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The electricity distribution sector will face significant changes in the future. Increasing 

reliability demands will call for major network investments. At the same time, electricity 

end-use is undergoing profound changes. The changes include future energy technologies 

and other advances in the field. New technologies such as microgeneration and electric 

vehicles will have different kinds of impacts on electricity distribution network loads. In 

addition, smart metering provides more accurate electricity consumption data and 

opportunities to develop sophisticated load modelling and forecasting approaches. Thus, 

there are both demands and opportunities to develop a new type of long-term forecasting 

methodology for electricity distribution.  

The work concentrates on the technical and economic perspectives of electricity 

distribution. The doctoral dissertation proposes a methodology to forecast electricity 

consumption in the distribution networks. The forecasting process consists of a spatial 

analysis, clustering, end-use modelling, scenarios and simulation methods, and the load 

forecasts are based on the application of automatic meter reading (AMR) data. The 

developed long-term forecasting process produces power-based load forecasts. By 

applying these results, it is possible to forecast the impacts of changes on electrical energy 

in the network, and further, on the distribution system operator’s revenue. These results 

are applicable to distribution network and business planning. 

This doctoral dissertation includes a case study, which tests the forecasting process in 

practice. For the case study, the most prominent future energy technologies are chosen, 

and their impacts on the electrical energy and power on the network are analysed. The 

most relevant topics related to changes in the operating environment, namely energy 

efficiency, microgeneration, electric vehicles, energy storages and demand response, are 

discussed in more detail. 

The study shows that changes in electricity end-use may have radical impacts both on 

electrical energy and power in the distribution networks and on the distribution revenue. 

These changes will probably pose challenges for distribution system operators. The study 

suggests solutions for the distribution system operators on how they can prepare for the 

changing conditions. It is concluded that a new type of load forecasting methodology is 

needed, because the previous methods are no longer able to produce adequate forecasts. 



Keywords: Electricity end-use, electricity distribution, electricity distribution business, 

electricity distribution pricing, future technologies, load forecasting, long-term 

planning, power-based tariff 
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Nomenclature 

Latin alphabet 

a year 

C cost € 

E expectation value 

h hour 

I insulation 

K starting value 

k coefficient  

L levelling coefficient 

n number 

P active power kW 

Q two-week index 

R hourly index 

q electricity end-use 

T outdoor temperature oC 

t time 

W energy kWh 

x variable 

y variable 

z normal distribution 

Greek alphabet 

α temperature dependence parameter 

β coefficient of the outdoor temperature 

η efficiency factor 

σ standard deviation 

Subscripts 

a coefficient 

ave average 

COP coefficient of performance 

DR demand response  

eh electric heating 

ES energy storage 

EV electric vehicle 

ev profile of electric vehicle 

h hour 

HP heat pump 

i time 

in investment 
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k customer 

L lighting 

l indoor-lighting-dependent proportion 

lo losses 

MG microgeneration 

mg profile of microgeneration 

max maximum 

min minimum 

o interruption 

off off 

on on 

om operation and maintenance  

pc peak cutting 

pro proportion 

r customer group 

sv set value 

tod measured 

tot total 

Abbreviations 
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CCA Curvilinear component analysis 
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EA Energy Authority of Finland 

EC European Comission 
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1 Introduction 

The energy evolution transforms the traditional energy system into the future energy 

system. The future energy system may include for instance new types of power 

production, energy end-use, and energy technologies such as energy storages, electric 

vehicles, and microgeneration. All in all, these changes will be very significant for the 

energy sector. The changes in the energy system will also have impacts on the electricity 

distribution. These effects may lead to new and challenging issues in the operating 

environment of the electricity distribution in the future. One example of these challenges 

can be customers’ microgeneration; the customers may produce more electricity than they 

consume. However, the overall impacts of the future challenges on electricity distribution 

have received little attention in the literature so far. The main focus of this doctoral 

dissertation is on investigating what kinds of changes are taking place in the electricity 

distribution environment, how the future energy consumption and powers in electricity 

distribution networks can be forecasted, and what their effects are on the electricity 

distribution business. 

1.1 Overview of electricity distribution 

The main function of electricity distribution is to transmit electricity from the 

transmission networks to the customers everywhere with an adequate quality of supply 

(Willis, 2004). Over the past few decades, the end-customers of electricity distribution 

companies have become more and more dependent on electricity, and their electricity 

consumption has typically increased.  

Electricity distribution is a large-scale operation, which generally involves many issues 

such as network planning, construction, and maintenance. In principle, the distribution 

business can be divided into two parts; operation and planning. The focus of this doctoral 

dissertation is on network planning. Electricity distribution network planning is a long-

term planning task, which requires information from many data systems. Data on the 

present state of the network, including loads, losses, and voltage drops are needed. 

Further, the trends and guidelines for the long-term network development are of 

importance for the network planning (Lassila, 2009). Figure 1.1 introduces long-term 

planning and information flows in the electricity distribution. 
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Figure 1.1. Long-term planning of electricity distribution (Lassila, 2009). 

Long-term network planning establishes the basis for the long-term distribution business. 

The network investments are made over a long period of time, and the lifetimes are 

typically 30–40 years. The cost structure of the distribution business requires the 

distribution business environment to be stable and predictable. It is important for the 

distribution system operator (DSO) to anticipate how electricity consumption will 

develop in the future, because consumption impacts directly on the network planning and 

business. Forecasting energy consumption for years ahead provides valuable information 

for business planning and development of pricing models. Moreover, forecasting 

distribution network powers decades ahead is an important tool in the distribution 

network planning. The importance of forecasting will grow in the future, if the operating 

environment changes. Appropriate development of the future electricity distribution 

networks calls for identification of challenges, and it is also necessary to be able to 

prepare for future changes in the distribution networks (Lohjala, 2005). 

The oldest parts of the present electricity distribution networks in Finland have been built 

over 50 years ago. In practice, this means that renovation needs in electricity distribution 

networks are high. In addition to the renovation needs, the new Electricity Market Act 

defines the limits on the reliability of electricity distribution in Finland. The law requires 

that the electricity distribution operators have to develop their networks such that the 

maximum blackout duration is 36 hours in rural areas and six hours in population centres 
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by 2028 (Electricity Market Act, 2013). The ageing distribution network and reliability 

requirements make the network planning and load forecasting a critical and current 

research topic. In addition, society is more and more dependent on electricity, and 

challenges may be raised by high expectations of the quality of supply and cost efficiency 

of the electricity distribution in Finland. There are also other unstable factors, which may 

have an indirect influence on the distribution business environment. An example of this 

kind of a challenge is possible modifications in the electricity market model. 

A solution to the challenges raised by the changing operating environment could be an 

advanced distribution network, smart grid, which can achieve a higher energy efficiency 

and reliability than the current networks. The distribution networks will very likely 

develop as smart grids in the future. Smart grids may involve different kinds of new loads 

and power production such as microgeneration, energy storages, and various 

measurements and load controls. Smart grids are considered to have potential to save 

energy, promote demand response and new innovations, and enhance the reliability of 

electricity distribution (Rahimi and Ipakchi, 2010). Ultimately, the effects and changes in 

the energy system can be detected only years later. 

Nowadays, more detailed data of the end-customers’ electricity usage are available. Smart 

meters will provide more data on customers’ consumption and other related issues. This 

will revolutionize information of the customers’ electricity usage. In Finland, the majority 

of automatic meter reading (AMR) installations were made by the end of 2013. Hence, 

there is already some evidence that changes in the energy sector are in progress. New 

technologies will have different effects on the DSOs’ operation and networks. For 

instance, some devices and technologies like electric vehicles (EVs) will increase the 

amount of electrical energy transmitted through the distribution network. On the other 

hand, some other solutions such as microgeneration will decrease the amount of electrical 

energy transmitted through the distribution network.  

The key elements for the DSOs are the total electrical energy consumption, peak powers, 

costs, security of supply, and revenue. Energy consumption is an informative indicator of 

the business development in the electricity distribution. The highest peak loads in the 

electricity networks are the most essential element in the dimensioning of the network. 

Similarly, peak loads are a major aspect in the network construction and renovation. 

Further, it is emphasized that the electricity distribution business is a capital-intensive 

trade. A majority of the expenses are comprised of network investments. Investments of 

this kind typically require significant economic resources, and they are made in the long 

term. The major part of the distribution costs depend on powers on the distribution 

network. The higher are the loads, the higher are the costs. The majority of the electricity 

distribution revenues, on the other hand, come from distribution tariffs. Distribution 

tariffs and the DSO’s revenue, again, typically depend on energy consumption. 

This doctoral dissertation aims at developing methodology to forecast changes in energy 

and power volumes. This way, we can produce more information for distribution planning 

and business management. Up-to-date knowledge is highly important because of the 
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efforts put into planning and huge investments made both at the moment and in the future. 

Despite the considerable changes, people will still be dependent on electricity distribution 

for many years ahead. However, the evolving operating environment poses certain 

challenges, and new information of the future trends is urgently needed. If wrong 

decisions and investments are made now, they may prove very costly and difficult to 

rectify. Therefore, information and approximations of the future electricity use and 

operational changes in the electricity distribution network are required. This research will 

introduce new tools to enhance and facilitate DSOs’ operations and planning work. The 

doctoral dissertation also provides new options for DSOs to plan their future strategies. 

1.2 Objectives and research questions of the work 

The main objective of this doctoral dissertation is to develop methodology to forecast 

future electrical loads in electricity distribution networks in the long term. The objective 

can be divided into the following tasks: 

 Identifying the main future energy evolution factors and recognizing the effects 

of future energy technologies 

 Developing the long-term load forecasting process for electricity distribution, 

which can be used to analyse energy and power in electricity distribution 

networks in the future 

 Analysing the effects and results of the future energy technologies on electrical 

energy and power on the electricity distribution networks 10 to 40 years ahead 

 Investigating how to manage the impacts of energy technologies on the 

electricity distribution networks and business  

The work aims at promoting knowledge of the main factors in energy evolution and 

recognizing the effects of future energy technologies on electricity consumption. The 

work identifies changes that will probably take place in the electricity distribution 

operating environment. In addition, the target is to propose solutions on how DSOs can 

survive from the challenges. Changes in the operating environment are already on the 

way; for instance, electricity consumption patterns may be radically different in the 

future, and it is important to recognize the challenges involved in the process. The role of 

energy and power will grow essentially in the future, which further emphasizes the 

significance of load forecasting for DSOs. 

The results of this work can be applied to distribution network planning, and distribution 

networks can be analysed by this methodology over a long-term period. Moreover, DSOs 

achieve valuable knowledge of their future business environment and also obtain new 

tools to develop their business models. However, also other operators such as electricity 

retailers could exploit the methodology of this work in their own businesses.  
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The analysis includes all types of customers, which are connected to a low-voltage 

network. The work concentrates on the Nordic operating environment with a specific 

reference to rural networks. The focus of the work is based on the fact that the DSOs may 

face difficulties in the future: consumption patterns may change, the revenues may 

decrease, and there will be a significant need for investments. The calculations are 

dependent on the geographical location of the network, which means that each network 

area has to be studied individually. Mean hourly powers are used in the power 

calculations. Further, it is pointed out that the dissertation takes into account peak powers 

at an hourly level in the distribution networks. 

The focus of the work is solely on the estimation of electrical energy and power in the 

future distribution networks. Network losses or other network-related issues are not 

addressed in detail. Further, all customer types cannot be studied separately, because there 

is a large variation in customer types and electricity consumptions. For instance, the 

characteristics between service sector customers or the consumption patterns between 

customers of a same type may vary considerably. As to the future energy technologies, 

only the ones that are anticipated to be in common use in the future are taken into 

consideration. Again, the energy efficiency actions are limited to main devices such as 

lighting, heating systems, and insulation of the buildings. 

The research questions in this study are mainly associated with DSOs. The main research 

questions are related to the background of the challenges that the DSOs face in their 

operating environment, the effects of the future technologies, and the approaches to 

manage the changing business environment. In addition, the doctoral dissertation answers 

the following main research questions: 

 How can the future electrical energy and power be forecasted in the distribution 

networks? 

 Which methodologies can be applied to the long-term electricity load forecasting 

in electricity distribution? 

 How will the energy consumption and powers change in the distribution networks 

10 to 40 years forward?  

 What are the effects of the changes on the electricity distribution business? 

 How can the DSOs adapt to the changing operating environment?  

In the dissertation, answers to the research questions are sought by analysing the results 

of the case studies.  However, it is emphasized that the topic is extensive, and thus, all the 

research questions related to the theme cannot be included in the dissertation.  

The dissertation shows that major changes will occur in the electricity distribution in 

Finland. The contribution of this dissertation is the new methodology for the long-term 

load forecasting in electricity distribution. Finland is one of the first countries in the world 

that has launched AMR meters at electricity end-customers. Almost all meters have been 

installed by the end of 2013 (Government Decree 66/2009, 2009). The metering data can 
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be applied to the load forecasting. Currently, AMR data are not yet widely used globally, 

and thus, these data have not been used extensively in the long-term load forecasting. In 

addition to the new forecasting methodology with an AMR data analysis, the 

methodology also observes some future energy technologies.  

The future energy technologies will have significant effects on energy consumption. 

Further, the dissertation includes the key technologies in the long-term load forecasting. 

Typically, new technologies are forecasted in certain conditions at the electricity 

distribution level. The analysis of the effects of the new technologies on electricity 

distribution adds to the novelty value of the dissertation. 

1.3 Scientific contribution 

The main contribution of the doctoral dissertation is the definition of the changes in the 

operating environment and development of modelling methodologies for the long-term 

planning. The scientific contributions are concentrated on the methodology to forecast 

energy and power over a long-term period, and a method to manage the effects of 

changing consumption patterns on the electricity distribution business in the Finnish 

operating conditions is proposed. The contributions of the work can be listed as follows: 

 The work defines the factors that have major impacts on electricity consumption 

and the electricity distribution business. 

 Methodology is proposed for forecasting electricity use in the electricity 

distribution environment in the long term. 

 The work shows the kinds of network load changes that the DSOs have to be 

prepared for. Energy and power may change considerably in the electricity 

distribution networks. This is presented by a new forecasting process. The case 

results show that in the future, network powers will increase and electrical energy 

may even decrease. 

 The work introduces new models for the DSOs to develop their business 

operations and options to manage challenges. For instance, power-based 

electricity distribution pricing is suggested to prevent an increase in network 

loads. 

A new load forecasting process is required, which can take into account the future 

changes. This kind of a forecasting process will include several methods, which are 

applied in different phases of the forecasting process. Some of the most critical challenges 

in the forecasting process are related to the acquisition of information and application of 

different data systems. The forecasting process requires a lot of information from several 

sources, which may be challenging and laborious to make suitable for the process. In 

addition, selection of appropriate parameters and scenarios is a key element in the 

forecasting process.  
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1.4 Outline of the work 

This doctoral dissertation is organized as follows. Chapter 2 addresses electricity 

distribution. The chapter begins with a review of electricity distribution and describes the 

future operating environment of electricity distribution. Furthermore, the chapter presents 

a regulation model, pricing principles, the role of load forecasting, and the benefits of 

smart meters and smart grids. Moreover, the significance of energy and power for the 

distribution sector is analysed. 

Chapter 3 focuses on the history of electricity consumption. Basically, this includes 

traditional electricity usage ranging from an individual customer to the national level. 

Electricity usage trends are also studied; in addition, the chapter researches into the 

drivers for changing electricity consumption. The chapter is concluded with the most 

significant energy technologies and scenarios of the related equipment. 

Chapter 4 provides a literature review and different methodologies to forecast electrical 

loads. It introduces typical long-term load and energy forecasting methodologies and 

describes the most important characteristics of load forecasting in electricity distribution 

networks. The technical part is divided into sections comprising load modelling and load 

forecasting methodologies. 

In Chapter 5, the methodology for long-term electricity load forecasting is investigated 

further. The first part elaborates on the structure of the forecasting methodology. In the 

second phase, the requirements for the data, AMR data processing, and customer 

clustering are demonstrated. Moreover, volume and consumption forecasts and future 

energy technologies are modelled and the forecasting system is described. 

Chapter 6 presents the case studies and their analysis. The chapter evaluates the impacts 

of future energy technologies on the electrical energy and powers at different network 

levels. The impacts of each future energy technology are presented separately. The effects 

on the distribution business are also dealt with. The chapter analyses the DSOs’ 

opportunities to manage the impacts of changes in the electricity distribution business 

environment. The chapter suggests solutions for DSOs to develop their distribution 

system operation and business. It is concluded that load management can be a solution to 

network load challenges. From the economic perspective, new distribution tariff models 

are proposed to manage the electricity distribution business more effectively. Finally, 

conclusions are made and future research questions are considered in Chapter 7. 

1.5 Research activities related to the doctoral dissertation 

In addition to this doctoral dissertation, which is a monograph, the author has written 

publications that are related to the topic of the dissertation but are not included in the 

work. In these publications, the present author wrote and modelled most parts of the 

articles. The co-authors provided comments on the manuscripts. The most relevant of 

these publications are listed below. 
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Tuunanen, J., Honkapuro, S. and Partanen J. (2015), “A novel long-term 

forecasting process for electricity distribution business,” in CIRED 2015, 

International Conference and exhibition on electricity distribution, Lyon, 

France. 

Tuunanen, J., Honkapuro, S. and Partanen J. (2013), “Effects of residential 

customers’ energy efficiency on electricity distribution,” in CIRED 2013, 

International Conference and exhibition on electricity distribution, Stockholm, 

Sweden. 

Tuunanen, J., Honkapuro, S. and Partanen J. (2012), “Managing impacts of 

distributed energy resources and demand response by tariff planning,” in 

NORDAC 2012, Nordic Conference on Electricity Distribution System 

Management and Development, Helsinki, Finland. 

Tuunanen, J., Honkapuro, S. and Partanen J. (2010), “Energy efficiency from 

the perspective of electricity distribution business, in NORDAC 2010,” in Nordic 

Conference on Electricity Distribution System Management and Development, 

Aalborg, Denmark. 

In addition, the present author has been co-author in other publications. As a co-author, 

he provided comments on the manuscripts. The most relevant of these publications are 

listed below. 

Honkapuro, S., Valtonen, P., Tuunanen, J., and Partanen J. (2015), “Demand 

side management in open electricity markets from retailer viewpoint,” in EEM 

2015, 12th International Conference on the European Energy Market, Lisbon, 

Portugal. 

Honkapuro, S., Tuunanen, J., Valtonen, P., Partanen J., and Järventausta P. 

(2015), “Practical implementation of demand response in Finland,” in CIRED 

2015, International Conference and exhibition on electricity distribution, Lyon, 

France. 

Honkapuro, S., Tuunanen, J., Valtonen, P., and Partanen, J. (2014), “DSO tariff 

structures – development options from stakeholders’ viewpoint,” International 

Journal of Energy Sector Management, Vol. 8, Iss. 3, pp. 263–282. 

Honkapuro, S., Tuunanen, J., Valtonen, P., Partanen J., Järventausta, P., and 

Harsia, P. (2014), “Demand response in Finland – Potential obstacles in practical 

implementation,” in NORDAC 2014, Nordic Conference on Electricity 
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2 Electricity distribution operating environment 

The Finnish Electricity Market Act (386/1995) reformed and opened the electricity 

markets to competition in 1995. Consequently, the DSOs’ role changed, and since 1998, 

small-scale consumers have had an opportunity to switch their electricity supplier. In the 

European electricity markets, the operations are commonly divided into electricity 

generation, sales, transmission, and distribution. The markets are open for electricity 

generation and sales, but the transmission and distribution networks have typically been 

natural monopolies (Viljainen, 2005). A basic model of the electricity markets in most of 

the EU countries is presented in Figure 2.1. 

 

Figure 2.1. Typical structure of the electricity markets (Viljainen, 2005). 

Traditionally, the DSO’s function has been to transmit electricity reliably through the 

distribution network to the customers while ensuring an adequate quality of supply and 

reasonable prices (Willis, 2004) and (Haakana, 2013). Over the years, the DSOs’ duties 

have evolved, and also the operating environment has changed in Finland. DSOs have 

developed their services significantly; for instance, some DSOs now offer energy 

consumption information services. However, more services can be developed also in the 

future. DSOs have also developed their business strategies, and some companies have 

outsourced their services such as network construction and maintenance (Brådd et al., 

2006), (Tahvanainen, 2010). This chapter elaborates, for instance, on the importance of 

energy and power, the role of load forecasting, and distribution pricing. Further, the 

chapter describes how the operating environment of electricity distribution has evolved, 

and what kinds of challenges will arise in the future. 

2.1 Electricity distribution business 

There are a total of 81 electricity distribution companies in Finland, and the DSOs have 

over 3 million electricity customers. The Finnish electricity distribution system consists 

of 140 000 km of medium-voltage network lines and 235 000 km of low-voltage lines 

(EA, 2014a). The DSOs operate in varying conditions; there are differences for instance 

in customer structures, distribution networks, and operating environments (Hyvärinen, 

2008). However, the basic elements of distribution business operation are quite similar in 

every company.  
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Electricity distribution business encompasses many elements, which are illustrated in 

Figure 2.2. The figure demonstrates the core and auxiliary functions of the business, 

which are grouped also according to their functionalities. The core operations of the DSO 

are asset management, which covers business operation planning and implementation 

tasks, planning of network development, network construction, and customer service 

(Lakervi and Partanen, 2008). 

 

Figure 2.2. Core and auxiliary functions of the DSO (Lakervi and Partanen, 2008). 

Electricity distribution business determines the wherewithal for the operating 

environment of a distribution system. Moreover, the distribution business is in a 

monopoly position, and the business is regulated by the Energy Authority (EA). The 

authority sets limits on the operation and controls the business. Because investments are 

expensive and the life spans long, the distribution business should be predictable and 

stable in the long term. Figure 2.3 presents a typical cost structure of a DSO. Over half of 

the costs come from financing and investments, which are capital costs. This indicates 

how strongly electricity distribution companies have developed and invested in their 

distribution networks. Only 6 % of the total costs are due to losses. Load losses and 

transmission tariffs to Fingrid are energy-based costs only, whereas other distribution 

costs are mainly dependent on power. Investments and financing costs are based on power 

demand. This can be explained by dimensioning of the grid components, which is based 

on peak loads. The majority of the DSOs’ costs are based on the power demand in the 

electricity distribution. 
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Figure 2.3. Typical cost structure of a DSO (Partanen, Honkapuro, and Tuunanen, 2012). 

Generally, cost minimization is an essential element of business planning. However, 

DSOs’ options to influence certain overall DSO’s costs such as transmission network 

tariffs, losses or financing are slight. In addition to the minimization of the overall costs 

of the distribution business, the role of network cost minimization is significant. 

Electricity distribution design aims at minimizing the total costs of the distribution 

network over the total lifetime of the network. This can be presented as follows (Kivikko, 

2010): 

 𝐶𝑡𝑜𝑡 =∑(𝐶𝑖𝑛 + 𝐶𝑙𝑜 + 𝐶𝑜𝑚 + 𝐶𝑜) (2.1) 

where 

 Ctot total costs of the distribution network 

 Cin investment costs 

 Clo cost of losses 

 Com operating and maintenance costs 

 Co interruption costs 

The DSO can typically achieve the highest benefits in the network cost minimization from 

investment costs and operating and maintenance costs. However, it may be difficult to 

decrease the investment costs; because of the reliability requirements, the amount of 

investments has to be at a high level in the future. On the other hand, DSOs may take 

various approaches to decision-making with respect to investments. Opportunities to 

achieve savings in investment costs are to dimension the network components smaller or 

to find optional ways to build the network. Other options to minimize costs are to decrease 
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the operating and maintenance costs, costs of losses, and outage (interruption) costs. Here, 

operating and maintenance costs play the major role.  

The greatest benefits of the DSO’s overall cost reduction can be obtained if investment, 

operating, and maintenance costs can be reduced. Minimizing costs in the long run is one 

of the challenging tasks in the distribution network design. As it was mentioned above, 

DSOs will have to make extensive investments in the near future. Therefore, cost 

reduction is a highly important and current topic. The costs may increase considerably, if 

wrong decisions are now made in the strategic planning.  

2.1.1 Regulatory model 

The main targets for the companies are usually profit-making and growth. However, 

electrical power networks are in a special position, because they operate in a natural 

monopoly environment. The electricity market reform in the 1990s gave rise to the 

electricity distribution regulation in Finland, which meant new requirements for the 

distribution business. Now, the DSOs have to operate within the limits set by the EA 

(Energy Authority). The regulation is twofold; both technical and economic. Technical 

regulation gives instructions for the building and operation of the power system. 

Economic regulation, again, aims at preventing the misuse of the monopoly position by 

prohibiting companies from overcharging their customers, and ensuring an adequate level 

of service quality (Honkapuro, 2008).  

A DSOs’ maximum allowed profit is determined by the Energy Authority (EA). The EA 

controls the quality of transmitted electricity, and also the profit of electricity distribution 

has to be within certain limits. The EA does not regulate the distribution tariffs, but it 

monitors certain components of the revenue. The target of the regulation is to make the 

monopoly business environment more efficient. The present economic regulatory period 

2012–2015 is the third in Finland. The inputs in the allowed revenue have remained 

almost unchanged between the different periods, but some of the calculation details 

within the scheme have changed. The scheme includes for instance general and individual 

efficiency requirements determined by the efficiency benchmarking for the company. The 

current efficiency benchmarking applies a StoNED (Stochastic Non-Smooth 

Envelopment of Data) model. The efficiency benchmarking generates a reference value 

for actual efficiency expenses. Total expenses (TOTEX) and allowed total expenses 

(ATOTEX) constitute the efficiency bonus in the scheme. Other essential factors having 

an impact on the allowed revenue are the quality bonus, the allowed depreciations, and 

the reasonable return on capital. Figure 2.4 introduces the Finnish regulatory model for 

the years 2012–2015 (EA, 2014c). 
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Figure 2.4. Finnish regulatory model 2012–2015 (EA, 2014c), reproduced from (Haakana, 

2013). 

The replacement value and the net present value can be determined by unit prices, 

network components, lifetimes, and ages. The reasonable return on capital can be 

calculated from the net present value and the weighted average cost of capital (WACC). 

In the Finnish regulatory model, customer outage costs determine a quality bonus or a 

sanction for the DSO for exceeding or failing to meet the performance criteria. The outage 

costs are calculated from interruptions and unit costs (EA, 2014c).  

There is also an investment incentive in the present regulatory model, which aims at 

spurring DSOs to develop their distribution networks and ensure adequate investments in 

the network. The investment incentive comprises two parts: a depreciation method and 

monitoring of the DSO’s adequate investment level. The depreciation method of the 

investment incentive takes into account the straight-line depreciations from the 

replacement value of the DSO’s electricity network. In addition, it takes into 

consideration the planned depreciation on the electricity network assets and value 

adjustments in the DSO’s unbundled profit and loss account (EA, 2014c). 

Over the past few years, the DSOs have encountered challenges both from the technical 

and economic perspectives. In spite of the challenges, the DSOs’ economic preconditions 

for operation have remained adequate in Finland (EA, 2014b). However, distributed 

energy resources (DER) will cause significant changes in the planning and operation of 

power systems. These changes will pose challenges also for the regulation of power 

systems (Pérez-Arriaga et al., 2013). Therefore, new regulatory aspects will have to be 

taken into consideration in the future. 
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2.1.2 Distribution pricing 

Electricity pricing can be divided into distribution charges, retail prices, and taxes. Figure 

2.5 shows the distribution of residential customers’ total electricity costs. The proportion 

of taxes is 34 %, sales 37 %, and transmission 29 %. The total price is 15.57 cent/kWh in 

January 2015 (EA, 2015a). 

 

Figure 2.5. Distribution of residential customers’ total electricity costs (consumption 

5000 kWh, a) in January 2015 (EA, 2015a). 

A typical characteristic of electricity pricing is spot pricing. This means that distribution 

prices are equal for the same type of customers everywhere in the network area. 

Distribution pricing can be based on a fixed tariff (the size of the main fuses), an energy 

tariff (day/night, winter/summer), or active power or reactive power tariffs. For instance, 

residential customers’ total distribution charges consist of fixed and energy tariffs. Figure 

2.6 shows the distribution of the electricity bill of a residential customer into fixed and 

energy-based charges. 

 

Figure 2.6. Distribution of residential customers’ distribution charge divided into energy-based 

and fixed charges, adapted from (EMA, 2013b). 
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Distribution pricing scheme has to ensure predictable and reasonable revenue, and 

encourage the customers to use electricity in a way that is useful for the distribution 

networks. Moreover, a distribution pricing has to be cost reflective to ensure that changes 

in electricity end-use affect the revenues and costs as equally as possible. Interests of 

different stakeholders such as customers, retailers and transmission system operator, have 

to be taken consideration in distribution tariff design. Thus, a distribution and retail tariff 

do not generate signals that conflict with each other (Partanen, Honkapuro, and Tuunanen, 

2012). 

2.1.3 Planning of the electricity distribution network 

Strategic planning of electricity distribution networks plays an important role in the asset 

management of DSOs. The long-term operations and the capital-intensive nature of the 

DSOs emphasize the significance of strategic planning. An appropriate strategy increases 

awareness of the challenges involved in the operating environment and the future targets 

of the DSO. The role and interdependences of strategic planning are illustrated in Figure 

2.7. An efficient and workable strategy takes into consideration the requirements and 

opportunities arising from the business environment, owners, and economic regulation. 

Moreover, the strategy has to provide valuable knowledge for the management (Lassila 

et al., 2011). 

 

Figure 2.7. Role of strategic planning (Lassila et al., 2011). 

Annual investment schedules are part of strategic planning. These schedules are based on 

investment planning, which is an essential element of strategic planning. Among the key 

inputs of investment and general plans are load forecasts. Especially, long-term load 

forecasts generate important knowledge of the changes and development in the business 

environment.    
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2.1.4 Importance of energy and power 

A DSO’s target is to transmit electrical energy through the distribution network 

constantly. As mentioned above, electrical energy consumption and power are important 

distribution network and business planning criteria. Knowledge of the electrical energy 

consumption and powers in a certain area 10 to 40 years forward would prove very useful 

information from this perspective. The power loads are of significance from the 

perspective of distribution network planning, because network dimensioning is based on 

powers. Thus, power loads are considered from the primary substation level to the 

customer points. Typically, customer interfaces are almost always dimensioned by the 

same type of approaches, which means that power forecasting in customer points is not 

an issue. Figure 2.8 shows a typical rural electricity distribution network from the primary 

substation to the customer points. 

 

Figure 2.8. Example of a DSO’s medium-voltage (MV) distribution network. 

The highest mean hourly power is not of such significance at the DSO level. The power 

load depends on location, and power is important in the distribution networks. Instead, 

electrical energy consumption plays a decisive role at the DSO level as it has direct 

impacts on the distribution business. Energy consumption is also a key factor at the 

customer level as it has impacts on the distribution charges. At the DSO level, the 

variation in the total energy consumption is reflected in the distribution revenue. Figure 

2.9 depicts the total transmitted electrical energy in 0.4 kV networks and the DSOs’ 

revenues in Finland.  
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Figure 2.9. Transmitted low-voltage electrical energy and the DSOs’ revenues in Finland between 

2001 and 2013 (EA, 2015b). The change describes how energy and revenue have developed in 

different years compared with the reference year 2001. 

Electricity consumption in low-voltage networks has grown by about 15 % between 2001 

and 2013 in Finland. The DSOs’ revenues, again, have increased by about 70 % over the 

past ten years. Energy consumption in the low-voltage networks decreased for example 

in 2011, which also had a decreasing impact on the revenues. Naturally, energy 

consumption concerns the whole DSO. Energy and power are at the core of the electricity 

distribution business; consequently, forecasting of the electrical energy and power is 

important in the long term for the DSO. 

2.1.5 Electrical loads in distribution networks 

Electricity consumption in distribution networks depends on many factors such as the 

number of population, number of customers and buildings, customer types, geographical 

location, outdoor temperature, and presence of electrical devices. The load data can be 

categorized in many ways. The most significant elements for load data are system 

location, customer class, time, dimension (A or kW), and time resolution of load 

recording (Seppälä, 1996). Here, location may refer for instance to a customer, a low-

voltage network, or a medium-voltage network. Different load types are typically divided 

into groups: residential, agriculture, industrial, private, and public services (SLY, 1992). 

The loads vary according to the time of year, the day of week, and the time of day. The 

dimensions of the load data can be amperes or kilowatts. The time resolution of the load 

recording is system dependent, and it can vary for instance from minutes to hours 

(Seppälä, 1996). Energy consumption and mean hourly powers are based on load factors. 

There are several factors that generally influence the customers’ electric loads. Perhaps 

the most relevant factors are listed and divided as follows (Seppälä, 1996): 
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- Customer factors 

- Time factors  

- Climate factors 

- Other electric loads 

- Previous load values and load curve patterns 

Customer factors are often related for instance to the type of consumption, type of electric 

space heating, building size, and electric devices. The primary factors are the number, 

type, and size of the electrical devices of the customer. Even if the customers’ electrical 

devices and installations are dissimilar, it is possible to identify certain customer types 

with similar properties (Seppälä, 1996).  

There are significant standard deviation in customers’ electricity consumption and 

electrical loads in the distribution networks. Different kinds of customers in different 

locations of the distribution network cause varying peak operating times. The peak 

operating time typically increases from the low-voltage network to the primary 

substation. Table 2.1 lists some peak operating times for losses. The role of random 

variation is further emphasized if the number of electricity end-users is low and the 

standard deviation is high. These aspects have to be taken account in the power forecasts 

in the electricity distribution networks. 

Table 2.1. Peak load times at different network levels (Lakervi and Partanen, 2008). 

Network level Peak operation time of losses tlo, h/a 

Low-voltage network 700–1000 

Medium-voltage line 2000–2500 

Primary substation 3000–3500 

Idle losses 8760 

 

In addition to the load type, there are other factors that have a direct impact on electrical 

loads and that have thus to be taken into consideration. All information is not always 

directly available, and therefore, data from different sources have to be applied (Grip, 

2013). Time factors have to be taken into account when analysing the loads. The 

estimations in the load analysis are based on the hour of the day, the day of the week, and 

the time of the year. In the daytime, electricity consumption is typically higher than at 

night-time, unless there is energy storage capacity available such as electric storage 

heating. Electricity consumption varies also according to the day of the week and special 

days like Christmas and Easter days (Seppälä, 1996). 

Loads are also influenced by weather factors: outdoor temperature, wind speed, and solar 

radiation. Outdoor temperature is the main factor affecting the customers with electric 

space heating. In practice, considering climate-related load factors, only the outdoor 

temperature is typically taken into account (Seppälä, 1996). Occasionally, electric loads 

have an impact on each other. For instance, the use of other electrical appliances may 
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reduce the electric heating demand. Electric loads often involve periodic elements, which 

usually makes them relatively easy to predict (Seppälä, 1996). 

2.1.6 Load forecasting in the long-term planning 

The delivery of electric power is a capital intensive business. Electricity distribution 

facilities need land for power line paths and substation sites, power equipment for 

distribution, protection, and control, and labour. The arrangements and plans for new or 

extended infrastructure may require several years. Network planning is a decision-making 

process that aims at identifying the best schedule of future resources and actions. 

Financial aspects, in other words, minimizing cost and maximizing profit, service quality 

and reliability, environmental impacts, public image, and future flexibility are common 

objectives in network planning. The objective of the planning process is to meet the future 

electric demand with an acceptable level of reliability. Basically, this includes 

determining the sizes, locations, interconnections, and timing of future grid extensions, 

and commitment to DER such as distributed generation (Willis, 1996). 

Energy consumption and power forecasts play a crucial role in electricity distribution. 

Energy and power forecasts yield information about the development of the future 

electricity distribution environment. Thus, the DSOs can also prepare for the future 

challenges in advance. If the energy forecasts are erroneous, the effects on the distribution 

revenue can be detected swiftly, at least in the profit and loss account. In the long term, 

an incorrect energy forecast can cause problems in the management of the distribution 

business.  

One of the main objectives of the electricity distribution planning is to make distribution 

networks work in the most efficient way. Load forecasting provides important 

information for the electricity network planning, and it essential for the electricity system 

development. The objective is to produce information of the required primary substation 

capacity, information for planning of feeders, distribution transformer areas, and 

preliminary information for field planning. New electricity distribution networks are 

being built and existing networks are renovated. Furthermore, there has to be a plan in 

which order and within which time period these network investments will be carried out 

(Willis, 1996). In practice, this means that there is a need for power and energy forecasts. 

If the power forecasts fail, this will result in either over- or underdimensioning of the 

network. From the planning perspective, the network should not be over- or 

underdimensioned; overdimensioning will cause extra costs in the investment phase while 

underdimensioning will lead to extra costs afterwards. A need for forecasting does not 

disappear even if loads do not grow in a certain region. This kind of an area can yield 

information of the network capacity to be released. Network loads have one of the greatest 

impacts on network planning. Figure 2.10 presents long-term load forecasting objectives. 
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Figure 2.10. Simplified transmission and distribution planning process. All steps are based on 

forecasts of future loads (Willis, 1996). 

Electricity load forecasting is dissimilar in different operating environments. For instance, 

national electricity consumption is typically forecasted by applying different methods 

compared with electricity distribution. Load forecasting can be divided into small- and 

large-area load forecasting in distribution systems. A small area typically refers to local 

distribution levels while a large region covers the whole capacity in a regional system 

(Willis, 1996).  

Electrical load forecasts have traditionally been based on the DSO’s own historical 

information of the electricity consumption obtained by trending and simulating. The 

DSO’s external data such as land-use plans have also been taken into consideration 

(Rimali et al., 2011). Annual energy consumption has traditionally been the basis for the 

long-term load forecasting in electricity distribution. In this context, regional forecasts 

have been a prerequisite for the electricity distribution. A starting point for forecasting 

has been the information of the present building stock and customers’ electricity 

consumption data. In general planning, quite a rough distribution of geographical areas 

has been made. In rural areas, a municipal region has typically been a suitable unit for 

planning while town districts have served the same purpose in urban areas.  

In region-specific forecasts, the sizes of customer groups and characteristic consumptions 

are the most essential elements. The size of the customer group can be determined, for 

example, by the number of customers and employees in industries or the building area. 

The characteristic consumptions are typically given as MWh/dwelling/a or MWh/place 

of work/a. By multiplying the number of customers by the characteristic consumptions, 

the total consumption in a customer group can be determined. Summing up the 

consumptions of all customer groups, the total consumption in the area can be calculated 

(Lakervi and Partanen, 2008). Table 2.2 shows an example of a regional consumption 

forecast. 
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Table 2.2. Example of a forecasting process where the electricity consumption has been forecasted 

by adopting a regional and customer-group-based electricity consumption approach (adapted 

from Lakervi and Partanen, 2008). 

Year 0 10 20 

Population 11 700 11 900 12 200 

Number of the residential customers 4 135 4 540 5 080 

Characteristic consumption MWh/dwelling/year 4.2 4.7 5.2 

Consumption of residential customers, MWh/year 17 400 21 300 26 400 

Number of customers with electric space heating  650 1 000 1 750 

Characteristic consumption MWh/year 17.1 17.6 18.1 

Consumption of electric space heating, MWh/year 11 100 17 600 31 700 

Number of farms 415 400 370 

Characteristic consumption MWh/farm/year 5.6 6.7 8.0 

Consumption of farms, MWh/year 2 300 2 700 3 000 

Number of employees in industries 1 350 1 400 1 475 

Characteristic consumption MWh/employee/year 6.1 7.0 8.2 

Consumption, MWh/year 8 200 9 800 12 100 

    

Total consumption MWh/year 39 000 51 400 73 200 

 

The forecasts of these volumes can be based for example on analyses by Statistics 

Finland. For instance, the number of building types or the level of livelihood can be 

estimated; municipal registers also provide valuable information for the purpose. These 

forecasts can include, for instance, plans for new buildings and employment (Lakervi and 

Partanen, 2008).  

Region-specific forecasts have traditionally been made by the DSOs while national 

forecasts are typically used as a basis for spatial forecasts. Spatial characteristics have 

been taken into account in annual energy consumptions of the each customer group and 

by using the spatial population and employment forecasts in the case area. In network 

planning, the spatial energy forecasts have to correspond to the present or planned supply 

areas. Energy forecasts can be transformed into power forecasts by applying load models 

(Lakervi and Partanen, 2008). The above-presented methodology is quite widely used in 

the Finnish distribution environment. However, the long-term load forecasting process 

may vary significantly between different DSOs in Finland. To sum up, the basic concept 

has been to first prepare the electrical energy consumption forecasts, which have then 

been transformed into load forecasts by applying load models. 

Forecasting typically involves many uncertainties, which make forecasts inaccurate. 

Nevertheless, load forecasts are needed for network planning and operation of distribution 

networks. Electricity distribution networks are different from each other. Some 
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distribution networks may consist of a large number of customers in urban areas while 

others may have a small number of customers, for instance in rural areas. Therefore, 

forecasts and analyses have to be made for each case individually. An electricity 

distribution network consists of different levels: customers, low-voltage nodes, 

distribution substation service areas, medium-voltage nodes, distribution feeders, and 

primary substations.  

Load forecasts are needed all the way in the distribution networks, and the long-term load 

forecasting has to be able to analyse different distribution network levels. The forecasting 

can be divided into subcategories: specific methodologies are needed for large and small 

distribution network areas. Large distribution network areas may cover network levels 

from the primary substation to feeder levels and distribution substation service areas. 

Again, small distribution network areas may include network levels from the distribution 

substation service area to the customer level. Figure 2.11 presents an example of the 

distribution network levels and the large and small distribution network areas. The highest 

mean hourly power is the most interesting factor, because peak powers determine the 

dimensioning of the network in the long term. 

 

Figure 2.11. Distribution network levels. The red circle indicates a large distribution network area 

and the blue circle a small distribution network area. Adapted from (Seppälä, 1996). 

Substation feeder

Primary substation

Distribution feeders

MV network 1 (open loops)

Remotely operated disconnectors

MV network 2 (radial)

Distribution feeder substation

LV fuse

LV line

LV line to the customer

Main fuses

Energy metering

110/21 kV

20/0.4 kV



2.2 Future distribution grids 39 

The amount of data, and the number of customers vary markedly between different areas 

and network levels. A DSOs’ networks typically consist of primary substations, which 

have one to three main transformers. Some DSOs have only a few substations while larger 

DSOs may have over a hundred substations in Finland. A substation may supply 1 000–

10 000 customers, and the customer structure may vary a lot in the Finnish power systems. 

The power demand at primary substations may typically be 10–40 MW, and there may 

be three to ten feeders in one primary substation. The number of customers can diverge 

considerably between the feeders. In addition, the electrical energy consumption and 

power can vary greatly between different feeders. Major differences can also be detected 

at the lower network levels. The number of customers is typically quite small at these 

levels; for example, a service area of a distribution substation may include 50–500 

customers in a population centre but only one to five customers in sparsely populated 

areas. 

2.2 Future distribution grids 

Technical requirements for distribution networks have increased dramatically from the 

level of the past decades. Previously, the requirements were related to the distribution 

network development and construction. However, the operating environment of 

electricity distribution has changed essentially over the past ten years. Economic 

regulation, enhanced reliability of electric power distribution, an increase in distribution 

automation, adoption of underground cabling, and other technologies are examples of 

elements that have altered the present environment (Haakana, 2013). This development 

is likely to continue, and changes may bring new characteristics to the distribution 

business. Electricity distribution is facing changes because of growing service markets, 

customer demand, and new technologies in the Nordic countries. Driving forces for the 

network changes may also be due to ageing networks, customer requirements, climatic 

changes, and developments in the competitive structure and network technology (Brådd 

et al., 2006).  

The future of the distribution systems has been discussed exhaustively for instance in 

(Oosterkamp et al., 2014) and (Clastres, 2011). The terms ‘smart grids’ and ‘distribution 

system of the future’ have been introduced in the literature to describe the future 

electricity distribution systems. The future distribution grids are anticipated to provide 

new functionalities such as self-healing, high reliability, and energy management. In 

addition, demand response (DR), distributed generation (DG), and distributed energy 

storages (DES) play a paramount role in the upcoming smart grid (Brown, 2008) and 

(Rahimi and Ipakchi, 2010).  

2.2.1 Technical aspects 

Over the past few years, reliability has become one of the key issues in the electricity 

distribution sector. One of the reasons for this was the severe storms that caused long-

lasting faults and interruptions in electricity distribution networks between 2010 and 
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2012. The Finnish Government decided to develop the electricity markets and passed the 

(Electricity Market Act 588/2013, 2013). The new act sets limits on the reliability of 

supply in the distribution networks. In practice, in order to meet the new limits, for 

example, extensive underground cabling projects are required from some DSOs. The 

target is to get rid of long-lasting blackouts. As a consequence, major investments have 

to be made to improve the reliability of the electricity distribution. This will be the next 

major challenge, and it will take a lot of time and money. 

One of the current electricity distribution topics is the application of smart meter data. 

Smart meters have mainly been installed by the end of 2013 in Finland. Smart meters and 

automatic meter reading (AMR) represent quite a new technology, which introduces an 

entirely new operating environment to the market parties. AMR measurements produce 

an increasing amount of data for the market parties.  

In the future, electricity distribution may be different from the present situation. Technical 

challenges will put extra pressure on the network planning and development. The future 

requirements may be challenging for the DSOs, but they have to be taken into 

consideration in the strategic plans. The reforms will have impacts on the operating 

environment of electricity distribution.  

2.2.2 Business aspects 

The electricity distribution business model has remained basically the same over the past 

years. Suitable market models for small customers have been considered ever since the 

electricity market was opened to competition. The present market model is a customer-

based model, where the customer is in focus. Nevertheless, this model has raised 

discussion about the conflicts of interest between the DSO and the retailer (Belonogova 

et al., 2010). Figure 2.12 illustrates two market models. Model I is the present model 

while model II is an optional model for the future. In model II, the retailer is the market 

operator. In general, the question of the market model is crucial for the DSOs, because it 

has influences on the future operating environment. 

 

Figure 2.12. Two market models; the left-hand model is in use in Finland at present. 
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In the electricity distribution business, the whole company’s business environment is 

typically considered for one year at a time. To this end, various economic analyses are 

required, and there are many ways to analyse business-related parameters. Relevant 

business parameters are return on capital, equity ratio, income financing of investments, 

revenue growth, investment rate of the network, and return on investment. However, the 

main economic key figures are revenue, profit, and investments; these three parameters 

are the most commonly used ones in economic reviews. The future requirements for 

electricity distribution will increase pressure to make more investments in the distribution 

system. Hence, it is quite obvious that network investments will generally increase in the 

future. 

In the electricity distribution business, a DSO’s revenue depends on energy consumption. 

Energy consumption and revenue may vary much as a result of changes in the electricity 

usage. In particular, in network areas with a lot of electrically heated buildings, the 

electricity consumption is highly dependent on outdoor temperatures. Varying energy 

consumption may cause notable fluctuations in a DSO’s incomes with the present 

business model. Nevertheless, in the Finnish electricity distribution companies, electricity 

distribution prices have risen in some customer groups even by 90 % over the past five 

years. Figure 2.13 shows the changes in the electricity distribution prices between May 

2008 and May 2013 in K1 customer group among the Finnish DSOs. 

 

Figure 2.13. Change in electricity distribution prices from 2008 to 2013 for K1 customers (EMA, 

2013a). 

Electricity distribution prices have risen significantly in some parts of the country, 

especially in rural areas. The proportion of fixed charges in distribution pricing has 

increased over the past few years (EMA, 2013b). At the same time, customers’ 

opportunities to affect their distribution charges have decreased.  
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2.2.3 Smart grids 

There are diverse definitions of the term ‘smart grid environment’ in use (Farhangi, 2010) 

and (Clastres, 2011). Basically, a smart grid must provide visibility and pervasive control 

over the DSOs’ assets and services. Self-healing and immunity to system departures are 

requirements that a smart grid should meet. Expanding control and monitoring options in 

the smart grid will call for a convergence of information and communication technologies 

with the power system. Thus, investing in electricity distribution automation will make it 

possible to enhance capabilities in the future, which will intensify the role of 

communication and data management (Farhangi, 2010).   

Smart grids may bring several benefits for different operators; for instance, consumers 

are more efficiently integrated into the electricity system, renewables are better 

incorporated into electricity networks, the quality of energy supply is enhanced, and the 

use of electrical assets is optimized (Clastres, 2011). Typically in Finland, smart grids 

comprise different elements such as generation, energy storages, loads, signals, and 

controls. The basic idea behind the smart grid environment is presented in Figure 2.14. 

The figure illustrates the perspective of the interactive customer gateway; however, the 

grid automation receives less attention in the illustration.  

 

Figure 2.14. Example of the interactive customer gateway (Kaipia et al, 2010). 
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The smart grid concept introduces new solutions like power electronics and direct current 

(DC) systems for the future power distribution infrastructure. The traditional and passive 

distribution network will be reformed to a new and active system with energy resources 

including distributed generation and storages. Furthermore, new ICT solutions for 

network operation and asset management may provide intelligence to active networks 

(Järventausta et al., 2011).  

Already at present, automation and ICT systems are at the core of network operation. This 

development will accelerate in the smart grid environment. The development of smart 

grids raises the demands and opportunities for the LV network automation, the role of 

which has typically been minor. Advanced metering infrastructure, distributed 

generation, and charging of EVs are examples of the significance of LV automation. The 

number of data and information systems will also grow in the future; further, new data 

can be integrated into different data systems. For instance, an AMR system can be applied 

to many functions of the DSO; for instance to support network operation and planning. 

New communication interfaces and software applications will be in a key element of 

smart grids (Järventausta et al., 2011). 

2.2.4 Smart metering 

Smart meters open up an entirely new range of opportunities (Farhangi, 2010) and 

(Depuru et al., 2011). The introduction of smart meters has taken place in the context of 

energy efficiency and electricity retail market targets; for instance, the energy efficiency 

targets of the EU have boosted smart metering. The EU has mandated that 80 % of 

residential customers have smart meters by 2020, and a Finnish Government Decree 

states that at least 80 % of customers shall have smart meters by the end of 2013. 

Distribution system operators (DSO) play a key role in smart metering installations.  

Previously, actual consumption information was very difficult to obtain and estimate 

without smart meters. Nowadays, accurate information of individual customers’ 

electricity consumption is an important element in the analyses on electricity usage.  

Consequently, more accurate analyses can be made at the electricity primary substation, 

feeder, distribution substation service areas, and customer levels. The amount of data is 

constantly increasing as a consequence of the AMR, and more accurate results can be 

obtained from the customers’ consumption curves by applying these smart metering data. 

By combining the customer data it is possible to obtain results from areas of different 

sizes such as distribution substation service areas. Figure 2.15 presents features associated 

with smart metering. As a result, we may state that smart metering can bring significant 

benefits from the customers’ and DSOs’ perspective. Further, smart metering can also 

bring benefits for retailers and society. Finally, we may also anticipate that smart metering 

promotes sustainable energy usage. Consumption data can provide customers with 

detailed information about their electricity use and decrease inefficient energy 

consumption.  
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Figure 2.15. Features of smart meters (Neenan and Hemphill, 2008). 

The benefits of the smart meters are wide-ranging for the DSOs. The main benefits for 

DSOs derive from cost savings, greater efficiency in metering and customer service, and 

higher metering accuracy. The quality of data about electricity distribution and electricity 

end-use will essentially improve (Sarvaranta, 2010). (Räsänen et al., 2010) has shown 

that monitoring the electricity end-use provides a new view to develop electricity 

distribution systems, customer-specific services, and to increase energy efficiency. 

Electricity distribution companies receive a lot of information about the low-voltage 

distribution network and the customers by smart meters. AMR enables and facilitates 

various functionalities such as meter reading, follow-up consumption, and low-voltage 

fault detection. One of the most important advantages is that smart metering can 

efficiently indicate changes in the electricity use in a certain network area. In addition, 

customers can apply home-in-displays to monitor changes in their electricity end-use. 

More accurate consumption information could be deployed in various ways; for instance, 

DSOs could obtain useful information of loads.  

Previously, electricity metering was carried out once or couple of times a year. Electricity 

charges were based on estimated and actual metering data. Customers were not 

necessarily aware of how much electricity they consumed and how much they paid for it. 

Thus, customers did not have motivation or understanding to impact on their electricity 

consumption. Today, information of customers’ electricity consumption can be delivered 

effectively to the customers. This should enhance customers’ awareness of their 

electricity use and motivate to save energy and decrease peak loads.  

The benefits of the AMRs for DSOs are indisputable. In practice, smart meters provide 

an opportunity to revolutionize the whole electricity distribution system. Automatic meter 

reading is the first step towards the future distribution network. AMR systems have been 
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in the focus of recent infrastructure investments in the distribution networks. The DSOs 

are able to remotely read consumption records and alarms, for instance, on customers’ 

premises. However, AMR is a communication system, which is primarily designed for 

reading of meter information. Advanced metering infrastructure (AMI), again, will serve 

as a two-way communication system for the meters. Thus, this may be a significant step 

towards smart grids as the DSOs could, for instance, manage the loads with this 

technology (Farhangi, 2010). 
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3 Electricity usage 

The enormous challenges such as environmental issues and climate change have raised a 

lot of discussion about the energy sector and its development. There seems to be a 

common agreement that the consumption of energy should be cut and more renewable 

energy sources should be brought into production (European Commission 109/4, 2011). 

Today, the end-customers have a wide variety of opportunities for energy saving, for 

example, the selection of lighting options has increased. Lately, interest in energy saving 

and energy efficiency has risen considerably. Introduction of electricity metering services 

and consumption data may produce additional value for the customers. Among other 

things, incentive-based electricity pricing, microgeneration, and electric vehicles can 

radically change electricity consumption patterns. Recognizing the relevant load factors 

would be useful for the future electricity distribution development.  

3.1 History of electricity usage 

Electricity consumption has typically increased over the past decades (Statistics Finland, 

2014a). There have been many reasons for this such as the growing population, the 

increasing industrial sector, and electric space heating. Again, the electricity use of small-

scale customers has increased significantly. This can be explained, for instance, by the 

increasing number of electrical appliances and household items. Hence, the customers’ 

dependence on electricity and requirements for the reliability of electricity distribution 

has increased. However, the consumption may also decrease. A typical load growth curve 

follows an S curve. When the consumption stops to grow, it is considered to have reached 

a saturation point (Figure 3.1) (Lakervi and Holmes, 1995).  

 

Figure 3.1. Electricity demand and a typical load-growth curve is often based on the S curve 

model (Lakervi and Holmes, 1995).  

The saturation point demonstrates how the traditional residential electricity usage reaches 

the maximum level. After reaching the saturation point, the electricity consumption may 

even decrease (Lakervi and Holmes, 1995). 
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3.1.1 Electricity consumption in Finland 

In Finland, the first connection to the electricity network took place at the end of the 19th 

century, when electricity was used for the first time for lighting. Gradually, electricity 

consumption started to increase, and later on, the first electricity distribution company 

was founded. In Finland, the total electricity consumption has increased approximately 

ninefold over the period of 1960–2010. Over that time, the whole of Finland has been 

electrified; the electrification of the countryside has been a significant effort, and the 

decades before 2000 have witnessed a boom in the total electricity consumption. There 

have been various factors contributing to the increase in the electricity consumption such 

as an industrial and international financial boom, which have had an impact on the 

electricity demand. Electricity consumption has constantly increased at the national level 

until 2007. Figure 3.2 presents total electricity consumption for the period of 1980–2014 

in Finland (Statistics Finland, 2014a). 

 

Figure 3.2. Total electricity consumption by sector in 1980–2014 in Finland (Statistics Finland, 

2014a). 

The Finnish peak annual consumption, 90 TWh, was reached in 2007. Since then, the 

total electricity consumption has varied between 80 and 90 TWh between the years 2007–

2014. Recently, the electricity consumption has gradually slowed down. This is the first 

time in the Finnish history of electricity consumption when the consumption has not 

significantly increased. In Figure 3.2, a possible saturation point can also be detected in 

the total electricity consumption. The first radical change took place in 2008 and 2009, 

when the total electricity consumption clearly decreased compared with the previous year. 

This may be explained by various structural changes in Finland at that time. The 

proportion of heavy industry has decreased in Finland, which has probably been one of 

the major contributors to the massive and rapid change.  
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Over the last few years, the total electricity consumption has been about 85 TWh a year 

on average in Finland. In 2014, the consumption was 83.3 TWh. A more accurate analysis 

can be made based on Figure 3.3; about half of the electricity was consumed in the 

industrial sector while housing and agriculture accounted for 28 %, services and building 

22 %, and losses 3 % of the total electricity consumption (Finnish Energy Industries, 

2015). A typical characteristic of the Finnish electricity demand is the high proportion of 

electric space heating and lighting (World Energy Council, 2014). The DSOs transmitted 

49.5 TWh of electricity in 2013, and 35.7 TWh in low-voltage networks. 

 

Figure 3.3. Electricity consumption in Finland (Finnish Energy Industries, 2015). 

Peak loads determine for instance the need for national power generation and national 

self-sufficiency. The highest peak load has been about 15 000 MW in Finland (Finnish 

Energy Industries, 2015). 

3.1.2 Electricity consumption at the DSO level 

The national electricity consumption has increased by some per cents per year on average. 

Consequently, the overall assumption has traditionally been that electricity consumption 

increases by about 1–2 % a year. However, the total annual electricity consumption 

fluctuates at each DSO. This can be explained for instance by outdoor temperature. 

Electricity consumption also varies markedly between different areas of the electricity 

distribution networks. Typically, electrical energy consumption has increased by 0.5–2 % 

a year on average at the DSO level. Figure 3.4 illustrates the average change in the 

electrical energy consumption between 2005 and 2012.  
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Figure 3.4. Change in the annual electrical energy consumption between 2005 and 2012 by DSOs. 

The energy use has increased by 0–2 % for most of the DSOs. In addition, there are cases 

in which the energy consumption has increased even by 4–5 % a year. For some DSOs, 

the energy consumption has not changed or has actually decreased. These companies are 

typically small companies in rural areas. The map illustrates the different kinds of 

operating environments in which the DSOs are operating in Finland. Structural changes 

and other factors will probably maintain this development also in the future. In the long 

term, this will bring challenges especially for the business in smaller companies.  
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3.1.3 Electricity end-use 

This dissertation focuses on customers connected to the low-voltage electricity 

distribution network. Low-voltage customers can be classified in several different ways 

(SLY, 1992). Low-voltage customers may include for instance residential, agriculture, 

service (public and private), and small-scale industrial sector customers. Residential 

customers, again, may live in detached houses, attached houses, and blocks of flats. The 

buildings may be either non-electric-heated ones or equipped with electric space heating 

(direct, partial storage, storage heating). Often, the consumption varies markedly between 

industrial, agricultural, and service customer groups. The electricity consumption may 

vary considerably within a customer group. For instance, the service sector customers’ 

electricity usage may be very heterogeneous (Larinkari, 2012). Customer grouping can 

be useful in many ways, because it makes possible to compare for instance the electricity 

consumption and pricing between DSOs. However, there are noticeable differences in the 

DSOs’ customer structure and customer types (EA, 2015b).  

Electricity consumption varies considerably between different buildings. For instance, in 

detached houses, more electricity is usually consumed compared with flats. The 

consumption devices can also be dissimilar. Thus, electricity consumption in different 

buildings has to be analysed case by case. In addition to electricity consumption, 

information are needed of the buildings; building and heating system types have a major 

effect on the electricity end-use. Table 3.1 shows the building stock in Finland. The 

number of people in residential houses and the living standards of people vary greatly; in 

city centres many people live in blocks of flats, whereas in the countryside people 

typically live in detached houses (Adato Energy, 2013). 

Table 3.1. Building stock in Finland (Statistics Finland, 2014c). 

  
Number of 

buildings Gross floor area (m2) % of total m2 

Detached houses 1 139 290 160 058 577 35 % 

Attached houses 79 362 33 798 205 7 % 

Blocks of flats 59 047 95 304 584 21 % 

Commercial buildings 42 868 29 167 513 6 % 

Office buildings 10 846 19 408 091 4 % 

Traffic buildings 56 363 12 574 580 3 % 

Institutional buildings 8 606 12 069 488 3 % 

Buildings for assembly 13 977 9 524 670 2 % 

Educational buildings 8 867 18 327 907 4 % 

Industrial buildings 42 799 48 846 199 11 % 

Warehouses 29 833 19 720 737 4 % 

Other buildings 5 676 1 912 120 0 % 

Buildings total 1 497 534 460 712 671 100 % 
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Electricity end-uses are associated for instance with heating, lighting, cooking, water 

heating, running water, and electrical appliances. Traditionally, energy consumption has 

increased together with the increasing number of electrical devices and higher 

requirements for the comfort of living. Modern conveniences like electric saunas, 

dishwashers and indirect electric heating such as underfloor heating have become more 

popular in apartments, and have increased electricity consumption (Adato Energy, 2013). 

Figure 3.5 shows an example of residential customers’ electricity end-use. In Finland, 

electricity consumption is clearly higher than on average in Europe. This can be seen 

especially in residential customers’ consumption figures (World Energy Council, 2014). 

 

Figure 3.5. Example of electricity end-use of a residential customer (Corentin et al., 2010). 

There is no information available of device group measurements, which would give more 

detailed information of the electricity end-use at various customers. AMR measurements 

only include mean hourly powers for each hour in a year. For instance, information of the 

electricity consumed in lighting within a certain customer group would be very useful. 

Data of this kind are not widely available. 

3.2 Future changes in electricity demand and end-use 

Sustainable development of energy usage is naturally the target in the energy sector 

(European Commission (2011), 109/4). There are a lot of drivers that promote the 

adoption of future energy technologies. The energy sector has globally faced numerous 

challenges, including global warming and CO2 emissions, over the past years. However, 

these challenges can promote development in the energy sector and make electricity 

consumption more efficient. Some solutions have already been found for these 

challenges; for instance energy efficiency, renewable energies, emissions targets, and 

emissions trading. Awareness of climate change, CO2 emissions, and pollution may have 

had an influence on customers’ thinking, and thereby, on electricity consumption. Again, 

regulations have been issued on certain customer appliances both at the national and EU 
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level. One example of the EU energy efficiency targets is the Ecodesign Directive 

(Implementing Directive 2005/32/EC of the European Parliament and of the Council with 

regard to ecodesign requirements for non-directrional household lamps) (European 

Commission, 2009).  

As stated above, there may be technologies and modifications that may have significant 

impacts on the electricity end-use. Consequently, these changes influence the electricity 

distribution. For instance, energy efficiency actions and microgeneration may decrease 

the transmitted electrical energy in distribution networks. Hence, future technologies such 

as energy storages may have wide-ranging effects on the energy sector. Individual devices 

may not have a significant impact on electricity distribution, but a large number of future 

energy technologies can have major effects on electricity consumption. In addition, 

decreasing population and other structural changes may alter the volume of delivered 

energy.  

In the following sections, structural changes and different technologies are discussed. The 

primary research question is how electrical energy consumption and power will change 

because of the new devices. As it was stated above, some technologies will increase 

electricity consumption while others may have an opposite effect. The most significant 

technologies are studied in more detail in the following. The future scenarios for these 

technologies are also relevant to the research. 

3.2.1 Structural changes in electricity demand 

Structural changes in society, for instance changes in the number of population, labour 

market and occupational transitions, and developments in building structures and heating 

systems will have impacts on the electricity demand in distribution networks. At the time 

when the population increased notably in Finland, also energy consumption grew 

substantially. The population has still grown in Finland, although the birth rate has 

decreased compared with previous decades (Statistics Finland, 2014b). In particular, the 

situation may be challenging in rural areas because of the decreasing number of people. 

Both a decrease and an increase in population can be considered to have a direct impact 

on the electricity demand in electricity distribution networks. The population forecasts of 

two different areas are illustrated in Figure 3.6. The population forecast shows the total 

number of people in two areas. In the first example case, the population will decrease by 

more than 10 % in 2020 and by 20 % in 2040 compared with the present situation. In the 

second example, the population will increase by 10 % by 2020 and by 20 % by 2040 of 

the present situation. 
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Figure 3.6. Population forecasts for two municipalities in Finland (Statistics Finland, 2014b). 

Moreover, changes in the economic structure of society play a significant role in the 

electricity end-use. Changes in the numbers of customers in service, industrial, and 

agricultural sectors will probably indicate changes also in the electricity consumption. In 

addition, the energy consumption of service and industrial sectors may be sensitive to 

economic fluctuations. The extent of structural changes will probably increase in the 

future because of urbanization and other changes in society. 

3.2.2 Energy efficiency 

Energy efficiency plays a central role in the EU’s 2020 strategy for smart, sustainable, 

and inclusive growth. Energy efficiency has a cost-effective potential to increase the 

security of energy supply and to reduce emissions. Consequently, energy efficiency can 

be estimated to be the most significant European energy resource. The EU has set a target 

to reduce the primary energy consumption by 20 % compared with projections for 2020. 

This target was set as a key step towards long-term energy and climate goals (European 

Commission 109/4, 2011). In electricity distribution, energy efficiency may have various 

effects on electrical energy and power. For instance, air source heat pumps in detached 

houses with electric space heating decrease energy consumption, but they can even 

increase peak loads in wintertime (Tuunanen et al., 2013). Effects of energy efficiency 

actions on electrical energy consumption can already be detected. Changes in the 

electricity usage in certain device groups and the development of total residential 

electricity consumption in Finland are presented in Table 3.2.  
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Table 3.2. Electricity end-use of household appliances in 1993, 2006, and 2011 (Adato Energy, 

2013). 

  1993 % 2006 % 2011 % 

Cooking GWh   GWh   GWh   

Cookers and other cooking 796 6 % 653 4 % 632 3 % 

Home electric appliances             

Dish washing machine 125 1 % 261 1 % 367 2 % 

Washing and drying 316 2 % 391 2 % 373 2 % 

Refrigeration equipment 2 215 15 % 1 461 8 % 1 410 7 % 

TV and accessories 537 4 % 834 5 % 564 3 % 

Computers and accessories (-)   407 2 % 848 4 % 

Car heating 226 2 % 215 1 % 571 3 % 

Other 623 4 % 1 468 8 % 1 649 9 % 

Indoor lighting 1 541 11 % 2 427 14 % 1 230 6 % 

Outdoor lighting (-)   85 0 % 290 2 % 

Total 6 379 44 % 8 201 46 % 7 935 41 % 

 

In households, the total electricity consumption has increased between 1993 and 2006, 

whereas during the period of 2006–2011, the consumption has decreased. The electricity 

consumption of cooking and refrigeration equipment and indoor lighting has decreased 

considerably. The energy efficiency directive of electrical appliances (European 

Parliament 2005/32, 2005) has probably been a key factor in this development. For 

instance, certain types of incandescent bulbs are no more available in the markets, and 

they have typically been replaced by more energy-efficient lamps. On the other hand, the 

electricity consumption of computers and accessories, other consumption and outdoor 

lighting have grown significantly. Furthermore, air conditioning in summertime has 

increased in Finland (Adato Energy, 2013). Enhancing energy efficiency has become an 

overall trend, and there is no evidence why the same development would not continue in 

the future.  

Another example of changes in electricity consumption can be seen in Figure 3.7, which 

represents the electricity usage of a flat of three people with an ordinary set of equipment. 

The figure shows that energy efficiency regulations and agreements have had effects on 

the electricity consumption of appliances. For instance, residential customers’ 

refrigeration equipment has consumed far less electricity in 2011 compared with the year 

1993. Energy efficiency directives have forced manufacturers and service providers to 

enhance the energy efficiency of their devices and systems (European Commission 

regulation (EC) No 244, 2009).  
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Figure 3.7. Total electricity usage of three people in a flat in 1993, 2006, and 2011 (Adato Energy, 

2013). 

The greatest energy efficiency potential is available in buildings (European Commission 

109/4, 2011). Energy efficiency actions in heating and insulation systems will have 

different kinds of effects on electricity consumption. In heating systems, heat pumps have 

become a key contributor to energy efficiency. Hence, heat pumps will have an influence 

on electrical demand: energy and power; for instance, if a heat pump is installed in a 

building with electric space heating, it will typically decrease electrical energy 

consumption in the building. On the other hand, if a heat pump is installed in non-electric 

heated buildings, it will increase electricity consumption (Tuunanen, 2009) and (Hellman, 

2013). The main parameter in heat pump efficiency calculations is the seasonal 

performance factor (SPF), which describes the ratio of the heat output to the electricity 

used over the heating season. SPFs vary between different heat pump types.  

Heat pumps have become popular in Finland; they have been chosen as heating solutions 

both in existing and new buildings. Figure 3.8 shows that over 40 % of the new detached 

houses have chosen a ground source heat pump (GSHP) as a heating system in Finland 

in 2011. Again, the proportion of electric space heating has decreased in new detached 

houses, and also the number of oil heating systems in new houses is low.  
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Figure 3.8. Heating systems in new detached houses in Finland, 2006–2011 (Motiva, 2014a). 

Figure 3.9 shows the development of the total number of heat pumps between 1996 and 

2012 in Finland; the majority of heat pumps are air source heat pumps. The number of 

ground source heat pumps is increasing, especially in large buildings. GSHP can be used 

as the main heating system in buildings, which makes it a rational and profitable heating 

system. 

 

Figure 3.9. Total number of heat pumps in Finland, 1996–2012 (Sulpu, 2014). The blue bar 

indicates air-to-air heat pumps, yellow air-to-water heat pumps, red exhaust-air heat pumps, and 

green ground source heat pumps. 
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Changes in heating systems (e.g. an increasing number of heat pumps) will have major 

impacts on electrical loads. Different scenarios of the total number of heat pumps in 

Finland have been presented for instance by (Laitinen et al., 2011) and (Sulpu, 2014). 

Figure 3.10 demonstrates one scenario of the total number of heat pumps in Finland by 

2020 (Sulpu, 2014).  

 

Figure 3.10. Scenario of the total number of heat pumps in Finland by 2020 (Sulpu, 2014). 

A potential distribution of heat pumps in different types of buildings and heating systems 

has been introduced in (Laitinen et al., 2011) and (Tuunanen, 2009). The distribution of 

installed heat pumps in different buildings and heating systems is essential information 

as it has multifaceted impacts on electricity consumption.  

The energy performance and thermal insulation of buildings will gain significance in the 

future. The Decree of the Ministry of the Environment on the energy efficiency of 

buildings 2/11 (Ympäristöministeriön asetus rakennusten energiatehokkuudesta), which 

took effect in June 2012, sets limits on the thermal insulation in new buildings. This 

should decrease the amount of electricity used in heating in the future. Energy-efficient 

insulation materials in external walls, ground floors, roofs, windows, and entrance doors 

will reduce the energy consumption. Table 3.3 gives forecasts for the average heating 

demand in different building types for the years 2020 and 2050.  
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Table 3.3. Estimated heating demand in different types of buildings in Finland in 2020 and 2050 

(Honkapuro et al., 2009). 

  

Estimated heating demand of the average building compared 

with demand in year 2010, (kWh/m2, a) 

Building type 2010 2020 2050 

Detached houses 148 134 (91 %) 88–110 (59–74 %) 

Attached houses 145 136 (94 %) 93–116 (64–80 %) 

Apartment houses 151 142 (94 %) 99–124 (66–82 %) 

Shop buildings 286 272 (95 %) 195–244 (68–85 %) 

Office buildings 227 205 (90 %) 136–170 (60–75 %) 

Traffic buildings 207 187 (90 %) 131–164 (63–79 %) 

Institutional buildings 272 241 (89 %) 152–190 (56–70 %) 

Buildings for assembly 193 186 (96 %) 138–172 (72–89 %) 

Educational buildings 158 146 (92 %) 98–122 (62–77 %) 

Industrial buildings 353 338 (96 %) 241–301 (68–85 %) 

Warehouses 166 153 (92 %) 103–129 (62–78 %) 

 

The new buildings will be low-energy houses in the future. A low-energy house should 

consume less than 60 kWh/brm2 in a year in Southern Finland. In the future, there will be 

passive houses, which could require only 20 kWh/brm2 energy in a year (Motiva, 2014b). 

In addition, there can be zero-energy houses and energy-plus houses. There are various 

definitions of zero-energy houses (Marszal et al., 2011); a zero energy building may refer 

to a building whose net energy consumption is zero over a normal year (Wang et al., 

2009). According to (Motiva, 2014b), a zero-energy house produces at least an amount 

of renewable energy equal to the amount of non-renewable energy it consumes. An 

energy-plus house produces more energy than it consumes at a year level (Motiva, 

2014b). The European Parliament has defined that new buildings occupied and owned by 

public authorities shall be nearly zero-energy buildings by 31 December 2018 (Directive 

2010/31/EU of the European Parliament and of the Council). 

Energy saving in lighting has been significant. The results of energy saving can be 

observed from the national statistics in Finland, as was presented above. The results may 

partly be explained by the decreasing usage of incandescent light bulbs in Europe. 

However, there is still great potential to save energy in lighting, for instance by energy-

efficient lights and control and automation systems. These methods are introduced for 

example in (Lehtonen et al., 2007) and (Wall and Crosbie, 2009).  

Considering energy saving actions, thermal insulation, heating systems, and lighting are 

assumed to have the most significant impacts on electrical loads and electricity 

consumption. The effects of different energy efficiency actions and technologies are 

diverse, and thus, they have to be assessed for each customer group individually, as there 

are significant differences between building types and customer groups. Data required for 
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the analysis include for instance the proportion of buildings with electric space heating, 

approximations of space and water heating and cooling energy, an estimate of the 

seasonal performance factor (SPF) and distribution of heat pumps in different kinds of 

buildings. In addition, energy saving in other electrical appliances and systems will have 

an influence on electrical loads. However, this is beyond the scope of this doctoral 

dissertation, and furthermore, the above-mentioned technologies are predicted to be the 

most important ones from the perspective of this work. 

3.2.3 Microgeneration 

Microgeneration will be one of the major changes in electricity distribution in the long 

term. There are several microgeneration resources such as solar, wind, hydro, and 

biomass (Ackermann et al., 2001). At present, solar power seems to be the most popular 

microgeneration method (Masson et al., 2014). Solar power is becoming the most 

important microgeneration type as the volume of solar power installations has exploded 

globally over the last few years. Figure 3.11 depicts the European cumulative installed 

photovoltaic (PV) capacity between 2000 and 2013. In Europe, 17.7 GW of PV capacity 

was connected to the gird in 2012, and almost 11 GW in 2013 (Masson et al., 2014). In 

some European countries, as for example in Italy and Germany, PV technologies have 

increased considerably (Masson et al., 2014) and (Grau et al., 2012). This is the main 

reason why solar power is in a special position in microgeneration studies. However, other 

microgeneration alternatives and micro combined heat and power (μCHP) technologies 

may play an important role in future energy systems. 

 

Figure 3.11. Cumulative installed PV capacity in Europe between 2000 and 2013 (Masson et al., 

2014). 

The term ‘microgeneration’ may refer to various production capacities (Ackermann et al., 

2001), (Infield, 2008) and (Richardson and Keane, 2009). The size of solar panels may 
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vary significantly: the largest microgeneration power plant may be several dozens of kW, 

the smallest ones being less than 1 kW.  

In Finland instead, the role of solar power generation is minor at the moment. There are 

no exact statistics available of the number of PV systems in Finland. Microgeneration 

will probably be adopted slower in Finland compared with some other European 

countries, because there are no feed-in-tariffs or other incentives for customers to install 

microgeneration at the moment. However, the amount of microgeneration will probably 

increase a lot in the future. Here, a key factor will be the price of the PV systems. Figure 

3.12 shows the price development of the PV systems in Germany. As we can see, the 

prices have come down, which makes PV systems more profitable.  

 

Figure 3.12. PV system price development (BSW-Solar, 2014). 

For DSOs, microgeneration is mainly a challenge. If customers consume the electricity 

that they have produced by themselves, energy distributed in the networks will decrease. 

This means that the DSOs’ incomes will decrease. In addition, customers may be 

interested to sell their surplus electricity to the retailer, and transmit electricity into the 

distribution network. Typically, PV does not impact on the peak electricity demand in 

wintertime, when the electricity production by PV is often at lowest in the Nordic 

conditions. However, PV may have significant impacts on distribution networks in 

summertime. A load profile of one distribution transformer substation in a rural area in 

Germany is presented in Figure 3.13. In the example, surplus PV production is supplied 

into the distribution network, which has a significant impact on the loads. Customers 

generate more electricity to the distribution network than they consume from the network. 

This may change the criteria for network dimensioning.  
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Figure 3.13. Solar power production curve at the distribution transformer level (Koch, 2013). 

Solar power production can be analysed from the measurement and production curves. 

Typically, production curves are similar in shape, the maximum production capacity 

occurring at midday. Figure 3.14 shows a typical solar power production curve. The 

maximum production capacity is 5 kW.  

 

Figure 3.14. Modelled solar power production curve (National Renewable Energy Laboratory, 

2015). 

The impacts of PVs on electricity distribution depend on the amount of microgeneration 

and the production capacity of generation. The worst case from the grid perspective is 

that solar panels are producing the maximum capacity in summertime, when the 
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electricity consumption is low. This is one of the issues in microgeneration that have to 

be analysed in the long-term load forecasting analysis. 

3.2.4 Electric vehicles 

Electric vehicles (EV) will probably penetrate the markets on a large scale in the future. 

Table 3.4 presents the scenario of the number of electric vehicles and plug-in hybrid 

electric vehicles in Finland. Three different scenarios have been made: a slow, basic, and 

fast scenario. 

Table 3.4. Scenario of the electric vehicles in Finland, adapted from (Biomeri Oy, 2009). 

    The number of cars The proportion of the new cars 

Scenario Year PHEV EV PHEV EV 

Slow scenario 2020 38 000 12 000 5 % 2 % 

  2030 207 000 92 000 20 % 10 % 

Basic scenario 2020 66 000 13 000 10 % 3 % 

  2030 480 000 160 000 50 % 20 % 

Fast scenario 2020 190 000 26 000 40 % 6 % 

  2030 960 000 450 000 60 % 40 % 

 

At the moment, electric cars have been adopted slowly by consumers; this is demonstrated 

in Figure 3.15. The figure shows the registered plug-in and electric vehicles in Finland. 

The total number of plug-in and electric vehicles was 1 282 in August, 2015. In this light, 

a slow scenario could be the most realistic one. The most typical EV users will be the 

service sector and residential customers (Pastinen et al., 2012). 

 

Figure 3.15. First registrations of passenger cars in Finland. *) Situation in August 2015 (Trafi, 

2015). 
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Electric vehicles will increase the energy consumption in electricity distribution networks 

(Rautiainen et al., 2012). EV charging can be done simultaneously with dump charging; 

another option is to use smart charging. With smart charging, electric loads do not 

necessarily grow in electricity distribution networks. A study has been made on the 

network impacts with a 25 % penetration level of electric vehicles. In that case, the 

transferred energy increased by 12 % and the peak load by 34 % with dump charging 

(Tikka et al., 2011).  

The most relevant factors for electric vehicle analysis are the number of electric vehicles 

in the case area, the mode of charging, and the charging spans and times. Charging types 

can be categorized into slow, basic, and fast charging. The majority of charging may 

follow some kind of a pattern, but a single charging event can be difficult to forecast. The 

charging mode has a great impact on the distribution loads. Slow charging may have a 

smaller influence on the network than fast charging (Tikka et al., 2012). Customers can 

charge their EVs in ordinary charging places by slow and basic charging. Separate 

charging stations may apply fast charging systems.  

The main questions are whether there will be electric vehicles, where those cars will be 

found, and how many vehicles will be in use ten or forty years ahead. Individual vehicles 

do not necessarily have negative effects on the network, but if there are many electric 

vehicles, and the vehicles are charged simultaneously, they will have very significant 

impacts on loads (Lassila et al., 2009). 

3.2.5 Energy storages 

Electric energy storages are assumed to be an important element of the electricity 

infrastructure of the future (Eyer and Corey, 2010). Energy storages can be, for instance, 

battery solutions, thermal storages, super capacitors, or fuel cells. Table 3.5 lists some of 

the numerous functions and benefits of energy storages. The most essential energy storage 

applications will probably be associated with microgeneration, backup power solutions, 

or saving potential in electricity costs. The number of energy storages can increase, if 

customers have an incentive to purchase energy storages.  
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Table 3.5. Different benefits of energy storages (Eyer and Corey, 2010). 

Application-specific Benefits 

1. Electric Energy Time-shift 

2. Electric Supply Capacity 

3. Load Following 

4. Area Regulation 

5. Electric Supply Reserve Capacity 

6. Voltage Support 

7. Transmission Support 

8. Transmission Congestion Relief 

9. Transmission and Distribution (T&D) Upgrade Deferral 

10. Substation On-site Power 

11. Time-of-use (TOU) Energy Cost Management 

12. Demand Charge Management 

13. Electric Service Reliability 

14. Electric Service Power Quality 

15. Renewables Energy Time-shift 

16. Renewables Capacity Firming 

17. Wind Generation Grid Integration 

Incidental Benefits 

18. Increased Asset Utilization 

19. Avoided Transmission and Distribution Energy Losses 

20. Avoided Transmission Access Charges 

21. Reduced Transmission and Distribution Investment Risk 

22. Dynamic Operating Benefits 

23. Power Factor Correction 

24. Reduced Generation Fossil Fuel Use 

25. Reduced Air Emissions from Generation 

26. Flexibility 

 

From the DSO’s perspective, the main benefits of energy storages may be peak cutting 

and the use of energy storages with microgeneration. Energy storages can also be batteries 

used in EVs (Lassila et al., 2012). However, the network impacts of energy storages are 

highly dependent on the way the storages are used. For instance, different energy storage 

usages will have distinct effects on loads. Energy storages could be used to decrease 

customers’ load peaks or load peaks in the distribution network. On the other hand, using 

energy storages with microgeneration could reduce the electricity transmitted from the 

distribution network. Figure 3.16 gives an example of peak cutting in a distribution 

network with battery storage. The battery is discharged during the highest peak load 
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times. When the loads are decreasing, the battery can be charged again. Battery capacity 

optimization has to be carried out individually for each case. 

 

Figure 3.16. Energy storage usage in peak cutting (Lassila et al., 2012). 

Basically, there are actually no battery storages in customer or distribution usage on a 

large scale in Finland at the moment (2015), but there are a lot of thermal storages such 

as electric storage heating. The first energy storages may probably be small-scale storages 

at low-voltage (e.g. residential) customers. This would require that the prices of storages 

be at a reasonable level. An economic incentive to purchase an energy storage has to come 

from savings in the electricity charges. The most usable applications will probably be 

associated with microgeneration, where customers utilize their own production, and peak 

load cutting at a customer level. 

3.2.6 Demand response 

There are various definitions of demand response (DR); for example, it is defined as 

changes in end-customers’ electricity consumption from their traditional electricity usage 

patterns in response to changes in the price of electricity. Alternatively, demand response 

could be defined as designed incentives to encourage lower electricity use when the 

wholesale market prices are high or the power system is jeopardized (Albadi and El-

Saadany, 2008). In Figure 3.17, demand reponse opportunities are classified into different 

programs. Overall, distribution is divided into incentive-based programs (IBP) and price-

based programs (PBP).  
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Figure 3.17. Demand response programs (Albadi and El-Saadany, 2008). 

Electricity retailer should be the market facilitator in demand response markets. This 

would mean that the distribution network would be the marketplace and the retailer would 

control the customers’ loads (Järventausta et al., 2015). Demand response may have 

different kinds of effects on the loads in distribution networks. Further, the network 

impacts depend on how the demand response is used. In demand response, the retailer 

can participate in different markets; the SPOT market, imbalance and balancing markets, 

and reserve markets. Table 3.6 lists national demand response capacities in different 

markets in Finland.  

Table 3.6. Demand response capacity in Finland in 2015 (Fingrid, 2015). 

Demand response in Finland  2015 

Elspot market 200–600 MW 

Balancing power market 100–300 MW 

Frequency-controlled disturbance reserve 70 MW 

Fast disturbance reserve 354 MW 

Power reserve 40 MW 

 

In the first phase, demand response customers are probably residential customers. In 

particular, customers with electric space heating have a significant load control potential. 

Actually, in Finland, this potential is already being exploited to some degree by the time 

of use (ToU) tariffs. Night-time electricity is cheaper compared with daytime, and 
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therefore, customers typically use electric space heating at night. There is still a lot of 

potential for demand response, which is not utilized for demand response markets. The 

hourly based demand response market potential will increase in the future. The effects of 

demand response on electricity distribution have to be analysed locally, because the 

impacts are dependent on controllable loads at end-customers. Demand response has to 

be taken into account in the long-term load forecasting. For each load and customer type 

and different markets, a separate analysis has to be made. For instance, the network effects 

of the load control of electric heating customers have to be modelled separately in 

different markets. 

3.3 Conclusions 

The focus in this chapter was on the history and future of the electricity usage in Finland. 

The main interests were in questions why electricity consumption patterns are changing, 

what the main factors causing the changes are and how fast these changes will take place. 

There will be a need for different kinds of scenarios in the future. Scenarios can be made 

for technologies that are already widely in use. For instance, there are a lot of heat pumps 

installed in buildings, and the number of the future heat pumps can be based on previous 

trends. There are also technologies, which are not yet common in the markets such as 

energy storages and demand response. Scenarios for such technologies have to be based 

on different kinds of approaches. One approach can be an analysis of the price 

development of the technology; for example, what should the price of an energy storage 

be in order for the purchase to be affordable? If the price is known, it is possible to forecast 

when storages will reach this price level and how fast storages will enter the markets. 

Another approach could be to analyse what the penetration level of PV or other 

technologies should be in order for changes in consumption to be visible in load curves. 

For instance, scenarios can be made in which it is assumed that in a certain area 20 % of 

the residential customers will have PVs. 

Some impacts of future changes on electricity consumption are presented in Figure 3.18. 

The figure is based on the results of a workshop held by a group of Finnish energy experts. 

The figure shows the potential effects on electrical energy and power. The figure 

demonstrates that energy efficiency actions, electric vehicles, customers’ own electricity 

production, energy storages, and load controls are the factors having the greatest impacts 

on electricity consumption. There may also be other technologies that can have a major 

influence on electricity consumption; however, these are not addressed in this doctoral 

dissertation. 
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Figure 3.18. Changes in the future electricity usage. 

The most significant changes may take place in residential customers’ electricity usage. 

In practice, this means that customers will have many opportunities to manage their 

electricity consumption. Some customers may even be totally self-sufficient in electricity 

production. Ultimately, electricity distribution for residential customers may not be 

needed if customers are able to produce themselves the electricity they need. This would 

make long-term load forecasting more complex, and it could also require that the long-

term factors of load changes should be identified early enough. It could also be necessary 

to regularly update the forecasts; from the perspective of network planning and network 

investments, unsuccessful forecasts would be worthless. There might also be a risk of 

inappropriate investments that are actually not needed. In addition, it may be possible that 

electricity connections are terminated or removed. Consequently, the impacts on the 

electricity distribution business would be undesirable. Altogether, different kinds of new 

technologies will increase challenges in electricity distribution, and irreversible changes 

will undoubtedly take place in the future. 

Owing to the new technologies and changes in the electricity usage patterns, the 

traditional load forecasting process in electricity distribution has to be upgraded and 

supplemented with new tools. The effects of new technologies have to be modelled and 

analysed from the electricity distribution perspective. Energy and power in electricity 

distribution networks can be analysed more accurately compared with previous methods, 

because of AMR data and increasing amount of other data such as more detailed building 

and heating information, weather data, and customer specific data. These analyses will 

A. 

B. 

C. 

D1. 

D2. 

D3. 

E. 

F. 

G. 

H. 

I.

J. 

K. 

A. Energy efficiency of electric devices 
(e.g. LED lights)

B . Number of electrical devices 

C . Energy saving as a way of life

D 1. Heat pumps in buildings with 
electric heating

D 2. Heat pumps in other buildings

D 3. Electricity use in some other
way in heating

E . Electric vehicles; non-controlled
charging

F . 

G. Customer’s  energy storages

H. Load control by the 
retailer/aggregator
I. Load control by the customer

J . Load control by the DSO

K . Customer’s own electricity 
generation 

Energy

Power

Electric vehicles; smart charging



3 Electricity usage 70 

require a lot of data and different kinds of scenarios. The forecasting of the future 

electricity loads will definitely require a new forecasting process. 
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4 Load modelling and forecasting 

A forecast of future electricity demand includes characteristics such as location (where), 

magnitude (how much), and time (when) that determine the requirements for the 

forecasting process. Electricity demand may spread into presently vacant areas, where 

there is no electricity demand at the moment. Thus, infrastructure must be established to 

meet the demand as it develops (Willis, 1996). Electricity distribution network strategies 

require long-term electricity load forecasting, which has to be taken into account in the 

network design. Thus, an in-depth study of the network load forecasts is necessary from 

the perspective of strategic planning. Load forecasting defines the requirements that have 

to be met by the future power system. Therefore, a distribution planner needs information 

of how much peak demand is needed for the capacity of future facilities. However, a poor 

or inappropriate load forecast will lead to different load estimates than the direction in 

which the loads will develop, which will jeopardize the entire planning process. Planning 

and construction of higher-voltage equipment for wide-ranging areas require more time 

compared with lower voltage levels. Consequently, a long-term plan that yields load 

forecasts for more than 15 years ahead are needed (Willis, 1996). Peak load forecasting 

gives information about the placement and amount of assets such as primary substation 

service areas and distribution feeders. Load planning can be carried out for the next five 

or ten years to determine the design criteria for a specific project. Nevertheless, the 

network equipment may meet supply requirements throughout their entire lifespan of 30 

to 70 years (Spackman et al., 2007). 

Load forecasting in distribution systems is performed in short-, medium- or long-term 

periods. Thus, the forecasting periods may vary significantly in length. For instance, 

short-term forecasting can be determined from one hour to a week (Lakervi and Holmes, 

1995). Long-term forecasting, again, can be made for a period from several years to 

several decades ahead. Load forecasting can also be made for other timescales. According 

to (Srinivasan et al., 1995), short-term load forecasting (STLF) refers to up to one-day 

forecasting, medium-term load forecasting (MTLF) from one day to one year load 

forecasting, and finally, long-term forecasting (LTLF) applies to forecasts from one to 

ten years. Again, (Hong et al., 2014) shows that LTLF provides peak load and energy 

forecasts for one or more years, but it can be extended to a horizon of a few decades. This 

doctoral dissertation deals with long-term and very long-term (10–40 years ahead) 

changes in the electricity consumption. In the work, a forecasting process for electrical 

loads will be developed for electricity distribution networks.  

Electrical energy and peak powers in the network are the most significant subjects of 

forecasting. Distribution planning is based on annual peak loads that the load forecasts 

estimate (Sallam and Malik, 2011). Geographical requirements for forecasts vary between 

different levels of the power system, although the forecasts are not dependent on the 

network topology. A typical and suitable area for the electricity distribution load 

forecasting is, for example, a district in an urban region or a specific area of a municipality 

in rural areas.  
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The structure of the chapter is the following. In the next section, load modelling is 

presented, because the present network loads constitute a basis for load forecasting. 

Section 4.2 introduces long-term load forecasting methodologies, the focus being on most 

typically applied ones. The final section concludes the chapter. A need for a new 

forecasting process has been identified that can take new loads and production into 

consideration in network planning. The requirements for the novel load forecasting 

process are described. 

4.1 Load modelling in electricity distribution 

Load modelling is widely used in different fields of electricity distribution. For instance, 

load information is applied to the planning of the distribution network, electricity 

production, load control, and customer tariffs, as a basis for customer services and 

estimated billing, and in connection with the consideration of the energy efficiency of 

electricity end-use (SLY, 1992).  

Time resolution in load modelling has usually been an hour or 15 minutes (Lakervi and 

Partanen, 2008). Demand is often measured on an hourly basis. However, demand could 

also be measured on any other interval basis; seconds, one minute, 30 minutes, and daily 

(Willis, 1996). Even if hourly based models are used, it is not necessary to use an hour 

scale in the load modelling. Historically, hourly values have been the basic time unit in 

load modelling, and they have been found appropriate and accurate enough for load 

forecasting purposes. However, it will be possible to model loads in series of 10 minutes 

or even more accurately in the future. AMR systems may register data with shorter time 

resolutions in the future, and more accurate data on the end-use electricity consumption 

may be available.  

Load modelling and statistical analyses of electricity consumption have traditionally been 

elements of research on electricity distribution. The objective of the load modelling is to 

produce customer profiles that describe the electricity consumers’ varying consumption 

(SLY, 1992). Load modelling of electricity distribution networks is at the core of the 

electricity distribution network design. In theory, powers in different parts of distribution 

network nodes could be defined based on real-time measurements. In practice, however, 

distribution networks are so large that executing power and current measurements has not 

been possible so far. Load modelling is an important means to model the present 

consumption in the network. Annual energy consumptions and forecasts have been 

transformed into powers by applying various methods. These methods typically involve 

statistical analysis and wide-ranging measurements. Previously, load modelling has been 

made by using Velander’s formula. The present load modelling method is based on load 

models as presented in (SLY, 1992). In the future, these methods can be replaced by new 

load models, which apply AMR data and clustering methods. 
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4.1.1 Velander’s formula 

Velander’s formula (Lakervi and Holmes, 1995) has been used to define peak loads in 

the distribution networks by transforming electrical energy consumption into power. 

Velander’s formula is written as 

𝑃max = 𝑘1 ∙ 𝑊 + 𝑘2 ∙ √𝑊    (4.1) 

where Pmax is the peak power in [kW], k1 and k2 are Velander’s coefficients, and W is the 

annual energy consumption in [MWh]. The coefficients k1 and k2 are based on 

measurements and practical experiences. Table 4.1 gives examples of Velander’s 

coefficients. 

Table 4.1. Examples of Velander’s coefficients (Lakervi and Holmes, 1995). 

Customer group k1 k2 

Domestic 0.29 2.5 

Electric space heating 0.22 0.9 

Commercial (shops) 0.25 1.9 

 

In practice, because of strong assumptions, loads do not follow Velander’s formula. The 

formula is best suited for power modelling of large customer groups. On the contrary, it 

is not suitable for load estimation of an individual customer or a certain time. Moreover, 

estimation of the total peak power in the area requires that the highest powers of different 

customer groups are known. Therefore, different customer groups’ power demand 

variation over different time periods has to be known. This variation can be managed by 

participation coefficients, which describe the electricity end-user’s power in relation to 

the electricity end-user’s peak power. However, a more accurate load modelling 

compared with Velander’s formula can be achieved by profiling the electricity usage 

habits of different kinds of electricity consumers (Lakervi and Partanen, 2008). 

4.1.2 Load models 

SLY-based load models have been the most popular and efficient method to model 

electrical loads in Finland, because load models have represented the best knowledge of 

the electricity end-use. Load models include hourly load profiles, the standard deviation 

of hourly mean powers, and a temperature dependence analysis. Finally, large customer 

groups are used in the total electricity usage analysis. These groups constitute a 

hierarchical distribution (Lakervi and Partanen, 2008). Each calculated load model 

includes the following information (SLY, 1992): 
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- Model for an estimate of mean power for each hour in normalized temperature  

- Model for the standard deviation of mean power for each hour in normalized 

temperature 

- Estimate of the temperature coefficient for a defined time period 

- Size of sampling unit for each hour, and 

- Normal temperatures for each hour.  

The hourly consumption of individual customers can be estimated by the load model. For 

practical implementation, characteristic load models have been generated. The load 

models include 46 different load profiles. The models are based on an electricity load 

survey made by SLY (Suomen Sähkölaitosyhdistys, the former Association of Finnish 

Electricity Utilities, now the Electricity Association Sener) for the year 1992. The load 

survey comprised almost 1200 customer metering points from 42 different DSOs. These 

measurements were performed in the 1980s and 1990s (SLY, 1992). 

The electricity load survey is based on measured electricity end-use data, which are 

modelled by applying statistical methods. The results are reliable only with a certain 

probability (SLY, 1992). An individual customer’s electricity consumption includes 

strong random variation; sometimes, the consumption is higher and sometimes lower than 

the mean power. As a result of the load model, a mean power can be obtained. However, 

the mean hourly power cannot be used as a peak power for an individual customer, 

because it is considerably higher than the mean power. Nevertheless, peak power is an 

interesting quantity, because it sets the guidelines for the network dimensioning (Lakervi 

and Partanen, 2008). 

Customer grouping is an essential element of load modelling. The electricity end-users 

under study can be divided into groups, where the electricity end-use can be estimated 

accurately enough. In the load modelling, the customer classification is based on the 

customers’ load types. In the SLY load survey, the initial target was to divide the 

customers further into smaller customer groups. However, it was found that the load 

variation was not essentially different in the new groups (SLY, 1992). Although it is 

possible to develop new customer groups, it is advisable to consider in advance for which 

purpose these new groups are actually needed. Table 4.2 presents the customer grouping 

of the residential customers in the SLY load models. 
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Table 4.2. Example of SLY customer grouping (SLY, 1992). 

SLY customer group recommendation Customer groups based on the load survey 

01 One-family-houses 100-602 Detached house 

010 One-family houses Detached house, direct electric heating 

  * 110 boiler < 300 l 

  * 120 boiler 300 l 

  * 130 underfloor heating > 2kW  

    

  Detached house, partial electric storage 

heating 

  * 210 short control time 

  * 220 long control time 

    

  Detached house 

  * 300 electric storage heating 

    

  Detached house 

  * 400 heat pump heating 

    

  Detached house, 2-time heating 

  * 510 1-time tariff 

  * 520 2-time tariff 

  * 530 season tariff 

    

  Detached house, non-electric space heating 

  * 601 without electric sauna stove 

  * 602 with electric sauna stove 

020 Terraced house flats Flats in terraced houses and blocks of flats,  

022 Separately measured terraced house 

flats 

non-electric space heating 

030 Flat * 611 without electric sauna stove 

032 Separately measured flats * 612 with electric sauna stove 

031 Co-measured flats * 1020 Block of flats, including flats 

040 Cottages (holiday homes) * 1120 Cottage (holiday home) region, 

distribution substation service area 

 

In addition to customer grouping, temperature dependence modelling is a crucial part of 

the load models. The dependence of electricity end-use on outdoor temperature has been 

taken into consideration in the load models by a linear calculation model (SLY, 1992): 

𝑞𝑡𝑜𝑑(𝑡) = 𝑞0(𝑡) + β ∙ ∆𝑇(𝑡),   (4.2) 

where qtod(t) is the measured electricity end-use at time t, q0(t) is the electricity end-use 

in the normal outdoor temperature at time t, β is the coefficient of the outdoor temperature 

dependence in the electricity end-use, and ΔT(t) is the deviation of the measured and 

normal outdoor temperature at time t. The normal outdoor temperature refers to the 



4 Load modelling and forecasting 76 

calculated reference temperature. Long-term average outdoor temperatures are applied in 

the load modelling (SLY, 1992). 

Topographies constitute the basis for the load models of the whole year. They present an 

estimate of the mean hourly power and standard deviation in a certain outdoor 

temperature for each hour of a year. The sum of the mean hourly powers in a topography 

is equal to the annual energy consumption. Another widely used method is index series, 

where the year is divided into 26 two-week periods. For each customer group, mean 

powers are calculated separately for two-week periods. In addition, two-week and hour-

specific indices are determined for different seasons. The weekday model is divided into 

three categories: workday, eve, and holiday. All workdays are assumed to be similar in 

the two-week periods, which decreases the amount of data under review. Index series is 

a relative method of presentation (SLY, 1992). For a certain time i, an absolute value of 

mean hourly power can be calculated from the index series as: 

𝑃𝑟𝑖 =
𝑊𝑟

8736
∙
𝑄𝑟𝑖

100
∙
𝑅𝑟𝑖

100
 ,    (4.3) 

where Pri is the mean hourly power of customer group r for time i, Wr is the annual 

electrical energy consumption of customer group r, Qri is the two-week index for 

customer group r for time i (an external index), and Rri is the hourly index for customer 

group r for time i (an internal index) (SLY, 1992).  

The peak load can be estimated by statistical methods, assuming that similar customers’ 

load variation in a certain time is in accordance with the normal distribution. For a certain 

probability (excess probability) a, the peak power can be calculated if the standard 

deviation is known, and it is assumed to be normally distributed. The peak power Pmax of 

a number (n) of several similar types of electricity end-users can be calculated by (Lakervi 

and Partanen, 2008): 

𝑃max = 𝑛 ∙ �̅� + za ∙ √𝑛 ∙ σ ,   (4.4) 

where �̅� is the average power in [kW], 𝑧𝑎 is the normal distribution coefficient, and σ is 

the standard deviation. Standard deviation has a significant impact on one customer’s or 

a couple of customers’ peak loads. Therefore, standard deviation has to be taken into 

account for instance when planning low-voltage lines. If the number of customers 

increases, the effects of random variation decrease. Typically, 1 % or 5 % excess 

probabilities are used for the peak load when dimensioning the load capacity of lines. 

There is a major difference in peak powers between 1 % and 5 % excess probabilities, if 

the standard deviation is high compared with the mean power. This is a common situation 

in customer groups in low-voltage networks. The application of 1 % excess probability 

leads to overdimensioning of the network. The highest load demands of different kinds 

of customers do not usually occur at the same time. The total loads of different customer 

types are typically lower than the sum of individual customers’ peak loads. Peak load can 

be calculated as (Lakervi and Partanen, 2008)  
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𝑃max = 𝑛1 ∙ �̅�1 + 𝑛2 ∙ �̅�2 + za√𝑛1σ1
2 + 𝑛2σ2

2,  (4.5) 

where n1 and n2 are the numbers of certain types of electricity customers. In practice, 

levelling-out of peak load intensities may take place because of the time variation in the 

electricity use between different customer groups. Another reason for levelling-out is that 

if the number of customers increases, the effect of random variation decreases. This can 

also be detected in increasing peak load times (Lakervi and Partanen, 2008). 

As mentioned above, the peak power of the individual customers’ sum load is usually 

lower than the peak load sum of the individual customers. This is typically taken into 

account by levelling coefficients. The levelling coefficient can be calculated by dividing 

the peak power of the individual customers’ sum load by the peak load sum of the 

individual customers (SLY, 1992): 

 L𝑟(𝑛) =
max∑ 𝑃𝑘(𝑡),𝑡=1,…,8760)

𝑛
𝑘=1

∑ max(𝑃𝑘(𝑡),𝑡=1,…8760)
𝑛
𝑘=1

 ,   (4.6.) 

where Lr(n) is the levelling coefficient for customer group r when the number of end-

users is n and Pk(t) is the power for customer k at time t. The value of the coefficient 

depends on the customer group and the number of end-users. This requires that for each 

customer group and different numbers of the end-users, a specific coefficient has to be 

determined (SLY, 1992). 

Load models are over 20 years old, which means that they cannot take into account 

changes in the end-use behaviour or new technologies. For example, a residential 

customer’s load curve may have negative values in summertime because of 

microgeneration, when electricity is supplied to the distribution network. As a conclusion, 

we may argue that traditional load models are no longer accurate enough or appropriate 

for load modelling or load forecasting in modern electricity distribution systems. Further, 

AMR data provide means for new load modelling methods. In addition, the load 

modelling method has partly become outdated. However, there are elements such as the 

determination of standard deviation that will be involved in the advanced load modelling 

methods. Moreover, AMR data enable regional load profiles when national load profiles 

are not used anymore. The dependence of outdoor temperature, considering a single 

customer, is also an example of the new methodology in load modelling.    

4.1.3 AMR data and clustering method 

Because of the changes in the electricity usage, the load models should be updated 

applying the new AMR data. Once the customer has been classified into a certain 

customer group, the customer’s load profile and the customer group are hardly ever 

updated to respond to the load profile of the most suitable customer group. However, the 

customer type may change, for example, if the customer switches from one heating 

solution to another. There might also be other errors like misclassification. In addition, 

some customers may have such an uncommon load behaviour pattern that they do not fit 
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into the customer profiles of the load models. It is a challenging task for the DSO to detect 

the changes and update the system (Mutanen et al., 2011).  

AMR measurements have revolutionized the load modelling. AMR data can already be 

applied to load modelling in electricity distribution, but the application of data will be 

even more efficient in the future. AMR data provide hourly based information of the 

customer’s electricity consumption for each hour of the year, which means that the 

customer’s load data can be analysed on an hourly, daily, weekly, monthly, or yearly 

basis. Furthermore, loads can be modelled in any period of time. Previously, only annual 

energy consumption values were available. Figure 4.1 illustrates AMR data of three 

residential customers (detached house) and the total consumption curve of these 

customers. The data shows, for example, how the highest mean hourly power of one day 

is comprised. The figure demonstrates how the electricity end-use and network loads can 

be compiled from AMR data.  

 

Figure 4.1. AMR data curves and the total curve of three customers on January 1, 2011. 

By summing each customer’s consumption curve in the distribution network area, the 

total load curve in a primary substation can be calculated. This is not an exact load curve, 

because network losses are not considered. However, it models electricity consumption 

of the customers with high enough accuracy. These kinds of load patterns can be 

generated for any part of a distribution network from a customer point to the primary 

substation, including feeders, secondary substations, and network nodes. Figure 4.2 

depicts an AMR-based load curve in a primary substation in one year.  
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Figure 4.2. Network load curve in a primary substation based on AMR data. 

According to (Rimali et al., 2011), AMR data can be analysed and represented by new 

and inventive methods; hourly series can be based on 

- Separate areas  

o Various geographical areas, e.g. streets, blocks, districts, and villages 

o Various network points, e.g. the customer metering point, connection 

point, distribution cabinet, LV feeder, secondary transformer, MV 

feeder, and primary substation 

- Various time periods or time stamps 

o Hourly series consisting of 24 values/day 

o Analysis can be based on certain time stamps, e.g. winter/summer, 

day/night, workday/weekend, minimum/maximum load, or one week/one 

month periods, and 

- Certain customer types.  

Customer classifications have traditionally been made based on daily load profiles, and 

the target has usually been, for instance, in tariff generation or planning of a marketing 

strategy (Mutanen et al., 2011). The purpose of use determines the customer classification 

approach. A basic rule is that AMR measurement data are required from at least one year 

to develop load profiling (Mutanen et al., 2013). Various types of clustering methods have 

been presented for customer classification and load profiling. For example, classical 

clustering and statistical techniques, data mining, self-organizing maps, neural networks, 

and fuzzy logic methods have been suggested for the analysis and modelling of the 
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customer electricity consumption behaviour (Mutanen et al., 2011), (Räsänen et al., 

2010), and (Chicco et al., 2006). 

AMR measurements can be used to update load profiles of a customer class and to 

reclassify customers. A customer can be classified into a customer group, the load model 

of which is closest to the customer’s AMR-based consumption. This guarantees that the 

load profiles are kept up-to-date despite the changing electricity end-use. At the same 

time, the number of errors such as sampling and geographical generalization will 

decrease. A considerable proportion of customers may shift to another customer group, 

when the customers are reclassified based on AMR data (Mutanen, 2013). 

Predefined customer groups can be used to reclassify the customer groups. There are also 

other techniques that can be used for customer grouping. In (Rimali et al., 2011) and 

(Rimali, 2011), a key value method has been proposed for the classification of electricity 

end-use. The method is based on the application of AMR data. An individual customer’s 

hourly measurements are analysed and classified into certain key value classes. For each 

key value, limit values are set, and then, based on this approach, a customer is clustered 

into that specific class.  

AMR data may incorporate a lot of data that may be challenging to use in the clustering 

algorithms. Clustering calculation can be speeded up by applying dimension reduction. 

Therefore, it may be necessary to reduce the amount of data, for instance the amount of 

raw data. For example, this can mean reduction of AMR measurements that are used in 

the analysis (Räsänen et al., 2010). The amount of data can be reduced by principal 

component analysis (PCA) (Koivisto et al., 2013) and (Rimali, 2011). In addition, there 

are also Sammon maps and curvilinear component analysis (CCA) that have been 

suggested for the purpose (Chicco et al., 2006). Dimension reduction can be made by 

using pattern vectors, which describe the average consumption of each customer. The 

pattern vectors can consist of four seasonal temperature dependence values and 2016 

values that comprise 12 months x 7 days x 24 hours. These values describe the average 

hourly consumption by representing type weeks for each month. The benefit of pattern 

vectors is their understandable nature and the fact that they can be used to produce 

individual customer-specific load profiles (Mutanen, 2013). Consequently, these methods 

can be applied to enhance the clustering approach. 

Clustering is an analysis scheme that determines how the data are organized. Clustering 

algorithms divide the data into clusters, where the observations in the same cluster are of 

similar type (Mutanen, 2013). All customers should not be clustered simultaneously. For 

instance, small residential customers have to be clustered separately from large industrial 

customers, because clustering is based on expected load values. Moreover, different sizes 

of customers have a different standard deviation (Mutanen et al., 2011). Euclidean 

distance is generally used in clustering algorithms; it is used for the similarity measure in 

the clustering algorithm (Mutanen et al., 2011). The Euclidean distance between two n-

dimensional vectors x and y is formulated as 
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 𝑑𝐸(𝑥, 𝑦) = |𝑥 − 𝑦| = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1    (4.7) 

Euclidean distance is used as a measure between the input variables. In addition to the 

formulation of the Euclidean distance, the clustering method is needed. For instance, the 

K-means method is a widely used clustering method. An algorithm assigns the nearest 

points to the cluster centre. The average of all the points in a cluster is called a centroid. 

The k-means algorithm is the following:  

1. Choose the number of clusters k  

2. Randomly assign k points as cluster centres  

3. Assign each point to the nearest cluster centre  

4. Recompute the new cluster centres  

5. Repeat 3 and 4 until the assignment does not change (Mutanen, 2013).  

The number of clusters has to be determined in advance according to the principles of k-

means clustering (Koivisto et al., 2013). This requires knowledge of the potential number 

of customer groups. However, the customer classes and their number are not known 

accurately in advance. Therefore, an unsupervised clustering method has also been 

introduced. (Mutanen et al., 2011) has proposed an iterative self-organizing data-analysis 

technique algorithm (ISODATA) as a customer clustering method. The ISODATA 

algorithm is a variation of the k-means approach. It includes heuristic provisions for 

splitting and merging the existing clusters. However, a starting value K for the number of 

clusters and threshold values is needed. The final number of clusters is between K/2 and 

2K. The user must have an estimate of the number of clusters. Threshold values depend 

on the stochastic characteristics and the number of customers. If the input parameters are 

suitable, the ISODATA algorithm may produce better results than the k-means (Mutanen, 

2013). At present, the most popular methods are probably the k-means and ISODATA.  

Updated and clustered profiles produce better load modelling results compared with the 

original and existing load profiles, namely the SLY load models (Mutanen et al., 2013) 

and (Mutanen, 2011). (Räsänen et al., 2010) have also found that the clustered load curves 

give better estimates of the customers’ electricity loads compared with the existing load 

models. In addition, these models together contribute to a better and more complete 

understanding of the electricity demand of the customers. Further, (Chicco et al., 2006) 

have discovered that clustering techniques are extremely useful. It has been found that 

the k-means and ISODATA may be the most practical clustering methods for the 

classification of electricity distribution customers (Mutanen, 2011). Load model update 

seems to be a more efficient method to improve the load profiling accuracy than the 

reclassification of customers. Figure 4.3 shows the results of a comparison of a 

reclassification and a load profile update. Reclassification of customers has to be carried 

out before updating the load profiling so that the updated customer group load models are 

the nearest load profile for all customers (Mutanen, 2013).   
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Figure 4.3. Relative square sum of errors between different load profiling methods. The modelled 

customers are residential customers. The basic case consists of the original classification and the 

SLY load models. Case 1 refers to the customer reclassification and the SLY load models. Case 

2 covers the original classification and the updated load profiles, Case 3 represents the customer 

reclassification and the load profile update with K-means clustering. Case 4 is the customer 

reclassification and the load profile update with ISODATA clustering, and finally, Case 5 

represents individual load profiles (Mutanen, 2013). 

There can be customers with exceptional end-use behaviour, as a result of which these 

customers do not fit into any of the predefined customer classes or clusters. Individual 

load profiles can be defined, and they are the most suitable solution in this case (Mutanen, 

2013). In addition, (Mutanen et al., 2011) states that individual load profiles determined 

with pattern vectors produce better results in the next-day load forecasting than the 

previous year’s measurements that are applied as individual load profiles. Pattern vectors 

are used for dimension reduction of the AMR data by using data values that describe the 

average hourly consumption. 

AMR data yield updated information of the loads compared with traditional load models 

and more accurate load modelling analysis options compared with the present analysis. 

They also provide new opportunities to model loads with new methods in distribution 

networks. Customer classification can also be performed more reliably. Consequently, 

load modelling can be carried out accurately and even for a specific geographical area. 

This serves as a good starting point for the load modelling.  

4.1.4 Summary of load modelling 

The DSOs use customer class load profiles mainly for load modelling. Each customer can 

be linked with the customer information system (CIS) to one customer class load profile, 

which typically has 20–50 customer classes in Finnish DSOs. Moreover, large customers 

can be modelled with load profiles of their own. Customers are also connected to a 

geographical network model. The network information system (NIS) enables network 
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calculations that apply the load models (Mutanen et al., 2011). The data that the NIS 

applies should be updated, and they should reflect the present network state. This way, 

the data provide exact information of the current network state, which will be important 

for the long-term load forecasting. 

Electricity end-users have typically been classified into predefined customer classes, and 

loads of individual customers have been estimated with customer-class-specific hourly 

load profiles. However, this system involves some error sources such as sampling error, 

geographical generalization, profile drift, customer classification, and outliers. Sampling 

errors may derive from misclassified measurements of the existing customer class load 

profiles or from an insufficient number of measurement points. Load profiles are defined 

based on a national load research, which involves geographical generalization. Further, 

the profiles drift because electricity end-use fluctuates constantly, but the profiles are not 

updated. Errors in the customer classification occur, for instance, if the customer type 

changes because of a change in the heating solution. Customers’ exceptional load 

behaviour does not necessarily fit into any of the predefined class load profiles, in which 

case such customers are outliers (Mutanen, 2013). However, AMR measurements can 

remove these error sources. Customer classification and load profiling can be carried out 

based on actual consumption data. Classification and load profiling can be also updated 

once a year, for instance, because of constant AMR data collection. Load profiles can be 

determined for each region, and thus, the effect of geographical generalization can be 

removed. Finally, outliers can be detected and individual load profiles can be defined for 

exceptional load profiles (Mutanen, 2013). 

Almost every customer has a smart meter in Finland, and the penetration of smart 

metering is rapidly increasing also elsewhere around Europe. This enables the use of 

smart metering data in load modelling in a wide scale. However, AMR data have been 

collected for only a few years in Finland, which limits the analysis at the moment. After 

a few years there will be a lot of AMR measurements available, which will be a significant 

benefit for the load analysis. On the other hand, this means that the amount of data will 

grow radically, and DSOs have to have appropriate information and communications 

technology (ICT) systems.  

Another benefit of the novel type of load modelling is that it can be applied to recognize 

the electricity end-use, for instance heating systems in customer points based on data 

measurements and disaggregation of heating loads from the recorded AMR data. There 

are some preliminary results of applying mathematical methods to identify these loads 

(Niska, 2013). However, more analyses are still needed. Load identification is also an 

important element of load modelling. For instance, identification of such loads as heat 

pumps and production such as PV systems is of significance from the perspectives of load 

modelling and forecasting. 

In (Mutanen, 2013) it has also been shown that clustering methods can be applied for load 

profile updates and customer classification. Several methods have been studied, and there 

are many algorithms applicable to these purposes. Further, the differences in results 
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between the clustering methods seem to be small. Therefore, it has been concluded that 

the comprehensibility and computation speed are more relevant factors than the accuracy 

of the results (Mutanen, 2013). Although many methods to model loads and classify 

customers have been presented, they are not yet in universal use. It is even probable that 

not all the methods or the best ones are known yet. Consequently, there are many options 

available for load profiling, modelling, and application of AMR data. However, the DSOs 

require knowledge on how the data can be used comprehensively, and the load modelling 

requires a universal method for this purpose. Eventually, AMR data will yield better load 

profiles in the future.  

Regardless of the AMR data and clustering methods, the expectation and standard 

deviation values and calculations apply the same methodology as before. However, 

reclassification, load profile updates, clustering, individual load profiling, and 

temperature dependence parameters can be developed and enhanced with AMR 

measurements (Mutanen, 2013). 

One conclusion related to the load modelling is that the demand for load modelling is 

dependent on the purpose of use. AMR data increase opportunities to use customers’ load 

profiles for load forecasting purposes. Thus, it is possible to forecast loads with more 

accurate initial data compared with the present annual energy forecasting approach. From 

the long-term load forecasting perspective, load modelling should cover all customers of 

the case area, because an individual customer may have a significant impact on the loads 

in the distribution network. From this point of view, it is highly important that the same 

type of customers are classified into same customer groups. Therefore, it does not matter 

if a consumption behaviour of an individual customer does not completely correspond to 

a certain customer group. Instead, it is more important that there is sufficient and correct 

information of the customers. The most essential customer information is customer type 

(e.g. residential, service), heating method (direct electric heating), heating demand, and 

information of additional equipment such as solar panels. 

From the long-term load forecasting perspective, load modelling does not have to be 

extremely accurate. In the STLF, the accuracy is highly important, but in the LTLF, the 

significance of accuracy is lower. Some methods in the load modelling process reduce 

the AMR data. Data reduction can be used for load modelling and customer classification, 

but for the long-term load forecasting, annual AMR data are needed. At the end, an expert 

or planner can decide which clustering method is used. 

At present, it seems that a clustering method is needed for load modelling, but the 

situation can be totally different in the future. It may be possible that the customers’ 

electricity end-use will change significantly, and there may be differences in the end-use 

between the customers of the same type. For instance, a customer living in a detached 

house with direct electric heating may consume less electrical energy because of the 

improved energy efficiency achieved by insulation and an air source heat pump. In 

addition, the same customer may have solar panels and a plug-in hybrid electric vehicle. 

This kind of development may pose new requirements for load modelling in the future.  
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4.2 Long-term load forecasting methodologies  

Annual energy consumption instead of power has been used as the starting point for load 

forecasts. Load forecasting has usually been made based on energy consumption, as it has 

been known for all customers. However, energy consumption does not provide enough 

information for the follow-up and planning calculations, or operation of loads in network 

areas. Thus, energy consumption has to be transformed either into peak power or power 

of a certain time period (Lakervi and Partanen, 2008).  

Load estimates play a vital role in the network design. The main methods to produce 

forecasts of future power demands have traditionally been econometric modelling, 

extrapolation, and simulation methods. All these methods have special application targets 

of their own, but combinations of these methods have also been used. Significant errors 

may occur if the forecasting method does not take into account the area under review. 

Forecasts cannot be based on average values of load growth, and each area has to be 

analysed separately (Lakervi and Holmes, 1995). 

Most short-term forecasting methods apply statistical techniques and artificial 

intelligence algorithms such as regression, neural networks, fuzzy logic, and expert 

systems in load forecasting. In medium- and long-term forecasting, end-use modelling 

and econometric approaches are the most commonly used ones. The customer 

information, that is, the size of the houses, technology changes, customer behaviour, and 

population dynamics are typically included in the end-use approach by statistical and 

simulation models (Sallam and Malik, 2011). There is no single forecasting method that 

would be efficient in all situations. The load forecasting method depends on the nature of 

data available and the nature and details of the forecasts. Occasionally, it can be 

appropriate to apply more than one method. Long-term forecasts usually take into 

consideration several issues such as the historical load data, the number of customers in 

different categories, and the electrical equipment in the area (Sallam and Malik, 2011). 

The purpose of this section is to present different load forecasting (LF) methods, 

especially from the perspective of long-term load forecasting. The following paragraphs 

introduce the most typical long-term electricity load forecasting methods in brief. Not all 

forecasting methods are presented because they are not necessarily suitable for long-term 

forecasting purposes or they are very seldom used. There are also similarities and 

differences between the short- and long-term methods. Short-term methods are used for 

distribution network operation purposes while long-term forecasting is typically used for 

planning. However, some elements of the short-term load forecasting can also be applied 

to long-term load forecasting. Many of the following methods can apply different 

methods to support the main method. However, in the following sections the main 

forecasting methods are classified, and the links to other methods are described in brief. 

At the end of this chapter, it is shown which of these methods can be applied to the new 

long-term load forecasting.  
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4.2.1 Econometric modelling 

Econometric modelling of electricity consumption is typically based on correlation 

between electricity consumption and economic parameters. Gross domestic product 

(GDP) and effects of electricity prices are examples of these parameters. However, the 

model is not appropriate for small areas and individual distribution system studies 

(Lakervi and Holmes, 1995). 

The econometric approach uses the relationship between the load and the driving 

parameters. The relationship can be nonlinear or linear, and it is based on historical data 

available. The method can be used with various customer groups and for the system as a 

whole. A benefit of the method is that it is simple to apply while a drawback is the 

assumption of holding the relationship established for the past to be applicable to the 

future. This means that new parameters cannot be taken into consideration (Hossein and 

Sepasian, 2011). 

Econometric factors are typically based on per capita incomes, employment level, and 

electricity prices. The models are usually applied in combination with the end-use 

approach. Forecasts related to population changes, economic development, industrial 

construction, and technology development are typical elements of long-term forecasts. 

The method combines economic theory and statistical analysis in the electricity demand 

forecasting. Econometric modelling estimates the relation between the energy 

consumption and factors affecting the consumption. The least square or time series 

methods are used to determine these relationships (Sallam and Malik, 2011). 

Econometric modelling, end-use modelling, and combinations of these are the most 

frequently used methodologies for medium- and long-term load forecasting. Appliances, 

the sizes of houses, the age of equipment, technological changes, customer behaviour, 

and population dynamics are typically included in the statistical and simulation models, 

which are based on the end-use approach. Furthermore, long-term forecasts include 

forecasts on the population changes, economic development, industrial structure, and 

technology development (Chow et al., 2005). 

4.2.2 Extrapolation/trending methods 

Extrapolation methods are purely statistical methods. In these methods, future demand is 

estimated from historical data. Predictions of electricity usage can be generated from 

consumption data for the next few years. In the long term, the consumption trend often 

follows an S curve (Figure 3.1). In the first phase, there may be a high rate of demand 

growth, but after the customers’ dwellings have become saturated with electrical 

equipment, the rate will decrease (Lakervi and Holmes, 1995). 

The trending method can be applied with historical load data, which can be obtained by 

extrapolating the past load patterns into the future. The most popular trending method is 

polynomial curve fitting, which uses multiple regression to fit a polynomial function into 
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historical peak load data. By extrapolating that function into the future, a forecast can be 

made. Trending is most suited for large area forecasting. However, it is relatively 

inaccurate when applied to small areas (Willis, 1996). 

The trend extrapolation method applies historical data to forecast the loads in the future. 

A curve fitting approach can be used to determine the load for the target year. The method 

is simple to understand and implement. The trend analysis assumes that the trends in 

various load parameters remain unchanged over the study period. If there is a major 

change in the economic growth, the approach is not able to forecast the future load. The 

method can be modified and improved to a certain extent. For instance, more weight can 

be added to the loads into the end of the past period (Hossein and Sepasian, 2011). 

4.2.3 Spatial forecasting 

In broad terms, spatial analysis can be defined as the quantitative study of phenomena 

that are located in space. In a spatial analysis, observational data are available on some 

system operating in space, and methods are explored to explain the system. The main aim 

of the analysis is to enhance understanding of the system (Bailey and Gatrell, 1995). 

The peak demand has to be known on a local basis. Therefore, spatial forecasting has to 

be applied to estimate the peak demand in each small area in the system. Spatial load 

forecasting is the first phase in determining the future distribution system design. The 

objective is to produce information for the distribution planning in a way that serves the 

load forecasting process. Basically, this means defining the amount, timing, and locations 

of the future loads as accurately as possible in a manner that fits the long-range planning 

needs (Willis, 1996).  

Generally, the network planning areas can be quite roughly defined, and they can be based 

on municipal or district areas. Spatial forecasting, instead, requires more accurate regional 

borders, customer groups, and characteristic consumption estimates. Electric loads are 

location dependent. The existing information and forecasts of population, housing, and 

industrial development are vital information for the local area planning. These data 

combined with the existing and past consumptions can serve as a starting point for actual 

load forecasts. More information can be available from the customer loads, network 

system data, and known developments (Willis, 1996). 

Spatial load forecasting supports the planning process, because it reveals where the future 

load will develop and when the expected load changes will take place. Information of the 

location of the future load growth is one of the main requirements for spatial load 

forecasts. Because of the nature of spatial load forecasting, scenarios are needed. The 

time when the load growth takes place is also of importance. The amount, location, and 

timing of the future load changes have to be modelled as accurately as possible (Sallam 

and Malik, 2011). 
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In a spatial load forecast, the geographic location of electricity demand is obtained by 

dividing the case region into many small areas. These areas may vary in size and be 

irregular in shape. For instance, the areas may be the service areas of a primary substation 

or feeders, or square areas of the network. The small-area load forecasting method is an 

extrapolating load forecast technique that analyses the electricity consumption trends in 

a feeder area. It is a feasible method for irregularly shaped and sized areas (Willis, 1996). 

Spatial load forecasting has been shown to be one of the most applied methods for the 

electricity distribution load forecasting. The long-term spatial load forecasting is a viable 

tool for land usage planning or to consider future loads under different scenarios for 

planning purposes (Fan et al., 2011). 

Spatial electric load forecasting can be divided into nonanalytic, trending, and simulation 

methods. Nonanalytic methods do not perform an analysis of historical or base year data 

in the production of the forecast. This kind of forecasting depends entirely on the 

decisions made by the forecaster. Trending methods forecast future loads by extrapolating 

while simulations analyse and model the changes in the electric loads. Trending methods 

use historical load data to extrapolate past load patterns into the future. The advantage of 

the trend methods are simplicity and ease of use. A disadvantage is that they ignore 

possible factors for instance related to population growth, urbanization, and prices 

(Sallam and Malik, 2011). 

4.2.4 End-use modelling 

Electric demand modelling and load identification of a customer group as a function of 

time is important in load forecasting. End-use load modelling of a customer class is a 

viable method in the spatial load analysis. In load modelling, the end-use models represent 

a bottom-up approach. Electricity usage is divided into three categories: customer classes, 

end-use classes within each customer class, and appliance categories within each end-use. 

Basically, end-use models work similarly as load models to analyse and forecast the end-

use curve shape (Willis, 1996). 

The end-use method models the electricity usage patterns of different devices and 

systems. End-use models are based on individual characteristics of the electricity use of 

the residential, commercial, and industrial customers. For example, electricity is 

consumed for water heating, air conditioning, refrigeration, and lighting in the residential 

sector, whereas in the industrial sector, the majority of electricity is consumed by electric 

motors involved in industrial processes. The method is based on the principle that a 

certain amount of energy is needed for the services (Sallam and Malik, 2011). 

Electricity end-use consists of different elements; for instance, lighting is one part of 

electricity end-use. In addition, lighting can be divided into electricity end-use of a certain 

lamp type such as an incandescent lamp, a fluorescent lamp, and a sodium vapour lamp. 

Each lamp type has a load behaviour of its own (Sallam and Malik, 2011). Figure 4.4 

demonstrates an example model for an end-use system. As shown in the figure, end-use 

models are a bottom-up approach to model loads. Electric load demand modelling 
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requires customer classes. The total system load can comprise customer classes, end-use 

classes within each customer class, and appliances within each end-use class. 

 

Figure 4.4. Hierarchy of end-use models (Sallam and Malik, 2011). 

The forecasting results of applying the end-use model are: 1) the shape of the future load 

curve, 2) determination of the peak load, and 3) information of the energy end-use 

development (Sallam and Malik, 2011). End-use models are applied to define the shape 

of the future load pattern, peak load, and energy usage. Typically, these vary as a result 

of the appliance mix, appliance technology and efficiency, customer mix or 

demographics, and the total number of customers. For example, a change in the appliance 

mix can refer to a change from electric space heating to a heat pump, and a change in the 

appliance technology can mean replacement of a refrigerator by a more energy efficient 

one. Finally, for instance in rural areas, a change in the number of customers can mean a 

decrease from 10 000 residential customers of today to 7 500 residential customers after 

ten years (Willis, 1996). End-use models are an alternative to the traditional demand 

forecasting. The accuracy in the modelling is dependent on the consumption details 

available. In (Paatero and Lund, 2005), it has been shown how this approach has been 

applied to the demand side management (DSM). 

4.2.5 Scenario analyses 

Scenario planning is a method for cases where uncontrollable and irreducible uncertainty 

is involved. A scenario is a description of a plausible future. In scenario planning, a few 

contrasting scenarios are used to study the surrounding uncertainty. The method can 

incorporate various quantitative and qualitative information. The scenario provides a 

systemic methodology to think creatively about an uncertain and complex future. An 

essential target of scenario planning is to review several possible futures that involve 

various uncertainties in the system. However, the purpose is not to focus on the accurate 

forecast of a single outcome (Peterson et al., 2003). 

Various possible decisions, events, and consequences can be addressed in more detail 

with the scenario analysis. Scenarios are alternatives for possible future events and their 

Total system
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results. Scenario modeling weighs up uncertainties that are not controllable. Therefore, it 

is possible to take into account unknown factors that pure statistics-based models cannot 

anticipate. Long-term forecasts are usually made by taking different scenarios into 

consideration. Moreover, it should be possible to produce “what if” type experiments 

quickly and conveniently (Niska et al., 2011). Multi-scenario planning includes several 

plans to cover the various probable consequences of the future development. 

Circumventing multi-scenario planning by using average or probabilistic forecasts is a 

mistake often made in distribution planning. This approach may lead to a poor 

performance combination with high costs (Willis, 1996). 

Forecasting is a stochastic problem in nature. Long-term load forecasting can provide 

multiple forecasts based on various scenarios (Hong et al., 2014). If the horizon of the 

forecast is long, the forecast becomes more scenario dependent. Typical scenarios can 

include new major transport links, energy efficiency policies, re-zoning of land, or 

demand side management. There are various types of scenarios that can be considered in 

long-term forecasts; for instance end-use change, re-zoning, and micro-scale scenarios 

(Spackman et al., 2007). 

4.2.6 Simulation method 

Simulation methods are based on specific annual consumption curves of individual 

customer groups, and the number of customers in each customer group. Each customer 

group has to be analysed separately in the simulations. Typically, simulations are based 

on a large amount of data. The future development can be forecasted from national 

information and modified for local use. The simulation method is very useful in areas 

where significant developments are expected to take place such as a notable increase in 

the number of population or buildings (Lakervi and Holmes, 1995). Simulation methods 

typically apply analyses of the local geography, location economy, land use, population 

demographics, and electric load consumption (Sallam and Malik, 2011). Figure 4.5 gives 

an example of how to apply a simulation method to combine information systems and 

model loads in the spatial approach. 
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Figure 4.5. Simulation approach deals with the customer locations and consumption separately. 

Finally, it combines the information with a small-area forecast (Willis, 1996). 

The distribution load forecasting method based on simulation aims at reproducing or 

modelling the load process. The objective of simulation is to forecast where, when, and 

how the load(s) will develop. Simulation is applicable to long-range forecasting with high 

spatial resolution, and together with the multi-scenario planning, it is a viable tool for 

forecasting. Furthermore, if the simulation method is applied correctly, it is more accurate 

than the trending methods. An important characteristic of simulation is that it is well 

applicable to very small areas with high spatial resolution. However, the simulation 

method requires more data and more knowledge from the planner (Willis, 1996). 

4.2.7 Other long-term load forecasting methods 

In addition to the previous models, different kinds of other forecasting models have been 

introduced in the literature. Various regression models, time series analyses, artificial 

neural networks, and fuzzy logics have been proposed for load forecasting (Wang et al., 

2012), (Daneshi et al., 2008), (Bianco et al., 2009), (Ghods et al., 2011), and (Alfares and 

Nazeeruddin, 2002). Modern computational intelligence (CI) methods such as support 

vector machines and self-organizing maps have also been mentioned in the context of 

forecasting electricity consumption loads (Ghods et al., 2011) and (Räsänen et al., 2010). 

(Sallam and Malik, 2011) have listed advantages and disadvantages of these methods 

(Table 4.3). 
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Table 4.3. Advantages and disadvantages of short-term load forecasting methods (Sallam and 

Malik, 2011). 

 

STLF Technique Advantage Disadvantage 

Stochastic time 

series 

Ease of understanding and 

implementation and accuracy of its 

results 

Longer computational time 

for the parameter 

identification 

Multiple 

regression 

Model the relationship of load 

consumption and other factors, e.g. 

weather, day type, and customer class 

Finding functional 

relationship between weather 

variables and current load 

demand is difficult 

Expert system Incorporates rules and procedures used 

by human experts into software that is 

then able to automatically make 

forecasts without human assistance 

Works best only when a 

human expert is available. 

Also, an expert's knowledge 

must be appropriate for 

codification into software 

rules. 

Fuzzy logic (FL) Model uncertain data often encountered 

in real life. It is able to simultaneously 

handle numerical data and linguistic 

knowledge 

Requires a thorough 

understanding of the fuzzy 

variables as well as good 

judgment to select the fuzzy 

rules and membership 

functions 

Artificial neural 

networks (ANN) 

It combines both time series and 

regression approach. It is able to 

perform nonlinear modeling and 

adaptation and does not require 

assumption of any functional 

relationship between load and weather 

variables 

The inability of an ANN to 

provide an insight into the 

nature of the problem being 

solved and to establish rules 

for the selection of optimum 

network topology 

Fuzzy neural 

networks 

Some of the uncertainties in the 

input/output pattern relationships are 

removed by the FL thereby increasing 

the effectiveness of the ANN 

— 

 

However, the majority of these approaches in load forecasting have mainly been applied 

to short-time load forecasting. (Hong et al., 2014) points out that most of the literature on 

load forecasting concentrates on the short-term load forecasting. In those cases, the 

forecasting horizon is typically two weeks or less. Only a few of the publications present 

practical approaches that have been verified in field implementations at utilities (Hong et 

al., 2014). A quite common characteristic of long-term forecasting methods is variation 

in the forecasting time range. The term long-term forecasting may refer to a period shorter 

than a year in one context while in the other case it may mean a forecasting period up to 

ten years. Thus, it is of essential importance to define the forecasting period, and the 
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forecasting range has to be decided in advance. Some of the short-term load forecasting 

methodologies can possibly be applied to the load modelling in the future. Furthermore, 

the effects of new technologies on electrical loads in the short-term forecasting bring 

important background information for the long-term load forecasting. 

4.3 Conclusions 

Electricity distribution networks have to withstand changing net load profiles and the 

potential of additional loads with specific characteristics. The time and rate at which new 

technologies will emerge and to what extent they will penetrate into distribution systems 

will vary significantly between areas. The net load profiles of individual customers will 

differ more from each other and be less predictable than today. In addition, the 

development towards a more sustainable power system requires electricity distribution 

networks that support distributed energy resources. A more sustainable energy system 

will lead to fundamental changes in the supply and demand of electrical energy (Veldman 

et al., 2013). The introduction of microgeneration and new types of demands will alter 

the present profiles of electricity demand and generation. New technologies will have 

various characteristics in terms of size and time when they generate or consume 

electricity. Strongly changing profiles of energy end-use imply a change in the use and 

development of the networks (Shaw et al., 2010). Forecasting of the future peak loads 

caused by the new technologies on the networks will be a significant source of uncertainty 

(Blokhuis et al., 2011). Thus, the effects of new technologies have to be investigated by 

studying various scenarios with different penetration degrees (Veldman et al., 2013).   

Energy and power forecasts require information of the number of customers and the 

electricity consumption of the customer groups. A suitable amount of data and a realistic 

area for the forecasting can be, for instance, the present supply areas of a primary 

substation. Thus, the total energy consumption forecasts at the DSO level should be based 

on the sum of the separate forecasting areas. New technologies like microgeneration and 

energy storages have to be taken into consideration in the forecasting methodologies. In 

addition, AMR data have to be applied and processed for long-term forecasting purposes. 

Consequently, a new long-term electrical load forecasting process has to be developed. 

The current approaches are not very accurate and straightforward methods to forecast 

loads in the long term. Basically, most of the above-presented methods are applicable to 

traditional electricity load forecasting. The methodologies based on load history alone are 

not accurate enough methods any longer. Historical consumption data cannot be used as 

initial data alone, because more detailed and new type of data are needed for the 

forecasting process. As mentioned above, it may be possible to improve the traditional 

forecasting system with AMR and other data. This alone will transform the whole 

forecasting procedure. In addition, novel forecasting processes are required for the new 

types of electricity end-use. As a result of the increasing amount of data and the changing 

operating environment, a lot of parametrization will be needed in the forecasting process. 

For instance, the development of population can be estimated to increase in the next ten 
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years, but decrease after that for the following 30 years. Further, in (Spackman et al., 

2007) it is shown that extrapolation and econometric forecasting methods are not 

recommendable for the long-term distribution network forecasting. The extrapolation 

approach cannot estimate the eventual saturation of small land areas. An econometric 

forecast for small areas relies on estimations of socioeconomic variables in those small 

areas, and these forecasts are not always available. 

DSOs have typically used spatial load forecasting and simulation methods in the long-

term load forecasting. Forecasts have to be spatial so that it is possible to estimate where 

the loads will be located. Spatial analyses have been made for a long time, but the method 

seems to be evolving. More accurate data and location information together with AMR 

data provide new opportunities for spatial analysis (Niska and Saarenpää, 2013). Spatial 

analysis is a fundamental forecasting method in electricity distribution; spatial load 

modelling is required to consider long-term development of loads in different 

geographical areas and long-term scenarios. Further, power is location dependent, which 

calls for a spatial analysis. Again, network planning requires that the case region and the 

forecasting period have to be determined. AMR data make it possible to model electricity 

end-use and classify the customers with clustering algorithms more accurately.  

A picture of the future can be painted by making scenarios. Traditional long-term load 

forecasting has used scenario analysis when forecasting the future characteristic 

consumption and the number of customers. Further, a scenario analysis is needed in the 

forecasting system. Volume and consumption forecasts are based on scenarios in the same 

way as before. In addition, a scenario approach is needed to make approximations of the 

number and capacity of the future technologies, because there is no statistics available on 

future technologies. Here, scenario-based modelling plays a crucial role, when the 

impacts of the future energy technologies are forecasted. A scenario-based approach in 

the long-term forecasting is considered a useful method; however, in scenario-based 

forecasts there is an abundance of parameters to be taken into account. Examples of the 

required parameters are population forecast values and the amount of microgeneration 

capacity. The role of parameters is essential from the perspective of the final results. 

However, the parameters include a lot of uncertainties. 

End-use models can be an excellent instrument in spatial load forecasting. If a spatial 

simulation model based on land use is applied, end-use modelling together with the spatial 

forecast model may produce good results (Willis, 1996). Electricity end-use will change 

radically, and therefore, end-use modelling is needed for the long-term load forecasting. 

Further, there is an increasing amount of data available of the customers, customer 

devices, and end-use. This provides more accurate data and opportunities to apply end-

use modelling.  

In the long-term load forecasting, it is also necessary to classify the same type of 

customers into the same customer groups. This calls for customer information of all 

customers in the area under study. In practice, customer information is required on what 

kinds of customers there are, and what kind of consumption behaviour these customers 
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have. Based on this information, it is possible to make estimates on how the end-use of a 

certain type of customers will develop in the future. This kind of modelling requires end-

use modelling and a parametric approach. Considering the future technological changes, 

information is needed about new devices and their load behaviour. End-use modelling 

supports also this perspective. End-use modelling will be a viable tool in the long-term 

load forecasting; it can be used to forecast the impacts of the future energy technologies. 

It is the most efficient method to approximate the future impacts on loads. Finally, a 

simulation method is needed to model the final results. A simulation method is used to 

gather the data and calculate the final results. Consequently, a combination of these 

methods can be the best approach for the long-term load forecasting.  

Long-term load forecasting requires different objectives compared with shorter forecasts, 

and STLF methods do not work for LTLF purposes. Short-term methods typically aim at 

minimizing errors, which is not needed and cannot necessarily be achieved in the long-

term forecasting. For example, there is no need for a forecasting accuracy of 2 % for ten 

years ahead. Firstly, it is impossible to make forecasts with such accuracy; secondly, the 

primary substation dimensioning can be, for instance, 16 MW and in that case, 2 % is not 

a relevant accuracy.  

A single forecasting methodology cannot take into consideration the variable operating 

environment and changes in the electricity end-use. Therefore, a combination of various 

forecasting methodologies is needed. This kind of a hybrid approach is required, because 

the forecasting process has to combine data and forecasting parameters from different 

sources and separate methods. Moreover, energy and power forecasts are separate from 

each other. The solution to forecast and model future electricity end-use will provide a 

combination of different electrical load forecasting methods. This doctoral dissertation 

proposes a novel long-term load forecasting process for electricity distribution that 

applies spatial analysis, clustering, end-use modelling, scenario analysis, and a simulation 

method. This approach and the forecasting process apply separate methods and different 

data systems. It also makes it possible to use AMR data and takes into account possible 

changes in the electricity end-use. 

New and different approaches for long-term load forecasting in electricity distribution are 

needed. Electricity end-use may change radically, and therefore, a new kind of process is 

required to forecast energy and power in electricity distribution. The new process will 

also make forecasting more accurate and reliable in the long term. Each distribution 

network area and electricity distribution company have specific characteristics of their 

own. Consequently, making objective load forecasts requires knowledge of the case area, 

and expertise of the area will be emphasized in the long-term load forecasting. According 

to (Nagasaka and Al Mamun, 2004), long-term load forecasts are always inaccurate, the 

peak demand is dependent on temperature, and some of the necessary data are not 

available. The forecast accuracy can be verified and established only afterwards, when 

the actual consumption figures are known. If the network planner can make the correct 

decisions based on the load forecasts, there is no error in the forecast from a practical 

viewpoint. However, it is emphasized that a long-term load forecast is not an attempt to 
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forecast future load exactly. The objective of the forecasts is to support network planning, 

not to forecast future loads with a minimum error. Most importantly, the forecast should 

accurately represent the load under conditions that are specified as part of the distribution 

planning scenario and criteria (Willis, 1996). It is pointed out that scenarios are only a 

good help in making forecasts. Finally, the planner of the network decides the parameters 

and makes the forecasts and analyses. 

The most radical change in the long-term forecasting compared with the present and 

previous forecasting methodologies is that the forecasts are based on hourly powers, 

which makes it possible to estimate powers in different areas and in any time period of 

the year. In practice, this means that the impacts on energy can be calculated from powers, 

if forecasts are made for the whole year. As described above, both power and energy are 

key elements in electricity distribution. Moreover, business planning is also dependent on 

the energy and power. Energy has an impact on revenue while power has an influence on 

network investments and thereby on network costs. 

The increasing amount of data will provide new opportunities to make load forecasts in 

the long run. In particular, AMR data bring totally new options to forecast loads in 

electricity distribution networks. More accurate analyses can be made at different network 

levels. In addition, the initial stage in the consumption analysis is exact because of the 

AMR data. In spite of the AMR data, standard deviation and excess probability have to 

be taken into account in the same way as before. This aspect has not changed, and 

probability calculations have to be involved in the network planning. 

Hence, the main difference between the traditional and new long-term forecasting is that 

the forecasts are based on hourly powers, not annual energy. AMR data and forecasts 

related to the future energy technologies are radical changes in the forecasting system. 

Similar analyses and forecasting tools are found for long-term purposes. (Kaartio, 2010) 

has developed spatial long-term load forecasting; in his study, the effects of MG, EVs, 

and HP on the network loads are discussed. The study does not apply AMR data. (Shaw 

et al., 2010) and (Veldman et al., 2013) have studied the effects of EVs, PVs, and HPs, 

and analysed their possible impacts on the network. (Niska et al., 2011) has presented a 

model on how to apply AMR data for a scenario-based electricity load prediction tool for 

electricity distribution. The study does not describe how to model loads in the long term 

and how the effects of the new energy technologies could be taken into account. 

In (Rimali et al., 2011), (Filik et al., 2011), and (Filik et al., 2009), AMR data have been 

applied to the long-term load forecasting in electricity distribution. These studies present 

how the AMR data can be modelled in the LTLF, but do not discuss how different future 

energy technologies could be forecasted universally. (Rimali et al., 2011) also proposes 

how to connect different data systems to each other. In (Huikari, 2015), it has been 

described how AMR data can be used in the LTLF, and a scenario analysis has been made 

on the future loads. The work also suggests that a scenario tool is needed for the LTLF. 
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The studies described above have connection points to this doctoral dissertation. 

However, these studies have not developed a comprehensive long-term load forecasting 

process for electricity distribution. Thus, the contribution of this dissertation is a new 

approach for the LTLF in electricity distribution. Here, AMR data is a starting point for 

the forecasting process. The changes in society and the operating environment are 

included in the process. The use of data from various databases, both the external and 

internal ones of the DSO, is introduced. Finally, it is described how to forecast impacts 

of the future energy technologies on the electrical energy and power in distribution 

networks. 
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5 Novel long-term load forecasting process 

Traditionally, it has been possible to forecast electricity end-use based on annual electrical 

energy consumption, because electricity end-use has not included loads such as 

microgeneration that would totally alter load patterns. However, new loads and 

production, evolving technologies, and changes in society will have various impacts on 

future loads. In particular, considerable changes in powers and energy of the electricity 

end-use will take place. Because of these changes in the operating environment, advanced 

forecasts are needed. In addition, new data sources can yield more accurate information 

of the present loads and customers. Especially, AMR data will revolutionize modelling 

of the present load analysis. Thus, owing to these factors, previous forecasting approaches 

are not valid anymore. Therefore, a new long-term load forecasting process (LTLF) is 

needed. 

The future electricity load forecasting process has to produce estimates of future energy 

and power demand in the long term for areas of all kinds: urban and rural areas and 

population centres. The forecasting of future loads in the distribution network is quite a 

challenging task: various changes take place in different areas and different times, and 

these changes can have diverse effects on loads. A typical example of such changes is 

heat pumps, which can either increase or decrease power demand. Forecasts of future 

electrical energy and the highest powers in different geographical locations are required 

for distribution planning.  

5.1 Structure of the forecasting process 

A novel long-term electricity load forecasting is a multi-phase process, which requires a 

lot of data from different sources. Long-term electrical loads can be forecasted by 

applying volume (number) and consumption (load) approaches, but the effects of the 

future energy technologies have to be calculated separately. This is explained by the fact 

that the future technological changes may have radical impacts on electricity 

consumption, which requires a new approach. In the context of this doctoral dissertation, 

future energy technologies are related to energy efficiency, energy storages, electric 

vehicles, microgeneration, and demand response. 

The future electricity load forecasting consists of a present load analysis for long-term 

load forecast, volume and consumption forecasts, and forecasts of the future energy 

technologies. The present load analysis can be considered a load modelling phase that 

includes spatial combination of data, AMR data, seasonal dependence, and a customer 

group analysis. This produces information of the present load analysis in the case area 

and works as a basis for the region-specific forecasting. Volume and consumption 

forecasts in the forecasting process cover information about changes in the operating 

environment such as how the number of population, means of livelihood, and building 

stock have developed and are anticipated to develop in the area in the future. The impacts 

of the future energy technologies are forecasted at the same time. Figure 5.1 illustrates a 
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basic structure of the process, including the present load analysis, the volume and 

consumption forecasts, and the future energy technologies forecast. The new element in 

the process consists of clustering and end-use modelling of the present loads, in particular, 

end-use modelling, scenarios, and simulation methods to forecast the volume, 

consumption, and future energy technologies.  

 

Figure 5.1. Outline of the long-term load forecasting process in electricity distribution. 

The novelty of the new LTLF process lies especially in the combination of forecasting 

techniques and new data sources, which include application of AMR data. Future energy 

technologies have to be forecasted by end-use modelling. The effects of the future 

technologies on loads are so exceptional that end-use modelling is the only suitable 

method. A scenario approach is also needed, because there are no data on how the future 

energy technologies may evolve.  
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The forecasting process has to be divided into different elements. By dividing the process 

into separate elements, it is possible to analyse individual proportions of the process. 

Before actual load forecasting, various preliminary tasks such as load modelling have to 

be accomplished. Finally, the present loads for long-term forecast in the area can be 

formed. The volume, consumption, and future energy technology forecasts represent the 

main forecasting process. The volume, consumption, and future energy technology 

forecasts have to be focused on the case area. For example, the forecast according to 

which 50 % of the residential customers in the area will purchase a PV system by 2030 

can be focused on different kinds of detached house customers. Then, it is possible to 

forecast the impacts on the loads in the case area. New customers in the area have to be 

taken into consideration in the volume forecasting. Basically, the volume and 

consumption forecasts are traditional forecasts with AMR data. This phase produces 

initial forecasting results of the case environment. 

Mean hourly powers constitute a basis for load forecasts. The highest powers can be 

analysed on an hourly basis, whereas energy forecasts are typically based on annual 

energy calculations. Forecasts based on a whole year (8760 h) also enable an energy 

analysis at an annual level, and it is reasonable to make load forecasts for the whole year. 

The major difference between energy and power forecasts is that energy forecasts should 

be annual-level forecasts in order to get a comprehensive picture of energy consumption. 

Another option is to make energy and power forecasts for a certain time period of the 

year. It is reasonable to limit the long-term forecasting to a certain area and time period 

as too large amount of data may be quite difficult to handle and analyse. Moreover, a 

selected forecasting time period makes it easier to set different parameters for the 

forecasting period. Another benefit is that a shorter time period requires less information 

for forecasting. The time period can be, for instance, a week or a month during the highest 

load period in the case area. It is highly important to select the time period appropriately, 

because loads vary considerably within and between different time periods. Typically, 

the highest loads occur during cold winter days, when electric space heating is needed. 

On the other hand, when considering microgeneration, it is reasonable to make load 

forecasts for the summer period, when the potential of photovoltaic (PV) production is at 

highest.  

As a result, the novel load forecasting process yields hourly based power forecasts. Based 

on the forecasts, it is possible to calculate the effects on energy consumption. The key 

methodologies of the forecasting process consist of spatial analyses, clustering, scenarios, 

end-use modelling, and simulation methods. A forecasting task is a generic problem, 

which comprises several tasks. The first tasks in the forecasting process are to define and 

delineate the research area and to decide upon the time scale and period for the forecast. 

The basis for the research area is that it covers only a DSO’s network area. It is practical 

to limit the forecasting to primary substation areas, which are quite close to district areas 

in urban areas and traditional municipal areas in rural areas. This way, the size of the 

forecasting area is adequate for forecasting and the data are manageable. Making a spatial 

load forecast for instance for districts in urban areas can be challenging, because these 
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areas do not necessary follow any other spatial borders in the urban area (Rimali, 2011). 

This can be managed by dividing the case area into smaller areas. 

The main starting point for the spatial analysis is the determination of the case area. Here, 

a map application may be needed that can support the forecasting process. It allows to 

select the case area and generate forecasts spatially. As mentioned above, the areas to be 

examined (target areas) and the forecasting periods can be similar types of areas and time 

periods as before. In the literature there are studies that have used actual distribution 

network areas in the long-term load forecasts. For instance, (Spackman et al., 2007) has 

used distribution network and feeder service area boundaries as a basis for a spatial study. 

It is not reasonable to include a distribution network in the forecasts of the area to be 

studied. It is essential to forecast loads spatially, which corresponds to a situation in which 

the load forecasts are made for an area without a distribution network. After forecasting 

regional loads, the present loads can be compared with the forecasted loads. By taking 

this approach, it is possible to estimate the need for network investments, for example, a 

location for a new primary substation. Further, it is possible to make a spatial load 

analysis, which helps to plan new network investments. Moreover, this kind of an 

approach provides an opportunity to make a load analysis for the present network, 

because it is possible to compare the present loads with the forecasted loads, for instance 

in distribution network nodes. The target area should remain almost the same between 

years so that it is easier to analyse how the loads have developed and may develop in the 

future. Thus, it is advisable to keep the feeder areas unchanged. 

5.2 Present load analysis 

The present load analysis is made based on the selected case area and time period. In 

addition, a spatial analysis and a combination of data are needed before forecasting. 

Spatial analysis can yield general information such as additional information of customers 

and real estates in the case area. A spatial approach requires that consumption data are 

modified suitable for spatial forecasting, which means an analysis of customers and 

connection points. (Hyvärinen et al., 2012) has also pointed out that before forecasting, 

the case area has to be selected, information on customers or connection points and other 

relevant background information have to be gathered, and the level of review has to be 

decided upon, that is, whether the focus is for instance on the customer type, connection 

points, or something else. 

The present load analysis can be divided into spatial combination of data, AMR data 

processing, seasonal dependence determination, customer grouping, and clustering 

elements. In practice, this is the load modelling phase presented in Section 4.1.3. 

However, a new load modelling approach for the LTLF purpose is presented in more 

detail here. All customers from the case area are incorporated in the present load analysis. 

The simplified structure of the present load analysis is illustrated in Figure 5.2. The figure 

presents the method to produce load profiles for customer groups.  
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Figure 5.2. Customer classification processes and the present load analysis process for long-term 

load forecasting. Adapted from (Mutanen et al., 2013). 
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For the LTLF purpose, load profiles have to be updated or customer profiles have to be 

clustered. A clustering method can be used as a tool to cluster the customers and load 

profiles. End-use modelling, again, can be used to define season-dependent loads or to 

model the proportion of other electricity end-use of the loads. Finally, load hourly profiles 

give the present load information for long-term forecasts of the case area. The present 

load analysis is the starting point for forecasting. 

5.2.1 Spatial combination of data 

A spatial analysis is needed to produce information of the case area. The long-term 

electricity load forecasting process in electricity distribution may employ data from 

various data sources. Data sources are needed before forecasting for the spatial 

combination of data and for the forecasting purpose itself. The increasing amount of data 

and advanced technological systems make data processing more efficient and accurate. 

Defining and delineating the most essential data and using the data efficiently are 

important in the forecasting process. Data sources can be divided into the DSO’s internal 

and external ones. The DSO’s internal data sources to be applied to a forecasting process 

can include for instance a customer information system, a network information system, 

and a metering database. The DSO’s external data sources such as municipal registers 

and Statistics of Finland provide data about the case area and information for forecasting 

purposes. Public authorities have opened their databases to public in Finland; for instance, 

the Population Register Centre gives access to location and building data systems 

(Population Register Centre, 2013). The National Land Survey of Finland has opened a 

data system where information of building surface areas, heating systems, and map 

systems can be reached (National Land Survey of Finland, 2014). 

A DSO’s internal data consists of several data systems. The AMR database is one of the 

main elements for the forecasting system. AMR data constitute the basis for the 

construction and confirmation of load models. In addition, AMR data expand the 

information and options for the long-term load forecasting. A challenge related to the 

AMR data is that they represent the total load of the end-use point instead of separate 

appliances or sub-load component loads such as space heating and lighting (Niska and 

Saarenpää, 2013). 

A DSO’s customer information system (CIS) includes all information available of each 

customer. Each customer has an electricity meter, in other words, a metering point. DSOs 

have typically the following information of their electricity customers: customer location, 

supply voltage, fuse size, number of phases, customer class (residential, agriculture, 

public, service, industry), consumption (annual electricity consumption, 2-time tariff 

consumption), and additional information (heating system, type of domestic hot water 

heating system, electric sauna stove) (Mutanen et al., 2011).  

Electricity is mainly consumed in different kinds of buildings, but other possible systems 

consuming electricity are found for example in community maintenance, and street 

lighting. In larger buildings such as blocks of flats, there is one connection point for the 
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whole building, which feeds several and separately measured customers. Consequently, 

one connection point can consist of one or several customers (Koivisto et al., 2013). 

(Koivisto et al., 2013) points out that it is useful to analyse connection points for load 

modelling purposes, because the DSO’s long-term scenarios have to spatially simulate 

the effects of the future city construction activities on the electrical load demand. Again, 

(Rimali, 2011) has concluded that a property could be a starting point for the load 

forecasting in scenario-based forecasting.  

The specific electrical load demand of the present buildings (kWh/m2) is important input 

data for simulations. Furthermore, in the real estate data, it is essential to have information 

of kWh/m2 for separate customer types. Further, electricity consumption data and real 

estate data should be linked to each other (Koivisto et al., 2013). The majority of the real 

estates (properties) include only one connection point. An alternative is that a property 

has several connection points. For instance, one property may include several buildings. 

These cases can be combined and analysed as an individual connection point. Challenges 

arise when one connection point supplies several properties. In that case, it has to be 

defined which customer points of the connection points are located in a certain property 

(Rimali, 2011). So far, it has not been possible to link the AMR data of an individual 

customer and a part of the property (Koivisto et al., 2013). In practice, this means that the 

electrical end-use of customers can be modelled individually, but for a spatial forecast it 

is reasonable to model the loads of connection points.  

All information from different databases can be connected to a certain real estate. This 

makes the connection as simple as possible and load forecasts can be made more versatile. 

Some information has to be filtered before the connection points and properties are 

automatically connected to each other in order to obtain satisfactory results (Rimali, 

2011). After filtering the data, the connection with properties and connection points can 

be made. Now, new information of the customers can be obtained. Comprehensive data 

sources serve as the basis for the spatial combination of data; there are various data that 

can be applied to complete customer information. (Niska et al., 2013) has gathered 

geographic data from public sector information sources such as socioeconomic grid data, 

building information, and meteorological data for load modelling. External data sources 

may include systems maintained by municipal, provincial, or national bodies like 

Statistics Finland as suggested in (Kaartio, 2010) and (Rimali et al., 2011).  

Information of the buildings and heating systems in the case area are needed for 

forecasting purposes. Data about heating systems of buildings are available in the DSO’s 

external data sources. The DSO’s data systems are seldom linked and updated to the 

DSO’s external databases. (Niska et al., 2011) has used information of the Finnish 

Population Information System in a simulation tool, which includes data of the total floor 

area and volume of buildings, the age of buildings, construction materials, façade 

materials, the primary fuel and heating system, and the number and age of inhabitants. 

These are relevant information and should be included in the information of customer. 

The Population Register Centre has a Population Information System (PIS), and the 

National Land Survey of Finland has a Land Information System (LIS) that provide data 
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of real estates. In addition to the PIS and the LIS, municipal registers can give data of real 

estates. Municipal registers may include many registers like real estate, town planning, 

building, address, population, and planning registers. These registers can linked with each 

other based on addresses or map coordinates. A real estate in a municipal register can be 

linked to connection points in the NIS and AMR data with coordinates in most cases 

(Rimali, 2011). The real estate is typically the most accurate level at which the municipal 

register can be appropriately linked to the electricity consumption data. Some information 

in the municipal register is available only at the building level. This information can be 

applied to the real estate level by summing (e.g. floor area and number of customers), 

taking into consideration the most common option (heating system, purpose of use), or 

calculating average values (construction year of the building) (Rimali, 2011). Figure 5.3 

demonstrates a DSO’s external and internal data for an individual real estate. One real 

estate (property) may include several buildings, and one building may have several 

DSO’s customer points. The DSO’s external and internal data contain various 

information. In the figure, examples of data sources are given. 

 

Figure 5.3. Example of the types of information that a DSO’s external and internal data may 

incorporate. 

(Kaartio, 2010) has found that integration of different data systems for a spatial analysis 

facilitates forecasting and planning. Although the connection of databases is somewhat 

challenging, for instance a connection between addresses and coordinates is a potential 

solution. (Kaartio, 2010) has suggested that the customer connections in the network 

information system and the building information could be linked by address data. It was 

concluded that it is not possible to link the connection point and building information 

reliably enough; the main reason for this was the discrepancies and divergences in 

documentation (Kaartio, 2010). The address-based approach may produce errors in 

targets located in street intersections. Such locations may include various addresses, some 

of which may be erroneous. This, again, produces errors when connecting the data 

systems. It seems that a coordinate-based approach could be more reliable (Rimali, 2011). 

When connecting different databases, the major challenges lie in ensuring a rigorous 

connection process and the reliability of the integrated system. Large data volumes cannot 

be processed and modified manually. The increasing amount of information in separate 

data systems makes it easier to gather data. For instance, if the data system included 

information of the customer point, connection point, and property number, the connection 

of data systems could have less errors and be simpler (Rimali, 2011). Figure 5.4 shows 

an example of how databases could be linked to each other. 
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Figure 5.4. Example of linking of the data systems (Kaartio, 2010). 

The NIS and CIS can be connected to each other by using connection point or customer 

point information. The metering database can be connected to the NIS and the CIS with 

customer point information. Figure 5.5 presents an example of the connection between 

different data sources. The majority of the data are available from the DSO’s internal data 

systems; AMR and customer information databases. These customer data can be 

supplemented from the DSO’s external data sources, for instance, by building and heating 

type information from municipal registers.  

 

Figure 5.5. Example of links between different data systems. In addition to the municipal register, 

the Population Information System (PIS) and the Land Information System (LIS) can produce 

real estate data (adapted from Rimali et al., 2011). 
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New technologies are not necessarily included in the customer information system at the 

moment. However, this would be important in the future to obtain more accurate 

information of customers. Table 5.1 shows the customer information of new technologies 

required for forecasting. 

Table 5.1. Example of information demands of future energy technologies. 

ID 
Building 

type 

Building 

year 

Heating 

system (HS) 

Supplement 

HS 
PV EV DR ES 

1 
Detached 

house 
1950 Oil heating AAHP 5 kW    

2 
Detached 

house 
2010 

Direct electric 

heating 
AAHP   2 kW 5 kWh 

3 
Row 

house 
1987 

District 

heating 
     

4 Flat 1967 
District 

heating 
  1 EV   

 

Spatial combination of the information from different sources with the DSO’s data 

constitutes the main step after the case area selection. Spatial combination of data enables 

a more efficient load analysis of the present loads. Therefore, it is advisable to pay special 

attention to the collection and combination of data.  

5.2.2 AMR data processing 

By applying AMR data it is possible to analyse certain individual hours instead of the 

previous annual electricity use.  These analyses can serve as a good approach for load 

forecasting, because they constitute a basis for spatial analysis together with for instance 

the building forecast (Rimali, 2011). Electricity consumption varies as a function of time, 

which means that the AMR data have to be analysed strictly based on time stamps. The 

AMR data collection from the databases and the connection to the selected area have to 

be carried out in a reliable way. This requires that customer information are stored in the 

process. The amount of AMR data depends on the number of customers in the area and 

the time period under study. 

Typically, there may be fluctuation in the consumption curves between different years. 

Hence, it is useful to collect AMR data for the whole calendar year and separately from 

each year. Thus, the time ranges are the same and different years can be compared with 

each other. The main requirements for the AMR data are validity and correctness. 

Therefore, AMR data require validation and verification. AMR data may contain errors 

because of faults in metering or communication, or data format changes can generate 

errors. These errors can be seen as missing or exceptional values, or outliers (Mutanen et 

al., 2011). Outliers are failed measurements or customers whose electricity end-use is 

very different from average customers. There are two main types of outliers; customers 

whose electricity end-use varies considerably in some months can be detected by 
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comparing an individual customer’s monthly energy with all customers’ average monthly 

energy. Customers whose intraday end-use variation is very high compared with other 

customers can be filtered out (Mutanen et al., 2011). 

There are various ways to track outliers from the AMR data. For example, (Koivisto et 

al., 2013) has adopted an approach that customers the maximum hourly peak consumption 

of which is higher than 100 times the average hourly consumption are eliminated. Missing 

values can be estimated from the data set by linear interpolation. The exceptional values 

can be estimated by comparing the previous hourly values (Mutanen et al., 2011). If the 

measurements include errors and erroneous values, such values have to be removed from 

the measurements, or an approximate of new and more suitable values is required. 

The meter data management system (MDMS) processes AMR data in the metering 

database at various levels of data validation and verification. The number of errors has 

decreased along with the evolving metering and data management systems. 

Consequently, the quality of data is at a quite high level in Finland at present. 

5.2.3 Seasonal dependence 

There are many weather elements such as wind and solar radiation that affect electric 

loads, but the outdoor temperature dependence is one of the most significant factors. 

Outdoor temperature is widely taken into consideration in distribution network 

calculations (Mutanen, 2013). The data of outdoor temperatures can typically be achieved 

by measurements at the primary substation. Data can be also obtained from the Finnish 

Meteorological Institute (FMI), which collects measurements from several locations 

around Finland (Finnish Meteorological Institute, 2014). 

Outdoor temperature may have a significant impact on electrical loads. In Taiwan, it was 

found that the power demand increases by 4 % when the outdoor temperature rises by 

1oC in summertime. This can be mainly explained by the high percentage of air 

conditioners (Lin et al., 2006). When considering electric heating loads, it is often 

assumed that a 1oC change in the outdoor temperature causes a 4 % change in electricity 

consumption. However, almost all customer groups are dependent on the outdoor 

temperature in one way or another. The temperature dependences (variations in 

temperatures and electric powers) may have different kinds of time delays, which are 

mainly due to heat stored in buildings. Further, different customer types may involve 

various time delays (Mutanen, 2010). Thus, modelling the temperature dependence can 

be a challenging task. Therefore, distribution network calculations typically apply a load 

model where temperature is linearly dependent in a certain temperature range (Mutanen 

et al., 2011).  

In practice, the electric load dependence on the outdoor temperature is nonlinear. This is 

due to the use of additional heaters during the coldest weather, when extra heating power 

is needed. The situation is similar during warm weather, when air conditioning is needed. 

Therefore, a linear temperature dependence model requires seasonal or monthly 
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parameters. The seasonal parameters can be divided into four and monthly ones with 12 

parameters (Mutanen, 2010).  

Outdoor temperature varies between different years, and therefore, the AMR 

measurements have to be normalized to the same temperatures. For this purpose, the 

customer-specific temperature dependence parameters have to be calculated by applying 

linear regression. However, so far, there has been only limited knowledge of the correct 

temperature dependence parameters. The temperature dependence parameters can be 

calculated from AMR data. This ensures that regional differences are taken into account 

in the temperature dependence (Mutanen, 2010). AMR measurements can be normalized 

to the long-term average outdoor temperatures if the temperature dependences have been 

calculated (Mutanen, 2013).  

Previously, national long-term monthly average temperatures have been applied. At 

present, it is possible to use regional long-term daily average outdoor temperatures, which 

are more accurate than previous data. This type of data are available from the 

Meteorological Institute. Thus, it is advisable to apply regional long-term (30 a) average 

temperatures instead of national data. In addition, the variation in outdoor temperatures 

is better represented by daily average outdoor temperatures than by monthly averages. 

This method can be applied to take into account the energy consumption normalization 

in network loads. However, long-term daily average outdoor temperatures do not take 

into consideration the load variation caused by the coldest temperatures, and thus, too low 

peak powers may occur in the network loads. Therefore, the shape of the network load 

has to be determined more accurately. This can be achieved by using the hourly outdoor 

temperatures from the same year as the AMR data applied. The dispersion of long-term 

outdoor temperatures at the daily level can be calculated from the relation of hour-level 

temperatures and average day-level temperatures. When this relation is multiplied by an 

average long-term temperature, the reasonable dispersion for the outdoor temperature can 

be achieved. Thus, the normalized load represents the regional long-term outdoor-

temperature-corrected energy in the distribution network, but the shape of the network 

load is based on the measured AMR data. Both the temperature dependence calculation 

and normalization are carried out before the customer grouping phase. 

After clustering, temperature dependence parameters can be calculated applying the same 

method as in the customer-specific method. The final load profiles represent electricity 

end-use based on daily average temperatures in the long term. Calculation of the 

difference in electricity consumption between the expected long-term average and the 

target temperature can be modelled as follows (Mutanen, 2013): 
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 ∆𝑃(𝑡) =∝∙ (𝑇ave − 𝐸[𝑇(𝑡)]) ∙ 𝐸[𝑃(𝑡)] (5.1) 

where 

 ΔP(t) outdoor-temperature-dependent part of load P at time t 

 α temperature dependence parameter [%/oC] 

Tave outdoor temperature (daily average) 

 E[T(t)] expectation value of the outdoor temperature at time t  

(long-term daily average temperature) 

 E[P(t)] expectation value of the load at time t 

All seasonal variation is not due to weather conditions and outdoor temperature. Lighting 

varies also by seasonal periods. Outdoor and interior lighting patterns vary from winter 

to summer (Willis, 1996). Seasonal indoor lighting dependence can be take into 

consideration in the end-use modelling, when the day length can be modelled by a 

mathematical approach. 

5.2.4 Customer grouping and load profiling 

In the long-term forecasting, the customer groups have to be valid and the AMR data 

correct. However, the customer grouping phase can be problematic; a significant 

challenge is to define a suitable number of customer groups. In addition, customers have 

to be classified reliably, because the existing customer groups in the DSO’s data systems 

are not necessarily valid. More information of customers can be obtained from spatial 

combination of the DSO’s external and internal data. Typically, the same types of 

customers have similar load curves, but there may be large variations in loads. 

Furthermore, there may be significant differences between customer groups. There are 

many possible ways to classify customers. Previously, the customer classification has 

been made based on national-level models in Finland. These SLY load profiles include 

numerous customer groups and precise classifications (SLY, 1992). Figure 5.6 shows a 

typical example of the customer classification in Finland. 
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Figure 5.6. Example of customer grouping. Reproduced from (SLY, 1992). 

However, the DSOs may also have classified their customers by themselves. In the 

customer grouping, the type, characteristics, and number of customers in the research area 

should be determined. Further, the amount of initial data has an impact on the number of 

customer groups. At least, the customers should be grouped into the following main 

categories: residential, agriculture, service sector, and industrial customers. Further, the 

residential customers should be divided into detached and terraced houses, apartments, 

and holiday homes. In addition, detached houses with direct electric and non-electric 

heating should be analysed separately. Consumption in agricultural, industrial, and 

service groups may vary markedly. Again, different building types and buildings with 

electric heating systems should be analysed separately. It is reasonable to study specific 

customers with significantly diverging electricity consumption patterns separately. 

Customer grouping plays a crucial role in the forecasting process. The main benefit of the 

customer classification is that a similar analysis can be made for the same type of 

customers. For instance, customers living in detached houses with electric space heating 

can be modelled in a similar way in the whole case area. The categories have to be 

analysed separately, because the consumption patterns differ significantly from each 

other. Furthermore, the loads within the customer groups may vary considerably. 

Basically, the number of customer groups should not be too large, because the number of 

analyses will increase accordingly. In (Lakervi and Holmes, 2003) it is stated that the 

number of customer groups should be less than 15 in order to keep the analysis work 
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within reasonable limits. Nowadays, however, the computational capacity is higher, and 

thus, also the number of customer classes can be larger. An essential decision in the case 

area is to determine the suitable number of customer groups.  

In general, customer grouping can be managed by applying load modelling methods. 

There are several options to group the customers, for instance the DSO’s present customer 

grouping supplemented with AMR data or a clustering method. These methods are 

presented in Section 4.1. Basically, there are two alternatives to carry out customer 

grouping: a load profile updating method or a clustering method. In the load profile 

updating, predefined customer groups are used. In the clustering approach, the new load 

profiles are produced with the new customer groups, where predefined customer groups 

can be used as a starting point for clustering. By combining clustering and AMR data it 

is possible to produce load profiles for each customer group. The normalized AMR data 

have to adequately represent the customer’s loads. Futher, exceptions or events that do 

not fit into the load profiles have to be removed. Exceptional values can be eliminated for 

instance by using representative type weeks as discussed in section 4.1.3. The customers’ 

AMR data should be scaled to 1 so that customers of the same type are classified into the 

same category. Customer information like annual energy consumption, location, and 

other additional information can be maintained despite the clustering process. This 

provides an opportunity to scale the customer profiles based on annual energy 

consumption, when the load profile uses the characteristic hourly based load profile for a 

year, and the annual electricity end-use is the same as in the initial stage. After clustering 

the customer data, it may be difficult to specify different customer types. Here, cross-

checking with the original customer type classification can be applied to compare the 

customer types. The clustering results and the predefined load models may contradict 

each other. However, the customer groups and customer data can be updated by 

clustering, and better information of the loads in the case area can be obtained. If 

exceptions or other unusual phenomena occur in this phase, the required changes are 

made, and possibly, the clustering phase has to be repeated. Finally, the load profiles and 

customer groups for load forecasting are achieved. 

Clustering benefits are illustrated in Figure 5.7. The figure shows the clustering results of 

the predefined detached house customers with direct electric heating. The clustering 

results show that predefined customer groups may include totally different types of 

customers. The customers that do not belong to the predefined customer group have to be 

removed from that customer group, and transferred into a customer group that fits best. 

After the clustering results, customers have been classified into selected groups, and a 

load curve has been obtained for each customer group on an hourly basis for a year.  
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Figure 5.7. Clustering results of the predefined electric heating customers in the case area. 

Eventually, the customer grouping produces results that can be applied easily and 

diversely to the forecasting and modelling of the present loads for long-term load 

forecasting purposes. In the forecasting process, clustered and normalized load profiles 

of customers can be applied. Clustered profiles are reasonable a choice for small-scale 

customers such as residential customers. For large-scale customers, normalized 

individual load profiles can be applied, as described in section 4.1.3.  

In spite of the fact that clustered curves may produce excellent results, they may involve 

issues that do not always represent all customers very well. In the clustering, the 

customer’s original load profile (normalized profile) is changed over to a clustered 

profile. Thus, the customer’s new profile pattern and peak power can be different from 

the normalized profile. However, in network loads, energy and peak power are almost the 

same at the primary substation and secondary substation level. On the whole, this means 

that there have to be enough clustered profiles if the profiles better represent the original 

load profile, and the clustered profiles are accurate enough. 

5.2.5 Summary of the present load analysis 

The forecasting area has to be selected carefully in order for the forecasts to remain almost 

the same between different years. In addition, all loads should be included in the present 

load analysis and forecasts. The present load analysis is the basis for the load forecasting 

process. Hourly based electricity end-use data, seasonal dependences, and new flexible 
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methods for customer grouping offer a new and efficient starting point for long-term 

forecasting. Moreover, it brings a new approach to customers’ electricity end-use 

modelling. Seasonal dependences are taken into account, because from the heating and 

cooling perspectives, outdoor temperature dependence is an important factor in the load 

modelling. 

A lot of customer information is obtained from the DSO’s external data sources. 

Combining data from external information sources and the DSO’s internal data sources 

may be a complicated task. Data have to be made compatible for the selected case area, 

which requires interfaces, expertise, and local knowledge of the area. The combination of 

information from different data sources has to be performed automatically and reliably. 

Especially, connection of data with real estate and building information has to be carried 

out with care. Combination of data is more complicated in urban areas compared with 

rural areas; in urban areas there are more real estates (properties) that may include several 

buildings and different customer points. Further, the AMR data produce an extensive 

amount of data annually. For instance, if the DSO has 200 000 customers, this means 

about 1.75 billion units of data annually. Such a large amount of data has to be processed 

and modelled carefully and efficiently. However, there are great differences in the amount 

of data between different DSOs. 

Additional information of the customers, for instance information of customer 

classification, building types, and future energy technologies should be gathered into a 

data system (e.g. the CIS) in order for all the required data to be available. The 

information of new technologies like microgeneration, energy storages, and load control 

customers should be added to this data system. In addition, interfaces to the other data 

systems should work efficiently. Altogether, data sources involve a lot of data that have 

to be included in the present load analysis process.  

In addition to customer grouping, other characteristic load information may be needed. 

Characteristic loads per capita, per floor area, or per volume may be applied in forecasting 

(Hyvärinen et al., 2012). At least real-estate-based analyses are used for the LTLF when 

analysing the present loads in the case area. In the real-estate-based approach, the results 

can be given by connection points. For instance, information of properties such as average 

electricity end-use per floor area for a certain customer class (kWh/floor area-m2) can be 

used (Rimali, 2011). Characteristic load curves per floor area can be calculated by using 

linear fitting with a constant term, linear fitting without a constant term, and dividing 

consumption. The simplest method is to divide consumption by floor area, and it is an 

accurate enough method. The information can be used as a load profile for modelling the 

consumption of new buildings (Rimali, 2011).  

Load changes between different years should also be analysed. This has to be done after 

the customer grouping phase, when a customer’s end-use can be compared with previous 

years. The customers’ historical AMR data can be used to evaluate the changes in 

electricity consumption. It is preferable to use only the recent consumption data for load 

forecasting, because it guarantees a higher accuracy. If there is considerable variation in 
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loads between different years, this variation should be taken into account in the present 

load analysis. For example, the information of a change in the heating system or 

improvements in insulation could be taken into account in characteristic loads per floor 

area or a change in the load profile compared with the previous year. However, there has 

to be an option to make customer-point- and connection-point-based forecasts. Customer-

point-based forecasts are preferable, but connection-point-based forecasts may also be 

needed, for instance, if a PV system installation is forecasted on the roof of a block of 

flats. 

5.3 Volume and consumption forecasts in the forecasting process 

(Willis, 2002) has found that electrical energy and power changes in a certain spatial area 

are consequences of two factors:  

1. Customer volumes change in the area. This can be modelled, for instance, 

as the number of customers or the floor area  

2. Customers’ electricity end-use change, which can be modelled, for 

instance, as characteristic loads per customer of the floor area.  

Volume and consumption forecasts can be made after the present load analysis. Basically, 

these are traditional forecasts with new type of data. Volume and consumption forecasts 

consist of the present loads that include load profiles for different customer types, volume 

forecasts that cover existing customers and new customers, and electricity consumption 

forecasts. Spatial volume, consumption, and future energy technology forecasts can be 

combined with a simulation method, which produces results of the spatial LTLF. 

Forecasts are made on an hourly basis, enabled by AMR data. The total power of the 

network can be obtained by summing the loads of all customers, or all customer groups 

at the same hour. Annual electrical energy forecasts can be calculated from hourly based 

results. Previously, annual electricity consumption was used as a basis for load 

forecasting, but now load forecasts are based on load profiles and hourly powers. This 

forecasting approach assumes that weekday variation does not produce a significant error 

into the forecasting results.  

Volume and consumption forecasts have to be focused on a certain spatial area. This 

spatial volume and consumption forecasting may apply several data sources as the basic 

information of forecasting. Figure 5.8 illustrates the volume and consumption forecasting 

and different data sources. Both the DSO’s internal and external data sources give good 

information for forecasting volumes and consumptions in the case area.  



5.3 Volume and consumption forecasts in the forecasting process 117 

 

Figure 5.8. Forecasting of the volumes and consumptions. 

The DSO’s internal data provide historical information of the numbers of customers and 

consumptions. These can be analysed and used for making forecasts. The DSO’s external 

data sources often produce parameters and forecasts such as population forecasts that can 

be applied to forecasting. In volume and consumption forecasts, end-use modelling and 

scenario approaches are used. Volume forecasts are scenario forecasts, where the number 

of customers is forecasted. Consumption forecasts are based on end-use models and 

scenario forecasts. It is possible to model how customers’ electricity end-use will develop. 

For example, a load profile can be modified over a certain period to correspond to the 

development that has been forecasted. In the scenario approach it is forecasted how the 

consumption of a certain customer group will develop in the future. For instance, the 

development of the national economy may have impacts on the electricity consumption 

of industrial customers. Therefore, scenarios of the economic structure and means of 

livelihood can produce information for scenarios of electricity consumption.  

The amount of data from different fields of society is increasing. Municipalities and other 
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information of buildings while others do not give such detailed information. 

Municipalities may hold extensive data sources such as information of the number of 

customers, means of livelihood, and the number of workplaces and population 

characteristics.  

National data, again, yield information of the national consumption and the general 

development of the average customers. Statistics Finland has gathered socioeconomic 

grid data that include annually updated variables for areas of 1 x 1 km and 

250 m x 250 m. These data comprise information of the population structure, education, 

type of activity, and income (Statistics Finland, 2014). (Niska et al., 2013) has proposed 

a computational approach for spatiotemporal modelling that consists of fixed spatial 

grids, for example 250 m x 250 m. This approach could apply regularly updated public 

and geographic information. Other data sources may be for instance universities, the 

Energy Industry, Motiva (affiliated Government agency specialized in energy and 

material efficiency), and other interest groups. They can provide various statistics (e.g. 

on dwelling and electricity end-use), distribution network recommendations, and 

characteristic consumptions (Kaartio, 2010). These data can be used as such as forecasts, 

or they can be analysed and processed further in order to make scenarios based on them.  

5.3.1 Volume forecasts 

Basically, volume forecasts estimate the number of different kinds of customers in the 

case area. The number of future electricity end-users in the case area consists of two 

elements: the existing and new customer points. The number of different kinds of 

customers always depends on the DSO’s location. For instance, service sector customers 

typically use the largest proportion of electricity in urban areas, whereas the number of 

population may have a significant effect on the energy consumption in the countryside.  

The forecasts of population, means of livelihood, building stock, dwellings, recreational 

homes, and heating systems can be applied in volume forecasts. There might be also other 

forecasts that can be used in forecasting. The main DSO’s external data sources are 

provincial and municipal registers, Statistics Finland, and other data sources. It is pointed 

out, however, that forecasts obtained from these sources may also have errors that have 

to be taken into account in load forecasts.  

(Rimali, 2011) has also pointed out that the general development at the national level also 

has to be taken into consideration in the spatial forecasts. Electricity consumption is 

affected by regional socioeconomic factors like the number of population and workplaces, 

land-use planning, energy prices, and economic and political incentives. Social and 

structural changes have to be taken into account when making volume and consumption 

forecasts. Structural changes are mainly related to the development of population and 

means of livelihood, manifested for example by urbanization, ageing of population, and 

the economic structure. 
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Basically, different kinds of statistics and forecasts are municipality specific. Data have 

to be made comparable with the selected case area, because the statistics and forecasts 

may be made for areas that are different from the DSOs’ network areas and the selected 

case area. Then, the forecasts have to be focused on the case area. For instance, if the 

DSO operates in a region of three municipalities, material from all three municipalities 

may be needed.  

The DSO’s customer information system yields information of the present customers in 

the case area. It is reasonable to forecast the number of customers by customer type. It is 

possible to draw up scenarios of the loss of customer points in the case area by using 

historical data. The number of customer points will remain unchanged unless 

demographic changes, that is, the decreasing population, reduce the number of buildings. 

The loss of buildings is typically low in urban areas, and new buildings are built in the 

same locations. Instead, structural changes in population take place in the countryside, 

and the loss of buildings can be considerably higher. However, there are typically no 

forecasts for the loss of buildings. If this loss is to be taken into account, it can be 

estimated by the construction year of the buildings. The DSO’s external data registers 

have typically information of the construction year, and it thus is possible to use this 

information in the forecasts.  

 

New customers 

Load forecasting is especially important when planning new customer connection points 

to the case area. New customer points are forecasted separately from the existing 

buildings in the case area, because loads in new buildings can be significantly different 

in the future compared with the present consumption. For example, the total electricity 

demand in traditional houses is completely different from new zero or plus energy houses. 

Electricity consumption in different kinds of buildings should be considerably smaller in 

the future compared with present buildings. On the other hand, new houses have recently 

been built, which are significantly larger than older buildings. In new buildings, the 

building and heating types have to be considered, and the potential of future energy 

technologies have to be estimated. 

Land-use planning levels in Finland are divided into provincial plans, master plans, and 

district plans. Provincial plans are the highest level in the planning, and they are produced 

by provincial and municipal federations (Salmi et al., 2006). A master plan, again, covers 

a municipality or a part of it, and identifies the main purpose of use of the area. Planning 

is typically made at a very general level, for example, a reservation for a dwelling may 

also include courtyards in a residential area. A town plan may include the whole 

residential area or only a single site. It defines strictly what is allowed to be built and 

where. A town plan includes information of the permitted building volume, the efficiency 

factor, the floor number, and the purpose of the area. Town planning is typically uncertain 

by nature, and an area can be planned right before construction, or the construction may 
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not follow the plans (Kaartio, 2010). Further, road and street planning may have impacts 

on district planning, which may determine the location of the buildings. Figure 5.9 

demonstrates different levels of land-use planning. Detailed information is obtained from 

master plans. This information can be used especially in forecasting the future loads of 

new customers. 

 

Figure 5.9. Planning levels based on the Finnish Land-Use Act (Rimali et al., 2011). 

However, there are also land-use areas that have not been planned beforehand. Typically, 

these areas are in the countryside. A municipal authority grants the permission to build 

new buildings, and hence, information of these buildings can be obtained from municipal 

registers. The number of these buildings can be compared with the building forecasts, 

when more information of potential new buildings is gathered. Thus, the DSO should also 

have information of the construction year of the buildings. 

Land-use planning is a two-way process, where the DSOs tell in which places electricity 

distribution networks are planned to be built, and the land-use planners tell in which areas 

new buildings and loads can be estimated to be found (Rimali, 2011). A practical example 

of the use of different land-use planning levels for load forecasting can be found in 

(Moilanen, 2011). The study has used land-use plans to forecast future electrical loads in 

northern Finland. 

From the perspective of the LTLF, planning and construction of new buildings in different 

time periods provide useful information. Information of potential new buildings is 
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obtained from different levels of planning. The plans also reveal what kinds of buildings 

are planned and when the buildings are expected to be completed. The building type and 

purpose of use (e.g. residential or service) also determine the customer and load types. If 

this information is known, load models can be constructed for the new customers by using 

the DSO’s databases. This way, it is possible to define the loads for the new customers. 

Figure 5.10 presents an example master plan, which is based on real estates. The plan is 

a part of volume forecasts. 

 

Figure 5.10. Example of real estate and town planning. Data can be transferred into the NIS, 

where they can be used for load forecasting (Hyvärinen et al., 2012). 

However, new customer points are not necessarily located in buildings. There are also 

loads such as street lighting and pumping stations that do not necessarily include a 

building. New loads of this kind may be more challenging to be taken into account in load 

forecasting, if there are no long-term plans of such loads. The amount of such loads may 

increase in the future. For instance, there might be EV charging stations or PV generation 

that may have radical impacts on network loads because of high loads or significant 

production volumes in a small area. 

5.3.2 Consumption forecasts 

Consumption forecasts can be based on consumption scenarios and end-use models of 

loads. Long-term consumption of different customer groups can be analysed by studying 

consumption data several years backwards. For this purpose, it is useful to analyse only 

the customer points that have existed for the whole research period, the connection type 

of which has not changed, and the consumption data of which are available for the whole 

research period (Rimali, 2011). Historical consumption can be used to analyse why 

changes in consumption have taken place. These analyses and prevailing assumptions of 

the basic load development are the basis for consumption forecasts. Information of 

customers’ electricity end-use will grow in the future. This opens up new opportunities 

to analyse and forecast loads. 
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Previously, consumption forecasts were based on annual energy consumption. Annual 

energy can be divided per floor area, per capita, or per room volume. In addition, specific 

demand have been expressed in kWh/m2 or annual peak demand (in kW) or kW/m2. These 

variables yield more information for consumption forecasts. AMR data provides an 

opportunity to use hourly based consumption forecasts, and load forecasts can be 

generated for each customer group. Thus, values per floor area or per capita can also focus 

on an hourly level. An analysis based on AMR data facilitates the monitoring of changes 

in consumption. Significant changes may occur in consumption during a month, for 

instance, because of the trade cycle. Load analyses suitable for monitoring purposes are 

spatial and typically based on customer types, connection points, or customer points 

(Hyvärinen et al., 2012). 

It is possible to make consumption forecasts in which a customer’s hourly load profiles 

are modified for LTLF purposes. AMR data make it possible to use end-use modelling in 

consumption forecasts. For instance, the present load analysis of the loads can produce 

information of the seasonal dependence of the loads in the case area. For instance, an 

industrial customer’s 2 % load growth over the next five years can be taken into account 

by allocating the growth evenly to each hour of the year. In addition to end-use modelling, 

there have to be scenarios on how these loads will develop in the future. 

Load forecasts of the new customers can be based on known load profiles of the same 

type of customers. It is advisable to use the construction year and customer type of the 

present buildings as a basis for the load modelling. The loads of the new buildings could 

be applied to the load profiles for buildings to be constructed. For this purpose, 

information of land-use plans, including floor area and the number of flats, and heating 

systems should be retrieved from the plans. There are different techniques to estimate the 

loads. For example, if land-use plans define the lot area and the floor area ratio, the floor 

area (m2) can be calculated by multiplying these values. In addition, if the consumption 

demand per floor area (peak kW/m2 or kWh/m2, a) is known, the required energy and 

power can be calculated and forecasted for a new customer.  

Future energy technologies have to be taken into account when planning a new customer 

point to the network. If new buildings or customers apply some future energy 

technologies, these should be taken into account in the load estimation of the building. 

There are two options to model these kinds of loads. Similar kinds of loads could be found 

from the DSO’s database, and the load profile can be scaled for the new customer. 

Another option is to model the future technologies as a part of the total end-use. 

Typically, outdoor-temperature-normalized electricity consumption may vary between 

years, if there are no significant changes in the electricity end-use. In a larger spatial 

analysis, this fluctuation typically disappears. On the other hand, the economic trends in 

society may have impacts on service and industrial customers’ consumption. For service 

and industrial customers, such dependences can be taken into account by different kinds 

of regression models (Hämäläinen, 2014).  
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5.3.3 Summary of the volume and consumption forecasts 

To sum up, the forecasting process comprises present load analysis, volume, and 

consumption forecasts, and forecasts of future energy technologies. Basically, the present 

load analysis as well as volume and consumption forecasts vary because of the increasing 

amount of accurate data from the DSO’s internal and external data sources. The major 

change in the forecasting process is taking place because of the AMR data, which enables 

comprehensive analyses for forecasting purposes. Further, advancements in computer 

technology enable large-scale and precise present load analyses and forecasting.  

For the forecasting process it is necessary that the DSO’s internal databases, viz. CIS, 

NIS, and the metering database are updated and operate efficiently. Furthermore, the 

connection to external data sources such as municipal and real estate registers should 

work reliably. However, data collection and combination require more effort from the 

DSOs, which have to modify and link the authority databases with each other. Volume 

and consumption forecasts use other forecasts as background information that has to be 

taken into consideration. 

The master and town planning play an important role when predicting new customers in 

the network area. Especially, the role of land-use planning is essential in urban areas. Data 

provided by these planning processes make forecasting of the new customers more 

reliable. However, there may be differences in the availability of information about 

municipal areas. This has to be taken into account in different areas.  

5.4 Future energy technologies in the forecasting process 

Basically, forecasting of the future energy technologies and their effects on load 

behaviour and network loads is an essential part of the LTLF. For instance, energy 

storages can decrease peak powers while electric vehicles can increase peak powers. 

Consequently, the totally new types of loads call for new types of modelling and 

forecasting.  

(Willis, 1996) has presented an integrated resource planning (IRP) process that includes 

the assessment of alternative resources that could substitute, reduce, or shift the need for 

power system additions. Alternative resources are often referred to as distributed energy 

resources (DER), and in distribution systems, the related planning process is sometimes 

called distributed resource planning. The objective of the technique is to combine or 

integrate these resources with the distribution system.  

Future energy technologies such as energy efficiency technologies, electric vehicles, 

energy storages, demand response, and microgeneration can take place on various time 

scales. Each technology has to be forecasted for a customer group individually. The 

purpose of use, timescale, locations, and the number of technologies are needed for the 

forecasts. There have to be scenarios of the numbers and capacities of the energy 

technologies in different time periods. These characteristics require a scenario-based 
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approach. (Willis, 2002) has suggested that with scenario modelling it is useful to make 

a “what if” analysis and study the impacts of different features separately. In practice, this 

means that a scenario of its own is made for each possible alternative, which is modelled 

separately. This helps to analyse what kinds of effects certain scenario alternatives may 

have. 

Basically, there are two different methods to apply end-use modelling: either completely 

new load profiles are used or the existing profiles are modified. New technologies like 

EVs have new types of load profiles that require new load profiles. On the other hand, 

some future technologies such as demand response may change the existing load patterns, 

and this requires reformulation of the existing load patterns. (Rimali et al., 2011) has also 

stated that new loads and production have to be modelled with new load patterns. 

Therefore, end-use modelling is the most suitable method to forecast effects of this kind. 

(Kaartio, 2010) and (Rimali, 2011) have suggested that changes in customers’ heating 

systems or improvement in energy efficiency can be modelled by adjusting the customer’s 

electricity end-use profile according to the change. Furthermore, (Rimali, 2011) has 

suggested that yet another method can be to add hourly load series to the present 

consumption as a response to the change. These hourly series can also include negative 

values because of energy efficiency, which may decrease electrical loads (Rimali, 2011). 

End-use profiles require a lot of measurements so that exact load curves for the new 

technologies can be modelled. In forecasting it is necessary to apply a method capable of 

using different sizes of end-use models, and the user has to be able to modify the curves 

if required. 

End-use modelling and spatial scenarios are the most advisable methods to model and 

forecast the effects of the future energy technologies in a certain area. As a whole, the 

LTLF of the future energy technologies is based on spatial analysis, end-use modelling, 

and scenario and simulation techniques. Figure 5.11 shows the most relevant energy 

technologies and the most important factors for forecasting the effects of these 

technologies. Consumption forecasts and future energy technology forecasts have to be 

made simultaneously, because both forecasts are based on load profiles, and they have 

effects on each other.  
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Figure 5.11. Future energy technologies in the forecasting process. 

Future energy technologies have to be modelled for an individual customer. This requires 

that the customer’s load profile and customer information are known. End-use modelling 

can be made by using profiles for technologies or modifying the customer end-use 

profiles. Profiles for technologies can be based on average measured load profiles or 

modelled profiles, or theoretical load profiles. This approach needs many parameters 

related to the end-use and technologies. The capacity of the technology has a great impact 

on the end-use loads. Distribution of the technology capacities has to be taken into 

account in forecasting. This means that technologies have to be scaled to correspond to 

the suitable size of the forecasted capacity. For instance, if a PV system profile is for 2.5 

kW, this profile has to be scaled when using other capacities. In addition, profiles that are 

outdoor temperature dependent such as heat pumps have to be normalized to the same 

long-term outdoor temperatures as the base loads. Spatial scenarios define the effects on 

the network loads. Scenarios have to define the number of technologies in the case area 

on different time scales. Scenarios of the owners or locations and timescales of the 

technologies in the network area are also needed. 

Forecasting of the future technologies also require a lot of data from the DSO’s internal 

and external data sources. The amount of data is increasing, and all possible sources are 

not necessarily even known yet. Considering the DSO’s internal data sources, the 

customer information system may provide the most essential data. External data can be 
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obtained from the heat pump association, electricity retailers, transport safety agency, and 

other data sources. These data sources can produce scenarios on how technologies may 

evolve in the future. Next, it is considered how future technologies can be modelled in 

general at the customer level. By applying customer-level end-use models, it is possible 

to forecast the effects on distribution network loads by applying scenarios. 

5.4.1 Energy efficiency 

Energy efficiency may consist of several actions and technical solutions, but improved 

insulation of buildings, heating systems, and lighting may have the greatest potential in 

energy saving. Therefore, these are modelled for the long-term load forecasting purpose. 

If there were data available of the electricity end-use of the other device groups, it would 

be possible to forecast these loads. The insulation improvement of buildings with electric 

space heating can be forecasted when the proportion of electric heating is known. In the 

customer classification phase it was shown how the outdoor temperature dependence can 

be calculated. Figure 5.12 illustrates the proportion of direct electric heating of the total 

end-use for an individual customer for one day in wintertime. The calculation is based on 

mathematical modelling, not on measured heating loads. Other approach is to use metered 

data or estimate the heating demand of a building by applying information of the building 

area and the characteristic heating demand per floor area. 

 

Figure 5.12. Calculated proportion of the direct electric heating load of the total customer load. 

The effects of energy efficiency upgrade by enhanced insulation on electrical loads can 

be calculated if the proportion of the electric heating load is known. The decrease in 

electric heating demand is estimated by parametrization. An improvement in building 

insulation decreases electric heating demand, and it is assumed that it has a direct impact 

on a customer’s electricity end-use. The end-use profile for a certain hour after the energy 
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𝑃𝑟𝑖𝐼 = 𝑃𝑟𝑖 − 𝑃𝑟𝑖𝑒ℎ ∙ (1 − η𝑟𝐼)    (5.2) 

where 

PriI hourly power for a customer group r at time i after insulation 

improvement I 

Pri original hourly power for a customer group r at time i 

Prieh hourly power for outdoor-temperature-dependent proportion 

of electric heating for a customer group r at time i 

ηrI efficiency factor between the new and old insulation systems 

for a customer group r at time i.  

The annual electrical energy end-use WrI for a certain customer group, after improvements 

in insulation, can be calculated by using hourly power information: 

𝑊𝑟𝐼 = ∑ 𝑃𝑟𝑖𝐼
𝑛
𝑖=1      (5.3) 

where n is the number of hours in a year. The above equations can be applied to forecast 

the effects of energy efficiency improvements obtained by building insulation on 

electricity end-use. For the efficiency factor, parametric values that are less than one can 

be used, and ηI can be approximated to be 50–90 %. Examples of these values are 

presented in Table 3.3. Insulation of buildings has been assumed to have an influence on 

electric space heating buildings only. However, it is assumed that insulation 

improvements do not have an impact on cooling in these analyses. 

The electricity end-use may also decrease because of the energy efficiency improvements 

in heating systems. From the perspective of electrical loads, the major change in heating 

systems will take place if heat pumps are installed. There are already a lot of heat pumps 

in buildings, but there is no information on what kinds of heat pumps have been installed 

and in which kinds of buildings. Scenarios of the number of heat pumps in different types 

of buildings can be based on the number of heat pumps found in national statistics that 

are focused on the case area.  

The most popular heat pump types are air and ground source heat pumps. A trend seems 

to be that ground source heat pumps are installed as the main heating system into 

buildings with oil and electric space heating (Hellman, 2013). Air source heat pumps are 

typically installed as supplementary heating systems. These heat pump types can also be 

used for cooling in summertime. Heat pumps typically increase the electricity end-use in 

non-electric-heated buildings and decrease the end-use in electric-heated buildings. The 

LTLF of heat pumps can be made by using end-use models for heat pumps. Figure 5.13 

shows a measured heat pump load curve for one day in April. In (Laitinen et al., 2011), a 

load profile has been developed for a ground source heat pump. One method to generate 

a load profile is to use AMR measurements and separate heat pump customers by 

applying mathematical methods as in (Hellman, 2013). The application of measured heat 

pump profiles may be considered the most efficient method for the LTLF. 
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Figure 5.13. Air source heat pump, maximum heat production 6 kW, load profile. 

The operating efficiency of an air source heat pump depends on the outdoor temperature. 

The operating efficiency of a ground source heat pump instead is not dependent on the 

outdoor temperature. However, the heating demand of heat pumps depends on the outdoor 

temperature. Heating demand can be based on measurements. If measurements are not 

available, and the heating demand of a customer is not known, the heating demand can 

be calculated based on the construction year of the building, floor area of the building, 

and the characteristic heating demand per floor area (Motiva, 2015) and (Statistics 

Finland, 2014c). Other options could be to use average heating demands or measured 

heating demands for different kinds of buildings. In any case, the amount of heating 

demand is needed for forecasting. Because of the variation in outdoor temperatures, the 

heat pump load profiles have to be normalized to the target outdoor temperatures. Thus, 

the base load of the customer, heating demand, and heat pump load are normalized to the 

same outdoor temperature. 

End-use profiles are dependent on the heat pump type. A typical characteristic of ground 

source heat pumps is that they are not dimensioned to fully cover the heating demand. 

The reason for this is that the acquisition costs increase if the heat pump is dimensioned 

to completely cover the heating demand. Then, heating can be carried out, for instance, 

with electric resistances during the coldest weather. Further, a ground source heat pump 

can also heat service water. On the contrary, an air source heat pump is typically an 

additional heating system, and it can cover only a part of the total heating demand. In any 

case, the modelling requires that the heat pumps have to be scaled according to the heating 

demand. 

The efficiency of a heat pump system is measured by the coefficient of performance 

(COP) or the seasonal performance factor (SPF). The COP determines a relation of 

heating provided to the electricity consumed by the heat pump. The COP varies in 

different circumstances. The SPF, again, is an average COP over a year. The interaction 
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of insulation and heat pumps is taken into consideration by calculating the effects of 

insulation on the heating demand before forecasting the impacts of heat pumps. 

The modelling also depends on which kind of a heating system the heat pump will replace 

and in which kind of a building. The effects of heat pumps on loads can be modelled by 

adjusting the proportion of heating demand by the COP or by using heat pump end-use 

profiles. This can be made as follows. It can be assumed that the electric heating demand 

decreases when a heat pump is installed into a house with direct electric heating. An 

electrical power load curve after the heat pump has been installed into a building with 

direct electrical heating can be modelled as  

𝑃𝑟𝑖𝐻𝑃 = 𝑃𝑟𝑖 − 𝑃𝑟𝑖𝑒ℎ ∙ (1 −
1

𝐶𝑂𝑃
)    (5.4) 

where 

PriHP hourly power for a customer group r at time i after heat pump 

installation HP 

Pri original hourly power for a customer group r at time i 

Prieh hourly power for the outdoor-temperature-dependent 

proportion of electric heating for a customer group r at time i 

COP coefficient of performance (efficiency factor) of the heat 

pump for a customer group r at time i. 

With a measured heat pump profile, the impacts of a ground source heat pump on the total 

load of the direct electric heating customer can be modelled by 

𝑃𝑟𝑖𝐻𝑃 = 𝑃𝑟𝑖 − (𝑃𝑟𝑖𝑒ℎ − 𝐻𝑃𝑖)    (5.5) 

where HPi is the heat pump profile at time i. If a heat pump is installed into a building 

with non-electric heating, it increases the electricity end-use. If an air source heat pump 

is installed as a supplementary heating system, the rest of the heating demand will be 

produced with the main heating system. Thus, the load profile of the target outdoor-

temperature-normalized air source heat pump load profile can be added to the present 

load. If a ground source heat pump is installed into a building with non-electric heating, 

the heating demand has to be defined, and the heat pump load profile has to be scaled to 

the heating demand; then, it can be added to the basic electrical load. Thus, the heat pump 

effects on electrical power in buildings with non-electrical heating can be modelled as  

𝑃𝑟𝑖𝐻𝑃 = 𝑃𝑟𝑖 + 𝐻𝑃𝑖    (5.6) 

where HPi is the temperature-corrected heat pump profile. If electric storage heating is 

replaced with a ground source heat pump, Equation 5.5 can be applied for the electric 

heating time at night and Equation 5.6 for the time when the electric storage heating is 

not used. In addition, heat pumps can be used for cooling. The cooling demand of a 

building has to be determined, and it defines the cooling capacity. This also requires that 
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the cooling characteristic are included in the heat pump profile. Cooling with a heat pump 

can also be modelled by Equation 5.6.  

The annual electrical energy end-use WrHP for a certain customer in a customer group 

after heat pump installation can be written as 

𝑊𝑟𝐻𝑃 = ∑ 𝑃𝑟𝑖𝐻𝑃
𝑛
𝑖=1      (5.7) 

where n is the number of hours in a year. The third energy efficiency action to be modelled 

is energy efficient lighting. The proportion of indoor lighting load should be separated 

from the other loads. A customer load after energy efficient lighting has been installed 

can be modelled as 

𝑃𝑟𝑖𝐿 = 𝑃𝑟𝑖 − 𝑃𝑟𝑖𝑙 ∙ (1 − η𝐿)     (5.8) 

where 

PriL hourly power for a customer group r at time i after energy 

efficiency in lighting L 

Pri original hourly power for a customer group r at time i 

Pril hourly power for an indoor-lighting-dependent proportion for 

a customer group r at time i 

ηL efficiency factor between the new and old lighting systems. 

The effect of energy efficient lighting on the annual electrical energy for a certain 

customer group WrL can be calculated by using hourly power information 

𝑊𝑟𝐿 = ∑ 𝑃𝑟𝑖𝐿
𝑛
𝑖=1      (5.9) 

where n is the number of hours in a year. The efficiency of lighting can be estimated by 

parametrization of the lighting efficiency.  

End-use modelling of energy efficiency may be difficult to comprehend in practice. Next, 

an example of the effects of end-use modelling is presented. The end-use is modelled for 

the whole year on an hourly basis. The modelling is carried out for an individual customer. 

Figure 5.14 demonstrates the effects of the energy efficiency improvement by insulation. 

The simulation assumes that if the outdoor temperature is below +10oC, electric space 

heating is needed. By applying this method it is possible to calculate the electric heating 

demand. The figure demonstrates a load profile of a detached house with direct electric 

heating. Electric heating demand is modelled to decrease by 30 %. In practice, the impacts 

of insulation improvements can be seen over the heating period from autumn to spring. 

The electricity demand decreases in the heating period, which makes the load profile more 

even. The electric heating load was separated from the customer’s total load on a day 

level in figure 5.12, from which can be estimated the simulation effect on a day level. 
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Figure 5.14. Modelling of the effects of energy efficient heating in a detached house with direct 

electric heating. 

The effects of the energy efficiency actions on the electricity end-use were that the highest 

mean hourly power decreased by about 1 kW, and the annual electrical energy usage 

decreased by about 2 MWh.  

5.4.2 Microgeneration 

Photovoltaics will probably be the most popular method of microgeneration. Therefore, 

end-use profiles for PVs are presented. There may be other microgeneration technologies 

such as wind power and μCHP, which could be forecasted by the same method as PVs; 

only other end-use profiles instead a PV profile would be required. Forecasting the 

capacity of the PV systems is important. The capacity has to be estimated for each case 

individually. The capacity of the system has a major impact on the end-use profile. The 

area of the roof can determine the capacity of the PV system. For example, in a block of 

flats, the PV system capacity can be estimated based on the floor area. Thus, especially 

in the LTLF, the effects of the PV system have to be focused on the real estate. Figure 

5.15 presents the end-use profile for the PV generation of 5 kWp. 
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Figure 5.15. Measured profile for a 5 kW PV system, the time label starts at 00.00 a.m. 

The installation angle of the systems will also have an impact on the distribution of the 

optimal PV production. The end-use profile for a certain hour, after a microgeneration 

system has been installed, can be modelled as 

𝑃𝑟𝑖𝑀𝐺 = 𝑃𝑟𝑖 − 𝑃𝑟𝑖𝑚𝑔   (5.10) 

where 

PriMG hourly power for a customer group/property r at time i, after 

microgeneration installation MG 

Pri original hourly power for a customer group/property r at time 

i 

Primg hourly power production profile of microgeneration for a 

customer group/property r at time i. 

The annual electrical energy after application of microgeneration for a certain customer 

group WrMG can be calculated by using the hourly power information 

𝑊𝑟𝑀𝐺 = ∑ 𝑃𝑟𝑖𝑀𝐺
𝑛
𝑖=1      (5.11) 

where n is the number of hours in a year. The impacts on electrical energy may vary 

between different years because of varying solar radiation. This can be taken into account 

by using long-term average solar radiation values for PV production in the case area. 

Microgeneration may have significant impacts on energy consumption and powers. If the 

consumption is low and the solar production is high in summertime, the power can be 

supplied to the network, and thus, the direction of power flow can change.  
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5.4.3 Electric vehicles 

Electric vehicles will increase the electricity end-use. The impacts on network loads 

depend on the charging type and how charging is carried out. The end-use model can be 

an average model that can be modified suitable for forecasting. In Figure 5.16, an average 

EV charging load profile is modelled for 1-phase non-optimized charging. 

 

Figure 5.16. Example of an end-use profile for basic EV charging (Tikka et al., 2011). 

The electricity usage of EVs depends on the consumption per vehicle, the usage behaviour 

of EVs, and the driving distances. Power modelling of electric vehicles depends on many 

issues such as the location of charging, the time when the cars will be charged, the mode 

of charging (fast, basic, slow), and the method of charging. This information should be 

used to forecast electrical load changes in the case area. If there is a load profile for the 

end-use of EV charging, the power load of an EV is written as 

𝑃𝑟𝑖𝐸𝑉 = 𝑃𝑟𝑖 + 𝑃𝑟𝑖𝑒𝑣     (5.12) 

where 

PriEV hourly power for a customer group r at time i when the electric 

vehicle EV is charging 

Pri original hourly power for a customer group r at time i 

Priev hourly power load profile for an electric vehicle EV for a 

customer group r at time i. 

The effect of EVs on the annual electrical energy for the customer group WrEV can be 

calculated by using the hourly power information 

𝑊𝑟𝐸𝑉 = ∑ 𝑃𝑟𝑖𝐸𝑉
𝑛
𝑖=1      (5.13) 

where n is the number of hours in a year. Electric vehicles will have significant impacts 

on electrical loads. The total energy consumption and peak powers are affected by the 
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number of EVs in one customer point, charging characteristics, the capacity of batteries, 

and location. The power demand of charging in the case area depends on the charging 

characteristics, the number of EVs, and the charging locations. The end-use profile has to 

be scaled and modified to correspond to the demands of the EV charging in the case area.  

The charging of EVs can be optimized from several perspectives. Charging can be carried 

out by dump or smart charging. Dump charging refers to charging without any external 

charging signals. Basically, a customer charges the EV whenever it is possible. Smart 

charging can be based on optimized charging according to the network loads or the price 

of electricity markets such as SPOT prices. Optimization based on network loads does 

not necessarily increase the network peak loads. The SPOT-price-based charging is based 

on optimizing the electricity prices of the customer. This may increase the peak loads. 

Moreover, if a customer has microgeneration, it can be used for the EV charging. Thus, 

the impacts on the end-use profile will decrease. 

Figure 5.17 shows the effects of EV charging on network loads. Charging of the EVs is 

started by basic charging when the EVs are at home. In optimized charging, the EVs are 

charged at night-time. Loads will grow in the basic charging, and in the optimized 

charging the loads will remain at the same level as original loads, although the amount of 

charged energy is the same in both charging cases. Together with AMR data it is possible 

to model, for example, the impacts of EVs on the customers’ load profile and the total 

load profile of these customers. The total hourly based consumption can be obtained at 

the customer level, but end-use modelling would also require information at the appliance 

level. At the moment, this should be estimated from the consumption curves.  

 

Figure 5.17. Electricity consumption of residential customers and the effects of EVs with basic 

charging and optimized charging. 

In addition to charging of the EVs, batteries can be used as electricity storages. In this 

case, the battery will decrease a customer’s end-use profile. Consequently, the loads in 

the distribution network will also decrease, as shown in (Lassila et al., 2012). 
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5.4.4 Energy storages 

There are many ways to use batteries. The main purpose of energy storages is probably 

peak load shaving and storing energy produced by microgeneration. Figure 5.18 

illustrates the effect of peak cutting on loads at a customer level. The loads are cut with 

the energy storage between 20:00 and 22:00 hours, and the energy storage is charged 

between 22:00 and 24:00 hours. 

 

Figure 5.18. Peak cutting of customer loads with an energy storage. 

The most challenging task in the energy storage modelling is to optimize a suitable energy 

storage for each customer. Dimensioning of the energy storage can be based on different 

factors such as the price of the energy storage or an option to store energy produced by 

microgeneration.  

A method for peak cutting is required; one option is to define a limit on the allowed load. 

The effects of the energy storages on peak power cutting, when Pri > Prisv, can be modelled 

as 

𝑃𝑟𝑖𝐸𝑆𝑝𝑐 = 𝑃𝑟𝑖𝑠𝑣     (5.14) 

where 

PriESpc hourly power for a customer group r at time i after the energy 

storage is used for peak cutting ESpc   

Prisv set value for peak hourly power cutting for a customer group 

r at time i. 

Then, the hourly power discharged from the storage has to be taken into account. It is 

assumed that the energy storage has enough capacity to discharge. The hourly power is 

now written as 
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 𝑃𝑟𝑖𝐸𝑆 = 𝑃𝑟𝑖 − 𝑃𝑟𝑖𝑠𝑣,     (5.15) 

where PriES is the hourly power taken from the energy storage, and Pri is the original 

hourly power for a customer group r at time i. Charging of the energy storage can be 

started when Pri < Prisv, which can be modelled as an end-use load 

𝑃𝑟𝑖𝐸𝑆𝑝𝑐 = 𝑃𝑟𝑖 +
𝑃𝑟𝑖𝐸𝑆

η
     (5.16) 

PriES is the hourly power taken from the energy storage, and η is the efficiency of the 

energy storage system. In addition, a condition Pri ≤ Prisv has to be valid during charging. 

The efficiency of a battery storage system can vary significantly. The effect of peak 

cutting with an energy storage on the annual electrical energy for a certain customer group 

WrESpc can be calculated by using the hourly power information 

𝑊𝑟𝐸𝑆𝑝𝑐 = ∑ 𝑃𝑟𝑖𝐸𝑆𝑝𝑐
𝑛
𝑖=1      (5.17) 

where n is the number of hours in a year. However, changes in electrical energy are minor. 

The application of an energy storage in relation to energy production by microgeneration 

is a different task compared with peak cutting. Surplus energy produced by 

microgeneration could be stored in an energy storage. Figure 5.19 illustrates the load 

profile of a detached house profile and the energy produced by a PV system of 5 kW. The 

orange curve indicates how much storage capacity would be needed to store the surplus 

electrical energy produced by microgeneration. The capacity of the energy storage should 

be a couple of dozens of kWh in order to be able to store all the renewable energy 

produced during a day. 

 

Figure 5.19. Total load profile of a detached house customer with microgeneration. The amount 

of energy supplied to the network is indicated by orange. 
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There are several methods to store surplus energy produced by microgeneration. The most 

favourable method from the distribution network perspective would be that production 

would not produce negative peak loads to the network. Thus, a similar peak shaving 

approach is adopted as in peak cutting. Basically, when surplus electricity supplied to the 

network exceeds the set value, the energy storage is charged. The total load after 

microgeneration installation PriMG is represented in Equation 5.10. This equation is valid 

when microgeneration is available. The effects of the energy storage with 

microgeneration on the electricity end-use, when PriMG < Prisv, can be modelled as 

𝑃𝑟𝑖𝑀𝐺𝐸𝑆 = 𝑃𝑟𝑖𝑠𝑣     (5.18) 

where 

PriMGES hourly power for a customer group r at time i after the 

microgeneration installation MG with the energy storage. 

Prisv set value for negative peak hourly power of a surplus 

electricity for a customer group r at time i. 

Then, the exceeding hourly power of the set value is charged into the energy storage. It 

is assumed that the energy storage has enough capacity to charge. The hourly power is 

now written as 

 𝑃𝑟𝑖𝐸𝑆 = 𝑃𝑟𝑖𝑀𝐺 − 𝑃𝑟𝑖𝑠𝑣     (5.19) 

where PriES is the hourly power charged into the energy storage. Discharging of the energy 

storage can be started when PriMGES > 0, which can be modelled as an end-use load 

𝑃𝑟𝑖𝑀𝐺𝐸𝑆 = 𝑃𝑟𝑖𝑀𝐺 − 𝑃𝑟𝑖𝐸𝑆 ∙ η     (5.20) 

where PriES is the hourly power discharged from the energy storage, and η is the  efficiency 

of the energy storage system. In addition, a condition PriMGES ≥ 0 has to be valid during 

discharging. 

The effect of microgeneration and energy storage combined on the annual electrical 

energy for a certain customer group WrMGES can be calculated by using hourly power 

information 

𝑊𝑟𝑀𝐺𝐸𝑆 = ∑ 𝑃𝑟𝑖𝑀𝐺𝐸𝑆
𝑛
𝑖=1      (5.21) 

where n is the number of hours in a year. Energy storages may have significant impacts 

on electrical loads. On the other hand, the effects on electrical energy consumption are 

minor. If microgeneration is stored for own use, the amount of annual energy from the 

network will change significantly. All in all, the application of energy storages is quite 

complicated, because the energy storages should be optimized for each customer with a 

suitable method. In addition, there are not many practical applications available at the 

moment to use energy storages as a part of a customer’s electricity system. However, 
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energy storages may be introduced in a larger scale in the future. The number, size, and 

purpose of use of energy storages have the greatest impacts on the electricity end-use. 

5.4.5 Demand response 

Load modelling of demand response can be performed in different ways. It seems that in 

general, demand response is managed by some other party than the DSO. Thus, the 

distribution network should offer a marketplace for demand response. From the retailer’s 

perspective, demand response may have different kinds of impacts on loads. The DSO 

should have information of customers, location, and time when loads will be controlled, 

and what kinds of loads are controlled (Järventausta et al., 2015). Typically, these loads 

may participate in hourly electricity markets, and they are controlled at an hourly level. 

These markets are normally SPOT, ELBAS, balancing, imbalancing, and reserve 

markets. 

There are two kinds of loads; some loads like lighting do not produce a payback effect, 

while other loads such as direct electric heating have a payback effect. Therefore, two 

different methods have to be used to forecast the effects of demand response in load 

forecasting. For the payback effect, the load type has to be known. The most common 

load that has a payback effect is probably direct electric heating.  

Modelling of the payback effect assumes that the off-controlled energy will take place in 

the next hour/hours. There can be different variations of which part of the loads can be 

controlled. The greatest effects come from controlling the total load potential. Basically, 

the assumption is that all heating loads are controlled off. It is also possible to partly 

control the loads and different time periods. The effect of demand response on the end-

use load, when controlling loads off, can be modelled as 

𝑃𝑟𝑖𝐷𝑅𝑜𝑓𝑓 = 𝑃𝑟𝑖 − 𝑃𝑟𝑖𝐷𝑅𝑝𝑟𝑜,    (5.22) 

and when the payback effect appears in the following hour/hours, it can be modelled as 

𝑃𝑟𝑖𝐷𝑅𝑜𝑛 = 𝑃𝑟𝑖 + 𝑃𝑟𝑖𝐷𝑅𝑝𝑟𝑜    (5.23) 

where 

PriDRoff hourly power for a customer group r at time i after controlling 

loads off DRoff 

Pri original hourly power for a customer group r at time i 

PriDRpro proportion of the controlling hourly power load DRpro, for a 

customer group r at time i 

PriDRon hourly power for a customer group r at time i after controlling 

loads on DRon. 
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The number of load control times and the duration of the load controls play a major role 

in the effects on the load changes. However, changes in the electrical energy are minor in 

this approach. Therefore, the effects on the electrical energy are not modelled. 

5.4.6 Summary of forecasting the future energy technologies 

The LTLF of the future energy technologies is based on electricity end-use modelling and 

spatial scenarios, which are combined with simulations. The consideration of different 

future energy technologies, heat pumps, electric vehicles, and microgeneration require 

end-use profiles. Different scenarios such as a fast case scenario and basic scenario are 

needed to analyse the effects of various combinations of loads in distribution networks. 

Forecasts are typically based on national trends, which are concentrated on scenarios for 

the case area. The timescales and the predictability of the technologies pose challenges: 

energy efficiency seems to be a continuing trend, and changes are constantly taking place, 

whereas microgeneration, energy storages, and EVs will take place in different time 

periods. Therefore, there will be a need for different kinds of scenarios to approximate 

the number of devices in different time periods. For example, there are the following 

methods for this task: 

- All customers of a certain customer group will apply a certain energy 

technology progressively over the next decades 

- Various proportions of the customer groups will have a certain energy 

technology and capacity in a certain timescale 

- Limit values are defined for the effects of the technologies, and the impacts on 

different customers are focused on 

Other scenarios can also be generated that are combinations of previous scenarios. The 

most suitable scenarios have to be chosen case specifically, and scenarios have to be 

focused on the case area. Some national scenarios have been presented in Section 3.3. A 

lot of parameters have to be chosen to forecast the future energy technologies. The 

numerical values of various parameters can be defined in different ways. Therefore, 

different kinds of approximations and approaches are needed. The parameters play a 

highly important role in the forecasting system. 

The increasing amount of data and diverse electrical end-uses make forecasting more 

tedious compared with previous approaches. There is a need for a common register of 

different data sources that the long-term load forecasting could utilize; the register would 

make data acquisition easier. (Hyvärinen et al., 2012) has also suggested to draw up a 

master material for forecasting purposes, which would provide a basis for making 

forecasts. This master material could update real estate information and possible changes 

in master plans automatically to the forecasting material database (Hyvärinen et al., 

2012). 
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5.5 Conclusions 

Electricity distribution is changing from the traditional environment to the future 

environment, as presented above. This will lead to a situation where the previous load 

forecasting methods do not work anymore and a new LTLF process have to be developed. 

On the other hand, a need for different kinds of forecasts has also increased. A new 

forecasting process can give information about how electrical loads will develop spatially. 

As a result of the new forecasting process, spatial power forecasts can be obtained for the 

case area, and energy forecasts can be obtained by summing the power results in the area. 

Annual energy forecasts are the most relevant ones for the case area. This requires that 

the load forecasts are based on an hourly, year-level (8760 h) analysis. Figure 5.20 

presents the new forecasting process, which is based on measured hourly powers. AMR 

data are used to model the present and new customers, to model the loads of separate 

customer groups, and to forecast the effects of future energy technologies. 

 

Figure 5.20. LTLF process for electricity distribution. 

The research area may be located in the area of several municipalities, and thus, the data 

have to be modified and focused on the right area, or the data have to be connected with 

different records. The forecasting system and combination with different databases must 

work efficiently, reliably, and automatically when updating and modifying the data. In 

addition, application of data sources constitutes a significant part of the forecasting 

process. Almost all the data used in the forecasts can be found from different kinds of 

data sources. Hence, the use of data plays an important role in the LTLF process. 

Integration of the DSO’s internal data sources as well as integration of external data 

sources may pose challenges. Therefore, development of the databases is highly 

important. The information of the electricity end-use will increase significantly also in 

the future. In practice, this means that more device group specific data can be obtained. 
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Completely new data will probably be available in the future, making it easier to generate 

forecasts. This will help to analyse parameters for the scenarios. Updating the customer 

information is necessary from the perspective of long-term load forecasting. The amount 

of data grows constantly, and the opportunities to utilize data will increase in the future.  

It would be important to record information of the new technologies to the DSO’s 

databases. Another option is to find new technologies based on consumption changes and 

behaviour. It would be useful to provide updates annually, because it gives a better 

starting point for the present consumption. Eventually, new possible future technologies 

such as fuel cells and μCHP can be integrated into forecasting by end-use modelling. In 

the forecasting system there has to be an option to modify the end-use models. In practice, 

there should be a library for different kinds of end-use profiles and a model for 

modification of the existing load profiles. Moreover, it may be advisable to use local end-

use models than a universal model for a certain area. Further, it could be advisable to 

generate a new and separate database for load forecasting purposes. This database could 

register information and facilitate various load studies. This means that more accurate 

initial data can be applied and more accurate forecasts can be obtained.  

Flexible forecasting requires suitable timescales. Timing of the consumptions, volumes, 

and new technologies plays a crucial role. Therefore, it is important to keep systems 

updated so that the most accurate analysis of the present loads can be obtained. Changes 

in consumption take place in different time periods, and they can have a great impact on 

general planning of the network. Forecasting of the new technologies is challenging, but 

the different types of scenarios help to make a suitable sensitivity analysis. The longer 

the forecasting period, the higher the uncertainty of the forecasting results may be. The 

variation and number of errors of the scenarios increase in the long term. 

To sum up, the role of local experience on the network area under study is emphasized. 

The person who makes the forecast has to estimate the aspects to be taken into account in 

the forecasts in each case individually. Further, an ability to make different kinds of 

scenarios for individual areas is required, and the effects have to be forecasted by a 

scenario approach. A remarkable benefit in the new process is that forecasts can be 

adjusted and updated every year when new and updated information for forecasting is 

available. Finally, the person producing the forecasts makes the final decisions of the 

parameters and scenarios. 

The new long-term load forecasting process for electricity distribution consists of 

different phases that apply various different methods. The developed process is generic 

by nature, and it is universal for all kinds of areas. In total, the process is logical and easy 

to apply in practice. However, it requires a lot of information of the customers and data 

for forecasting. Altogether, this chapter has produced a methodology for the LTLF. This 

emphasizes the relevance and novelty of the doctoral dissertation.  

In addition, the developed forecasting process has been modelled in practice. An analysis 

method has been generated to model the changes. This forecasting prototype method 
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works in a Matlab simulation model environment. The prototype has instruments to make 

a present-state analysis of the forecasting area, volume- and consumption forecasts, and 

future energy technologies. The main focus is in the modelling of the future energy 

technologies and the AMR data processing in the forecasting tool. Basically, the 

forecasting tool can be considered to be a part of the distribution network planning tool, 

which enables various simulations in the case area. Next, it is studied how the forecasts 

work in practice, and what kinds of impacts the new future energy technologies will have 

on loads in electricity distribution.  

 

 



143 

6 Analysis of the LTLF process impacts on the business 

environment 

A new long-term load forecasting process provides spatial hourly power results. From the 

technical perspective, the highest mean hourly powers are an important parameter, 

because network planning is based on them. As network planning and network 

investments have an impact on the DSO’s business, new investments have to be taken 

into account in the business planning. Annual electrical energy consumption can be 

forecasted based on hourly powers. Annual energy forecasts especially at the DSO level 

are needed, because together with tariffs, energy consumption has effects on the DSO’s 

revenue, and thereby on the DSO’s business and strategic planning. Moreover, network 

tariffs are based on business planning. Figure 6.1 presents the impacts of the load 

forecasting process on the electricity distribution business. 

 

Figure 6.1. New long-term load forecasting process for electricity distribution yields forecasting 

results in hourly powers. The impacts on annual energy and revenue can be defined based on 

hourly powers. 

Changes in the electricity end-use depend on several issues such as the network location 

and area and the emergence of future energy technologies. Network areas can be very 

dissimilar, which means that the LTLF has to be made individually for each area. 

Indicative information of the effects of changing electricity end-use on the electricity 

distribution business is needed. In addition, the proposed forecasting process has to be 

tested. For this purpose, a case study is required.  

6.1 Case study of future energy technologies 

The new long-term load forecasting process will be tested in this case analysis. The 

process follows the methodology presented in Chapter 5. The objective of the case study 

is to test the methodology and to model the possible effects that future energy 
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technologies may have on the electricity distribution business. The process also describes 

the present load analysis quite extensively. Volume- and consumption forecasts, instead, 

are not presented. The impacts of future energy technologies on electricity distribution 

are studied, because they are assumed to have the most significant effects on loads. 

Volume and consumption forecasts are not incorporated in the case study, because such 

data of the spatial development of the case area such as census data, building forecasts, 

and real estate information are not available for analysis. Thus, the constraints of the 

research data usage and the lack of data set limits on the presentation of the case analysis. 

Simulations of the volume and consumption forecasts could have been provided; 

nevertheless, simulations without actual data would only have tested the forecasting 

process, which could also be made without this phase. However, the new long-term load 

forecasting process can be tested without volume and consumption forecasts. Despite the 

fact that volume and consumption forecasts are not made, all elements of the forecasting 

process, namely the spatial analysis, clustering, scenarios, end-use modelling, and 

simulation, are applied to forecast loads in the case area. The main assumption of this 

doctoral dissertation is that new technologies will significantly change electrical energy 

and power in distribution networks. Scenarios of future energy technologies and their 

effects on electrical energy and power are presented; however, it is emphasized that the 

results are only indicative. The target is to attest that future energy technologies may have 

radical effects on electrical loads in electricity distribution.  

The case study is made for a single primary substation area with nine feeders. The primary 

substation includes a population centre and rural areas in Central Finland. The distribution 

network comprises 457 km medium-voltage network, 793 km low-voltage network, 469 

secondary distribution transformers, and 5624 connection points. AMR data are available 

from all customers for the target period of 10 June 2010–31 October 2012. The AMR and 

network data have been modified for the Matlab simulation model. Customer density 

(network length/a customer) is 164 m/customer in the case area while the median value 

in Finland is 157 m/customer. The number of customers in the connection points is 1.35, 

and the ratio of the low-voltage network length to the medium-voltage network is 1.74 

(the national values in Finland are 1.41 and 1.97, respectively). The number of secondary 

distribution transformers per medium voltage line kilometre is 1.03 (the medium value in 

Finland is 1.01). To sum up, it can be stated that the case network area is a typical 

representative of an average electricity distribution network area in Finland.  

The forecasting in the case area is based on AMR data available for each customer for the 

period of November 2011–October 2012. Over that time, the total energy consumption 

was 88.4 GWh and the highest mean hourly power 21.1 MW. As presented in Section 

5.2, outdoor temperature correction has to be performed before load forecasting. 

Customer-specific temperature dependence parameters for four seasons are calculated 

from AMR data. Outdoor temperature correction is based on regional long-term daily 

average outdoor temperatures. This means that after normalization, the applied AMR data 

represent long-term outdoor-temperature-corrected energy consumption, and the network 

load pattern represents the shape of the measurements for the year 2012.  



6.1 Case study of future energy technologies 145 

The case network area includes approximately 7600 customers, and the customers are 

classified into 38 predefined SLY customer groups. The number of customers varies from 

250 to over 2000 customers on different feeders. A majority of the customers, are 

classified into the category of detached house customers. Around 30 % of the customers 

are residential customers, who live in terraced houses and blocks of flats. Almost 1 % of 

the customers are found in the group of industrial customers, 2 % of the customers in 

agriculture, 2 % in public services, and about 4 % in private services. The rest of the 

customers are categorized by the DSO’s own classification. This information is gathered 

in Table 6.1. 

Table 6.1. Predefined classification of customers in the case area. 

Total number of customers 100 % 

Detached houses 60 % 

Terraced house and apartment customers 30 % 

Agriculture 2 % 

Industry 1 % 

Administration 2 % 

Business 4 % 

Others 1 % 

 

Basically, in load forecasting, all the 38 predefined customer groups can be used. 

Predefined customer groups serve as a good starting point for customer grouping. If 

customer types emerge that have to be classified separately, the customer group and load 

profile for such customers can be formed in the clustering phase. From the perspective of 

forecasting the future energy technologies, the most interesting customers are residential 

customers. Residential customers cover over 90 % of the total number of customers in 

the case area. Therefore, residential customers are in the focus of attention here. In 

addition, residential customers may probably be interested in new technologies, as for 

example heat pumps have been installed into households (Adato Energy, 2013). However, 

agriculture, industrial, administration, and business customers will also employ different 

kinds of technologies.  

As presented in Chapter 5, customer grouping can be based on load profile updating or 

clustering methods. Here, a clustering method is applied. The largest customers are 

separated from others, and individual load profiles are used for those customers. The rest 

of the customers are clustered by a k-means method, and for those customers, clustered 

load profiles are used. The clustered load profiles are scaled according to the customer’s 

annual energy consumption. The total space electric heating load has been calculated after 

clustering. In this model, an approximation has been used that electric heating is needed 

if the outdoor temperature is below +10oC. Thus, after the customer grouping process, 33 

different customer groups are found for the forecasting from the case area.  
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After the outdoor temperature normalization and customer grouping phase, the present 

load analysis for long-term forecasts in the area can be generated. In this phase, the load 

profiles are hourly based for a year. Volume and consumption forecasts could be made 

based on these load profiles. The effects of outdoor temperature normalization and 

clustering results on the network loads are illustrated in Figure 6.2. The green line 

describes the processed network load, which is used in the forecasting process. The 

starting time in the figure is the 1st of November. The same approach is also applied to 

the figures in the following sections. The outdoor-temperature-normalized peak load is 

19.3 MW, and the electrical energy is 88.4 GWh. The peak operating time is 4600 h.  

 

Figure 6.2. Difference between the measured AMR load (blue) and outdoor-temperature-

normalized and clustered network loads (green). 

The case study reviews the future energy technologies related to energy efficiency, 

microgeneration, electric vehicles, demand response, and energy storages. Modelling of 

these technologies is addressed in more detail in Section 5.4. The target is to test the 

methodology in practice. Therefore, forecasts are made for residential customers only. In 

addition, the target of the case study is not to make a load forecast for the case area, but 

to model the impacts that these future energy technologies may have on the electricity 

distribution. The results are presented from the perspective of electrical energy, power, 

and distribution revenue. 

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Time (h)

P
o
w

e
r 

(k
W

)

 

 

Measured AMR load

Clustered and normalized load



6.2 Effects of future technologies on power and energy 147 

6.2 Effects of future technologies on power and energy 

The effects of future technologies on the annual electrical energy and the highest mean 

hourly powers are evaluated by using the same forecasts in the case area. Certain future 

energy technologies are forecasted, and the results are presented for each technology. The 

effects on distribution loads are studied by comparing the results with original network 

loads (normalized and clustered long-term network loads). The effects on the loads are 

obtained in hourly powers at a year level when the future highest mean hourly powers 

can be determined, and the impacts on the annual electrical energy can be calculated from 

the powers. The following sections address the effects of future energy technologies on 

powers and energy in the distribution network area. 

6.2.1 Energy efficiency 

There are several energy efficiency actions and technologies, which may have an impact 

on the electricity end-use. Section 5.4 demonstrated how to model the effects of 

insulation, heating systems, and lighting on the network loads. Here, it is assumed that 

the most significant effects on the loads will be associated with heating systems, if heat 

pumps are installed. The main focus is on ground and air source heat pumps (GSHP and 

ASHP) installed into detached houses. In the heat pump forecasts it is assumed that a part 

of the customers in detached houses with non-electric heating will replace their oil heating 

systems by ground source heat pumps, and customers in detached houses with direct 

electric heating will install an air source heat pump. Customers with non-electric heating 

may also have other heating systems than oil heating such as district heating and wood 

heating. It is assumed that 70 % of the customers in detached houses with non-electric 

heating will have a ground source heat pump in the case area. These customers are 

selected randomly based on their annual energy consumption. There are no accurate 

spatial data available of different heating types and demands of the case area for the 

forecasts. Therefore, it is assumed that general spatial data from Statistics Finland can be 

applied for the case area. Direct electric heating customers are clustered from the AMR 

data. It is assumed that all detached houses with direct electric heating will have an air 

source heat pump in the case area. 

The GSHP and ASHP data are modelled by hourly based data (Laitinen et al., 2011). The 

heat pump data are outdoor temperature normalized to the same target temperatures as 

the original network load. The heating demand for detached houses with non-electric 

heating in the case area is based on average annual heating demands, the data of which 

are available. The heating demand is determined by information of the construction years 

of the detached houses, floor areas and heating demands per m2 in the case area (Motiva, 

2015) and (Statistics Finland, 2014c). In the GSHP analysis, heating of water is included 

in the heating demand and forecast. However, a suitable hourly power model for heating 

of water is not available for forecasting. The normalized ground-source heat pump hourly 

data are scaled based on the customers’ annual heating demands. The heating demand for 

customers with direct electric heating is calculated from the AMR data. The coefficient 

of performance (COP) for the GSHP is estimated to be three, and the COP for the ASHP 



6 Analysis of the LTLF process impacts on the business environment 148 

is obtained from the heat pump hourly data. First, the effects of ground source heat pumps 

in detached houses with non-electric heating are presented. In Figure 6.3, the effects of 

GSHPs are illustrated in the case area when heat pumps have been installed into some 

detached houses with non-electric heating.  

 

Figure 6.3. Effects of ground source heat pumps on the loads in the case area. 

The result is that the highest mean hourly powers would increase by about 14 % compared 

with the original loads in the case area, if all detached house customers with non-electric 

heating had ground source heat pumps. The annual electrical energy consumption would 

increase by about 7 % in the area. Figure 6.4 illustrates the effects of GSHPs in a two-

week period over the highest network load period. 
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Figure 6.4. Effects of ground source heat pumps on the loads in the case area in a two-week 

period. 

The results are also studied at the district transformer level. The impacts of heat pumps 

on the highest mean hourly powers at the secondary transformer level in the case area are 

shown in Figure 6.5. The highest mean hourly powers of the original load and the impacts 

of GSHPs are compared with the nominal powers of the secondary transformers. It seems 

that the loads of the distribution transformers will increase considerably, and some of the 

secondary transformers may be overloaded. Thus, in this scenario, GSHPs will increase 

the annual energy and the maximum power in distribution networks. 

 

Figure 6.5. Effects of ground source heat pumps on loads at the secondary transformer level. 
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The impacts of air source heat pumps on direct electric heating customers can be seen in 

Figure 6.6. The heat pumps may increase direct electric heating customers’ loads during 

the coldest weather even by 9 %. The highest mean hourly power may increase 2 % in 

the case area. The reason is that the COP of the ASHPs decreases below 1 during the 

coldest weather, and it is assumed that the ASHPs are operating during the coldest 

weather. In this scenario, the total annual electrical energy consumption may decrease by 

5 % in the case area. 

 

Figure 6.6. Effects of air source heat pumps on direct electric heating customers’ loads. 

The effects of air source heat pumps on the secondary transformers can be seen in Figure 

6.7. It can be noticed that ASHPs in buildings with direct electric heating decrease the 

annual electrical energy consumption, but increase or decrease the highest hourly powers 

at the secondary substation level. The reason why hourly powers increase at the secondary 

substations is that the highest hourly powers of the original loads occur during the coldest 

weather, when the consumption is already at the highest level. Thus, the ASHPs increase 

the consumption if the COP decreases below 1. On the other hand, the ASHPs decrease 

electricity consumption. This, again, may decrease the highest hourly powers in some 

secondary transformers in the case area when the original consumption is not at the 

highest level at the secondary substation. 
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Figure 6.7. Effects of air source heat pumps on loads at the secondary substation level in per cent. 

The total effects of heat pumps on the highest mean hourly loads and the annual electrical 

energy at the feeder level are depicted in Figure 6.8. The highest mean hourly powers will 

increase significantly on all feeders, but the annual energy flow may increase or decrease. 

 

Figure 6.8. Effects of heat pumps on power and energy on different feeders. 

In these scenarios, the total impacts of heat pumps on power are forecasted to increase 

the network loads. On the other hand, the heat pumps may decrease or increase the annual 

electrical energy flow at different network levels. Ground source heat pumps may 

increase the annual energy and power at different network levels. Air source heat pumps, 

instead, may decrease the annual energy flow at different network levels, but they may 

increase or decrease powers at different network levels. 
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6.2.2 Microgeneration 

Solar power will probably be the most popular microgeneration technology in the future. 

It is forecasted that the most popular capacity of a PV plant is 5 kW. In this scenario, it is 

assumed that all detached house customers with direct electric heating in the case area 

will have a 5 kW PV system. Customers of this kind have typically higher electricity 

consumption than other residential customers. Therefore, it is forecasted that these 

customers will install solar panels. This number of customers accounts for about 25 % of 

the total number of end-customers in the case area.  

A production curve is required to forecast the effects of microgeneration on loads. A 

theoretical hourly based production curve for the case area has been applied from 

(National Renewable Energy Laboratory, 2015). The PV is estimated to have an array tilt 

of 45o, the system losses are estimated to be 14 %, and the array azimuth angle is 180o. 

Figure 6.9 shows the results of PV on the network loads.  

 

Figure 6.9. Effects of microgeneration (green) on the original loads (blue) at the primary 

substation area. 

The use of PV generation in the peak load time in winter in Finland is considered almost 
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negative at the primary substation level, and it will be possible to supply electricity to the 

transmission network. Thus, the annual electrical energy flow at the primary substation 

area would decrease by about 9 %. Figure 6.10 shows the results of PV on the network 

loads in July. 

 

Figure 6.10. Effects of microgeneration (green) on original loads (blue) at the primary substation 

area over a one-week period in July. 

Photovoltaic (PV) systems can produce a negative energy flow to the network, if the 

consumption is lower than the solar power production. This can also cause difficulties at 

the lower distribution network levels. The effects of PV on the secondary transformers 

with the same scenario are illustrated in Figure 6.11. The highest mean hourly powers of 

the original load and the lowest hourly powers of the impacts of PV systems are compared 

with the nominal powers of the secondary transformers. 

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (h)

P
o
w

e
r 

(k
W

)

 

 

Original load

Impacts of microgeneration



6 Analysis of the LTLF process impacts on the business environment 154 

 

Figure 6.11. Effects of microgeneration on loads at the district transformer level. 

The figure shows that from the perspective of network dimensioning, PV will not pose a 

challenge, if the installed PV capacities are 5 kW or less, and the penetration level of 

microgeneration plants remains moderate as presented in this analysis.  

6.2.3 Electric vehicles 

The impacts of EVs on the loads depend on the number of EVs, their charging type and 

time, and location. It is forecasted that 25 % of the customers will have electric vehicles 

in the case area. In the scenario, the EV fleet is considered to be owned by residential 

customers living in detached houses. Further, in addition to basic charging without 

optimization, it is assumed that the charging power is constant 3.6 kW per car, the energy 

consumption of the vehicle is 0.2 kWh/km, and the battery capacity of the vehicle is 

sufficient for most of the daily trips (Tikka et al., 2011). Figure 6.12 shows how the loads 

will increase in the case area. The highest mean hourly power will increase by about 5 % 

in the case area. The annual electrical energy consumption will increase by about 8 %. 

The effects on loads are divided equally for the whole year. 
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Figure 6.12. Effects of electric vehicles (green) on original electrical loads (blue) in the case area. 

Figure 6.13 shows how the loads will increase in the case area over a two-week period.  

 

Figure 6.13. Effects of electric vehicles (green) on the original electrical loads (blue) in the case 

area over a two-week period. 
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The same forecast is modelled at the secondary transformer level in Figure 6.14. The 

highest mean hourly powers of the original loads and the impacts of EVs are compared 

with the nominal powers of the secondary transformers. We may conclude that the highest 

mean hourly powers will increase at the secondary transformer level, but the growth does 

not affect the dimensioning. 

 

Figure 6.14. Effects of electric vehicles on loads at the secondary transformer level. 

If charging is optimized from the network point of view, the network loads increase less 

or loads do not necessarily increase at all. The optimization can also be made based on 
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that the customer tries to decrease the power supplied to the network by one kilowatt. 

This is the limit set on the lowest mean hourly powers in a year. 

 

Figure 6.15. Minimum required energy storage capacity for customers with microgeneration. 

Basically, this is also considered peak cutting. The methodology is the same as in Section 

5.4, and the forecast is equivalent to the peak cutting approach. The impact on loads in 

the case area is slight with these energy storage capacities. The lowest power increases 

from about 0.05 MW to 0.4 MW. Figure 6.16 presents the results in July. 

 

Figure 6.16. Impacts of energy storages associated with microgeneration in July. 

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of energy storages (p)

E
ne

rg
y 

ca
pa

ci
ty

 (k
W

h)

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (h)

P
o
w

e
r 

(k
W

)

 

 

Original load + PVs

Original load + PVs + Energy storages



6 Analysis of the LTLF process impacts on the business environment 158 

The annual electrical energy consumption increases by about 0.1 % compared with the 

original load together with PV production. Figure 6.17 presents the corresponding results 

for one day in July. It can be seen from the figure that the energy storages cut the lowest 

network peaks, which are due to microgeneration. On the other hand, electricity is used 

from the charged storage when there is no PV production available. Some customers’ 

electricity consumption is so low in summertime that they can take their electricity from 

the energy storage for several hours.  

 

Figure 6.17. Impacts of energy storages associated with microgeneration in a one day in July. 

It is assumed that a detached house customer with direct electric heating has a 5 kW PV 

system and an energy storage, the customer would probably like to exploit his/her own 

production as efficiently as possible. On average, a customer could manage with the PV 

production even for four months, if there were a storage that could store all the energy in 

this case. The customers whose electricity end-use over a year is lower would manage 

even a longer time without energy from the network. 
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highest mean hourly powers in a year.  
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Figure 6.18. Minimum required energy storage capacity of residential customers. 

There are customers who would need a considerably high energy storage capacity in this 

analysis. This is due to the clustered load profiles. Individual hourly power spikes in the 

clustered load profiles are clearly smaller compared with unadjusted AMR data. Thus, 

decreasing the power limits requires higher energy storage capacities in this approach. 

The effects of peak cutting on the loads in the case area are modelled in Figure 6.19. It 

can be seen that there are no significant effects on original loads (blue) in the case area. 

The highest mean hourly power decreases by 3 % in the case area. 

 

Figure 6.19. Effects of energy storages on loads in peak cutting in the case area. 
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There are no major effects on electrical energy either; the annual energy consumption will 

increase less than 0.5 % because of the 90 % efficiency of the energy storage. The number 

of energy storages and the amount of peak cutting should be greater in order to have 

significant effects on network loads. 

6.2.5 Demand response 

The effects of demand response on the distribution loads depend on the amount of loads 

and load types, and the load control sequence. In this case study, electric heating loads 

were controlled over a three-month period by the retailer. All direct electric heating loads 

in the case area were controlled in the hourly electricity market. The highest mean hourly 

power may grow by almost 25 % in the case area because of the load control. Figure 6.20 

shows how loads will increase in the SPOT-price-based control in the case area. The 

SPOT-, balancing-, imbalancing-, and reserve-based demand response will increase the 

loads in the case area. 

 

Figure 6.20. Effects of SPOT-price-based load controls at the primary substation level. 
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Figure 6.21. Effects of load control in different markets on the highest loads at the feeder level. 

This demand response approach does not have an influence on electrical energy 

consumption, because it is assumed that the same amount of energy will appear on the 

next hours when the loads are on again. The impacts on electrical energy will occur if the 

retailer controls the loads that do not have a payback effect. Then, controlled load would 

remain unused, and electrical energy would be saved.  
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and forecasted effects on energy and power have significant differences. The main reason 

for this can be the different scenarios and initial assumptions. In this scenario, the demand 

response has the greatest impact on power, because the load control capacity was 

considerable. On the other hand, the load control potential could be even higher because 

only the direct electric heating loads were included in this study. 

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

120 %

130 %

140 %

150 %

Feeder 1 Feeder 2 Feeder 3 Feeder 4 Feeder 5 Feeder 6 Feeder 7 Feeder 8 Feeder 9

R
e

la
ti

o
n

 o
f 

p
o

w
e

rs
 (

%
)

Original SPOT Imbalancing Reserve Balancing



6 Analysis of the LTLF process impacts on the business environment 162 

 

Figure 6.22. Estimated and forecasted effects of different technologies on power and energy in 

the case area. 

From the DSO’s perspective, the worst scenarios are if the power loads increase and the 

energy consumption decreases. Consequently, microgeneration and demand response are 

the most challenging issues on the network. On the other hand, heat pumps in non-electric 

heating buildings and controlled charging of the EVs may have positive effects on the 

electricity distribution business. The penetration level of the technologies in the case 

study is relatively low. For example, the number or EVs could be notably higher, and 

thus, the effects on the network loads will be considerable. The greatest effects on the 

network loads will probably become from microgeneration, electric vehicles, and demand 

response. The penetration levels of microgeneration and electric vehicles can be high, and 

they will have large effects on energy and power. In addition, demand response may have 

a radical impact on the network loads but the effects on the energy are minor. Demand 

response can cause significant spikes to the loads. However, the results depend on the 

logic of the load controls, capacity of the loads, and the sequence of the controls.  
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consumption. On the other hand, customers’ energy storages will slightly decrease peak 

loads. Demand response can increase loads, if the retailer operates as a market facilitator. 

-25

-20

-15

-10

-5

0

5

10

15

20

25

-25 -20 -15 -10 -5 0 5 10 15 20 25

Energy (%)

Power (%)

Estimation: heat pumps in other buildings

Heat pumps in other buildings

Estimation: Electric vehicles; non-
controlled charging
Electric vehicles; non-controlled charging

Estimation: Customer's energy storages in
peak cutting
Customer's energy storages in peak
cutting
Estimation: Load control by the retailer

Load control by the retailer

Estimation: Microgeneration

Microgeneration



6.2 Effects of future technologies on power and energy 163 

The total effects of the future technologies are forecasted in the case area. Table 6.2 

presents the assumptions and scenarios of the future technologies in the basic scenario.  

Table 6.2. Assumptions and scenarios adopted when forecasting the total effects of the future 

technologies in the case area. 

Technology Scenario 

Proportion of the customers of 

detached house customers/ 

all customers 

Energy 

efficiency 

Detached houses with non-electric 

heating will have a ground source heat 

pump 

25 % / 10 % 

Microgeneration 
Detached house customers will have  

5 kW PV system 
35 % / 15 % 

Electric vehicles 
1-phase charging, basic charging, non-

optimized , on average charging profile 
35 % / 15 % 

Energy storages 
Utilizing of storages for customers' peak 

cutting 
50 % / 20 % 

Demand 

response 

Direct electric heating customers' 

heating loads are controlled 
50 % / 20 % 

 

The contradictory effects on loads have to be taken into account in the total effects. For 

example, the ASHP decreases the direct electric heating load, and thus, the load control 

potential of direct electric heating is smaller than in the original case. The overlapping 

possibilities has been eliminated from the scenarios. Thus, the impacts of customers’ 

energy storages in peak cutting have been considered in the demand response potential. 

There are no other overlapping cases with these technologies and scenarios. It is 

concluded that modelling of the total impacts has to be dynamic. This requires that 

forecasts of the new technologies have to be based on time scales. This way, it is possible 

to prevent overlapping of the forecasts.  

In Figure 6.23, the total impacts of these future technologies on loads are modelled in the 

case area with the scenarios presented above. In demand response forecasting, forecasts 

related to SPOT-based markets have been used. 
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Figure 6.23. Total effects of future technologies on loads in the case area. 
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Figure 6.24. Total effects of future technologies on loads in the case area over a one-week period. 

The loads will become spikier in the future, and the shape of the load curve will also 

change. Figure 6.25 presents the total results at the feeder level. It seems that the powers 

will increase on each feeder, but the total effects on energy are lower. 

 

Figure 6.25. Total effects of future technologies on power and energy at the feeder level. 
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The first figure of the total effects describes a basic situation in the case area. The scenario 

forecasts that there will be different kinds of technologies that will have impacts on the 

network loads. It is also possible to make various scenarios for DSOs. Figure 6.26 

presents the effects of the low-energy scenario. In the low-energy scenario, energy 

consumption decreases and loads increase. In practice, this would mean that there would 

be a lot of AAHP, microgeneration, and demand response potential.  

 

Figure 6.26. Total effects of future technologies on loads in the case area with the low-energy 

scenario. 

The parameters in technology forecasts are the same as in the basic case. The results show 

that the power loads increase by about 25 % and the energy consumption decreases by 

15 % in the case area. In the high-energy scenario, the optimal case would be that the 

energy consumption would increase and the power loads would decrease. This high-

energy scenario is modelled in Figure 6.27. This scenario includes GSHPs, EVs, and 

energy storages. The parameters are the same as in the basic case, but demand response, 

ASHPs, and microgeneration are not included in this scenario. The results indicate that 

the power increases by about 15 % but the energy consumption increases by 13 % in the 

case area. 
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Figure 6.27. Total effects of future technologies on loads in the case area with the high-energy 

scenario. 

The load profiles in all three scenarios are totally different, and the maximum variation 

in energy from the lowest to the highest energy consumption is about 30 %. The 

corresponding value in power loads is found in the basic case, when the increase in loads 

is about 20 %. The results of the different scenarios are illustrated in Figure 6.28. 

 

Figure 6.28. Total effects of different scenarios in the case area. 
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The above scenarios have only included the impacts of the new technologies, assuming 

quite a low penetration level. In addition, these scenarios have been made for residential 

customers. If these scenarios had taken into consideration the number of customers, all 

kinds of customer types, and the penetration of the technologies had been higher, the 

effects on the network loads would have been considerably higher. 

6.3 Impacts of future technologies on the DSO’s revenue 

Changes in electricity end-use will have impacts on loads in electricity distribution. These 

will influence electrical energy consumption, loads, and the distribution business. The 

situation will be challenging in the electricity distribution business, if the costs increase 

but incomes decrease or remain at the same level in the future. The revenue may decrease, 

if the number of customers or energy consumption decreases. Some future energy 

technologies like microgeneration and energy efficiency may play the major role in 

decreasing the energy consumption. If network powers increase, it means that also costs 

will rise. This is a consequence of the fact that the network dimensioning mainly depends 

on the power. 

Distributed energy resources and demand response will have impacts on electric loads 

and energy transmitted through the distribution network. This, again, has short- and long-

term effects on the DSO’s costs, revenue, and profit. The DSOs’ tariff structures are 

mostly based on electrical energy in Finland, and as a consequence, an energy-based 

distribution tariff will have direct impacts on electricity distribution companies’ revenue 

(Tuunanen et al., 2012). This will increase pressure to raise network tariff prices. Thus, 

changes in electricity end-use will have effects on the DSOs’ revenue and business. New 

business planning methods such as tariff planning and new business models are needed 

to respond to future changes in the electricity distribution business environment in the 

long term. Figure 6.29 illustrates the distribution of the tariff structure in the case area.  

 

Figure 6.29. Distribution of the fixed (blue) and energy (red) distribution tariff. 
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Both the fixed and energy distribution tariff cover almost 50 % of the total revenue in the 

residential customers case. Hence, we can analyse three main scenarios and the effects on 

the revenue and distribution tariffs. In the basic scenario, electrical energy remains at the 

same level but the power loads increase. Basically, in this case, the distribution revenue 

remains at the same level with the present tariff structure. In the worst case scenario, the 

energy consumption decreases by 14 % and the power increases by 13 %. This scenario 

is the most challenging one from the distribution revenue perspective, because the 

revenue would decrease with the present tariff structure and prices. The energy 

consumption will increase by 15 %, and the power is forecasted to increase by 5 % in the 

high energy scenario. The high energy scenario is a good option for DSOs, because the 

energy consumption grows and changes in the power loads do not necessarily pose 

challenges. Generally, the level of costs is increasing, and this would mean that the prices 

of energy and the fixed tariff should be raised in any case. 

In practice, the worst case scenario may be challenging if the energy consumption 

decreases. It will decrease the DSO’s revenue with the present tariff structure. Thus, it is 

necessary to raise the distribution prices to earn at least the same revenue as today. The 

pressure to price increases may be even higher because of the increasing power demand 

and level of costs. If the energy consumption decreases by 14 %, it can be calculated how 

much the distribution prices have to be increased in order to earn the same amount of 

revenue: 

 If the price increase is focused on all types of energy tariffs, the price increase is 

16 %. In practice, this would mean that the energy prices have to be raised by 

0.0028–0.0045 €/kWh to earn the same revenue as today.  

 In the case where the price increase is focused on all types of fixed tariffs, the 

price increase is 13 %. This would mean that fixed charges have to rise by 1.7–

3.0 €/month per customer.  

 If the price increase is made equally for all tariffs, it would mean that the price 

increase would be about 7 %.  

It can be concluded that if the revenue is affected by energy consumption, it is reasonable 

to focus the pressures of price increase on fixed tariffs. This solution decreases the 

dependence of revenue on energy consumption, and thus, it makes the revenue more 

constant. The negative side is that the customers’ opportunities to influence the 

distribution charges will decrease with the present tariff principle, because fixed tariffs 

are based on the main fuse size. 

6.4 Implications of the case impacts 

Network location will have effects on changes in the electricity end-use in the future. The 

changes may vary between DSOs and network areas, especially between rural and urban 

areas. All changes will take place over a long-time period. In addition, the results are 
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temperature normalized, which means that variation in outdoor temperature between 

different years may cause extra fluctuation to the results. The case network environment 

is a typical Finnish electricity distribution environment. The case area includes rural and 

population centre areas. The forecasts and parameters related to the forecasting process 

such as outdoor temperature are based on average values, because the values have to 

represent long-term values, and the modelling of the network loads has to be reasonable 

from the perspective of energy and power. This guarantees that the results are at a medium 

level. The results can be different in urban areas, because for instance the customer 

structure is different. However, the results show where the electricity distribution 

business is heading. 

The LTLF involves various uncertainties, which cannot be completely eliminated. 

However, the scenario approach can take different future alternatives into account, and 

the scenarios can be updated on an annual basis, which produces more information of the 

network area and possible load changes in the area. This case study has shown that future 

energy technologies will have a significant impact on distribution network loads, energy, 

and power, and the DSO’s revenue in the long term. The effects of the technologies 

depend on many issues, as was mentioned above. The most important question is how 

technologies will take place in the operating environment. However, it has to be borne in 

mind that volume- and consumption-related factors like the number of people will have 

significant effects on loads.  

The methodology has been tested with residential customers, and the results in the case 

area are only based on forecasts of residential customers. However, the greatest impacts 

on network loads may be found in the groups of residential customers, because they are 

typically the largest customer group and may be willing to acquire new technologies 

(Leenheer et al., 2011) and (Annala et al., 2012). In rural areas, the loads will develop 

differently than in urban areas. In this work, the main focus is on rural areas, which have 

a lot of residential customers. Further, new technologies may have more radical impacts 

on the loads in the countryside. 

Traditionally, the network load forecasts have been based on energy forecasts, which are 

converted into power forecasts by load models. Energy forecasts are typically based on 

the estimation of the annual growth in energy consumption. For instance, the present 

network planning tools apply the approach of regularly increasing annual load 

consumption. Load forecasts are based on energy forecasts and load models. If energy is 

forecasted to increase constantly, there is a similar trend also with power. Consequently, 

different annual load growth percentage estimates for the highest mean hourly power in 

the case area have been applied. This is illustrated in Figure 6.30. In the figure, the annual 

electrical energy and the highest mean hourly power are estimated to increase with three 

different growth percentages in the case area. In addition, the annual energy forecasts 

with the new long-term load forecasting process are indicated in the figure. It can be seen 

that the forecast produce totally different forecasting results. The results of the new long-

term load forecasting on the highest mean hourly powers are also indicated in the figure. 

The loads will increase in every scenario, but there are a great differences in the forecasts. 
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However, the power results may be totally dissimilar at the lower network levels with the 

new load forecasting process because of the future energy technologies. Thus, we may 

conclude that the effects of the future energy technologies cannot be forecasted by the 

previous method; further, errors in electrical energy forecasts will have significant 

impacts on the distribution business. 

 

Figure 6.30. Forecasting of the future electrical energy and the highest mean hourly power with 

the annual energy consumption growth percentage and with the new load forecasting process in 

the case area. 

This proves that electricity end-use will change significantly and that previous load 

forecasting and modelling methods are no longer valid. We may conclude that it is 

impossible to reliably forecast loads in different areas with the previous methodologies. 

The previous methodologies cannot take into account the impacts of microgeneration and 

other future energy technologies. Further, they may lead to different conclusions of the 

future network loads and can be problematic from the network planning perspective. 

This section has shown that changes in the electricity end-use may pose challenges for 

network and business planning. Several variables have to be taken into account when 

considering the future business environment. The main challenges in the electricity 

distribution operating environment are that electricity end-use deviates from the previous 

consumption trends. In addition, more challenges may arise as a result of major changes 

in the number of customers and the structure of livelihood. Electricity end-use, energy, 

and power may vary considerably in the future. This may reduce incomes and require 

large investments by the DSOs. Therefore, the increasing costs and peak loads may lead 

to challenging and problematic situations. This is an extremely undesirable situation from 

the perspective of the distribution business. Therefore, new methods to manage the 

impacts are needed. 
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6.5 Management of the impacts of future challenges  

As mentioned above, the electricity distribution business will face various challenges in 

the future. These challenges can have adverse effects on the DSOs’ business, and 

therefore, different ways to respond to these challenges have to be found. There are 

different methods to develop the distribution system; for instance, energy storages, load 

control, and new distribution pricing methods are proposed to react to the upcoming 

challenges (Järventausta et al., 2015), (Rahimi and Ipakchi, 2010) and (Palensky and 

Dietrich, 2011). The DSOs’ operating environment is regulated, which means that 

opportunities to answer to the changes are limited. However, distribution pricing and 

demand-side management (DSM) could be solutions to respond to the challenges. More 

efficient utilization of the distribution network capacity is a key element against the 

increasing loads. Distribution pricing may also have impacts on the utilization of the 

distribution network capacity. At the same time, a new type of distribution pricing may 

tackle challenges in business planning (Geode report, 2013) and (Eurelectric, 2013). 

6.5.1 Electricity distribution pricing 

Changes in the electricity end-use lead to a situation where the electricity distribution 

business calls for new solutions. New business models may be needed in the smart grid 

environment to develop business opportunities. New methods for the electricity 

distribution business, especially for pricing, will also be needed. Customers do not 

necessarily comprehend the present pricing scheme. Moreover, the pricing methods do 

not provide appropriate incentives, and the customers’ means to influence their electricity 

bill are limited. From the DSOs perspective, a pricing scheme should be cost-reflective 

and ensure adequate and predictable revenue in the future operating environment. The 

present pricing scheme does not meet these demands (Partanen, Honkapuro, and 

Tuunanen, 2012). 

The major part of the distribution revenue comes from distribution charges. An 

inappropriate business model may raise the distribution prices considerably. A smart grid 

environment can be the basis for a new type of energy pricing and create a totally new 

operating environment for electricity distribution. Residential customers, in particular, 

may put effort to reduce their electricity consumption. However, if the customers’ 

electricity distribution bills are based on energy and the DSOs’ costs are stable or 

increasing, the DSOs have to be prepared to adjust their business models (Tuunanen et 

al., 2012). 

The EU and Finnish legislation set limits on the distribution tariff structures. Regulation 

of the electricity distribution sector limits the revenue of the DSOs, but the DSOs can 

determine their pricing methodology mainly by themselves. Introduction of different 

tariff structures and an analysis of their suitability for the electricity distribution 

companies, as well as their impacts on the energy efficiency incentives and demand side 

management (DSM) are discussed in more detail in (Tuunanen et al., 2012) and (Partanen, 

Honkapuro, and Tuunanen, 2012).  



6.5 Management of the impacts of future challenges 173 

In the low-voltage network, power-based distribution pricing would help to prevent too 

high power peaks (Mandatova et al., 2014) and (Sæle et al., 2015). The effects of power-

based distribution pricing on the loads at different network levels are diverse. Some 

results of power-band-based tariffs are presented in (Järventausta et al., 2015) and 

(Partanen, Honkapuro, and Tuunanen, 2012). The effects of the power-based tariff 

structure can be modelled in a case area. It is assumed that the customers have an incentive 

to cut their peak powers. Figure 6.31 demonstrates how the loads would change in the 

case area if every residential customer decreased their highest mean hourly powers by 

1 kW in a year. 

 

Figure 6.31. Possible impacts of the power-based tariff on distribution loads. 

It can be seen that cutting the customers’ highest mean hourly powers will decrease loads 

in the case area. Similar results have been obtained in (Järventausta et al., 2015), (Sæle et 

al., 2015), and (Partanen, Honkapuro, and Tuunanen, 2012). Power-based distribution 

tariffs could decrease network loads and improve the utilization of the distribution 

network capacity. The main benefit would be that it would prevent an increase in the 

highest mean hourly power in the optimal situation. 

6.5.2 Demand-side management 

There have been various attempts to reduce the customers’ peak electricity consumption 

and to even out the load curves. In addition, electrical network loads and production may 
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need balancing in the future. Different kinds of solutions have been proposed; for instance 

market-based demand response, demand-side management (DSM), energy efficiency, 

and load control (Palensky and Dietrich, 2011), (Rahimi and Ipakchi, 2010) and (Geode 

report, 2014). Demand-side management (DSM) can be defined as an array of measures 

to improve the energy system on the consumption side. It may involve enhancement of 

energy efficiency, incentive-based energy tariffs, and real-time control of distributed 

energy resources (Palensky and Dietrich, 2011). The DSOs would need means to manage 

loads in the distribution network. Controllability and predictability of loads can be a 

useful and essential resource to avoid distribution network challenges; the DSO would 

manage customers’ loads to avoid peak loads.  

The total network loads consist of various load types in electricity distribution networks. 

Thus, load management requires an appropriate control system. Basically, from the 

DSO’s perspective, load management may be needed only occasionally, for instance 

during the highest peak load times or in exceptional distribution service situations. Thus, 

the DSO’s load control would be based on optimization of the network loads. The main 

load control period would be in wintertime, because loads are then typically at highest in 

the network. If the customers’ consumption behaviour is known, it could be possible to 

control the customers’ electricity in the most efficient way. AMR data can be applied to 

determine controllable electrical loads. This adds resources to balance electricity 

consumption (Järventausta et al., 2015). However, this would require a smart grid 

environment. 

6.6 Conclusions 

The most important contribution of the chapter was to show that the developed 

methodology works in practice. The methodology applies average end-use profiles when 

modelling the new technologies. Thus, the final power load results are mean values. 

Standard deviation is not presented in the final forecasting results, because it does not 

bring any additional value to the forecasting results. Instead, standard deviation is needed 

for the planning of the actual distribution network. However, when making end-use 

profiles of the new technologies, it is possible and advisable to apply standard deviation 

to model new technologies. Despite the forecasting results at certain long-term outdoor 

temperatures, the network has to be dimensioned based on the critical temperatures. The 

network has to endure cold and hot outdoor temperatures, which means that critical 

dimensioning of the distribution network is required. This has to be taken into account in 

the long-term network planning. 

Revenue is one of the key elements in the electricity distribution business. The main part 

of the revenue comes from electricity distribution charges. If energy consumption 

decreases, distribution prices have to be increased in order to get the same revenue. In 

addition, revenue will fluctuate in the future, if the total energy consumption varies 

considerably. However, more efficient utilization of the network capacity could decrease 
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distribution costs in the long term. From this perspective, a new electricity distribution 

pricing model or demand-side management could be viable solutions. 

The effects of changes and challenges on the DSOs’ business environment can be 

significant. There are many alternative scenarios concerning the adoption of new 

technologies and their possible volumes in the future. At present, it seems that energy 

efficiency and heat pumps are the prevailing and continuing trends. These trends will 

probably increase in the future also. Micro generation is already in a wide-scale use in 

Europe, and it will very likely to gain ground also in Finland. Other technologies such as 

energy storages and EVs will gain a foothold in the future, but their volumes are difficult 

to forecast. 

The DSOs’ options to manage the impacts of future challenges are limited. Inevitably, 

there are challenges coming outside of the DSOs, and the DSOs cannot prevent the 

development. However, the DSOs can develop their networks to adapt to the changing 

conditions. In addition, electricity distribution pricing and demand-side management 

have been suggested as methods against the adverse effects of changing electricity end-

use. These methods provide tools for the DSOs to react to changes and make their 

businesses more cost-reflective. However, a question may arise: Should a power-based 

distribution tariff be taken into account in the forecasting process? Considering the 

power-based tariff structure, there is a feedback element involved in the loads. 

Consequently, the tariff structure may have impacts on loads in the future, and thus, it 

could be an element of the forecasting process.  
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7 Conclusions 

Many changes have taken place in electricity end-use over the last few decades. The 

amount of modern conveniences such as entertainment electronics, electric saunas, and 

air conditioning, has increased electricity consumption and changed electricity end-use 

profiles. These changes have led to a situation where the old load profiles that have been 

applied to load forecasting are not applicable as such any longer. Further, there are many 

issues that may bring changes to the use of electricity in the future. The most significant 

effects may arise from new technologies such as electric vehicles and from structural 

changes such as the number of population and the structure of livelihood. New 

technologies may revolutionize electricity end-use. For example, micro generation may 

supply electricity to the network, which is a totally new situation in electricity 

distribution. Moreover, new technologies may have different kinds of impacts on energy 

and power in distribution networks, which will make forecasting more complicated. For 

instance, air to air heat pumps may decrease electrical energy consumption in direct 

electric heating buildings, but increase peak power during the coldest weather. In general, 

these changes will significantly alter customers’ electricity end-use patterns, which can 

finally been seen in the distribution networks. The result is that the effects on energy and 

power in the network may be considerable and versatile. 

The amount of data that can be used for forecasting has also increased noticeably and will 

continue to grow in the future. Especially, AMR data provide hourly based electricity 

consumption data, which has opened up new opportunities to develop the long-term load 

forecasting process for electricity distribution. Previously, load forecasts have mainly 

been based on energy consumption and various forecasting analyses of energy 

consumption. Energy forecasts have been converted into load forecasts by load profiles 

that are over 20 years old. However, AMR data make it possible to apply hourly power 

based forecasts, and energy forecasts can be calculated from hourly powers. On the 

whole, there is a need for a new long-term load forecasting process, and the topic is 

current at the moment. 

A novel long-term forecasting process has been developed in this doctoral dissertation. 

The forecasting process is a generic model, and it can be applied to forecast energy and 

power in electricity distribution networks. The process consists of the present load 

analysis, volume- and consumption forecasts, and forecasts related to new technologies. 

The future electrical loads in the distribution networks can be forecasted in the long term 

by applying a forecasting process that consists of different methodologies: a spatial 

analysis, a clustering method, end-use modelling, scenarios, and a simulation method. In 

addition, the forecasting process applies AMR data and several data sources. The 

forecasting process is needed for the long-term load forecasting, because one 

methodology alone cannot take into account the changing operating environment. 

Electricity load forecasting in distribution networks is always based on the case area. 

Therefore, a spatial analysis is needed. A clustering method is required to process the 

extensive AMR data. The impacts of the future energy technologies have to be estimated 

by end-use modelling. Eventually, the forecasts have to be based on scenarios, because 
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scenario modelling is the most suitable method for long-term processes. All these 

forecasts and analyses can be modelled at the network level by simulation. 

An implication of this doctoral dissertation is that considering the new technologies, 

energy efficiency, micro generation, electric vehicles, demand response, and energy 

storages may have the most significant impacts on network loads. These technologies 

may take place in different time periods, for instance, energy efficiency is now the 

prevailing trend. In addition, micro generation, for instance, is taking place in Europe. 

The methodology has been tested in a case network environment. The case network is a 

typical rural and population centre area, which corresponds to an average network area in 

Finland. The case results can be considered indicative also for other network areas, but 

the forecasts and analyses have to be made case specifically for each network areas. In 

the case study, it has been analysed how the future network load patterns will look like in 

the future. The results show that power loads may increase by several dozens of per cents 

in the long-time period in the basic scenario. In addition to changes in power levels, also 

the shape of the network loads will change. At the same time, energy consumption does 

not necessarily increase. In addition, low- and high-energy scenarios have been made for 

the case area, and it seems that there will be an increase in powers in both cases while the 

energy consumption may vary.  

The roles of energy and power are of importance, because power loads have an effect on 

the technical planning of the electricity distribution network, and energy forecasts have 

impacts on electricity distribution business planning. It can be concluded that powers and 

energy consumption will develop in different ways in the future. Therefore, the previous 

long-term forecasting methods are no longer applicable. In addition, if the energy 

consumption grows slightly or even decreases, it means that also the distribution revenue 

decreases with the present tariff structure. However, it is concluded that DSOs can adapt 

to the changing operating environment by applying new business approaches. An 

electricity distribution pricing scheme and demand-side management could be solutions 

to adapt to the new business environment. For instance, a power-based distribution tariff 

could prevent the increase in network loads.  

The main scientific contribution of this doctoral dissertation is the forecasting process to 

estimate the network loads in the electricity distribution environment in the long term. 

The work delineates the major impacts on electricity consumption in the networks and on 

the electricity distribution business. In this work, it is illustrated how the network load 

patterns change in the long term. Further, the work models the kinds of network load 

changes that the DSOs should be prepared for. In addition, the work suggests how DSOs 

can manage the challenges and develop their business.  

In this doctoral dissertation, a forecasting process has been tested in practice, and it is 

concluded that the methodology is feasible. Verification and validation of the study has 

been performed by applying the forecasting process, and the results show that significant 

changes will take place in energy and power. The developed process is better capable of 
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considering changes in energy and power than the present methodologies. The strength 

of the methodology is that it takes several approaches to new opportunities and 

information. In addition, the doctoral dissertation identifies the most technologies 

relevant in the future, which play an important role from the forecasting perspective. The 

methodology is also flexible for different kinds of scenarios and possible changes. The 

weakness of the methodology is that the forecasting process is long; it takes a lot of time, 

and errors in different parts of the process are possible. A lot of data and data sources are 

also needed. Therefore, the data systems should be efficient and reliable. Finally, 

preparing reasonable scenarios requires a lot of knowledge from a forecaster. This also 

limits the options to model and forecast results. Therefore, it would have been interesting 

to model volume and consumption forecasts in the case area. The forecasting process does 

not necessarily take all potential changes into consideration. Further, more detailed and 

accurate methods can be generated when information and knowledge accumulate. 

Nevertheless, the developed load forecasting process may provide more efficient tools to 

estimate future loads. 

The DSOs could be considered to be the audience that would be most interested in the 

results of this doctoral dissertation as they need information of future loads for the 

distribution network and business planning. New planning methods for distribution 

networks will be needed in the future. All in all, distribution systems require new methods 

for restoration of energy, balancing of loads, and cost-reflective pricing schemes in the 

future. Here, demand-side management and distribution pricing will be essential tools to 

impact on distribution network loads. 

Further, software companies that develop network planning tools will get knowledge of 

how to develop the forecasting and modelling of future loads. In the context of this 

doctoral dissertation, a long-term load forecasting tool has been generated, which could 

be further developed into actual software. Incorporation of the forecasting process into 

some network planning tools would be an extremely relevant and current topic. 

Moreover, forecasted future loads can give new information for retailers, TSOs, and 

market aggregators. Changes in future loads will also have impacts on their operation 

environment or business. For example, retailers can enhance the accuracy of their future 

electricity procurement.  This may promote the retailers’ business and provide new 

business models and opportunities. In addition, the end-customers can also benefit from 

the results. For instance, end-customers can make their use of electricity more effective 

and minimize their electricity costs. The results of this doctoral dissertation can also be 

applied for the development of the energy policy. For example, the results can be used to 

improve the electricity distribution pricing scheme, the principles of which are 

incorporated in law. 

This doctoral dissertation has shown that the electricity distribution business environment 

is undergoing changes. Thus, it can be concluded that the regulation model will also need 

new approaches. Consequently, energy authorities may get new information to develop 

the regulation model. Changes in the electricity distribution business, especially in the 
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DSOs’ revenue, will have impacts on regulation. If energy consumption decreases, the 

distribution prices also have to be raised. It is also possible that the role of fixed tariff will 

grow in the future. Consequently, these changes will have an influence on the regulation 

model.  

The results can also be taken advantage of in the electricity end-use modelling. The results 

of the dissertation demonstrate how the load profiles may change the electricity end-use. 

These models may produce a lot of information of the electricity end-use for different 

operators. Further, in the energy storage system approach, the suitable energy storage 

capacity for customers has been estimated. This methodology can provide information 

for the dimensioning of energy storages.   

Finally, methods and tools to respond to the changing business environment have been 

presented. Electricity distribution pricing and demand-side management could answer 

many challenges and increase the potential to develop the electricity distribution system. 

Altogether, business models in the electricity distribution sector call for development. 

The new models have to be compatible with the retail pricing, taxation, and the related 

models. 

Future research can be related to the enhancement and further development of the 

forecasting process. In addition, the effects of other possible end-use changes should be 

studied. Various technologies have been modelled, but there are many other technologies 

that would be relevant to model and forecast; these include new types of technologies and 

their impacts on the electricity end-use. It would also be useful to incorporate μCHP and 

other microgeneration technologies into the forecasting process. Hourly power-based 

electricity end-use models and their development are of high importance. In addition, the 

increasing amount of device-specific data will play a key role in the future studies on 

electricity end-use modelling. Obviously, it would be advisable to test the developed 

methodology in different network environments. Models and forecasts for different kinds 

of customers are also needed. For example, studies on the impacts of energy efficiency at 

the service sector customers would be needed. Again, solutions should be developed for 

the DSOs to respond to the arising technical and economic challenges. Modelling and 

pilot studies of the DSM and power-based distribution pricing deserve further studies as 

well. Finally, long-term electricity load forecasting for more extensive areas, up to the 

national level, would be a current topic of research. There has been a lot of discussion 

about different generation types, but less attention has been paid to national load forecasts. 

Thus, there would be a need for national electricity demand, energy, and power forecasts. 
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