pathak, Hu and Zhang, 2102) shows how can be implemented a software
that measure the energy consumption of an application. They validated this tool by analyzing the
energy consumption of ten popular applications stored in Google Play, including Angry Birds,
Facebook and Android browser. Their analyze shows that third-party advertisement module
consumes between 65% and 75% of the total energy, the clean termination of long lived TCP
sockets consume between 10% and 50% of the total energy, tracking user data consumes between
20% and 30% and the processing algorithms consume between 10% and 30% of the total energy.
Another tool used for measuring the energy is called eLens (Hao et al., 2013) and combines
program analysis and per-instruction energy modeling. In the same category it can be placed the
tool called DevScope and described in (Jung et al., 2012).
2.2. Overall consumption

Measuring the energy consumption of an application can be done in two ways: using a multimeter
or using a software. The first method is difficult implement and is not specific. Using the second
approach, the paper (Corral et al., 2013) presents an overview of energy consumption for a mobile
12

application. The objective of this paper is to stress different components of a smartphone and to
see the amount of energy consumed. For this experiment were used three smartphones: HTC Nexus
One cell phone, with Android 2.3.7, powered by a Li-Ion 1400 milliampere-hour (mAh) battery,
Samsung Galaxy cell phone, with Android 4.0.4, powered by a Li-Ion 1750 mAh battery and
Nexus 7 tablet, operated by Android 4.2.1, powered by a Li-Ion 4325 mAh battery. The results of
this study are presented in Figure 1.

Figure 1 Percentage of battery discharged in 2 hours. (Corral et al., 2013)
A similar study was made in (Xia et al.,2013) for an iMate KJam smartphone and the results are
the following ones: CPU - 35%, GSM - 25%, Wi-Fi – 25%, Backlight – 3%, Bluetooth – 7% and
other – 5%. In (Chen et al., 2013) is presented a detailed study on the energy consumed by the
display in different applications for Android Operating System.
Study (Carroll and Heister,2010) tries to measure the energy consumption of a mobile application
by taking physical power measurements at the component level on a piece of real hardware. For
this they used a Samsung S3 mobile phone. They took these measurements for different scenarios
and the results obtained are the following:
- For audio playback: 58% of the power is consumed by the codec and 42% consumed
by amplifier;
- For video playback: the CPU is the biggest single consumer of power;
- For text messaging: the power is consumed mostly by the display components;
- For a phone call: the GSM consumes the most part of the energy;
- For e-mailing: the GSM is the main energy consumer;
- For web browsing: most of the energy is consumed by GPRS.
13

Another approach in measuring the energy consumption is to measure each function in the
application. This approach is presented in (Hahnel et al., 2012) using Running Average Power
Limit and HAECER (Highly-Adaptive Energy-Efficient Systems – Energy Reader).

2.3. Cloud services

In this paper (Namboodiri and Ghose, 2012) there is an analysis of energy consumption for cloud
and non-cloud services. For this experiment they used a HTC Desire smartphone with Android 2.1
operating system. They compared three types of applications: documents, video and chees,
revealing the following conclusions: the cloud services are energy efficient for applications that
are computation intensive only if they run locally and energy inefficient if the applications are
computation intensive regardless where they run. A graphical representation of these results can
be seen in Figure 2.

Figure 2 Battery capacity over time while composing a document, playing video files or games on a mobile phone (Namboodiri
and Ghose, 2012)

2.4. Network measurements

This study (Metri et al., 2012) tests different aspects for an iPhone and for an Android phone. The
tests that were made are presented in Figure 5. These tests show that, for both iPhone and Samsung,
a Wi-Fi network consumes less energy than a 3G network. A detailed description of the iPhone’s
energy consumption can be found in Figure 3 and Figure 4.
14

Figure 3 Energy usage of iPhone using Wi-Fi (Metri et al., 2012)

Figure 4 Energy usage of iPhone using 3G (Metri et al., 2012)

Figure 5 Types of test (Metri et al., 2012)
This study (Wilke et al., 2013) measures the energy consumption of e-mailing and web browsing
in different conditions. For e-mailing the following test cases are taken into consideration: setup
mail account, drop mail account, check for mails, read, write, forward and delete mails. Each action
which is related to e-mails was tested in the following conditions: a long email, a short email, a
15

mail with a picture attached, with a text file attached and with an audio file attached. The
applications tested are K9, MailDroid and MailDroidPro. The results of the tests are presented in
Figure 6. In the second case, web browsing, the following situations were considered: open a web
page, open an image, download a file, and performing a web search. All of these actions were
made using three applications: Easy browser, NineSky browser and Droid Surfing, and the result
are presented in Figure 7.

Figure 6 Median energy consumption for Android email clients (Wilke et al., 2013)

Figure 7 Median energy consumption for Android web browsers (Wilke et al., 2013)

The last study (Andreucetti et al., 2014) analyses the energy consumption of Wi-Fi network and
3G network using a Samsung Galaxy phone which runs Android 2.3.3 operating system. The tests
that were performed are presented in Figure 8 and the results of the study in Figure 9.
16

Figure 8 Details of the tests (Andreucetti et al., 2014)

Figure 9 Results of the tests (Andreucetti et al., 2014)
This chapter presents some studies that are related to the current research. The findings presented
in this paper can be compared to similar results, presented in this chapter. It can be noticed that
most of the studies focus on the hardware components or on the network. The software component
is not analyzed in detail in none of the papers. All of the studies are platform independent, so they
can be made for Android, iOS or Windows Phone. For example, one study presents the energy
consumption of a display in general but not the factors that influence this consumption. The current
research comes to complete these studies. It tries to go one layer deeper and to analyze different
factors that can influence the energy consumption of a mobile application. From (Corral et al.,
2013) it is known the fact that the display component is one of the component that consumes most
energy in an application. What is not known is why this phenomenon and how to improve the
energy consumption. The purpose of this paper is to identify a part of the elements that consumes
17

most of the energy and to come with solutions for each element. The following chapter will
describe the methodology used and the hypotheses that are be tested in this thesis.
 From the researcher’s knowledge, there is no existing published results on the impact of
the various components in a mobile application (front-end; back-end; web service) and the
battery/energy consumption. There are some recommendations related to the performance
optimization (Blogs.msdn.com, 2015) and (Msdn.microsoft.com, 2015) but little on energy
efficient/battery friendly application development. However, some of the existing work relates to:
energy efficient mobile applications assistance (Kelenyi et al., 2014), energy-efficient mobile
techniques (Siebra et al., 2012) and energy consumption estimation (Hao et al., 2013).

18

3. Methodology

In this chapter the method used for completing our research will be discussed. As it was already
mentioned in the Chapter 1, the purpose of this research is to provide a set of rules that can be used
by developers in order to obtain mobile applications that consume less energy. Nowadays, there
are a lot of operating systems for smartphones, such as: Android, iOS, Windows Phone or Jolla.
Each of these operating systems has many particularities, so it is very difficult to obtain a set of
rules that can be applied to all operating systems. This master thesis focuses only on one specific
operating system, Windows Phone 8.1, a product of Microsoft Company released in April 2014.
3.1. Application Development Tools

For the development of this master thesis three tools were used: Visual Studio 2013, Windows
Phone Application Analysis and Microsoft Expression Design.

3.1.1. Visual Studio 2013

 The development of the applications for Windows Phone 8.1 can be made using Microsoft Visual
Studio 2013. This software is an IDE (integrated development environment) from Microsoft. It
can be used for developing desktop applications, web sites, web services, Windows applications
and mobile applications. As programming languages, Microsoft Visual Studio 2013 includes C,
C++, VB .NET (Visual Basic), C# and F#. First version of Visual Studio was released in 1995 and
the latest version, Visual Studio 2015, was announced in 2014. Besides Visual Studio, another tool
is required in the development process: Windows Phone 8.1 SDK. This tool installs everything
that is necessary for developing and testing Windows Phone applications. For the UI part, each
application can be opened in Microsoft Blend, which is a specialized tool in UI design. Figure 10
presents a basic Windows Phone application open in Visual Studio 2012:
19

Figure 10 Visual Studio 2012 for Windows Phone (Msdn.microsoft.com, 2015)
The main components (Msdn.microsoft.com, 2015) that can be found in Visual Studio for
Windows Phone are:
- Toolbox - contains a list with all the controls that can be found in the basic
installation. Extra components can be added to the project if they are referenced
from the solution and from the current page.
- Design View – shows the design of the application. The controls from Toolbox
can be dragged directly to the design view and the XAML code will be
automatically updated.
- XAML View – shows the code that is generated for the interface. After each
modification the Design view part will be refreshed.
20

- Properties Windows – offers the possibility to see and to modify the properties
of different controls or files.
- Solution Explored – shows all the projects and files that are included in the
current solution, in a hierarchical way.
- Target Device – offers the possibility to choose the device on which the
application will run. This device can be a virtual emulator or a real device. The
virtual emulator it is a desktop application that offers the possibility to simulate
a real environment for an application. The emulator is configurable and can
simulate any real device, in terms of hardware and software components.
3.1.2. Windows Phone Application Analysis

Another tool that is really useful is Windows Phone Application Analysis tool. This tool is used
for monitoring and profiling an application:
- Profiling – evaluate either execution-related or memory-usage aspects of a
mobile application.
- Monitoring – evaluate the behavior of the application.
The interface of this tool looks like in Figure 11:

Figure 11 Windows Phone Application Analysis tool interface
21

The output generated by this tool can be general or in detail. The general output is a summary of
all parameters that are measured while the detailed output contains graphs that present the
application during the execution time.

Figure 12Windows Phone Application Analysis tool – general output
22

Figure 13 Windows Phone Application Analysis tool - detailed output

3.1.3. Microsoft Expression Design 4

The last tool used for this thesis is Microsoft Expression Design 4, which is specialized in graphic
design. It is used for complex objects that can be exported in different formats, like: XAML format
or PNG format.
3.2. Experimental approach

The set of rules that are obtained is based on some common concepts that are used in programming
or on the improvements that Microsoft brought into Windows Phone SDK. Oren Nachman,
developer for Microsoft, said in one of his talks called “Windows Phone 8: Performance and
Optimization for Developers” (Channel 9, 2012) that the performance of an application can be
measured in “feelings”. This means that a user who uses an application feels that the application
is fast, that every action is processed immediately, that scrolling through pictures will not block
the application and that navigating through pages is really smooth. This is the reason developers
23

are focusing a lot on these aspects and try to optimize them. Also, the tools that are used by
developers offer new controls that should be faster, more responsive and consume less memory.
One aspect that is not always taken into consideration when a mobile application or a new control
is developed is the battery consumption. There are two reasons for the importance of battery
consumption: first reason is the time a user can spend in front of his/her device, while the second
reason is the energy that is consumed by the device. Consequently, we propose to analyze some
of these controls and concepts from energy point of view and see if they have a better consumption
or not.
The method chosen for this research is an experimental method. According to Oxford dictionary
an experiment is “a scientific procedure undertaken to make a discovery, test a hypothesis or
demonstrates a known fact”. This method is the most suitable for our research because at the
moment there can be made only assumptions whether the new controls are more efficient than the
old ones, or whether one concept is more efficient than another one.
3.2.1. Experiment components

The main criterion that is applied in the selection of the elements, which is part in the experiments,
is the diversity. It is very important to have at least one element from each component of a mobile
application tested.
The basic structure of a mobile application contains three components:
- Frontend component or the User Interface – it refers to the controls that are displayed to
the user.
- Backend component – it refers to all the processing made by an application: data
processing, command handlers and services connections.
- Web services component – it refers to all the services that are stored on servers, and which
expose the Create/Read/Update/Delete functionality.
Accordingly, we can group the elements enumerated above in the following three groups:
Frontend
components
VirtualizedStackPanel, StackPanel, ListBox,
LongListSelector, ProgressBar, Opacity, Visibility,
24

Storyboard, Image background creation, background
property
Backend
components
Assembly, recursive function, iterative function, page
constructor, onNavigatedTo event, Thread, multithread, for,
while, base64 string format, Image build action,
synchronous loading, asynchronous loading, image
decoding, image format
Web Services
components
Clouds
 Table 1 Elements
The next step in writing the hypothesis is to group all these elements based on their functionality.
We will choose similar concepts and based on them we will formulate one hypothesis for each
group. The output of the grouping operation is the following one:
- Frontend components:
o Group 1: Background property
o Group 2: StackPanel and VirtualizationStackPanel
o Group 3: LongListSelector and ListBox
o Group 4: ProgressBar: Indeterminate Progress bar and Determinate Progress Bar
o Group 5: Visibility property and opacity property
o Group 6: Storyboard
o Group 7: PNG and JPG file format
o Group 8: Image creation
o Group 9: Storyboard and image
o Group 10: XAML representation and image representation
- Backend components:
o Group 11 : base 64 representation and image representation
o Group 12: For and While instructions
o Group 13: Assemblies
o Group 14: OnNavigatedTo and page constructor
o Group 15: Single threading and multi-threading
o Group 16: Iterative and recursive
25

o Group 17: Image build action
o Group 18: Image decoding
o Group 19: Synchronous loading and Asynchronous loading
- Web Services Components
o Group 20: Image stored in clouds and image stored locally
o Group 21: Video stored in clouds and video stored locally
o Group 22: Audio file stored in clouds and audio file stored locally
o Group 23: Image format in clouds
o Group 24: Image downloading and image accessing in clouds
o Group 25: Processing locally and processing in clouds
3.2.2. Hypotheses

After having decided the use of experiments in our research, the next step is to identify the
hypothesis. Due to the fact that the controls and concepts that we want to test, are used in different
contexts, it is impossible to have only one hypothesis. For this reason, we have grouped our
components based on their functionality and formulate a hypothesis for each group. Based on these
groups we are able to obtain a number of 25 hypothesis which are tested and discussed in this
thesis. The hypotheses are presented in Table 2:
 Hypotheses
1. The darker colors used as background for a mobile application consume less
energy than the brighter ones.
2. A JPG file format consumes less energy than a PNG file format in a mobile
application.
3. Storing a visual object as image consumes less energy than storing the same
object as XAML.
4. Using background threads consumes less energy than using the UI thread.

5. A static object consumes less energy than an animated object.

6. Using image decoder to size consumes less energy than using the default
decoder.

7. Using asynchronous methods consumes less energy than using synchronous
methods.
8. Using “Visibility” property consumes less energy than using “Opacity”
property.
26

9. Using a determinate progress bar consumes less energy than using an
indeterminate progress bar.
10. Using a “LongListSelector” control consumes less energy than using a
“ListBox” control.
11. Setting “Build type” property to “Resource” for an image, consumes less
energy than setting the same property to “Content”.
12. Storing a set of images in JPG format consumes less energy than storing the
same images as base64 format.
13. A “for” loop consumes less energy than a “while” loop.

14. Using several threads to complete an operation consume less energy than using
one thread to complete the same operation.
15. Executing a heavy processing operation in constructor consumes less energy
than executing the same operation in “OnNavigateTo” event.
16. Using an iterative function consumes less energy than using a recursive
function.

17. Using a “StackPanel” control consumes less energy than using a
“VirtualizingStackPanel” control.
18. Using one assembly, for storing the resources, consumes less energy than using
several assemblies.
19. An animated object that is created in the XAML file consumes less energy than
an animated object that is created in procedural code.
20. An image stored locally consumes less energy than an image stored in the
clouds.

21. A video file stored locally consumes less energy than an image stored in the
clouds.

22. An audio file stored locally consumes less energy than an image stored in the
clouds.
23. A JPG file format stored in clouds consumes less energy than a PNG file format
stored in clouds.
24. Downloading an image and access it locally consumes less energy than
accessing the picture multiple times in clouds.
25. Processing an operation locally consumes less energy than processing the same
operation in clouds.
Table 2 Hypotheses
For each of these experiments, one or two applications are created and executed. These
applications are executed several times and an average value is shown as the final result. For
collecting the results we use Windows Phone Application Analysis software. The data that are
collected are: battery charge remaining, the execution time and the battery consumption. After we
27

obtain the battery consumption, we transform it into energy consumption. For this transformation
we use the following formula:
E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we assume 3.7 Volts
as the voltage for Nokia Lumia 1320 which is used throughout the experiments.
3.2.3. Experiment template
Having all of these data for one experiment, we fill the following experiment template, which is
used for all the experiments:
Experiment number x
Aim: This section contains the aim of the experiment.
Equipment: This section contains the required equipment.
Experiment procedure: This section contains the steps that are required in order to complete the
experiment. One or several snapshots of the applications will be included in this part.
Results: This section contains the results of the experiment. The results section contains a table
that contains the numerical results and two or several charts that will illustrate the battery
consumption for each option that is tested.
Example:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(Wh)
Option 1 x x x x

Option 2 x x x x

Table 3 Results table
28

Figure 14 Chart 1

Figure 15 Chart 2

Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table 4 Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table 5 Axis description
Conclusions: This section contains the conclusions of the experiment.

3.2.4. Experiment configurations
The experiments that are proposed for this thesis are device dependent. This means that the
collected results are specific for a device. However, the rule abstracted are generalizable. The
configurations that are used for the experiments can be found in the following table:
Property Value
29

Battery voltage 3.8V
Nominal voltage 3.7V
Battery type BV-4BW
Emulator type 720p
Emulator resolution 1280x720
Brightness 100%
Table 6 Device configuration
As it can be noticed in the above table, the only dependencies are related to the battery and screen
resolution. This means that we should obtain some numbers for a specific emulator but the rules
that will be obtained can be applied to any device. This phenomenon appears because we measure
three threads: UI thread, application thread and network thread. The only difference in numbers is
for the UI thread that is dependent on the resolution screen. The battery properties are important
for the transformation of battery consumption in energy consumption. Since the battery is the same
type for a specific device it does not influence the final result.
3.2.5. Experiment description
Once we have grouped the elements, formulated the hypothesis and defined all the elements that
are dependent on the device, the next step is to write one or several applications for each
experiment and to obtain the results. A detailed description of each experiment can be found in the
Appendix of this thesis. The experiments are grouped into categories shown in Table 7.
Experiment Appendix
Experiment 1 – Background Color Appendix 1
Experiment 2 – Image format (JPG vs PNG) Appendix 2
Experiment 3 - Visual object storing Appendix 3
Experiment 4 – Decoding threads Appendix 4
Experiment 5 – Animated vs static object Appendix 5
Experiment 6 – Image decoding Appendix 6
Experiment 7 – Image loading Appendix 7
Experiment 8 – Control hiding Appendix 8
30

Experiment 9 – ProgressBar consumption Appendix 9
Experiment 10 – List control Appendix 10
Experiment 11 – Build type property Appendix 11
Experiment 12 – Image format Appendix 12
Experiment 13 – Loop instructions Appendix 13
Experiment 14 - Threads Appendix 14
Experiment 15 - Method for data loading Appendix 15
Experiment 16 – Function type Appendix 16
Experiment 17 – StackPanel control Appendix 17
Experiment 18 - Assemblies Appendix 18
Experiment 19 - Animations Appendix 19
Experiment 20 – Storing images Appendix 20
Experiment 21 – Playing videos Appendix 21
Experiment 22 – Playing audio files Appendix 22
Experiment 23 – Image format (JPG vs PNG) in
clouds
Appendix 23
Experiment 24 – Images – Multiple access Appendix 24
Experiment 25 – Heavy processing operations Appendix 25
Table 7 Name of the experiment and related annex
3.2.6. Elements used in experiments

The controls and concepts that were tested are the following ones:
3.2.6.1. Frontend

- Background property (Msdn.microsoft.com, 2015): This property is used for setting or
getting a brush that is used for the background of a control. The brush object can have
different types of output: SolidColorBrush which fills the area with a solid color,
LinearGradientBrush which fills the area with a linear gradient, RadialGradientBrush
which fills the area with a radial gradient, ImageBrush that fills the area with an image,
DrawingBrush which fills the area with a drawing (vector or bitmap objects) and
VisualBrush which fills the area with a visual object.
31

- Image background creation (Blogs.msdn.com, 2015): In the usual way, the decoding of
an image is made by the UI thread. There is one property for the “Image” control that
moves the decoding to a different thread. The property is called “CreateOptions” and its
value has to be set to “BackgroundCreation”. Below, there is an example of how to use this
property:

- Storyboard (Msdn.microsoft.com, 2015): A storyboard is a container that is used for
animated objects. A storyboard is applied to the properties of an object, like color, width
or height. For these properties we set the initial value, the final value and the period of time
that is required for this transaction. This control offers the possibility to start, pause, stop
and seek. The following piece of code shows how a storyboards is declared:

- Visibility property (Msdn.microsoft.com, 2015): This property can be applied to any
control and has as effect the hiding of the control. There are two possible values: Visible,
which means that the control will be visible and Collapsed, which means that the control
is not visible. When the value is changed from Visible to Collapsed means the object is not
kept in memory anymore, cannot trigger any event and any processing related to the control
is impossible. When the value is changed from Collapsed to Visible it means that the
control will be redrawn. The value of this property can be set in the XAML page:
, or in the backend code:

32

- Opacity property (Msdn.microsoft.com, 2015): As the visibility property, opacity is also
used for making controls visible or invisible. It can take values from 0, which means
invisible, to 1, which means visible. When the value of this property is set to 0, an image
of the control is saved in the memory and it does not have to be redrawn when the property
will be set to a value different than 0. Even with opacity set to 0 a control can participate
into events and it is possible to process the content of the element. The value of this
property can be set in the XAML page: , or in the
backend code:
- ProgressBar (Msdn.microsoft.com, 2015): is a control that is used for showing the
progress of an operation. There are two types of ProgressBar: determinate, which is used
when the total amount of time/work is known and it is displayed as a solid bar that moves
from left to right, and indeterminate, which is used when the duration of an operation is
unknown. In the second case there are three animated dots that move from left to right and
have a repetitive behavior until the operation is done. The following examples show how
to declare a determinate and an indeterminate ProgressBar:

- ListBox (Msdn.microsoft.com, 2015): This control is used for displaying a collection of
items vertically. Usually it has a fixed dimension, which is set by the developer, and allows
the scrolling through the elements. There are two properties that can be used for setting its
content: Items and ItemsSource.

- LongListSelector (Msdn.microsoft.com, 2015): This is a new control that was introduced
for the first time in Windows Phone 8.0 SDK. It is similar with the ListBox control but
comes with some new features, like grouping and searching. It also offer more templates
which can be used in displaying data.

- StackPanel control (Msdn.microsoft.com, 2015): A StackPanel control is a collection of
other UI controls. All of the controls will be the control children’s. All the elements which
are inside the StackPanel will be created when the page is called.
33

- VirtualizedStackPanel control (Msdn.microsoft.com, 2015): A VirtualizedStackPanel
control has the same properties as the StackPanel. The difference between it and the
StackPanel control is the fact that the elements inside a VirtualizedStackPanel control will
not be created if they are not visible to user. All of these elements will be loaded only when
the user scrolls through the application and become visible. Also a VirtualizedStackPanel
can be placed only inside an ItemsControl element.

3.2.6.2. Backend:

- File format: This concept refers to the way in which information is encoded in a file. There
are two roles a file format has: first role is to specify if the file is binary, or ASCII file,
while the second role to is to specify how the information is organized. In our research we
will work with three formats:
o PNG (W3.org, 2015): A PNG file format is a lossless compression file format
transmitted across the internet. It supports indexed-color, grayscale and true color
images.
o JPG (Whatis.techtarget.com, 2015): The JPG file format was specially created
for storing photographic images and it is a lossy compressed file format. A JPG file
includes a sequence of segments and each of this segment begins with a marker.
The marker begins with a 0xFF byte followed by a byte that indicates the type of
the marker.
o XAML (Msdn.microsoft.com, 2015): The XAML extension was developed by
Microsoft and it is a XML-based markup language. It is included in Windows
Phone applications, Silverlight applications and Windows Presentation Foundation.
The purpose of this format is to create user interfaces and includes elements as:
text, images, shapes, animations or grids. The code that is used by the XAML file
is stored in the same file but with an extra extension: .cs.
34

- Image decoder to size (Msdn.microsoft.com, 2015): By default, an image is decoded in
its natural resolution. Many times an application needs an image in a custom resolution.
This can be realized specifying in the decoding instruction the width and height that are
desired:
image.Source = PictureDecoder.DecodeJpeg(jpgStream, 194, 256);
- Synchronous loading: Loading images using a synchronous method means the UI thread
will take care of all operations that are required for decoding, resizing and displaying the
picture. The following instruction is used for this approach:
BitmapImage.SetSource(Stream); (the image is loaded from stream)
- Asynchronous loading: Loading the images using an asynchronous method means the UI
thread will take care of the decoding while the other operations related to image processing
are realized in a separate thread. The following instruction is used for this approach:
BitmapImage.UirSource = urisource; (the image is loaded via URI)
- Image build action (Developers.de, 2015): This property of an image refers to the way in
which an image will be stored when the application is deployed. There are two possible
values:
35

Figure 17 The representation in base64 string format
o Resource: When this value is used, it means that the picture is stored in the
assembly file. When this picture is used in the application as source, it will be
referenced as:

o Content: This value is used if a developer wants to store the image along the
application file (XAP).

- Base64 string format: Base64 is an encoding scheme that transforms binary data to base
64 representation. “…is design to represent arbitrary sequence of octets in a form that
allows the use of both upper- and lowercase letters but that need not be human readable”
(Tools.ietf.org, 2015). This encoding scheme can be also applied to images. Below, there
are representation of an image in base64 format and in PNG representation.

Figure 16 The representation in PNG format

- For instruction (Msdn.microsoft.com, 2015): A “for” loop runs a block of instructions
repetitively until it meets a certain condition that is set to “false”. It is usually used for
iterating collections.

- While instruction (Msdn.microsoft.com, 2015): A while instruction runs a block of
instructions repetitively until it meets a certain condition set to “false”.

- Thread: A thread is a concurrent execution of a block of instructions. This means that the
instructions are executed from the first instruction to the last one and the nth instruction will
not be executed until the n-1th instruction is completed.
36

- Multithreading: In a multithreading application there are several threads defined and each
of them will execute a specific block of instruction. This means that the instructions are
executed in parallel, and one instruction does not have to wait until another one finishes its
execution.

Figure 18 Thread concept
- OnNavigatedTo method (Msdn.microsoft.com, 2015): This method is the first method
that is called after a page becomes active. If the page is called multiple times, this method
is called every time. This method has to be overridden when a developer wants to place
some code in it. Below, there is an example of how to override this method:

- Page constructor: The constructor initializes a new instance of the page and it is the first
method, which is called a page that is requested. Usually all the components are initialized
in this method. The classic declaration of a constructor looks like:

- Recursive function: Any function that calls itself, it is called a recursive function. Its
working principle is to split a problem into smaller programs and in the end the results to
be combined. There are numerous examples of problems that can be solved using a
37

recursive way, like Fibonacci number or factorial number. In each recursive function, an
“If –else “condition has to be found.
- Iterative function: Any function that does not call itself is called an iterative function. In
this function, there can be calls to other functions and any other instructions.
- Assembly: An assembly is a code library that is used for deployment. It is defined by
Microsoft and it is available in the latest developed technologies. One assembly can contain
one or more files that are executed by the .NET runtime environment.
3.2.6.3. Network

- Clouds: “Clouds computing is a general term for the delivery of hosted services over the
internet” (SearchCloudComputing, 2015). This allows to the user to store files, to expose
some services, to store important data or to publish applications that can be used by any
other user. According to the same source there are three types of clouds: private, public
and hybrid.
The following chapter will contain the obtained results and a discussion regarding these results for
each experiment.

38

4. Results

This chapter will present the results that are obtained from the execution of the experiments. For
each experiment there are two types of output: first output is a table which presents the duration
of the experiment, the battery consumption, the energy consumption and an estimated value of the
remaining battery life. The second output is a graph, which presents the distribution of battery
consumption based on the main threads: UI thread, application thread and network thread. In order
to obtain a result, several executions of the same experiment were made. This chapter will present
the results, in the form of a table, for each experiment and a discussion regarding the expected
results compared to the actual results. Each experiment is presented in detail in Appendix. As a
consequence, in this chapter it will present only the results of the experiments. Table 7, in Chapter
3, presents the appendix that corresponds to each experiment.
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Black 23.36 0.56 17.52 0.002072
Purple 24.42 0.82 12.48 0.003034
Red 24.36 0.87 11.62 0.003219
Pink 22.16 1.27 7.26 0.004699
White 21.06 1.37 6.39 0.005069
Dark Blue 22.16 0.69 13.33 0.002553
Table 8 Experiment 1 - Background color - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
JPG format 10.53 0.29 15.07 0.001073
PNG format 10.58 0.29 15.02 0.001073
Table 9 Experiment 2 - Image format - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
XAML format 10.50 0.28 15.90 0.001036
PNG format 10.34 0.25 16.41 0.000925
Table 10 Experiment 3 - Visual object storing - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Background
thread
33.49 1.27 10.96 0.004699

UI thread 34.19 1.38 10.37 0.005106

Table 11 Experiment 4 - Decoding threads - energy consumption
39

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Animated 20.56 0.56 15.63 0.002072
Static 20.12 0.45 18.69 0.001665
Table 12 Experiment 5 - Animated and static object - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Decoder to size 11.30 0.29 16.14 0.001073

Default decoder 11.57 0.31 15.79 0.001147

Table 13 Experiment 6 - Image decoding - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Synchronous 21.28 0.64 13.78 0.002368

Asynchronous 22.17 0.65 14.20 0.002405

Table 14 Experiment 7 -Image loading - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Visibility 20.71 1.26 6.83 0.004662

Opacity 20.63 1.33 6.44 0.004921

Table 15 Experiment 8 - Control hiding - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Determinate 15.68 0.37 17.57 0.001369

Indeterminate 15.46 0.42 15.24 0.001554

Table 16 Experiment 9 - ProgressBar - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
ListBox 20.64 1.08 7.99 0.003996

LongListSelector 20.68 1.09 7.84 0.004033

Table 17 Experiment 10 - List control - energy consumption

40

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Resource 22.03 0.65 14.09 0.002405

Content 22.35 0.66 14.13 0.002442

Table 18 Experiment 11 - Build type property - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
JPG 11.68 0.30 15.99 0.00111

Base64 11.30 0.30 15.90 0.00111

Table 19 Experiment 12 - Image format - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
For 21.67

0.56 16.10 0.002072

While 21.73 0.56 16.12 0.002072

Table 20 Experiment 13 - Loop instructions - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Single thread 53.33 1.98 11.23 0.007326

Multithread 52.32 1.26 16.58 0.004662

Table 21 Experiment 14 - Threads - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Constructor 32.14 1.19 11.25 0.004403

OnNavigateTo 31.78 1.18 11.18 0.004366

Table 22 Experiment 15 - Method for data loading - energy consumption

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Iterative 25.28 0.61 17.29 0.002257

Recursive 26.73 0.77 14.55 0.002849

Table 23 Experiment 16- Function type - energy consumption
41

 Time (s) Battery
consumption
(mAh)
Battery charge
remaining (h)
Energy
consumption
(Wh)
StackPanel
(without scrolling)
22.56 0.71 13.73 0.002627

VirtualizingStackPanel
(without scrolling)
20.57 0.55 17.72 0.002035

StackPanel
(with scrolling)
20.76 1.38 6.26 0.005106

VirtualizingStackPanel
(with scrolling)
20.85 1.31 6.64 0.004847

Table 24 Experiment 17 - StackPanel control - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
One assembly
(without
navigation)
22.46 0.46 18.59 0.001702

Two assemblies
(without
nagivation)
20.55 0.46 18.67 0.001702

One assembly
(with
navigation)
26.31 0.61 18.49 0.002257

Two assemblies
(with
navigation)
26.98 0.61 18.45 0.002257

Table 25 Experiment 18 - Assemblies - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
XAML 10.80 0.29 15.51 0.001073

Procedural code 10.51 0.29 15.30 0.001073

Table 26 Experiment 19 - Animations - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
From internet 21.96 0.92 10.00 0.003404

Stored locally 21.43 0.69 13.00 0.002553

Table 27 Experiment 20 - Storing images - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
From internet 45.57 1.80 10.72 0.00666

Stored locally 46.77 1.89 10.29 0.006993

42

Table 28 Experiment 21 - Playing video - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
From internet 93.32 2.38 16.35 0.008806

Stored locally 93.10 2.32 16.72 0.008584

Table 29 Experiment 22 - Playing audio files - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
JPG 21.01 0.74 11.90 0.002738

PNG 25.36 1.09 9.67 0.004033

Table 30 Experiment 23 - Image format in cloud - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Download and
display locally
31.19 1.02 12.74 0.003774

From the same
URL
31.28 0.96 13.54 0.003552

Table 31 Experiment 24 - Images - multiple access - energy consumption
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (Wh)
Cloud 42.34 1.73 10.23 0.006401

Locally 40.08 1.02 16.41 0.003774

Table 32 Experiment 25 - Heavy processing operation - energy consumption

This chapter presents the results of each experiment performed. It can be observed that in some
cases, there are big differences regarding the energy consumption between the concepts analyzed,
while in other cases the studied concepts consume the same amount of energy. For example, a case
where the difference is big is Experiment 1, where the difference between black color and white
color is 0.81 mAh or Experiment 14, where the difference between multithreading and single
thread is 0.72 mAh. In experiments like Experiment 2, Experiment 12, Experiment 13, Experiment
18, Experiment 19, there is the same amount of energy consumed by the concepts under
investigation. In the rest of the experiments it can be noted a difference in the total amount of
consumed energy. From the total number of 25 experiments, the assumed hypothesis is true in 14
cases. The hypothesis is not relevant in 5 experiments and it is false in 4 cases. Two hypotheses
43

are inconclusive. Table 27 presents a summary of the results obtained from these experiments (note
the third column is the energy efficiency rule).
Hypotheses Status Rule
Hypothesis no.1 Confirmed Use darker colors in Windows Phone applications
Hypothesis no.2 Not relevant The PNG or JPG file format does not influence the energy
consumption of a mobile application
Hypothesis no.3 Confirmed Use PNG format instead of XAML format for displaying
images
Hypothesis no.4 Confirmed Use “CreateOption” attribute for all the pictures
Hypothesis no.5 Confirmed Use static objects instead of animated ones as much as
possible
Hypothesis no.6 Confirmed Use decoder to size when the dimension of the image
control is known
Hypothesis no.7 Confirmed Use asynchronous loading for pictures
Hypothesis no.8 Confirmed Use Visibility property for hiding an object instead of
Opacity property
Hypothesis no.9 Confirmed Choose a determinate progress bar if the context allows
this
Hypothesis no.10 Rejected For the basic use of a list use a “ListBox” control
Hypothesis no.11 Confirmed Use “Resource” value when developing mobile
applications
Hypothesis no.12 Not relevant Either JPG format or Base64 format can be used for
displaying pictures
Hypothesis no.13 Not relevant Either “for” or “while” loop can be used in developing a
“green” application
Hypothesis no.14 Confirmed Use multi-threads in a mobile application
Hypothesis no.15 Rejected Use “OnNavigateTo” method for data initialization
Hypothesis no.16 Confirmed Use iterative functions instead of recursive ones
Hypothesis no.17 Rejected Use “VirtualizingStackPanel” inside “ItemsControls”
elements
44

Hypothesis no.18 Not relevant Either storing the resources in a different assembly or in
the same assembly, the energy consumption is the same
Hypothesis no.19 Not relevant An animated object can be created either in XAML file or
in procedural code
Hypothesis no.20 Confirmed User images stored locally
Hypothesis no.21 Inconclusive -
Hypothesis no.22 Inconclusive -
Hypothesis no.23 Confirmed Use JPG format if the picture are stored in clouds
Hypothesis no.24 Rejected Access the images directly from web service rather than
downloading them
Hypothesis no.25 Confirmed Process data locally
Table 33 Rules obtained after running the experiments
The next chapter will contain the conclusions of this dissertation and some aspects that could be
considered for future work in this domain.

45

5. Conclusions

Developing a mobile application has to be based on the user experience. Nowadays a user expects
an application that is fast and responds to any input. The battery consumption is another aspect
which is really important for a user, but which is associated most of the times with the phone and
not with an application. It is true that the energy consumption of an application is not the same for
two different mobile phones, but most of the energy consumption is application dependent. From
the comparative analysis in the experiments, we abstract rules relating to software energy
consumption, which are hardware independent. This study reveals the fact that there are some
concepts, such as single threading, which consume more energy than similar concepts which give
the same output. For a developer it is very important to choose the right approach in order to offer
the user the best experience when using an application. The second reason for this study is the
sustainability. Each experiment shows the energy consumed by each tested concept or control. The
value obtained can be used for calculating the total impact that an application can have on the
environment. This is an important aspect because nowadays ICT produces 2% from the total
energy consumed in the world. This percent will grow, because the ICT domain is in a continuous
development, so it is very important to reduce the energy in all the aspects. In Chapter 1, it presents
the trend of the mobile applications development. This trend is ascending and thousands of
applications are released every day. Not all the developers are aware of the impact that their
applications have on the environment. In this case, they will use a concept that is faster or a concept
that is known by them. That is why it is very important to offer them a “green” alternative when
they are making these decisions. If all the applications release from now on would follow some
“green” rules, the total impact on the world’s energy consumption would be totally different. In
the second case, there are developers that are aware of the environmental problems, but they do
not have the necessary time to investigate the energy consumption of each control that they use.
In this case it is important to have these rules, so they can use them in the development process.
There are studies conducted in this domain, but most of them are focused on Android phones or
on iOS phones. Windows Phone is not very popular at the moment, but, according to the sources
presented in Chapter 1, there will be an increase in the next years. One aspect that could be very
interesting to study is the energy consumption of each operating system and to see exactly the
differences between them. Another direction of further study can be in finding the relationship
46

between energy consumption and different hardware components on the same platform. For
example, it would be interesting to know the relationship between the energy consumption and the
size of the screen, or the screen type. This study could help the producers to choose the right
components for the future models of phones. The third direction of this work can be the
development of a mobile applications framework that use these rules. Even though in this thesis
there were developed some “green” rules for writing mobile phone applications it could be
interesting to investigate and develop small applications that can be integrated in the operating
system. An example of an application would be a “fade to dark” functionality.

47

References

Andreucetti, R., Chen, S., Yuan, Z. and Muntean, G. (2014). Smartphone energy consumption of
multimedia services in heterogeneous wireless networks. 2014 International Wireless
Communications and Mobile Computing Conference (IWCMC).
Blogs.msdn.com, (2015). Off-thread decoding of images on Mango, how it impacts your
application ? - Silverlight for Windows Phone Performance team blog - Site Home - MSDN
Blogs. [online] Available at: http://blogs.msdn.com/b/slmperf/archive/2011/06/13/off-
thread-decoding-of-images-on-mango-how-it-impacts-you-application.aspx [Accessed 15
Apr. 2015].
Carroll, A. and Heister, G. (2010). An analysis of power consumption in a smartphone.
Channel 9, (2012). Windows Phone 8: Performance & Optimization for Developers (Channel 9).
[online] Available at: http://channel9.msdn.com/Events/Build/2012/3-048 [Accessed 15 Apr.
2015].
Chen, X., Chen, Y., Ma, Z. and Fernandes, F. (2013). How is energy consumed in smartphone
display applications?. Proceedings of the 14th Workshop on Mobile Computing Systems and
Applications - HotMobile '13.
Corral, L., Georgiev, A., Sillitti, A. and Succi, G. (2013). A method for characterizing energy
consumption in Android smartphones. 2013 2nd International Workshop on Green and
Sustainable Software (GREENS).
Developers.de, (2015). Windows Phone 7: Content vs. Resource Build Action - Damir Dobric
Posts - developers.de. [online] Available at:
http://developers.de/blogs/damir_dobric/archive/2010/09/18/windows-phone-7-content-vs-
resource-build-action.aspx [Accessed 15 Apr. 2015].
Emarketer.com, (2015). Smartphone Users Worldwide Will Total 1.75 Billion in 2014 - eMarketer.
[online] Available at: http://www.emarketer.com/Article/Smartphone-Users-Worldwide-
Will-Total-175-Billion-2014/1010536 [Accessed 15 Apr. 2015].
48

Hahnel, M., Dobel, B., Volp, M. and Hartig, H. (2012). Measuring energy consumption for short
code paths using RAPL. ACM SIGMETRICS Performance Evaluation Review, 40(3), p.13.
Hao, S., Li, D., Halfond, W. and Govindan, R. (2013). Estimating mobile application energy
consumption using program analysis. 2013 35th International Conference on Software
Engineering (ICSE).
Jung, W., Kang, C., Yoon, C., Kim, D. and Cha, H. (2012). DevScope. Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis - CODES+ISSS '12.
Metri, G., Agrawal, A., Peri, R. and Weisong Shi, (2012). What is eating up battery life on my
SmartPhone: A case study. 2012 International Conference on Energy Aware Computing.
Msdn.microsoft.com, (2015). Control.Background Property (System.Windows.Controls). [online]
Available at: https://msdn.microsoft.com/en-
us/library/system.windows.controls.control.background(v=vs.110).aspx [Accessed 15 Apr.
2015].
Msdn.microsoft.com, (2015). for (C# Reference). [online] Available at:
https://msdn.microsoft.com/en-us/library/ch45axte.aspx [Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). ListBox Class (System.Windows.Controls). [online] Available at:
https://msdn.microsoft.com/en-
us/library/windows/apps/system.windows.controls.listbox(v=vs.105).aspx [Accessed 15
Apr. 2015].
Msdn.microsoft.com, (2015). LongListSelector Class (Microsoft.Phone.Controls). [online]
Available at: https://msdn.microsoft.com/en-
us/library/windows/apps/microsoft.phone.controls.longlistselector(v=vs.105).aspx
[Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). Page.OnNavigatedTo Method (System.Windows.Controls). [online]
Available at:
https://msdn.microsoft.com/library/system.windows.controls.page.onnavigatedto(VS.95).as
49

px [Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). PictureDecoder.DecodeJpeg Method (Stream, Int32, Int32)
(Microsoft.Phone). [online] Available at: https://msdn.microsoft.com/en-
us/library/windows/apps/ff708027(v=vs.105).aspx [Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). ProgressBar Class (System.Windows.Controls). [online] Available
at: https://msdn.microsoft.com/en-
us/library/windows/apps/system.windows.controls.progressbar(v=vs.105).aspx [Accessed
15 Apr. 2015].
Msdn.microsoft.com, (2015). StackPanel Class (System.Windows.Controls). [online] Available at:
https://msdn.microsoft.com/en-
us/library/system.windows.controls.stackpanel(v=vs.110).aspx [Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). Storyboard Class (System.Windows.Media.Animation). [online]
Available at: https://msdn.microsoft.com/en-
us/library/system.windows.media.animation.storyboard(v=vs.110).aspx [Accessed 15 Apr.
2015].
Msdn.microsoft.com, (2015). UIElement.Opacity Property (System.Windows). [online] Available
at: https://msdn.microsoft.com/en-
us/library/system.windows.uielement.opacity(v=vs.110).aspx [Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). UIElement.Visibility Property (System.Windows). [online]
Available at: https://msdn.microsoft.com/en-
us/library/system.windows.uielement.visibility(v=vs.110).aspx [Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). VirtualizingStackPanel class - Windows app development. [online]
Available at: https://msdn.microsoft.com/en-
us/library/windows/apps/windows.ui.xaml.controls.virtualizingstackpanel [Accessed 15
Apr. 2015].
Msdn.microsoft.com, (2015). Visual Studio Express 2012 for Windows Phone 8. [online]
Available at: https://msdn.microsoft.com/en-
50

us/library/windows/apps/ff630878(v=vs.105).aspx [Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). What is XAML?. [online] Available at:
https://msdn.microsoft.com/en-us/library/cc295302.aspx [Accessed 15 Apr. 2015].
Msdn.microsoft.com, (2015). while (C# Reference). [online] Available at:
https://msdn.microsoft.com/en-us/library/2aeyhxcd.aspx [Accessed 15 Apr. 2015].
Namboodiri, V. and Ghose, T. (2012). To cloud or not to cloud: A mobile device perspective on
energy consumption of applications. 2012 IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM).
news.microsoft.com, (2015). Microsoft by the numbers. [online] Available at:
http://news.microsoft.com/bythenumbers/ms_numbers.pdf [Accessed 15 Apr. 2015].
Pathak, A., Hu, Y. and Zhang, M. (2012). Where is the energy spent inside my app?. Proceedings
of the 7th ACM european conference on Computer Systems - EuroSys '12.
Protalinski, E. (2014). Microsoft Confirms Windows Phone Store Passed 300,000 Apps. [online]
The Next Web. Available at: http://thenextweb.com/microsoft/2014/08/08/microsoft-
confirms-windows-phone-store-300000-apps/ [Accessed 15 Apr. 2015].
SearchCloudComputing, (2015). What is cloud computing? - Definition from WhatIs.com. [online]
Available at: http://searchcloudcomputing.techtarget.com/definition/cloud-computing
[Accessed 15 Apr. 2015].
Spectrum.ieee.org, (2015). A Smart Phone Uses as Much Energy as a Refrigerator? - IEEE
Spectrum. [online] Available at:
http://spectrum.ieee.org/energywise/energy/environment/smart-phones-uses-as-much-
energy-as-a-refrigerator [Accessed 15 Apr. 2015].
Tools.ietf.org, (2015). RFC 4648 - The Base16, Base32, and Base64 Data Encodings. [online]
Available at: https://tools.ietf.org/html/rfc4648#section-4 [Accessed 15 Apr. 2015].
W3.org, (2015). Portable Network Graphics (PNG) Specification (Second Edition). [online]
Available at: http://www.w3.org/TR/PNG/#1Scope [Accessed 15 Apr. 2015].
51

Webb, M. (2008). SMART 2020: Enabling the low carbon economy in the information age.
Whatis.techtarget.com, (2015). What is JPG? What Opens a JPG? File Format List from
WhatIs.com. [online] Available at: http://whatis.techtarget.com/fileformat/JPG-JPEG-bitmap
[Accessed 15 Apr. 2015].
Wilke, C., Piechnick, C., Richly, S., Poschel, G., Gotz, S. and Abmann, U. (2013). Comparing
mobile applications' energy consumption. Proceedings of the 28th Annual ACM Symposium
on Applied Computing - SAC '13.
www.idc.com, (2015). IDC: Smartphone Vendor Market Share. [online] Available at:
http://www.idc.com/prodserv/smartphone-market-share.jsp [Accessed 15 Apr. 2015].
www.statista.com, (2014). Topic: App Stores. [online] Available at:
http://www.statista.com/topics/1729/app-stores/ [Accessed 15 Apr. 2015].
Xia, F., Hsu, C., Liu, X., Liu, H., Ding, F. and Zhang, W. (2013). The power of smartphones.
Multimedia Systems, 21(1), pp.87-101.
Blogs.msdn.com, (2015). Image Tips for Windows Phone 7 - Stefan Wick's Weblog - Tips for WP7,
Silverlight, WPF and Tablet PC - Site Home - MSDN Blogs. [online] Available at:
http://blogs.msdn.com/b/swick/archive/2011/04/07/image-tips-for-windows-phone-
7.aspx?CommentPosted=true#commentmessage [Accessed 20 Jul. 2015].
Hao, S., Li, D., Halfond, W. and Govindan, R. (2013). Estimating mobile application energy
consumption using program analysis. 2013 35th International Conference on Software
Engineering (ICSE).
KelÃ©nyi, I., Nurminen, J., Siekkinen, M. and Lengyel, L. (2014). Supporting Energy-Efficient
Mobile Application Development with Model-Driven Code Generation. Advanced
Computational Methods for Knowledge Engineering, pp.143-156.
Msdn.microsoft.com, (2015). App performance considerations for Windows Phone 8. [online]
Available at: https://msdn.microsoft.com/en-
us/library/windows/apps/ff967560(v=vs.105).aspx [Accessed 20 Jul. 2015].
52

Siebra, C., Costa, P., Miranda, R., Silva, F. and Santos, A. (2012). The software perspective for
energy-efficient mobile applications development. Proceedings of the 10th International
Conference on Advances in Mobile Computing & Multimedia - MoMM '12.

53

Appendix
Appendix 1. Experiment 1 – Background color
Aim: To investigate the impact background colors of an application have on energy consumption.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tool: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. We develop an application using Visual Studio tool and C# programming language,
which displays “Hello world” on the screen.
Step 2. During this experiment we change the “Background” property of the main grid.
For this experiment, we use the following values: red (#FF0000), black (#00000), purple
(#800080), pink (#FFC0CB), white (#FFFFFF) and dark blue (#00008B).
 Figure
Figure A1.1. Application snapshots
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
54

Figure A1.3. Chart for purple color
Figure A1.4. Chart for red color Figure A1.5. Char for pink color
Figure A1.6. Chart for white color Figure A1.7. Chart for dark clue color
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Black 23.36 0.56 17.52 0.002072
Purple 24.42 0.82 12.48 0.003034
Red 24.36 0.87 11.62 0.003219
Pink 22.16 1.27 7.26 0.004699
White 21.06 1.37 6.39 0.005069
Dark Blue 22.16 0.69 13.33 0.002553
Table A1.1 Background color – energy consumption

Figure A1.2 Chart for black color

55

Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A1.3. Axis description

Chart A1.1. Background color – energy consumption
Conclusions: As we can see from the table above, the background color plays an important role
in the energy consumption of a mobile application. Running the same experiment with different
colors we obtained totally different results. The darker colors consume much less energy than the
other colors. Having black or dark blue background, an operator can use his/her phone two times
longer than using pink or white background. In the charts above we can see that the energy
consumed by application thread (purple color) it is similar in all the cases and the energy consumed
by this thread is generated when the application is launched and when it is terminated. The big
difference that can be noticed here is related to UI thread (green color). In the case of black color
we see a small constant energy consumption while in the case of white color, the energy consumed
by UI thread is almost three times more. This rule is not generally valid because of the screen
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Black Purple Red Pink White Dark blue
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A1.2. Threads description
56

properties. Nokia supports AMOLED (active-matrix organic light-emitting diode) screens which
do not have a solid backlight. That is the reason we can save battery, changing the background
color, using a Nokia phone.
Appendix 2. Experiment 2 – Image format (JPG vs PNG)

Aim: To investigate the impact of displaying a PNG (Portable Network Graphics) file format and
a Joint Photographic Experts Group (JPG) file format on energy consumption.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1

Experiment procedure:
Step 1. In the first step, we prepare our images. We work with the same two images, but
one of them will be in a PNG format (dimension: 4288x2848, size: 2.78MB) and the other
in a JPG format (dimension: 4288x2848, size: 2.78MB). The PNG format is a lossless
compression file format while the JPG file, which is an extension of JPEG format is a lossy
compressed file format.

 Figure A2.1. The PNG file format Figure A2.2. The JPG file format
Step 2. Using each of these two pictures, we develop an application using Visual Studio
2013 as development tool and C# as development language. In the application there is an
57

“Image” control whose source will be set once to the PNG file, and after that, to the JPG
file. The application has the background set to transparent.

 Figure A2.3. Application snapshot
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.

Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
JPG format 10.53 0.29 15.07 0.001073
PNG format 10.58 0.29 15.02 0.001073
Table A2.1. Image format – energy consumption
58

 Figure A2.4. Chart for PNG format Figure A2.5.19 Chart for JPG format

Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A2.2 Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A2.3. Axis description

Chart A2.1. Image format – energy consumption
Conclusions: After this experiment, it can be observed that the format of the picture is not relevant
if the pictures are stored locally. The amount of energy used for rendering these pictures is the
same even though the JPG file is loaded a bit faster than the PNG file. This happens because the
size of the images is the same and the quality is similar. The Figure A2.4 and Figure A2.5 shows
us the energy distribution of the main threads: UI thread and application thread. We can see that
the application thread (purple color) consume energy only when the application is launched and
0
0.1
0.2
0.3
0.4
JPG format PNG format
Chart Title
59

for the processing of the picture. The energy consumed by the UI thread (green color) it is constant
over the execution of the application because it displays the same content.
Appendix 3. Experiment 3 – Visual object storing

Aim: To investigate the impact of storing a visual object as Extensible Application Markup
Language (XAML) and as image on energy consumption.
Objective: In this experiment we will test if it is more energy efficient to store a visual object as
XAML or as a picture.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools:
 Microsoft Visual Studio 2013
 Microsoft Expression Design 4
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
 Step 1. We create an image file and a XAML file. In this step we create two different files:
a XAML file and a Portable Network Graphics (PNG) file (dimension: 640x480, size: 55.8 KB).
They are created using Microsoft Expression Design 4. This is a tool used by developers to create
graphic interfaces. The XAML files are Microsoft extensions of Extensible Markup Language and
are used for creating User Interface pages. The PNG is a graphic file format which supports a
lossless compression. The output obtained using this software is the following:
60

Figure A3.2. The XAML format

 Figure A3.1. The PNG format

Step 2. For each element we create an application which displays it. During this
experiment we will develop two applications using Visual Studio tool and C# language. Both
applications will look like the image below:

 Figure A3.3. Application snapshot

61

Figure A3.5. PNG chart
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption we transform it into energy consumption.
For this transformation we use the following formula:
E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.
Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
XAML format 10.50 0.28 15.90 0.001036
PNG format 10.34 0.25 16.41 0.000925
Table A3.1. Visual object storing – energy consumption

Figure A3.4. XAML chart
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A3.2. Threads description
62

Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A3.3. Axis description

Chart A3.1. Visual object storing – energy consumption
Conclusions: Running these experiments we can notice that it is more efficient to work with
images than with XAML objects. The difference is not very big in terms of energy consumption,
but if we are thinking to millions of applications that display images, this can be a considerable
improvement. Also from the user’s experience point of view, it is a big improvement considering
the battery will last longer. This difference occurs because when using XAML the application will
create an object for each tag and this can load the processor more, while in the case of image files
the processor has to render an image that is stored locally and this will happen faster. For more
complex objects the difference will grow. If we are looking at Figure A3.4 and Figure A3.5 we
can notice that the energy consumed by the UI thread (green color) is the same in both cases. The
only difference that can be notice is in the energy consumed by the application thread. In this case
we can see that it requires more energy for creating the XAML object than to decode a picture.
Appendix 4. Experiment 4 – Decoding threads

Aim: To investigate the impact of displaying images using backgrounds threads and using the UI
thread on energy consumption.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
0.23
0.24
0.25
0.26
0.27
0.28
0.29
XAML format PNG format
Chart Title
63

o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need a database of 15 images (downloaded from this
website: http://wallpaperswide.com/music-desktop-wallpapers.html). The size and dimension
of each picture are specific (Details in Table A4.1). Below there are some examples of the
pictures that we use for this experiment:

Image Dimension Size
Image 1 1920x1200 211 KB
Image 2 2560x1600 689KB
Image 3 2560x1600 1.34MB
Image 4 2880x1800 626KB
Image 5 1680x1050 267KB
Image 6 2560x1600 1.97MB
Image 7 2560x1600 687KB
Image 8 2880x1800 2.04MB
Image 9 2560x1600 1.01MB
Image 10 2560x1600 424KB
Image 11 1920x1200 681KB
Image 12 1920x1200 1.01MB
Image 13 2560x1600 806KB
Image 14 1680x1050 126KB
Image 15 4288x2848 2.78MB
Table A4.1 Dimensions and sizes of pictures
Step 2. The next step is the development of two applications, using Visual Studio 2013
development tool and C# programming language, which display these pictures in a list.
The applications will display also a bigger picture that is in a different element. In one of
the applications, all the pictures will have the attribute “CreateOption” set to
“BackgroundCreation”. This attribute means that the image decoding is moved to the
Figure A4.1. Example of images
64

background threads. For the other application, the image decoding is made in the UI thread.
The UI thread is the most important thread in an application because it has the
responsibility to create the XAML objects, to draw all the visual objects and to execute the
user’s code.

 Figure A4.2. Application snapshot
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.

65

Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (wh)
With
CreateOption
attribute
33.49 1.27 10.96 0.004699

Without
CreateOption
attribute
34.19 1.38 10.37 0.005106

Table A4.2. Decoding threads – energy consumption

 Figure A4.3. CreateOption Attribute set to BackgroundCreation

 Figure A4.4. Without CreateOption attribute set
Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A4.3. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A4.4. Axis description
66

Chart A4.1. Decoding threads – energy consumption
Conclusions: This experiment shows that the energy consumed by these two applications is
different. From Table A4.2, we can notice that decoding an image in a separate thread is more
efficient than using only one thread. Regarding the energy distribution we can see that UI thread
(green color) generates the same amount of energy in both cases while the application thread
(purple color) generate less energy when we are using background threads. Another fact that can
be noticed in the charts is the processing time. In the first case the application thread is working
for 15 seconds while in the second case the application thread is working for 7 seconds. This
happens because using more than one thread, the tasks are executed in a parallel way. When we
have all the processing made by one thread it takes more time to decode all the pictures.
Appendix 5. Experiment 5 – Animated vs Static object

Aim: To investigate the energy impact of displaying an animated object compared to a static one.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1

Experiment procedure:
1.2
1.25
1.3
1.35
1.4
Background thread UI thread
Chart Title
67

Step 1. Using Visual Studio 2013 development tool and C# programming language we
write two applications, one displaying three animated objects, respectively one displaying
the same objects in a static position. To begin with, we create three ellipses and one
storyboard for each ellipse. A storyboard is a behavior which can be attached to an object
to give it an animated effect. In the first application we start this behavior, while in the
second case we do not. The objects move from one corner of the screen to the opposite
one.

 Figure A5.1. Application snapshot

Step 2. For each application, we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.
68

Figure A5.3. Animated picture

Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption (wh)
Animated 20.56 0.56 15.63 0.002072
Static 20.12 0.45 18.69 0.001665
Table A5.1. Animated vs Static objects – energy consumption

Figure A5.2. Static picture
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A5.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A5.3. Axis description

Chart A5.1. Animated vs Static objects – energy consumption
0
0.1
0.2
0.3
0.4
0.5
0.6
Animated Static
Chart Title
69

Conclusions: This experiment illustrates that static objects are more efficient from the point of
view of energy consumption. This result is expected because, as we can see in the graph above,
the animated images require also processing (purple color). If in the first graph the energy
consumed for processing, by the static object, is almost 0, in the second case we see that it requires
a constant energy for supporting the movement of the objects. The energy generated by the UI
thread (green color) is the same in both cases because the same objects are displayed. For a very
basic animation we see that the difference it is quite significant and we can improve the battery
life with three hours by using static objects. There are cases when it is required to use animated
objects, but on many occasions these objects are used just for the aspect of the application.
Appendix 6. Experiment 6 – Image decoding

Aim: To investigate the impact of displaying images using image decoder to size and using the
default decoder on energy consumption.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need a database of 16 images (downloaded from this
website: http://wallpaperswide.com/music-desktop-wallpapers.html).The size and dimension
for each picture are specific (Details in Table A6.1). Below, there are some examples of
the pictures that were used for this experiment:

Figure A6.1. Example of images
70

Image Dimension Size
Image 1 1920x1200 99.1 KB
Image 2 510x330 689KB
Image 3 2560x1600 1.34MB
Image 4 2880x1800 626KB
Image 5 1680x1050 267KB
Image 6 3888x2592 3.86MB
Image 7 2560x1600 687KB
Image 8 2880x1800 2.04MB
Image 9 2560x1600 1.01MB
Image 10 2560x1600 424KB
Image 11 1920x1200 681KB
Image 12 1920x1200 1.01MB
Image 13 2560x1600 806KB
Image 14 1680x1050 126KB
Image 15 510x330 96.7KB
Image 16 800x591 284KB
Table A6.1. Dimensions and sizes of the images
Step 2. The next step is the development of two applications, using Visual Studio 2013
development tool and C# programming language, which display these pictures in a table.
For each application we create 16 images controls which have a predefined size of
100x100. In the first application, we use a default decoder, which means that the UI thread
will resize them only in interface. In the second application, the images are resized before
they are sent to the user interface. For this specific decoder we use the following
instruction:
WriteableBitmap bitmap = PictureDecoder.DecodeJpeg(stream,width,height).
After this operation, we set the source of the image to this WriteableBitmap object. In the
second case we set the source of the Image directly from the interface.
71

 Figure A6.2. Application snapshot

Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.

72

 Figure A6.4. Custom decoder
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Decoder to size 11.30 0.29 16.14 0.001073

Default decoder 11.57 0.31 15.79 0.001147

Table A6.2. Image decoding – energy consumption

 Figure A6.3 Default decoder
Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A6.3. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A6.4. Axis description
73

Chart A6.1. Image decoding – energy consumption
Conclusions: From the charts above we can notice that the energy consumed by the UI thread
(green color) is the same for both applications, but there is a small difference in terms of energy
distribution in the application thread (purple color). The custom decoder consumes more energy
when the application is launched. The default decoder takes more energy because it has to process
more the pictures that are given as input. Even though there is this small difference here, if we
consider a situation when we have to resize hundreds of pictures, this difference will grow a lot.
Appendix 7. Experiment 7 – Image loading

Aim: To investigate the impact of displaying a set of images using synchronous and asynchronous
methods on energy consumption.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need a database of 16 images (downloaded from this
website: http://wallpaperswide.com/music-desktop-wallpapers.html).The size and
dimension for each picture are specific (Details in Table A7.1). Below, there are some
examples of the pictures that were used for this experiment:
0.28
0.29
0.3
0.31
0.32
Decoder to size Default decoder
Chart Title
74

Image Dimension Size
Image 1 1920x1200 99.1 KB
Image 2 510x330 689KB
Image 3 2560x1600 1.34MB
Image 4 2880x1800 626KB
Image 5 1680x1050 267KB
Image 6 3888x2592 3.86MB
Image 7 2560x1600 687KB
Image 8 2880x1800 2.04MB
Image 9 2560x1600 1.01MB
Image 10 2560x1600 424KB
Image 11 1920x1200 681KB
Image 12 1920x1200 1.01MB
Image 13 2560x1600 806KB
Image 14 1680x1050 126KB
Image 15 510x330 96.7KB
Image 16 800x591 284KB
Table A7.1. Dimensions and sizes of the images
Step 2. We develop two applications, using Visual Studio 2013 development tool and C#
programming language, which display these pictures in a table. For each application we
create 16 “Image” controls that have a predefined size of 100x100. In the first application
we load the images in a synchronous way, while in the second application we use an
asynchronous manner. Loading the images using a synchronous method means the UI
thread will take care of all operations that are required for decoding, resizing and displaying
the picture. Loading the image in an asynchronous way does not mean that all the process
will be done in separate threads, because the image decoding will be still made by UI
thread. The instruction used for the asynchronous loading is:
Figure A7.1. Example of images
75

BitmapImage.UirSource = urisource
 while for the synchronous loading we use:
 BitmapImage.SetSource(Stream).

 Figure A7.2. Application snapshot

Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.
76

 Figure A7.4. Async loading
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Synchronous 21.28 0.64 13.78 0.002368

Asynchronous 22.17 0.65 14.20 0.002405

Table A7.2. Image loading – energy consumption

 Figure A7.3. Sync loading
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A7.3. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A7.4. Axis description

Chart A7.1. Image loading – energy consumption
0.6
0.65
0.7
Synchronous Asynchronous
Chart Title
77

Conclusions: The numbers we have obtained are quite close, so from energy point of view these
two methods are similar. Nevertheless we can notice that the asynchronous method is more
efficient and the battery will last a bit longer than using a synchronous method. We have this
behavior because, as we already mentioned, not all the processing is made in a separate thread.
Another thing that can be noticed, it is that using synchronous method will make our application
to load slower. All the processing is made at the beginning of the application and that is not good
for the UI thread, because it will become busy and will block the application. The asynchronous
method will make our application faster and to load the pictures easier. From the Figure A7.3 and
Figure A7.4 we can notice that the energy generated by the UI thread (green color) is the same in
the both cases, while the energy generated by the application thread (purple) is different. For the
synchronous loading it takes less time to load all the pictures but the processor works more, while
for the asynchronous loading the processor is not so busy and the loading is made steadily.
Appendix 8. Experiment 8 – Control hiding

Aim: To investigate the impact of “visibility” property and “opacity” property on energy
consumption.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. We develop two application using Visual Studio 2013 development tool and C#
programming language, which will display 150 stationary rectangles and two rectangles
that will move across the screen. Every four seconds we set the “visibility” respectively
“opacity” property of the rectangles to a different value. Both of these properties are used
for making an UI element visible or invisible. If we are setting an object’s visibility to
Collapsed means that XAML deletes the object form the memory. When the property is set
78

to Visible the object is redrawn. When we are setting the opacity property to 0 it means
that the object is not visible, but the representation of the object is still in the memory and
the object is not redrawn when Opacity is set to a non-zero value.

 Figure A8.1. Application snapshot

Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.

79

 Figure A8.3. Opacity
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Visibility 20.71 1.26 6.83 0.004662

Opacity 20.63 1.33 6.44 0.004921

Table A8.1. Control hiding – energy consumption

 Figure A8.2. Visibility
Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A8.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A8.3. Axis description
80

Chart A8.1. Control hiding – energy consumption
Conclusions: Both the applications are doing the same thing, but we observe that the energy
consumption is different. We can see that the difference is 0.07 mAh, which happens because the
Opacity property will keep the rectangles in memory, in order to improve the speed of the
application. Even though the application where we are using Opacity is faster, it costs more in
terms of energy consumption. In the first graph we can see that the energy consumption of the UI
thread is lower because the objects are deleted. In the second case, even if we cannot see the objects
on the screen, they are stored in memory so more energy will be consumed. From the Figure A8.2
and Figure A8.3 we can observe some interesting facts: The energy consumed by the application
thread (purple color) it is similar in both cases. There are small differences, but not significant
ones. The energy difference that appears in this experiment is related to the UI thread (green color).
We see in Figure A8.2 that the UI thread consumes less energy while the objects are hidden. If we
are setting the Opacity property the energy consumed by the UI thread does not drop live in the
previous case.
Appendix 9. Experiment 9 – ProgressBar consumption

Aim: To investigate the energy efficiency of a determinate progress bar and an indeterminate
progress bar.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
1.2
1.25
1.3
1.35
Visibility Opacity
81

- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we develop two applications, using Visual Studio 2013
development tool and C# programming language, which display a progress bar,
determinate, respectively indeterminate. A determinate progress bar means that we know
how much time it will take for an operation to be completed, while an indeterminate
progress bar means that we do not know about the time that it is required by an operation.
We use the ProgressBar XAML control and we modify the property “IsIndeterminate” to
true, respectively to false.

 Figure A9.1. Application snapshot - determinate
Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
Figure A9.2. Application snapshot - indeterminate
82

 Figure A9.4. Indeterminate
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Determinate 15.68 0.37 17.57 0.001369

Indeterminate 15.46 0.42 15.24 0.001554

Table A9.1. ProgressBar – energy consumption

 Figure A9.3. Determinate
Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A9.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A9.4. Axis description
83

Chart A9.1. ProgressBar – energy consumption
Conclusions: As we can see from the charts above the determinate progress bar is more energy
efficient than the indeterminate one. This happens because the indeterminate bar is an animation
which is shown all the time and which requires some processing. The determinate progress bar is
based on a value so it does not require any repetitive pattern. This fact can be noticed in Figure
A9.3 and Figure A9.4. The application thread (purple color) consumes more energy for an
indeterminate progress bar because it supports the animation during the execution. In Figure A9.3
we can see that it is required energy only when the application is launched. The UI thread (green
color) consumes the same amount of energy in both cases. We use these controls in different cases,
but if we can choose one of them in our application, that one should be determinate.
Appendix 10. Experiment 10 – List control

Aim: To investigate the energy efficiency of a “ListBox” control compared to a
“LongListSelector” control.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1

0.3
0.35
0.4
0.45
Determinate Indeterminate
84

Experiment procedure:
Step 1. For this experiment we develop two applications, using Visual Studio 2013
development tool and C# programming language, which display a list with 1000 elements.
Each element contains an image (dimension: 256x256, size: 32,5 KB) and a text. For
displaying these items we use two controls that are offered by Windows Phone: ListBox
and LongListSelector. The difference between them is that LongListSelector supports extra
operations like grouping or jumping directly to one group. During the experiment we keep
scrolling through the application.

 Figure A10.1. Application snapshot

Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
85

 Figure A10.3. LongListSelector
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
ListBox 20.64 1.08 7.99 0.003996

LongListSelector 20.68 1.09 7.84 0.004033

Table A10.1. List control – energy consumption

 Figure A10.2. ListBox
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A10.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A10.3. Axis description
86

Chart A10.1. List control – energy consumption
Conclusions: LongListSelector is a new control in Windows Phone 8.1 and has some extra
features like grouping and jumping from one group to another. Microsoft released this control
because they considered that the performance is better and it is a faster control than ListBox. As it
can be seen from the charts above, the difference is very small between these two controls from
energy point of view. It can be observed that the ListBox is more efficient, even though the
difference is very small. In Figure A10.2 and Figure A10.3 we can notice that the energy consumed
by the UI thread (green color) is the same in both cases. The energy consumed by the application
thread (purple color) it is quite constant for the ListBox. The LongListSelector has a fluctuating
energy consumption.
Appendix 11. Experiment 11- Build type property

Aim: To investigate the impact of displaying images that have set their “Build type” to “Resource”
and images that have set their “Build type” to ”Content” on energy consumption.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1

1
1.1
ListBox LongListSelector
87

Experiment procedure:
Step 1. For this experiment we need a database of 16 images (downloaded from this
website: http://wallpaperswide.com/music-desktop-wallpapers.html).The size and
dimension for each picture are specific (Details in Table A11.1). Below, there are some
examples of the pictures that were used for this experiment:

Image Dimension Size
Image 1 1920x1200 99.1 KB
Image 2 510x330 689KB
Image 3 2560x1600 1.34MB
Image 4 2880x1800 626KB
Image 5 1680x1050 267KB
Image 6 3888x2592 3.86MB
Image 7 2560x1600 687KB
Image 8 2880x1800 2.04MB
Image 9 2560x1600 1.01MB
Image 10 2560x1600 424KB
Image 11 1920x1200 681KB
Image 12 1920x1200 1.01MB
Image 13 2560x1600 806KB
Image 14 1680x1050 126KB
Image 15 510x330 96.7KB
Image 16 800x591 284KB
Table A11.1. Dimensions and sizes of the images

Step 2. The next step is the development of two applications, using Visual Studio 2013
development tool and C# programming language, which display these pictures in a table.
For each application we create 16 “Image” controls that have a predefined size of 100x100.
In the first application we set to all the images the “build type” to “Content”, while in the
second application we set this value to “Resource”. Setting this attribute to Content means
that the images are included in XAP alongside the DLL, while setting it to Resource means
Figure A11.1. Example of images
88

that the images are embedded in DLL. Usually the type is set to Content if the developer
wants a quick startup and to Resource when he wants a quick access to the images.

 Figure A11.2. Application snapshot

Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.

89

 Figure A11.3. Content
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Resource 22.03 0.65 14.09 0.002405

Content 22.35 0.66 14.13 0.002442

Table A11.2. Build type property – energy consumption

 Figure A11.2. Resource
Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A11.3. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A11.4. Axis description

Chart A11.1. Build type property – energy consumption
0.6
0.7
Resource Content
90

Conclusions: As we can see from the table above there is a small difference, almost to 0, in terms
of energy consumption. This happens because the application needs the same energy to decode
and render all the images. It is not relevant where the images are stored, because the energy that is
consumed in order to bring this images to UI is the same. From the Figure A11.2 and Figure A11.3
we can see that the energy consumed by the UI thread (green color) it is the same in the both cases.
We can also notice that the application thread (purple color) consumes almost the same amount of
energy and its distribution is very similar in both cases.
Appendix 12. Experiment 12 – Image format

Aim: To investigate the impact of displaying a set of images that are in a JPG (Joint Photographic
Experts Group) format or in a base64 string format.
Equipment: For this experiment the following components are needed:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need a database of 16 images (downloaded from this
website: http://wallpaperswide.com/music-desktop-wallpapers.html).The size and
dimension for each picture are specific (details in Table A12.1). Below, there are some
examples of the pictures that were used for this experiment:

Figure A12.1. Example of images
91

Image Dimension Size
Image 1 1920x1200 99.1 KB
Image 2 510x330 689KB
Image 3 2560x1600 1.34MB
Image 4 2880x1800 626KB
Image 5 1680x1050 267KB
Image 6 3888x2592 3.86MB
Image 7 2560x1600 687KB
Image 8 2880x1800 2.04MB
Image 9 2560x1600 1.01MB
Image 10 2560x1600 424KB
Image 11 1920x1200 681KB
Image 12 1920x1200 1.01MB
Image 13 2560x1600 806KB
Image 14 1680x1050 126KB
Image 15 510x330 96.7KB
Image 16 800x591 284KB
Table A12.1. Dimensions and sizes of the images

Step 2. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications which display these pictures in a table. For each application we
create 16 images controls that have a predefined size of 100x100. In the first application
we store all the pictures in a JPG format while in the second application we transform each
picture into a string and store all the strings in a text file.
Base64 is an encoding scheme that transforms binary data to base 64 representation. For
example the string “Hello” will be translated to “SGVsbG8=”. The same representation
can be applied to pictures. One disadvantage of this representation is the resizing of the
pictures up to 33%.
92

 Figure 12.2. Application snapshot
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
JPG 11.68 0.30 15.99 0.00111

Base64 11.30 0.30 15.90 0.00111

Table A12.2. Image format – energy consumption
93

 Figure A12.4 JPG

 Figure A12.3. Base64
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A12.3. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A12.4. Axis description

Chart A12.1. Image format – energy consumption
Conclusions: The battery consumption is equal in the both cases considered above, so it is not
relevant if we keep images as JGP or as strings. Although the battery consumption is equal, we
can notice the fact that the distribution of application thread is different. In “Figure A12.3” we can
see that it requires a lot of energy for computation (purple color) at the beginning, but after it drops
significantly. In the second case, we see that the time for all the computation is longer. The energy
consumed by UI thread (green color) is similar in both cases.

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
JPG Base64
94

Appendix 13. Experiment 13 – Loop instructions

Aim: To investigate the energy efficiency of two loops instructions: for and while.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications, which count up to 500.000.000 and display a message after the
loop is done. In the first application, a “for” loop is used, while in the second application
we use a “while” loop. The difference between them is the syntax.

 Figure A13.1. Application snapshot
Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
95

 Figure A13.3. While loop
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
For 21.67

0.56 16.10 0.002072

While 21.73 0.56 16.12 0.002072

Table A13.1. Loop instructions – energy consumption

 Figure A13.2. For loop
Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A13.2. Threads description

96

Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A13.3. Axis description

Chart A13.1. Loop instructions – energy consumption
Conclusions: As we can see in the results table, there is no difference between these two
applications. This happens because, as we have already mentioned, the only difference between
the two instructions is the syntax. From Figure A13.2 and Figure A13.3 we can see that the energy
consumption distribution of both UI thread (green color) and application thread (purple color) is
the same in both cases.
Appendix 14. Experiment 14 – Threads

Aim: To investigate the energy efficiency of an application that uses one thread and of an
application that uses more threads.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1 Using Visual Studio 2013 development tool and C# programming language, we
develop two applications, which display ten times the result of Fibonacci sequence with a
0
0.1
0.2
0.3
0.4
0.5
0.6
For While
97

length of 100.000 positions. In the first application we execute a calculation after the
previous one is finished. In the second application, we use the multithreading concept thus
each calculation is sent to a different thread. A thread ensures parallel execution of an
operation, so all the operations are executed simultaneously.

 Figure A14.1. application snapshot
Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.

98

Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Single thread 53.33 1.98 11.23 0.007326

Multithread 52.32 1.26 16.58 0.004662

Table A14.1. Threads – energy consumption

 Figure A14.2 Single thread

 Figure A14.3. Multithreading
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A14.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A14.3. Axis description
99

Chart A14.1. Threads – energy consumption
Conclusions: As we can see from the charts above, the difference between the two approaches is
significant. From Figure A14.2 and Figure A14.3 we can notice that the energy used by the UI
thread (green color) is the same in both cases. There is a big difference in application thread (purple
color). For the single thread, we can observe that it has required a lot of time to calculate all the
numbers, which means a lot of energy wasted because the CPU is working. In the second case, the
energy consumed by the application is very small because all the computations are done during
the same time, in different threads. We can also notice that in the first case the application is frozen
for the first 25 seconds, while the second application can be used immediately.
Appendix 15. Experiment 15 – Method for data loading

Aim: To investigate the energy efficiency of two applications that do heavy processing in
constructor, respectively in OnNavigateTo event.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools:
 Microsoft Visual Studio 2013
 Microsoft Expression Design 4
- Mobile phone
o Operating system: Windows Phone 8.1

0
0.5
1
1.5
2
2.5
Single thread Multithread
100

Experiment procedure:
Step 1. Firstly, for these applications, we create a XAML file. This file is created using
Microsoft Expression Design 4. This is a tool that is used by developers who create graphic
interfaces. The XAML files are Microsoft extensions of Extensible Markup Language and
are used for creating User Interface pages. The output that we have obtained using this
software is the following:

 Figure A15.1. The PNG format

Step 2. Next, we integrate this image with a heavy processing operation. For this
experiment we develop two application, using Visual Studio 2013 development tool and
C# programming language, which display five times the result of Fibonacci sequence, of
100.000 positions together with the image above. In the first application we will execute
Fibonacci’s function in the page’s constructor, while in the second application we will
execute it in OnNavigateTo event. The code in the page’s constructor is run before the first
frame of the application is shown while the code in OnNavigateTo event is run after the
page becomes active.
101

 Figure A15.2 Application snapshot

Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Constructor 32.14 1.19 11.25 0.004403

OnNavigateTo 31.78 1.18 11.18 0.004366

Table A15.1. Data loading – energy consumption
102

Figure A15.3 OnNavigateTo

Figure A15.4. Constructor
Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A15.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A15.3. Axis description

Chart A15.1. Data loading – energy consumption
Conclusions: In this experiment we determined that there is no difference in terms of energy
consumption between loading heavy processing operation in the constructor or in OnNavigateTo
1.1
1.2
Constructor OnNavigateTo
103

event. From Figure A15.3 and Figure A15.4 we can see that distribution of energy consumption is
similar in both cases. The energy consumed by UI thread (green color) has an identical distribution
while the energy consumed by application thread (purple color) has a similar distribution. We can
also notice that the time required for the data processing is similar in the both cases. This happens
because the data processing is the same and it is of no importance where the operations are
executed.
Appendix 16. Experiment 16 – Function type

Aim: To investigate the energy efficiency of an application that uses an iterative function
compared to an application that uses a recursive function.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications, which display five times the 5.000 position of Fibonacci
sequence. In the first application we execute each calculation using an iterative function.
In the second application we use a recursive function that will do the same operation. A
recursive function is a function that calls itself. The function that does not calls itself it is
an iterative function.
104

 Figure A16.1 Application snapshot

Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Iterative 25.28 0.61 17.29 0.002257

Recursive 26.73 0.77 14.55 0.002849

Table A16.1. Function type – energy consumption
105

 Figure A16.2 Iterative

 Figure A16.3. Recursive

Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A16.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A16.3. Axis description

Chart A16.1. Function type – energy consumption
Conclusions: The application that uses an iterative function is more efficient according to the
graphs above. We notice that the recursive function requires more time to compute and it also
0
0.2
0.4
0.6
0.8
1
Iterative Recursive
106

consumes more energy (purple color). Moreover the user has to wait until all the results are loaded
and he can use the application. In the case of the iterative function the amount of energy that is
required is very low. Furthermore, we notice in this case that the application is faster due to the
fact that the thread is busy for less time. The energy consumed by the UI thread (green color) is
similar in both cases.
Appendix 17. Experiment 17 – StackPanel control

Aim: To investigate the energy efficiency of a StackPanel control compared to a
VirtualizingStackPanel control.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications, which display a list with 400 elements. Each element contains
an image (dimension: 256x256, size: 32.5KB) and a text. For displaying these items we
use a ListBox control and as template for the list we use in one application a StackPanel
control, while in the other application a VirtualizingStackPane. If we are using a
StackPanel inside the ListBox means that all the items will be loaded when the list is
loaded. In the other case, are loaded only the items that are visible for the user. When the
user scrolls down, another request will be made.
107

 Figure A17.1. Application snapshot

Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:

 Time (s) Battery
consumption
(mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
StackPanel
(without scrolling)
22.56 0.71 13.73 0.002627

VirtualizingStackPanel
(without scrolling)
20.57 0.55 17.72 0.002035

StackPanel 20.76 1.38 6.26 0.005106
108

 Figure A17.3 StackPanel – without scrolling
(with scrolling)
VirtualizingStackPanel
(with scrolling)
20.85 1.31 6.64 0.004847

Table A17.1. StackPanel control – energy consumption

 Figure A17.2 VirualizingStackPanel – without scrolling

 Figure A17.4. VirtualizingStackPanel- with scrolling Figure A17.5. StackPanel – with scrolling
Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A17.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A17.3. Axis description
109

Chart A17.1. StackPanel control – energy consumption
Conclusions: We analyzed in this experiment two cases: when a user uses the scroll and when the
user does not. We choose both cases because they are frequently in the behavior of the user. In the
first case when the user does not scroll we see that the energy consumption between these two
controls differs a lot. VirtualizingStackPanel is more efficient and also faster to load the data. This
happens because only the data that are visible for the user are requested. We can notice that the UI
thread (green color) consumes the same amount of energy in both cases, but the application thread
(purple color) is different. For the VirtualizingStackPanel we have some energy consumed when
the application is launched, while the StackPanel consumes more energy for a longer period of
time. In the second case, we can observe that the difference decreases, because using the scroll,
more data is requested all the time. So, when scrolling the energy consumption is less for the
VirtualizingStackPanel, similar to the first case when the user does not scroll. We can see from
Figure A17.4 and Figure A17.5 that the consumed energy is similar because the energy
consumption distribution become similar. The startup of the application is faster when we are using
VirtualizingStackPanel, but the scroll is faster when we are using StackPanel because all the data
is already loaded.
Appendix 18. Experiment 18 – Assemblies

Aim: To investigate the energy efficiency of an application that stores external pages in another
assembly compared to an application that stores the all the pages in the same assembly.
Equipment: For this experiment the following components are necessary:
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
StackPanel - (without
scrolling)
VirtualizingStackPanel-
(without scrolling)
StackPanel - (with
scrolling)
VirtualizingStackPanel
- (with scrolling)
110

- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications, which navigate through three pages. In the first application we
have all of the pages in the same project and we load them when the application runs. In
the second case we split the solution in two projects: one project that contains the main
page and another project, of type Windows Phone Class Library, which contains two
external pages. The pages from the latter project will be loaded only on demand. In our
application we have two buttons that will navigate through the pages. For the data
analyzing we chose two cases: when the user navigates through the pages and when the
user does not.

 Figure A18.1 Application snapshot

Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
111

 Figure A18.3Two assemblies – without navigation
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
One assembly
(without
navigation)
22.46 0.46 18.59 0.001702

Two assemblies
(without
nagivation)
20.55 0.46 18.67 0.001702

One assembly
(with
navigation)
26.31 0.61 18.49 0.002257

Two assemblies
(with
navigation)
26.98 0.61 18.45 0.002257

Table A18.1. Assemblies – energy consumption

 Figure A18.2. One assembly – without navigation
112

Figure A18.4. One assembly with navigation Figure A18.5 Two assemblies without navigation

Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A18.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A18.3. Axis description

Chart A18.1. Assemblies – energy consumption
Conclusions: From the tables above we can observe that in both cases, when the user navigates
through the pages and when the user does not, the energy consumption is the same. If we look very
carefully at the first graph, we can see a very small difference, but it is not relevant for the result.
It is possible that for applications with large numbers of pages, this difference to be more
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
One assembly -
(without
navigation)
Two assemblies -
(without
nagivation)
One assembly -
(with navigation)
 Two assemblies -
(with navigation)
113

considerable. In the second case, we can see that the distribution of the energy is differs, but again
not significantly.
Appendix 19. Experiment 19 – Animations

Aim: To investigate the energy efficiency of an application that displays an animation created in
XAML file compared to an application that displays an animation created in procedural code.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications, which display an animation. In the first application we create the
animation in the XAML file, while in the second application the animation is created in
procedural code. The difference between these methods of creating an animation consists
in the execution of the animation made by the composition thread, in the first case, and of
the execution by the UI thread, in the second case.
114

 Figure A19.1 application snapshot
Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation, we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The voltage value depends on the phone that is used. Consequently, we took this value for
a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7 Volts.
Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
XAML 10.80 0.29 15.51 0.001073

Procedural code 10.51 0.29 15.30 0.001073

Table A19.1. Animations – energy consumption
115

 Figure A19.3 XAML

 Figure A19.2. Code behind

Thread Color Description
UI thread Green Energy consumption of the
UI
Application thread Purple Energy consumption of the
application that is not
included in UI
Network thread Grey The network energy
consumption
Table A19.2. Threads description

Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A19.3. Axis description

Chart A19.1. Animations – energy consumption
Conclusions: As we can observe from the charts above the energy consumption of the two
applications is the same. This happens because the animation is the same in the both cases.
Consequently the energy consumed is equal. We notice that running the animation in the
composition thread or in the UI thread gives us the same effect. It might be possible to find some
differences if the UI thread is overloaded. From the Figure A19.2 and Figure A20.3 we can observe
0
0.1
0.2
0.3
0.4
XAML Procedural code
116

that both the UI thread (green color) and application thread (purple color) have a similar
distribution of the consumed energy and of the amount of energy consumed.
Appendix 20. Experiment 20 – Storing images

Aim: To investigate the impact of displaying a set of images that are stored locally in comparison
with a set of images that are stored in a web page.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need a database of 3 images (downloaded from this website:
http://www.dannyst.com/). Each picture has specific size and dimension (details in Table
A20.1). Below are the examples of the pictures used for this experiment:

Image Dimension Size
Image 1 875x581 345 KB
Image 2 875x581 437 KB
Image 3 875x581 278 KB
Table A20.1. Dimensions and sizes of the images
Step 2. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications which display these pictures in a table. For each application we
create 3 “Image” controls. In the first application we store the images locally, while in the
second application the images are stored in a web page.
Figure A20.1. Example of images
117

 Figure A20.2. Application snapshot

Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.

118

 Figure A20.4 Internet source
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
From internet 21.96 0.92 10.00 0.003404

Stored locally 21.43 0.69 13.00 0.002553

Table A20.2. Storing images – energy consumption

 Figure 20.3. Local source
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A20.3. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A20.4. Axis description

Chart A20.1. Storing images – energy consumption
0
0.2
0.4
0.6
0.8
1
Locally Internet
119

Conclusions: Loading images from different sources has a big impact on the total energy
consumed by a mobile application. The application that stores the images locally consumes less
energy than an application that requests the images from a web page. From Figure A20.3 and
Figure A20.4 we can notice the fact that the UI thread (green) and the CPU thread (purple)
consume the same amount of energy in both applications. The difference between the applications
is made by the network (gray): the experiment presented in Figure A20.3 shows there is no energy
consumed by the network while the one in Figure A20.4 shows a significant amount of energy that
is consumed by the network.
Appendix 21. Experiment 21 – Playing videos

Aim: To investigate the impact of playing a video stored locally compared to a video that is stored
in a web page.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need a video (downloaded from this website:
http://download.wavetlan.com/SVV/Media/HTTP/http-mp4.htm).

Step 2. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications which play a video. For each application we create a
“MediaElement” control. In the first application we store the video locally, while in the
second application the video is stored on a web page. A “MediaElement” control is an
object that contains video, audio or both.
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
120

consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.
Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
From internet 45.57 1.80 10.72 0.00666

Stored locally 46.77 1.89 10.29 0.006993

Table A21.1 Playing videos – energy consumption

Figure A21.1 20Video stored locally

Figure A21.2 Video stored in a web page
121

Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included in
UI
Network thread Grey The network energy
consumption
Table A21.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A21.3. Axis description

Chart A21.1. Playing videos – energy consumption
Conclusions: In Table A21.1 can be noticed that the energy consumption is similar in both cases.
Analyzing Figure A21.1 and Figure A21.2 we can say that the energy consumed by the UI thread
(green), the energy consumed by application thread (purple) and the energy consumed by network
thread (gray) have similar values and distribution. We can also notice the fact that the energy
consumed by the network is 0. This phenomenon appears because “MediaElement” control uses
Windows Media Player internally for downloading the video. Being independent from our
application, the energy consumed by this tool it is not included in the final result. We can just
assume that the total amount of energy is bigger when the video is stored on a web page because
there is extra energy consumed by the network.
Appendix 22. Experiment 22 – Playing audio files

Aim: To compare the impact of playing an audio file that is stored locally to an audio file that is
stored in a web page.
0
0.5
1
1.5
2
Locally Internet
122

Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need an audio file (downloaded from this website:
http://www.tonecuffe.com/mp3/).
Step 2. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications which play an audio file. For each application we create a
“MediaElement” control. In the first application we store the audio file locally, while in
the second application the audio file is stored on a web page. A “MediaElement” control
is an object that contains video, audio or both.
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.

123

Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
From internet 93.32 2.38 16.35 0.008806

Stored locally 93.10 2.32 16.72 0.008584

Table A22.1. Playing audio files – energy consumption

Figure A22.1 Audio file stored in a web page

Figure A22.2 Audio file stored locally

Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A22.2. Threads description

Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A22.3. Axis description
124

Chart A22.1. Playing audio files – energy consumption
Conclusions: In Table A22.1 can be noticed that the energy consumption is similar in both cases.
Analyzing Figure A22.1 and Figure A22.2, we can say that the energy consumed by the UI thread
(green), the energy consumed by application thread (purple) and the energy consumed by network
thread (gray) have similar values and distribution. We can notice also the fact that the energy
consumed by network is 0. This phenomenon appears because “MediaElement” control uses
Windows Media Player internally for downloading the audio file. Being independent from our
application the energy consumed by this tool it is not included in the final result. We can just
assume that the total amount of energy is bigger when the audio file is stored on a web page
because there is extra energy consumed by the network.
Appendix 23. Experiment 23 – Image format (JPG vs PNG) in clouds

Aim: To investigate the impact of displaying a PNG (Portable Network Graphics) file format and
a Joint Photographic Experts Group (JPG) file format, that is stored on a web page, on energy
consumption.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need a database of 6 images (stored on this website:
https://www.tumblr.com/blog/vladcristeacont). The same image is stored in two different
0
0.5
1
1.5
2
2.5
Locally Internet
125

formats: JPG and PNG. Each picture has specific size and dimension. Below, there are the
examples of the pictures used for this experiment:

Image Dimension Size
Image 1 875x581 345 KB
Image 2 875x581 437 KB
Image 3 875x581 278 KB
Image 4 875x581 623 KB
Image 5 875x581 583 KB
Image 6 875x581 476 KB
Table A23.1. Dimensions and sizes of the images

Step 2. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications which display these pictures in a table. For each application we
create 3 “Image” controls. In the first application, we will use as source only images in JPG
format, while in the second we will use images in PNG format. The original pictures were
in JPG format and they were transformed in PNG format using this website:
http://image.online-convert.com/convert-to-png.
Figure A23.1. Example of images
126

 Figure A23.2 Application snapshot
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.
Results:
 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
JPG 21.01 0.74 11.90 0.002738

PNG 25.36 1.09 9.67 0.004033

127

 Figure A23.4 PNG source
Table A23.2 Image format in clouds – energy consumption

 Figure A23.3 JPG format
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included in
UI
Network thread Grey The network energy
consumption
Table A23.3. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A23.4. Axis description

Chart A23.1. Image format in clouds – energy consumption
Conclusions: This experiment reveals the fact that working with JPG format is “greener” than
working with PNG format, if the images are stored on a website. From Table A23.2, we can notice
that the difference between these two formats is significant. If we are looking at Figure A23.3 and
Figure A23.4, we can observe that the difference in the consumed energy is made by the network
thread (gray). The UI thread (green) and the application thread (purple) have similar values. The
distribution of the energy consumed by these two threads is also similar. The energy consumed by
the network thread differs because of the images’ file sizes. After the transformation from JPG in
0
0.2
0.4
0.6
0.8
1
1.2
JPG PNG
128

PNG, the files stored as PNG have a bigger size than the JPG files, and that is why the application
that displays the PNG files consumes more energy.
Appendix 24. Experiment 24 – Images – multiple access

Aim: To investigate the impact on energy consumption of displaying multiple times the same
picture from a web sites and the impact on energy consumption of downloading a picture and
displaying it from a local source.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1
Experiment procedure:
Step 1. For this experiment we need an image (dimension: 875x561, size: 278KB, stored
on this website: https://www.tumblr.com/blog/vladcristeacont). Below, there is the picture that
was used for this experiment:

Step 2. Using Visual Studio 2013 development tool and C# programming language, we
develop two applications which display this picture in a table. For each application we
create 3 “Image” controls. In one application, firstly we will download and display the
image. After 10 seconds we will display the image from the local source. We will repeat
this again after another 10 seconds. In the other application we will set the source of the
first control to a specific URL. After 10 seconds we will set the source for the second
control and after another 10 seconds the source for the third control.
Figure A24.1. Example of images
129

 Figure A24.2 Application snapshot
Step 3. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 4. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.

130

Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Download and
display locally
31.19 1.02 12.74 0.003774

From the same
URL
31.28 0.96 13.54 0.003552

Table A24.1. Images- multiple access – energy consumption

Figure A24.3 Application that display the image from the same URL

Figure A23.4 Application that save and display the images
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included
in UI
Network thread Grey The network energy
consumption
Table A24.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A24.3. Axis description
131

Chart A24.1. Images- multiple access – energy consumption
Conclusions: From this experiment we can notice that the application which displays the images
without saving them consumes less energy than the application which downloads first the picture.
If we are looking at Figure A24.3 and Figure A24.4, we can see that the energy consumed by the
UI thread (green) is similar in both cases. The energy consumed by the application thread (purple)
differs in these cases because it requires extra processing for saving the picture. The network thread
(gray) consumes, also, less energy in the first case. Another fact that can be noticed is that each
application makes a single request for the picture. In the first application this happens because of
the cache mechanism that is implemented by default in Windows Phone 8. In the second case there
is one request because we are downloading the image and using it after that from a local source.
Appendix 25. Experiment 25 – Heavy processing operations

Aim: To compare the impact on energy consumption of an operation that is run locally to an
operation that is run in clouds.
Equipment: For this experiment the following components are necessary:
- PC
o Operating system: Windows 8.1
o Development tools: Microsoft Visual Studio 2013
- Mobile phone
o Operating system: Windows Phone 8.1

Experiment procedure:
0
0.2
0.4
0.6
0.8
1
1.2
Download URL
132

Step 1 Using Visual Studio 2013 development tool and C# programming language, we
develop two applications which display 10 times the result of Fibonacci sequence with a
length of 100.000 positions. In the first application we will execute all of these operations
locally, while in the second application we will run the operations in the clouds.

 Figure A25.1 Application snapshot

Step 2. For each application we measure the battery consumption and the battery charge
remaining. They are measured using Windows Phone Application Analysis tool, which is
integrated in Visual Studio 2013 tool. The outputs of this analysis are the battery
consumption measured in mAh (miliampere-hour) and the battery charge remaining,
measured in h (hours).
Step 3. After we obtain the battery consumption, we transform it into energy consumption.
For this transformation we use the following formula:
 E = QV where E is energy (Wh), Q is charge (Ah), and V is Voltage (V).
The value for voltage depends on the phone that we are using. Consequently, we took this
value for a specific phone: Nokia Lumia 1320. For this particular phone the voltage is 3.7
Volts.
133

Results:

 Time (s) Battery
consumption (mAh)
Battery charge
remaining (h)
Energy
consumption
(wh)
Cloud 42.34 1.73 10.23 0.006401

Locally 40.08 1.02 16.41 0.003774

Table A25.1. Heavy processing operations – energy consumption

Figure A25.2. Cloud processing

Figure A25.3. Locally execution
Thread Color Description
UI thread Green Energy consumption of the UI
Application thread Purple Energy consumption of the
application that is not included in
UI
Network thread Grey The network energy
consumption
Table A25.2. Threads description
Axis Description
X Time (s)
Y Battery consumption (mAh)
Table A25.3. Axis description
134

Chart A25.1. Heavy processing operations – energy consumption
Conclusions: The execution of some operations can influence significantly the energy
consumption of an application. We can see in this experiment that executing some operations
locally can save a lot of energy. From Table A25.1 we can notice that the difference between these
two applications is significant. If we analyze Figure A25.2 and Figure A25.3, we can notice that
the UI thread (green) consumes the same amount of energy in both cases. In Figure A25.3 we see
that the application thread (purple) request some energy only at the begging while processing the
data. For the other application the application thread consumes energy during the execution of the
application because the data received from server has to be processed. The network thread (gray)
makes the difference between these two applications, because in the first case there is a significant
amount of energy consumed by this thread, while in the second case, the energy consumed by the
network thread is 0.

0
0.5
1
1.5
2
Cloud Locally

