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Time series analysis has gone through different developmental stages before the cur-
rent modern approaches. These can broadly categorized as the classical time series
analysis and modern time series analysis approach. In the classical one, the ba-
sic target of the analysis is to describe the major behaviour of the series without
necessarily dealing with the underlying structures. On the contrary, the modern
approaches strives to summarize the behaviour of the series going through its un-
derlying structure so that the series can be represented explicitly. In other words,
such approach of time series analysis tries to study the series structurally. The com-
ponents of the series that make up the observation such as the trend, seasonality,
regression and disturbance terms are modelled explicitly before putting everything
together in to a single state space model which give the natural interpretation of
the series.

The target of this diploma work is to practically apply the modern approach of
time series analysis known as the state space approach, more specifically, the dy-
namic linear model, to make trend analysis over Ionosonde measurement data. The
data is time series of the peak height of F2 layer symbolized by hmF2 which is the
height of high electron density. In addition, the work also targets to investigate the
connection between solar activity and the peak height of F2 layer.

Based on the result found, the peak height of the F2 layer has shown a decrease
during the observation period and also shows a nonlinear positive correlation with
solar activity.
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1 INTRODUCTION

In order to get deeper understanding of a certain phenomenon, there are two possible
ways to proceed. The first approach is to consider the fundamental processes that
are acting and build a model based on the process which is used to make predictions.
The other way to go is to analyze available data so as to either find relationships
that describe how the system works or make test hypotheses. Such an empirical
approach is used in trend analysis, quantifying and explaining changes in the sys-
tem over a period of time. The statistical tools to do so range from simple to very
advanced one. Some of them are: the least squares method, the moving average
method, the free hand method and state space method. Among these methods, the
state space model approach in general and the dynamic linear models in particular
is the focus point and will be discussed in detail.

State space models are models governed by set of equations known as state equation
(model equation) that describe the time evolution of the state of the system and
observation equation (measurement equation), that tells the connection between
the observation and the state of the system underlying the process. This model
nowadays is found to be very useful and widely applied in science and engineering
disciplines and is also well documented. One of the applications of this model is in
time series problems. The fundamental and astonishing quality of the approach in
this regard is that, it allows the problem to be analyzed structurally. That is, the
components of the series that make up the observation like, trend, seasonality and
regression and disturbance terms are modeled explicitly before putting everything
together in to a single state space model. This allows the natural interpretation of
the series. The approach has also a wider privilege to the effective forecasting and
estimation algorithms. In addition, the method can effectively handle a wide range
of time series problems and is so flexible than the current analytical time series
methods in use such as the Box-Jenkins approach.

To be more specific, the approach together with dynamic regression, strives to
minimize the usual problem happening in statistical time series analysis, having
a single realization from a not completely understood system that forces one to
make assumptions like stationarity in some of the distributional properties of the
underlying process responsible for the variability, to do some analysis on the series.
This problem can be resolved making regression coefficients vary in time, so that
system properties are dynamic, varying in time that in turn create the possibility of
analyzing and describing smooth changes of the underlying process behavior. Such
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an approach is more appropriate to handle the basic non-stationary time series prop-
erty attributed to many environmental time series because of external forces that
let distributional properties to slowly or suddenly change are there adhered with
affecting physical system. The approach better explains the variability and thus
avoid correlation of model residuals that could happen as a result of not doing so.
For example, one can model the process responsible for the observed variability of
seasonality using state allowing some model error to exist [1].

All these ideas suggest, the dynamic approach more advantageous than the static,
where regression coefficients stays unchanged in time. Along this, the possibility of
making state space representation of dynamic regression together with the fact that
defining the process sequentially on conditional dependence just only on previous
time step, the kalman filter can be used for estimating the states given observation
[2].

The approach has many practical advantages such as to study trend, the change
in the statistical properties of underlying process. The focus point of this Diploma
work is basically to discuss time series application of state space models more specif-
ically the dynamic linear model, state space model where the operators defining the
system equation are linear, and apply it for Ionosonde measurement trend analysis.
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2 SOLAR ACTIVITY AND IONOSPHERE

2.1 Solar Activity

The sun, the main source of energy for the planet earth is not quiet at all. There
is always different non stationary active processes happening with in it. Broadly
speaking, solar activity is such kind of a non stationary usually eruptive process
occurring in the sun. In other words, Solar activity is any type of variation in the
appearance of energy output of the sun. This output variation occurs in all of its
output forms such as light, energetic particles, and it varies in time ranging seconds
to centuries and position of the sun. The energy output of the sun basically has
two forms, charged particles emission and radiation of electromagnetic waves. Solar
cycles, the change of activity in the sun on periodic basis, sunspot (the disturbance of
sun’s photosphere temporarily), coronal mass ejections (massive ejections from the
sun), solar flares (huge explosion happening in the solar atmosphere), coronal holes
(cooler and less dense areas relative to the surrounding covering the corona largely)
and solar plumes, (feathery jets covering 13 million miles into space emanating from
around the pole of the sun) are some of the types of solar activity. Details can be
found at [3].

There are different ways of representing solar activity called proxies ( indices).
Roughly,these indices can be categorized as physical indices or as synthetic indices
based on the way they are calculated. The physical proxies are the one which
represent the observable, real physical quantity that can be measured. Radio flux
emission rate of the sun at a wave length 10.7 cm is one way of representing solar
activity lying in the physical indices stream. On the contrary, sunspot numbers are
considered as synthesised proxy.

2.2 Layers of Ionosphere

Ionosphere is the layer of the earth’s atmosphere that contains a high concentration
of ions and free electrons and is able to reflect radio waves. It exists approximately
between 50km and 600km. This region consists different layers that are characterized
by their own electron density known as D layer, E layer and F layer. The D-layer is
found between the altitudes of 50km to 90 km. In this layer, most of Hf signal lost
their strength. The E- layer exists above D-layer between 90km and 120km. F-layer
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is found above the E layer and has unique property, being dividable further in to
sub layer. Figure 1 tries to give some picture about these layers during the day and
night.

Figure 1: Layers of ionosphere

2.3 Ionosonde

The idea of ionospheric sounding was suggested in 1924 by Briet and Tuve. It
uses refractive properties of the ionosphere. The Ionosonde is in principle a high
frequency (HF) radar that record the time of flight of a transmitted signal as a
measure of ionospheric reflection height. The frequencies used for this purpose
runs from 0.5 to 20MHz. The ionosonde gives a record of the reflection height as
a function of frequency called an Ionogram. In other words, the ionogram is a
trace record of reflected high frequency radio signals that the ionosode generating.
The signal overcomes the noises from commercial radio sources as frequency of the
sounder sweeps from lower to higher magnitude and gets the signal reflected from the
layers of the ionosphere and is recorded that form characteristic patterns of traces
comprising the ionogram. The signal travels slowly in the ionosphere as compared
to free space, it is therefore a virtual height, not the true height that would be
recorded. characteristic values of virtual heights is symbolized by h’E, h’F, h’F2
and so on and critical frequencies,the highest frequency above which the waves
penetrates the ionosphere and below it which the waves gets are reflected from the
ionosphere, is designated by foE, foF1, and foF2, and so forth. The aforementioned
concepts can be shown in figure 2. The Ionogram can be used for different purposes
such as for finding electron density distribution as a function of height.
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Figure 2: Ionosonde’s signal reflection from the ionosphere and Ionogram

2.4 Brief History of the Development of Ionosonde at So-

dankyla

The history of Sodankyla Ionosonde development started in 1957. The sounding
has been performed in half-hourly at a regular basis. And followed by the second
ionospheric sounder, IS-14 type later modified in 1977 sounder vertical soundings
of the ionosphere on 1st August 1957. Currently, a new era of ionospheric vertical
soundings has been being carried out since 16th of November to early April 2007 on
10 minute basis. A one minute sounding has also been carried out during campaigns
such as IPY (International polar year).
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3 Time Series

A time series is sequence of measurements, observation of the momentary value of
the variable in question ordered in time usually at equal intervals. It Mostly cover
spans of days up to thousands of years. Temperatures and densities of the plasma,
magnetic or electric field vectors can be examples of time series. Mathematically,
a time series is defined by the values Y1, Y2, · · · of a variable Y say temperature or
density at times t1, t2, · · · . Some common features of a time series data includes
trend, seasonality or autocorrelation (dependence between successive observations)
and so on. The basic model for representing a time series is the additive model given
by Equation (2)

Yt = µt + γt + εt, t = 1, · · · , n. (1)

where, µt is a slowly varying component, trend, γt is a periodic component of fixed
period called the seasonal and εt is an irregular component, called the error or
disturbance.
A multiplicative approach do also exist in many applications such as in economics.
That is,

Yt = µtγtεt, t = 1, · · · , n. (2)

3.1 The Importance of Time of Series Analysis

Basically, time series analysis is done to find a model describing the pattern the
feature, forecasting. Some of the important things to note at the beginning in time
series analysis is, to check weather seasonality,( repetition of a pattern in certain
fixed period of time), trend, outliers, abrupt changes or long term cycle, constant
variance or not via plotting the data. Analysing the graph of the time series plot
has to not be void even if there are sophisticated ways for drawing the graph depicts
weather the aforementioned characters tics do exist or not in the time series.

3.2 Residual Analysis

A residual is the discrepancy between what is actually observed, say y and the value
predicted by the model, ŷ. It is an important tool to asses weather the selected
model is appropriate or not. It can be calculated by differencing these values. That
is,
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Residual = y − ŷ = µ.
In addition,

∑
µ = 0 and µ̄ = 0

Then with time series plot of the residuals, plot made by making the residual on
the y-axis and the independent variable on the x axis, checking the appropriateness
of the model can be examined. Adequate models shows a scatter of points on the
residual plots about zero with no systematic pattern, randomized around zero as
like shown in the Figure 3

Figure 3: Residual plots

3.3 Time Series Movement Classifications

1. Long Term Movements: This movement refers to the general tendency that
the time series graph is traversing over long period of time. Such movement
is called secular variation or secular trend. It can be shown by a trend
curve or trend line.

2. Cyclical Movements: Cyclical movements are long term oscillations or
swings about a trend curve or line. The cycles may or may not follow ex-
actly identical patterns after equal interval of time. Business cycles that shows
period of wealth, recession, depression and recovery and solar cycles can be
examples of this kind of movement.
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3. Seasonal Movements: This kind of movements refers to almost identical
patterns that a time series follow in corresponding times of successive years.
This happens as a result of recurring events happening annually, or with peri-
odicity over any interval of time.

4. Random Movements: This type of time series movement is spontaneous,
erratic motion of time series because of chance events.t short time. Figure 4
summarizes the four kind of time series movements explained above.

Figure 4: Types of time series movements

3.4 Time Series Analysis Approaches

To go more than giving a simple description about the time series, the time series
usually demands the introduction of statistical model. For it complies with require-
ments that are convenient, specifying the model is arbitrary. The error model and
stochastic model types are briefly described as follows

1. The Error Model: Here, the time series is defined by certain mathematical
function explicitly plus a random error as:

xt = f(t) + εt,

where,
E(εt) = 0; E(ε2t ) = δ2 < +∞; E(εtεs) = 0, ∀t 6= s.
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Such a model suits for phenomena occurring regularly.

The Stochastic model: In such a case, the time series is defined as a function of
stochastic variables:
xt = y(εt, εt−1, · · · ).

3.4.1 Traditional (Classical) Method of Time Series Analysis

The traditional way time series analysis is based on concept of error model explained
above and the series is assumed to be a combination of the components, unobserved
factors such as the trend, seasonality, irregular fluctuation. This approach is ba-
sically targets decomposing the time series in to its components either in additive
fashion or multiplicative type so that the function f(t) can be approximated.
Some of the advantages of the classical time series analysis approach includes, being
exploitable in spite of the series’s length, having an intuitive concept basement and
so on. However, it has also disadvantages such as not having unique decomposition
and having a stochastic term in the error only.

3.4.2 Modern Time Series Analysis Approach

Here, the series is assumed to be a definite realization of a stochastic process. The
approach tries to work over the process mechanism responsible for the generated
observation and build a model accordingly. The upcoming sections, section 5 and 6
describes one of the modern approach called the state space approach more specifi-
cally the dynamic linear model approach in detail.

3.5 Trend Analysis and its Importance

Trend can be loosely defined as investigation of changes in a system over a period
of time. The use of mathematical methods, however, needs an exact expression for
the scientific question of interest at hand using numerical terms. Thus, considering
a collection of values (data) for variables over time such as that describe the system
behaviour is required. The available data for analysis might be a sequence of a regu-
larly spaced observation of a single variable at equal intervals of time: Y1, Y2, · · · , Yt
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is the simplest case, and the trend could be defined as "the change in the mean level
in the series". Kendall and Ord (1990). Making trend analysis has many advantages.
These include, for explaining past behaviours in a process, such as quantifying the
change, to create understanding that drives the change, to assessing the possible
future picture via extrapolation, for environmental monitory policy efficiencies.

3.6 Classical Trend Estimation Methods

1. The Least Square Method(LSQ): Trend analysis by least square method
is a matter of finding an appropriate trend line or trend curve that best fits
the data by least square regression. A measure of the goodness of the fit of the
curve is being the sum of the square of the residual, the difference between the
data and the corresponding value determined from the curve, model value.

2. Moving Average Method: An appropriate order of moving average, one
can remove seasonal, cyclical and irregular patterns and left with trend move-
ment.This method has limitation in that the data at the beginning and end is
lost

3. The Free Hand Method:This method is simply fitting a trend line or curve
just by looking the graph.

4. The Semi-average Method: this method by dividing the data in to two
equal parts and taking their respective average so that a trend line can be
drawn through the two points found from averaging.

3.7 hmF2 Time Series Model

The F2 layer peak height (hmF2) time series can be fitted to a model that consists
a linear long-term trend and periodic variation. This multi-parameter hmF2 time
series model might be formulated as:

hmF2(t) = f(t) + g(t), (3)

where f(t) = X1 +X2t and

g(t) = X3F10.7(t) +X4Ap(t) +X5 cos(ωat) +X6 sin(ωat) +X7 cos(ωst).
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X1...Xs are the parameters to be fitted. The variables used are:

F10.7 Solar activity,

Ap Geomagnetic activity,

ωa Annual variation,

ωs Semi annual variation.

The parameters are estimated using least square(LSQ)technique. Figure ?? shows
its result.

Figure 5: hmF2 trend obtained by LSQ
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4 Time Series Analysis by State Space approach

4.1 Introduction

Classical time series analysis are mainly descriptive that tries to be means of summa-
rizing the behaviour of a series without necessarily wondering its underlying struc-
ture. On the contrary,time series analysis using state space modelling approach tries
to represent these structures explicitly. This modelling approach gives a unified for
handling a wide range time series analysis problems. The method is basically based
on an assumption that the development over time of the system under study is de-
termined by an unobserved series of vectors X1, ..., Xn, with which are associated a
series of observations Y1, ..., Yn. where the connection of Xt and the Yt is specified
by the state space model. Mainly the state space analysis is to infer the relevant
properties of the Xt from a knowledge of the observations X1, ..., Xn.

4.2 State Space Models

State-space models are models based on an assumption that an observation is noisy
function of certain unobservable variables that underlie the process called state. The
state might be seen as some physical system that give the output in engineering
sector or like a random auxiliary process that help to specify the probability law of
of the observation. To illustrate this, consider for example a time series Yt where,
t = 1, 2, 3.... and Yt is a random vector of the observable. specifying the probability
law of the process, to give the dependence structure among the variables of the Yt’s
is required in order to make inference on the time series specially for predicting Yt+1

when observations are given. Figure 6 summarizes the overall idea.

Figure 6: structure that shows the existing dependence among the the variables in

state-space model with Xt representing the states and Yt is the observations

State space models bases two assumptions. The first one is, theXt where t = 0, 1, 2...
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is a Markov chain, there is no dependency on history, what is observed previously.
That means Xt depends only on Xt−1 and therefore the process,(Xt, t = 0, 1, 2, · · · )
probability law can be specified by giving the initial density p0 for X0 and p(Xt |
Xt−1), transitionX1, · · · , Xn have joint conditional density

∏
f(Yt | Xt) for any

n ≥ 1

These assumption together with relevant densities specified enables to write the
random process probability law, (Xt, Yt), t = 0, 1, 2, · · · which create the possibility
of deducing the all the variable dependence among them.
For any n ≥ 1,

(X0, X1, · · · , Xn, Y1, · · · , Yn) ∼ p0(X0)
n∏
t=1

p(Xt, Yt | X0, X1, · · · , Xt−1, Y1, · · ·Yt−1)

= p0(X0)
n∏
t=1

f(Yt | X0 · · ·Xt, Y1, · · · , Yt−1)p(Xt, · · ·Xt−1, Y1, · · · , Yt−1)

= p0(X0)
n∏
t=1

f(Yt | Xt)p(Xt | Xt−1)

By integrating out all X variables from the joint density given above, one can get
the density Y1, · · · , Yn but generally the density Y1, · · · , Yn does not exist in a closed
form.

4.3 Dynamic Linear Model(DLM)

Dynamical linear model is a dynamic regression analysis based on state space, It is a
special case of general state space model, when the operators involved on the system
are linear. It is defined by two sets of equation called the observation equation and
the model equation as shown in Equation (4).

Yt = FtXt + vt, Vt ∼ N(0, Vt),

Xt = GtXt−1 + wt, Wt ∼ N(0,Wt).
(4)

.

where the first and the second respectively represent the observation equation and
model state equation. Ft and Gt are known matrices called observation operator
and model operator. In addition, Vt and wt represent observation and model error
and are independent between them and between time steps. That is, Wt ⊥ Vt and
Wt ⊥ Wk, for t 6= k.
Dynamic linear models can also be seen as hierarchical statistical model involving
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three levels, data, process, and parameter. In terms of statistical distributions,
the observations uncertainty p(yt | xt, θ) described by the observation equation, the
process uncertainty of the unknown states xt and their evolution given by the process
equations as p(xt | θ), and lastly, the uncertainty related to model parameters
p(θ). These conditional formulations provides efficient description of the system
and computational tools to estimate its components [5]. Many environmental and
time series problems can be solved by such formulation as it is flexible and general.
The upcoming sections will go through the details of the approach for a time series
problem.

4.4 Important DLM’s for Time Series Application

4.4.1 Local level model

Assume a series yt with a trend but no cyclical or seasonal variation. The series can
be represented as:

Yt = µt + εt. (5)

where µt is the underlying general level (signal) at time t and εt is the noise, random
variation. If an assumption is made to εt normally distributed and µt is random and
not changing significantly overtime instead of being deterministic, one can produce
a more specific model. This can be achieved by modelling µt using the random walk
concept. That is µt will be a scalar series governed by µt+1 = µt + ηt where η′ts
are independent and identically distributed random variable with a mean of zero
and variance δr2. This together with Equation (23) forms a model called local level
model also known as random walk plus noise model as shown in Equation (6.)

Yt = µt + εt, ∼ N(0, δε
2)

µt+1 = µt + ηt, ∼ N(0, δη
2)

(6)

where, εt’s and ηt’s are uncorrelated for t = 1, ..., n.

The model model is used to represent a series that has no trend or seasonal variations
but its level varies in time. In addition to this, even if this model looks simple, it
plays an important role in forming the basis for treating time series problems in
practice.
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4.4.2 Local Linear Trend Model

The local linear trend model can be obtained by extending the local level model in
such a way that there is a trend with a slope νt that both are allowed to change in
time. This model can be given by

Yt = µt + εt ∼ N(0, δζ
2)

µt+1 = µt + νt + ξt ∼ N(0, δ2ε)

νt+1 = νt + ζt ∼ N(0, δ2ε )

(7)

where the noises ξt, ζt and εt are mutually uncorrelated with mean all zero and
variances δ2ε , δ2ε and δζ2 respectively. In this model, using the respective disturbance
terms with variances greater than zero one can vary the slope and level to change
in time.

4.5 Structural Time Series Model

Structural time series model is a model in which the trend, seasonal and error
terms and other components, are modeled explicitly. Despite the classical time
series methods briefed in sections 3.2 that describe the general behaviour of the
time series without necessarily considering its underlying structure, this approach
provides a means to summarize the behaviour of series with its underlying structure
that attempt to represent the series explicitly.
The local level model is the simplest and important example of a structural time
series model is the local level model. The handling of trend component and seasonal
components in this regard is described as follows

4.5.1 Trend Component

Consider the local level model given in Equation (6). If one takes slope, νt generated
by the random walk in to account, another model called local linear trend can be
formulated as given in Equation (8).

µt+1 = µt + νt + ξt ∼ N(0, δ2ε),

νt+1 = νt + ζt ∼ N(0, δ2ε ),

yt = µt + εt ∼ N(0, δζ
2).

(8)
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where εt and ζt are mutually uncorrelated noises.

If ζt = ξt = 0 in the Equation 8, νt+1 = ν1 = ν,

⇒ νt+1 = νt = ν,

⇒ µt+1 = µt + ν, a linear trend. That is, Equation (8) is reducible to deterministic
linear trend plus noise model. It can also be written in matrix form as:

yt = (1 0)

(
µt
νt

)
+ εt, (9) µt+1

νt+1

 =

1 1

0 1

 µt

νt

+

 ξt

ζt

 .

4.5.2 Seasonal Component

Many environmental and economic time series shows seasonal variability. This sea-
sonal behaviour of the series can be modelled in different ways. One way to do so is
to use harmonic functions, to use trigonometric functions at the seasonal, λj = 2πj/s

where s is the number of cyclic components and j = 1, ..., [s/2]

This gives the seasonal effect of time t to be:

ψt =

s/2∑
j=1

(ψj cosλjt+ ψ?j sinλjt). (10)

The cycle can also be recursively built up to a model comprising stochastcity as: ψj,t

ψ?j,t

 =

 cosλj sinλj

− sinλj cosλj

 ψj,t−1

ψ?t−1

+

 wj,t

w?j,t

 . (11)

where wj,t and w?j,t, j = 1, ..., s/2 are uncorrelated white noises and

Gseas(j) =

 cos(λj) sin(λj)

− sin(λj) cos(λj)

 . (12)

Equation (12) defines the harmonic matrix which is the model matrix.
Once the model matrix is known, the observation matrix can be deduced from it
with the help of the model equation for the seasonality as follows:

Xt =

 ψj,t

ψ?j,t

 =

 cosλj sinλj

− sinλj cosλj

 ψj,t−1

ψ?t−1

+

 wj,t

w?j,t

 , (13)

=

 ψj cosλjt+ ψ?j sinλjtλj

−ψj sinλjt+ ψ?j cosλjt

+

 wj,t

w?j,t

 . (14)
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Now looking at Equation (11) gives the the seasonal observation matrix to be

Fseas(j) =
[
1 0

]
. (15)

Generally, any periodic behaviour of an observation can be captured by a periodic
function that can be written as a sum of sinusoidal waves at frequencies called
harmonics, which are an integer multiple of the annual cycle.

4.6 Fundamental Theories and Tools For State Space Analy-

sis

4.6.1 Dynamical State Estimation

The term ’state’ of a system refers to a collection of dynamical variables like velocity,
position, concentration and so on that can describe the system completely. Many
problems are adhered with the fact that the state of the system is not known and is
observable only partially. Dynamical state estimation is estimating these changing
states of a given system. The method is applied for many kinds of tasks including
weather prediction, target tracking, and inverse problems and more. The formula-
tion of state estimation is done as follows. Consider the model given by Equation (4)

At discrete time t, the state of a system, Xt is estimated using previous obser-
vation Y1:t = (Y1...Yt). The observation model F maps the state to the observation
and the state in turn evolves in time based on the evolution model G. In dynamical
state estimation, observation are taken in real time, the estimated states demands
an update by the measurements taken by applying Bayes’ formula sequentially. The
prior is obtained by moving the posterior of the model state from the previous time
steps according to the model G. This is prediction stage. It will then be updated
with the likelihood of the measurement, updating stage, to get the posterior that in
turn evolved to be used as the next time step prior. Continuing this in similar way
for the next time step realizes an on line estimation of states. This sequential esti-
mation method is known as filtering. Such methods targets estimating the marginal
distribution of the states P (Xt | Y1:t) given observations up to the current time.
Then the whole distribution of states will be moved with the dynamical model to
the next time step for the prediction step. Figure 7 shows the estimation procedures.
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Figure 7: Two iteration of state estimation at time, t and t− 1

4.6.2 Kalman Filter

Kalman filter is considered as an optimal solution to many data prediction and
tracking analysis. The objective of filtering is mainly to compute the state vectors
Xt for time steps t = 1, 2, .... using Baye’s rule sequentially so that the prediction
from the previous time step is used as prior which is updated with new measure-
ments that become available. That is, if Xest

t−1 is a state with covariance matrix Cest
t−1

at time t − 1, he prior center point for the next time step t is given by the model
the model prediction, Xp

t = GtX
est
t−1.

Using the assumption that the state vector and model error are statistically inde-
pendent, the covariance of the prediction (prior), Ct is.

Cp
t = cov(GtX

est
t−1 + wpt ). (16)

Applying the covariance property, cov(AX) = cov(A)cov(x)AT results in

Cp
t = Gtcov(Xest

t−1)G
T
t + covwpt ,

GT
t C

est
t−1Gt = Vt,

Where, covwpt = Vt .
This Gaussian with mean,Xp

t and covariance Cp
t is used as a prior that is to be

updated with new measurement vector Yt..
After non trivial matrix computation the usual Kalman filter formulas are given as;

Kt = Cp
t F

T
t (FtC

p
t F

T
t +Rt)

−1, (17)

Xest
t = Xp

t +Kt(Yt − FtXp
t ), (18)

Cest
t = Cp

t −KtGtC
P
t . (19)

where, Kt is called the Kalman gain matrix.
The algorithm used for implementing Kalman filter can be summarized as follows

24



1. Predict the state estimate Xest
t−1 and its covariance matrix Cest

t−1 in the time:

• Compute Xp
t = GtX

est
t−1.

• Compute Cp
t = GtC

est
t−1 + Vt.

2. Updating the prior with observation Yt:

• Computing the Kalman gain.
Kt =Cp

t F
T
t (FtC

p
t F

T
t +Rt)

−1.

• Compute the state estimate.
Xest
t = Xp

t +Gt(Yt − FtXp
t ).

• Compute the covariance estimate.
Cest
t = Cp

t −KtGtC
P
t .

3. Repeating the steps for next time step.

Figure 8 summarizes the kalman filter algorithm diagrammatically as shown below.

Figure 8: Algorithm of Kalman filter

4.7 State and Parameter Estimation

If xt state of the system for t = 1, ..., n, yt are the observations and θ is the model
parameter contains auxiliary parameters needed to define the model, Wt is observa-
tion errors and Vt and the system matrices Gt and Ft. For dynamic linear models
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we have efficient and well founded computational tools for all the relevant statistical
distributions.

• p(xt+1 | xt, y1:t, θ) by Kalman filter

• p(xt | y1:t, θ) by Kalman filter

• p(xt | y1:n, θ)by Kalman smoother

• p(x1:n | y1:n, θ) by simulation smoother

• p(y1:t | θ) by Kalman filter likelihood

• p(x1:n,θ | y1:n) by MCMC

• p(x1:n | y1:n) by MCMC

4.8 Recursive Kalman Formula

As mentioned earlier, the state of a system is which is the basic interest of state
space models is not observable directly. Therefore, it needs to be estimated through
use of an observation. The kalman filter is the main mathematical tool to do this
calculation. Prediction, filtering and smoothing are the the problems involved, By
prediction it means, estimating Xt from yt−1, yt−2, · · · whereas filtering is estimat-
ing Xt from yt, yt−1, · · · ) and smoothing is the estimation of Xt from yt−1, yt−2, · · ·
forn > t).
The kalman recursive formulas for Kalman filter and smoother for estimating the
marginal distributions of DLM states given the observations are given below. On
the assumption that the initial distributions at t = 1 are known. First Kalman filter
forward recursion for the predicted states is done
p(xt+1 | xt, y1:t, θ) = N(x̂t+1, Ĉt+1), t = 1, 2, ..., n− 1.

. vt = yt − Ftx̂t prediction error.

. Cy
t = FtĈtFT + Vt prediction error covariance.

. Kt = GtFT Ĉ
y−1
T Kalman gain.

. x̂t+1 = Gx̂t +Ktvt next state prior mean.
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. Ĉt+1 = GtĈt(Gt −KtFt)
T +W next state prior covariance.

Then, apply Kalman smoother backward recursion to obtain the smoothed states.
p(xt | y1:n, θ) = N(x̂t, Ĉt), t = 1, 2, ..., n− 1

. L = Gt −KtFt

. rt = F T
t C

y−1
t vt + LT rt+1

. N = F T
t C

y−1
t Ft + LTNL

. x̃t = x̂t + Ĉr , smoothed state mean.

. Ĉt = Ĉt − ĈtNĈt , smoothed state covariance.

4.9 Simulation Smoother

The Kalman smoother gives a Gaussian marginal distribution p(xt | y1:n, θ) for ev-
ery t. In the study of dynamic features of the system such as the trend the joint
distribution which span the whole time, p(xt:n | y1:n, θ) and this high dimensional dis-
tribution is neither Gaussian nor closed form representation exist. As usual, drawing
realization from the distribution is more useful than the analytical expression. To do
so, the system equation can be used to recursively produce the realization of states
x1:n and observations,y1:n But the generated states is independent of the original ob-
servation. The residual process of generated and, smoothed state is independent of
the x1:n and y1:n. This means that adding these residual on the smoothed state x1:n
can brought new realization which is conditional on y1:n, the original observations.
Therefore, to produce x∗1:n ∼ p(x1:n | y1:n, θ),

1. get x̃1:n and ỹ1:n by sampling from the system equations.

2. Smooth ỹ1:n to get ˜̃y1:n.

3. Add the residuals to the original smoothed. state,?x1:n = x̃1:n −˜̃x1:n + x1:n.

In trend trend analysis this simulation smoother is used as a part of more general
simulation algorithm that will sample from the joint posterior distribution p(x1:n, θ |
y1:n), and by marginalization argument also from p(x1:n | y1:n) where the uncertainty
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in θ has been integrated out. A better description for sections (6.8), (6.9) and (6.10)
is found at [2]

4.10 The Maximum Likelihood and Bayesian Model Fitting

Methods

Besides to the least square approach where finding model parameter values in a sense
that give good prediction of data at hand, the maximum likelihood and Bayesian
methods are also other mostly used alternatives to do statistical model fitting.
In case of likelihood estimation, it is the value of the parameter estimates for which
the observation probability density is maximized. This has some sense of intuition
in that the values found agrees more than others and of course is known for its
optimality [10], page 79.
For example, consider the linear trend given by:

yt = φ0 + φ1xt + εt.

where t = 1, · · · , n and xt = t

Let the observation yt is from a normal distribution of variance σ2 and mean given
as µt = φ0 + φ1xt, xt = t,
Now, the probability density function of the distribution gives the density density
of the observation as:

ft(yt;φ, σ
2) =

1

σ
√

2π
exp[−(yt − µt)2

2σ2
].

In this case φ = (φ1, φ2)
′ is the regression coefficient vector.

For the observation are all assumed to be independent, the product of individual
marginal density yield joint density:

f(y;φ, σ2) =
n∏
t=1

ft(yt;φ, σ
2) =

n∏
t=1

(2πσ2)2exp[− 1

2σ2

n∑
t=1

(yt − µt)2].

(20)

The likelihood function for the parameters can be obtained from regarding the joint
density as a function of φ and σ2 and the maximum likelihood estimates are values of
the parameter maximizing 20. Log-likelihood function can be used for these values
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are able to maximize its logarithm.

L(φ, σ2; y) = log f(y;φ, σ2) =
n∑
t=1

log ft(yt;φ, σ
2) = −n

2
log 2πσ2 − 1

2σ2

n∑
t=1

(yt − µt)2.

Maximizing is done by differentiating and equating to zero. Thus, for the variance
for example it would be:

∂L

∂σ2
= − n

2σ2
+

1

2σ4

n∑
t=1

(yt − µt)2 = 0. (21)

This results, σ2 =
1

n

∑n
t=1 (yt − µt)2.

It is important to note that, this estimate is different from the common unbiased
least square estimate in that n − k is the divisor instead of n where K here is the
number of elements involving in φ. However, the difference between them will be
smaller for T is considerably large.
Generally, the maximum likelihood estimation targets learning about parameter val-
ues of the model which are taken as unknown and fixed using the data. In Bayesian
estimation on the contrary, the data is used to update the foreknowledge about the
parameters. That is, because either from understanding the system under study
or past experience of similar data one might have some idea about the parameter
before the actual observation, y and the Bayesian method needs this information in
the form of joint probability distribution for the parameters known as prior distri-
bution. The density of prior distribution is mostly denoted as π(φ) whenever the
vector φ contains the parameters. Such a way of handling φ in probabilistic sense
helps to represent the uncertainty of the analyst and treatment of the parameters
as fixed quantities.
After observation for y is made, it then be explained by the joint conditional prob-
ability distribution of φ given Y = y known as posterior distribution as π(φ | y).
Using Bayes’ theorem, π(φ | y can be written as:

π(φ | y) =
f(y | φ)π(φ)

f(y)
.

where, f(y | φ) is the density of y given φ. In other words, since
f(y | φ) = L(φ | y) it is the likelihood of φ and f(y) is unconditional density of y
that does not change with φ. This implies that:
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π(φ | y) ∝ L(φ | y)π(φ),

posterior ∝ Likelihood × prior.
(22)

The posterior distribution summarizes the available information about φ and the
relationship, Equation (22) is known to be at heart of all Bayesian inference.

4.11 Markov Chain Monte Carlo (MCMC)

Parameter estimation can be done in different methods ranging from those which
threats parameters as some constant value estimated based on measurement to the
range where the parameter itself is seen as a random variable as in the case of
Bayesian approach in which its goal is finding the posterior distribution π(θ | y)

of the parameters which give the probability density for value of the parameters
given the measurements, y and θ is the parameter. The MCMC in this regard,
targets the generation of sequence of random samples θ1, θ2, · · · θN sequentially that
its distribution approaches the the posterior distribution asymptotically as the sam-
ple size increases. Here, sampling from the posterior distribution is done not from
the posterior density directly and the method is purely based on generation of the
random numbers. The term ’Monte carlo’ is used to elite this. In addition, the
samples generated at each point only depends on the previous point and not on the
history. These samples produce a chain called Markov Chain which is used to show
the resulting sample distribution approaches the target, the posterior. The MCMC
methods is a powerful mathematical tool applied in many fields. For example it can
be used in DLM’s that contain unknown parameters with prior distribution to get
posterior distribution.

4.12 Adaptive MCMC

The adaptive MCMC computation targets tuning proposal during the run while
the sampling proceeds through use of the information of previously sampled points.
This can be done by computing the empirical covariance matrix of the points al-
ready sampled and make it proposal covariance matrix. The algorithm gives correct
result if the adaptation is bases the increasing history of the chain so that the
number of previous points used in the computation of empirical covariance matrix
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increases constantly during the sampling. These approach plays has minimized the
basic burden of MCMC computation of finding a proposal distribution matching
target distribution. The adaptive metropolis algorithm, delayed rejection adaptive
metropolis algorithm are the versions of the adaptive MCMC. The former will here
also be briefly explained and applied in this diploma work to estimate model pa-
rameters.

Among the different Class of MCMC algorithms, the Metropolis algorithm and from
the adaptive types , the adaptive metropolis MCMC algoritms will be briefly dis-
cussed here.

4.12.1 Metropolis Algorithm

The metropolis algorithm is a simple, widely applied and influential MCMC al-
gorithm. The working principle is based accept and reject technique of proposed
values generated for the candidate parameter. The algorithm assumes a symmetric
proposal distribution, equal probability density of traversing from current point to
proposed point or the reverse, do exist. That is,

q(θ̂ | θ) = q(θ | θ̂).
The Metropolis algorithm can be given as follows:

First Choose a point to start and initialize

Second Based on the the previous point in the chain, select new candidate hat θ
from a suitable proposal distribution,q(. | θn)

Third Accept the candidate with probability

α(θn, θ̂) = min
(

1,
π(θ̂)

π(θn)

)
.

Repeat the previous point in the chain if rejected.

Forth Move on to step 2.
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4.12.2 Adaptive Metropolis

The Adaptive metropolis algorithm, Haario et al. 2001 is basically does updating
a the proposal distribution during a run using the full knowledge collected so far.
That is, tuning the proposal distribution with the based on process history. This
idea plays a great advantage in alleviating the usual difficulty of making a right
choice of proposal distribution for target density is unknown which inturn deter-
mines the MCMC performance.
In adaptive metropolis algorithm, the empirical covariance matrix is computed from
the history and the proposal distribution is assumed to be Gaussian with the current
point at the center and making the adaptation is possible by setting
Cn=SdCov(θ0, · · · , θn−1) + εId, where
Cn is next candidate of the proposal distribution.
Sd is scaling factor
θ0, · · · , θn−1, sampled points, history and
ε is a regularization parameter to control the positive definiteness of the proposal
covariance matrix.
Based on prior knowledge, a random strictly positive definite covariance C0 is re-
quired to begin the adaptation and the length of the initial non adaptation period
so called burn-in is defined by the time index n0 > 0. That is,

Cn =

 C0 if n ≥ n0

SdCov(θ0, · · · , θn−1) if n > n0

.

Approximate error analysis obtained from model linearization can be a good start
for the initial proposal covariance matrix, Cn= Sdσ

2(JTJ), scaled Jacobian or de-
pending on the case,other the choice to specify initial proposal covariance matrix
be made. Details of this adaptive Metropolis algorithm can be found [4, 6] and its
pseudo code given below briefs the algorithm.

First
Set length of the chain and starting θ1 and C1.

Second For t = 1, 2, · · ·N ,

1. do metropolis step by using the proposal N(θt, Ct).

2. update Ct+1 = Cov(θ1, · · · , θt).
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4.13 Analysing Trends

As described in previous sections, trend is the change in distributional properties
that generates the observation. It can be the change in the mean of the process.
There are many ways to get the trend. Fitting a smoother, like moving average
one method.However, most of them has no statistical ways to estimate smoothness
parameters or the uncertainty adhered with it. Trend analysis with dynamic linear
model on the contrary, can solve the problem. In this method, the slowly varying
background of the system can be modelled using random walk concept with variance
parameter that controls time wise smoothness of the level and is variance parameter
is to be estimated. The data could give information about how smooth the trend
component is. In some cases prior information can be used for deciding the time
scale of changes that one want to extract. DLM models can also provide qualitative
prior information in the form of the model equations and quantitative information
by prior distributions on variance parameters.

If xlevel,t is the model state that defines the background level of the process. Es-
timating the whole state, as either p(x1:n | y1:n,θ̂), where some estimates of auxil-
iary parameters θ is plugged in using maximum likelihood or by p(x1:n | y1:n) =∫
p(x1:n, θ | y1:n)dθ where the uncertainty of auxiliary parameters θ are integrated

out,Bayesian approach by MCMC. Some more explanations and examples can be
found at [2]

4.14 Combining the Model

A more general models can be obtained or formed by combing a few basic models.
These models might stand for describing some of the nature of the observation
process like periodic component,trend, and more that produce the actual observation
when they are added.
This notion tells that a more comprehensive dlm model can be obtained by adding
the individual models through defining the state of the system and the matrices
involved.
To illustrate this consider Equation (4) once again with k independent DLM’s for
m dimensional observation which results:
Ft = (F

(1)
t , . . . , F k

t ),
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Gt =


G

(1)
t

. . .

G
(k)
t

 , Wt =


W

(1)
t

. . .

W
(k)
t

 ,

m′0 =
[
m1

0 . . . mk
0

]
, C0 =


C

(1)
0

. . .

C
(k)
0

 .

where Gt and Wt are block diagonal matrices.

4.15 Checking The Model

Before making any kind of analysis of the result of a given model, its assumption
needs to be checked and this done in mostly bases on the measure of the departure
between the model values and the data, that is lying on the residual process and is
applied in many statistical models. There are different methods to carry out this
diagnosis among these methods, the empirical autocorrlation function of the the
residual and the quantile-quantile plot (QQ plot) are very important.

4.15.1 Checking with Empirical Auto-correlation Function

With the autocorrelation function, one can see the deviation from uncorrelatedness.
A correlogram, time lag plot of sample autocorrlations, of the residual should closely
or more behave like for white noise sequence correlogram.

4.15.2 Checking with QQ plots

For a uni-variate observations the standardized innovations, forecast errors can be
defined as independent identically distributed zero-mean normal random variables
sequence, that is as sequence of Gaussian white noise. Checking model assumption
can in turn be done using the idea that if the model is adequate, the sequence
obtained from the data should behave like a standard normal distribution. The QQ
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plot is a statistical method to test this normality. It is a plot of expected values
against the ordered residuals and if the points lie on straight line, then one can
assume normality is achieved. Figure 9 shown below illustrates a normal QQ plot.
Section 2.9 of [8] presents the details of the treatment in case of DLM.

Figure 9: Normal QQ plot
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5 DLM APPLICATION FOR IONOSOND TREND

ANALYSIS

So far, the basics of dynamic linear model were discussed. In this section, the model
will be applied for practical application for the purpose of ionosonde trend analysis.
The details of the modeling procedures will be presented as follows.
As presented in earlier section, a dynamic linear model can be described by set
of equations as given in Equation (4). The Ionosonde time series model can be
constructed from considering local level and trend, seasonal components and from
proxy time series in additive fashion as:

yt = µt + γt + φtxt + εt. (23)

where µt, γt, φt, xt and εt are the level, seasonal components, regression coefficients,
proxy time series values and the error term respectively. The state Xt in this case
can be written as:
Xt=

(
µt, αt, ψt,1, ψ

?
t,1, ψt,2, ψ

?
t,2, φt)

T

5.1 Modelling the Background level

The background level can be modeled using the concept of random walk by local
level and local linear trend with two hidden states, the mean level µt and successive
level changes in time, αt which can be written as xt = [µt, αt]

T . To let changes
happen to the trend and level and observation, the addition of stochastic term to
the respective parts is required as shown in the Equations (24).

yt = µt + εobs εobs ∼ N(0, σ2
obs),

µt = µt−1 + αt + εlevel εlevel ∼ N(0, σ2
level),

αt = αt−1 + εtrend εtrend ∼ N(0, σ2
trend).

(24)

In state space form these equations will be given as:

Gtrend =

1 1

0 1

 , Ftrend =
[
1 0

]
, Wtrend =

δ2level 0

0 δ2level


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5.2 Modelling Seasonality

Like most atmospheric time series do, ionosonde time series shows seasonal variations
and this variations can be modelled by using cycles of annual and semi annual
through use of harmonic functions. Just as described in subsection[3.6.2], if s is the
number of cyclic components, s/2 harmonics will there be in the seasonal model,
k = 1, ...k/2 and In order to represent the annual and semiannual variations, two
harmonics k= 1 and k=2 would be enough to explain the seasonality. For s = 12,
monthly data, the model operator and observation matrices of the seasonality are
given by:

Gseas(k) =

 cos(π/6) sin(π/6)

− sin(π/6) cos(π/6)

 (25)

Fseas = (1 0)

Two state variables for each harmonics needs to be included to represent its state
and in total four state variables are required and the the respective operators for the
observation and process operator of the seasonality can be rewritten as partitioned
form as:

Gseas =


cos(π/6) sin(π/6) 0 0

− sin(π/6) cos(π/6) 0 0

0 0 cos(π/3) sin(π/3)

0 0 − sin(π/3) cos(π/3)


,

Fseas = (1 0 1 0)

5.3 Solar Proxy

If F10.7(t) denotes the value of the solar proxy variable at time t. A proxy covariate
for the solar proxy can be defined as:
Gproxy = [1], Fproxy(t) = [F10.7(t)], andWproxy = [σ2

proxy]
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5.4 Forming the combined model

Finally the aforementioned component models are combined as diagonal block ma-
trices.

G =


Gtrend 0 0

0 Gseas 0

0 0 Gproxy

 =



1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 cos(π/6) sin(π/6) 0 0 0

0 0 − sin(π/6) cos(π/6) 0 0 0

0 0 0 0 cos(π/3) sin(π/3) 0

0 0 0 0 sin(π/3) cos(π/3) 0

0 0 0 0 0 0 1


Ft = (Ftrend Fseas Fprox(t))

=
(

1 0 1 0 1 0 F10.7(t)
)

W =


Wtrend 0 0

0 Wseas 0

0 0 Wproxy



5.5 Computational Procedure

The approach of the computation is based on Bayesian statistics and starts from
space equations and the elements involving, the model states Xt, model matrices Gt,
observation operator matrix, Ft, model error covariance matrixWt and covariance of
observation error Vt. Here the target is the joint posterior uncertainty distribution
of the unknown parameters in the system matrices that define it and the state, X1:N

and given the observation y1:N . The static parameters involving is to be collected
as a vector θ = [σtrend, σseas, σproxy].

The initial step is to assume that at time t=0, the distribution is known and with
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Kalman filter forward recursion the distribution of the state vector Xt is calcu-
lated when observation up to time t is given, p(xt | y1:t, θ) = N(x̄t, C̄t) by first
calculating it as prior, mean and covariance of one step prediction of the states
p(Xt | Xt−1, y1:t−1, θ) = N(X̂t, Ĉt) and predicted covariance as follows:

. Prior mean for Xt, as X̂t = Gt
¯Xt−1 and calculate

. Prior covariance for Xt, Ĉt = GtC̄t−1(GtGt)
T +Wt,

. Covariance matrix for predicted yt, as Cy,t = FtĈtF
T + Vt,

The posterior state and its covariance matrix are computed as follows:

. The prediction residual as vt = yt − Ftx̂t and

. Posterior mean for Xt, as X̄t = X̂t + KtX̂t, where Kt = GtFT Ĉ
−1
y,t is the Kalman

gain.

. Posterior covariance for Xt, as C̄t = Ĉt −KtFtĈt.

By assigning initial values for x̄t and C̄0, the iteration of these equation is then
carried out for t = 1, · · · , N .
The next step is to use the kalman smoother backward recursion to get smoothed
state for t = N,N − 1, · · · , 1 by using the generated matrices from the forward
recursion. Here Lt, rt and Nt are used as auxiliary variables with zero assigned to
rN+1 and Nt+1. The computation is as follows:

. Lt = Gt −GtKtFt, rt = F T
t Ĉ

−1
y,t vt = LTt rt+1Lt and Nt = F T

t Ĉ
−1
y,t Ft + LTt Nt+1Lt.

. The smoothed state of Xt is calculated as X̃t = X̂t+ Ĉtrt and the smoothed covariance
matrix as C̃t = Ĉt − ĈtNtĈt

Therefore the the distribution of the state for each time t is:
p(xt | y1:N , θ) = N(X̃t, C̃t).

As a third step, the full joint distribution of all the states given all observations and
parameters, p(x1:N | y1:N , θ) to study trends. For this distribution has no closed
form, simulation of its realization with simulation smoother needs to be done. Even
if it is possible to recursively produce realizations using system state space equations
directly but it will be independent of the original observation. Instead there is a way
to produce samples from p(x1:N | y1:N , θ) by first sample from state space equations
to get to get the states and observation via sampling from state space equation then
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to use kalman smoother with new observation and get smoothed states and finally
by adding the residuals of the states on the original smoothed states as described
section 4.9.
The next step is to estimate the parameters, θ that were assumed to be fixed so far.
To do so, the the distribution marginal likelihood function p(y1:N | θ) is required.
This likelihoods can be obtained as a by-product kalman filter calculation for each
fixed θ. The likelihood function is evaluated sequentially as product of time wise
marginal likelihood using the Markov property of the state space equation. For
linear Gaussian models, the likelihood is given as:

−2 log p(y1:N | θ) = constant +
n∑
t=1

[(yt − FtX̂t)
T Ĉ−1y,t (yt − FtX̂t + log(| Ĉy,t |)].

Although this likelihood could have been used to estimate the parameter by maxi-
mum likelihood method, MCMC approach has been preferred in order to integrated
out the uncertainty in the parameter. This is done by using the likelihood function
and setting the prior densities for each element of the parameter, θ to get the pos-
terior. For this task, efficient adaptive MCMC [4] was employed.

Finally, combining MCMC outputs and simulation smoother in order to produce
samples from the joint posterior distribution P (x1:N , θ | y1:N) and from marginal
distribution of the state, P (x1:N | y1:N) in which uncertainty in the parameter θ
was taken in to account.Using this, distribution Ionsonde measurement trend was
performed.

5.6 Statistics of the Computation

Computing the aforementioned procedures with a matlab code results the following
statistics. MCMC analysis of the model parameter for (σtrend, σseas, σproxy] are given
in table 1.

Table 1: MCMC result for model parameters.

σtrend σseas σproxy

0.0012 1.1646 2.3787
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The MCMC chain plot of the five thousand simulation steps for the model parame-
ters is also given in Figure 10. It should indicates the parameters are identified well
by the data.

Figure 10: MCMC chain plot for the model parameters

5.7 Description of the DLM Toolbox Used

For dynamic linear model calculations, MATLAB dlm toolbox available at [2] was
used. The main components of the toolbox and the way it was used in Ionosonde
trend measurement will be discussed respectively as follows. The DLM toolbox is
composed of many functions. However, the very basic ones includes, dlmsmo, dlmfit,
dlmsmosam, dlmgensys and plotting funcctions. The function ’dlmsmo’ is the one
of main function to do dlm calculation. It takes defined Dlm model, the observa-
tions, observation operators matrix, model operator matrix and the uncertainty of
the initial states as an input and gives the estimates of the states by kalman filter
and kalman smoother and sample of state and observation.

The function ’dlmfit’ on the other hand plays the role of estimation of some of model
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parameters and building the system matrices (model structures) via use of the an-
other function called ’dlmgensys’. It does also optimization or MCMC sampling
analysis tasks for parameters in the diagonal of model error matrix optionally. This
function uses the function ’dlmsmo’ for fitting univariate time series DLM model to
observations. It uses the observation and its uncertainties as a standard deviation,
square root of the diagonal of the model error, the the model states initial values and
covariance matrix for its uncertainty. In return, it gives the output of the function
’dlmsmo’.

Another basic function found in the DLM tool box is the ’dlmsmosam’. It does
sampling task, samples from the joint distribution of the states at at all times when
given all the observations.

The Plotting functions such as ’dlmplotfit’ and ’dlmplotdiag’ are used to plot the
observations with the model level component estimated and for plot of residual di-
agnostics for the DLM fit obtained by ’dlmfit’ or ’dlmsmo’ respectively.

In the actual practice of the toolbox for ionosonde trend measurement work, some
utility functions of the toolbox for scaling data and removing data rows for unob-
served data points as in the case of proxy data purpose were used. With the option
available in the function ’dlmfit’, the structure of the DLM was defined. This in-
cludes, deciding the number of seasonal components involved, in this case two (
annual and semiannual), the diagonal model error matrix involving variance param-
eters to be estimated by ’dlmfit’. This can be done with ’winds’ option that map
diagonal indexes to parameters. After feeding the required initial values such as for
the model states and error covariance choose. Then with dlmfit, the model is fitted
with dlmfit. As an output the estimated model states and model error matrix were
obtained.

Finally using the plotting functions available in the toolbox, plotfit and dlmplot-
diag, the fitted trend over an Ionosonde measurement data with 95% confidence
limit, and model residual autocorrelation and normal probability plots were pro-
duced respectively.
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6 RESULT AND DISCUSSION

As previously mentioned in earlier section, the main target of this diploma work is
to make trend analysis over an Ionosonde data using dynamic linear model and also
to study the effect of solar activity on the the peak height of the ionosphere, hmF2
of the ionosphere. This section strives to present and discuss the results foun.
As outlined in the introductory section of time series analysis, state space approach
of time series analysis can explain the underlying structures of the time series ex-
plicitly. The trend analysis made for F2 layer peak height shown in Figure (11)
below for example is presented by removing the some effects such as the solar effect
contributing to the data. The result found by defining trend as a change in the

Figure 11: Trend obtained through dlm approach fitted over Ionosonde data

background level could be evident to think that allowing natural systems to evolve
the way it goes in time preferable than the one made by approximating the trend
with linear trend equation as the shown in Figure (5). Furthermore, in many cases,
phenomenons occurring in some physical system could not be revealed by assuming
some kind of increase or decrease in monotonic sense. Unlike this, dlm trend analysis
can allows the smooth change of trend curve. This would help to make extensive
studies to answer relevant questions about the physical system under study. With
this regard, the peak height of F2 layer, shows a considerable decrease in the given
observation period. Furthermore, a rapid decrease of it is observed in late years,
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1990 - 2010. In addition, it is clearly visible that the trend is time varying. Gener-
ally, this result is in agreement with atmospheric model prediction and theories in
that the increase of greenhouse gases such as methane and carbon dioxide has an
effect of cooling the thermosphere and therefore lowers peak height of F2 layer. A
detailed explanatory paper about the decrease of peak height of F2 layer made by
Thomas Ulich and Esa Turunen at sodankyla [13] and [16].

In order to examine the connection between the F2 layer peak height and the solar
activity, they are plotted together as shown in Figure 12. As explained in section
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Figure 12: Top to down the panel, time series plot of the hmF2 peak height versus

solar flux and scatter plot of solar radio flux together with hmF2

2.1, among the different ways of representing solar activity, here, solar radio flux at
10.7cm wavelength was used to do so. The time series plot of hmF2 indicates the
solar variation of the peak height of the F2 layer during all the observation period.
Both quantities traverse inphase. In addition, the scatter plot reveals the presence
of positive correlation between F2 layer peak height and solar activity. quantities
more or less positive linear correlation seems to be inferred. Generally speaking, it
is found that, solar activity and the height of solar activity and the peak height of
the F2 layer are positively correlated. And it seems this correlation is much more
stronger than one think of it as just a simple coincidence.
The time series of the seasonal effect, the solar proxy and its coefficient are also
plotted as shown in Figure 13. It clearly shows that, the coefficient of the solar
proxy and the amplitude of the seasonal has strong dynamic property and thus
dynamic regression indeed is needed for better fitting of the model (23)
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Figure 13: Top to down the panel respectively presents the value of solar proxy, the

value of solar proxy coefficient and the seasonal effect against the observation period

Finally, to check how well the model employed works, model checking was done. For
this purpose, the autocorrelation plot of the residuals, the QQ plot are used and the
results obtained are given in Figure 14.

Figure 14: Top to down the panel Estimated autocorrelation function of DLM resid-

uals, the QQ plot of residuals

.
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As detailed in the top panel of figure 14, plot of estimated autocorrelation, the auto-
correlation function is generally inside the confidence interval except at lag 15 and
very few lags at the boundary and this seems good result for it conforms that the
residuals. This suggests that the model applied is reasonably good. The bottom
panel plot is the qq plot and as described in section 4.15.2, this statistical method
is used to test normality. The plots shows the quantile more or less lie on the line
which imply the achievement of the normality condition.
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7 CONCLUSION

In summary, this diploma work tried to employ one of the modern approach of
time series analysis called the state space approach, more specifically dynamic linear
model. The method is applied for trend analysis task over an Ionsonde measurement
data. Based on the analysed trend found, one can conclude that the peak height of
the F2 layer shows a decrease during the observation period and this is in harmony
with what is predicted by atmospheric models in that the increase of green house
gases has an effect of coolling the atmosphere and lower peak height of the F2 layer.
In addition to this, it is found that solar activity and the peak height of the F2 layer
shows a strong correlation. Besides, as classical trend estimation method for hmF2
time series gives a monotonic decrease of the peak height, the dynamic linear model
approach has resulted in smoothly varying trend that helps to make further analysis
and diagnostics about the physical problem in point instead. On top of this, the
different components of the series can be analysed easily as opposed to the classical
trend estimation approaches.
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