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Active magnetic bearing has many advantages over the conventional bearing and many 

industries have become interested to utilize the active magnetic bearing in their system. 

However, this system is very sensitive to absence of magnetic field. The touchdown bearing 

is protecting the rotor from the failure in the dropdown. During the dropdown the rotor 

contacts the touchdown bearing and the bearing experiences high level of stress. In order to 

estimate the life time of the touchdown bearing, the stress that is imposed to the touchdown 

bearing should be taken into account. The Hertzian stress is an analytical method that can be 

applied to obtain the stress in an infinitesimal contact area between the ball and bearing race. 

In this method instead of the point contact between ball and race, an elliptic area as a result 

of projection of the contact bodies will be used to calculate the stress. The normal force 

between the ball and bearing race depends on the contact stiffness and deformation of the 

bearing race in dropdown. The deformation can be obtained with the help of the simulation 

of the dropdown and the models for the ball bearing. Current study applies Hertzian contact 

stress theory to investigate the stress level for the rotor bearing system that is selected for 

case study. 
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1 INTRODUCTION 

 

 

This chapter introduces the main reasons of applying touchdown bearing, previous studies 

on the developing various models for the dropdown and touchdown bearing. Then, the brief 

description about the obstacles on estimating the stress of the touchdown bearing and the 

methods to overcome the problem will be provided.  

 

1.1 Background 

In AMB (Active Magnetic Bearing), the rotor is suspended in the magnetic field and the 

friction between the rotor and the bearing does not exist. In this system, the position of the 

rotor can be controlled by feedback control of AMB. Therefore, the dynamic properties 

(stiffness and damping) of the system can be regulated. Controlling the natural frequencies 

and vibration of the rotor are supplementary advantages of applying the AMB. Moreover, 

the active feedback control of the system enables the unbalance compensation of the rotor 

during the operating condition. [1, p.601.] Although the AMB has many advantages in 

comparison to the conventional bearing, it is extremely sensitive to the absence of magnetic 

field. Therefore, providing an appropriate protection device which keeps the rotor intact from 

the failure of AMB is an essential requirement of the system. Touchdown bearings are the 

only devices preventing rotor from the probable failure in the dropdown event. Touchdown 

bearing might also be in service while the AMB is in operation or it is overloaded. [2, p. 692.] 

The touchdown bearing used for protection of the rotor during the dropdown also named as 

auxiliary bearing, retainer bearing, catcher bearing or backup bearing. In industrial 

applications, ball bearing is dominated for touchdown bearing mainly for minimizing energy 

dissipation, the rapid acceleration of inner race and decreasing the whirling motion of the 

rotor [1, p. 602; 3, pp.406-413]. Figure 1.1 shows the schematic of the touchdown bearing 

and AMB of the turbo expander for energy recovery from natural gas [4, p.20]. 
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Figure 1.1. Schematic of the touchdown bearing and magnet bearing [Mod. 4, p.20].  

 

Recent developments in the field of AMB have led to an interest in simulation of rotor during 

dropdown and selecting an appropriate design model for touchdown bearing. These studies 

indicate that FEM (Finite Element Method) is an accurate model for rotor. But, applying the 

FEM for modeling nonlinearity in the bearing is computationally time consuming. The 

models for rotor dropdown in touchdown bearing combining the FEM and modal reduction 

are efficient in reducing the computational time. In addition, the literature provides 

information about the detail of bearing model, stiffness and damping of the support, oil film, 

friction coefficient and inertia of rolling element. [1, pp. 601-617; 2, pp. 692-705.]  

 

In the literature, several models for ball bearings have been proposed to explain the 

gyroscopic effect and the centrifugal forces. Kurvinen et al. [5, pp. 240-260] improved the 

model provided by Sopanen and Mikkola [6, pp. 201-211; 7, pp. 213-223] and added the 

centrifugal forces and gyroscopic moment and contemplated the defect in the ball bearings. 

Kärkkäinen et al. [1, pp. 606-608] considered rotational inertia of the ball and inner ring and 

aerodynamic torque. In a recent paper of Halminen et al. [2, pp. 692-705] the model for the 
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cageless bearing is developed based on the available model for the bearing with the cage. 

The friction between the rotor and inner race will affect the whirling motion of the rotor [1, 

p. 613; 8, pp. 79-89]. As a result of the wear between the rotor and inner race in dropdowns 

and also the thermal growth of bearing, the friction coefficient might change during the life 

time of touchdown bearing [9, pp. 334-359; 10, pp. 505-517]. In addition to the friction 

coefficient, the stiffness and damping, mass of the support and the rotor imbalance influences 

the behavior of the rotor in dropdown. Moreover, the optimal design of the damping, effect 

of damping in dynamic response of system, air gap clearance, friction coefficient and 

comparison of double row ball bearing and single row ball bearing are other criteria that 

have been studied in the touchdown bearing model. [3, pp. 406-413; 11, pp. 53-61; 12 pp. 

154-163; 13, pp. 253-263.]  

 

High contact stress between the ball and raceway of bearing degrades the life time of the 

bearing. The localized deformation and fracture fatigue are the consequence of the contact 

stress [14, p. 266]. The literature review on the contact stress in bearing shows that Hertzian 

contact model is the analytical method that can be applied for determining the contact stress 

and life time of the ball bearing and gears [1, pp. 604-605; 2, p. 694; 5, p. 243; 14, p. 266; 

15, p.205]. 

 

In the literature, FEM have been proposed to explain the strain-stress distribution of the 

contact surfaces [14, pp. 267-269]. The accuracy of the results for both analytical and 

numerical method for calculating contact stress highly depends on the calculation of the 

loads exerted on the contact surfaces. Calculation of this load requires prior knowledge in 

the rotor dynamic and bearing model. Rolling contact stress is also imperative part of the 

analysis of the railroad industry and several studied has been done to model the contact stress 

and fatigue in railroad industry [16, pp. 985-997]. The effect of both surface and subsurface 

stress have been also considered to model the rolling contact fatigue in railroad industry [17, 

pp. 899-909].  

 



13 

However, few publications can be found that discussed about the issue of life and stress 

analysis in touchdown bearings [15, pp. 203-209; 18, p. 031101.1]. Sun [15, p. 205] utilized 

the Hertzian contact model to estimate the fatigue life of the touchdown bearing in AMB of 

energy storage flywheel. These studies include one dimensional thermal model to 

demonstrate thermal growth in bearing parts. The results obtained by Sun [15, p. 209] 

indicate that by selecting proper damper and decreasing the temperature of the touchdown 

bearing, the fatigue life of touchdown bearing will be increased. Furthermore, Lee and 

Palazzolo [18, p. 031101.14] used rain flow analysis to predict the life time of touchdown 

bearing and they suggested that by decreasing the air gap in touchdown bearing, reducing 

the friction between the rotor and inner race in the dropdown event and modifying the 

support condition (by decreasing the stiffness and enhancing the damping of supports) the 

life time of the touchdown bearing can be increased. Helfert [19, pp. 10-15] investigated the 

contact of the rotor on the touchdown bearing during the dropdown. He implemented the 

video recording tool to capture the acceleration and the contact of the rotor on the touchdown 

bearing.  

 

1.2 Research problem  

In the dropdown event, the rotor impacts the bearing in several points of the touchdown 

bearing and the bearing experiences high stress. Evaluating the stress level in the dropdown 

is an essential requirement for estimating the life time of the touchdown bearing. It is 

challenging to obtain the stress that is a consequent of the contact in an infinitesimal area 

between ball and bearing race. Furthermore, calculation of the stress in touchdown bearing 

requires detailed investigation of the rotor dropdown. Therefore, several studies attempted 

to simulate the dropdown. Moreover, calculation of the normal contact force and applying 

the conventional method for the stress analysis are other obstacles in obtaining the stress in 

touchdown bearing. 
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1.3 Objectives and restrictions  

The main purpose of this study is to determine the stress level in the touchdown bearing of 

the AMB system in the dropdown. During the dropdown of the rotor on touchdown bearing, 

the ball might contact both inner race and outer race. Providing the model which can 

determine the contact stress both for ball-inner race and ball-outer race requires the more 

complicated model of the bearing which includes the high speed effect (improved model [5, 

pp. 247-249]). Previous studies indicated that the contact stress between the ball and inner 

race is higher than the contact between the ball and outer race [20, p.438]. The author´s 

attention was concentrated on obtaining the stresses in the first contact. The results of current 

study presents the maximum contact stress and normal force between the each ball and inner 

race. The accuracy of the model is highly dependent on the calculation of the penetration of 

the ball on the inner race and the initial value for the relative displacement of the rotor with 

respect to the bearing. 

  

1.4 Research methodology  

This research focuses on calculating the contact stress in the first contact of the rotor and 

touchdown bearing. For this purpose, current work can be divided in to four steps. First, the 

model for the rotor will be described. Second, the principal of theory of elasticity will be 

applied to demonstrate the general model for contact stress. Third, the relative displacement 

of the rotor bearing in the dropdown is extracted with the help of the RoBedyn (Rotor-

Bearing Dynamics tool box for Matlab) that is developed in the laboratory of Machine 

Dynamic of the LUT (Lappeenranta University of Technology). This information, will be 

used to obtain the deformation of the ball on inner race, normal force and contact stress of 

the desired rotor. Finally, the normal force and maximum normal stress for each ball will be 

calculated.  
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2 MODELING OF THE STRESSES IN TOUCHDOWN BEARING 

 

 

This study applies the Hertzian contact stress model to obtain the stresses in touchdown 

bearing. Figure 2.1 features the schematic of the rotor bearing model in AMB. During the 

normal operation the rotor is suspended in the AMBs and in the dropdown event the rotor is 

carried out by two touchdown bearings. The sensors shown in this figure detect the 

displacement of the rotor. In this study, the outer ring of the touchdown bearing is rigidly 

connected to the bearing housing. In this model, by applying the spring-damper system the 

bearing housing is attached to the ground. [1, pp. 608-609.] The support properties will be 

modeled with the help of spring damper system. This model will be a fundamental for 

determining the stresses in touchdown bearing. The first section of this chapter provides 

information about modeling of the rotor. Section, 2.2 is devoted to model the contact between 

ball and race. Section 2.3 describes how the theory of elasticity can be applied for modeling 

of the bearing. Then the normal force will be obtained from the model for the ball bearing 

(section 2.4-5). The last part of this chapter demonstrates the maximum Hertzian stress to 

obtain the stress in touchdown bearing.  

 

 

Figure 2.1. Schematic of the rotor bearing model in AMB [Mod. 21, p. 609] 
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2.1 Modeling of the rotor  

In the literature, several researches have been done to explain the stability and natural 

frequency of the rotor [1, pp. 610-613; 4, pp. 167-388]. The simplification used in the 

traditional approach of the rotor dynamic system makes that the nonlinearities like the 

bearing clearance that is required for modeling the touchdown bearing cannot be directly 

considered in the model. Applying the flexible multibody dynamic method helps that 

aforementioned drawback and also other nonlinearities like waviness of the bearing ring can 

be simulated. Sopanen et al. [21, pp. 54-57] used this method to model super harmonic 

vibration of the tube roll in paper machine industry. However, this method often requires 

modal synthesis to reduce computational burden and time.  

 

Current study applies the FEM for the rotor studied by Kärkkäinen [22, pp. 21-33]. In the 

FEM, the inertia and stiffness properties of the body can be taken into account. Above study 

concentrated on the lateral vibration and therefore the axial and torsional degrees of freedom 

are not considered in the element. In this model, the angular rotational speed of rotor, 𝛺, is 

considered to be constant. The beam element is described by two nodes where each node has 

two translation (𝑢, 𝑣) and two rotational (𝜃𝑢, 𝜃𝑣) degrees of freedom (see Figure 2.2 (a)).  

 

 

 

(a) (b) 

  

Figure 2.2. The finite element model of the beam [Mod. 22, pp. 23-24].  
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The vector of generalized coordinate for the element is given by [22, p. 22]: 

 𝐪e = [𝑢1 𝑣1 𝜃𝑢1 𝜃𝑣1 𝑢2 𝑣2 𝜃𝑢2 𝜃𝑣2]
𝑇 (2.1) 

where subscripts 1, 2 defines degrees of freedom at node 1 (0,0) and node 2 (𝐿𝑒 ,0), 

respectively. In Figure 2.2 (a), 𝐿𝑒  is length of the element. 𝑢  and 𝑣  can be defined by 

applying third order polynomial expansion given in equation (2.2) [22, p. 22].  

 
[
u
𝑣
] = [

𝑎0 + 𝑎1𝑠 + 𝑎2𝑠
2 + 𝑎3𝑠

3

𝑏0 + 𝑏1𝑠 + 𝑏2𝑠
2 + 𝑏3𝑠

3 ] (2.2) 

where 𝑠 is the longitudinal coordinate depicted in Figure 2.2 (a). In equation (2.2) 𝑎0, … , 𝑎3 

and 𝑏0, … , 𝑏3 are polynomial coefficients that can be defined by applying the Timoshenko 

beam theory in the cross section of the beam element. Equation (2.3) defines the relation 

between the slope of displacement in the beam cross section shown in Figure 2.2 (b), shear 

strain (𝛾𝑢, 𝛾𝑣) and (𝜃𝑢, 𝜃𝑣) [22, p. 23].  

 𝜕𝑢

𝜕𝑠
= 𝜃𝑣 − 𝛾𝑣 

𝜕𝑣

𝜕𝑠
= 𝜃𝑢 − 𝛾𝑢 

(2.3) 

The angles 𝛾𝑢, 𝛾𝑣  are assumed to be constant in across the beam element. The force 

equilibrium for element can be expressed as follows [22, p. 24]:  

 𝜕𝑀

𝜕𝑠
− 𝑉 = 0   ,    𝑀 = −𝐸𝐼

𝜕𝜃

𝜕𝑠
 (2.4) 

where 𝑀 and 𝑉 are moment and shear force in the cross section of the element. 𝐸 represents 

the modulus of elasticity and 𝐼  is moment of inertia. By substituting the shear force 

𝑉 = 𝐾𝑠𝐺𝐴∗𝛾 in equation (2.4) the force equilibrium can be rewritten as [22, p. 24]:  

 
−𝐸𝐼

𝜕2𝜃𝑢

𝜕𝑠2
− 𝐾𝑠𝐺𝐴∗𝛾𝑢 = 0 

−𝐸𝐼
𝜕2𝜃𝑣

𝜕𝑠2
− 𝐾𝑠𝐺𝐴∗𝛾𝑣 = 0 

(2.5) 

where 𝐾𝑠 is shear correction factor, 𝐺 is shear modulus and 𝐴∗ is cross section of the beam 

element. Then, applying equation (2.2) and (2.3), the below relation will exist between the 

coefficients of the polynomial and the second derivative of the element rotation.  

 𝜕3𝑢

𝜕𝑠3
=

𝜕2𝜃𝑣

𝜕𝑠2
= 6𝑎3   ,

𝜕3𝑣

𝜕𝑠3
=

𝜕2𝜃𝑢

𝜕𝑠2
= 6𝑏3 (2.6) 

Substituting (2.6) in (2.5) yields: 
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 𝛾𝑢 = −

6𝐸𝐼𝑏3

𝐾𝑠𝐺𝐴∗
  

𝛾𝑣 = −
6𝐸𝐼𝑎3

𝐾𝑠𝐺𝐴∗
  

(2.7) 

Then, by implementing equation (2.2), (2.3) and (2.7), 𝜃𝑢, 𝜃𝑣 can be defined as follows: 

 
𝜃𝑢 = 𝑏1 + 2𝑏2𝑠 + (3𝑠2 +

6𝐸𝐼

𝐾𝑠𝐺𝐴∗
) 𝑏3     

𝜃𝑣 = 𝑎1 + 2𝑎2𝑠 + (3𝑠2 +
6𝐸𝐼

𝐾𝑠𝐺𝐴∗
) 𝑎3 

(2.8) 

The coefficient in the polynomial can be determined by inserting the following boundary 

conditions in the polynomial approximation. 

 𝑢(0) = 𝑢1         , 𝑢(𝐿𝑒 ) = 𝑢2      

𝑣(0) = 𝑣1         , 𝑣(𝐿𝑒 ) = 𝑣2    

𝜃𝑢(0) = 𝜃𝑢1     , 𝜃𝑢(𝐿𝑒 ) = 𝜃𝑢2   

𝜃𝑣(0) = 𝜃𝑣1      , 𝜃𝑣(𝐿𝑒 ) = 𝜃𝑣2       

(2.9) 

Now, the shape function matrix (𝐍(𝑠)) can be determined with the help of above polynomials 

and the vector of generalized coordinates given in equation (2.1) [22, p. 25].  

 

[
 
 
 
𝑢(𝑠)

𝑣(𝑠)

𝜃𝑢(𝑠)

𝜃𝑣(𝑠)

 

]
 
 
 
= 𝐍(𝑠)𝐪e = [

𝐍𝑇(𝑠)

𝐍𝑅(𝑠)
 ] 𝐪e      (2.10) 

In this work, the subscripts 𝑇, 𝑁 are attributed to the translational and rotational, respectively. 

The shape function matrix will be used to obtain the mass matrix and stiffness matrix in the 

equation of the motion of the rotor. The Lagrangian equation can be implemented to 

demonstrate the equation of the motion of the rotor as follows: 

 𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝐪̇
) − (

𝜕𝐿

𝜕𝐪
) = 𝑸𝑒 (2.11) 

where 𝐿 is the difference between the kinetic and potential energy of the system. 𝑸𝑒 is the 

vector of externally applied forces. The total kinetic energy (𝑇) is sum of the translation (𝑇𝑇) 

and rotational (𝑇𝑅) kinetic energy of element [22, p. 27].   

 𝑇 = 𝑇𝑇 + 𝑇𝑅 (2.12) 

where 
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𝑇𝑇 =

1

2
𝜌𝐴∗ ∫ (𝑢̇2 + 𝑣̇2)

𝐿

0

𝑑𝑠      (2.13) 

 
𝑇𝑅 =

1

2
∫ (𝐼𝑑 (𝜃̇𝑢

2
+ 𝜃̇𝑣

2
) + 𝐼𝑝𝛺(𝜃̇𝑢𝜃𝑣 − 𝜃̇𝑣𝜃𝑢) + 𝐼𝑝𝛺2)

𝐿

0

𝑑𝑠 (2.14) 

where 𝜌  is density of element and 𝑢̇ , 𝑣̇  are time derivative of displacement. It should be 

noted that the vector of generalized coordinate will change by time. The 𝐼𝑝  and 𝐼𝑑  (for 

circular cross section, 𝐼𝑝 = 2𝐼𝑑 ) are polar and diametric moment of inertia of element, 

respectively. In equation (2.14), the product of the moment of inertia, rotation angle and the 

angular velocity of element (𝐼𝑝𝛺𝜃𝑣 , 𝐼𝑝𝛺𝜃𝑢 ) is the gyroscopic moments. By applying the 

shape function the mass matrix (𝐌) can be expressed by translational (𝐌𝑇
𝑒 ) and rotational 

(𝐌𝑅
𝑒 ) term [22, pp. 28-29]:  

 
𝐌𝑇

𝑒 = 𝜌𝐴∗ ∫ 𝐍𝑇
𝑇𝐍𝑇𝑑𝑠

𝐿

0

 

𝐌𝑅
𝑒 = 𝜌𝐴∗ ∫ 𝐍𝑅

𝑇𝐍𝑅𝑑𝑠
𝐿

0

 

(2.15) 

In addition, the gyroscopic matrix (𝐆𝑒) and intermediate gyroscopic matrix (𝐠𝑒) can be given 

by [22, p. 29]: 

 
𝐆𝑒 = −2𝐠𝑒 = 2𝐼𝑑 ∫ 𝐍𝑅

𝑇 [
0 1

−1 0
]𝐍𝑅𝑑𝑠

𝐿

0

 (2.16) 

Therefore, the kinetic energy can be rewritten as [22, p. 28]: 

 
𝑇 =

1

2
𝐪̇𝑒𝑇(𝐌𝑇

𝑒 + 𝐌𝑅
𝑒)𝐪̇𝑒 + 𝛺𝐪𝑒𝑇𝐠𝑒𝐪̇𝑒 (2.17) 

The strain energy of element (𝑈) is sum of the elastic energy related to bending and shear 

deformation and is given by [22, p. 29]: 

 

𝑈 =
1

2
∫ (𝐸𝐼 ((

𝜕𝜃𝑢

𝜕𝑠
)

2

+ (
𝜕𝜃𝑣

𝜕𝑠
)
2

) + 𝐾𝑠𝐺𝐴∗(𝛾𝑢
2 + 𝛾𝑣

2))
𝐿

0

𝑑𝑠 (2.18) 

Equation (2.19) expresses the bending (𝐊𝑏
𝑒) and shear (𝐊𝑠

𝑒) stiffness matrix in terms of 𝐍𝑇 

and 𝐍𝑅 [22, p. 29].  



20 

 
𝐊𝑏

𝑒 = 𝐸𝐼 ∫ (
𝜕𝐍𝑅

𝜕𝑠
)

𝑇

(
𝜕𝐍𝑅

𝜕𝑠
) 𝑑𝑠

𝐿

0

 

𝐊𝑠
𝑒 = 𝐾𝑠𝐺𝐴∗ ∫ (

𝜕𝐍𝑇

𝜕𝑠
+ 𝐍𝑅)

𝑇

(
𝜕𝐍𝑇

𝜕𝑠
+ 𝐍𝑅) 𝑑𝑠

𝐿

0

 

(2.19) 

Thus, the strain energy can be rewritten as [22, p. 29]: 

 
𝑈 =

1

2
𝐪𝑒𝑇(𝐊𝑏

𝑒 + 𝐊𝑠
𝑒)𝐪𝑒   (2.20) 

Then, by applying the Lagrangian equation (2.11), the equation of motion can be obtained 

by [22, p. 30]: 

 𝐌𝐪̈ + (𝐂 + 𝛺𝐆)𝐪̇ + (𝐊 + 𝛺̇𝐆)𝐪 = 𝛺2𝐐1 + 𝛺̇𝐐2 + 𝐅 (2.21) 

where, 𝐂 is the damping matrix, 𝐅 is the vector of externally applied force. 𝐐1 and 𝐐2 are 

force vectors describing the mass unbalance of the rotor. The derivation of 𝛺 at constant 

speed is equal to zero. Therefore, the equation of motion is given by [22, p. 31]: 

 𝐌𝐪̈ + (𝐂 + 𝛺𝐆)𝐪̇ + 𝐊𝐪 = 𝛺2𝑸1 + 𝐅 (2.22) 

Although above equation can be solved by integration with respect to the time, but due to 

large number of equations that are coupled together the solution is computationally time 

demanding. For solving above equations, the modal synthesis can be applied to reduce the 

number of equation. In modal synthesis, the deformation of the element considered to be 

linear and it can be described in terms of modal coordinate. [22, pp. 31-32.]  

 𝐪 = 𝚽𝐏 (2.23) 

where, 𝚽 and 𝐏 are mode shape matrix and vector of modal coordinate. As the modes with 

lower frequency have considerable effect in the behavior the of system, by ignoring the mode 

related to the higher frequency the number of degrees of freedom can be reduced and the 

results still will have acceptable accuracy. Substituting the reduced matrix in equation (2.22), 

yields [22, p. 33]: 

 𝚽𝑇𝐌𝚽𝐏̈ + (𝚽𝑇𝐂𝚽 + 𝛺𝚽𝑇𝐆𝚽)𝐏̇ + (𝚽𝑇𝐊𝚽 + 𝛺̇𝚽𝑇𝐆𝚽)𝐏 = 𝚽𝑇𝐅tot (2.24) 

where, 𝐅tot is a vector of the sum of the externally applied forces. Then, by performing the 

eigenvalue analysis and modal solution, the relative displacement of the rotor will be 

obtained. The information about the relative position of the rotor with respect to the bearing 

is required for modeling the bearing which will be described in section 2.5.  
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2.2 Model for the contact between the ball and inner race 

In order to calculate the stress in the touchdown bearing, the normal force and the contact 

area between the ball and inner race should be known. It is difficult to find the stress in an 

small contact area between the ball and inner race (Figure 2.3). To solve this issue, many 

researches have been done to demonstrate either the contact between ball and inner race 

(point contact) or between the roller and inner race (line contact) [23, pp. 163-164].  

 

Figure 2.3. Point contact between ball and inner race. 

 

For several years significant effort has been made to study the surface stress. In 1892, 

Boussinesq proposed equation (2.25) to solve the radial stress of semi-infinite body depicted 

in Figure 2.4. He used the polar coordinate (𝑟, 𝜃) and assumed there is no shear stress on the 

surface. [23, p. 142.]   

 
𝜎𝑟 = −

2𝑄cos𝜃

𝜋𝑟
 (2.25) 

 

Figure 2.4. Semi infinitive body in Boussineq model [Mod. 23, p. 142].   
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The problem with this approach is that for the given value of normal force (𝑄), if the radius 

(𝑟) approaches zero, the radial stress (𝜎𝑟 ) will be infinitive. Later, Hertz postulated the 

infinitesimal elliptic contact area rather than point contact or line contact which mitigates 

the problem of infinitive stress.  He presumed that deformation occurs in the elastic region 

and the load is normal to the surface and there is no shear stress. In addition, he considered 

that the dimensions of the contact area are smaller than other dimensions of body and in the 

contact region, the radius curvature is considerably higher than other dimensions of the 

contact area. [23, p. 142.] This study, applies Hertzian contact model to obtain the stress in 

touchdown bearing. The principal of the Hertzian contact stress will be demonstrated in the 

following section.  

  

2.3 Implementation of theory of elasticity for modeling the Hertzian contact model 

In 1896, Hertz established a solution based on the theory of elasticity for the local stress of 

two bodies that have a point contact. Later, this method was known as Hertzian stress. Let 

us first obtain the force balance in 𝑥-direction on the small cube depicted in Figure 2.5. It is 

assumed that no body force is imposed to the cube. [23, p. 139.] 

 

Figure 2.5. Normal and shear stress on cube [Mod. 23, p. 139].       
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𝜎𝑥𝑑𝑧𝑑𝑦 + 𝜏𝑥𝑦𝑑𝑥𝑑𝑧 + 𝜏𝑥𝑧𝑑𝑥𝑑𝑦 − (𝜎𝑥 +

𝜕𝜎𝑥

𝜕𝑥
𝑑𝑥) 𝑑𝑧𝑑𝑦

− (𝜏𝑥𝑦 +
𝜕𝜏𝑥𝑦

𝜕𝑦
𝑑𝑦)𝑑𝑥𝑑𝑧 − (𝜏𝑥𝑧 +

𝜕𝜏𝑥𝑧

𝜕𝑧
𝑑𝑧) 𝑑𝑥𝑑𝑦 = 0 

(2.26) 

where 𝜎𝑥  is normal stress in 𝑥-direction, 𝜏𝑥𝑦 and 𝜏𝑥𝑧 are shear stress in 𝑥𝑦-plane and 𝑥𝑧-

plane, respectively. By mathematical manipulation of equation (2.26) and also applying 

similar procedure for 𝑦 and 𝑧-direction, the force balance can be written as [23, pp. 139-

140]: 

 𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 0 

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑧
= 0 

𝜕𝜎𝑧

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
= 0 

(2.27) 

The equation that describes normal strain (𝜀) in 𝑥, 𝑦 and 𝑧-direction is as follows [23, p. 

140]: 

 
𝜀𝑥 =

𝜕𝑢∗

𝜕𝑥
 

𝜀𝑦 =
𝜕𝑣∗

𝜕𝑦
 

𝜀𝑧 =
𝜕𝑤∗

𝜕𝑧
 

(2.28) 

where 𝑢∗, 𝑣∗  and 𝑤∗  are deformations in 𝑥, 𝑦  and 𝑧-direction. If the deformation is not 

perpendicular to axis, the element will have a relative rotation and the rotational strain (𝛾) 

that can be expressed by [23, p. 140]: 

 
𝛾𝑥𝑦 =

𝜕𝑢∗

𝜕𝑦
+

𝜕𝑣∗

𝜕𝑥
 

𝛾𝑥𝑧 =
𝜕𝑢∗

𝜕𝑧
+

𝜕𝑤∗

𝜕𝑥
 

𝛾𝑦𝑧 =
𝜕𝑣∗

𝜕𝑧
+

𝜕𝑤∗

𝜕𝑦
 

(2.29) 

The Hooke’s low describes that in elastic material, 𝜎 has linear relation with 𝜀 [23, p. 140]: 
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 𝜀 =
𝜎

𝐸
 (2.30) 

Moreover, the strain in the 𝑦  and 𝑧 -direction are proportional to 𝑥 -direction with the 

Poisson’s ratio (𝜈) [23, p. 140]: 

 𝜀𝑥 =
𝜎𝑥

𝐸
 

𝜀𝑦 = −𝜈
𝜎𝑥

𝐸
 

𝜀𝑧 = −𝜈
𝜎𝑥

𝐸
 

(2.31) 

The superposition principal postulates that the strain in each axis is affected by stress in other 

axes. Therefore equation (2.31) can be rewritten as [23, pp. 140-141]: 

 
𝜀𝑥 =

1

𝐸
[𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)] 

𝜀𝑦 =
1

𝐸
[𝜎𝑦 − 𝜈(𝜎𝑥 + 𝜎𝑧)] 

𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝜈(𝜎𝑥 + 𝜎𝑦)] 

𝜀 = 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧 

(2.32) 

In addition, equation (2.33) exists between 𝐺 and 𝐸 [23, p. 141]: 

 
𝐺 =

𝐸

2(1 + 𝜈)
 (2.33) 

The total strain is the sum of the strain in axes. Thus, the following equation is obtained [23, 

p. 141]: 

 
𝜎𝑥 = 2𝐺 (

𝜕𝑢∗

𝜕𝑥
+

𝜈

1 − 2𝜈
𝜀) 

𝜎𝑦 = 2𝐺 (
𝜕𝑣∗

𝜕𝑦
+

𝜈

1 − 2𝜈
𝜀) 

𝜎𝑧 = 2𝐺 (
𝜕𝑤∗

𝜕𝑧
+

𝜈

1 − 2𝜈
𝜀) 

(2.34) 

Then, the following set of equation can be obtained by differentiation of 𝜀, 𝛾 and substituting 

them in equation (2.27) [23, p.141]: 
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∇2𝑢∗ +

1

1 − 2𝜈

𝜕𝜀

𝜕𝑥
= 0 

∇2𝑣∗ +
1

1 − 2𝜈

𝜕𝜀

𝜕𝑦
= 0 

∇2𝑤∗ +
1

1 − 2𝜈

𝜕𝜀

𝜕𝑧
= 0 

(2.35) 

where  

 
∇2=

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 (2.36) 

Finally, above set of equations should be solved to obtain the strain. Accordingly, the stress 

can defined. This solution will be a fundamental for deriving the maximum contact stress in 

the bearing that will be demonstrated in the section 2.6.  

 

Hertz used the dimensionless parameters, the dimensionless deformation and the arbitrary 

function to solve the stress. By introducing the arbitrary fixed length (𝑙), the principal 

directions distances (𝑥, 𝑦, 𝑧) are converted to the dimensionless forms as equation (2.37). 

[23, p. 143.] 

 𝑋 =
𝑥

𝑙
 

𝑌 =
𝑦

𝑙
 

𝑍 =
𝑧

𝑙
 

(2.37) 

These dimensionless parameters (𝑋, 𝑌, 𝑍) are used in defining the arbitrary functions named 

𝑈∗ and 𝑉∗ that satisfy below condition [23, p. 143]: 

 ∇2𝑈∗ = 0 

∇2𝑉∗ = 0 
(2.38) 

Then, by applying the arbitrary length of 𝑐, the dimensionless form of 𝑢∗, 𝑣∗ and 𝑤∗ can be 

written as [23, p. 143]: 

 𝑢∗

𝑐
=

𝜕𝑈∗

𝜕𝑋
− 𝑍

𝜕𝑉∗

𝜕𝑋
 (2.39) 
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𝑣∗

𝑐
=

𝜕𝑈∗

𝜕𝑌
− 𝑍

𝜕𝑉∗

𝜕𝑌
 

𝑤∗

𝑐
=

𝜕𝑈∗

𝜕𝑍
− 𝑍

𝜕𝑉∗

𝜕𝑍
+ 𝑉∗ 

In above equation 
𝑢∗

𝑐
, 

𝑣∗

𝑐
 and 

𝑤∗

𝑐
 are dimensionless form of deformation. These arbitrary 

lengths (𝑙, 𝑐) and arbitrary function (𝑈∗) are related together with the following equation 

[23, p. 143].  

 𝑙𝜀

𝑐
= −2

𝜕2𝑈∗

𝜎𝑍2
 (2.40) 

These hypothesis are established on a combination of intuitive and experience. These 

dimensionless deformations and dimensionless parameters are combined with equation 

(2.29), (2.32), (2.34) and (2.35). Thus, the normal and shear stress can be expressed as the 

following [23, pp. 143-144]: 

 𝜎𝑥

𝜎𝑜
= 𝑍

𝜕2𝑉∗

𝜕2𝑋
−

𝜕2𝑈∗

𝜕2𝑋
− 2

𝜎𝑉∗

𝜎𝑍
 

𝜎𝑦

𝜎𝑜
= 𝑍

𝜕2𝑉∗

𝜕2𝑌
−

𝜕2𝑈∗

𝜕2𝑌
− 2

𝜎𝑉∗

𝜎𝑍
 

𝜎𝑧

𝜎𝑜
= 𝑍

𝜕2𝑉∗

𝜕2𝑍
−

𝜎𝑉∗

𝜎𝑍
 

𝜏𝑥𝑦

𝜎𝑜
= 𝑍

𝜕2𝑉∗

𝜎𝑋𝜎𝑍
 

(2.41) 

where 

 
𝜎𝑜 = −

2𝐺𝑐

𝑙
      (2.42) 

 
𝑈∗ = (1 − 2𝜈)∫ 𝑉∗(𝑋, 𝑌, 𝑍, 𝜈)𝑑

∞

𝑧

𝜈 
(2.43) 

 

𝑉∗ =
1

2
∫

(1 −
𝑋2

𝜅2 + 𝑆2 −
𝑌2

1 + 𝑆2 −
𝑍2

𝑆2)

√(𝜅2 + 𝑆2)(1 + 𝑆2)

∞

𝑆𝑜

𝜅𝑑𝑆 

(2.44) 

and  

 𝜅 =
𝑎

𝑏
 (2.45) 
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where 𝜎𝑜 is stress at center of geometry, 𝑆 is principal stress, 𝑆𝑜 is the largest positive root 

of the equation 2.44. In equation (2.45), 𝜅 is named as elliptic eccentricity parameter, 𝑎 and 

𝑏 are semi-minor and semi-major axis of the elliptic area depicted in Figure 2.6. This elliptic 

area is created from the projection of the contact area. [23, p. 144.]  

 

Figure 2.6. Stress in elliptical surface [Mod. 23, p. 149].     

 

For modeling the contact stress, the area of ellipse (𝜋𝑎𝑏) should be defined. 𝑎 and 𝑏 can be 

obtained with the help of dimensionless quantities, amount of force and material properties 

of the contact area. Let us introduce the supplementary quantity 𝐹(𝜌) [23, pp. 144-145]: 

 
𝐹(𝜌) =

(𝜅2 + 1)ζ̅ − 2ξ̅

(𝜅2 − 1)ζ̅
 (2.46) 

where  

 
ξ̅ = ∫ [1 − (1 −

1

𝜅2
) sin2𝜗]

−1
2⁄

𝜋
2

0

𝑑𝜗 (2.47) 

 
 ζ̅ = ∫ [1 − (1 −

1

𝜅2
) sin2𝜗]

1
2⁄

𝜋
2

0

𝑑𝜗 (2.48) 

where ξ̅ , ζ̅  are elliptical integral of first and second kind, correspondingly. ξ̅  and ζ̅  are 

defined by auxiliary angle (𝜗) and 𝜅. By presuming the value for 𝜅, the function 𝐹(𝜌) can 

be defined. The following dimensionless parameters (𝑎∗, 𝑏∗ 𝑎𝑛𝑑 𝛿∗) are required to obtain 

the 𝑎, 𝑏 and deformation of the contact area (𝛿) [23, p. 146]. 

 

𝑎∗ = (
2𝜅2ζ̅

𝜋
)

1
3⁄

 (2.49) 
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𝑏∗ = (
2ζ̅

𝜋𝜅
)

1
3⁄

 (2.50) 

 

𝛿∗ =
2ζ̅

𝜋
(

𝜋

2𝜅2ζ̅
)

1
3⁄

 (2.51) 

Then 𝑎, 𝑏 and δ can be calculated as the following [23, pp. 145-146]:  

 

𝑎 = 𝑎∗ [
3𝑄

2∑𝜌
(
(1 − 𝜈𝐼

2)

𝐸𝐼
+

(1 − 𝜈𝐼𝐼
2 )

𝐸𝐼𝐼
)]

1
3⁄

 (2.52) 

 

𝑏 = 𝑏∗ [
3𝑄

2∑𝜌
(
(1 − 𝜈𝐼

2)

𝐸𝐼
+

(1 − 𝜈𝐼𝐼
2 )

𝐸𝐼𝐼
)]

1
3⁄

 (2.53) 

 

𝛿 = 𝛿∗ [
3𝑄

2∑𝜌
(
(1 − 𝜈𝐼

2)

𝐸𝐼
+

(1 − 𝜈𝐼𝐼
2 )

𝐸𝐼𝐼
)]

2
3⁄ ∑𝜌

2
 (2.54) 

where, the subscribes 𝐼 and 𝐼𝐼 are related to the material properties of the contact bodies (see  

Figure 2.7).  

 

Figure 2.7. Modeling of the elliptical contact in the ball bearing [Mod. 5, p. 243].   

 

The calculation of the maximum contact stress depends on the presumed value for 𝜅 and the 

value of ξ̅ and ζ̅. For this reason, several publications have been appeared in previous years 

documenting the model for contact parameter. In late of 20 th century, Greenwood [24, pp. 

235-237] proposed a rough approximation model applying the effective radius of the contact 
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curvature (𝑅𝑒) for calculating the contact stress. In this method 𝑎 and 𝑏 can be calculated 

straightforwardly. The equation that describes 𝑅𝑒 is as follows [24, p. 235]: 

 
𝑅𝑒 = [𝐴𝐵 (

𝐴 + 𝐵

2
)]

−1
3⁄

 (2.55) 

where  

 𝐴 = 1
𝑅𝑥

⁄ = 1
𝑅𝐼𝑥

⁄ + 1
𝑅𝐼𝐼𝑥

⁄  (2.56) 

 𝐵 = 1
𝑅𝑦

⁄ = 1
𝑅𝐼𝑦

⁄ + 1
𝑅𝐼𝐼𝑦

⁄  (2.57) 

where 𝐴 and 𝐵 are inverses of the effective radius of curvature in 𝑥 and 𝑦-direction and they 

can be obtained from the radius of bodies (𝑅𝐼𝑥, 𝑅𝐼𝑦), (𝑅𝐼𝐼𝑥, 𝑅𝐼𝐼𝑦) through 𝑥 and 𝑦-axes ( see 

Figure 2.7). Greenwood [24, pp. 235-237] proposed the following approximation for the 

cases where the only ratio of 𝑎 and 𝑏 is required [24, p. 235].  

 
(
𝑏

𝑎
)~ (

𝐴

𝐵
)

2
3⁄

 (2.58) 

Apart from this, he expressed the equation (2.59) for calculation of 𝑎 and 𝑏 [24, p. 235]. 

Another method for obtaining 𝑎 and 𝑏 was previously shown in equation (2.52) and (2.53). 

 
𝑎 = (

3𝜅2ξ̅𝑄𝑅

𝜋𝐸∗
)

1/3

, 𝑏 = (
3ξ̅𝑄𝑅

𝜋𝜅𝐸∗
)

1/3

 (2.59) 

where  

 1

𝐸∗
=

1 − 𝜈𝐼
2

𝐸𝐼
+

1 − 𝜈𝐼𝐼
2

𝐸𝐼𝐼
 

(2.60) 

𝐸∗ is equivalent modulus of elasticity and it is obtained by 𝜈 and 𝐸 of the body I and II. The 

integral form of ξ̅ was defined in equation (2.47). The 𝜅, ξ̅ can be defined by the following 

approximation introduced by Brewe and Hamrock [25, pp. 485-487].  

 
𝜅 ≈ 1.0339 (

𝐵

𝐴
)
0.636

 (2.61) 

 
ξ̅ ≈ 1.0003 + 0.5968 (

𝐴

𝐵
) (2.62) 

The drawback of above approximation is that for circular contact (𝐴 = 𝐵), the error of 

calculating 𝜅 and ξ̅ are high (3.4% and 1.7%, respectively) [24, pp. 235-237]. Later, this 
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drawback was eliminated in the Hamrock and Brewe’s model [26, pp. 171-177] that 

suggested the following equation: 

 
𝜅 ≈ (

𝐵

𝐴
)

2
𝜋⁄

 (2.63) 

 
ξ̅ ≈ 1 + (

𝜋

2
− 1) (

𝐴

𝐵
) (2.64) 

Greenwood [24, pp. 235-237] validated his model with the industrial measurement. 

Furthermore, he compared his model with the two other models (The first model that is 

provided Brewe and Hamrock and second model given by Hamrock and Brewe). As can be 

seen in Figure 2.8, for 𝐵/𝐴 ≤ 25 the error of calculating the maximum contact stress in three 

models is lower than 2%. When 2.5 ≤ 𝐵/𝐴 ≤ 22 , the error of Brewe and Hamrock is 

remarkably low. For 𝐵/𝐴 ≤ 5  , the error of Greenwood’s model as well as the model of 

Brewe and Hamrock is considerably low (0.2%). For circular contact the error of the 

Hamrock and Brewe model is almost zero while the Brewe and Hamrock gives high error. 

Greenwood noted that there are only few cases that the error should not exceed 3% and three 

models give reasonable results. [24, p. 236.] According to above discussion, the available 

approximation for elliptical contact are appropriate for investigating the contact of the ball 

on bearing race. In this study 𝜅 is calculated by equation (2.61). The equation (2.62) is used 

to obtain ξ̅. The 𝑎 and 𝑏 are obtained from equation (2.59).  

 

Figure 2.8. Comparison of errors in calculating the maximum Hertzian stress in the models 

provided by Greenwood, Brewe & Hamrock and Hamrock & Brewe [Mod. 24, p. 236].  
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2.4 Normal force in ball bearing 

The literature on modeling of the ball bearing shows that for calculating the maximum 

Hertzian contact stress, the normal force between the contact area of the ball and races should 

be known (𝑄 in Figure 2.7). The equation that describes 𝑄 as a function of total elastic 

deformation (𝛿𝑗
𝑡𝑜𝑡) and total contact stiffness (𝐾𝑐

𝑡𝑜𝑡) is as follows [1, p. 604; 2, p. 694; 5, p. 

246]: 

 𝑄𝑖 = 𝐾𝑐
𝑡𝑜𝑡(𝛿𝑗

𝑡𝑜𝑡)
3/2

 (2.65) 

where the subscript 𝑗 refers to the contact between the ball number 𝑗 and inner race. The 

𝐾𝑐
𝑡𝑜𝑡 can be defined by [1, p. 604]:  

 

𝐾𝑐
𝑡𝑜𝑡 = ((

1

𝐾𝑐
𝑖𝑛

)

2/3

+ (
1

𝐾𝑐
𝑜𝑢𝑡)

2/3

)

−3/2

 (2.66) 

where 𝐾𝑐
𝑖𝑛 , 𝐾𝑐

𝑜𝑢𝑡  are contact stiffness coefficients of the inner race and outer race, 

respectively. These coefficients can be obtained as the following [1, p. 604]:  

 

𝐾𝑐
𝑖𝑛,𝑜𝑢𝑡 = 𝜋𝜅𝐸∗√

𝑅𝑒𝜉̅

4.5𝜁3̅
 (2.67) 

Equation (2.54) represents an expression for determining the deformation between two 

contact bodies and the dynamic of the ball bearing is not included in this equation. Thus, for 

obtaining 𝛿𝑗
𝑡𝑜𝑡 it is not sufficient and supplementary model for computing the deformation 

in the ball bearings is essential and it will be explained in the following section.  

 

2.5 Model for bearing  

For many years, a considerable amount of literature has been published on the study of ball 

bearing. In recent years, some improvements have been achieved by modeling the defects in 

the bearing and considering proper usage of model complexity. It is possible to further 

improve the model for predicting the life of the touchdown bearing by implementing a more 

accurate model in the calculation of bearing load. With this goal, this work explores to apply 

an appropriate model for touchdown bearing.  
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In a recent paper by Kurvinen et al. [5. 243-249], two models for the ball bearing with cage 

is provided. The first model is established on the relative displacement and velocities 

between the races and the centrifugal forces and gyroscopic moment are not taken into 

account. The second model includes the externally applied forces, gyroscopic effect and 

centrifugal forces. For simplifying and reducing the number of degrees of freedom, they did 

not consider the friction torque, hydrodynamic film and the defects in the model. Both 

simplified and improved model apply the nonlinear Hertzian contact to calculate the contact 

force and deformation in bearing. In this section the first model will be discussed. 

Furthermore, available models for the bearing with cage can be a fundamental for describing 

the cageless bearing that is nominated for touchdown bearing [2, pp. 692-705]. The model 

for cageless bearing provided by Halminen et al. [2, pp. 692-705] the same as Kärkkäinen et 

al. [1, pp. 604-607] and Kurvinen et al. [5, pp. 243-246] is established on the relative 

displacement of the rotor with respect to the bearing and calculation of the deformation. This 

model for cageless bearing, the same as simplified model does not contain centrifugal force 

and gyroscopic effect.  

 

In the simplified model described by Kurvinen et al. [5, pp. 243-246], the effect of the 

friction and hydrodynamic oil film as well as the defects are neglected. This model assumes 

that the bearing is in good manufacturing condition and there is no defect in the bearing. 

Figure 2.9 features the main dimensions and geometry of above model. In this Figure 𝑑 is 

ball diameter, 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡 are radius of inner race and outer race, respectively. The pitch 

diameter, the distance from center of the inner race to the center of the ball (𝑑𝑚), bearing 

diametric clearance (𝑐𝑑), bore diameter (𝑑𝑠), outer diameter of the bearing (𝐷ℎ), diameter of 

inner race (𝐷𝑖) and diameter of outer race (𝐷𝑜) are determined from the bearing manufacturer 

data.  
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Figure 2.9. Dimensions used for simplified model [5, p. 244]. 

    

The forces and the moments in the ball bearing are achieved by computing the relative 

displacement of the ball and races. As shown in Figure 2.10, the displacement of the ball 

number 𝑗 in radial (𝑒𝑗
𝑟) and tangential (𝑒𝑗

𝑡) direction can be calculated by [5, p. 245]: 

 𝑒𝑗
𝑟 = 𝑒𝑥cos𝛽𝑗 + 𝑒𝑦sin𝛽𝑗 

𝑒𝑗
𝑡 = 𝑒𝑧 − (Γ𝑥sin𝛽𝑗 + Γ𝑦cos𝛽𝑗)(𝑅𝑖𝑛 + 𝑟𝑖𝑛) 

(2.68) 

 

Figure 2.10. Cross-section of the ball bearing [Mod. 5, p. 245].   
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In above equation, 𝑒𝑥 , 𝑒𝑦 and 𝑒𝑧  describe the relative displacements along principal 

directions, 𝛤𝑥 and 𝛤𝑦 represent the angular misalignment of inner race in 𝑥 and 𝑦-direction. 

𝛽𝑗 is azimuth angle (this angle shows the location of the ball j among the total number of 

balls (n)) and it can be obtained by equation (2.69). [5, p. 245.] 

 
𝛽𝑗 =

2𝜋(𝑗 − 1)

𝑛
 (2.69) 

The contact angle (𝜑𝑗) shown in Figure 2.11 is given by [5, p. 245]: 

 
𝜑𝑗 = tan−1 (

𝑒𝑗
𝑡

𝑅𝑖𝑛 + 𝑟𝑖𝑛 + 𝑒𝑗
𝑟 − 𝑅𝑜𝑢𝑡 + 𝑟𝑜𝑢𝑡

) (2.70) 

where 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡 are radius shown in Figure 2.10. Equation (2.71) represents the distance 

between inner race and outer race (𝑑́) [5, p. 245]. 

 
𝑑́ = 𝑟𝑜𝑢𝑡 + 𝑟𝑖𝑛 −

𝑅𝑖𝑛 + 𝑟𝑖𝑛 + 𝑒𝑗
𝑟 − 𝑅𝑜𝑢𝑡 + 𝑟𝑜𝑢𝑡

cos𝜑𝑗
 (2.71) 

 

 

Figure 2.11. Ball bearing section view A-A [Mod. 5, p. 246].   

 

where  

 
𝑅𝑜𝑢𝑡 =

𝑑𝑚

2
+

𝑐𝑑

4
+ 𝑟𝑏 (2.72) 

and 
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 𝑅𝑖𝑛 = 𝑑𝑚 − 𝑅𝑜𝑢𝑡 (2.73) 

In equation (2.72), 𝑟𝑏  is radius of the ball. Thus, the total deformation (𝛿𝑖
𝑡𝑜𝑡 ), can be 

calculated by [5, p. 245]: 

 𝛿𝑖
𝑡𝑜𝑡 = 2𝑟𝑏 − 𝑑́ (2.74) 

Kärkkäinen et al. [1, p. 605] provided a model for the bearing with cage which the oil film 

thickness is taken into account (see Figure 2.12). In their study, the same as the simplified 

model of Kurvinen et al. [5, pp. 243-247], the centrifugal force and the gyroscopic effect is 

neglected. Therefore, the total deformation described in equation (2.74) can be rewritten as 

[1, p. 605]: 

 𝛿𝑖
𝑡𝑜𝑡 = 2𝑟𝑏 + ℎ𝑜

𝑖𝑛 + ℎ𝑜
𝑜𝑢𝑡 − 𝑑́ (2.75) 

where ℎ𝑜
𝑖𝑛, ℎ𝑜

𝑜𝑢𝑡 are oil film thickness between ball and races. It should be considered that 

the contact of the ball on the inner race compresses the inner race and the deflection will 

have positive value. Current study considers that the bearing does not require lubrication and 

the oil film thickness is ignored. 

 

Figure 2.12.  Cross section of the ball bearing including the oil film thickness [1, p. 605].  
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After the normal contact force is known from equation (2.65), the bearing forces 

(𝑄𝑥, 𝑄𝑦, 𝑄𝑧) and the moments (𝑇𝑥, 𝑇𝑦) along 𝑥, 𝑦 and 𝑧 axis can be defined by the following 

equation [5, p. 246]: 

 
𝑄𝑥 = −∑𝑄𝑗cos𝜑𝑗cos𝛽𝑗          

𝑛

𝑗=1

                

𝑄𝑦 = − ∑𝑄𝑗cos𝜑𝑗sin𝛽𝑗                                    

𝑛

𝑗=1

𝑄𝑧 = − ∑𝑄𝑗sin𝜑𝑗

𝑛

𝑗=1

                                    

𝑇𝑥 = − ∑𝑄𝑗(𝑅𝑖𝑛 + 𝑟)sin𝜑𝑗sin𝛽𝑗        

𝑛

𝑗=1

𝑇𝑦 = −∑𝑄𝑗(𝑅𝑖𝑛 + 𝑟)sin𝜑𝑗(−cos𝛽𝑗)

𝑛

𝑗=1

 

 

(2.76) 

2.6 Maximum Hertzian stress 

As previously mentioned at the geometric center of elliptic area the contact stress has 

maximum value (𝜎𝑚𝑎𝑥 = 𝜎𝑜). Hetrz introduced that the maximum contact stress can be 

calculated by [23, p. 148]: 

 
𝜎𝑚𝑎𝑥 =

3𝑄

2𝜋𝑎𝑏
 (2.77) 

The stress in different point of the contact bodies can be obtained by [23, p. 148]: 

 
𝜎 =

3𝑄

𝜋𝑎𝑏
[1 − (𝑥/𝑎)2 − (𝑦/𝑏)2]1/2 (2.78) 

This method can also be a fundamental to obtain the subsurface stress in the bearing. The 

subsurface stress becomes important because the failure analysis revealed that in the surface 

fatigue failure initiated from the point under surface [23, p. 150].  
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3 NUMERICAL RESULTS  

 

 

This chapter presents the numerical results for the simulation of the stresses in a touchdown 

bearing during the dropdown event. Section 3.1 provides information about the case study 

that has been modeled. Then, the stresses have been evaluated for three conditions (section 

3.2-4). First, the stresses in the dropdown where the rotor rotates at zero rpm and the nominal 

bearing clearance is 1 µm. Second, dropdown at 9000 rpm with the bearing clearance equal 

to 1 µm. Third, the stress in the dropdown of the rotor at 9000 rpm and the bearing clearance 

increased to 5 µm. 

 

3.1 Rotor under investigation  

Current study applies Hertzian stress model to evaluate the stress on the touchdown bearing 

and the rotor depicted in Figure 3.1. During the dropdown, the rotor is carried out by two 

deep groove ball bearings that are located at 0.025 m from ends of the shaft. The main data 

for the simulation of the rotor is shown in Table 3.1. The dimension and material properties 

of the touchdown bearing are given in Table 3.2.  

 

Figure 3.1. 3D plot of the rotor under investigation.   
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Table 3.1. The main data for the simulation of the rotor dropdown.  

Modulus of elasticity  2.07e11 Pa 

Material density 7800 kg/m3 

Poisson’s ratio 0.3 

Rotor diameter  0.0194 m 

Rotor length  0.150 m 

Support mass 5 kg 

Support stiffness  2.5e8 N/m 

Support damping 2500 Ns/m 

Diametric clearance between the race and rotor  600 µm 

 

Table 3.2. The dimension of the bearing.   

Bearing damping coefficient 𝐶𝑏 0.3 Ns/mm 

Bearing diametric clearance 𝑐𝑑 1 µm 

Outer diameter 𝐷ℎ 42.0 mm 

Ball diameter 𝑑 6.35 mm 

Pitch Diameter 𝑑𝑚 31.0 mm 

Bore diameter 𝑑𝑠 20.0 mm 

Modulus of elasticity of ball 𝐸𝑏 2.07e11 Pa 

Modulus of elasticity of inner race 𝐸𝑖 2.07e11 Pa 

conformity ratio in inner race 𝑓𝑖 0.52 

conformity ratio in outer race 𝑓𝑜 0.52 

Number of balls 𝑛 9 

Poisson’s ratio of ball 𝜈𝑏 0.3 

Width 𝑊 12 mm 

 

Chapter two showed that the normal contact force depends on the deformation of the inner 

race in dropdown event. In order to calculate the deformation of inner race, the displacement 

of the bearing in 𝑥 , 𝑦  and 𝑧 -direction is required. These displacements (𝑒𝑥, 𝑒𝑦 , 𝑒𝑧 ) are 

extracted from the results of the previous study in the Laboratory of Machine Dynamic at 

LUT. The rotor dropdown is simulated by RoBeDyn (Rotor-Bearing Dynamics tool box for 

Matlab). This simulation package is developed by Laboratory of Machine Dynamic at LUT. 

Figure 3.2 shows the location of touchdown bearing in the FEM model of the rotor in 

RoBeDyn.  
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Figure 3.2. Position of the rotor in the finite element model of the rotor. 

   

3.2 Stress in the dropdown of the rotor at zero rpm and 1 µm clearance 

In the first case, the rotation speed of the rotor before dropdown is equal to zero rpm and the 

nominal bearing clearance is 1 µm. The dropdown is simulated for 0.025s. The displacement 

of the rotor in 𝑦-direction is shown in Figure 3.3. Figure 3.4 depicts the displacement of the 

bearing in whole dropdown simulation and it shows that when the dropdown happens at zero 

rpm, the bearing will have a small displacement of 2.151e-5 mm in 𝑥-direction at 0.0187 s 

and in the rest of simulation time remains at zero position. The displacement of the bearing 

in 𝑦-direction reveals at zero rpm, the rotor contacts the bearing two times, first at 0.0078 s 

and the displacement of the bearing is equal to -2.495e-4 mm and after 0.0108 s for the 

second time the rotor contacts the bearing and the displacement of the bearing is equal to      

-1.650e-4 mm. 

 

Figure 3.3. Rotor displacement in 𝑦-direction, dropdown time at zero rpm, clearance 1 µm. 
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Figure 3.4. Displacement of the bearing in whole simulation of the dropdown at zero rpm. 

 

Figure 3.5 and 3.6 show the displacement of the bearing in 𝑥 and 𝑦-direction during the first 

contact, respectively. The contact occurs from 7.830 to 7.875 ms. The displacement of the 

bearing along 𝑧 -direction (𝑒𝑧)  is assumed to be zero. Therefore, the vector of the 

displacement (𝑒𝑥, 𝑒𝑦, 𝑒𝑧)  can be obtained. These displacements were used to obtain the 

penetration of the ball in the inner race (equation (2.74)). In this work the ball number starts 

from one at zero degree in counter clockwise (Figure 3.7).   
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Figure 3.5. Bearing displacement in 𝑥-direction during the first contact, dropdown at zero 

rpm, clearance 1 µm.  

 

 

Figure 3.6. Bearing displacement in 𝑦-direction during the first contact, dropdown at zero 

rpm, clearance 1 µm. 
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Figure 3.7. Position of the balls in the bearing.   

 

In order to obtain the maximum Hertzian contact stresses, the locations were the balls contact 

inner race and the deformations have the positive magnitude should be taken into account. 

These locations determine the positions were the balls penetrate into the inner race. The 

simulation reveals that from 7.830 to 7.875 ms the limited number of balls penetrate into 

inner race. In the rest of the simulation time balls do not penetrate into the inner race and the 

stress is equal to zero. 

 

The data in Table 3.3 shows that at this time step, the deformation of the ball number 7, 8 

and 9 have a positive value and the balls penetrate into inner race. In addition to these balls, 

the ball number 6 also contacts the inner race. However, the contact time of the ball 6 is 

shorter that other three balls (7.835 to 7.865 ms). Figure 3.8 reveals the information about 

the normal contact forces between the ball 6, 7, 8, 9 and inner race. It has been found that 

from 7.830 to 7.850 ms, the normal force on the ball number 6, 7, 8, 9 has a gradual increase 

until 7.850 ms. For the next 0.025 ms the normal force dropped to approximately it’s value 

at 7.830 ms. The maximum normal contact force is equal to 22.91 N (ball 8). The normal 

force of ball 6, 7, 9 has a considerable difference with normal force of ball 8 (1.76, 17.91 N 

and 9.71 N, respectively). 
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Table 3.3. Deformation of the inner race (m), dropdown at zero rpm, clearance 1 µm. 
B

a
ll

 n
u

m
b

e
r
 

Time (ms) 

7.830 7.835 7.840 7.845 7.850 7.855 7.860 7.865 7.870 7.875 

1 -5e-07 -5e-07 -5e-07 -5e-07 -5e-07 -5e-07 -5e-07 -5e-07 -5e-07 -5e-07 

2 -1.15e-06 -1.54e-06 -1.56e-06 -1.96e-06 -2.10e-06 -2.02e-06 -2.06e-06 -1.74e-06 -1.37e-06 -1.17e-06 

3 -1.50e-06 -2.10e-06 -2.13e-06 -2.74e-06 -2.95e-06 -2.84e-06 -2.89e-06 -2.40e-06 -1.84e-06 -1.53e-06 

4 -1.38e-06 -1.90e-06 -1.94e-06 -2.47e-06 -2.66e-06 -2.55e-06 -2.60e-06 -2.17e-06 -1.67e-06 -1.41e-06 

5 -8.47e-07 -1.05e-06 -1.06e-06 -1.27e-06 -1.35e-06 -1.31e-06 -1.33e-06 -1.16e-06 -9.65e-07 -8.59e-07 

6 -1.52e-07 5.62e-08 6.88e-08 2.78e-07 3.53e-07 3.13e-07 3.33e-07 1.60e-07 -3.44e-08 -1.40e-07 

7 3.80e-07 9.08e-07 9.40e-07 1.47e-06 1.66e-06 1.55e-06 1.60e-06 1.17e-06 6.78e-07 4.10e-07 

8 5.01e-07 1.10e-06 1.13e-06 1.74e-06 1.95e-06 1.84e-06 1.89e-06 1.40e-06 8.40e-07 5.35e-07 

9 1.53e-07 5.45e-07 5.69e-07 9.63e-07 1.10e-06 1.02e-06 1.06e-06 7.40e-07 3.75e-07 1.75e-07 

 

   

 

Figure 3.8. Normal force in dropdown at zero rpm, clearance 1 µm. 

 

The maximum Hertzian stress of ball 6, 7, 8, 9 is depicted in Table 3.4. The data in Table 3.4 

shows the maximum stress occurs at 7.850 ms. The stress distribution at 7.850 ms is depicted 

in Figure 3.9. At 7.850 ms, the ball 8 has the maximum stress is equal to 1336 MPa.  
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Table 3.4. The Maximum Hertzian contact stress and as a result of penetration of the ball on 

inner race (MPa), dropdown at zero rpm, clearance 1 µm. 

C
le

a
ra

n
ce

 (
µ

m
) 

B
a

ll
 n

u
m

b
er

 

Time (ms) 

7.830 7.835 7.840 7.845 7.850 7.855 7.860 7.865 7.870 7.875 

1 

6 - 226 250 504 567 534 551 382 - - 

7 589 910 926 1158 1231 1193 1211 1034 787 612 

8 676 1002 1019 1260 1336 1296 1316 1130 875 699 

9 374 705 720 937 1003 968 986 822 585 400 

  

 

Figure 3.9. Maximum Hertzian stress at 7.850 ms, dropdown at zero rpm, clearance 1 µm. 

 

Figure 3.10 shows the stresses in the ball 6, 7, 8 and 9 between 7.830 to 7.875 ms. It has 

been found that at 7.830 ms (when the rotor starts to descend) the ball starts to penetrate into 

the inner race, the stresses for the ball number 7, 8 and 9 are equal to 589, 676 and 374 MPa, 

respectively. At 7.830 ms the ball 6 does not contact to inner race. The data obtained from 

the stress analysis shows that by increasing the displacement of the rotor the maximum 

contact stress will gradually rise. The result are consistent with the maximum displacement 

of the rotor. At 7.850 ms the displacement of the rotor in 𝑦-direction reaches to its maximum 
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value (-2.5e-4 mm), the stresses on the ball surge to 1336 MPa. From 7.850 to approximately 

7.875 ms the magnitude of the displacement will decrease. Therefore, the stress value will 

decline and finally at 7.875 ms the stress is just slightly higher than the stress at 7.830 and 

the stresses for ball 7, 8 and 9 are equal to 612, 699 and 400 MPa, correspondingly. 

 

 

Figure 3.10. Maximum Hertzian stress, dropdown at zero rpm, clearance 1 µm. 

 

3.3 Stress in the dropdown of the rotor at 9000 rpm and the bearing clearance 1 µm 

Second case investigates the stresses in the dropdown at 9000 rpm and the nominal bearing 

clearance equal to 1 µm. The displacement of the rotor in 𝑥 and 𝑦-direction are shown in 

Figure 3.11 and 3.12, respectively. Figure 3.13 and 3.14 depict the displacements of the 

bearing (during the first contact) in 𝑥 and 𝑦-direction, correspondingly. The displacement of 

the bearing in 𝑦-direction is similar to the displacements of the bearing in the dropdown at 

zero rpm. In previous case the displacement of the bearing in in 𝑥-direction was practically 

zero while in the second case it has higher value (3.8e-5 mm). At 7.850 ms, the displacement 

of the bearing in both 𝑥 and 𝑦-direction reaches to the maximum value (3.8e-5 mm, -2.5e-4 

mm). 

 

 

http://www.thesaurus.com/browse/correspondingly
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Figure 3.11. Rotor displacement in 𝑥 -direction during the dropdown time at 9000 rpm, 

clearance 1 µm. 

 

 

Figure 3.12. Rotor displacement in 𝑦-direction, dropdown time at 9000 rpm, clearance 1 

µm. 
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Figure 3.13. Bearing displacement in 𝑥-direction during the first contact, dropdown at 9000 

rpm, clearance 1 µm. 

 

 
 

Figure 3.14. Bearing displacement in 𝑦-direction during the first contact, dropdown at 9000 

rpm, clearance 1 µm. 
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The data in Table 3.5 shows that from 7.830 to 7.875 ms, the deformation of the ball number 

7, 8 and 9 have a positive value. The ball 6 contacts inner race only at 7.850 ms and the 

deformation of bearing is very low. Therefore, in the calculation of force and stress this ball 

is neglected. Figure 3.15 reveals the normal force between the balls and inner race has a 

similar pattern to the normal force in the dropdown at zero rpm. However, the force 

magnitude is higher than the normal force in the dropdown at zero rpm. The highest normal 

force is equal to 24 N between ball 8 and inner race.  

 

Table 3.5. Deformation of the inner race (m), dropdown at 9000 rpm, clearance 1 µm. 

B
a

ll
 n

u
m

b
e
r
 

Time (ms) 

7.830 7.835 7.840 7.845 7.850 7.855 7.860 7.865 7.870 7.875 

1 -3.85e-07 -2.56e-07 -2.51e-07 -1.59e-07 -1.27e-07 -1.45e-07 -1.36e-07 -2.12e-07 -2.97e-07 -3.43e-07 

2 -1.04e-06 -1.36e-06 -1.38e-06 -1.70e-06 -1.82e-06 -1.76e-06 -1.79e-06 -1.52e-06 -1.22e-06 -1.06e-06 

3 -1.47e-06 -2.06e-06 -2.09e-06 -2.68e-06 -2.89e-06 -2.78e-06 -2.84e-06 -2.35e-06 -1.81e-06 -1.51e-06 

4 -1.46e-06 -2.03e-06 -2.06e-06 -2.64e-06 -2.85e-06 -2.74e-06 -2.79e-06 -2.32e-06 -1.78e-06 -1.49e-06 

5 -9.91e-07 -1.29e-06 -1.30e-06 -1.60e-06 -1.70e-06 -1.65e-06 -1.67e-06 -1.43e-06 -1.16e-06 -1.01e-06 

6 -2.96e-07 -1.73e-07 -1.65e-07 -4.17e-08 2.62e-09 -2.06e-08 -8.72e-09 -1.10e-07 -2.25e-07 -2.87e-07 

7 3.04e-07 7.87e-07 8.16e-07 1.30e-06 1.47e-06 1.38e-06 1.43e-06 1.03e-06 5.78e-07 3.33e-07 

8 5.28e-07 1.14e-06 1.18e-06 1.80e-06 2.02e-06 1.90e-06 1.96e-06 1.45e-06 8.76e-07 5.63e-07 

9 2.70e-07 7.32e-07 7.60e-07 1.22e-06 1.39e-06 1.30e-06 1.34e-06 9.61e-07 5.30e-07 2.96e-07 

 

 

Figure 3.15. Normal force in dropdown at 9000 rpm, clearance 1 µm. 



49 

Table 3.6 shows the maximum stress occurs at 7.850 ms and the stress distribution at this 

moment is depicted in Figure 3.16. The same as previous case, the ball number 8 has the 

highest stress (1359 MPa).  

 

Table 3.6. Maximum Hertzian contact stress as a result of penetration of the ball on inner 

race (MPa), dropdown at 9000 rpm, clearance 1 µm. 

C
le

a
ra

n
ce

 (
µ

m
) 

B
a

ll
 n

u
m

b
er

 

Time (ms) 

7.830 7.835 7.840 7.845 7.850 7.855 7.860 7.865 7.870 7.875 

1 

7 526 847 862 1089 1159 1123 1141 968 726 550 

8 693 1021 1038 1282 1359 1318 1338 1150 894 716 

9 496 817 832 1057 1126 1089 1107 936 695 519 

 

 

 

Figure 3.16. Maximum Hertzian stress at 7.850 ms, dropdown at 9000 rpm, clearance 1 µm. 

 

At 7.830 ms the stresses for the ball number 7, 8 and 9 are equal to 526, 693 and 496 MPa, 

respectively. The result of stress analysis also have the same pattern as previous case (see 

Figure 3.17). As the displacement of the bearing increases the stresses become greater and 
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at 7.850 ms it has the maximum value equal to 1359 MPa (ball 8). Then, from 7.850 to 7.875 

ms the magnitude of the displacement declined and the stress value for ball 7, 8, 9 dropped 

to 550, 716 and 519 MPa. In this case only three balls are in contact with inner race and the 

overall value of stresses are higher than dropdown at zero rpm.  

 

 

Figure 3.17. Maximum Hertzian stress, dropdown at 9000 rpm, clearance 1 µm. 

 

3.4 Stress in the dropdown of the rotor at 9000 rpm and the bearing clearance 5 µm 

This part features the results of simulation in the dropdown at 9000 rpm and the bearing 

clearance is increased to 5 µm. The complete investigation of the effect of bearing clearance 

requires the new simulation of the rotor dropdown and extracting the corresponding data. 

Figure 3.18 and 3.19 depict the displacements of the bearing in 𝑥 , 𝑦 -direction in the 

dropdown at 9000 rpm and the nominal bearing clearance is equal to 5 µm. These 

displacements are similar to the displacements of the bearing in the second case.  
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Figure 3.18. Bearing displacement in 𝑥-direction during the first contact, dropdown at 9000 

rpm, clearance 1 µm. 

 

 

Figure 3.19. Bearing displacement in 𝑦-direction during the first contact, dropdown at 9000 

rpm, clearance 5 µm. 
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As can be seen in Figure 3.20 and 3.21 the displacements of the bearing with 1 and 5 µm 

clearance have an infinitesimal difference. Therefore, it is expected that the stresses will not 

have a considerable differences. 

 

Figure 3.20. Comparison between the displacement of the bearing in 𝑥-direction at 1 and 5 

µm clearance. 

 

 

Figure 3.21. Comparison between the displacement of the bearing in 𝑥-direction at 1 and 5 

µm clearance. 
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The same as previous cases, only from 7.830 to 7.875 ms the inner race deforms as a result 

of the contact with ball 7, 8 and 9. Table 3.7 also shows that at 7.850 ms, the maximum 

Hertzian stress is equal to 1357 MPa (in second case it was 1359 MPa). The Hertzian contact 

stresses of these balls is depicted in Figure 3.22. The overall pattern of the stress is 

compatible with the displacement in the bearing. By increasing the displacement of the 

bearing the stress magnitude is raised and vice versa. It should be noted that the displacement 

of the bearing in 𝑦-direction is higher than the displacement in 𝑥-direction. Therefore, the 

stresses are more influenced by the vertical displacement. 

 

Table 3.7. Maximum Hertzian contact stress as a result of penetration of the ball on inner 

race (MPa), dropdown at 9000 rpm, clearance 5 µm. 

C
le

a
ra

n
ce

 (
µ

m
) 

B
a

ll
 n

u
m

b
er

 

Time (ms) 

7.830 7.835 7.840 7.845 7.850 7.855 7.860 7.865 7.870 7.875 

1 

7 528 848 863 1090 1159 1122 1141 967 725 550 

8 695 1022 1038 1282 1357 1317 1337 1149 893 716 

9 498 818 833 1057 1125 1089 1107 935 695 519 

 

Figure 3.22. Maximum Hertzian stress, dropdown at 9000 rpm, clearance 5 µm. 
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4 DISCUSSION 

 

 

In this study, the Hertzian stress has been applied to calculate the stresses for the touchdown 

bearing with three conditions. The simulation reveals that in the dropdown the normal load 

between the ball and inner race does not have a uniform effect on all balls. Investigation of 

the deformation of the bearing in Table 3.3 and Table 3.5 shows in the first contact dependent 

on the dropdown condition different number of balls can penetrate into inner race. Previous 

studies also imply that dependent on the magnitude and direction of the impact force and 

also position of the ball, the limited number of the balls can carry the load [27, pp. 54-61]. 

Generally, lower than half of the total number of the balls carry the load. This area also 

referred as load zone. The number of the balls carrying the load (N) can be calculated by [28, 

p. 2]: 

 
𝑁 = 𝐼𝑁𝑇 (

𝑛 − 1

4
) (4.1) 

where 𝐼𝑁𝑇 is integer. In this simulation the 𝑛=9 (𝑛 is total number of ball), therefore above 

equation shows that at certain time 2 out of 9 balls are under load. The outcome of simulation 

of the stresses in the dropdown at 9000 rpm shows that in the dropdown ball number 7, 8 

and 9 had a positive deformation. In the dropdown at zero rpm ball 6 is also in contact with 

inner. These balls located in the lower half of the bearing and they carry the load. In addition, 

the negative deformation on upper half of the bearing has a good agreement with [28, p. 5] 

that demonstrated the gap between the ball and inner race in upper half of the bearing. It 

should be considered that in the dropdown at zero rpm the higher number of balls rather than 

dropdown at 9000 rpm are in contact with inner race and the stress level in the dropdown at 

zero rpm is less than 9000 rpm. However, the number of balls that are in contact with inner 

race is not the only parameter that can influence on the stress level. 

 

Figure 3. 5 shows that when the dropdown occurs at zero rpm the displacement of the bearing 

in 𝑥-direction is practically zero (10e-18 mm). At zero rpm the rotor hits the bearing down 
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and after impact bounces back. The displacement of the bearing in 𝑦-direction is less than 

the displacement in 9000 rpm. In this case the maximum Hertzian stress is 1336 MPa (Figure 

3.10).  

 

In addition, Figure 3.13-14 showed that in the dropdown at 9000 rpm and the nominal  

bearing clearance equal to 1 µm, the displacement of the bearing in 𝑦 -direction is 

approximately ten times higher than the displacement of the bearing in 𝑥 -direction. 

Therefore, the results are mainly affected by the displacement of the bearing in vertical 

direction. Figure 3.15 reveals that the increase or reduction in the normal force between the 

ball and inner race depends on the displacement of the bearing. When the displacement 

increases (mainly in 𝑦-direction) the normal force is raised and at 7.850 reaches to highest 

magnitude of 24 N (ball 8), then by decreasing the displacement of the bearing from 7.850 

to 7.875 ms the normal force is reduced. It should be noted that the normal load between ball 

7 and inner race is slightly higher that the corresponding load for ball 9. This difference can 

be attributed to the initial assumption in position of ball 1 at 0 degree (Figure 3.7). In this 

study the number of ball was odd and it is expected that for even number of ball the normal 

load between ball and inner race will be symmetric with respect to the bearing 𝑦-axis. The 

similar behavior has been observed in Figure 3.17 for the maximum Hertzian stress at 

dropdown in 9000 rpm and 1 µm clearance.  Furthermore, it should be considered that the 

relation between the normal contact force and the deformation of the inner race is not linear 

(equation (2.65)), this causes the analysis of the contact of ball on inner race became 

complicated. The deformation of the inner race in the rotor dropdown depends on the 

geometric and material properties of the bearing and the forces exerted to the bearing. 

 

In addition, the maximum Herzian stress depends on the normal force and the semi-minor 

and major axes of the elliptic area (equation (2.77)). But the semi-minor and major axes are 

also affected by the normal force and the contact stiffness (equation (2.59)). The 

displacement of the bearing for the third case with higher clearance (dropdown at 9000 rpm 

and 5 µm clearance) were shown in Figure 3.18 and 3.19. These displacements are close to 
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displacement of the bearing during dropdown at 9000 rpm and 5 µm clearance. In this case 

the maximum Herzian stress is only 2 MPa lower than first case (At 7.850 ms, the ball 8 has 

the maximum Herzian stress equal to 1357 MPa (Figure 3.22)). The overall stress 

distribution is similar to previous cases. Hence, the maximum Hertzian stress depends not 

only on the location of the ball, but also on the geometrical and material property of bearing 

and the behavior of the rotor in the dropdown. As in AMB system the rotor might experience 

several dropdowns, it is important to compare the calculated stress value with the maximum 

allowable contact stress. 

 

Göncz et al. [29, pp. 174-184] studied the maximum allowable contact loading on the races. 

Their work indicates that for the conventional steel bearing 100Cr6 (Chrome steel balls), the 

maximum contact stress for ball bearing is equal to 4200 MPa and for the roller bearing it is 

equal to 4000 MPa. The hardness and material property of the bearing can affect the 

acceptable limit for contact stress in ball bearing. Wang and Yuan [30, p. 229-236] suggested 

that for the steel bearing 42CrMo (Chrome Molybdenum) and hardness of 55 HRC 

(Rockwell C-Scale Hardness) the maximum allowable contact stress for point contact is 

3850 MPa and for line contact 2700 MPa. For the ring with 50 Mn (Manganese), the 

maximum allowable stress for point contact proposed to be 3400 MPa and for line contact 

is equal to 2200 MPa. In current study, the maximum contact stress is equal to 1359 MPa 

that is less that maximum allowable contact stress. In improper operating condition of the 

machinery, the fatigue failure of the bearing might initiate even in less than the maximum 

allowable contact stress. Therefore, a lower limit for maximum contact stress can be 

considered. 
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5 CONCLUSION AND FURTHER STUDIES 

 

 

In this study the Hertzian contact model was applied to obtain the stresses in the touchdown 

bearing of the AMB supported rotor during dropdown event. The Hertzian stress model is 

an analytical method for obtaining the contact stress. By applying this method, instead of the 

point contact between the ball and bearing race, the elliptic area was calculated to obtain the 

stress. The literature review showed that the elliptical parameters can be obtained from 

several approximations. Previous studies described that the error of applying the Hertzian 

contact stress is less than 3% of the experimental results.  

 

Present research focused to obtain the stresses in the first contact of the rotor with touchdown 

bearing. In this work, the normal force and the maximum contact stress between each ball 

and inner race were calculated. The contact stress on the bearing depends on the geometry 

and material property of the bearing and also the behavior of the rotor in the dropdown. The 

calculation of the stresses in touchdown bearing requires to apply an appropriate model for 

simulation of the dropdown and the bearing model. 

 

This study showed that in the dropdown the radial force is not equally distributed in the 

touchdown bearing and few number of the balls located in the lower half of the bearing 

carrying the load. In the dropdown at zero rpm 4 out of 9 and in dropdown at 9000 rpm 3 

out of 9 balls were under load. It should be noted that in the dropdown the rotor will contact 

the bearing in several points and above result is valid for the first contact and it is expected 

that in the next contacts the position of the maximum Hertzian stress will be changed. 

 

In addition, the simulation revealed that the maximum Hertzian contact stress is highly 

affected by the displacement of the bearing in vertical direction. By increasing the 

displacement of the bearing the maximum Hertzian stress raised and vice versa. It should be 

considered that the relation between the normal force and maximum Hertzian stress with the 
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deformation of the inner race is not linear. Furthermore, the speed of the rotor in the 

dropdown influences the maximum stress in touchdown bearing. The investigation of three 

conditions for the case study showed that when the dropdown occurs at higher speed, the 

stress level is increased.  

 

In future, by applying the more developed model for bearing, the effect of centrifugal force, 

gyroscopic effect can be included in model and the stress between the ball and both races 

can be calculated. Moreover, the friction force between the ball and inner race creates a heat 

source. Therefore, the thermal model of the bearing components can be developed. Then, by 

making electric circuits equivalent model of heat transfer, the temperature rise in the bearing 

can be calculated. Thus, the effect of the thermal expansion will be considered in calculation 

of the deformation of bearing race. Finally, the rainflow analysis can be done to obtain the 

stress history of the touchdown bearing and it gives more accurate result in estimating the 

life of the bearing.  
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