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1. Introduction 

The fast growth of derivatives markets has made them a major part of today’s finance. This 

makes them an interesting and important subject for research as well. Financial innovation has 

brought a myriad of new products to the market over the past decades. In the pace these 

products have spread to the market there has not been a lot of time to gain experience in what 

kind of effects their wide adoption will have. (Sveiby 2012) This is of course a problem for 

regulators who have a lot of work to do to keep up with the innovation. In the past there has 

been failures in the financial industry that demonstrate the need for effective regulation. 

Extensive research is also called for before the wide adaption of new products to prevent the 

mishaps like the Long Term Capital Management case and the subprime crisis. A lot of research 

is already done in this space and the work that the researchers do today is as important as ever.  

This study is done to showcase the development of option pricing models and to test their 

performance compared to the original Black-Scholes Model (1973). The Black-Scholes model 

was revolutionary at its time of introduction and was a big step forward but has later been 

proven to have notable flaws that make its use in its original form questionable. Advanced 

models have been introduced since, that in the light of previous studies perform better. The 

complexity of the models has also grown which makes them more unpractical for professionals 

to use leaving practitioners to balance between usability and accuracy.  

Previous studies have shown the traditional Black-Scholes model to have problems estimating 

prices of certain options because of the constant volatility assumption (Hull and White 1987; 

Derman and Kani, 1994; Dupire, 1994; Rubinstein, 1994). Option pricing models have later been 

developed to take different approaches to volatility estimation, which should give better results 

in estimating option prices.  

The Black-Scholes model has been later modified to deal with volatility with more flexibly and 

these new versions are being used in practice today. At the same time focus in option pricing 
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studies has drifted from the original Black-Scholes model, to the more recently introduced 

models.  In addition to the original Black-Scholes model this study focuses on an ad hoc 

procedure of the Black-Scholes model introduced by Dumas, Fleming & Whaley (1998), that 

smooths the Black-Scholes implied volatilities across exercise prices and times to maturity, and 

a model created by Heston and Nandi (2000) that uses the GARCH process to estimate 

volatility. These models are used to estimate future option prices using DAX index options.  

The major difference between the models is the way they estimate volatility. Volatility is a key 

variable in all the option pricing models and has a significant effect on the estimated theoretical 

option prices. The original Black-Scholes model assumes volatility to be constant which has later 

been proven to be a major problem in the model. Realized volatility is often used in the model 

but according to studies it might not give a good estimate about future volatility. The ad hoc 

Black-Scholes model uses implied volatility to estimate a specific volatility for each option 

depending on its exercise price and time to maturity. The model simply smooths the implied 

volatilities to gain a more accurate estimate. (Dumas et al. 1998) This approach is commonly 

used among practitioners since it is fairly simple but gives more precision to option pricing 

(Berkowitz 2009). The GARCH model used in the study assumes that volatility is a stochastic 

process that has the tendency to return to its long run average. Because the model assumes 

that volatility is a random process and not constant it should be able to price options with more 

precision than the Black-Scholes model. However GARCH based models are not that commonly 

used outside academic studies since they are quite demanding.  

It will be interesting to see how the three fundamentally different models perform in 

comparison. The Black-Scholes model is well-known and has had a great impact to option 

pricing, but the fact is that its questionable assumptions make it vulnerable for mispricing of 

options. The ad hoc Black-Scholes model is more commonly used in practice and is expected to 

perform better. It is still merely simple and easy estimation process compared to the GARCH 

model. The GARCH model however has been to produce accurate and steady estimates but it is 

interesting to find out wheatear its more demanding estimation process makes it notably more 

precise.  
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The main research question of the study is: 

 Which option pricing model predicts option prices most accurately in the DAX option 

market? 

To help answer the main research question a supporting questions is formed, which is: 

 How much does time to maturity and moneyness affect the accuracy of the models? 

The study is constructed in the following way. First, in the theoretical section, the most 

important aspects of options and option pricing are presented and then the latest relevant 

option pricing studies are reviewed. After the theory section the empirical study is presented. 

The empirical section starts with an introduction of methodology and data in addition to a 

closer look to how the option pricing models were used in practice and after that the results of 

the study are presented and the paper ends to a conclusions section. 

 

2. Theoretical framework 
 

In the theory section of this paper we review the most important theoretical knowledge related 

to option pricing. Firstly, since options are derivatives, there is a short overview of different 

derivatives and derivatives markets. It is important to review the whole asset class to see what 

are the parts of this growing and dynamic field. After that we get to the center of the subject 

and take a closer look at options and how they are valuated and used in practice. In the end of 

the theoretical section we look at one integral part in option pricing, volatility. As the last part 

of the theoretical section we take a closer look at the three option pricing models used in this 

study. 
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2.1 Derivatives 
 

Derivatives are an important part of modern finance. They are often used in risk management 

and can be used e.g. as an insurance against price movements. Derivatives are also used to get 

access to assets or markets when trading would be difficult otherwise. There are a myriad of 

different derivatives but they all have one thing in common, their value is derived from the 

underlying asset. The underlying asset is often a simple security like a stock but it can also be 

something a lot more complicated like weather conditions. The most common derivatives are 

swaps, futures, options and forwards. (Hull 2005) 

 

2.1.1 Derivatives markets 
 

First derivatives were developed as early as the 17th century but the derivatives market didn’t 

see much growth until the 1970’s due to lack of a suitable pricing model, low volatility and high 

regulation. In the 70’s the growth in derivatives markets was pushed forward by a number of 

reasons. Volatility in interest rates and exchange rates increased rapidly which created more 

need for hedging against the changes. Deregulation and the growth in international trade and 

finance also contributed to the need of new products for risk management.  One of biggest 

developments in the use of derivatives was the introduction of the Black-Scholes formula for 

pricing options in 1973. Black-Scholes formula immediately became widely used in option 

pricing but it was also utilized to create and price new types derivatives. All of this resulted in 

fast growth of the derivative markets. (Stulz 2004) 

The trade of derivatives is divided in to two different markets, the exchange markets and over-

the-counter (OTC) markets. The exchange market is where individuals trade standardized 

products listed for public trading. Exchange traded derivatives consist mostly of options and 

futures (BIS 2014). The first exchange was the Chicago Board of Trade, established in 1848 

(CBOE 2014a). Trading in the over-the-counter market is done between financial institutions or 
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the financial institutions and their clients. The trading is done privately between the 

participants without an actual exchange. Derivatives traded in OTC markets are forwards, 

options and swaps (BIS 2014). The benefit of the OTC trading is that the traded contracts do not 

have to be standardized and the participants are free to agree on whatever deal they see 

fitting. 

Despite the slow economic growth since the latest financial crisis the derivatives markets have 

still grown at a fast pace. According to Bank for International Settlements (2014) size of the OTC 

market measured in notional amounts of outstanding contracts is 691 trillion US dollars, which 

means a growth of 214% in the past 10 years. The exchange traded derivatives market is 

considerably smaller at notional amount of outstanding contracts of 73 billion dollars. The 

options that are used in this study are exchange traded index options and their amount in the 

market is 6,5 billion dollars. (BIS 2007;2014) 

 

2.2 Options 

Option is a contract that gives the buyer the right to buy or sell an asset at a specific price 

(exercise price) on a specific time (exercise time). An option that gives the buyer the right to 

buy or in other words take a long position on an asset is called a call option. An option that 

gives the right to sell or take a short position on an asset is called a put option. Unlike in futures 

contracts the buyer of an option is not obligated to exercise the option but has a choice. If the 

buyer of an option chooses to exercise the option the seller is obligated to take the other side 

of the transaction. There are two types of options, American options and European options. An 

American option can be exercised at any point of maturity and a European option is exercised 

only at the time of expiration. (Ross, Westerfield, Jaffe 2002 p. 614) 

The buyer of the option pays a premium (price of the option) for the seller, this is guaranteed 

income for the seller, but the profits and losses depend on the relationship between the 

exercise price and the asset price. If the price of the underlying asset is higher than the exercise 

price at the time of expiration, the buyer of a call option makes a profit. On the contrary, a 
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buyer of a put option makes a profit if the price of the asset is lower than the exercise price at 

expiration. The trade of options is a zero-sum-game, the buyers profit is the sellers loss, and 

vice versa. (Ross et al. 2002 p. 616) When the exercise price of a call option is lower than the 

current price of the underlying asset the option is in-the-money and when the exercise price is 

higher, the option is out-the-money. Put options on the other hand are in-the-money when the 

exercise price is above the current market price of the underlying asset and out-the-money 

when the exercise price is below the current price of the underlying asset. If the exercise price 

and the asset price are at the same level the option is at-the-money. (Ross et al. 2002 p. 614) In 

research papers these three stages are commonly referred to as the moneyness of the option.  

Exchange traded equity options are physically settled which means if the option is exercised 

there is an actual equity transaction between the buyer and the seller (CBOE 2014b). But with 

some options this is not possible due to high transaction costs or the type of underlying asset. 

Then the option will be cash settled. This means that if the option is exercised the buyer simply 

receives the difference between current underlying price and the exercise price from the seller 

in cash. One common example of a cash settled option is index options, like the DAX index 

options used in this study. 

 

2.3 Option value 

The value of a sock option is a sum of two parts, its intrinsic value and extrinsic value. The 

intrinsic value is the fundamental value of a financial asset, in this case the payoff of the option. 

The payoff is the difference between the exercise price and the current stock price. (Hull 2005 

p. 186)  Generally the value of a call option increases as the price of the underlying asset 

increases and the value of a put option will increase when the value of the underlying asset 

decreases. Figure 1 represents the value of a call option which exercise price is 53 €. As usual 

the payoff is positive if the stock price is below the exercise price. At the stock price of 53 € and 

under the payoff is zero, so the intrinsic value is zero. However the option has still value 

because the option has extrinsic value left. Extrinsic value is commonly known as time value. It 
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represents the potential that the payoff will be positive before time of maturity. Time value can 

be measured by subtracting intrinsic value from the price of the option. In the diagram time 

value is the space between the two lines. Time value is the premium that the investor pays for 

the current exercise value. Time value will decrease over time as maturity nears. When there is 

less time to maturity the probability of a better exercise value decreases so the time value 

decreases. The decrease does not happen steadily during the maturity but at an accelerating 

rate so the decrease in time value gets faster closer to maturity. 

Figure 1. Option intrinsic and time value 
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Since the possible profits and losses offset each other the expected return for a stock 

investment is zero. Now if the investor had opened a long position in a call option with an 

exercise price of 100 € in the same stock. What would be the expected return? If the premium 

paid for the option is not accounted for and the possible stock prices and the probabilities are 

still the same the expected return for a call option is: 

0 € x 20 % +0 € x 20 % + 0 € x 20 % + 10 € x 20 % +20 € x 20 % = 6 € 

If the stock price is under the exercise price the payoff for the buyer of the option is zero 

because the option will not be exercised and it will expire worthless. This means that the 

expected return for an option can never be under zero but the at same time the whole 

investment can be lost when the options become worthless where as in the stock investment 

the investor would still have possession of the stocks. Taking this risk gives the investor an 

expected return of 6 € which is higher than the stock investments expected return. 

In this simplified approach a theoretical price for the option can be estimated by using expected 

returns. However this model simplifies things a lot and does not account for many factors that 

affect option prices. For one the probabilities for all the possible outcomes of the stock price 

would not be evenly distributed but would be something closer to a normal distribution. Also to 

develop a realistic pricing model more variables should be added to the formula.  

How different variables affect the price of an option are listed in Table 1. Naturally the price of 

the underlying asset affects the options intrinsic value and the therefore the price of the 

option, and as demonstrated above the effect is opposite for calls and puts. Time to maturity 

obviously affects the time value of an option. As the time to maturity decreases so does the 

value of the option. Like in any financial valuation the interest rate have to be accounted for 

because of the opportunity costs that have a small but still measurable effect. Since the 

estimated payoff will be in the future the owner of the underlying asset will have interest costs 

or a loss of interest income for owning the underlying asset, which will reflect to the option 

price. The seller of a call option will get compensation for the costs of carry in a higher option 

premium as the buyer of a put option will get compensation in a lower premium. This is why 

the effect of changes in interest rate is reverse for call and put options. Possible dividends 
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would have to be taken in to consideration because the price of a stock usually drops the 

amount of the dividend at the ex-dividend date and a change in the price of the underlying 

asset naturally affects the option price. All of the first four variables in the table are easy to 

obtain for all most any investor but the last variable, volatility, is more difficult to estimate. This 

is point is also a major difference between the pricing models. Volatility is very important in 

option pricing because after all the changes in price are the reason why options exist. The more 

volatile the price of the underlying asset, the better the odds are, that the underlying price will 

end up further away from the current price by the time of expiration. Therefore rise in volatility 

of the underlying asset’s movements drives up both call and put option prices.  (Ross et al. 2002 

p. 622-628; Natenberg 1994 p. 44-49) 

 

Table 1. Variables affecting option prices 

Variable 
Change in 

Variable 
Call Option Value Put Option Value 

Price of the 

underlying asset 
↑ ↑ ↓ 

Time to maturity ↓ ↓ ↓ 

Interest rates ↑ ↑ ↓ 

Future dividends ↑ ↑ ↓ 

Volatility of the 

underlying asset 
↑ ↑ ↑ 
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2.4 How options are used? 

Options are versatile derivatives that can be used to both speculation and risk management. 

Options may be used in hedging against changes in asset prices. For example if an investor has a 

substantial position in a stock he might want insurance against unexpected changes in the 

price. Options offer a way of managing risk of sudden fluctuations in stock prices. An investor 

can insure himself against losses by buying put options of a stock that the investor has a long 

position in. For this insurance the investor has to pay a fee the amount of the option premium. 

Many companies use options for risk management and hedging is very common in the 

corporate world and by using options for hedging companies can also enjoy the possible upside 

in the risk they are hedging against. With futures or forwards this would not be possible but 

because with options the company has the right but not the obligations to exercise the options 

they can choose not to exercise. Options also offer possibilities to return structures that could 

not be achieved by a direct investment in the underlying asset. With a simple stock investment 

the only possibility to gain is if the stock goes up but with a put option investment an investor 

can gain if the stock goes down. There are multiple strategies available for an option trader to 

gain from stock price movements. By combinations of buying call and put options investors can 

even gain weather the stock goes up or down. (Ross et al. 2002 p.618) 

 

2.5 Volatility 
 

Volatility expresses the uncertainty of the returns. It can be defined as the standard deviation 

of the returns over a certain time. If volatility is high the probability that the stock will perform 

exceptionally well or exceptionally poor is high. Therefore the probability that an option is in-

the-money at the time of expiration is higher when the volatility is high. As it can be seen there 

is a distinct connection between volatility of the underlying asset and the returns of the option. 

This also leads to the fact that the volatility of the underlying asset has a major impact on the 

option price.  
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Historical or realized volatility can be calculated from historical data but future volatility is more 

difficult to estimate. Calculation using the realized volatility is the simplest way but the problem 

is how long the sample should be. Longer sample might make the estimate more accurate but 

since volatility is not constant over time the past returns might not be a good estimate of the 

future volatility. There are numerous ways to estimate volatility statistically in addition to 

realized volatility. Moving average models smooth the random price fluctuation and form a 

lagged trend for volatility. Two well-known moving averages are SMA (Simple moving average) 

and EWMA (exponentially weighted moving average) which gives more weight to the latest 

observations. Autoregressive models have become popular in academic research due to their 

good future volatility forecasting ability. Some common autoregressive models are ARMA 

(autoregressive moving average), ARCH (autoregressevie conditional heteroscedasticity) and 

GARCH (generalized autoregressive conditional heteroscedasticity). The motivation behind 

ARCH and GARCH models is that, there is a relationship between todays squared returns and 

past squared returns. ARCH and GARCH models utilize this relationship to estimate volatility. 

(Abdella & Winker 2012) This way they can forecast future volatility very accurately by using the 

past returns. 

It is difficult to estimate future volatility because it is impossible to know exactly what will 

happen in the future. Statistical methods only work with historical data and don’t have 

knowledge of up coming events that might effect volatility. Investor expectations of future 

volatility often differ from statistical estimations. What the investors in the market expect for 

future volatility is known as implied volatility. This markets estimate of the future volatility can 

be estimated using the Black-Scholes formula. Implied volatility can be obtained by setting the 

Black-Scholes price estimate to match the current market price of the option, and keeping all 

the other variables constant and then solving volatility from the formula. Option traders can 

use this information to evaluate if an option is under or overvalued. (Natenberg 1994 p.73-74) 
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2.6 Option pricing models 
 

During the history of option pricing there have been numerous pricing models introduced. 

Large number of these models was motivated by the original Black-Scholes model and its strict 

assumptions of constant volatility, and normal distribution of returns. To relax these 

assumptions multiple new models have been created that also perform better than the Black-

Scholes model. It is difficult to divide the pricing models in to groups since a lot of the models 

have similarities but also differences at the same time. In this section we will go through the 

most important option pricing models and after that take a deeper look in to the three models 

used in this study. 

 

 

2.6.1 Stochastic models and Binomial Trees 
 

Since the introduction of the Black-Scholes model, a large part of the studies has focused on 

stochastic models. Constant elasticity of variance (CEV) model was one of the first models that 

assumed volatility to be a stochastic process (Cox 1975) and it also allowed correlation of the 

underlying asset and volatility. The model was not very successful but better stochastic models 

have been introduced since. The results of stochastic volatility models in option pricing have 

been studied by Hull and White (1987), Amin and Ng (1993) and Heston (1993) and many 

others who all formed their own stochastic volatility models. These stochastic models differ 

from each other in their volatility estimation process. Hull and White used geometric Brownian 

motion, Scott (1987) used a mean reverting process and Wiggins (1987) used a Wiener process. 

Melino and Turnbull (1990, 1991) have also reported that stochastic models are successful in 

currency options. A major problem with many stochastic models is that they are not in a closed-

form which means that there is no analytical solution available and their use requires Monte-

Carlo simulation or another form of numerical solution to estimate option prices. This means 

they are very demanding to use but it is difficult to say which type of solution is more accurate 

in option pricing (Chistoffersen, Jacobs & Mimouni 2006). In addition some of the models very 

questionably assume there is no correlation between returns of the underlying asset and 
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volatility (Nandi 1996). However Heston (1993) have created a closed-form stochastic model 

which allows correlation between underlying asset and volatility. Heston’s model was originally 

applied to bond and currency options but Nandi (1996) showed that it can also be used to price 

index options successfully. Hestons model later had a significant influence in the development 

of GARCH based option pricing models. 

 

Most of option pricing models have been created for European options but one type of pricing 

models is known for its easy application to American options, the binomial three approach. First 

binomial three models where motivated by the original Black-Scholes model. Cox, Ross and 

Rubinstein (1979) created a simplified alternative for the Black-Scholes model using binomial 

threes. Their model was also easier to adjust to different situations and for this reasons 

binomial threes are also used in practice. However one drawback of binomial threes is that in 

some cases their numerical solutions can be very demanding.  (Korn & Müller 2010) 

 

 

2.6.2 ARCH and GARCH models 
 

Most recent studies have focused on models that use more advanced methods to estimate 

volatility and GARCH models have been a common subjects in research papers. ARCH model 

suggested by Engel (1982) is the base of the GARCH model. ARCH models assume non-constant 

volatility and allow conditional variance to change over time as the function of past errors while 

the unconditional variance stays constant. This meaning that the model identifies that the 

uncertainty of variation often changes over time because volatility often appears in clusters 

where large changes in returns tend to be followed by large changes, and small changes are 

often followed by small changes. Due to the non-negativity constrains of the conditional 

variance in the ARCH model Bollerslev (1986) extended the model to have a more flexible lag 

structure so the non-negativity constrains would not be met so easily and created the first 

GARCH volatility estimation model. Option values are affected greatly by volatility of the 

underlying asset and GARCH process seems to be a very good fit to estimate volatility in time 

series so naturally the GARCH process was applied to option pricing as well. Heston and Nandi’s  
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(2000) closed-form GARCH model is one of the well-known option pricing models that are 

based on the GARCH process. Another GARCH model that has been often seen in empirical 

studies is Duan’s (1995) NGARCH model that is based on the work of Engle and Ng (1993) on 

asymmetric volatility. However Duan’s NGARCH model is more difficult to implement and 

requires numerical solution to estimate option prices, whereas the closed-form Heston and 

Nandi’s GARCH model can be solved analytically. 

 

 

2.6.3 Black-Scholes model 
 

In 1973 Fischer Black and Myron Scholes introduced the option pricing model known as the 

Black-Scholes model. In their study they successfully used the formula for dynamic hedging and 

showed how risk could be eliminated from a portfolio of stocks and options. This formula was a 

major step forward in stock option pricing and lead to the beginning of fast expansion in 

derivatives markets. (Ray 2012)  

The Black-Scholes formula: 

𝐶𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) 

𝑃𝑢𝑡 𝑜𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒 = 𝐾𝑒−𝑟𝑇𝑁(𝑑1) − 𝑆0𝑁(𝑑2) 

where, 

    𝑑1 =
ln (

𝑆0

𝐾 ) + (𝑟 +
𝜎2

2 ) 𝑇

𝜎√𝑇
 

𝑑2 =
ln (

𝑆0

𝐾 ) + (𝑟 −
𝜎2

2 ) 𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇 

𝑆 is price of the underlying asset, 𝐾 is exercise price, 𝑟 is risk-free interest rate, 𝜎 is volatility, 𝑇 

is time to maturity and function 𝑁(𝑥) is the cumulative probability distribution function for a 

standardized normal distribution.  
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The Black-Scholes model is very straightforward and easy to implement. It only requires five 

input variables that, with the exception of volatility, are all available for investors and are 

objective figures that do not require human judgment. Under the assumptions made in the 

model, the value of an option depends only on the price of the underlying asset and time to 

maturity and on variables that are taken to be constants. It also provides a closed-form 

solution. The model was originally created for European call and put options for non-dividend-

paying stocks but he formula has been later adjusted to dividend paying stocks as well (Hull 

2005 p.281; Natenberg 1994 p.44).  

The Black-Scholes model is the cornerstone of derivatives pricing theory but there is a common 

understanding that it exhibits two pricing errors systematically. One of the models assumptions 

is that the underlying asset price returns follow a geometric Brownian motion with constant 

volatility. (Black & Scholes 1973) It has been later noticed that this is not an accurate 

description of reality. According to the assumptions of the Black-Scholes model implied 

volatilities inferred from the market price using the Black-Scholes formula for options that have 

the same underlying asset and expire on the same date but have different exercise should have 

same implied volatility. But it has been empirically proven that in-the-money options and out-

of-money options have higher implied volatilities than at-the-money options (Rubinstein 1985, 

1994; Derman & Kani, 1994; Ederington & Guan 2002). This phenomenon is known as the 

volatility smile/skew and has been recognized in many option markets but the reason for the 

smile is still under debate. A common opinion is that the flawed assumptions of the Black-

Scholes model create the smile but other reasons have also been proposed like inefficiency of 

the option markets. Another documented phenomenon is that implied volatilities for options 

on the same underlying asset with different maturities are different (Black 1975). This second 

known pricing error is known as volatility term structure of implied volatilities. (Duan & Zhang 

2001) 
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2.6.4 Ad hoc Black-Scholes model 
 

Dumas et al. (1998) presented an ad hoc Black-Scholes model in which volatility is estimated 

using a deterministic volatility function (DVF). The ad hoc approach is one of the most common 

methods among practitioners and traders and therefore it is also known by the name 

Practitioners Black-Scholes model. The model smooths implied volatilities across exercise prices 

and times and uses those volatilities in the Black-Scholes model. This way the model adapts to 

the implied volatilities and takes in to consideration that volatilities are not constant. In the 

model volatility is seen as a function of exercise price and time to maturity. Because of its 

impressive performance in empirical tests it is often used as a benchmark in studies for forecast 

accuracy of other models. (Berkowitz 2009)  

Dumas et al. (1998) presented multiple different possibilities for a deterministic volatility 

function. One of their functions was also chosen for this study. In this function volatility is 

estimated as function of both exercise price and time to maturity in the following matter:  

𝜎 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑇 + 𝛽4𝑋𝑇 

Where σ is the implied volatility of an option with exercise price 𝑋 and time to maturity of 𝑇 

and 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4 are model parameters. 

 

2.6.5 Heston and Nandi’s GARCH model 
 

In the year 2000 Heston and Nandi introduced their version of an option pricing model that 

uses the GARCH process. The model defines option prices as functions of asset price and the 

historical asset prices. This is one of the differences to the Black-Scholes model in which option 

prices are functions of current asset prices. It also recognizes the stochastic nature of volatility 

and correlation between volatility and asset returns. The model is similar to Heston’s (1993) 

stochastic volatility model but easier to apply. Easier application for a GARCH model was part of 
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the motivation behind the model (Heston & Nandi, 2000). Which can also bee seen in that the 

model is closed-form and does not require a numerical solution like many other GARCH models. 

Heston and Nandi’s GARCH process presented in risk-neutral form is the following: 

 log(𝑅𝑖(𝑡)) = log (𝑅𝑖(𝑡−1)) + 𝑖 + 𝜆ℎ𝑡 + √ℎ𝑡𝑧𝑡 

where, 

ℎ𝑡 = 𝜔 + 𝛽1ℎ𝑡−1 + 𝛼1(𝑧𝑡−1) − 𝛾1√ℎ𝑡−1)
2
 

 

 
𝑅𝑖  is the underlying assets return at time t,  𝑖 is continuously compunded interest rate, 𝑧𝑡 is a 

standard normal variable and  ℎ𝑡 is the conditional variance of log returns. 𝛼, 𝛽, 𝜔, 𝛾 are model 

parameters determined by maximum likelihood estimation. 𝛼 determines the kurtosis of the 

distribution, 𝛾 controls the skewness or the asymmetry of the distribution of the log returns 

and 𝜆 is a risk premium parameter. 

The value of a European call option is solved from the formula: 

𝐶 = 𝑒−𝑖(𝑇−𝑡)𝐸𝑡[𝑚𝑎𝑥(𝑆𝑡 − 𝐾, 0)] 

 

The value of the call option C, with expiration price of K, that expires at time T is the expected 

payoff calculated using risk neutral probabilities and discounted by the risk free interest rate. 

 

3. Previous Studies 
 

The ad hoc procedure of Black-Scholes has been compared multiple times with GARCH models. 

The general result of these studies has been that the ad hoc Black-Scholes model fits the data 

well in-sample but typically underperforms in out-of-sample comparison to GARCH type 

approaches. Here we will take a closer look at some of the more relevant studies. 
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In Heston and Nandi’s (2000) empirical study with S&P 500 index options showed that their 

GARCH model’s out-of-sample estimations were much more accurate than an ad hoc Black-

Scholes model’s. Their GARCH model beat the ad hoc model in accuracy even when the ad hoc 

models parameters where updated every period and the GARCH model parameters were hold 

constant. When the GARCH model was also updated every period, the out-of-sample accuracy 

got even better. Hsieh and Ritchken (2000) have also compared the models and came to a 

similar result that Heston and Nandi’s GARCH model is more accurate in out-of-sample 

comparison. In the study they compared the ad hoc Black-Scholes, Heston and Nandi’s GARCH 

and Duans (1995) NGARCH models in their out-of-sample pricing performance. According to 

them GARCH models are able to explain the maturity and exercise price biases (volatility smile 

and volatility term structure) very well which makes them more precise in out-of-money and in-

the-money options than the ad hoc Black-Scholes model. Like Heston and Nandi, Hsieh and 

Ritchken state that GARCH models are fairly accurate even when parameters haven’t been 

re-estimated in a long time, especially in relation to the ad hoc Black-Scholes model. 

Majority of the studies are done in the bigger markets like the S&P 500 index option market 

and therefore it is difficult to find relevant studies done in the DAX index option markets. One 

of the studies done with DAX index options is Lehnerts study from 2003. Like many others 

Lehnert used the ad hoc Black-Scholes as a benchmark as he studied the performance of 

GARCH models, including Heston and Nandi’s GARCH model. The result was that Heston and 

Nandi’s GARCH model’s pricing errors where smaller than the ad hoc Black-Scholes model’s in 

the DAX index option market. In the out-of-sample valuations for different moneyness and 

maturity categories Heston and Nandi’s GARCH model was also superior thus confirming the 

findings of Heston and Nandi (2000) in the DAX market. Lehnert also did a comparison of future 

option price forecasting ability for different forecasting time periods. Heston and Nandi’s 

model’s pricing errors stayed quite steady as the period got longer, which gives and indication 

of good forecasting ability. The ad hoc Black-Scholes models pricing errors on the other hand 

varied between the different forecasting lengths, which makes its forecasts more unstable. 

Another important observation that can be made from Lehnerts study is that his result strongly 

indicate a volatility smile in the DAX index options. 
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The ad hoc Black-Scholes and GARCH models have also been tested under economical crisis, 

first by Duan and Zhang (2001) and then by Moyaert and Petitjean (2011). These studies are 

relevant because just like during economic crisis also in the sample used in this study the 

volatility changes a lot during the test period.  Duan and Zhang studied the models under the 

Asian financial crisis using Hang Seng index options. The main conclusion they made was that 

their GARCH model outperformed the ad hoc Black-Scholes model both before and during the 

financial crisis when there were drastic changes in market volatility. GARCH models were also 

more accurate than the ad hoc Black-Scholes model both in-sample and out-of-sample. The 

Moyaert and Petitjean’s study was done in a similar setting to Duan and Zhangs study, during 

the subrime crisis, but the data consisted of Eurostoxx 50 index options and the results 

reported were somewhat different. According to Moyaert and Petitjean’s results the ad hoc 

Black-Scholes model outperformed the Heston and Nandi’s GARCH model. The ad hoc Black-

Scholes was better in the in-sample period when volatility was still lower, but also out-of-

sample, when volatility got higher due to the crisis. The results are not completely comparable 

since they studies used different GARCH models and where done in different markets but they 

still show that the difference in pricing accuracy between the models is very small and is 

depended on the models and the data used. 

Moyaert and Petitjeans study is also relevant because it compared all of the models used in this 

study. The Black-Scholes model is rarely used these days in its original form but Moyaert and 

Petitjeans study can give us a preview of how it did in comparison to the ad hoc Black-Scholes 

and Heston and Nandi’s model. The results of the study show that the original Black-Scholes 

model was clearly outperformed by the other models. Both of the known pricing biases of the 

model are visible in the results and the model has problems especially with short maturity and 

out-of-money options. The other two models don’t seem to have so much of a problem pricing 

options with different maturity and moneyness’.  

Another recent study that used the Black-Scholes model in its original form was done by 

Berkowitz in 2009. In his study he compared the original model to several ad hoc models with 

different deterministic volatility functions. Again the original model was outperformed by the 

ad hoc approach. These result indicate that the original Black-Scholes model really is outdated. 



 20 

Also the pricing biases of the original model seem to be present but with a simple adjustment in 

the ad hoc model they can be corrected quite well and with not much effort. 

 

4. Empirical study 

4.1 Methodology and data 
 

The empirical tests are done by first estimating the optimal parameter values for each model 

using the in-sample data, which is the first six months of the year. Then using those values 

forecasts of future option prices in the out-of-sample (last six months of the year) data are 

estimated. Option pricing models are evaluated by using a loss function (Christoffersen, Jacobs 

2004). There is no consensus on what loss function should be used. Heston and Nandi (2000) 

used RMSEs calculated from the dollar errors ($RMSE) and Lehnert (2003) used %RMSEs. The 

loss function chosen for this study is root mean square percentage error (%RMSE). %RMSEs are 

calculated from the difference between the theoretical prices and market prices. Root mean 

percentage square error is the average of the squared percentage errors between the option 

price estimates and the market prices. By squaring the errors there is no need to deal with 

negative values and it also gives more weight to larger errors.  The %RMSE’s are calculated for 

different maturities (short, medium, long) and moneyness (in-the-money, at-the-money, out-

of-money) categories. The results are presented for both in-sample and out-of-sample periods 

and also for each month of the out-of-sample period separately. In the end the pricing errors 

for the whole period are assessed. 

Empirical research was done by using DAX index call options traded in the EUREX derivatives 

exchange in the time 3.1.2011-30.12.2011. Market prices of the options were compared to the 

theoretical price estimates every week. The weekly observations are primarily Wednesday 

closing prices for each week but if Wednesday’s price were not available Thursday’s price was 

used. If Thursday’s price was not available the week’s price is from Tuesday. This is a common 

practice in studies of this field. Daily DAX index prices were obtained for volatility estimation. 
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The index returns and option market prices were gathered from Datastream.  The data consists 

of 544 weekly option market price observations. Amount of observations divided in to 

maturities and moneyness categories are in table 2. All options that had maturity of under 30 

days were removed from the data because in some cases the percent errors were unusually 

high due to very low prices, especially in deep-out-of-money options. Euribor was used as the 

risk free interest rate for the Black-Scholes and ad hoc models. The correct interest rates were 

chosen based on the maturity of the option. As it has been done in some studies the risk free 

interest rate in the GARCH model was set to zero in order to simplify the estimation process 

since its effect is very minimal in the model (Duan 1995, Schmitt 1996). 

 

Table 2. Amount of observation in the maturity and moneyness categories 

 

  Maturity   

Moneyness Short Medium Long Total 

Out-of-money 62 78 12 152 

At-the-money 31 41 48 120 

In-the-money 17 110 145 272 

Total 110 229 205 544 

 

 

To gain perspective of the data the DAX index returns, volatility and implied volatility during the 

test period were presented in a chart that can be seen in figure 2. As mentioned the economic 

conditions changed during the sample period quite drastically. In the first half of the year the 

index level stays around the 7000 point mark but in the beginning of the second half drops quit 

rapidly to about 6000 index points. At the same time volatility was also stable around 15 % 

during the first half but rose to 20 % when the index fluctuated and volatility had nearly 

doubled by the end of the year. This type of change in the volatility between in-sample and out-
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of-sample will probably affect the pricing errors and but the volatility estimation processes of 

the models to a test. The empirical results will give a good indication which of the models are 

able to handle changes in volatility after the model parameters have been optimized. In the 

chart implied volatility was higher than realized volatility during almost the whole period and it 

also rose after the drop in the index level. Comparing realized volatility to implied volatility it 

can be inferred that the market participants expect the volatility to be higher in the future than 

the realized volatility is. 

 

Figure 2. DAX index returns, volatility and implied volatility during the test period 
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4.2 Model optimization 
 

Realized volatility, which was calculated from the past returns of the DAX index during the in-

sample period, was used as a volatility estimate in the Black-Scholes model for the out-of-

sample forecasts. Annualized realized volatility for the in-sample data was 16,42 % but as it 

could be seen from figure 2 above, implied volatilities were a lot higher during the test period 

so the volatility estimation method for Black-Scholes model might develop in to a problem 

during the option price estimations. As mentioned before realized volatility can also differ a lot 

from implied volatility. Implied volatilities obtained from the Black-Scholes formula for each 

test category are presented in table 3. There is obviously a big difference in the realized 

volatility and what the volatility is assumed to be in the future by the market. The table also 

shows, that just like researchers Ederington and Guan (2002) have noticed, when they studied 

the volatility smile, in-the-money call options have higher implied volatilities. This is also visible 

in the table 3 and indicates that in the DAX index market the volatility smile is in more of a 

skewed form. 

 

Table 3. Implied volatilities in maturity and moneyness categories 

 

  
Maturity 

 
Moneyness Short Medium Long 

Out-of-money 27,73 % 25,57 % 23,79 % 

At-the-money 31,84 % 26,34 % 21,23 % 

In-the-money 40,28 % 27,72 % 25,26 % 

 

 

Ad hoc Black-Scholes option prices estimates were done using a four-step process that started 

with the estimation of volatility. First the implied volatilities for each option were obtained 
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from the Black-Scholes formula by setting the market price as the price estimate and then 

solving implied volatility from the function. After that the regression model presented below is 

created where the implied volatility was set as dependent variable 𝜎 and independent variables 

were exercise price, exercise price squared, time to maturity and exercise price times time to 

maturity. Parameters 𝛽0, 𝛽1, 𝛽2, 𝛽3, and 𝛽4 were estimated using the ordinary least squares 

method and used in the deterministic volatility function to estimate volatility for each of the 

options. The last step was to estimate the theoretical option prices using the Black-Scholes 

pricing formula. 

The regression model: 

𝜎 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑇 + 𝛽4𝑋𝑇 + 𝜖 

The regression model was done using the in-sample data and the model fit the data well. The 

parameter estimates of the model are presented in table 4 and the whole results can be found 

in appendix 1.  

 

Table 4. Ad hoc Black-Scholes regression parameter estimates. 

 

X X^2 T XT 

-0,000092704900 0,000000001704 -0,295372881000 0,000039474500 

 

 

According to the results independent variables explain 89 % of variability in implied volatility. 

How the exercise prices and time to maturity affect implied volatility can be seen in the 

parameters. Both exercise price and time to maturity have a negative effect on implied 

volatility. This seems logic since as mentioned in-the-money options have higher volatilities as 

do short maturity options. Meaning that when the exercise prices are higher, options are 

further away from being in-the-money and have lower volatilities, thus the parameter is 
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negative. And when, when time to maturity is shorter, implied volatility is higher and therefore 

the parameter value for time to maturity in the model is also negative. 

For the GARCH model parameter estimation a sample size of more than 500 observations is 

recommended (Hwang, Pedro 2006). The in-sample period does not have enough observations 

for a reliable GARCH model so daily closing prices for DAX index from 2.1.2009-30.6.2011 were 

used for the parameter estimation of the Heston and Nandi’s GARCH. Number of observations 

in this data is 640 which is enough to have good GARCH estimates. Maximum likelihood 

estimation was used to estimate the model parameters. The MLE estimates for parameters λ, 

α1, ω, β1, annualized stationary volatility ϴ and log-likelihood value can be found in table 5. 

 

 

Table 5. Maximum likelihood estimation of GARCH model parameters  

λ 𝛂𝟏 ω 𝛃𝟏 𝛄𝟏 ϴ Log-Likelihood 

 

6,916 1.316e-22 1.074e-05 0,9423 0 13,64 % 3526,67 

 

 

5. Empirical results 
 

The results are presented in three parts. First the errors from the in-sample period are 

presented for each of the categories of time to maturity and moneyness. This will give an 

understanding of how the maturity and moneyness of the options affect the pricing accuracy of 

the models when the models parameters are optimal. After that the forecasting ability of the 

models in the out-of-sample period is assessed. The out-of-sample errors are also divided in the 

maturity and moneyness categories to see how well the models performance without 

optimization of the parameters. Future option price forecasting ability of the models is also 

compared by dividing the out-of-sample period in to months, which will give a view of how 
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consistent the accuracy of the forecasts is when the forecasting period gets longer. In the end 

the whole combined sample period is evaluated.  

 

5.1 In-sample results 
 

As the results from the in-sample period presented in table 6 indicate the ad hoc Black-Scholes 

model proved to be the most accurate during the in-sample period, just like in the previous 

studies. It had the smallest errors in all of the categories, which means the used volatility 

function fit the data well. This could also be predicted from the regression results where the 

deterministic volatility function was able to explain 89 % of the changes in the implied 

volatilities during the in-sample period. Time to maturity seemed to have only some effect on 

the accuracy of the model and it priced both medium and long maturity options very well. 

Conclusions about the effect is however difficult to make from the in-sample period because 

there was no options with short time to maturity in the period. Moneyness’ effect can be assest 

better. The ad hoc model was very good at pricing in-the-money options but had larger errors 

for at-the-money and out-of-money options.  

The performance of Heston-Nandi’s GARCH model was surprisingly poor compared to the ad 

hoc model. It’s errors in the in-sample period were over four times larger than the ad hoc 

model’s errors. It had major difficulties in pricing out-of-money options and its estimates for at-

the-money options were also quite inaccurate. Time to maturity had less effect on the accuracy 

than with the ad hoc model but pricing errors in the moneyness categories varied a lot more 

than the ad hoc models.  

The original Black-Scholes model was the least accurate of the models. It had the largest pricing 

errors for all the categories except out-of-money options but its overall accuracy did not fall far 

from the GARCH model. The Black-Scholes models relatively small pricing errors may be 

explained by the rather small variation in volatility during the in-sample period. 
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The effect of the changes in the maturity and moneyness categories that are due to different 

implied volatilites in the categories is also visible in the results. The ad hoc model that takes the 

different exercise prices and maturities in to consideration is able to handle these changes a lot 

better than the other two models. This is possibly the reason for its better performance in the 

in-sample period. The original Black-Sholes model was, as expected, affected by the implied 

volatilites but the GARCH models performance was unexpectedly poor in the light of the 

previous studies that had stated otherwise. 

 

Table 6. In-sample RMSEs 

Maturity Black Scholes Ad Hoc-Black Scholes Heston-Nandi GARCH Observations 

Short 

   

0 

Medium 8,23 1,34 5,90 66 

Long 11,39 2,28 9,32 163 

 

10,58 2,05 8,47 229 

     Moneyness Black Scholes Ad Hoc-Black Scholes Heston-Nandi GARCH Observations 

Out-of-the-money 27,72 6,03 29,94 2 

At-the-money 15,91 3,42 15,64 50 

In-the-money 8,04 1,32 3,70 177 

 

10,58 2,05 8,47 229 
Percentage RMSE’s for the in-sample period are calculated from the weekly pricing errors between DAX option market prices 

and model estimates. Maturity is time to maturity in days (Short is 30-120 days, Medium is 120-240 days, Long is 240-360 days) 

and Moneyness is spot prices of the option divided by exercise price (Out-of-money is <0,95, At-the-money is 0,95-1,05, In-the-

money is >1,05). Observations column shows the amount of weekly price observation in the data. 

 

 

5.2 Out-of-sample results 
 

Out-of-sample comparison gives an understanding of the forecasting ability of the models. This 

measures the models’ future volatility estimation ability. By processing this information 

conclusions of how well the models could actually work in practice can be made. Therefore the 

information of out-of-sample performance is more significant than the previous in-sample 

results. The out-of-sample RMSEs are presented in table 7. 
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During the forecasting period errors for all of the models expectedly got larger since the model 

parameter values were not optimal for this period. As it can be seen from the figure 2 the index 

level stayed fairly still during the in-sample period and volatility did not change much during the 

period either. Coming to the out-of-sample period DAX index level dropped and volatility got 

higher. This change in conditions gives us information about how well the models adjust to 

these changes after they have been optimized using only the in-sample data.  

The ad hoc model and the GARCH model seem to be quite evenly accurate in their forecasting 

ability and the original Black-Scholes model has now fallen to the predicted levels of inaccuracy 

compared to the newer models in the way the previous studies indicated. This probably is 

because of the change in the volatility compared to the in-sample period that the models 

volatility estimation process was not able to adapt to. 

The GARCH model is the most accurate in predicting future option prices but only by a thin 

margin. Its pricing errors are smallest when maturity is long and its pricing errors are larger 

when maturity gets shorter. This is in contrast with the in-sample results were the pricing errors 

for options with medium time to maturity were smaller than options that had long time to 

maturity. However this is more in line with the other models. Moneyness of the options 

appears to have similar effect to its price forecasting accuracy than it did in the in-sample price 

estimates. The GARCH model estimates in-the-money options most accurately and accuracy 

drops when the options get further out-of-money, just like in the in-sample period. 

The ad hoc Black-Scholes performs well in out-of-sample estimation. Its overall errors are very 

close to the GARCH model in most of the maturity categories and it performs far better in 

pricing of at-the-money and in-the-money options were its errors are about half of the GARCH 

errors. Ad hoc models accuracy also depends in the maturity of the options similarly than the 

GARCH models. It also has more trouble pricing options with short time to maturity.  

The Black-Scholes model predicts future option prices very poorly. Its overall errors during the 

out-of-sample period are double the errors of either of the other models. This can be explained 

by the changes in volatility over the out-of-sample period that the model fails to handle. Just 

like the ad hoc model and the GARCH model, the Black Scholes model prices short time to 
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maturity options and out-of-money options the most inaccurately and long time to maturity 

options with the most precision.  

It is clear in the results that all the errors change as the function of exercise price and time. This 

indicates that the changes in the implied volatilities are affecting the models. The effect is 

especially large with the Black-Scholes model but the other models seem to be affected as well. 

 

Table 7. Out-of-sample RMSEs 

Maturity Black-Scholes Ad hoc Black-Scholes Heston-Nandi GARCH Observations 

Short 68,86 32,92 31,58 110 

Medium 54,53 23,83 22,02 163 

Long 37,35 15,30 15,80 42 

 

58,13 26,52 25,13 315 

     Moneyness Black-Scholes Ad hoc Black-Scholes Heston-Nandi GARCH Observations 

Out-of-money 77,35 37,46 32,42 150 

At-the-money 44,53 11,36 20,86 70 

In-the-money 16,69 4,53 10,55 95 

 

58,13 26,52 25,13 315 
Percentage RMSE’s for the out-of-sample period are calculated from the weekly pricing errors between DAX option market 

prices and model estimates. Maturity is time to maturity in days (Short is 30-120 days, Medium is 120-240 days, Long is 240-360 

days) and Moneyness is spot prices of the option divided by exercise price (Out-of-money is <0,95, At-the-money is 0,95-1,05, 

In-the-money is >1,05). Observations column shows the amount of weekly price observation in the data. 

 

 

5.2.1 Monthly out-of-sample %RMSEs 
 

This part of the empirical study was done to see how the length of the forecasting time period 

affects the forecasting accuracy of the models. For this the out-of-sample period was divided in 

to months so the forecasting accuracy could be compared between different forecasting times. 

The results are presented in the table 8 where n means how many months ahead the forecast 

are done from the point when the model parameters where optimized. As it can be expected 

the original Black-Scholes model is again the worst performer and all ready two months in to 

the forecasting period its accuracy is very poor. This inaccuracy continues all through the out-
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of-sample period and the model is the least accurate in each month. The errors also vary a lot 

between different period lengths which makes the models predictions unstable. 

The ad hoc models’ forecast one month ahead were extremely accurate and it was the most 

accurate in its projections two months ahead as well. It seems that during the first three 

months of the out-of-sample estimates the model gets more inaccurate as the estimates are 

done further in to the future. 

As it has already been seen form the results the GARCH model out performs the ad hoc model 

in its overall accuracy during the out-of-sample period. This is due to its more consistent 

performance between different estimation period lengths. All though when the estimation 

periods length grows the accuracy of the GARCH model gets worse a lot faster than the ad hoc 

model’s. The difference between accuracy of the forecasts done one month and two months 

ahead is already significantly larger than the ad hoc models. But after that the GARCH models 

predictions are steadier. 

 

Table 8. Monthly out-of-sample RMSEs 

n Black-Scholes Ad hoc Black-Scholes Heston-Nandi GARCH Observations 

1 9,43 1,15 6,09 56 

2 48,52 13,98 27,04 66 

3 75,56 36,71 31,90 55 

4 64,46 32,70 26,64 56 

5 39,09 19,93 12,80 52 

6 65,37 22,35 30,71 30 

 

58,13 26,52 25,13 315 
Percentage RMSE’s are calculated from the weekly pricing errors between DAX option market prices and model estimates. 

Column n shows the length of the forecast period in months. Observations column shows the amount of weekly price 

observations in the data.  

 

5.3 Results for the whole time period 
 

When all observations during the time period were considered the GARCH model was still the 

most accurate but just like in the out-of-sample the margin to the ad hoc model was very small. 
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The original Black-Scholes model was expectedly the most inaccurate. Looking at the results for 

the whole period there is not much data that can be gathered from the table for comparing the 

model performance that couldn’t be seen in the in-sample and out-of-sample results but since 

there are now a lot more observations in each of the maturity and moneyness categories 

conclusions about how time to maturity and moneyness affect the models can be made with 

more reliability. 

As it is clearly visible in the results, time to maturity has an effect on the accuracy of the 

estimations and the errors seem to change as the function of the time to maturity and 

moneyness, just like the implied volatilites. All of the models seem to be the less accurate when 

time to maturity is short. This is possibly because when time to maturity is shorter implied 

volatilities tend to be higher which is also visible in table 3. This insufficiency to price short 

maturity functions due to their different implied volatility is in large part the fault of each 

models volatility estimation processes. The ad hoc Black-Scholes and the GARCH models that 

have more sophisticated volatility estimation processes have a difference of roughly about ten 

%RMSE’s between the medium and short maturity options where the Black-Scholes model 

posts double that. This means that the ad hoc model and the GARCH models explain large part 

of the pricing biases associated with the Black-Scholes model just the results in previous studies 

suggested.  

As expected pricing errors also change due to moneyness. All of the models post very large 

errors for out-of-money options and the errors get smaller when the options are in-the-money.  

A reason for these changes could also be found in implied volatility, as it is known implied 

volatilities change due to moneyness. Again the original Black-Scholes model was the worst 

with the changes in moneyness and had the biggest differences between the categories. The 

two other models had also high errors but had relatively small errors for at-the-money and in-

the-money options. 

The errors for the Black-Scholes model seem to change between all of the moneyness 

categories just like the implied volatilities. But for the ad hoc and the GARCH models the errors 

are relatively small except for the out-of-money options. Besides the implied volatilities there 
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might be another factor that affects the errors. That is the loss function. The errors between 

the theoretical prices and the market prices are considerably higher on short maturity and out-

of-money options than the other categories. The reason for this could be in the way the errors 

are estimated. The %RMSEs calculated from the percentage errors between the theoretical 

prices and the market prices might distort the results. This could indicate that the loss function 

favors certain options. (Moyaert and Petitjean 2011) One possible reason is that the option 

values for short maturity options tend to be lower because of there is not much time value left. 

Out-of-money options on the other hand have low values because there is not much intrinsic 

value. The loss function possibly favors high value options, which puts more weight to the 

errors on low value options and making their %RMSEs larger. This could explain the relatively 

high out-of-money option values of the GARCH and the ad hoc Black-Scholes models. 

 

Table 9. RMSEs for the whole year 

Maturity Black-Scholes Ad hoc Black-Scholes Heston-Nandi GARCH Observations 

Short 68,86  32,92 31,58  110 

Medium 46,22  20,12  18,85  229 

Long 48,61  21,03  19,86  229 

 

43,11  19,74  18,76  544 

     Moneyness Black-Scholes Ad hoc Black-Scholes Heston-Nandi GARCH Observations 

Out-of-money 76,90  37,22  32,39  152 

At-the-money 35,73  8,98  18,91 120 

In-the-money 11,81  2,88  6,91 272 

 
43,11  19,74  18,76  544 

Percentage RMSE’s for the out-of-sample period are calculated from the weekly pricing errors between DAX option market 

prices and model estimates. Maturity is time to maturity in days (Short is 30-120 days, Medium is 120-240 days, Long is 240-360 

days) and Moneyness is spot prices of the option divided by exercise price (Out-of-money is <0,95, At-the-money is 0,95-1,05, 

In-the-money is >1,05). Observations column shows the amount of weekly price observation in the data. 
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7. Conclusions 
 

The purpose of this study was to see how option pricing models have advanced since a notable 

brake in option pricing, the Black-Scholes formula. In this purpose the study was very successful 

and it was clear from the empirical results that the option pricing models have come a long way 

since introduction of the Black-Scholes model. In the empirical study, three different models 

where put to a test in their accuracy and the original Black-Scholes model was far from the 

newer models which indicates that there has been some progress made in option pricing.  In 

the in-sample period the Black-Scholes models performance was quite close the other models 

but because of its miserable out-of-sample results it came clear that the two other models were 

better. This result however was not a surprise since previous studies have come to the same 

results. The more difficult question was that how would the other two models compare with 

each other. After all Heston and Nandi’s GARCH model came on top in overall pricing accuracy 

but there was very little difference between the models. In the in-sample part the ad hoc model 

was very accurate and outperformed Heston and Nandi’s GARCH model but in the more 

important out-of-sample period and overall the GARCH model was more accurate. Even though 

Heston and Nandi’s GARCH model was more accurate in its future estimation accuracy in the 

out-of-sample period the ad hoc model was more accurate in making short term option price 

predictions. So it can be argued that it is best of the models in practice when only short term 

predictions are needed. The two models where in fact so close to each other in many ways that 

it is very difficult to make any definitive conclusions about which one of the models was 

actually the best one. 

All of the models were very similarly affected by time to maturity and had trouble with short 

maturity options. The two newer were better in pricing at-the-money and in-the-money 

options but all of the models seemed to have problems pricing out-of-money options. Again it is 

hard to distinguish the difference between the GARCH model and the Black-Scholes model but 

what is clear is that they both were better than the Black-Scholes model in dealing with the 

changes in implied volatilities. It is difficult to say how much the choice of the loss function 

affected the results but because the loss function was same for all the models they can still be 
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compared (Christoffersen, Jacobs 2004). There is still a lot of improvements to be made so the 

models can effectively deal with volatility term structure and volatility smile. The ad hoc 

approach does already take these phenomena in to account but if the implied volatilities can 

ever be completely dealt with remains to be seen as the reasons for these phenomena are still 

under debate. Future volatility is also impossible to predict with complete accuracy but the 

GARCH model that utilizes a more advanced volatility processing method did a good job in 

making steady future price predictions, just by using historical index prices.  

Based on the empirical results it can be said that the original Black-Scholes model was definitely 

the worst performer in every way. The ad hoc approach and the GARCH model both had their 

advantages and disadvantages. The results for the ad Hoc Black-Scholes model and Heston and 

Nandi’s GARCH model were promising. Both of the models use a different approach to volatility 

estimation. The ad hoc Black-Scholes model factors implied volatility to its estimation process, 

which makes its in-sample estimates and short term future option price forecasts more 

accurate. Heston and Nandi’s model uses the GARCH process, which gives steadier and more 

accurate estimates overall. In the future it would be interesting to see if implied volatilities 

could somehow be combined with the GARCH process in option pricing. Another major concern 

in the development of new option pricing models is practicality. New models should be usable 

among professionals and outside of academics. This does not mean only creating models that 

are practical but also educating practitioners in the use of the new models. 
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Appendices 
 

Appendix 1. Ad hoc Black-Scholes regression results. 

 

Regression Statistics 
    Multiple R 0,944600329 
    R Square 0,892269781 
    Adjusted R Square 0,890363051 
    Standard Error 0,011280747 
    Observations 231 
    

      ANOVA 
     

  df SS MS F 
Significance 

F 

Regression 4 0,238200554 0,059550139 467,9582292 4,592E-108 

Residual 226 0,028759685 0,000127255 
  Total 230 0,266960239       

      

  Coefficients 
Standard 

Error t Stat P-value 
 Intercept 0,788045538 0,039078241 20,1658396 2,00096E-52 

 X -9,27049E-05 1,09543E-05 -8,462885233 3,29811E-15 
 X^2 1,70433E-09 9,93005E-10 1,716333869 0,087471187 
 T -0,295372881 0,04682597 -6,307885946 1,47253E-09 
 XT 3,94745E-05 7,5991E-06 5,194620422 4,5752E-07 
  


