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Active magnetic bearing is a type of bearing which uses magnetic field to levitate the rotor. 

These bearings require continuous control of the currents in electromagnets and data from 

position of the rotor and the measured current from electromagnets. Because of this different 

identification methods can be implemented with no additional hardware.  

 

In this thesis the focus was to implement and test identification methods for active magnetic 

bearing system and to update the rotor model. Magnetic center calibration is a method used to 

locate the magnetic center of the rotor. Rotor model identification is an identification method 

used to identify the rotor model. Rotor model update is a method used to update the rotor 

model based on identification data. These methods were implemented and tested with a real 

machine where rotor was levitated with active magnetic bearings and the functionality of the 

methods was ensured. Methods were developed with further extension in mind and also with 

the possibility to apply them for different machines with ease. 
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Aktiivinen magneettilaakeri on laakerityyppi, jossa magneettikenttä leijuttaa roottoria. Nämä 

laakerit vaativat jatkuvaa sähkömagneettien virransäätöä ja tietoa roottorin paikasta ja 

mitattuja virtoja sähkömagneeteista. Tämän takia erilaisia identifiointimenetelmiä voidaan 

toteuttaa pelkästään magneettilaakeria hyödyntäen. 

 

Tässä työssä painopisteenä oli implementoida ja testata erilaisia identifiointimenetelmiä 

aktiiviseen magneettilaakerijärjestelmään ja päivittää roottorin mallia. Magneettisen 

keskipisteen kalibrointi on menetelmä, jolla roottorin magneettinen keskipiste etsitään. 

Roottorin mallin identifiointi on identifiointimenetelmä, jolla identifioidaan roottorin malli. 

Roottorin mallin päivittäminen on menetelmä, jolla roottorin mallia päivitetään identifioinnin 

perusteella. Nämä menetelmät toteutettiin ja testattiin oikealla moottorilla, jossa roottoria 

leijutettiin aktiivisilla magneettilaakereilla ja menetelmien toimivuus varmistettiin. 

Menetelmät suunniteltiin mahdolliset jatkokehitysmahdollisuudet huomioon ottaen ja lisäksi 

suunnittelussa otettiin huomioon erilaisten moottorien käyttäminen mahdollisimman 

vaivattomasti. 
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NOMENCLATURE 

Symbols 

𝑎𝑗   polynomial coefficient of denominator 

𝐴   sine wave amplitude 

𝐴g    stator pole face area 

𝐴min   minimum sine wave amplitude value in identification 

𝐴max   maximum sine wave amplitude value in identification 

𝐴(j𝑓𝑘, 𝜃)  identifiable transfer function denominator 

𝑏   equivalent iron flux path length 

𝑏𝑗   polynomial coefficient of numerator 

𝑏x, 𝑏y   error function dimension selection 

B(𝒆)   black box function, error function 

𝐵(j𝑓𝑘, 𝜃)  identifiable transfer function numerator 

𝛽x   rotation around x-axis 

𝛽y   rotation around y-axis 

C(s)   controller transfer function 

𝑑𝑖𝑗,𝑘
a,E

   anti-resonance damping ratio error 
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𝑑𝑖𝑗,𝑘
r,E

   resonance damping ratio error 

𝑫    damping matrix 

𝑒𝑝   design variable, elasticity value of the p:th element 

e   design variable vector used in the rotor model update 

𝑒𝑟𝑟𝑑   damping ratio error function 

𝑒𝑟𝑟f   frequency error function 

𝑒𝑟𝑟tot   total error function 

𝐸(j𝑓𝑘)   error between identifiable transfer function and identification data 

𝐸LS(j𝑓𝑘)  error in least squares approach    

E   excitation at controller input 

𝑬u   excitation at controller output 

f   sine wave frequency 

𝑓𝑘   frequency in hertz at k:th index 

𝑓x    force acting on x-direction 

𝑓y    force acting on y-direction 

𝑓𝑖𝑗,𝑘
a,E

   anti-resonance frequency error 

𝑓𝑖𝑗,𝑘
r,E

   resonance frequency error 

𝐹   force 

F    force vector 

𝑔0    nominal airgap 

𝑔lower    airgap in lower coil 
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𝑔upper    airgap in upper coil  

𝐺(𝑠)   general transfer function 

𝐺ETFE(𝑓k)  empirical transfer function estimation function 

𝐺̂(j𝑓𝑘, 𝜃)  identifiable transfer function 

G(j𝑓𝑘)   frequency response function from identification data 

G    gyroscopic matrix 

i   index of the FEM-model element 

i,j   subscripts for excitation input and output axis    

𝑖b   bias current 

𝑖c   control current      

𝑖lower    current in lower coil 

𝑖upper   current in upper coil 

𝐼x   transversal moment of inertia of x-axis 

𝐼y   transversal moment of inertia of y-axis 

𝐼z    rotational moment of inertia about the z-axis 

𝒊c   control current vector 

I   identity matrix 

j   imaginary unit 

𝑱   Jacobian matrix 

𝑘    proportional constant 

k   frequency index 

k   resonance/anti-resonance peak index 
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𝑲    stiffness matrix 

𝑲𝒊    current stiffness matrix 

𝑲x   position stiffness matrix 

𝑙LS(𝜃)   weighted linear least-squares cost function 

𝐿i    flux path length in iron 

µ0    magnetic permeability of air 

µr   relative magnetic permeability of rotor and stator material 

m   mass of the rotor 

𝑚f   number of flexible modes 

𝑴    mass matrix 

n   number of design values 

n   order of the transfer function 

𝑛f   number of total frequencies in parametric modeling 

𝑁    number of turns in the coil 

N   shape function matrix 

𝜔̂𝑖𝑗,𝑘
r    resonance frequency from experimental data 

𝜔̃𝑖𝑗,𝑘
r    resonance frequency from model 

𝜔̂𝑖𝑗,𝑘
a    anti-resonance frequency from experimental data 

𝜔̃𝑖𝑗,𝑘
a    anti-resonance frequency from model 

𝛺    rotational speed 

P(s)   controller transfer function 

𝜱m    reduced mode shape function matrix 
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𝒒    displacement vector 

𝑟   excitation signal 

𝑟min   minimum value of acceptable response in identification 

𝑟max   maximum value of acceptable response in identification 

s    Laplace variable 

s    longitudinal coordinate 

𝑺a   actuator position transformation matrix 

𝜃    angle between control and pole axis 

𝜃x   moment acting on x-direction 

𝜃y   moment acting on y-direction 

𝜽   vector containing transfer function coefficients 

𝜽𝑎   vector containing denominator coefficients 

𝜽𝑏   vector containing numerator coefficients 

𝑈(𝑘)   transfer function input 

𝑼1   controller output 

𝑼2    plant input 

𝑽1    controller input 

𝐕2    plant output 

𝑤d   total error damping ratio weight 

𝑤d,𝑘
a    anti-resonance damping ratio weight 

𝑤d,𝑘
r    resonance damping ratio weight 

𝑤f,𝑘
a    anti-resonance frequency weight 
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𝑤f,𝑘
r    resonance frequency weight  

𝑊(j𝑓𝑘)   weighting function in least squares approach 

𝑥    position of the rotor along the control axis 

𝑥c,𝑛   calculated rotor position at n:th iteration 

𝑥s,𝑛   rotor position set point at n:th iteration 

𝑥s,𝑛+1   rotor position set point for next iteration 

𝑌(𝑘)    transfer function output 

𝜁𝑖𝑗,𝑘
r    damping ratio from experimental resonance frequency 

𝜁𝑖𝑗,𝑘
r    damping ratio from model anti-resonance frequency 

𝜁𝑖𝑗,𝑘
a    damping ratio from experimental anti-resonance frequency 

𝜁𝑖𝑗,𝑘
a    damping ratio from model anti-resonance frequency 
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Abbreviations 

AMB   active magnetic bearing 

DOF   degree of freedom 

DX   drive end x-axis 

DY   drive end y-axis 

ETFE   empirical transfer function estimate 

FEM   finite element method 

FRF   frequency response function 

MIMO   multiple-input multiple-output 

MPM   multi-point method 

NX   non-drive end x-axis 

NY   non-drive end y-axis 

PLC   programmable logic controller 

Z   axial z-axis  
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1 INTRODUCTION 

Bearing is an element which constrains the relative motion to the desired motion only. 

Bearings also reduce the friction between these moving parts. Bearings are used in many 

applications, for example with electrical motors to allow only the axial rotation of the shaft. 

Different bearing types exist, one of the most common and well known is the ball bearing. 

Active Magnetic Bearing (AMB) is a type of bearing that uses magnetic levitation to support 

and carry the load. Load in this case is the rotor. 

 

1.1 Active magnetic bearings 

As mentioned, AMB is a bearing type which uses magnetic levitation to support the rotor. 

Easiest way would be to use permanent magnets to support the rotor, but it is not possible 

because Earnshaw’s theorem says that a stable levitation cannot be achieved with fixed 

permanent magnets alone. Earnshaw’s theorem however has exceptions or rather conditions 

that violate its assumptions, diamagnetic materials and feedback control with electromagnets 

can be used to achieve stable levitation (Gibbs, 1997). In case of AMBs electromagnets with 

feedback control are used to achieve the stable levitation. 

 

In one axis case one electromagnet, power amplifier and feedback controller is used to levitate 

the rotor. Figure 1.1 shows an example of this case. 

 

 

Fig. 1.1. Example of magnetic levitation in one axis case (Schweitzer, 2010). 
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In order to keep the rotor shown in Fig. 1.1 in stable position, current in the electromagnet’s 

coil is altered with the controller. If rotor is too close to the electromagnet, current in the coil 

is decreased and vice versa. Real rotor however needs more electromagnets and in one axis 

two electromagnets are used in the opposite sides of the rotor. These electromagnets are then 

driven differentially. In the differential driving mode, bias current 𝑖b and control current 𝑖c are 

used to obtain the upper and lower coil current. Upper coil current is obtained by summing the 

control current 𝑖c with the bias current 𝑖b. Lower coil current is obtained with subtracting the 

control current from the bias current. These are expressed as 

 𝑖upper = 𝑖b + 𝑖c and         (1.1) 

 𝑖lower = 𝑖b − 𝑖c.         (1.2) 

   Figure 1.2 shows the differential driving mode of the bearings. 

 

 

Fig. 1.2. Differential driving mode of the active magnetic bearing (Adapted from Schweitzer, 2010). 

 

Typical rotor has two radial and one axial active magnetic bearing. One radial bearing consist 

of x- and y-axis so two differential driving bearings and four electromagnets are needed. Axial 

bearing is considered the z-axis and has one differential driving bearing. This AMB system is 

considered as a five degree of freedom (DOF) system. In total ten electromagnets are typically 

used. 
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Active magnetic bearings offer some advantages over other type of bearings (Schweitzer, 

2010) 

 Free of contact operation, absence of lubrication and contaminating wear. AMBs can 

be used in clean and sterile rooms, in vacuum systems and high temperatures also. 

 Low bearing losses which are at high speeds five to 20 times less than journal or ball 

bearings. 

 Rotors can be rotated at high speed. This speed is only limited by the strength of the 

rotor material. 

 Because AMBs already need information from the system for control purposes, 

diagnostics are readily performed. 

 Unbalance compensation of the rotor and force-free rotation is possible. 

 Low maintenance costs and higher life time expectations due to lack of mechanical 

wear. 

 Accurate position control, reference position tracking and vibration suppression are 

possible for some working conditions. 

Disadvantages include  

 Safety bearings needed in case of malfunction or overload, also rotor rests at the safety 

bearing when not in operation (Schweitzer, 2010). 

 AMBs need electricity. In case of a power failure some consideration is needed if the 

rotor should be allowed to drop to the safety bearings or is some kind of uninterrupted 

power supply needed. 

 Designing an AMB requires knowledge from mechatronics so in many fields of 

science, for example mechanical and electrical engineering (Schweitzer, 2010). 

 Typically, the investments costs might be high (Schweitzer, 2010). 

 The position sensors and controllers might require tuning, identification and 

recalibration at the end customer site. The controller might need updating whenever 

working condition change or when the machine/rotor is re-assembled. 
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1.2 Problem definition and hypothesis - Model based control and uncertainties 

Model based control is a technique where controller is synthesized based on plant dynamics. 

This allows building more robust and better performance controllers, but these controllers tend 

to have a high order. (Smirnov, 2012) 

 

However, a perfect model doesn’t exist. This creates uncertainties to the model based control. 

In case of AMBs typical uncertainties are 

 Variation in the manufacturing process (Smirnov, 2012). There is a limited accuracy 

which can be used to make for example the rotor, so the geometry of the rotor model is 

not fully the same as the manufactured rotor. Geometry changes might alter for 

example the readings of the position sensors. Position of the rotor and geometry of the 

rotor is thus uncertain and this decreases the controller performance. 

 Sensor models are sometimes not included in the overall model of the system, because 

the cut-off frequency of the sensors might be very high (>10 kHz) or are modeled with 

just a simple first-order low-pass filter (Hynynen, 2011). In reality sensors might have 

a varying gain based on frequency and some noise is always present. Based on the 

level of the noise controller output has also some noise. Varying gain alters the sensor 

reading and the position of the rotor is in this case also uncertain and this decreases the 

controller performance. 

 In AMB systems non-linearity of the AMB magnetic force for example is linearized in 

an operational point (Hynynen, 2011). Linearization assumes that some parameters are 

fixed, although they can change (Smirnov, 2012). If the AMB system is operated far 

from the operational point, control performance is decreased because linearization 

becomes less accurate. 

 

In this thesis the research problem is to find ways to reduce the uncertainty related to the 

model based control. Methods are presented to reduce the uncertainty of the model based 

control. 
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1.3 Scope of work and outline 

In this thesis the focus is on the AMB system identification methods and the rotor model 

update method. Implementation, design and testing of these methods is the main focus. All 

methods were also tested with a real machine where rotor was levitated with AMBs. 

 

Chapter 1 provides the background and introduction to AMBs. Also model based control and 

uncertainties related to model based control are shown. Scope of work and motivation are 

presented.  

  

In Chapter 2 rotor dynamics are presented. Rigid- and flexible rotor models are shown. 

 

Chapter 3 presents the magnetic center calibration of the rotor. This is an identification 

method used to locate the magnetic center of the rotor. Magnetic center is an interesting point, 

because in that point force model of the bearing is satisfied for zero position offsets for all 

control axes (Prins, 2007). In the magnetic center the AMB system also corresponds better to 

the linearized equations and the uncertainty related to the model based control can be reduced. 

An algorithm using several bias current values for determining the magnetic center is 

presented. Contribution to the magnetic center calibration of the rotor was the developing, 

describing and testing of the algorithm using several bias current values based on method 

presented in (Prins, 2007). 

 

In Chapter 4 identification of the rotor model is presented. Identification of the rotor model is 

a method used to obtain frequency response of the rotor-bearing system and to measure for 

example resonance and anti-resonance frequencies from the frequency response. An 

identification algorithm using step-sine signals and adaptive amplitude is presented. Based on 

the identification data a model of the system can be updated and tuned. Contribution to the 

rotor model identification was describing and extending the adaptive amplitude step-sine 
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identification algorithm and creating a way to save identification data to a file in real time for 

the specific platform. 

 

Chapter 5 shows a method to update the rotor model. Rotor model update is a method used to 

obtain a model which more accurately describes the experimental data obtained with rotor 

model identification. A method for constructing the parametric model of the rotor from 

experimental data is presented. From this parametric model resonance and anti-resonance 

frequencies and damping ratios are extracted. Then a procedure is presented to obtain a more 

accurate rotor model based on experimental data. This updated rotor model could then be used 

to synthesize a new model based controller. Contribution to the rotor model update method 

was developing, describing, testing and extending the rotor model update method based on 

method presented in (Wróblewski, 2011).  

 

Chapter 6 contains the test results from the magnetic center calibration presented in Chapter 3, 

identification of the rotor model presented in Chapter 4 and also from the rotor model update 

presented in Chapter 5. HS-Eden machine was used as the test machine. 

 

Chapter 7 concludes the thesis. Future work suggestions are presented. 
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2 DYNAMICS OF THE ROTOR 

In this chapter rigid and flexible rotor models are presented. Modeling of these rotors is done 

using linearized general equation of motion based on Newton’s II law (Hynynen, 2011) 

 𝑴𝒒̈(𝑡) + (𝑫 + 𝛺𝑮)𝒒̇(𝑡) + 𝑲𝒒(𝑡) = 𝑭(𝑡),      (2.1) 

where 𝑴 is the mass matrix, 𝑫 is the damping matrix, 𝛺 is the rotational speed, G is the 

gyroscopic matrix, 𝑲 is the stiffness matrix, 𝒒 is the displacement vector and F is a force 

vector. This linearization can be used if assuming that the rotor is axisymmetric, 

displacements from reference points are small compared to the rotor dimensions and that the 

rotational speed is constant (Hynynen, 2011). 

 

2.1 Rigid rotor model 

Assumption about rigid rotor model is true when rotor has all the flexible eigenfrequencies 

above the bandwidth of the position sensor and the maximum rotational speed (Hynynen, 

2011). Assuming a rigid rotor with two radial magnetic bearings, Equation (2.1) describes the 

motion of the rotor with respect to the center of the mass with state vector 𝒒 =

[𝑥 𝑦 𝛽x 𝛽y]𝑻. Displacement along particular axis is denoted with x and y, 𝛽x and 𝛽y are 

the rotations around the x- and y-axes respectively. This system is presented as four degrees of 

freedom system. Motion along the z-axis, which is the fifth DOF, is not coupled with the other 

DOFs and it is treated separately with the axial magnetic bearing. Rotation around the z-axis is 

the sixth degree of freedom and it is included indirectly in the gyroscopic matrix as a 

multiplier. (Smirnov, 2012) For the undamped rigid body the Eq. (2.1) is formulated as 

(Adapted from Smirnov, 2012) 

 𝑴𝒒̈ + 𝛺𝑮𝒒̇ = 𝑭.                    (2.2) 
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Matrices from Eq. (2.2) are constructed as (Adapted from Smirnov, 2012) 

 𝑴 = ⌊

𝑚 0 0 0
0 𝑚 0 0
0 0 𝐼x 0
0 0 0 𝐼y

⌋,        (2.3) 

  𝑮 = ⌊

0 0 0 0
0 0 0 0
0 0 0 𝐼z
0 0 −𝐼z 0

⌋ and        (2.4) 

 𝑭 =

⌊
 
 
 
𝑓x
𝑓y
𝜃x

𝜃y⌋
 
 
 

,          (2.5) 

where m is the mass of the rigid rotor, 𝐼x is the transversal moment of inertia of x-axis, 𝐼y is the 

transversal moment of inertia of y-axis, 𝐼z is the rotational moment of inertia about the z-axis, 

𝑓x is the force acting on x-direction, 𝑓y is the force acting on y-direction, 𝜃x and 𝜃y are the 

moments applied to the same axis. Figure 2.1 demonstrates these coordinates. 

 

 

Fig. 2.1. Demonstration of the rotor coordinate systems (Smirnov, 2012). 
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With AMB systems it is conventional to reformulate Eq. (2.2) which relates to the center of 

the mass to relate to the bearing coordinates (Smirnov, 2012) 

 𝑴b𝒒̈b + 𝛺𝑮b𝒒̇b = 𝑲x𝒒b + 𝑲i𝒊c,                  (2.6) 

where subscript b denotes the bearing coordinates 𝒒b = [𝑥𝐴 𝑦A 𝑥B 𝑦B], 𝑥A and 𝑥B denote 

the displacement along x-axis and 𝑦A and 𝑦B denote the displacement along y-axis, 𝑲x is the 

position stiffness matrix, 𝑲i is the current stiffness matrix and control current vector 𝒊c =

[𝑖c,x,A 𝑖c,y,A 𝑖c,x,B 𝑖c,y,B] denotes the current in x- and y-directions of electromagnets at 

magnetic bearings A and B. Transformation from center coordinates to bearing coordinates is 

shown in (Smirnov, 2012) and (Hynynen, 2011). 

 

2.2 Flexible rotor model 

Flexible rotor is a type of rotor that has flexible eiqenfrequencies at low frequencies also and 

they can be affected with position controller (Hynynen, 2011). Flexible rotors require the 

modeling of the elasticity behavior of materials (Lösch, 2002). In reality pure rigid rotor 

shown in Ch. 2.1 does not exist. 

 

Flexible rotors are modeled with Finite Element Method (FEM) modeling by dividing the 

rotor into a finite set of similar elements. Elements of the rotor are presented by cylinders, 

because rotors are usually axisymmetric in the xy-plane. These cylinders behavior is described 

by Timoshenko beam theory. Timoshenko beam elements take into account the rotational 

inertia of the rotor and shear deformation, which is useful for short and very thick rotors. 

(Smirnov, 2012) Figure 2.2 shows an example of one beam element. 
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Fig. 2.2. One beam element of the FEM-model (Hynynen, 2011). 

 

Equation of motion presented in Eq. (2.1) is used to describe each beam element of the FEM-

model (Smirnov, 2012) 

 𝑴𝑖𝒒̈𝑖 + (𝑫𝑖 + 𝛺𝑮𝑖)𝒒̇𝑖 + 𝑲𝑖𝒒𝑖 = 𝑭𝑖,       (2.7) 

where matrices corresponds to the Eq. (2.1) but now for the i:th beam element. State vector 𝒒𝑖 

is 𝒒𝑖 = [𝑥𝑖 𝑦𝑖 𝛽x,𝑖 𝛽y,𝑖]𝑻. 

 

Shape function matrix N is then used to describe the final shape of rotor (Smirnov, 2012) 

 𝒒𝑖
g

= 𝑵(𝑠)𝒒𝑖,                     (2.8) 

where s is the longitudinal coordinate for each node and superscript g describes the global 

coordinate system. Equation of motion (2.1) is then used in global coordinate system 

(Smirnov, 2012) 

 𝑴g𝒒̈g + (𝑫g + 𝛺𝑮g)𝒒̇g + 𝑲g𝒒g = 𝑭g,      (2.9) 
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where state vector 𝒒g = [𝒒1
g

𝒒2
g

⋯ 𝒒𝑃
g
] is the global displacement vector. Usually Eq. 

(2.9) is not used because it has a great number of state-variables and modal reduction 

techniques are used to include the required information only (Smirnov, 2012). After modal 

reduction and adding the linearized forces provided by electromagnets to the equation of 

motion of the flexible rotor, overall plant model of the system is (Smirnov, 2012) 

 𝑴m𝒒̈m + (𝑫m + 𝛺𝑮m)𝒒̇m + (𝑲m + 𝑲x
m)𝒒𝒎 = 𝑲i

m𝒊c,             (2.10) 

where negative position stiffness 𝑲x
m and current stiffness 𝑲i

m are expressed as (Smirnov, 

2012) 

 𝑲x
m = (𝜱m)T𝑺a(−𝑲x)𝜱

m and                (2.11) 

 𝑲i
m = (𝜱m)T𝑺a𝑲i𝜱

m.                 (2.12) 

Position of the actuators are included in the matrix 𝑺a and 𝜱m is the reduced mode shape 

function matrix in modal coordinates. 
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3 MAGNETIC CENTER CALIBRATION OF THE ROTOR 

This chapter describes usage of AMBs as a force measurement tool. Multi-point method 

(MPM) and bias current perturbation method are presented. This information can be used to 

determine the magnetic center of the rotor, also known as radial origin and effective rotor 

origin. Algorithm for magnetic center calibration is presented. Also notes about 

implementation for Beckhoff programmable logic controller (PLC) system are shown. 

 

3.1 AMB force measurement 

In a standard AMB system force measurement by observing coil currents and air gaps is 

possible. In this thesis a common eight pole radial AMB with two control axes is studied. A 

pair of eight pole heteropolar AMBs comprises the full radial system. Control axes in this case 

are drive end x-axis (DX), drive end y-axis (DY), non-drive end x-axis (NX) and non-drive 

end y-axis (NY). Assuming no magnetic coupling between these control axes, force acting in 

one control axis is according to (Gähler, 1994a) 

 𝐹 = 𝑘 [
𝑖upper
2

(2𝑔upper)2
−

𝑖lower
2

(2𝑔lower)
2],       (3.1) 

where 𝑖upper is the current in upper coil, 𝑖lower is the current in lower coil, 𝑔upper is airgap in 

the upper coil and 𝑔lower is the airgap in lower coil. 𝑘 is a proportional constant which is 

given by 

 𝑘 = µ0𝐴g𝑁
2 cos 𝜃,         (3.2) 

where µ0 is the magnetic permeability of air, 𝐴g is the stator pole face area, 𝑁 is the number of 

turns in the coil and 𝜃 is the angle between control and pole axis. This geometry is shown in 

Fig. 3.1. 
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Fig. 3.1. Geometry of one control axis (Prins, 2007). 

 

Airgaps  𝑔upper and 𝑔lower can be rewritten to relate to the rotor position along the control 

axis (Gähler, 1994a) 

 𝑔upper = 𝑔0 − 𝑥 cos 𝜃 and        (3.3) 

 𝑔lower = 𝑔0 + 𝑥 cos 𝜃,        (3.4) 

where 𝑔0 is the nominal airgap and 𝑥 is the position of the rotor along the control axis. This 

form of airgaps is used in this thesis. 

 

According to (Prins, 2007) Equation (3.1) is simplified as it neglects the flux path in the rotor 

and stator. This can be correlated by adding an equivalent iron flux path length 𝑏 to the air gap 

length in Eq. (3.1). Equivalent iron flux path length can be expressed as 

 𝑏 =
𝐿i

µr
,           (3.5) 
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where 𝐿i is the flux path length in iron and µr is the relative magnetic permeability of rotor 

and stator material.  

 

Now combining Eq. (3.1) and Eqs. (3.3)-(3.5) force measurement equation is written as (Prins, 

2007) 

 𝐹 = 𝑘 [
𝑖upper
2

(2(𝑔0−𝑥 cos𝜃)+𝑏)2
−

𝑖lower
2

(2(𝑔0+𝑥cos𝜃)+𝑏)2
].      (3.6) 

This form of the force equation is used in this thesis. 

 

3.2 Multi-point method and bias current perturbation method 

Magnetic center of the rotor is a point where the force model of the bearing is satisfied for 

zero position offsets for all control axes (Prins, 2007). When operating in this point, the AMB 

system corresponds better to the linearized equations. In addition in this point the actuator 

usage is minimized and based on this power usage of AMBs is also minimized. Therefore 

leading to the system that is more efficient. In the magnetic center, the force availability is 

maximized in any direction (DX, DY, NX, NY). 

 

Multi-point method (MPM) is a technique used to predict forces acting on the rotor and rotor 

position using information from coil currents only. This method is very useful for the field 

conditions and can be used on existing systems. MPM takes an advantage of the AMB system 

feedback to keep the rotor at a fixed position during operation. (Marshall, 2001) 

 

MPM is used in a single control axis. Rotor position and forces are estimated by applying 

multiple current differences to either the lower or the upper coil. Assuming current increase in 

the upper coil, AMB system has to increase the current in the lower coil to compensate the 

extra force created. Now a pair of upper and lower coil currents is obtained. The process is 
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repeated with different current to obtain all the pairs. After several measurements rotor 

location 𝑥 and supported force 𝐹 can be determined. (Marshall, 2001) 

 

Based on MPM (Prins, 2007) introduced a method called bias current perturbation method. 

This method is used to locate the magnetic center of the rotor. In this method, controller’s 

ability to support the rotor at a specific position for any bias current value is used. This method 

is also used for a single control axis. When bias current value is changed, in order to keep the 

rotor at the same position, controller current pair values 𝑖upper and 𝑖lower change. Because 

rotor position and the force is not altered when changing bias current, these pairs of 𝑖upper and 

𝑖lower values are considered to be simultaneous equations and can be used to determine the 

force 𝐹 and rotor position 𝑥 from Eq. (3.6). 

 

Considering that we have two current pairs (𝑖lower,1, 𝑖upper,1) and (𝑖lower,2, 𝑖upper,2) resulting 

from two different bias currents. These current pairs are then used with Eq. (3.6) forming two 

separate expressions of Eq. (3.6). Value of x can then be solved with setting these expressions 

as equal 

 
𝑖upper,2
2

(2(𝑔0−𝑥 cos𝜃)+𝑏)2
−

𝑖lower,2
2

(2(𝑔0+𝑥 cos𝜃)+𝑏)2
=

𝑖upper,1
2

(2(𝑔0−𝑥 cos𝜃)+𝑏)2
−

𝑖lower,1
2

(2(𝑔0+𝑥cos𝜃)+𝑏)2
 . (3.7) 

Now solving for rotor position 𝑥 in Eq. (3.7) results (Prins, 2007) 

 𝑥 =
1

cos𝜃
[

2𝑔0+𝑏

𝑖lower,1
2 −𝑖lower,2

2 −𝑖upper,1
2 +𝑖lupper,2

2 ] ∗ [
𝑖lower,1
2 −𝑖lower,2

2 +𝑖upper,1
2 −𝑖lupper,2

2

2
] 

 ±√(𝑖lower,1
2 − 𝑖lower,2

2 )(𝑖upper,1
2 + 𝑖lupper,2

2 ).      (3.8) 

Equation (3.7) is quadratic and has two roots, but the correct root is easily identified, because 

it is the only root x that exists in the physical boundaries of the stator. Rotor position value 𝑥 is 

considered as an error/offset value for the position control and this value is used to guide the 

rotor to the magnetic center. This error is initially nonzero, so an iterative equation is 

presented for calculating the new position reference for the position controller (Prins, 2007) 
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 𝑥s,𝑛+1 = 𝑥s,𝑛 − 𝑥c,𝑛,         (3.9) 

where 𝑥s,𝑛+1 is the position controller set point for the next iteration, 𝑥s,𝑛 is the current 

position controller set point and 𝑥c,𝑛 is the calculated rotor position from Eq. (3.8). Initial set 

point for the controller is zero. In ideal case iteration is continued until 𝑥c,𝑛 is zero, but in 

practice a reasonably small limit is defined. In most cases, it is based on the sensor noise. 

When iteration is finished and 𝑥c,𝑛 is between acceptable limits, for that control axis magnetic 

center is found. 

 

It should be noted that at least three different bias current values should be used to remove 

possible outliers from current measurements (Prins, 2007). From these three bias current 

values three pairs of bias currents can be used (𝐼b1, 𝐼b2), (𝐼b1, 𝐼b3) and (𝐼b2, 𝐼b3). Equation 

(3.8) can then be used for all these pairs and average value is used for calculating new position 

reference for the controller in Eq. (3.9). 

 

3.3 Implementation of the algorithm with several bias current values 

An algorithm was developed for the magnetic center calibration with a Simulink® model. 

Calibration is done for all of the control axes (DX, DY, NX, NY) at the same time. In this case 

iteration is continued until all control axes rotor position errors satisfy an acceptable limit. 

Coil currents 𝑖upper and 𝑖lower are measured from frequency converters which are driving the 

coils and are averaged over a one second sample. 

 

This algorithm uses five different bias current values based on selected bias current 𝑖b 

1. 𝑖b decreased by 20% (𝑖b1) 

2. 𝑖b decreased by 10% (𝑖b2) 

3. 𝑖b (𝑖b3) 

4. 𝑖b increased by 10% (𝑖b4) 

5. 𝑖b increased by 20% (𝑖b5). 
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From these five bias current values ten different bias current pairs are possible 

1. 𝑖b1 and 𝑖b2 

2. 𝑖b1 and 𝑖b3 

3. 𝑖b1 and 𝑖b4 

4. 𝑖b1 and 𝑖b5 

5. 𝑖b2 and 𝑖b3 

6. 𝑖b2 and 𝑖b4 

7. 𝑖b2 and 𝑖b5 

8. 𝑖b3 and 𝑖b4 

9. 𝑖b3 and 𝑖b5 

10. 𝑖b4 and 𝑖b5. 

First, pair 1 is selected and then magnetic center is determined with bias current values 𝑖b1 and 

𝑖b2. Then pair 2 is selected and magnetic center is determined again based on bias current 

values 𝑖b1 and 𝑖b3. After all pairs have been used an average is calculated and that location is 

assumed as the true magnetic center. Flowchart of the magnetic center calibration is shown in 

Figure 3.2. 
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Fig. 3.2. Flowchart of the magnetic center calibration algorithm. 𝑥c,𝑛 is the offset/error of one control axis. 
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Parameters of the magnetic center calibration algorithm are tunable, so calibration with 

different AMB systems is possible with simple and fast modifications. Additionally, a warning 

is issued when iteration limit is reached. 

 

3.4 Notes on implementation for the Beckhoff programmable logic controller system 

Beckhoff is a German company providing PC-based PLC system automation software and 

hardware. Main software product is the TwinCAT platform, which is an automation and a 

real-time package for PCs. TwinCAT is basically an all-in-one software, where additional 

functionalities can be added as separate functions as needed. In TwinCAT different 

automation programming languages can be used for example C/C++, Structured text and 

Simulink®. Minimum cycle time that can be achieved with TwinCAT is 50 µs (Beckhoff 

2012). Because Simulink® models in TwinCAT have a fixed cycle time, variable-step solver 

in Simulink® cannot be used. Also cycle time of each model should be adjusted so that the 

model doesn’t exceed the desired cycle time (because of heavy calculations etc.), because this 

affects the other models in TwinCAT. 

 

Beckhoff also provides a wide variety of hardware to use with TwinCAT, different input and 

output terminals for connecting a variety of fieldbus components and also for example custom 

PCs. EtherCAT is the standard communication protocol in the Beckhoff PLC systems, and it 

was developed by Beckhoff. 

 

In this case control of the AMB system and magnetic center calibration is done in a TwinCAT 

project with the use of Simulink® models, which are then compiled to TwinCAT by using a 

specific TwinCAT target in the Simulink®. A custom PC from Beckhoff was used to run the 

TwinCAT project, model number of the custom PC was C6930-0050. This custom PC is made 

to fit inside control cabinet. Processor of the custom PC was Intel® Core™ i7-4700EQ @ 2.4 

GHz and it had 16 GB of RAM. Operating system used was Microsoft® Windows® 7 

Professional and TwinCAT version used was 3.1.4018.16. 



32 

 

4 ROTOR MODEL IDENTIFICATION 

In this chapter system identification theory is presented and applied to AMB system in 

frequency domain. Identifiable transfer functions are described. An adaptive amplitude step-

sine identification algorithm is presented. Additional notes about implementation for the 

Beckhoff PLC system are given. 

 

4.1 AMB System Identification 

System identification is used to build mathematical models of systems based on measured and 

observed data from systems. Usually this input-output data is recorded during a specific 

identification experiment. This is done to make the data maximally informative. (Ljung, 1987) 

 

Different identification experiments exist. One type is step- and impulse response 

experiments. Also sine waves are used in identification experiments (Keesman, 2011). Sine 

wave identification experiments can be divided into two groups: stepped sine, which has all 

the power on one frequency and multisine, which has power divided to different frequencies. 

 

After experiments a frequency response function (FRF) is formed. There are different 

estimation methods for frequency response functions. Comparison of these methods in AMB 

systems has been done in (Hynynen, 2010). In this case simplest FRF, empirical transfer 

function estimate (ETFE) is used 

𝐺ETFE(𝑓𝑘) =
𝑌(𝑘)

𝑈(𝑘)
,         (4.1) 

where 𝑌(𝑘) is the transfer function output and 𝑈(𝑘) is the transfer function input at 𝑓𝑘:th 

frequency. k is the frequency index. 

 

Forces acting on rotor can be measured when the rotor is levitated with AMBs. Excitation is 

also possible with AMBs. (Gähler, 1998) Based on this, AMB system identification is possible 
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with no additional hardware. Sine wave excitation is typically used with AMB system 

identification. Identification is done in the frequency domain. 

 

An ISO standard has emerged for signals and excitation locations used in AMB system 

frequency response measurements (ISO 14839-3, 2006). Figure 4.1 shows a general block 

diagram used with the ISO standard. 

 

 

Fig. 4.1. Block diagram showing signals and excitation locations for frequency measurements according to the 

ISO standard (ISO 14839-3, 2006). 

 

Figure 4.1 shows the possible inputs, outputs and excitations used for AMB system 

identification. The excitation signal 𝑬 is located at controller input and the excitation 𝑬u is 

located at the controller output. 𝑽1 is the controller input and 𝑼2 is the plant input. 𝐕2 is the 

plant output and 𝑼1 is the controller output signal. Now based on inputs, outputs and 

excitation signals different transfer functions can be identified. Table 4.1 shows the different 

transfer functions, which can be identified.  
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Table 4.1. Transfer functions, which can be identified from frequency response measurement. Adapted from 

   (Schweitzer, 2010). 

transfer 

function 

type 

excitation 

location 

transfer 

function name 

𝑮(𝑠) system 

properties 

validated 

𝑼2 → 𝑽2 𝑬u open-loop plant 𝑷(𝑠) identification 

of plant 

dynamics 

𝑽1 → 𝑼1 𝑬 controller 𝑪(𝑠) controller 

performance 

𝑬 → 𝑽1 𝑬 input sensitivity [𝑰 − 𝑷(𝑠)𝑪(𝑠)]−1 robustness to 

uncertainties 

𝑬u → 𝑽2 𝑬u dynamic 

compliance 

[𝑰 − 𝑷(𝑠)𝑪(𝑠)]−1𝑷(𝑠) attenuation, 

resonances, 

transmission 

zeroes 

𝑽2 → 𝑬U 𝑬u dynamic 

stiffness 

𝑷−1 − 𝑪 static and 

dynamic 

stiffness 

𝑬u → 𝑼2 𝑬u output 

sensitivity 

[𝑰 − 𝑪(𝑠)𝑷(𝑠)]−1 identical to 

input 

sensitivity only 

in SISO case 

𝑽1 → 𝑽2 𝑬 Nyquist, open-

loop system 

𝑷(𝑠)𝑪(𝑠) Nyquist 

diagram 
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Now it should be noted that the plant (rotor) should be levitated during the identification 

procedure. This is especially important when identifying the open-loop plant P(s) to prevent 

the possible rotor-stator contact. According to (Schweitzer, 2010) it is possible to obtain open-

loop measurement from closed-loop system. 

 

This thesis focuses on the rotor model identification, so excitation at  𝑬u is used and plant 

input 𝑼2 and plant output 𝑽2 are measured to form the open-loop plant P(s). With 𝑬u 

excitation, also according to Table 4.1 dynamic compliance, dynamic stiffness and output 

sensitivity transfer functions are possible to identify. 

 

4.2 Implementation of step sine identification algorithm with adaptive amplitude 

An algorithm was developed for the rotor model identification. Identification algorithm was 

developed with a Simulink® model. Algorithm uses step sine waves and sine wave amplitude 

is adapted to get an acceptable response. This sine wave is used as the excitation 𝑬u. Sine 

wave equation in time domain is 

 𝑟 = 𝐴 sin(2π𝑓𝑡),         (4.2) 

where 𝑟 is the excitation signal, 𝐴 is the amplitude (in amperes) and 𝑓 is the sine wave 

frequency. Amplitude 𝐴 is changed until the maximum response value of 𝑉2, for the axis 

where excitation is applied, is between 𝑟min and 𝑟max. In this case 𝑟min equals 20 µm and 𝑟max 

equals 50 µm. If response is less than 𝑟min, amplitude is increased by 20%. If response is 

greater than 𝑟max, amplitude is decreased by 20%. When response is between 𝑟min and 𝑟max, 

identification data is saved and next frequency is selected. Also if amplitude is less than 𝐴min 

or greater than 𝐴max, identification data is saved and next frequency is selected. In this case 

𝐴min equals 50 mA and 𝐴max equals 3 A. 

 

Frequency range of the identification algorithm can be tuned to include and focus on specific 

frequencies. Frequency range is generated as linearly spaced points between selected starting 

and ending frequency. 
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Identification algorithm starts by exiting radial axes in order DX, DY, NX, NY one axis at a 

time. After all frequencies are exited for one radial axis, next radial axis is selected. Every 

radial axis plant input 𝑈2 and plant output 𝑉2 are measured so cross coupling of the radial axes 

can be investigated. In addition, the real currents from frequency converters are saved for the 

exited axis. After radial excitations, axial excitation (Z-axis) is performed as a separate 

experiment. Also the real currents from axial frequency converter are saved. Flowchart of the 

identification algorithm is shown in Figure 4.2. 
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Fig. 4.2. Flowchart of the identification algorithm. Resp is the maximum response value of  𝑉2 for the exited axis. 
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When identification has finished all data has been saved to an “.m” file. This file can be 

directly run in MATLAB® generating matrix form data of measurements. After loading the 

file post processing is possible with MATLAB®. 

 

It should be noted that MATLAB® functions linspace and logspace cannot be used in the 

algorithm because output size of these functions is undefined. When compiling the algorithm 

to the Beckhoff TwinCAT all vectors/matrices must have fixed dimensions. Because of this 

own implementation of linspace-function has been used. 
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5 ROTOR MODEL UPDATE BASED ON IDENTIFICATION 

This chapter describes a method for updating FEM-model of the rotor based on experimental 

identification data. Moreover, parametric modeling based on identification data is presented. 

This modeling is applied to locate poles and zeros of the open-loop plant transfer function 

presented in the identification data. A simple example is given to demonstrate the rotor model 

update method. 

 

5.1 Parametric modeling and finding pole- and zero-frequencies 

Identification data can be used to make a parametric model of the rotor. From this parametric 

model poles and zeros can be extracted. Parametric model identification has been discussed in 

(Verboven, 2002) and (Hynynen, 2011). 

 

Identifiable parametric frequency response function at frequency 𝑓𝑘 between transfer function 

input and output can be written as (Verboven, 2002) 

 𝐺̂(j𝑓𝑘, 𝜃) =
𝐵(j𝑓𝑘,𝜃)

𝐴(j𝑓𝑘,𝜃)
,         (5.1) 

where 𝐵(j𝑓𝑘, 𝜃) is the identifiable transfer function numerator and 𝐴(j𝑓𝑘, 𝜃) is the identifiable 

transfer function denominator, 𝜃 is the parametric vector containing numerator or denominator 

polynomial coefficients and k is the frequency index. Numerator and denominator can be 

written as a sum of polynomial coefficients 

  𝐵(j𝑓𝑘, 𝜃) = ∑ 𝑏𝑗𝑓𝑘
𝑗𝑛

𝑗=0  and        (5.2) 

 𝐴(j𝑓𝑘, 𝜃) = ∑ 𝑎𝑗𝑓𝑘
𝑗𝑛

𝑗=0 .        (5.3) 

These polynomial coefficients 𝑏𝑗 and 𝑎𝑗 are estimated based on identification data. n is the 

order of the transfer function polynomial. 
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Parameters are estimated based on error between identifiable transfer function 𝐺̂(j𝑓𝑘, 𝜃) and 

FRF obtained from identification data G(j𝑓𝑘) 

 𝐸(j𝑓𝑘) = 𝐺̂(j𝑓𝑘, 𝜃) − 𝐺(j𝑓𝑘) =
𝐵(j𝑓𝑘,𝜃)

𝐴(j𝑓𝑘,𝜃)
− 𝐺(j𝑓𝑘) ≈ 0.    (5.4)  

This Equation (5.4) is minimized with least squares approach. 

 

Least squares minimization is typically used in linear case and it can be noted that Equation 

(5.4) is not linear in parameters. By multiplying Eq. (5.4) with the denominator polynomial 

𝐴(j𝑓𝑘, 𝜃) it becomes 

 𝐸LS(j𝑓𝑘) = 𝐵(j𝑓𝑘, 𝜃) − 𝐴(j𝑓𝑘, 𝜃)𝐺(j𝑓𝑘).      (5.5) 

This linearization method was first presented by (Levy, 1959). 

 

It should be noted that the parameter estimation Equation (5.5) overemphasizes the higher 

frequency components. Also considering that AMB system with current controller has a 40dB 

roll-off per decade, more accurate results can be achieved with using relative error rather than 

absolute error. This has been discussed in (Gähler, 1994b) and (Hynynen, 2011). Now a 

weighting function 𝑊(j𝑓𝑘) is used to change Equation (5.5) in to a relative error problem and 

to minimize the overemphasis of the higher frequency components 

 𝑊(j𝑓𝑘) =
1

𝐴(j𝑓𝑘,𝜃𝑚−1)𝐺(j𝑓k)
,        (5.6) 

where 𝐴(j𝑓k, 𝜃m−1) is  the denominator coefficients of the previous parameter estimation. This 

leads to an iterative search of the least squares minimization of the Equation (5.5). Adding 

weight function 𝑊(j𝑓𝑘) to Eq. (5.5) leads to following iterative least squares minimization 

problem 

 𝐸LS(j𝑓𝑘) =
𝐵(j𝑓k,𝜃m)−𝐴(j𝑓𝑘,𝜃m)𝐺(j𝑓𝑘)

𝐴(j𝑓𝑘,𝜃𝑚−1)𝐺(j𝑓𝑘)
       (5.7) 
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and this leads to a weighted linear least-squares cost function 𝑙LS(𝜃) 

 𝑙LS(𝜃) = ∑ |𝐸LS(j𝑓𝑘)|
2

=
𝑛f
𝑘=1 ∑

|𝐵(j𝑓𝑘,𝜃m)−𝐴(j𝑓𝑘,𝜃m)𝐺(j𝑓𝑘)|2

|𝐴(j𝑓𝑘,𝜃m−1)𝐺(j𝑓𝑘)|2
𝑛f
𝑘=1 ,   (5.8) 

where 𝑛f is the total number of frequencies. 

 

Minimizing the cost function Eq. (5.8) leads to the parameter estimates. Least squares 

formulation based on Jacobian matrix 𝑱 is used to solve the minimization of Eq. (5.8). 

Equation (5.8) is reformulated as (Hynynen, 2011) 

 𝐸LS(j𝑓𝑘) = 𝑱𝜽 = 0,         (5.9) 

where 𝜽 is the parametric vector containing values of transfer function polynomial coefficients 

𝑏𝑗 and 𝑎𝑗.  Equation (5.9) can be formulated as (Verboven, 2002) 

 𝐸LS(j𝑓k) = [𝜞 𝜱] [
𝜽𝑏

𝜽𝒂
] ≈ 0,                 (5.10) 

where submatrices 𝚪 and 𝚽 can be determined as 

𝚪 = [

𝜞(j𝑓1)
𝜞(j𝑓2)

⋮
𝜞(j𝑓𝑛f

)

] and                  (5.11) 

𝜱 = [

𝜱(j𝑓1)
𝜱(j𝑓2)

⋮
𝜱(j𝑓𝑛f

)

] , where                 (5.12) 

 𝜞(j𝑓𝑘) =  𝑾(j𝑓𝑘)[(j𝑓𝑘)
0 (j𝑓𝑘)

1 … (j𝑓𝑘)
𝑛],              (5.13) 

 𝜱(j𝑓k) = −𝜞(j𝑓𝑘) 𝐺(j𝑓𝑘),                 (5.14) 

 𝜽𝑎 = [

a0

a1

⋮
a𝒏

] , 𝜽𝑏 = [

b0

b1

⋮
b𝒏

] and 𝜽 = [
𝜽𝒃

𝜽a
] =

⌊
 
 
 
 
 
b𝟎

⋮
b𝒏

a𝟎

⋮
a𝑛⌋

 
 
 
 
 

.               (5.15) 
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Number of rows of the Jacobian matrix 𝑱 is the value of total frequencies 𝑛f and number of 

columns is 2*(n+1), where n is the order of the transfer function. If parameter values are 

solved directly from Equation (5.10), this matrix can be very large and much computational 

effort is needed to solve it assuming 𝑛f ≫ 𝑛  . Often parameters are solved by using ‘normal 

equations’ instead, which reduces the size of the Jacobian matrix (Verboven, 2002). Equation 

(5.8) is written using normal equations as 

 𝑙LS(𝜽) = 𝜽T(𝑱H𝑱)𝜽,                  (5.16) 

where 𝑱H𝑱 can be written as  

 𝑱H𝑱 = [𝜞
H𝜞 𝜞H𝜱

𝜱H𝜞 𝜱H𝜱
].                            (5.17) 

It can be seen that the number of rows of this matrix is 2*(n+1) and is also the number of 

columns. We have successfully eliminated the number of frequencies 𝑛f from the number of 

rows. 

 

Defining submatrices of Equation (5.17) with (Hynynen, 2011) 

 𝑹 = 𝜞H𝜞,                   (5.18) 

 𝑺 = 𝜞H𝜱 and                   (5.19) 

 𝑻 = 𝜱H𝜱,                   (5.20) 

normal equation is written as 

 [
𝑹 𝑺
𝑺H 𝑻

] [
𝜽𝑏

𝜽𝒂
] ≈ 0.                  (5.21) 

Minimizing the cost function of Eq. (5.21) in relation to the unknown parameters 𝜽𝑏 and 𝜽𝑎 

leads to the following partial derivations (Hynynen, 2011) 

 
𝜕𝑙LS(𝜃)

𝜕𝜽b
= 2(𝑹𝜽𝑏 + 𝑺𝜽𝒂) and                 (5.22) 

 
𝜕𝑙𝐿𝑆(𝜃)

𝜕𝜽𝑎
= 2(𝑺H𝜽𝑏 + 𝑻𝜽𝒂) = 0.                (5.23) 
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Solving Equation (5.22) in respect to 𝜽𝑏 yields 

 𝜽𝑏 = −𝑹−1𝑺𝜽𝒂,                  (5.24) 

and substituting 𝜽𝑏 solved in Eq. (5.24) to Equation (5.23) leads to 

 [𝑻 − 𝑺H𝑹−1𝑺]𝜽a = 𝑫𝜽a ≈ 0.                (5.25) 

Denominator polynomial coefficients 𝜽a can be solved from Eq. (5.25) with for example 

fixing the highest order coefficient an to 1 and calculating the other coefficients with 

(Verboven, 2002) 

 𝜽aLS
= {−

[𝑫(1: 𝑛, 1: 𝑛)]−1{𝑫(1: 𝑛, 𝑛 + 1)}

1
}.                       (5.26) 

Numerator polynomial coefficients 𝜽𝑏 are then calculated from Eq. (5.24). Now the transfer 

function can be written with obtained numerator 𝜽𝑏 and denominator 𝜽a 

 𝐺̂(𝑠) =
𝑏𝑛𝑠𝑛+𝑏𝑛−1𝑠𝑛−1+⋯+𝑏0

𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+𝑎0
.                 (5.27) 

 

Pole- and zero-frequencies can be extracted from identified transfer function 𝐺̂(s). Pole 

frequencies are named as resonance frequencies and zero frequencies are named as anti-

resonance frequencies. In this case they are extracted with MATLAB® functions pole and 

zero. With pole and zero functions also resonance and anti-resonance damping ratios are 

extracted. 

  

5.2 Rotor model update method 

FEM-model of the rotor presented in Chapter 2.2 is still only an approximation of the real 

rotor. Real rotors in high-speed applications have complex nature and are constructed from 

number of different elements. Shrink fit is usually used to connect them and that leads to quite 

different properties of elements when describing them through Timoshenko theory. The other 

source of uncertainty is the stiffness of the laminations as it consists of many thin parts and the 

final stiffness is defined by the pressure which keeps the stack together. In addition active part 
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of the electrical machine might have a complex geometry such as slits or surface mounted or 

embedded permanent magnets. These components are selected as uncertain, however the axle 

which is usually a solid piece is well defined with the beam theory. To correct the FEM-model 

based on identification data authors in (Wróblewski, 2011) presented a method which uses 

resonance and anti-resonance frequency information from experimental data and model. This 

method was extended to use damping ratios also in the resonance and anti-resonance 

frequencies. 

 

This method is used to tune the selected elements elasticity value 𝑒𝑝 from the FEM-model 

until an acceptable solution is found. Number of elements can be selected freely. Other 

elements elasticity values were assumed to be correct and remained at the fixed nominal value. 

With all selected elasticity values 𝑒𝑝, design variable vector e can be formulated (Wróblewski, 

2011) 

 𝒆 ∈ ℝ𝒏 so that {𝑒𝑝}
𝑝=1…𝑛

,                 (5.28) 

where n is the number of design values. This vector e is used to calculate the new model based 

on changed elasticity values 𝑒𝑝. 

 

After a new model is obtained with design variable vector e, resonance and anti-resonance 

frequencies are extracted for the selected axes from the new model and are compared to the 

resonance and anti-resonance frequencies obtained from experimental data with method 

presented in Chapter 5.1. Damping ratios are also extracted from the experimental data and 

model data in the resonance and anti-resonance frequencies and are compared. Variable 𝑓𝑖𝑗,𝑘
r,E

 is 

used to represent the frequency resonance error and 𝑓𝑖𝑗,𝑘
a,E

 is used to represent the anti-

resonance frequency error. Relative frequency errors can be calculated with (adapted from 

Wróblewski, 2011) 

𝑓𝑖𝑗,𝑘
r,E =

|𝜔̂𝑖𝑗,𝑘
r −𝜔̃𝑖𝑗,𝑘

r | 

𝜔̂𝑖𝑗,𝑘
r  and                             (5.29) 
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𝑓𝑖𝑗,𝑘
a,E =

|𝜔̂𝑖𝑗,𝑘
a −𝜔̃𝑖𝑗,𝑘

a |

𝜔̂𝑖𝑗,𝑘
a ,                             (5.30) 

where 𝜔̂𝑖𝑗,𝑘
r  is the experimental resonance frequency and 𝜔̃𝑖𝑗,𝑘

r  is the resonance frequency 

obtained from model. 𝜔̂𝑖𝑗,𝑘
a  is the anti-resonance frequency from experimental data and 𝜔̃𝑖𝑗,𝑘

a  is 

the anti-resonance frequency obtained from model. For damping ratios 𝑑𝑖𝑗,𝑘
r,E

 is used to 

represent the damping ratio error in resonance frequency and 𝑑𝑖𝑗,𝑘
a,E

 is used to represent the 

damping ratio error in anti-resonance frequency. Relative damping ratio errors can be 

calculated with  

𝑑𝑖𝑗,𝑘
r,E =

|𝜁̂𝑖𝑗,𝑘
r −𝜁̃𝑖𝑗,𝑘

r | 

𝜁̂𝑖𝑗,𝑘
r  and                            (5.31) 

𝑑𝑖𝑗,𝑘
a,E =

|𝜁̂𝑖𝑗,𝑘
a −𝜁̃𝑖𝑗,𝑘

a |

𝜁̂𝑖𝑗,𝑘
a ,                             (5.32) 

where 𝜁𝑖𝑗,𝑘
r  is the damping ratio from experimental resonance frequency and 𝜁𝑖𝑗,𝑘

r  is the 

damping ratio from model resonance frequency. 𝜁𝑖𝑗,𝑘
a  is the damping ratio from experimental 

anti-resonance frequency and 𝜁𝑖𝑗,𝑘
a  is the damping ratio from model anti-resonance frequency.                 

 

Subscripts i and j represent the excitation input and output axis and k represents the 

resonance/anti-resonance peak index number. Relation between subscripts i and j is presented 

in Table 5.1. 
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Table 5.1. Relation between excitation input and output axis of the subscripts i and j. 

Input (i)/Output (j) NX(1) NY(2) DX(3) DY(4) 

NX(1) 11 12 13 14 

NY(2) 21 22 23 24 

DX(3) 31 32 33 34 

DY(4) 41 42 43 44 

 

In this thesis only excitations in x-direction on the same input and output axis are considered. 

So i and j pairs (11) and (33) are used.  

 

After adding resonance frequency weight 𝑤f,𝑘
r  and anti-resonance frequency weight 𝑤f,𝑘

a  to 

equations (5.29) and (5.30) total frequency error function can be written as (adapted from 

Wróblewski, 2011) 

 𝑒𝑟𝑟f(𝑓𝑖𝑗,𝑘
r,E, 𝑓𝑖𝑗,𝑘

a,E) = ∑ ∑ ∑ [𝑤f,𝑘
r ∗ 𝑓𝑖𝑗,𝑘

r,E + 𝑤f,𝑘
a ∗ 𝑓𝑖𝑗,𝑘

a,E]
m𝑓

𝑘=1

𝑏y

𝑗=1
𝑏x
𝑖=1 ,                       (5.33) 

where 𝑏x and 𝑏y are the dimension selected from Table 5.1 and 𝑚f is the number flexible 

modes used. Weights can be selected by the need of prioritizing some resonance and/or anti-

resonance frequency errors over one other. 

 

Weights are also added to the damping ratio errors. Resonance damping ratio weight is 

marked as 𝑤d,𝑘
r  and anti-resonance damping ratio is marked as 𝑤d,𝑘

a . These weights are then 

added to equations (5.31) and (5.32) providing the following total damping ratio error function 

 𝑒𝑟𝑟d(𝑑𝑖𝑗,𝑘
r,E , 𝑑𝑖𝑗,𝑘

a,E ) = ∑ ∑ ∑ [𝑤d,𝑘
r ∗ 𝑑𝑖𝑗,𝑘

r,E + 𝑤d,𝑘
a ∗ 𝑑𝑖𝑗,𝑘

a,E ]
𝑚𝑓

𝑘=1

𝑏y

𝑗=1
𝑏x
𝑖=1 .                       (5.34) 

A total error function can be formulated with summing Eq. (5.33) and (5.34) 

 𝑒𝑟𝑟tot = 𝑒𝑟𝑟f + 𝑤d ∗ 𝑒𝑟𝑟d,                 (5.35) 
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where 𝑤d is a weight used to decrease the effect of total damping ratio error in the total error 

calculation an thus is smaller than 1. When the error function presented in Eq. (5.35) is close 

to zero, model obtained with design variable vector 𝒆 corresponds satisfactory to the 

experimental data. This is the function to be minimized with the rotor model updating method. 

 

A black box function B(𝒆) is used to describe the process of determining the model based on 

value of design variable vector 𝒆 and outputting a single error value from Eq. (5.35) after 

determining resonance and anti-resonance frequencies and damping ratios from model and 

using experimental data. Now the function to be minimized can be generalized as 

(Wróblewski, 2011) 

 min𝒆∈ℝ𝒏 𝐵(𝒆).                   (5.36) 

Minimization of Eq. (5.36) was done with Nelder-Mead function minimization method 

(Nelder, 1965). Design variable vector 𝒆 is altered until an acceptable minimum is found. 

Nelder-Mead optimization method is a derivate free method and only uses the current function 

values. Minimum is found with iterative steps by updating the simplex vertices with reflection, 

expansion, contradiction or reduction. This optimization method was selected, because it is 

easy to implement and is derivative free.  Figure 5.1 shows the flow chart of rotor model 

updating operation. 
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Fig. 5.1. Flow chart of the rotor model updating method.  

 

Some consideration with starting design values 𝑒𝑝 might be needed, because Nelder-Mead 

optimization might lead to a local minimum. Because 𝑒𝑝 values represent elasticity of the 



49 

 

material they are constrained to be greater than zero. Also a maximum value could be used to 

constrain 𝑒𝑝 values. 

 

A MATLAB® script was developed for updating the rotor model. This script is shown in 

appendix 1. The rotor model is updated based on method presented above. 

 

5.3 Demonstration of rotor model update method 

A simple reference rotor model consisting of 20 equal beam elements was constructed. 

Elasticity of elements 5-8 was altered and these values 𝑒𝑝 were used as design variables. The 

first resonance and anti-resonance frequency and damping ratios were used. Excitations in the 

x-direction on the same input and output axis were considered (NX and DX). Figure 5.2 shows 

the reference case rotor model. 

 

 

 

Fig. 5.2. Reference case rotor model showing the locations of the design variables 𝑒𝑝. Blue number shows the 

element number. 

 

After randomizing the elasticity values 𝑒𝑝 of the original model, reference and original 

model’s resonance and anti-resonance frequencies and damping ratios are compared. In this 

case elasticity values 𝑒𝑝 of the original model are: 𝑒1 is 107.7 GPa, 𝑒2 is 80.1 GPa, 𝑒3 is 41.1 

GPa and 𝑒4 is 18.9 GPa.    Table 5.2 shows comparison between original model and reference 

model.  
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Table 5.2. Comparison between reference and original model’s resonance and anti-resonance frequencies and 

   damping ratios. 

Feature of interest Reference 

model 

Original model Absolute error Error % 

NX(1,1) first 

resonance frequency 

733.37 Hz 672.21 Hz 62.159 Hz 8.48 

NX(1,1) first anti-

resonance frequency 

544.45 Hz 495.98 Hz 48.47 Hz 8.90 

DX(3,3) first 

resonance frequency 

733.37 Hz 671.21 Hz 62.159 Hz 8.48 

DX(3,3) first anti-

resonance frequency 

640.18 Hz 588.83 Hz 51.350 Hz 8.02 

NX(1,1) first 

resonance damping 

ratio 

0.0020039 0.0020047 7.8941 ∗ 10−7 0.0394 

NX(1,1) first anti-

resonance damping 

ratio 

0.0014769 0.0014711 5.8547 ∗ 10−6 0.396 

DX(3,3) first 

resonance damping 

ratio 

0.0020039 0.0020047 7.8941 ∗ 10−7 0.0394 

DX(3,3) first anti-

resonance damping 

ratio 

0.0017462 0.001756 9.7378 ∗ 10−6 0.558 

 

A bode plot can be used to show the difference between original and reference model. Figure 

5.3 shows the bode plot of NX- and DX-axes between original and reference model. 
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Fig. 5.3. Bode plot of the NX- and DX-axes between reference and original model. 

 

As can be seen from Fig. 5.3 and Table 5.2, there is a significant difference between the 

original and reference model. Thus there is a need to update the original model. 

 

Original model was updated with the method presented in Chapter 5.2. Weights for resonance 

frequency 𝑤f,𝑘
r  , anti-resonance frequency 𝑤f,𝑘

a , resonance frequency damping ratio 𝑤d,𝑘
r  and 

anti-resonance frequency damping ratio 𝑤d,𝑘
a  were assumed to be 1. Weight 𝑤d used to 

decrease the effect of total damping ratio error in the total error was 0.01. Updated model was 

then compared with the reference model. This comparison is shown in Table 5.3. 
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Table 5.3. Comparison of resonance and anti-resonance frequencies and damping ratios between reference and 

   updated model. 

Feature of interest Reference 

model 

Updated model Absolute error Error % 

NX(1,1) first 

resonance frequency 

733.37 Hz 733.37 Hz ≈ 0 Hz ≈ 0 

NX(1,1) first anti-

resonance frequency 

544.45 Hz 544.45 Hz ≈ 0 Hz ≈ 0 

DX(3,3) first 

resonance frequency 

733.37 Hz 733.37 Hz ≈ 0 Hz ≈ 0 

DX(3,3) first anti-

resonance frequency 

640.18 Hz 640 Hz 0.18165 Hz 0.0284 

NX(1,1) first 

resonance damping 

ratio 

0.0020039 0.0020039 ≈ 0 ≈ 0 

NX(1,1) first anti-

resonance damping 

ratio 

0.0014769 0.0014766 3.2661 ∗ 10−7 0.0221 

DX(3,3) first 

resonance damping 

ratio 

0.0020039 0.0020039 ≈ 0 ≈ 0 

DX(3,3) first anti-

resonance damping 

ratio 

0.0017462 0.0017458 4.6865 ∗ 10−7 0.0268 

  

In this case a bode plot is also used to compare reference and updated model. Bode plots of the 

NX- and DX-axes are shown in Figure 5.4. 
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Fig. 5.4. Bode plot of the reference and updated model’s NX- and DX-axes.  Curves from both axes are 

overlapping each other. 

 

As can be seen from Fig. 5.4 where plots from both NX- and DX-axes between reference and 

updated model are on top of each other, there seems to be no difference between reference and 

updated model. Looking at Table 5.3 there is a very small error between updated and reference 

model’s resonance and anti-resonance frequencies. A bit bigger error can be seen between 

damping ratio errors and the cause of this is the selected weights. Now the correspondence 

between reference and the updated model is satisfactory. Figure 5.5 shows the updated 

elasticity values 𝑒𝑝 from updated model. 
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Fig. 5.5. Elasticity values 𝑒𝑝 from the updated model. In the original model elasticity value of 𝑒1 was 107.7 

GPa, 𝑒2 was 80.1 GPa, 𝑒3 was 41.1 GPa and 𝑒4 was 18.9 GPa. 

 

In conclusion, with the rotor model update method presented in Ch. 5.2 an updated model 

describing more accurately the reference model was obtained. Update procedure with four 

design variables 𝑒𝑝 ran at about 11.5 iterations per second. 
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6 EXPERIMENTS AND RESULTS 

In this chapter test results are presented from magnetic center calibration presented in Chapter 

3, rotor model identification presented in Chapter 4 and rotor model update method presented 

in Chapter 5. Test machine used was HS-Eden machine, which has two radial active magnetic 

bearings and one axial active magnetic bearing. Radial AMB structure is an E-core structure 

which has 12 poles but with some assumptions it is approximated with a standard eight pole 

bearing. Figure 6.1 shows the structure of the E-core bearing. 

 

 

Fig. 6.1. E-core AMB (Smirnov, 2015). 
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6.1 Rotor magnetic center calibration 

Magnetic center of the rotor was determined for the HS-Eden machine with the algorithm 

developed in Ch. 3.3. The nominal bias current 𝑖b was 5 A so following bias current values 

were used 

1. 4.0 A 

2. 4.5 A 

3. 5.0 A 

4. 5.5 A 

5. 6.0 A. 

From these bias current values ten bias current pairs were used 

1. 4.0 A and 4.5 A 

2. 4.0 A and 5.0 A 

3. 4.0 A and 5.5 A 

4. 4.0 A and 6.0 A 

5. 4.5 A and 5.0 A 

6. 4.5 A and 5.5 A 

7. 4.5 A and 6.0 A 

8. 5.0 A and 5.5 A 

9. 5.0 A and 6.0 A 

10. 5.5 A and 6.0 A. 

Iteration limit was 15 iterations per bias current pair and the stopping criterion used for the 

rotor position offset 𝑥c,𝑛 was ±3 µm. Magnetic center was identified for all radial axes (DX, 

DY, NX, NY). Figure 6.2 shows the rotor position of pair number 1 of the magnetic center 

identification. Table 6.1 shows the related rotor position offsets. 
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Fig. 6.2. Rotor position from pair number 1 of the magnetic center identification. 

 

Table 6.1. Rotor position offsets from pair 1 of the magnetic center identification. 

Iteration DX-position 

offset [µm] 

DY-position 

offset [µm] 

NX-position 

offset [µm] 

NY-position 

offset [µm] 

1 -83.00 -15.82 -100.00 15.67 

2 0.77 -2.36 -38.98 4.30 

3 6.69 -1.26 -7.47 2.87 

4 3.64 0.23 -5.59 -0.58 

5 -1.19 1.52 -2.41 0.72 

 

As can be seen from Table 6.1 all the position offsets from all axes converge very rapidly to 

between ±3 µm. Only five iterations were needed to achieve this accuracy. In Table 6.2 one 

magnetic center calibration of the rotor is shown with all temporary rotor position values of 

the ten bias current pairs. 
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Table 6.2. Rotor position with the bias current pairs from one magnetic center calibration. 

Bias current pair DX-position 

[µm] 

DY-position 

[µm] 

NX-position 

[µm] 

NY-position 

[µm] 

1 73.99 19.48 151.61 -22.98 

2 73.35 15.26 150.19 -20.91 

3 71.15 13.59 152.71 -20.15 

4 69.73 9.65 149.93 -20.95 

5 75.43 15.27 150.54 -16.90 

6 70.00 10.51 153.61 -16.91 

7 69.56 8.67 150.21 -19.27 

8 72.35 9.42 154.98 -14.21 

9 69.68 8.41 151.01 -18.39 

10 68.97 5.54 148.62 -20.42 

Average 71.42 11.58 151.34 -19.11 

 

From Table 6.2 it can be seen, that by using ten different bias current pairs an accurate average 

is obtained. Largest variation of position is from DY-axis where variation is about 14 µm. In 

the other axes variation is less than 8.8 µm. Repeatability of the magnetic center identification 

is demonstrated in Table 6.3. Magnetic center calibration was repeated five times. 
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Table 6.3. Repeatability of the magnetic center calibration. 

Repetition DX-position 

[µm] 

DY-position 

[µm] 

NX-position 

[µm] 

NY-position 

[µm] 

1 70.57 9.75 146.33 -21.55 

2 69.47 9.98 148.78 -21.24 

3 70.81 10.4 148.78 -20.72 

4 71.35 11.18 149.48 -19.96 

5 71.29 11.12 149.95 -19.76 

Average 70.7 10.49 148.66 -20.65 

 

From Table 6.3 it can be seen that the repeatability of the magnetic center calibration is very 

high and that the values between different repetitions do not differ much. Variation is less than 

3.7 µm for all axes between these five repetitions. For the repeatability testing it should be 

noted, that the rotor should be kept in the exact same position between repeatability tests, 

because sensor runout might cause the magnetic center calibration to end up in a very different 

location. Magnetic center of the HS-Eden machine is then located approximately at (70.7, 

10.49, 148.66, -20.65) µm from the geometric center. 

 

6.2 Stepped-sine identification of the rotor model 

Rotor model of the HS-Eden machine was identified with the algorithm developed in Chapter 

4.2. Frequency range of radial axes (DX, DY, NX, NY) identification was from 1 Hz up to 

750 Hz containing 250 points between these frequencies. Frequency resolution is then 3.008 

Hz. Figure 6.3 shows the bode plots from radial axes. 
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Fig. 6.3. Bode plots from radial axes of the HS-Eden machine rotor model identification. Dot in the plot indicates 

a measurement point. 

 

From the bode plots shown in Fig. 6.3 the first flexible mode is clearly seen on all axes 

between 600…700 Hz. All radial axes also seem to behave similarly, in frequency range 

below 300 Hz which is expected, because they identify the same rotor, but from different axes. 

For the Z-axis identification frequency range was from 1 Hz up to 100 Hz containing 100 

points between these frequencies. Frequency is resolution is thus 1 Hz. Bode plot from the Z-

axis is shown in Figure 6.4. 
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Fig. 6.4. Bode plot from Z-axis identification of the HS-Eden machine. Dot in the plot indicates a measurement 

point. 

 

The measured results in Fig. 6.3 and 6.4 present small deviations at certain frequencies that 

might be a result of foundation resonances, switching power amplifier nature or DC-link 

voltage variation (Jastrzebski, 2012). In general these discrepancies can be neglected. 

 

6.3 Rotor model update based on identification 

Rotor model of the HS-Eden machine was updated with the method presented in Ch. 5.2. In 

this case first resonance and anti-resonance frequencies and damping ratios were used. 

Excitations for x-direction on the same input and output axis were considered (NX and DX) 

for the rotor model update. Parametric model of the rotor was constructed with the method 

shown in Ch. 5.1 based on experimental data obtained with the rotor model identification. 
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Resonance and anti-resonance frequencies and damping ratios related to the experimental data 

were then extracted from the parametric model. Resonance and anti-resonance frequencies and 

damping ratios from experimental data are shown later in Table 6.4. Design variables 𝑒𝑝 were 

located at the outer part of the first radial AMB (1…4), outer part of the second radial AMB 

(5…8), and in the electrical machine part (9…14). These outer parts of the AMBs are 

considered as a ring. Outer parts of the AMBs were selected as design variables, because of 

the uncertainty of the stiffness of the laminations. Electrical machine part was selected, 

because it has a complex geometry. All elements nominal elasticity value was 200 GPa.  Rotor 

model of the HS-Eden machine is shown in Fig 6.5. 

 

Fig. 6.5. Rotor model of the HS-Eden machine showing the locations of the design variables 𝑒𝑝. 

 

Experimental data is then compared with the original model. This comparison is shown in 

Table 6.4. 
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Table 6.4. Comparison of the experimental data and the original model of the HS-Eden machine. 

Feature of interest Experimental 

data 

Original model Absolute error Error % 

NX(1,1) first 

resonance 

frequency 

665.35 Hz 830.39 Hz 165.04 Hz 24.81 

NX(1,1) first anti-

resonance 

frequency 

687.43 Hz 815.5 Hz 128.06 Hz 18.63 

DX(3,3) first 

resonance 

frequency 

671.21 Hz 830.39 Hz 159.18 Hz 23.72 

DX(3,3) first anti-

resonance 

frequency 

601.97 Hz 740.63 Hz 138.67 Hz 23.04 

NX(1,1) first 

resonance 

damping ratio 

0.011051 0.0020003 0.0090511 81.90 

NX(1,1) first anti-

resonance 

damping ratio 

0.0056576 0.0019593 0.0036983 65.37 

DX(3,3) first 

resonance 

damping ratio 

0.010003 0.0020003 0.008003 80.00 

DX(3,3) first anti-

resonance 

damping ratio 

0.010253 0.0017652 0.0084873 82.78 

 

Significant difference can be seen between experimental data and the original model from 

Table 6.4. This can also be seen on the NX and DX-axes bode plots which are shown in Figure 
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6.6. Also bode plots related to the coupling between NX- and DX-axes are shown. In this 

coupled case, excitation input and output is located on a different axis. When excitation input 

is located at NX-axis, output is located at DX-axis and vice versa. 

 

 

Fig. 6.6.  Bode plots from the NX- and DX-axes and coupled case between experimental and the original model 

 of the HS-Eden machine. 
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After randomizing the starting values of design variable vector e, rotor model of the HS-Eden 

machine was updated. Weights for resonance frequency 𝑤f,𝑘
r  , anti-resonance frequency 𝑤f,𝑘

a , 

resonance frequency damping ratio 𝑤d,𝑘
r  and anti-resonance frequency damping ratio 𝑤d,𝑘

a  

were assumed to be 1. Weight 𝑤d used to decrease the effect of total damping ratio error in the 

total error was 0.01. In Table 6.5 comparison of the experimental and the updated model is 

shown. 

 

Table 6.5. Comparison of the experimental data and the updated model of the HS-Eden machine. 

Feature of interest Experimental 

data 

Updated model Absolute error Error % 

NX(1,1) first resonance 

frequency 

665.35 Hz 671.21 Hz 5.8577 Hz 0.8804 

NX(1,1) first anti-

resonance frequency 

687.43 Hz 687.43 Hz ≈ 0 Hz ≈ 0 

DX(3,3) first resonance 

frequency 

671.21 Hz 671.21 Hz ≈ 0 Hz ≈ 0 

DX(3,3) first anti-

resonance frequency 

601.97 Hz 600.94 Hz 1.024 Hz 0.1701 

NX(1,1) first resonance 

damping ratio 

0.011051 0.0020006 0.0090508 81.90 

NX(1,1) first anti-

resonance damping 

ratio 

0.0056576 0.0020664 0.0035911 63.48 

DX(3,3) first resonance 

damping ratio 

0.010003 0.0020006 0.0080027 80.00 

DX(3,3) first anti-

resonance damping 

ratio 

0.010253 0.0017854 0.0084671 82.59 
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Bode plot between NX- and DX-axes of the experimental data and updated model are shown 

in Figure 6.7. In this case also the coupling case bode plots are shown. 

 

Fig. 6.7. Bode plots from the NX- and DX-axes and coupled case between experimental and the updated model 

of the HS-Eden machine. 

 

From Table 6.5 and Figure 6.7 it can be seen that the resonance and anti-resonance frequency 

error between experimental data and model has decreased. Largest frequency error is now less 
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than 1.0 %. For the damping ratios error remained almost the same between comparison of 

experimental data with original and updated model. One cause of this is the selected weights 

and also the parametric model generation seems to fit the frequency better than the damping 

ratio. Figure 6.8 shows the updated elasticity values 𝑒𝑝 from updated model. 

 

Fig. 6.8. Elasticity values 𝑒𝑝 from the updated HS-Eden model. Elasticity value of 𝑒1 is 0.18 MPa. Nominal 

elasticity value of the elements was 200 GPa. 

 

From Figure 6.8 it can be seen that the elasticity values of the outer part of the first radial 

AMB (1…4) is almost zero and the outer part of the second radial AMB (5…8) has quite big 

values. Reason for this might be the different press force applied to the first and second radial 

AMB lamination stack. 
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Figure 6.9 shows the output of the function B(𝒆)(error function) for each iteration step of the 

Nelder-Mead optimization method during the HS-Eden rotor model update. In this case there 

are 1000 iteration steps. 

 

Fig. 6.9. Output of the function B(𝒆) during the HS-Eden rotor model update. 

 

From Figure 6.9 it can be noted, that the optimization of the rotor model starts to converge 

rapidly during the first 120 iterations and the output of the function B(𝒆) is almost halved 

compared to the starting output. Optimization in this case could be stopped at around 650 

iterations, because output of the function B(𝒆) stays almost constant during the later iteration 

steps. 

 

In conclusion an updated model was obtained for the HS-Eden machine. Rotor model update 

procedure with 14 design variables 𝑒𝑝 ran at about 11.55 iterations per second. 
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7 CONCLUSIONS 

Main point of the thesis was to focus on the magnetic center calibration, rotor model 

identification and rotor model updating method design, implementation and testing. All 

mentioned methods were tested with the HS-Eden machine. In the design of these methods, 

the ability to use different machines with ease was taken into account. Research problem of 

the thesis “finding ways to reduce the uncertainty related to the model based control” was 

solved with these methods. 

 

With the magnetic center calibration, magnetic center of the rotor is located. An algorithm 

using several bias current values was developed. This magnetic center is an optimal operating 

point of the AMB system, because in this point the system corresponds better to the linearized 

equations. Magnetic center of the HS-Eden machine is located approximately at (70.7, 10.49, 

148.66, -20.65) µm from the geometric center. 

 

Identification of the rotor is used to obtain the frequency response of the rotor-bearing system. 

An adaptive amplitude stepped-sine identification algorithm was developed. The identified 

rotor model could be used to locate flexible modes of the rotor. First flexible mode of all the 

radial axes (DX, DY, NX, NY) of the HS-Eden machine is located at between 600…700 Hz. 

 

Rotor model update is a method used to obtain a model which describes more accurately the 

experimental data of the rotor model identification. A method for constructing parametric 

model of the rotor from experimental data used to extract resonance and anti-resonance 

frequencies and damping ratios was presented. This method was then used in the rotor model 

updating method which was developed. With the rotor model update method, a more accurate 

model was obtained for the HS-Eden machine. Largest frequency error between experimental 

data and the updated model was less than 1.0 %. For the damping ratios error between 

experimental data and original and updated model remained almost the same. 
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Future work with the magnetic center calibration would include the testing of optimal number 

of bias currents and the optimal bias current values. Measurement data could be saved to a file. 

Axial magnetic center calibration also could be considered. 

 

For the rotor model identification, multi-sine excitation with the Beckhoff PLC system could 

be developed. Also better frequency range selection is needed. For the Z-axis identification 

even a different frequency vector. Excitation at the controller input 𝑬 so that for example 

controller performance could be measured. 

 

For the rotor model updating, future work would include testing of other optimization 

methods. Finding good starting values for the design variables 𝑒𝑝 is needed. Also testing and 

including other flexible modes in the error calculation. FEM-model generation should be 

checked and optimized if possible. Parametric model generation and damping ratio extraction 

should be checked. 
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APPENDICES 

Appendix 1: Rotor model update MATLAB® script 

clear all 
close all 
clc 
format shortG 
set(cstprefs.tbxprefs,'FrequencyUnits','Hz') 
run('Data_05_06_2015_15_03_49.m'); %load identification data 
%FRFs from identification data 
sys_plantdx = 

idfrd(data_exc_dx(:,7)./data_exc_dx(:,3)/1e6,2*pi*data_exc_dx(:,1),50e-6); 
sys_plantnx = 

idfrd(data_exc_nx(:,9)./data_exc_nx(:,5)/1e6,2*pi*data_exc_nx(:,1),50e-6); 
addpath(strcat(pwd,'\AMBLib')); 
freq_p_in=[]; 
freq_z_in=[]; 
damp_p_in=[]; 
damp_z_in=[]; 
%determining resonance and anti-resonance frequencies and damping ratios 
%from experimental data using least squares optimization 
[freq_p,freq_z,damp_p,damp_z]=pz_from_exp(sys_plantnx); 
freq_p_in(end+1)=freq_p(6); 
freq_z_in(end+1)=freq_z(5);  
damp_p_in(end+1)=damp_p(6); 
damp_z_in(end+1)=damp_z(5); 
[freq_p,freq_z,damp_p,damp_z]=pz_from_exp(sys_plantdx); 
freq_p_in(end+1)=freq_p(6);  
freq_z_in(end+1)=freq_z(3);  
damp_p_in(end+1)=damp_p(6); 
damp_z_in(end+1)=damp_z(3); 
n_design=14; 
var_low=0; 
var_up=2; 
E_design=ones(1,n_design)*200e9; 
n_res=1; 
n_antires=1; 
opt_fmin=optimset('MaxIter',1000,'MaxFunEvals',2500); 
x_start=((var_up-var_low)*rand(1,n_design)+var_low).*E_design; %initial 

quess e 
[x1,fval,exitflag,output]=fminsearch(@(x) 

operator_be(x,n_res,n_antires,freq_p_in,freq_z_in,damp_p_in,damp_z_in),x_st

art,opt_fmin) %Nelder-Mead optimization, operator_be is the error function 

B(𝒆) 
%after Nelder-Mead optimization has finished, x1 contains the updated 

%elasticity values 𝑒𝑝 

 

 


