
Commonwealth Scientific &
Industrial Research Organisation
PERCCOM Master Program

Master’s Thesis in
Pervasive Computing & COMmunications

for sustainable Development

Alexandre De Masi

LOAD BALANCING IN P2P SMARTPHONE BASED
DISTRIBUTED IOT SYSTEMS

2015

Supervisors: Prof. Arkady Zaslavsky (CSIRO)

Dr. Prem Prakash Jayaraman (CSIRO)

Prof. Jari Porras (LTU)

Examiners: Prof. Eric Rondeau (University of Lorraine)

Prof. Jari Porras (Lappeenranta University of Technology)

Prof. Karl Anderson (Luleå University of Technology)

This thesis is prepared as part of an European Erasmus Mundus program
PERCCOM - Pervasive Computing & COMmunications for sustainable development.

This thesis has been accepted by partner institutions of the consortium (cf. UDL-DAJ,
no1524, 2012 PERCCOM agreement).

Successful defence of this thesis is obligatory for graduation with the following national
diplomas:

• Master in Complex Systems Engineering (University of Lorraine);

• Master of Science in Technology (Lappeenranta University of Techology);

• Degree of Master of Science (120 credits) Major: Computer Science and Engi-
neering, Specialisation: Pervasive Computing and Communications for Sustainable
Development (Luleå University of Technology).

ABSTRACT

Commonwealth Scientific &
Industrial Research Organisation
PERCCOM Master Program

Alexandre De Masi

Load balancing in P2P smartphone based distributed IoT systems

Master’s Thesis - 2015.

80 pages, 26 figures, 8 table, and 2 appendices.

Keywords: IoT, Sensor, energy, P2P, edge, Android, load balancing, publish/subscribe

Context: With the new age of Internet of Things (IoT), object of everyday such as mobile
smart devices start to be equipped with cheap sensors and low energy wireless commu-
nication capability. Nowadays mobile smart devices (phones, tablets) have become an
ubiquitous device with everyone having access to at least one device. There is an oppor-
tunity to build innovative applications and services by exploiting these devices’ untapped
rechargeable energy, sensing and processing capabilities. Goal: In this thesis, we pro-
pose, develop, implement and evaluate LoadIoT a peer-to-peer load balancing scheme that
can distribute tasks among plethora of mobile smart devices in the IoT world. Method:
We develop and demonstrate an android-based proof of concept load-balancing applica-
tion. We also present a model of the system which is used to validate the efficiency of the
load balancing approach under varying application scenarios. Results: Load balancing
concepts can be apply to IoT scenario linked to smart devices. It is able to reduce the
traffic send to the Cloud and the energy consumption of the devices. Conclusion: The
data acquired from the experimental outcomes enable us to determine the feasibility and
cost-effectiveness of a load balanced P2P smart phone-based applications.

ACKNOWLEDGEMENT

During the redaction of this document, the construction of this project and my two years
of master I had many times to work harder than ever before. I was lucky enough to always
have being supported by great people in this process.

I would like to thanks the PERCCOM consortium to allowing me be part of this master.
All the travels, the universities, the professors, the lessons and the expertise acquired
during those two years have changed me.

All my gratitude to Professor Arkady Zaslavsky & Doctor Prem Jayaraman for their guid-
ance, responses and help during this work.

Merci infiniment Maman, Papa et frérot pour votre soutien.

Special thanks to Baptiste and Stefanos. You helped me to change and becoming someone
better.

PERCCOM was once in a lifetime event. I had the pleasure to meet and share wonderful
moment with incredible people from the four corners of the world, you will never be
forgotten. Thank you Rohan, Zainie, Vicky, Fia, Iqbal, Chandra, Dorine, Mohaimen,
Vlad, Maike, Khoi, Fisayo, Stefanos and Baptiste.

Alexandre De Masi

5

CONTENTS

1 Introduction 9
1.1 Problem Statement . 9
1.2 Objective . 13

1.2.1 Research question . 13
1.2.2 Research method . 13

1.3 Scenario . 15
1.3.1 Facial Recognition . 15
1.3.2 Air Monitoring . 16

1.4 Thesis Structure . 17

2 Related Work 18
2.0.1 IoT World . 18

2.1 Distributed Computing . 20
2.1.1 Challenges . 21

2.2 IoT Application . 22
2.2.1 Edge Computing in IoT . 23
2.2.2 Crowdsensing . 25
2.2.3 Challenges . 27
2.2.4 Peer-to-Peer . 28
2.2.5 Load Balancing . 28
2.2.6 Message exchange pattern . 31

3 LoadIoT 33
3.1 Load Balancing in Peer-2-Peer Mobile Smart Devices: An Illustrative

Example . 33
3.2 Basic . 35
3.3 Architecture . 36

3.3.1 Network Topology . 36
3.3.2 Smart Head . 38
3.3.3 Messaging Channel Pattern . 43

3.4 Operation . 45
3.5 Smart Head Election . 47
3.6 Peer-to-Peer . 47

4 Implementation 50
4.1 Assumption . 51
4.2 Messages . 53

6

4.2.1 Smart head Election . 53
4.2.2 Publish/Subscribe Information 54

4.3 Proactive . 54
4.3.1 State Diagram . 54

4.4 Reactive . 55
4.4.1 State Diagram . 55

4.5 Interface . 56
4.6 Code . 59
4.7 Development Environment and Tools . 59

5 Results & Discussion 60
5.0.1 Scenario . 60

5.1 Results . 61
5.2 Summary . 64
5.3 Environmental Contribution . 64

6 Conclusion 65

REFERENCES 65

APPENDICES
Appendix 1: Use case : Image processing

1.1 Pipeline . 76
1.2 Smart devices . 77
Appendix 2: Simulation

7

Acronyms

CoAP Constrained Application Protocol.

CPU Central Processing Unit.

CUPUS CloUd PUblish Subscribe.

DHT Distributed Hash Table.

DoS Denial of Services.

DTLS Datagram Transport Layer Security.

FIFO First In Firs Out.

GLONASS GLObal NAvigation Satellite System.

GPS Global Positioning System.

GSM Global System for Mobile Communications.

HTTP Hypertext Transmission Control Protocol.

IoT Internet of Things.

JVM Java Virtual Machine.

LE Low Energy.

LILO Last In Last Out.

LTE Long-Term Evolution.

M2M Machine to Machine.

MQTT Message Queuing Telemetry Transport.

NFC Near Field Communication.

OSGi Open Services Gateway initiative.

P2P peer-to-peer.

PAN Personal area network.

POC Proof Of Concept.

QoS Quality of Services.

8

RESTful Representational State Transfer.

RPC Remote Procedure Call.

SOA Service Oriented Architecture.

TCP Transmission Control Protocol.

Ubicomp ubiquitous computing.

UDP User Datagram Protocol.

UMTS Universal Mobile Telecommunication System.

UPS Uninterruptible Power Source.

URI Uniform Resource Identifier.

UUID Universally Unique IDentifier.

X-GSN Extended Global Sensor Networks.

9

1 Introduction

According to Gartner [1] the current number of connected object as part of smart cities
is estimated to be 1.1 billion . The number of connected "Thing" is said to rise to 9.7
billion by 2020. However this devices will be most use in smart homes, smart commercial
building, transport, utilities and future industry. The world of the future will be composed
of billion of devices connected to Internet continuously transmitting data.

Smart cities infrastructure will be equipped to query devices, analyse the data and make
decision, e.g. the table 1 present a future smart world scenario from Libelium [2]. Con-
nected object will generate a large amount of data. Nowadays, most systems passively
send everything to the Cloud to process and analyse the information there. However, the
future IoT world will be a major source of Big Data creating huge data streams and will
demand immediate responses. Edge data analysis and filtering is essential to manage the
enormous amount of data generated by these devices in order to enhance efficiency in
bandwidth, increase response time and conserve energy.

1.1 Problem Statement

Internet of Things is the new disruptive trend in the era of the smartphones and Internet.
New devices with low energy communication abilities start to be integrated in everyday
lives and activities. Some of them are used to track our day-to-day activities while oth-
ers capture/monitor environmental phenomenon. For example, devices such as Fitbit and
smart watches monitor user’s activities to help them live a healthy lifestyle while other
devices such as mobile smart phones, Raspberry Pi’s, wireless sensor networks and sim-
ilar smart devices are used for real-time cost efficient monitoring of environmental phe-
nomenon such as temperature, humidity etc. It is a well known fact that the IoT world is
set to be filled with tens of thousands of devices according to recent estimates by Gartner
[1] (9.7 billion by 2020).

IoT has the potential to lead the next technological revolution laying the foundation for
future smart cities and smart industries In the next ten years, all the new smart cities and
smart factories will be equipped with IoT devices. The data acquired from the devices
will help creating sustainable cities and better managed factories. IoT has the potential to
improve human life. A number of e-health application are being developed for monitoring
the human body and use this data to predict the need of medication, e.g. smart insulin

10

Table 1. Smart World Scenarios

Scenario Description

Air Pollution
Control of CO2 and toxic gases emissions from : factories,
cars and farms.

Offspring Care Control of the young animal in farms to ensure health.

Sportsmen Care Monitoring performance and vital signs.

Structural Health
Monitoring of building, bridges and historical
monument vibration.

Smartphones Detection Detect smartphones with the help of wireless technology.

Radiation Levels
Distributed system monitoring of radiation levels in
nuclear power plant.

Traffic Congestion
Monitoring of traffic to optimise driving and walking
route.

Smart Roads
Automatic alerts for accident, traffic jam or extreme
climate conditions

Smart Lighting
Street light able to change lighting depending of the
weather conditions.

Water Quality Monitoring of rivers and seas.

Water Leakages
Monitoring of water pressure and liquid presence
along pipes.

Waste Management
Detection of waste level in containers to optimise
trash collection.

pump connected to a smartphone for creating a artificial pancreas [3] .

Smartphones and other smart devices have become a ubiquitous in the IoT world and are
densely available. Today smartphones and smart devices come embedded with numerous
on board sensors with different sensing capabilities. Most of the time, these devices have
access to rechargeable energy. In most cases the energy, sensing and processing capability
of these devices remain untapped. The smart device’s excellent sensing and processing
capabilities and the distributed nature of the device can be exploited to develop innovative
applications and services such as crowd-sensing in smart cities.

Currently more than half of the global population resides in megacities. The transforma-
tion of megacities to smart cities 1 fuelled by IoT has already enabled the interconnection
of the masses in a previously unseen scale. Smart cities will be equipped with billions of

1http://www.smartsantander.eu/

11

things with the potential to transform the planning and management of smart cities via the
IoT bottom-up paradigm. The enormous amount of data produced by smart cities will be
a major source of Big Data, creating huge data streams, that will demand immediate and
context aware responses. Currently many smart city applications (e.g. crowd-sensing)
rely on data and services hosted on remote clouds. However, in the future the amount of
smart devices including new devices such as Google Glass will only increase, augmenting
the amount of data going to the cloud for processing. Pushing data to the Cloud is expen-
sive and can causes multiple problem, eg. data explosion. It will also push the existing
network bandwidth and processing demands significantly. Enhancing and upgrading ex-
isting resources to overcome this challenge come at a significant cost. Because of this new
challenge, local data analysis and filtering is essential to manage the enormous amount of
data generated by smart IoT devices in order to enhance efficiency in bandwidth, increase
response time and conserve energy.

There are many challenges in exploiting smartphones to built complex and innovative IoT
applications. Given the sheer increase in number of devices contributing to Big Data, one
of the key challenge is to enable cost-efficient sensing and processing of data on mobile
smart phones. This resources can be used without a significant cost of the battery usage for
working on tasks. One of those task is data mining with the help of IoT devices, it is call
edge mining [4]. The mining is done on the edge of the network, which is comprised IoT
object and other smart devices. Data mining for the IoT world present different challenges
as the survey from Tsai et al. [5] discuss. The development of pre-filtering process on IoT
object is similar to the signal processing problems already know, e.g. data fusion, data
abstraction and data summarising. Goura et al. [4] propose an algorithm to only transmit
unexpected information from IoT smart devices, the General Spanish Inquisition Protocol
(G-SIP). Their work is base on the Spanish Inquisition Protocol of Goldsmith et al. [6]. A
number of model based transmission method for wireless sensor network can be applied
to limit the communication of resource constrain smart devices.

Recently, Edge Computing and Mobile Edge Computing [7] have been proposed as a
promising technology to overcome the above challenges. Edge computing [8] aims to
lower cost and achieve energy efficiency by processing data closer to the data source.
Edge computing is also refereed as fog computing by Cisco [9]. The definition of mobile

edge computing is in the context of telecommunication networks where the processing
of data originating from things are processed at the base stations. However, this defi-
nition fails to capture the true sense of our notion of mobile edge computing in an IoT
context. Hence, we use the term mobile far-edge computing (MFEC) where the process-
ing is further pushed into the things layer. The figure 1 is a comparison between cloud

12

Figure 1. Cloud & Mobile Far-Edge computing architecture

computing architecture and our mobile far-edge computing architecture. In classic cloud
architectures, the data is sent to the cloud for processing, contrary to mobile far-edge
computing architecture where processing is distributed across three layers namely cloud,
edge devices (network operator) and mobile far-edge devices (things producing data).

In edge system a middleware is often used for facilitate the communication between plat-
forms of smart device. The middleware solutions for IoT integrate energy management
program in the cloud responsible for computing and making decisions on which end de-
vices information needs to be accessed. Such architectures are based on the client/server
paradigm. Most of the time, the smartphones in the IoT world are used to control or
access sensor information but not for processing the data. Such approaches do not take
advantage of the smartphones advanced technological capabilities. We move further into
far-edge devices which include end devices such as smartphones, sensors, Raspberry Pi
and other smart devices.

The amount of protocol created or extended for the IoT world is always going up. Frag-
mentation and use of private licensed protocol is one of the challenge that IoT is facing.
The standardisation of protocols and framework is a time consuming effort that require
cooperation among many organisation.

The ability to use the power of a cluster of mobile smart devices for far-edge computing
to process data from and on smart devices will be a add-on to the world of tomorrow. A
load balancing scheme is needed to optimise the use of each devices depending of their
resources, particularly in far-edge computing scenario with mobile resource constrained
smart devices.

13

1.2 Objective

In the far-edge layer, smart devices come embedded with numerous on board sensors with
multiple sensing capabilities. Most of the time, these devices have access to recharge-
able energy sources and in most cases the devices have excellent sensing and process-
ing capabilities. In this work, we propose LoadIoT, a peer-to-peer energy-efficient load
balancing scheme for mobile smart devices distributed in the edge and far-edge layers.
The distributed nature of the device offers the convenience in developing a load-balanced
platform to achieve specific tasks closer to the source of data. The proposed LoadIoT
scheme employs a publish-subscribe message exchange pattern over a peer-to-peer (P2P)
network.

1. A novel energy-efficient load-balancing algorithm LoadIoT to distributed tasks be-
tween a peer-to-peer mobile smart devices in IoT ecosystems

2. A proof-of-concept implementation of LoadIoT on android platform

3. Experimentation and evaluation of LoadIoT’s energy efficiency and performance

1.2.1 Research question

The aim of this thesis is addressing is the development of load balancing technique for
P2P network of mobile smart devices in the Internet of Things paradigm allowing load-
balanced distribution of tasks among peers. The exchange of information between the
different entities in this project is one the higher concern in the study. Energy efficiency
is a important point of consideration during the design and development of the thesis’s
system. The drains of the battery mobile smart device is a factor taken into account in the
architecture of the work.

1.2.2 Research method

In the first part of this master thesis, we are presenting and commenting the state of the art
research in the domains of the project. The domains of the project are P2P network, edge
computing for Internet Of Things, messaging pattern and load balancing in distributed
system. In each of those we analyse the current stage of the art to identify gaps and
propose our noble solution. We propose LoadIoT a load balancing scheme taking into

14

consideration energy efficiency and other specific factor for load balancing on resource
constrained smart devices.

Figure 2. Domain of the study

We implement a proof of concept application tested with the load balancing scheme.
To obtain a well define scope and problem space of the study, we assume and impose
limitation during the implementation of the proof of concept application. We experiment
to validate the efficiency of our work. The collection of the data output will help us to
understand if this work can add to the state of the art and improve edge computing for
smart devices in the IoT world. The system is put in a specific testing environment with a
definite number of peers. We propose a model of the load balancing algorithm to validate
the feasibility of the system and estimate the message complexity of the approach. We
then use the model to estimate the performance of bigger scale scenarios.

15

1.3 Scenario

Edge computing on smart devices can use load balancing scheme in two main different
scenarios such as :

• Distributed processing for Big Data application

• Energy efficient mobile wireless sensor

1.3.1 Facial Recognition

The number of devices generating data connected to the Internet is growing everyday.
One of the application of edge computing is facial recognition in crowdsensing scenario.
The authorities are searching for a individual in a crowd, no security camera are avail-
able. All the people present in the crowd use their smartphones to take a video of their
surrounding. Because uploading and processing the information on the cloud takes time,
every person is connected to Internet via a wireless 3G/4G connection to the same an-
tennas. Depending on the network operators, the possibility of bottleneck is high. The
load balancing scheme can distribute the video processing on the smart devices with in
the peers network. One of the processing task could be pre-filtering the videos extracting
the faces from the frame of the video and only sending this information to the cloud for
further analysis and comparing the faces to find the individual.

16

Figure 3. Crowd pre-filtering processing for facial recognition

1.3.2 Air Monitoring

Crowdsensing is part of the next generation of cities. Also, air monitoring is one of
the challenges of the future world. Air quality in cities can cause health problem, e.g.
pulmonary deceases. However in the future, smart devices will be equip with different
sensor type, e.g. air sensors. Crowd with smartphones with this type of sensors are able
to get air quality information depending on their surrounding. A important amount of
data being generated by the sensors can become a problem, the load balancing scheme is
able to use the smart devices with more energy available. Also, pre-filtering applications
are possible to reduce the amount of data send to the cloud, e.g. Big data processing.
MapReduce on a cluster of smartphone is a possibility, the load balancing scheme allows
better managing of the resources in this case.

17

1.4 Thesis Structure

In chapter 2, we present the related work. Chapter 3 introduces LoadIoT, the scheme
for load balancing in P2P distributed system for Internet of Things (IoT). The chapter 4
presents LoadIoT proof-of-concept implementation. Chapter 5 contains the experiments
with the Android application implementing LoadIoT and evaluates the performance of the
LoadIoT algorithm in term of message exchange and energy efficiency. The final chapter
concludes the paper.

Figure 4. Thesis Structure

18

2 Related Work

Internet of Things (IoT) was coined by Kevin Ashton [10], during the dot com bubble in
1999. He used it to explain how everyday object connected to Internet will change the
human life. IoT is now used to define the network of physical object, also call "things” for
non denominate object, that is able to connect and transport information on the Internet.
These devices have two main characteristics namely sensing/actuation and communica-
tion capability. An IoT device can be a sensor or an actuator or both. The sensor will
generate data and the actuator will change the state of the system. Smart IoT object are
able to make decision base on sensors reading, e.g. smart cart in smart cities can use
different path to reduce road congestion [11] . They are the base for Future Internet and
services offered in the future smart homes and smart cities. Building and home automa-
tion are fields were IoT object are present nowadays. One of the goal of IoT is to enable
Machine to Machine (M2M)2 communication and the creation of autonomous smart sys-
tem that can manage the cities and its resources of the future. In this chapter we present
the state of this art in multiple discipline relative to our work.

2.0.1 IoT World

Smart object are becoming more available every days. The market of IoT wearable, smart
object that can be worn on a person are now mainstream, from smartwatch and smartband
to smartglass. The smartwatch and smartbands are use for tracking physical phenomenon
like heartbeat, number of step taken and other information. Recently, these devices have
contributed to the development of innovative commercial health applications. The person
wearing the device has access to a panel of information that he or she did not have before.
From this data, it is possible to know the physical and health status of the person.

IoT non wearable devices are also starting to change the life of household. The smart
thermostat [12] are enabling a better management of resource, e.g. the Google thermo-
stat (Nest). It can interfere in people activity by inter-connecting to a Cloud platform to
change the temperature from anywhere.

This smart thermostat couple with other smart object like smart meters for electricity,
water and gas connected together create the house of the future. The house is able to detect
leak of resource by comparing the data from the last month with the current consumption.

2Technologies allowing autonomous systems to communicate with each over.

19

Because of this data, the people living in the house will have a better understanding of
how much energy they consume everyday in real-time. Currently, nobody is looking at
the house water meter after a shower to know how much she or he consumed. If there is
a simple widget on a smartphone or a tablet, the user will have a better way to visualise
his/her own consumption.

IoT has much wider applications cutting across numerous domain. The industry of trans-
portation can use IoT system to enable smart traffic control, electronic toll collection
systems, logistic and fleet management, vehicle control and smart parking. IoT is also a
tool for smart industries, intelligent manufacturing through performance traceability and
digital agriculture. Monitoring of the environment is one of the other use cases for IoT.
The most common use case is air quality monitoring. Smartphones are are one the major
player in the IoT World, which include any type of smart devices. One of the challenges
is how to manage the data generated by the IoT object. Big Data paradigm resolve this
issue for processing and managing the data, e.g. Hadoop and MapReduce offer advantage
for this kind of scenario as discuss by Demchenko et al. [13].

The research subject in the IoT World are multiple, one of them is crowdsensing. is a vast
area of research for multiple laboratory in the world. One of the project to construct and
to standardise a framework for the Internet Of Thing is call OpenIoT [14].

Constrained Application Protocol (CoAP) is a Representational State Transfer (RESTful)
3 protocol create for the Internet Of Thing, it use User Datagram Protocol (UDP) or Data-
gram Transport Layer Security (DTLS)4 to connect to a sensor and requesting informa-
tion. DTLS is a secure way to communicate using datagram. This protocol was influence
by the HTTP protocol, the use of URI for making a query and sensing a response back.
The actor requesting the data can also use the CoAP extension name Observe [15] to have
the sensor itself send the data to the actor without the need of constant request on its part.
CoAP can be use to create sensor / actuator binding solution with the need of a Internet
connection or a Cloud Service. The RESTful advantage of CoAP provide the binding cre-
ation and execution for this kind M2M system [16]. The protocol provide a simple way
to discovery the data available on sensor, by accessing a specific Uniform Resource Iden-
tifier (URI) the response from the sensor will contain the list, type and other information
about the devices (well known URI). The Java implementation of CoAP call Californium
oppose to state-of-the-art HTTP Web servers in benchmark, CoAP as a throughput of 64
times higher than HTTP on the same hardware [17] There is overwhelming evidence cor-
roborating the notion that CoAP is a lightweight protocol for the IoT world. The use of

3Guidelines and best practises for creating scalable web services
4UDP with a security layer

20

UDP instead of Transmission Control Protocol (TCP) like Hypertext Transmission Con-
trol Protocol (HTTP) is one of the reason that make CoAP a lightweight protocol. But
Message Queuing Telemetry Transport (MQTT) was also create for the same use, a M2M
communication protocol for IoT. One of the fundamental difference between both of them
is in the MQTT design, the protocol use a publish/subscribe messaging transport to ex-
change information and is base on TCP [18]. De Caro et al. [19]provide evidence in their
comparison of MQTT and CoAP that there is no best protocol between the two of them.
They each have their own particularity that can be useful depending on the scenario and
the resources available. One of the other subsystem part of OpenIoT for data collection is
CloUd PUblish Subscribe (CUPUS).

2.1 Distributed Computing

Distributed Computing is the use of hardware or software resources connected to a net-
work to execute a job, contrary to parallel computing system as discuss by Coulouris et al.
[20]. The figure 5 represent both architecture type. The job is derived in tasks and send
to the computing entities on the network also call nodes or peers. The entities exchange
messages about the running tasks and their characteristics. When all the task are done,
the job is finished and a result is provided. It is a distributed system. From banking to e-
commerce, to manufacturing and other industry, those systems are nowadays everywhere
[20]. The main motivation for creating distributed computing system is resource sharing.
Resources can be web pages, Central Processing Unit (CPU) time, network bandwidth or
database record.

21

Figure 5. a & b : distributed system
c : parallel system

However the construction of this systems create challenges as describe by Coulouris et
al. [20]: heterogeneity, openness, security, failure handling, concurrency, transparency
and quality of service. Also this challenges apply to the computing paradigm use in IoT
World.

2.1.1 Challenges

The heterogeneity of a distributed system can be found in the different type network
(Wifi, Ethernet, 3G, . . .) , operating system, hardware of the entities and programming
language in place to create a distributed computing application. The openness of this
system can make the difference between an extensible system, simple to add component
and functionality to a close one where it is impossible to integrate change. The security
concern for the systems running on public and open network can solve with encryption,
cryptography with modern computer is simpler because it has been added to the CPU
hardware. But this does not protect the system again traditional network attack e.g. Denial
of Services (DoS) A distributed system is only scalable if the cost of adding an entity is
less than the resources that the entity provide to the entire system. If an entity fail in the
system, measure needs to be in place to respond to the failure and try to obtain the same

22

level of services as before the failure. In a distributed system the resource are shared
between the nodes. During the design and implementation of a distributed middleware
all the exceptions must be define and handle so that the application using the middleware
does not have to worry about the underling layer abstraction. The Quality of Services
(QoS) in distributed system is the guarantee that the services respect a predetermined
agreement via defined parameters, e.g. performance, reliability and security.

The research into distributed system is always evolving, cyberforaging and mobile dis-
tributed system are now a reality.

2.2 IoT Application

The application domain of IoT are multiple because of the wide range of services for smart
cities and the world of tomorrow that IoT can offer. Smartphones are widely available and
contains communication capabilities and processing power. Also aggregating a cluster of
smartphone on a specific IoT related task has the potential to accelerate the evolution of
cities to smart cities without the need of developing new platform to compute and transfer
the data from IoT object.

One of the challenge of mobile distributed system is the energy parameter to take into
account. Because it functioning with a battery, it has a finite energy resources contrary
to other system that are connected to a power grip and/or a Uninterruptible Power Source
(UPS)5 system. Hao Qian et al. propose Jade [21] a computation offloading system for
wireless ad-hoc networked mobile devices. The mobile devices are tablet and high end
smartphone that will do the computing. Their present the integration of Jade for different
Android application. The runtime engine can schedule where the code will be execute and
incorporates energy and performance parameters for a heterogeneous cluster of devices.
Trobec et al. [22] describe in their paper the problem of energy efficiency in large scale
distributed system, they explain the two type of measurement possible to know how much
cost energy wise : hardware-based or software-based. It reinforce the fact that energy
is one complex problem in mobile distributed computing. Chen et al. [23] discuss the
challenges of resource allocation in wireless distributed computing networks. The authors
claims that there is two parameters to examine : the communication and the computing
power consumption. From it is possible to predict the cost of offloading and chose the
best power-rate ratio for maximising the processing capability and minimising the power
consumption.

5Battery banks with or without fuel generator

23

2.2.1 Edge Computing in IoT

Before edge computing and cloud computing, cyberforaging was the solution to process
computing load from resource constrained devices on powerful server. The term cybergor-
aging was first described by Satyanarayanan [24] in 2001 as part of the core of pervasive
computing also name ubiquitous computing (Ubicomp)6. Cyberforaging is a technique
where mobile devices with small resources send tasks to heavier machine close to them.
In this paper the author asses the challenge of cyberforaging : context awareness, pri-
vacy and trust in distributed systems and mobile computing. Some scenarios of the use
of cyberforaging are also describe, in every scenario mobile devices with low computing
hardware use surrogate, stronger computing system in their close environment to execute
process. The result of the process is after send to the mobile device.

Distributed system in cyberforaging are design with a traditional client/server architec-
ture, however a using a peer-to-peer architecture can be implemented. Skodzik et al. [25]
present DuDE a is a distributed computing system using a decentralised peer-to-peer en-
vironment. It integrate peer discovery using Kademlia protocol. The author also present a
data sharing algorithm using a Distributed Hash Table (DHT) ring implementation. DuDE
was create for high performance distributed computing. It is one of many P2P distributed
system. Bourgeois et al. [26] propose a simulation tool for P2P distributed system that
aims to predict the performance and the execution time of a distributed application before
its finalisation. It is one of the criteria to take into account during the development of this
kind of system. Performance and execution time have a great importance in distributed
system for the selection of the surrogate. The performance can be for CPU and memory
usage, bandwidth capacity or remaining battery for mobile nodes. One of the recurring
question in cyberforaging and mobile offloading is there any benefits to not send the task
to the surrogate and to to process locally. The work of Datla et al. [27] list the chal-
lenges of a wireless distributed computing. They use a standard scenario with real-time
data capture, the processing of the data and their dissemination. At the end if the energy
needed to send the task to a surrogate is higher than the energy needed to process the task
locally, the task should not be send. Of course other parameters are to be examine, e.g. the
processing on the mobile device has to the transparent for the user. Cost-benefit analysis
need to be done to determine the benefits, Kondo et. al [28] did it for Cloud Computing
versus Desktop Grids. Scheduling and workload allocation are the main challenges.

Middlewares are often used to implement a distributed system has an underling layer of
a existing application. The AIOLOS Middleware from Verbelen et al. [29] enable cy-

6Transparent computing everywhere and at anytime

24

bergforaging for java application using offloadable classes with Java Open Services Gate-
way initiative (OSGi) framework. In the paper presenting the middleware the authors
want to improve the performance of mobile application through cyberforaging. In this
system they use a cloud infrastructure has surrogate to handle the task processing. Ou et
al. [30] propose the similar middleware with offloading code approach. Their algorithm
work integrate the cost of CPU cycle, memory and bandwidth resources. Different mid-
dlewares component handle all the scheduling and allocation required. Offloading classes
of code can be a simple way of implementing cyberforaging for an existing application.
However the limitation is, the classes are often tied to a programming language. The
difference in system and setup is a problem. There is no interoperability between sys-
tem. Arslan et al. [31] propose offloading of java classes for their distributed computing
infrastructure using smartphones. The smartphones are the nodes doing the processing.
In their work they propose to use in smartphone given by enterprise to the employees
during the night when it is charging, in the idle period. The authors show a system with
less energy consumption. However, this fact is base of the evolution of the smartphone
processors with ARM architecture. For the same computation ARM use less energy that
a server on other architecture. The issue that has not been addressed in the paper is the
communication between the smartphone and the company server.

Kristensen et al. [32] create an entire library and application for cyberforaging. It is
written in Python (Stackless). The mobile application running of the smartphone have in
their program a call to a surrogate to execute a process, if a surrogate is available in the
close environment the task is send to the surrogate. The surrogate return the result after
the end of execution. Their example is a image filtering application. The result of their
experiment prove the advantages of offloading the process when it must filter high quality
image. The application name is Scavenger [33], it use Remote Procedure Call (RPC) to
communicate between the surrogates and the mobile application. The scheduler in the
program decides whether to do the job locally or remotely. It is a dual-profiling scheduler
using adaptive history-based profiling and the microthread feature offered by Stackless
Python. Those components enable the scheduling system to create an execution plan later
executed by the runtime. Scavenger scheduler use batch scheduling [34] to obtain better
performances. It also present the advantage of remote execution for saving energy on
mobile devices in [35]. Kristensen propose to improve pervasive positioning using three-
tier cyberforaging in another paper [36]. Position is important in mobile environment,
in cyberforaging it can determine the proximity and availability of surrogate for offload-
ing. The method presented in the paper use Global System for Mobile Communications
(GSM) properties to find the position. Nowadays, mobile devices, smartphones and tablet
all integrate one or many satellite receiver for positioning e.g. Global Positioning System

25

(GPS), GLObal NAvigation Satellite System (GLONASS), Galileo ...

Busching et al. [37] propose the first prototype of Android smartphones cluster. Their
work offer a first view of the capability of this type of system. For facilitating the Proof
Of Concept (POC), the authors did not create a application for the smartphone but use a
traditional distributed Linux application running into a chroot on all the smartphones part
of the cluster. It does not offer any discovery, automation or native Android application.

2.2.2 Crowdsensing

Crowdsensing and crowdsourcing are two applications domains that are built on the IoT
paradigm. The application Crowd Out running on smartphone, seen as a sensor device,
from Aubry et al. [38] enable the user to report road safety issues and road offence to
create a better and smarter circulation in the cities. The author also point that during
the presentation of their work a privacy and security issue were raised. There has been
an inconclusive debate about whether it will be used for creating smarter cities, building
and other without impacting the privacy of the people. For example, a lot of concern
were raised when smart electricity meter were installed in France. The electricity com-
pany would be able, with the data from the smart meter, to determine the daily schedule
someone, if the person was in the house or not.

The paper from Cardone et al. [39] present McSense with the main with the following as-
pects: time, location,social interaction, service usage, and human activities. The platform
is a sensing platform for smart cities . According to the authors, the main difference be-
tween McSense and the other crowdsourcing platforms can be found in the type of crowds
it use, mobile for McSense, fixed for the others. Further, they are unable to exploit the sen-
sors available onboard mobile devices ,e.g. smartphones, and do not have context-aware
mechanisms, which are necessary for effective mobile sensing. Other research work as
describe by Xiping Hu et al. in their paper [40] created a crowdsensing application case
for Smart Cities running on Android OS. They use ontology-based matching instead of
classical keyword matching. The data are acquired by the smartphone application and
send to the Cloud for processing. The literature from Sherchan et al. [41] shows that
the smartphones in crowdsensing scenario are often use to relay the data to the Cloud.
However they have other properties that would enable them to run distributed algorithm
for sensing, processing and computing information. The authors present a crowdsensing
framework for location based social networking and citizen surveillance. In this frame-
work the energy to get the data, the amount to transfer and the occurrence of the informa-

26

tion are taken into account to provide a solution with great energy efficiency of the sensing
mobile device. This is done by using scheme to diminish the amount of data to transfer.
One of the scheme is smart selecting of the devices that will provide the data. The result
shows that by not selecting all the sensors for gathering the data, the mobile device have
a greater battery life and the accuracy of the information are preserve. The survey from
Madria et al. [42] presents the issues in dynamic data management in mobile P2P network
for creating crowdsourcing application. The survey also asses the issues in non traditional
point to point network, e.g. data cache and replication. A peer can disappear from the
network, however caching and replication can be use to reduce the probability of loosing
data. However, the survey also develop concern for privacy in service discovery scheme
on mobile P2P network.

Antonic et. al. [43] propose a cloud based publish/subscribe middleware for a mobile
crowdsensing ecosystem. This middleware CUPUS is part of the OpenIoT project. The
publish/subscribe model is one of the method use for data gathering and filtering for
crowsensing. The general principle is showed in the figure 6. It represent the logic
of CUPUS in a sequence diagram, from the OpenIoT deliverable. In In this approach,
matching subscription and publication is done in the cloud. This paper present a simple
architecture with one main broker, also call CPSP Engine for Cloud-based publish/sub-
scribe processing engine, less powerful mobile broker relay running on cloud instances
and smartphones. The mobile element is presented as a relay between the sensors output
and the subscribers. It will only process the matching algorithm from a local subscrip-
tion list send by the cloud broker. CUPUS is one of the most advance middleware for
crowsensing using a publish/subscribe model as delivery mechanism, but this system is
centralised and does not take into account a scenario if the main broker can not be access.
The mobile brokers are not aware or connected to each other.

27

Figure 6. Sequence Diagram of CUPUS logic

Antonic et al. the authors of CUPUS did a demonstration of the system with OpenIoT
in a real life scenario [44]. The experiment was call :”Sense the Zagreb Air”. Android
smartphone were connected to air quality sensors via Bluetooth. The reading were sent
to the Cloud broker for matching and the data were send to the OpenIoT platform for
presentation and analyse. However in [45] the authors add a level of management to CU-
PUS using a quality-driven sensor function middleware. The QoS Management Function
(QSMF) has the ability in certain identified cases to reduce the energy consumption of the
mobile broker connected to the Cloud engine by applying a sensor management scheme.
The sensor management software knows the localisation of the mobile broker, with this
data it can determine to which sensor to subscribe with a specific accuracy factor for a
amount of time . The management platform will select another sensor in the delimited
environment for the next subscription and so use only one to n sensor(s) at a time.

2.2.3 Challenges

The challenges of edge-computing are the same that any distributed system as discuss by
Coulouris et al. [20]. heterogeneity, openness, security, failure handling, concurrency,
transparency and quality of service.

28

2.2.4 Peer-to-Peer

peer-to-peer (P2P) systems have always been difficult to define. The RFC number 5694
[46] from November 2009, argues that a system is peer-to-peer only if the element of the
system request services and provide services for and from the other elements. The sys-
tems respecting this definition have been around before 2009, e.g. Bittorrent [47] , Kazaa
[48] and Gnutella [49] are the most common P2P protocols use for the last 12 years. The
paper classify different type of P2P application : content distribution, distributed com-
puting, collaboration and platform. The author claims a popular view about peer-to-peer
distributed computing. It present the basic definition of a distributed system as a com-
puting task divide into subtasks, send to peers for processing, once the work is done, the
results of all the subtasks are return to carry out the main task. The author advice the
choice for using a P2P architecture is case-by-case, depending of the application require-
ment, the security implementation and the trade-off that this kind of system can offer. AN
important part of the P2P application running on smartphone as of today are only imple-
mentation of the some application available on a laptop, desktop or server. One of the
first peer-to-peer network for mobile devices was described by Porras et al. [50]. In this
paper, the authors use the bluetooth technology for creating network connection between
peers and discuss the purposes of this type of system based on the mobility factor. They
implemented a protocol named PeerHood based on devices in a Personal area network
(PAN) connected via Bluetooth. The authors define the basic functionality for a node to
integrate a P2P network has :

• Device discovery

• Service discovery

• Connection establishment

• Data transmission

This four functionalities are essential to create a peer-to-peer protocol.

2.2.5 Load Balancing

Load balancing in a peer-to-peer system can have a multitude of meaning, the term load
can reference to process load, network traffic load or data load. Before going into load
balancing and the algorithms that can be useful to implement.

29

Load balancing in a peer-to-peer system can have different definition depending of the
context of the system, as describe by Felber et al. [51]. In a P2P system a load is the
capacity of an object, e.g. bandwidth, storage space or processor. The author present in
this survey a collection of methods for load balancing in P2P system with DHT. DHT is a
distributed system of key value pair. Each node part of the DHT can retrieve the value (the
data) with the given key. The mapping from keys to values is done by the nodes part of
the network. It offers scalability, failure handling and extremely large numbers of nodes.
The authors compare the load balancing mechanism for object placement, routing and the
underlay protocols. The underlay is define as the network topology supporting the system,
a load imbalance is probable between the peers depending of the path the messages take.
A routing imbalance is created when the nodes have too much messages to route between
the peers. There is a rapidly growing literature on DHT in P2P system, this is one of
the main method to create a peer-to-peer network without the use a control entity or main
directory, containing the shared object name and the peers who have it. DHT algorithm are
implemented in most of the object placement P2P network like Bittorrent. The principle
of the DHT is based on a hash table compose of a key value pair.A hash function is use
on an identifier of a resource, e.g. a filename, to create a key. This key is paired with the
resource to share and put in a message. The message is sent to the nodes participating in
the DHT network until it reach the node(s) responsible for the key. The ownership of the
key is split between the nodes. If a peer want a resource it will request the data from the
network using the key, the overlay will route the request to the peer who has the resource
wanted. The paper conclude on the fact there is none perfect load balancing mechanism
in P2P DHT system for any kind of load.

Rao et al. [52] present three load balancing schemes build around DHT. The mechanisms
presented use the notion of virtual server. A node can have multiple virtual server for
different parts of the keyspace. One of the main plus of virtual server in a P2P DHT
system is the implication for load balancing. The virtual server can be move or split
around the network to a peers with more capacity to handle the load, e.g. a popular
keyspace host by a poor resource server will be transferred to one with more capacity in
term of bandwidth, storage and CPU. The three scheme are :

• One-to-One : transfer of virtual server from a node to another node

• One-to-Many : transfers of virtual server from a node to multiple nodes

• Many-to-Many : transfers of virtual server from multiple nodes to other nodes

The simulation result provide confirmatory evidence of the schemes effectiveness for load

30

balancing in this kind of system, from 80 % of the optimal value for the simpler scheme
to 95 % for the more complex.

Godfrey et al. [53] proposed load balancing scheme in dynamic P2P system. The scheme
proposed is based on virtual server and the combination of two previous scheme : One-
to-One and Many-to-Many. The simulation of the new algorithm prove that the scheme
is able to achieve load balancing for dynamic system with high use. The scalability of
a heterogeneous system is easier to improve by reducing the number of virtual servers
per node. Other approach aims without virtual servers for resolving the issue of load
balancing in peer-to-peer system are define by Xu et al. [54] and with virtual server by
Steele et al. [55]. Xu et al. describe the main elements responsible for effectiveness of
load balancing applied to P2P DHT system. They are : peer heterogeneity, file access
behaviours, and P2P overlay network topology. By maintaining an access history of the
file their scheme is able to predict the future access behaviours. Using this information
they are able to accurately split the workload when a new peer connect to the system.
In this scheme the load redistribution is only made when necessary and not continuously,
this way it reduce the overhead. The last part of the scheme is really interesting for mobile
environment, where zone are defined. Depending of the probability of the future access
to a file by a group of peers, the file is replicate in a zone close to the group. Doing
so will balance the load on multiple peers. In the second article the author implement a
parameter free approach for load balancing in P2P system. In load balancing algorithm
one point is often the same, which peer is going to have more load and the reciprocity,
which one will have less. The selection mechanism is not parameter free, it depend of the
knowledge for each peer of the global capacity of the system for heterogeneity. The author
resolve the problem by using a method to informs the peers about the capacity of each
other randomly. With this data, each peer create a fixed size window of the recent sample
to compute the selection parameter. After implementing the solution in the Swaplinks
algorithm, they obtain simulation result proving the efficiency of this method.

Ledlie et al. [56] discuss load balancing around routing, instead of object placement
contrary the other papers. They propose k-Choices, a load balancing algorithm who differ
from the other by making the workload assignment explicit. This algorithm is able to give
the right amount of work to new peer joining the system. This paper assess different load
balancing method, but their method is better in realistic condition where the other offer
poor performance.

Most of the load balancing method are based on the type of load to balance. There is a
need for multidimensional load balancing approach. The survey from Felber et al. [51]

31

is an example of the challenges of load balancing. In a peer-to-peer system of any kind,
the architect needs to define what is the most important load to balance, from that point a
decision can be made of the algorithm to implement. In resource constrained environment,
more factor will appear, e.g. energy consumption. None of the previous papers assess the
energy needs of the algorithm .

P2P technology can be use media streaming, particularly for video streaming as describe
by Lu et al. [57] and by Wichtlhuber et al. [58]. The authors of the first paper claim that
a content provider peer-to-peer hybrid technology is more efficient to deliver live media
that traditional P2P scheme. The load balancing here is not done by the peers but it is
made by a central authority. In the second paper the authors try to determine a better way
to obtain a energy efficient mobile streaming supported by a P2P network. The energy
consumption of each devices participating in the streaming are taken into account. The
devices that share the media and not only view it will consume more energy. One of the
interesting part of this system is how is selected the bootstrapping host. As previously
explain, a node with the capacity to join a P2P network can only do it if knows at least
one address of an already peer member. In the paper they use one of the mobile communi-
cation technology available on most of the new smartphones :Near Field Communication
(NFC) to send the bootstrap host address. NFC is nowadays normally use for contact less
payment or other information exchange of short size. For becoming a peer and getting ac-
cess to the P2P network, the devices are held back-to-back to exchange the bootstrapping
information, other method exist , e.g. service discovery using multicast DNS, Siljanovski
et al. [59] discuss the challenges in constrained network. The last method do not need
human interaction on the user smartphone. It is preferable for transparent crowdsensing
application.

2.2.6 Message exchange pattern

A message exchange pattern is in telecommunication the pattern of messages needed
by a communication protocol to use a communication channel [60]. This domain as
been research for Service Oriented Architecture (SOA) application. Two major message
exchange patterns exist : request-reply and one-way. With request-reply the first entity
send request message for information to a second entity. The second entity respond to
the request with a reply. Such exchange are similar to a HTTP transaction for loading a
web page. The one-way pattern does not need a response, e.g. UDP. A publish-scribe
messaging channel pattern can be implemented with a set of one-way message. Shahnaz
et al. [61] provide the advantages of this messaging channel pattern such as Many-to-

32

Many messaging, configurable QoS and loose coupling.

33

3 LoadIoT

Mobile far-edge computing is a novel approach to address the challenges posed by the
emerging trend of IoT, particularly the Big data generated by things. We propose a load
balancing scheme that works in the edge, far-edge layers enabling load-balanced process-
ing of data closer to the source. The devices are able to take part in the processing if they
satisfy conditions such as sufficient battery level, storage and CPU capability to perform
processing. Firstly we presents some definitions that we used within the scheme of Loa-
dIoT.

• Load A task that will be distributed among a set of mobile smart peer devices for
execution.

• Peer: A smart device taking part in load-balancing operation. The assumption is,
when a peer participates in the operation, it has sufficient power (energy, processing
and memory) to handle the load.

• Node: A smart devices that will request information from the peer network but not
a participant of the network.

• Service: Each peer participating in the load-balancing operation offer a list of ser-
vices (e.g. task as sensing temperature using on-board temperature sensor, process-
ing data) to other peers.

• Smart Head Peer responsible for managing and handling the load.

• Subscription Request of a service.

3.1 Load Balancing in Peer-2-Peer Mobile Smart Devices: An Illus-
trative Example

We consider a mobile crowd-sensing application scenario that captures the noise level in
different locations in a smart city environment. Given the growth of IoT, its likely, in the
future, there will be many devices providing this data. Collecting data from all the devices
will be expensive due to unnecessary communication to cloud devices. We take a load-
balanced approach to address this issue. A group of peer mobile smart devices (e.g. within
the same location and connected to the same access point or the network) periodically

34

Figure 7. Noise level example

elect a smart head (leader) using the proposed load balancing scheme (LoadIoT). When
requests from the users (subscription from node) is received, the smart head distribute
the tasks to different peer each of which is responsible to process and respond to the
subscribers request. We use the term producers to classify peers that provide services
(data or processing capabilities).

The Figure 7 represent the scenario. A node (user) request the noise level in the surround-
ing environment. The smart head allocates the task to the peers (producers) A & B. Both
will send to the smart head an audio file originating from their respective microphone.
The smart head will then send it to peer C for processing. After peer C applies a Fast
Fourier Transform to both audio signal, it will emit a report containing the noise level and
the frequency to the smart head which is then forwarded to the node.

35

3.2 Basic

Peer-to-peer can have different meaning, in this project it us the way to express that each
smartphone taking part in the cluster offer and use different services on and from the net-
work peer-to-peer system can be really complex and difficult to implement. Nowadays
peer-to-peer protocols most used are the ones for sharing files between people from dif-
ferent part of the globe using Internet. Bittorrent implemented a well design way to share
information without the need of a centralised server. The protocol is use to connect billion
of nodes to each other.

In our approach, we use a efficient way to exchange messages on the peer-to-peer network.
We minimise the sending of information to reduce the energy consumption. It is possible
due to the limitation imposed on the system.

The aim is to give to one smartphone, call the smart head, the task of allocating process.
If the task process return a value in a specify range of accuracy, the smart head send
the result of the process. The load can be share between the different peers part of the
network. Each task available through services, e.g. in crowdsensing scenario the task is
the access to data, e.g. temperature, humidity or noise. The task can be process locally by
the smart head or send to other peers. The load balancing scheme is able take into account
different factors, e.g. the number of present tasks, the battery usage, the CPU load of each
peer, The smart head is elected for a specific slot of time. After the end of a timer, a
new smart head is elected. This does not stop until all the task have been process or the
peers are not able to fulfil the factor parameters, e.g. smart devices battery are empty or
their threshold has been exceeded.

There is multiple type of messaging pattern for exchanging information in the networked
world. One of them is the publish/subscribe mechanism, as previously described, it offers
advantages and disadvantages. Generally the system has a broker to interconnect the
sender and the receipt of the data. The broker distribute the responses and manage the core
of the system, it is not a IoT sensor or a mobile component. The goal of the application
is to be an energy efficient mobile publish/subscribe peer-to-peer system using a load
balancing algorithm to retrieve IoT sensors data.

The publish/subscribe messaging pattern has been use in the past by other project in rela-
tion with IoT. It offer a two main advantage : loose coupling and scalability. The scala-
bility of this type of system offers a lower level of failure, parallel operation processing,
message catching and non continuous connection.

36

The load balancing scheme is able to work on any kind of smart devices. We are making
the assumption that in the future a important number of things with sensors and processing
capabilities will be available. Already, the ones on smartphones are becoming common.
Even low end Android devices have a minimum of two to three types of sensors :

• Motion : accelerometers, gravity sensors, gyroscopes, and rotational vector sensors.

• Environmental : barometers, photometers, and thermometers.

• Position : orientation sensors and magnetometers.

Those smartphones are equipped with Wi-Fi and Bluetooth technology, it enables them to
connect to WAN and to things with Bluetooth Low Energy (BLE) capability, part of the
Bluetooth 4.0 specification. This technology provide a network communication interface
to low powered devices. The devices can run for a few months on button size battery,
depending of factors : processing power, battery capacity, use of light and deep sleep
mode. In the last two years a number of IoT devices arrived on the market, most are
connected to Internet via a smartphone. Hardware manufacturer and big tech brand started
to make smart watches (Moto 360 , Samsung Gear), connected light bulb (Hue), sport and
health band (Fitbit, Jawbone, Fuel). Those devices are part of the Internet of Things, most
of them rely on BLE and a smartphone for accessing Internet.

3.3 Architecture

3.3.1 Network Topology

Because this study is concentrate on the load balancing and not on the context awareness
and positioning, the system use the define zones of the OpenIoT project. Every area has
its own cluster of smartphone.

37

Figure 8. Smartphones in zones

In the figure 8, we can observe smartphones in delimited zones. A zone is space surface
on a grid bonded by 3 to n point.

The type of communication network that support the system can be multiple :

• Bluetooth

• 3G/4G

• NFC

• Infrared

• WiFi

The type of communication and the network have to support the traffic load that the ap-
plication will generate. Each of this communication technology consume energy at a
different level and co : range, topology and accessibility.

Two of the communication technologies have by default a small range and bandwidth.
For NFC, the smartphones needs to be back-to-back to exchange information. The NFC
antenna is always in the back of a smartphone. For infrared communication the sender
and the receiver need, as with NFC, to be place in a special way to obtain a direct line of
sight for enabling the communication link to transmit and receive.

4G Long-Term Evolution (LTE)7 and 3G Universal Mobile Telecommunication System
(UMTS) network technologies offer a large range and a gateway to Internet. But this

7Standard for wireless high-speed data communication

38

technologies consume a lot of energy and their operator impose a number of different
rule concerning their usage. They offer a simple way to communicate but have too many
constraints.

Bluetooth in its last commercial version, Bluetooth 4.0 Low Energy (LE) , has the best
ratio between limit range, size of the messages and energy consumption. Wifi is also
a solution for the system. The smartphones can be connected together via a mesh or
an access point via Bluetooth or Wifi. The energy consumption of Wifi is higher than
Bluetooth but it offers a higher range of transmission and a higher bandwidth.

3.3.2 Smart Head

A peer-to-peer system offers a modularity and scalability that a traditional system can not.
By designing the system as a peer-to-peer distributed platform it has a built in scalability
factor. The system resources can be multiply without rewriting or adding new code to
the application. Just by providing a new peer to the network, the system will be able
to handle more load, in this case sensor information. However the complexity of the
design and development of a peer-to-peer system is higher than a classical server client
application.

Because of the augmentation of interest of mobile smart devices for services in the future,
linked to new age of smart cities and smart world, a large amount of information will need
to be process. One of the biggest concern can be found the communication in constrained
resources system.

In this system we elect a smart head for each services and tasks handle by the system.
The load is distributed to the peers part of the network. The load attribution depend of
the result of the load balancing algorithm. A peer can only become the smart head after
an election. The election is the moment when every peers who has the capabilities to
become the next smart head send its candidacy on the network. The candidacy integrate
the important information that the load balancing algorithm will need. Because we want
to create a lightweight system to reduce the energy consumption, all the peers run the
election process and determine if they are or not the new smart head.

The process of election is compose of 3 phases :

• Phase 1 : Send candidacy

39

• Phase 2 : Receive candidacy.

• Phase 3 : Run the load balancing algorithm to elect the smart head.

An election happen when a node wants to access services from peers and no smart head
is in place. The LoadIoT scheme operate in two modes: reactive and proactive. The
proactive mode triggers the election process at a predefined intervals time. The reactive
mode starts the election process only when a smart head is required i.e. on a subscription.
The proactive mode offer failure handling and can elect a smart head if the current one
suddenly disappear after a timeout. The reactive mode can use the maximum of a peer
before starting a new election.

In most advance load balancing algorithm, a scheduling policies is needed for queueing
the load to the handling entity, e.g. First In Firs Out (FIFO), Last In Last Out (LILO).
Queueing theory is an entire domain of knowledge, in this work we use a simple first in
first out queue.

For presenting the service discovery and the smart head election, we propose to focus on
the zone 5 of in figure 8. The figure 9 represent the trigger that start the election process in
the standard mode of the system. The service discovery is available through the multicast
network. A node asking for services send a multicast request, all the peers respond with
a list of services available.

The node N1 has a task to distribute to a group of smartphones.No smart head is in place.
After every peer receive the request of the services via a subscription, the election process
begin. During the election state, shown with in orange colour in the figure 10, all the peers
send their candidacy and wait to received the ones of the other electable peers, it stop to
listen to candidacy after a timeout. The system create a list of peers candidacy. This list
is only updated during election proceeding. The peer-to-peer system discuss in Related
Work, have a list of active peer maintain by the system.

40

Figure 9. Subscription send by N1

Once the peers have all the candidacies, the load balancing algorithm determine the new
smart head. In this example, S4 is elected. The other peers know who is the smart head
for service wanted by N1.

41

Figure 10. Election State

The figure 11 represent the state of the system after the election, in red the smart head and
in green the other peers in a standby mode, waiting for the next election. S4 is the peer
managing the load and sending the process result in a notification to N1.

42

Figure 11. S4 send a notification to N1

Figure 12. Sequence Diagram of

43

3.3.3 Messaging Channel Pattern

There are different messaging channel patterns for exchanging information, the traditional
one behind the point-to-point channel, e.g. client/server architecture where the client send
a query to the server, the server send back a response. This method is best for static content
that does not change rapidly. If the client want to access the data again it needs to send a
query and only after getting a response back will know if the data has changed and offer
any interest for the client.

A publish/subscribe channel offer advantage to classical key mechanism in an constrained
environment. In the standard approach, a request is made to obtain an information variable
at diverse time interval. Even if the data available has not change, the query will happen
and will return the same value. If there is no restraint on CPU time, energy and bandwidth,
the traditional mechanism is more efficient than a publish/subscribe model. In this model,
an entity subscribe to a variable .

The subscription is traditionally managed by a main broker. When the data are available
from a source, the publisher push the data to the broker entity. The broker is responsible
to match the publication with the subscription list. If a publication match 1 to n element(s)
in the subscription list, it send a notification to the subscribing entities. The notification
is often sensor data with a timestamps. The validity of an information is managed by
the publishing entity. A publication can be valid and present in the network for a spe-
cific amount of time. When a subscriber is not interested by a variable anymore, it can
unsubscribe by sending a request to the broker.

In mobile smart devices scenario, for a small amount of data produce by a few number
of things, the query method is better. It has less overhead contrary to a publish/sub-
scribe system. But for a system with a big numbers of things, more data are generated,
a publish/subscribe system offers benefits, without constantly sending query, it use less
resource. The overhead can be dismiss because of the said benefits.

In classic system using the publish/subscribe message exchange paradigm a subscription
is a message requesting data respecting conditions. A subscriber (node) is the entity
emitting the subscription. The broker is the entity managing the subscription list and the
delivery mechanism for notifying the subscriber nodes of the request result.

44

Figure 13. Publish/Subscribe Sequence Diagram

In the standard model the broker has a method that can be use by the subscriber to unsub-
scribe a previous subscription as shown by figure 14. When the broker receive an unsub-
scribe request, it will remove the subscription from the list. In the traditional paradigm of
client/server, the broker is the server and the clients are the publisher and the subscriber. A
broker is able to serve multiple client. We use a timeout on the validity of the subscription
to reduce the communication of the entities part of the system.

Figure 14. Unsubscribe Sequence Diagram

We decided to fusion the broker and the publisher in the same entity : the smart head. The
node subscriber send within the subscription the specific condition to trigger a notification

45

message. The subscription contains 6 information for a crowdsensing scenario :

• Expiration time

• Service

• Time interval

• Operation

• Accuracy (range)

• Condition for operation (optional)

The expiration time is generated at the creation the subscription. The peer generator use
the date and time at the moment of the creation and add the validity time to this date.
The result is a future expiration time. The type of task (service), e.g. crowdsensing
application it correspond to the type of sensor. It is the service that every peers share. The
time interval is use by the smart head to schedule the task. The operations are computation
process to execute. The condition object is an optional parameter to the operation, e.g.
in a crowdsensing scenario, it is a value to include in the operation process superior five
means that the operation is superior and the condition is five. The accuracy is a range, it
allows the smart head to test the new value obtain by the peer output against a previous
one. If the difference between the old and new value is not in the range accuracy, a
notification is sent by the smart head to the node requesting information.

3.4 Operation

Our proposed load balancing scheme is responsible for distributing tasks and reducing the
overall resource usage among mobile smart devices. The load in the scope of the project
is a task that comprises a request for data or processing. The aim is to give one smart
device (e.g. smartphone), called the smart head, the task of allocating process according
to specific queries (subscriptions). The list of all the queries comprises the subscription
list. The load needs to be shared between different smartphones within the peer-to-peer
network. Each services, e.g. crowd-sensing scenario the temperature, is a task allocated
by the smart head. We define different parameters as input for the load balancing scheme
as presented in table 2.

46

Table 2. Parameters of Load Balancing scheme

Factors Definitions

X0 Battery stage : charging, discharging, critical, . . .

X1 Battery usage : percentage of the energy left

X2 Processor load : activity the cores

X3 Time delay

X4 Task running

X...

Xn

During the election the peers exchange these parameters via messages called candidacy.
The candidacy integrates the important information (parameters) that the load balancing
algorithm will need. The LoadIoT process running on each peers is able to determine if
it has the capability to become the smart head. If multiple peers have the same value for
the first parameter X0, the scheme will compare the next parameter in the list.

Figure 15. Block Diagram of the LoadIoT scheme

Each block represents one of the core component of the LoadIoT scheme. The smart
head management is responsible of the smart head election. The publish/subscribe bock

47

manage the list of subscription. The peer-to-peer block allows the system to be scalable
and to easily add or remove a peer depending of the capacity and resources of the network.
The last block is the smart devices operating system, it provides hardware information
through an API, e.g. power usage, CPU usage, network connection, Also it contains
the different tasks that the system knows how to process. The tasks (services) change
depending of the implementation of LoadIoT. In a crowdsensing scenario, the task can be
the access to sensor information and localisation data.

LoadIoT scheme use one smart head at a time. If a peer has the need for a bigger and more
complex task, it is able divide the operation and allocate the tasks to peers available on the
network. The appendix 1 present this kind of possible implementation of this scenario.

3.5 Smart Head Election

In the standard model, without any load balancing scheme, when a node try to obtain
data from the network, after sending the query, every peers will send a response. This
generate mass messages and is highly resource wasteful. The use of a load balancing
scheme to allocate tasks to access data is beneficial for the energy consumption of the
entire peers network. The smart head is elected using the load balancing algorithm, it
takes into account the list of all the peers and the factor list.

The Max function compares the parameters (factor) of two candidacies and determines
the smart head using the value attributed to the parameter. The line 2 assigns the value to
the factors depending on the application scenario in use. The line 4 sends the candidacy
to the peer-to-peer network. The next line waits for the candidacy of the other peer partic-
ipating in the smart head election. The function of line 8 is loop through each candidacy
and determine which is the best peer for handling the load.

3.6 Peer-to-Peer

In distributed computing a well known architecture is peer-to-peer. It offers scalability and
decentralization, considering those advantages, we choose a peer-to-peer approach for our
design. In this work, peer-to-peer is the way to express that each devices taking part in
the processing offer and use different services from the peer network. P2P systems can
be really complex and difficult to implement. Nowadays, the most commonly used P2P

48

Algorithm 1 Smart Head Election
1: Assign value to factor X0, ..., Xn .
2: for i = 0→ n do

AssignValue(Xi)

3: Send all factor value in candidacy.
4: for i = 0→ n do

Send(
n∑

i=0

Xi → C)

5: Receive candidacy from all the peers.
6: loopRec(C)

7: Determine smart head.
8: function BESTCANDIDACY(ListCandidacy)
9: best = ListCandidacy0

10: i = 0

11: while i 6= ListCandidacyend do
12: best = Max(ListCandidacyiListCandidacyi+1)
13: i++

14: SmartHeadName = BestCandidacy(C)

protocols are the ones for files sharing in the Internet, eg. Bittorrent. It implements a well
designed architecture to share information without the need of a centralised server. The
protocol is used to connect billion of nodes to each other via the Internet. In our approach,
we use efficient way to exchange messages. We minimise the sending of information to
reduce the energy consumption.

The peer-to-peer protocol allows the system to be scalable. In mobile smart devices sce-
narios, a new devices can appear and disappear of the network for plenteous reason. By
using a timeout in the smart head management, the system can quickly elect a new smart
head if needed. In other cases, a new peer can be added to the system by starting a election
or waiting for the next one. In the figure 16, we present a simple scenario. P1 is the only
peer of the network, no tasking are currently being process. P2 wants to become part
of the system. It start by sending a join candidacy message. P1 send its own candidacy
message and the election of the new smart head start. P1 is elected. After sometime, P1

has to disconnect of the network. Because it is the smart head is has the responsibility
to start a new election process. It then send a candidacy quit message. Starting a new
election that P2 win.

49

Figure 16. Sequence Diagram Peer Join and Quit

50

4 Implementation

We named the implementation presented in this thesis of LoadIoT as LoadIoT’App. Loa-
dIoT’App is an Android proof-of-concept application for mobile crowd-sensing. The
interface integrate different UI components to show and register information. One of the
component is the subscription maker. The maker takes the input parameters for a sub-
scription. The interface provides a graphical view that enables the user to visually see the
crowd-sensing data through time.

As explain in the previous chapter, two types of communication system can be use for
implementing LoadIoT: Wifi and Bluetooth. We discarded 3G, as shown by the study
of Kalic et al. [62], the energy consumption of 3G communication on Android based
smart devices is higher than Wifi for the same amount of data. The best communication
technologies to use is Wifi, Bluetooth providing to much constrain regarding multicast
communication. It provide a simple way to exchange information and we assume that the
configuration to the Wifi network has already been done by the user.

The peer-to-peer architecture implementation in LoadIoT’App solution is use multicast
technology for exchanging information. It compensate the need of establishing a full
stateless P2P stack. Multicast is base on one-to-many communication type, one packet
send to an address is received by many entities. The receiver has the responsibility of
handling the packets and determine its usability.

The implementation of LoadIoT’App was written in Java for the Android platform. The
code use calls to the Android API to obtain information about the battery status. However,
because this implementation is Java base, it can run with some modification on other Java
Virtual Machine (JVM).

For supporting the message exchange in the P2P distributed system we use IP with mul-
ticast UDP. UDP is the best choice because it offers a small footprint compare to TCP.
UDP lacks of error detection, retransmission and the other advantage of TCP but provide
a simple protocol to send information on a network. Because we use the publish/subscribe
model and send result only if a condition is respected, we reduce the emission of packet.
UDP has a limit the packet size of 65535 bytes, all of the messages sent by the system are
inferior to 150 bytes.

In the next sections we describe the messages sent by the system and the inner working
of the scheduling method that start the load balancing algorithm and the election of a new

51

smart head. The appendix content an other implementation of LoadIoT for distributed
image processing.

4.1 Assumption

The environment is defined as a surface on a map. It is devise in different zones. The
system has only one instance of the application running per zone. The zone are a ge-
ographical area defined by coordinated. The mobile smart devices are part of the same
zone if their position is in the zone space as seen in figure 18. We assume that OpenIoT
is taking care of space indexing. The scope on this implementation is reduce at one zone.

OpenIoT is a project co-funded from the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no 287305, with the participation of
research laboratory and companies from the entire world : University of Zagreb Fac-
ulty of Electrical Engineering and Computing (Croatia), Commonwealth Scientific and
Industrial Research Organisation (Australia), Across Limits (Malta), SENSAP Microsys-
tems AE (Greece), Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation (Germany), The École Polytechnique Fédérale de Lausanne (Switzerland),
Athens Information Technology (Greece), The National University of Ireland, Galway
(NUI Galway).

The OpenIoT software platform and middleware are developed by the OpenIoT Consor-
tium and available on Github. All the software code is licenced GPLv3, it is a open
source platform. It is the only IoT open source project for real life scenario. The OpenIoT
Architecture is composed of seven element :

• Sensor Middleware

• Cloud Data Storage

• Scheduler

• Service Delivery and Utility Manager,

• Request Definition

• Request Presentation

• Configuration and Monitoring

52

Figure 17. OpenIoT Main Core Components Functional Blocks

The figure 178 is the OpenIoT main core components functional blocks and represent
the organisation of flow of data. The elements Collect Content / Mobile and Content
Adaptation are the interesting components concerning the data acquisition of the things

(sensors). It use the middleware Extended Global Sensor Networks (X-GSN) for access-
ing the sensors data. The IoT protocols CoAP[63] , MQTT[18] and other extension using
a publish/subscribe messaging pattern are the most use.

Figure 18. Logical view of zones in an environment

8Reproduction allowed by the OpenIoT Consortium

53

4.2 Messages

Messages are the inner part of every communication protocol. They content information,
the payload and the recipient(s) Universally Unique IDentifier (UUID)(s). Because the
system use UDP multicast, every peer receive all the traffic. We use recipients UUIDs has
to be route the messages. It is needed for special message with an unique recipient. A
notification contains the result of a task is always send to one node, this message integrate
in the message header the identification information of the receiver.

4.2.1 Smart head Election

During the smart head election, the candidacy of the peers are send on the network. Be-
cause the payload is compose of different object, we serialise the information using the
JavaScript Object Notation (JSON) format. This format facilitate the exchange of pay-
load in data objects consisting of attribute–value pairs. JSON is compact and the parsing
is faster than other techniques of serialisation.

The converted data objects are human readable. The message are encode in ASCII. The
first letter of the message is the header. It allow the application to determine the type of
the message.

The candidacy message is constructed of :

• peer id : UUID string of 128 bits, generate at each start of the application.

• battery percentage : the remaining battery of the peer.

• CPU load : the state of the peer processor.

e"battery":99.0,"id":"35c2802f-6e0d-42d3-a2a6-0e498292e2d9","load":"0.6225"

Figure 19. Candidacy Message

The figure 19 is an example of candidacy message.

54

4.2.2 Publish/Subscribe Information

The LoadIoT’App use two type of packets, the subscription (task request) and the noti-
fication (task result). The system use the same scheme than previously with JSON for-
matting. The subscription is send as a JSON payload. The notification is simple and
contain only two fields in the payload : the task result (sensor data) and the UUID of
the receiver (node). The messages are differentiate using a header at the beginning of the
packet (simple ASCII). In each message the first character is a pseudo header. However,
the notifications are short and simple information, they do not need to be formatted in
JSON. They are also compose of a header, the UUID of the receiver and the data value.

4.3 Proactive

The proactive mode start a new election after a 5 minutes timer, even if no smart head is
in place. After the first election at the start of the application, the smart head will start the
new election at end of the timer. The newly election smart head will do the same and start
a timer.

4.3.1 State Diagram

The proactive mode allow a regular reelection of the Smart Head, this enable the system
to detect the status of each peer of the network. It offers a chance to the new connected
peer to be a Smart Head.

55

Figure 20. Proactive Stage Diagram

4.4 Reactive

The reactive mode is the default of the application. After receiving the first task request,
it start the election of the smart head. A new election happen in two cases : the remaining
battery of the Smart Head got to the battery threshold or all the task have been process.

4.4.1 State Diagram

The reactive mode will allow the application to use the peer resource for undetermined
amount of time. This duration depend of the task processing. If a peer process multiple
tasks the same time and exceed their validity time, a new election can happen because of
the battery threshold and stop the processing. The user can change the battery threshold.

56

Figure 21. Reactive Stage Diagram

4.5 Interface

The application interface is presented in figure 23, each of the different element are ex-
plain in this list :

1. A : Graphic representing the sensor data

2. B : Indicator for the smart head

3. C : Number of peer taking part in the system

4. D : Number of message send and received from the device

5. E : Sensor type

6. F : P2P functionality

7. G : Accuracy of the data wanted

8. H : Reactive or proactive use of the load balancing algorithm

9. I : Subscribe button

10. J : Battery threshold

57

11. K : Subscription details

12. L : Discover the sensor type in the zone

Figure 22. Android Application

58

Figure 23. Application after election

Figure 24. Interface

59

4.6 Code

The source code of the prototype Android application is available on GitHub9. The pro-
totype Android application required Android OS compatible from API 21.

4.7 Development Environment and Tools

We coded the application using the Android Studio IDE, the application platform is An-
droid Lollipop 5.0. The programming language is Java with JDK version 7. The last
version of the Android Development tools including the Android SDK were use for creat-
ing and debugging the software. To convert Java Object to JSON payload and vice versa,
we use Gson a Google Java library.

9https://github.com/SheepOnMeth/LoadSubPub

60

5 Results & Discussion

In our test we use 3 smart devices for testing the system as seen in the table 3. The
goal is to compare the number of message generated in different scenario of the multiple
configuration system. Also, we aim to validate a model with the output of the experiment
setup.

Table 3. Devices information

Constructor Model Operating System Type

Motorola Xoom Android 4.4.4 Tablet

LG Nexus 4 Android 5.1 Smartphone

ASUS Nexus 7 Android 5.0.2 Tablet

Because the Android API does not give access to the hardware configuration, it is not pos-
sible to modify the power emission rate (TX) of the Wifi antenna to limit the transmission
power [64]. The load balancing scheme limits the number of message exchanged. This
can be applied to other smart devices running different operating system.

The devices are directly connected to a Wifi access point using 802.11g technology. The
Nexus 4 smartphone is a node requesting data and both tablets are peers. Also, we include
in our experiment,a discovery scheme use by the node for finding the services (sensor
type) available on the network.

5.0.1 Scenario

A basic scenario is played three times. A smartphone generates 3 tasks valid for 5 min
with an interval of 10 sec. The first two tasks will overlaps during one minute. The third
is standalone. The tasks are always producing a output. The tablets are running a sensor
simulator outputting new task information every second. In the first scenario, the peers
do not use the load balancing scheme. Every peer handle the task and send back the task
result (sensor data) to the node. This experiment is use to compare the modes of the load
balancing scheme : reactive, proactive and without the scheme.

However, we reproduce the experiment but the battery level of the peers have changed.
Base on the load balancing scheme use in the application, we created a simple tool that

61

simulate the model and the scenario use in the experiment. After validating the model
with the experiment result, we simulate bigger scenarios and discuss the advantage of the
load balancing scheme.

5.1 Results

During the experiment 1, the Nexus 7 handle the load, because its battery level is superior
to the one of the Xoom tablet. It is a constant during the three scenarios.

Table 4. experiment 1

Type N7 TX packets Xoom TX packets Total Packet

Reactive 88 3 91

Proactive 93 4 97

No scheme 90 90 180

However, during the second experiment the smart head change because the Xoom battery
has more energy than the Nexus 7.

Table 5. experiment 2

Type N7 TX packets Xoom TX packets Total Packet

Reactive 62 32 94

Proactive 63 33 96

No scheme 90 90 180

The result provided in the table 5 shows the reactive mode generate more messages than
in the previous experiment.

Deriving from our result, we create a simple model to scale the architecture of the system.
The python code of the model simulation is available in the annexes of the thesis. We
obtain the following result for running the simulation of the experiment 2.

The disparity between the experiment result and the model can be explain by the method
by the fact that only valid UDP packet were captured.

62

Table 6. Experiment 2

Type Total Packets

Reactive 94

Proactive 98

No scheme 182

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
·104

Peers

Pa
ck

et
s

No scheme
Reactive
Proactive

(a) First simulation

0 10 20 30 40 50 60 70 80 90 100

100

150

200

250

300

350

400

450

500

Peers

Pa
ck

et
s

Reactive
Proactive

(b) Reactive and Proactive scheme only

Figure 25. 3 Tasks 15 min

The result enable us to validate the model and simulate bigger system. The figure 25
present the messages generated for a smart devices cluster of different size, from 1 to 100
peers, on a 15 min duration and 3 tasks, as in the first experiment. In fig 26, we simulate
the same experiment as previously but we change the number of tasks and the duration.
The load balancing scheme provide a real advantage for a network with important number
of peers. It reduce the traffic needed to exchange the information between smart devices.

63

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

·104

Peers

Pa
ck

et
s

No scheme
Reactive
Proactive

(a) 30 Tasks 15 min

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

·105

Peers

Pa
ck

et
s

No scheme
Reactive
Proactive

(b) 60 Tasks 30 min

Figure 26. Simulations of different duration and subscription.

0 10 20 30 40 50 60 70 80 90 100

1,800

1,900

2,000

2,100

2,200

2,300

2,400

2,500

Peers

Pa
ck

et
s

Reactive
Proactive

Figure 27. 120 Tasks 60 min

The last figure 27 show that a reactive approach offer better result in term of message
economy.

64

5.2 Summary

The overall result of the simulations shows that less messages are use with the reactive
method. The amount of election needed offer a large saving of energy communication.

Table 7. Economy of Messages

Peers No scheme Reactive Difference

10 910 110 800

50 4550 190 4360

100 9100 290 8810

The energy needed for sending a packet on a wireless medium is less that for receiving
a message, particularly on mobile smart devices. Android OS use a scheme to deactivate
and reactivate the radio hardware rapidly for reducing the energy consumption in a idle
state [64]. This energy needed is divided in two parts, the radio antenna on the wireless
network chip and the energy use by the CPU and memory to process the tasks [65]. How-
ever, the energy for sending a message is not the same for every smartphones and smart
devices. From the energy model provided by Balasubramanian et al. [66] we determine
that the scheme exchanging less data will use less energy for same size packets.

5.3 Environmental Contribution

This work has the potential to have an enabling effect on sustainable development. Know-
ing that the problem exist and obtaining basic information about the issue is one step
closer to find a way to solve it. LoadIoT implementation could be use for accessing and
processing information from air pollution sensors and finding the source of the pollution.

LoadIoT enable mobile far-edge computing in mobile smart devices system, it allow a
better management of resources and an saving of energy. A LoadIoT implementation in
smart cities and environment monitoring scenarios can be foundation for limiting waste-
fulness of future system and application.

The LoadIoT implementation are multiple in future edge computing platform. The main
effect of this type of system in future smart cities and smart factories will have an impact
regarding smart management.

65

6 Conclusion

Our work has proposed a load balancing scheme for distributing tasks onto cluster of
smartphones and multiple scenario. We call this mobile far-edge computing for the IoT
World. We presented the theory foundation bounding our research. We then pressed by
creating a prof of concept implementation on Android based smartphones. We performed
extensive evaluation to validate the feasibility, energy efficiency and the scalability of this
work. Our result show that the proposed scheme work well. Particularly, we reduce the
number of message exchange in crowd-sensing IoT scenario using Android smart devices.

Mobile smart devices offer a platform for the expansion of the far-edge computing paradigm
in smart cities. The application of LoadIoT are multiple has presented in this work, it en-
ables load balancing between devices. Processing data closer to the source can reduce the
response time for specific scenarios. LoadIoT has provide a way to diminish the number
of message exchanged for data acquisition and so save energy on smart mobile devices.

66

REFERENCES

[1] Gartner, Inc. Gartner says smart cities will use 1.1 billion connected things in 2015,
2015. [Online; accessed 11-May-2015].

[2] Libelium. Libelium smart world infographic – sensors for smart cities, internet of
things and beyond, 2013. [Online; accessed 11-May-2015].

[3] Claudio Cobelli, Eric Renard, and Boris Kovatchev. The artificial pancreas: a
digital-age treatment for diabetes. The Lancet Diabetes & Endocrinology, 2(9):679
– 681, 2014.

[4] E.I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and R. Rednic. Edge
mining the internet of things. Sensors Journal, IEEE, 13(10):3816–3825, Oct 2013.

[5] Chun-Wei Tsai, Chin-Feng Lai, Ming-Chao Chiang, and L.T. Yang. Data mining for
internet of things: A survey. Communications Surveys Tutorials, IEEE, 16(1):77–97,
First 2014.

[6] D. Goldsmith and J. Brusey. The spanish inquisition protocol x2014;model based
transmission reduction for wireless sensor networks. In Sensors, 2010 IEEE, pages
2043–2048, Nov 2010.

[7] Michael Till Beck Martin Werner Sebastian field Thomas Schimper. Mobile com-
puting edge: A taxonomy. In The Sixth International Conference on Advances in

Future Internet (AFIN 2014), 2014.

[8] Pacific Northwest National Laboratory. Edge computing, 2013. [Online; accessed
10-May-2015].

[9] Andrew Froehlich. Iot: Out of the cloud & into the fog, 2014. [Online; accessed
11-May-2015].

[10] Arik Gabbai and Kevin Ashton. Kevin ashton describes the internet of things, 2015.
[Online; accessed 11-May-2015].

[11] S. Djahel, R. Doolan, G.-M. Muntean, and J. Murphy. A communications-oriented
perspective on traffic management systems for smart cities: Challenges and in-
novative approaches. Communications Surveys Tutorials, IEEE, 17(1):125–151,
Firstquarter 2015.

[12] K. Sangani. The heat is on. Engineering Technology, 9(7):49–51, August 2014.

67

[13] S. Pandey and V. Tokekar. Prominence of mapreduce in big data processing. In Com-

munication Systems and Network Technologies (CSNT), 2014 Fourth International

Conference on, pages 555–560, April 2014.

[14] M. Serrano, H.N.M. Quoc, D. Danh, M. Hauswirth, N. Kefalakis, J. Soldatos, P.P.
Jayaraman, and A. Arkady. The stack for service delivery models and interoperabil-
ity in the internet of things: A practical case with openiot-vdk. Selected Areas in

Communications, IEEE Journal on, PP(99):1–1, 2015.

[15] Klaus Hartke. Observing Resources in CoAP draft-ietf-core-observe-08. Draft 16,
RFC Editor, December 2014.

[16] G.K. Teklemariam, J. Hoebeke, F. Van den Abeele, I. Moerman, and P. Demeester.
Simple restful sensor application development model using coap. In Local Computer

Networks Workshops (LCN Workshops), 2014 IEEE 39th Conference on, pages 552–
556, Sept 2014.

[17] M. Kovatsch, M. Lanter, and Z. Shelby. Californium: Scalable cloud services for
the internet of things with coap. In Internet of Things (IOT), 2014 International

Conference on the, pages 1–6, Oct 2014.

[18] U. Hunkeler, Hong Linh Truong, and A. Stanford-Clark. Mqtt-s x2014; a publish/-
subscribe protocol for wireless sensor networks. In Communication Systems Soft-

ware and Middleware and Workshops, 2008. COMSWARE 2008. 3rd International

Conference on, pages 791–798, Jan 2008.

[19] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali. Comparison of
two lightweight protocols for smartphone-based sensing. In Communications and

Vehicular Technology in the Benelux (SCVT), 2013 IEEE 20th Symposium on, pages
1–6, Nov 2013.

[20] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed

Systems: Concepts and Design. Addison-Wesley Publishing Company, USA, 5th
edition, 2011.

[21] Hao Qian and D. Andresen. Jade: An efficient energy-aware computation offloading
system with heterogeneous network interface bonding for ad-hoc networked mobile
devices. In Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing (SNPD), 2014 15th IEEE/ACIS International Conference

on, pages 1–8, June 2014.

[22] R. Trobec, M. Depolli, K. Skala, and T. Lipic. Energy efficiency in large-scale dis-
tributed computing systems. In Information Communication Technology Electronics

68

Microelectronics (MIPRO), 2013 36th International Convention on, pages 253–257,
May 2013.

[23] Xuetao Chen, S.M. Hasan, T. Bose, and J.H. Reed. Cross-layer resource allocation
for wireless distributed computing networks. In Radio and Wireless Symposium

(RWS), 2010 IEEE, pages 605–608, Jan 2010.

[24] M. Satyanarayanan. Pervasive computing: vision and challenges. Personal Com-

munications, IEEE, 8(4):10–17, Aug 2001.

[25] J. Skodzik, P. Danielis, V. Altmann, J. Rohrbeck, D. Timmermann, Thomas Bahls,
and D. Duchow. Dude: A distributed computing system using a decentralized p2p
environment. In Local Computer Networks (LCN), 2011 IEEE 36th Conference on,
pages 1048–1055, Oct 2011.

[26] J. Bourgeois, J.-B. Ernst-Desmulier, and F. Spies. Evaluation of a performance
prediction tool for peer-to-peer distributed computing applications. In Parallel and

Distributed Systems (ICPADS), 2009 15th International Conference on, pages 814–
820, Dec 2009.

[27] D. Datla, Xuetao Chen, T. Tsou, S. Raghunandan, S.M. Shajedul Hasan, J.H. Reed,
C.B. Dietrich, T. Bose, B. Fette, and J. Kim. Wireless distributed computing: a
survey of research challenges. Communications Magazine, IEEE, 50(1):144–152,
January 2012.

[28] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D.P. Anderson. Cost-benefit anal-
ysis of cloud computing versus desktop grids. In Parallel Distributed Processing,

2009. IPDPS 2009. IEEE International Symposium on, pages 1–12, May 2009.

[29] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Aiolos: Middle-
ware for improving mobile application performance through cyber foraging. Journal

of Systems and Software, 85(11):2629 – 2639, 2012.

[30] Shumao Ou, Kun Yang, and Jie Zhang. An effective offloading middleware for
pervasive services on mobile devices. Pervasive and Mobile Computing, 3(4):362 –
385, 2007. Middleware for Pervasive Computing.

[31] M.Y. Arslan, I. Singh, S. Singh, H.V. Madhyastha, K. Sundaresan, and S.V. Krish-
namurthy. Cwc: A distributed computing infrastructure using smartphones. Mobile

Computing, IEEE Transactions on, PP(99):1–1, 2014.

[32] M.D. Kristensen and N.O. Bouvin. Developing cyber foraging applications for
portable devices. In Portable Information Devices, 2008 and the 2008 7th

69

IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics.

PORTABLE-POLYTRONIC 2008. 2nd IEEE International Interdisciplinary Confer-

ence on, pages 1–6, Aug 2008.

[33] M.D. Kristensen. Scavenger: Transparent development of efficient cyber foraging
applications. In Pervasive Computing and Communications (PerCom), 2010 IEEE

International Conference on, pages 217–226, March 2010.

[34] Mads Darø Kristensen and Niels Olof Bouvin. Scheduling and development support
in the scavenger cyber foraging system. Pervasive and Mobile Computing, 6(6):677
– 692, 2010. Special Issue PerCom 2010.

[35] J. Parkkila and J. Porras. Improving battery life and performance of mobile de-
vices with cyber foraging. In Personal Indoor and Mobile Radio Communications

(PIMRC), 2011 IEEE 22nd International Symposium on, pages 91–95, Sept 2011.

[36] M.D. Kristensen, M.B. Kjaergaard, T. Toftkjaer, S. Bhattacharya, and P. Nurmi. Im-
proving pervasive positioning through three-tier cyber foraging. In Pervasive Com-

puting and Communications Workshops (PERCOM Workshops), 2011 IEEE Inter-

national Conference on, pages 135–140, March 2011.

[37] F. Busching, S. Schildt, and L. Wolf. Droidcluster: Towards smartphone cluster
computing – the streets are paved with potential computer clusters. In Distributed

Computing Systems Workshops (ICDCSW), 2012 32nd International Conference on,
pages 114–117, June 2012.

[38] E. Aubry, T. Silverston, A. Lahmadi, and O. Festor. Crowdout: A mobile crowd-
sourcing service for road safety in digital cities. In Pervasive Computing and Com-

munications Workshops (PERCOM Workshops), 2014 IEEE International Confer-

ence on, pages 86–91, March 2014.

[39] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila, and
R. Curtmola. Fostering participaction in smart cities: a geo-social crowdsensing
platform. Communications Magazine, IEEE, 51(6):112–119, June 2013.

[40] Xiping Hu, Xitong Li, E.C.-H. Ngai, V.C.M. Leung, and P. Kruchten. Multidimen-
sional context-aware social network architecture for mobile crowdsensing. Commu-

nications Magazine, IEEE, 52(6):78–87, June 2014.

[41] W. Sherchan, P.P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke, and
A. Sinha. Using on-the-move mining for mobile crowdsensing. In Mobile Data

Management (MDM), 2012 IEEE 13th International Conference on, pages 115–124,
July 2012.

70

[42] S.K. Madria and A. Mondal. Crowdsourcing: Dynamic data management in mobile
p2p networks. In Mobile Data Management (MDM), 2012 IEEE 13th International

Conference on, pages 364–367, July 2012.

[43] A. Antonic, K. Roankovic, M. Marjanovic, K. Pripuic, and I.P. Zarko. A mobile
crowdsensing ecosystem enabled by a cloud-based publish/subscribe middleware.
In Future Internet of Things and Cloud (FiCloud), 2014 International Conference

on, pages 107–114, Aug 2014.

[44] Aleksandar Antonic, Vedran Bilas, Martina Marjanovic, Maja Matijasevic, Dinko
Oletic, Marko Pavelic, Ivana Podnar Zarko, Kresimir Pripuzic, and Lea Skorin-
Kapov. Urban crowd sensing demonstrator: Sense the zagreb air. In Software,

Telecommunications and Computer Networks (SoftCOM), 2014 22nd International

Conference on, pages 423–424, Sept 2014.

[45] L. Skorin-Kapov, K. Pripuzic, M. Marjanovic, A. Antonic, and I.P. Zarko. Energy
efficient and quality-driven continuous sensor management for mobile iot applica-
tions. In Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), 2014 International Conference on, pages 397–406, Oct 2014.

[46] Gonzalo Camarillo. Peer-to-Peer (P2P) Architecture:Definition, Taxonomies, Ex-
amples, and Applicability. RFC 5694, RFC Editor, September 2009.

[47] Benbest et. al. Bittorrent — Wikipedia, the free encyclopedia, 2005. [Online; ac-
cessed 11-March-2015].

[48] Func et. al. Kazaa — Wikipedia, the free encyclopedia, 2004. [Online;accessed
11-March-2015].

[49] Archivist et. al. Gnutella — Wikipedia, the free encyclopedia, 2003. [Online; ac-
cessed 11-March-2015].

[50] J. Porras, P. Hiirsalmi, and A. Valtaoja. Peer-to-peer communication approach for
a mobile environment. In System Sciences, 2004. Proceedings of the 37th Annual

Hawaii International Conference on, pages 7 pp.–, Jan 2004.

[51] P. Felber, P. Kropf, E. Schiller, and S. Serbu. Survey on load balancing in peer-to-
peer distributed hash tables. Communications Surveys Tutorials, IEEE, 16(1):473–
492, First 2014.

[52] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Ion
Stoica. Load balancing in structured p2p systems. 2003.

71

[53] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing
in dynamic structured p2p systems. In INFOCOM 2004. Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications Societies, volume 4, pages
2253–2262 vol.4, March 2004.

[54] Zhiyong Xu and Laxmi Bhuyan. Effective load balancing in p2p systems. In Cluster

Computing and the Grid, 2006. CCGRID 06. Sixth IEEE International Symposium

on, volume 1, pages 81–88, May 2006.

[55] Tyler Steele, Vivek Vishnumurthy, and Paul Francis. A parameter-free load balanc-
ing mechanism for p2p networks. In IPTPS, page 21, 2008.

[56] J. Ledlie and M. Seltzer. Distributed, secure load balancing with skew, heterogeneity
and churn. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings IEEE, volume 2, pages 1419–1430 vol.
2, March 2005.

[57] ZhiHui Lu, XiaoHong Gao, SiJia Huang, and Yi Huang. Scalable and reliable live
streaming service through coordinating cdn and p2p. In Parallel and Distributed

Systems (ICPADS), 2011 IEEE 17th International Conference on, pages 581–588,
Dec 2011.

[58] M. Wichtlhuber, J. Ruckert, D. Stingl, M. Schulz, and D. Hausheer. Energy-efficient
mobile p2p video streaming. In Peer-to-Peer Computing (P2P), 2012 IEEE 12th

International Conference on, pages 63–64, Sept 2012.

[59] A. Siljanovski, A. Sehgal, and J. Schonwalder. Service discovery in resource con-
strained networks using multicast dns. In Networks and Communications (EuCNC),

2014 European Conference on, pages 1–5, June 2014.

[60] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[61] A. Shahnaz, T. Nafees, and F. Azam. Domain based analysis of messaging pat-
terns in service-oriented architecture. In Biomedical Engineering and Informatics

(BMEI), 2012 5th International Conference on, pages 1341–1345, Oct 2012.

[62] G. Kalic, I. Bojic, and M. Kusek. Energy consumption in android phones when
using wireless communication technologies. In MIPRO, 2012 Proceedings of the

35th International Convention, pages 754–759, May 2012.

[63] Klaus Hartke Zach Shelby and Carsten Bormann. The Constrained Application
Protocol (CoAP). RFC 7252, RFC Editor, June 2014.

72

[64] Li Sun, R.K. Sheshadri, Wei Zheng, and D. Koutsonikolas. Modeling wifi ac-
tive power/energy consumption in smartphones. In Distributed Computing Systems

(ICDCS), 2014 IEEE 34th International Conference on, pages 41–51, June 2014.

[65] Yu Xiao, Yong Cui, P. Savolainen, M. Siekkinen, An Wang, Liu Yang, A. Yla-
Jaaski, and S. Tarkoma. Modeling energy consumption of data transmission over
wi-fi. Mobile Computing, IEEE Transactions on, 13(8):1760–1773, Aug 2014.

[66] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. En-
ergy consumption in mobile phones: A measurement study and implications for
network applications. In Proceedings of the 9th ACM SIGCOMM Conference on

Internet Measurement Conference, IMC ’09, pages 280–293, New York, NY, USA,
2009. ACM.

73

List of Figures

1 Cloud & Mobile Far-Edge computing architecture 12

2 Domain of the study . 14

3 Crowd pre-filtering processing for facial recognition 16

4 Thesis Structure . 17

5 a & b : distributed system c : parallel system 21

6 Sequence Diagram of CUPUS logic . 27

7 Noise level example . 34

8 Smartphones in zones . 37

9 Subscription send by N1 . 40

10 Election State . 41

11 S4 send a notification to N1 . 42

12 Sequence Diagram of . 42

13 Publish/Subscribe Sequence Diagram 44

14 Unsubscribe Sequence Diagram . 44

15 Block Diagram of the LoadIoT scheme 46

16 Sequence Diagram Peer Join and Quit 49

17 OpenIoT Main Core Components Functional Blocks 52

18 Logical view of zones in an environment 52

19 Candidacy Message . 53

74

20 Proactive Stage Diagram . 55

21 Reactive Stage Diagram . 56

22 Android Application . 57

23 Application after election . 58

24 Interface . 58

25 3 Tasks 15 min . 62

26 Simulations of different duration and subscription. 63

27 120 Tasks 60 min . 63

A1.1 Pipeline Example . 76

A1.2 Pipeline Implementation . 77

A1.3 User interface and macro-task . 78

A1.4 Micro-task process on two different peers. 78

A1.5 Final macro-task and result. 79

75

List of Tables

1 Smart World Scenarios . 10

2 Parameters of Load Balancing scheme 46

3 Devices information . 60

4 experiment 1 . 61

5 experiment 2 . 61

6 Experiment 2 . 62

7 Economy of Messages . 64

A1.1 Tasks Information . 77

Appendix 1. Use case : Image processing

Another use-case of LoadIoT is distributed image processing among crowds to identify
specific pattern, e.g. colour dominance or faces. This use case is describe as follow :
a user takes a picture with a smartphone. The image is then processed within the P2P
network for identifying three dominant colours. The first step of implementation is to
describe the different tasks part of the process. The micro-tasks and the macro-tasks
compose a pipeline of the entire process. A pipeline example is given in figure A1.1.

Figure A1.1. Pipeline Example

1.1 Pipeline

The first operation or macro-task is the first load locally processed. It divides the pictures
into smaller chunks for processing. This task is handled by the smart head elected by
the LoadIoT scheme within the P2P network. The smart head knows which peer of the
network are able to analyse the chunks of the picture. The smart head is able to choose
the size of each chunk depending on the number of peers available for processing and
allocates the micro-tasks to different peers. After the chunks have been analysed by the
peers, the result is sent to the smart head. The smart head compiles the result and transfers
the data to the user. The table A1.1 present the tasks and their properties. The cost of the
tasks is used during the smart head election as one of the parameters. A peer with more
processing capabilities, multiple cores and high battery percentage, is able to handle more
load than one with one core and small amount of power. The figure A1.2 represent the
pipeline for this implantation.

The macro-task divide the image in two and the micro-task is a simple k-means clustering
approach to identify the three main colours in the image.

(continues)

Appendix 1. (continued)

Table A1.1. Tasks Information

Task Name Type Description Cost

Divide Macro-task Take a picture has a input and divide it in chunks. High

Analyse Micro-task Find the dominant colour in a image chunk. Medium

Report Macro-task Generate report about the colour dominance. High

Figure A1.2. Pipeline Implementation

1.2 Smart devices

The smart devices employed in this use case are Android based. The user must be able
to take a picture and send it to the network for processing. The figure A1.3 present the
android interface of the application with an image loaded. The processing can be done
with Python for Android10 and PIL11. A node produce the image and the peers process
it. The number of participating peers in the process is on the right up corner of the
screen. The slide button below "P2P" enable or disable the availability to process a task.
The focus of this application is to demonstrate the feasibility to LoadIoT implementation
for distributed image processing algorithm. The details of the actual image processing
algorithm are out of the thesis’s scope.

10https://github.com/kivy/python-for-android
11Python Imaging Library

(continues)

Appendix 1. (continued)

(a) Node with picture loaded (b) Peer dividing the image in chunks

Figure A1.3. User interface and macro-task

(a) Analysing left side (b) Analysing right side

Figure A1.4. Micro-task process on two different peers.

(continues)

Appendix 1. (continued)

(a) Reporting final data (b) User screen with information

Figure A1.5. Final macro-task and result.

(continues)

Appendix 2. Simulation

Listing 1. Python Model
! / u s r / b i n / env py thon3
−*− co d i ng : u t f −8 −*−
A l l t h e s u b s c r i p t i o n have t h e same s p e c i f i c a t i o n and w i l l
t r i g g e r a n o t i f i c a t i o n

import a r g p a r s e
import m a t p l o t l i b . p y p l o t a s p l t
import numpy as np

i f __name__ == " __main__ " :

p a r s e r = a r g p a r s e . Argumen tPa r se r ()

p a r s e r . add_argument ("−p " , d e s t =" p e e r " , help =" Number o f p e e r i n t h e s i m u l a t i o n ")
p a r s e r . add_argument ("−s " , d e s t =" sub " , help =" Number o f s u b s c r i p t i o n ")
p a r s e r . add_argument ("−d " , d e s t =" d u r a t i o n " , help =" D u r a t i o n o f t h e s i m u l a t i o n ")

a r g s = p a r s e r . p a r s e _ a r g s ()
d u r a t i o n = i n t (a r g s . d u r a t i o n)
peersmax = i n t (a r g s . p e e r)
sub = i n t (a r g s . sub)

o u t p u t = " Pee r_ "+ s t r (peersmax)+ " _Sub_ "+ s t r (sub)+ " _Dur_ "+ s t r (d u r a t i o n)+ " . d a t "

p r i n t (" M o d e l i s a t i o n Tool ")

p r i n t (" Sub "+ s t r (sub))

sub g e n e r a t e a n o t i f i c a t i o n each t i m e
1 sub v a l i d 5 min g e n e r a t e a average o f 6 n o t i f i c a t i o n s i n one mi nu t e .
n = 6*5* sub ;

D i s c o v e r y and r e s p o n s e

p r i n t (" Base Model ")

F i r s t i r e p r e s e n t t h e d i s c o v e r y mechanism

base = [i + i *n f o r i in range (1 , peersmax + 1)]

p r i n t (" Load B a l a n c i n g ")
r e a c t i v e
0 o v e r l a p p i n g s u b s c r i p t i o n
e l e c t i o n = 1
l o a d 1 = [i + e l e c t i o n * i +n f o r i in range (1 , peersmax + 1)]

p r o a c t i v e
Find t h e number o f e l e c t i o n i n t h e e n t i r e d u r a t i o n
e l e c t i o n e v e r y 5 min
e l e c t i o n = d u r a t i o n / 5

l o a d 2 = [i + e l e c t i o n * i +n f o r i in range (1 , peersmax + 1)]

s a v e p a c k e t = l i s t (np . a r r a y (base) − np . a r r a y (l o a d 2))
p r i n t (" P a c k e t D i f f : "+ s t r (sum (s a v e p a c k e t)))

d a t a = open (o u t p u t , "w")
d a t a . w r i t e (" p e e r "+" "+" base "+" "+" r e a c t i v e "+" "+" p r o a c t i v e "+" \ n ")
i =0

whi le i < l e n (ba se) :
d a t a . w r i t e (s t r (i +1)+ " "+ s t r (ba se [i]) + " "+ s t r (l o a d 1 [i]) + " "+ s t r (l o a d 2 [i]) + " \ n ")
i +=1

d a t a . c l o s e ()

ymax = max (ba se [−1] , l o a d 1 [−1] , l o a d 2 [−1])
p l t . p l o t (base , ’ bs ’ , load1 , ’ bo ’ , load2 , ’ g^ ’)
p l t . a x i s ([1 , peersmax , 0 , ymax])
p l t . y l a b e l (’ P a c k e t s ’)
p l t . x l a b e l (’ P e e r s ’)
p l t . show ()

(continues)

	Introduction
	Problem Statement
	Objective
	Research question
	Research method

	Scenario
	Facial Recognition
	Air Monitoring

	Thesis Structure

	Related Work
	IoT World
	Distributed Computing
	Challenges

	IoT Application
	Edge Computing in IoT
	Crowdsensing
	Challenges
	Peer-to-Peer
	Load Balancing
	Message exchange pattern

	LoadIoT
	Load Balancing in Peer-2-Peer Mobile Smart Devices: An Illustrative Example
	Basic
	Architecture
	Network Topology
	Smart Head
	Messaging Channel Pattern

	Operation
	Smart Head Election
	Peer-to-Peer

	Implementation
	Assumption
	Messages
	Smart head Election
	Publish/Subscribe Information

	Proactive
	State Diagram

	Reactive
	State Diagram

	Interface
	Code
	Development Environment and Tools

	Results & Discussion
	Scenario
	Results
	Summary
	Environmental Contribution

	Conclusion
	REFERENCES
	Pipeline
	Smart devices

