
Lappeenranta University of Technology

School of Business and Management

Master’s Degree Programme in Computer Science

Tuomo Timonen

APPLYING SOFTWARE PERFORMANCE ENGINEERING METHODS TO

DEVELOPMENT OF IT DEVICE MANAGEMENT SYSTEMS

Examiners: Professor Jari Porras

	 M.Sc Sami Mäkiniemelä

Supervisors: Professor Jari Porras

	 M.Sc Sami Mäkiniemelä

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto

School of Business and Management

Tietotekniikan koulutusohjelma

Tuomo Timonen

Applying software performance engineering methods to development of IT device

management systems

Diplomityö

2016

84 sivua, 24 kuvaa, 4 taulukkoa

Työn tarkastajat: 	 Professori Jari Porras

			 DI Sami Mäkiniemelä

Avainsanat: Software performance engineering, suorituskyky, laitehallinta, web-sovellus

Ohjelmiston suorituskyky on kokonaisvaltainen asia, johon kaikki ohjelmiston elinkaaren

vaiheet vaikuttavat. Suorituskykyongelmat johtavat usein projektien viivästymisiin,

kustannusten ylittymisiin sekä joissain tapauksissa projektin täydelliseen epäonnistumiseen.

Software performance engineering (SPE) on ohjelmistolähtöinen lähestysmistapa, joka

tarjoaa tekniikoita suorituskykyisen ohjelmiston kehittämiseen. Tämä diplomityö tutkii

näitä tekniikoita ja valitsee niiden joukosta ne, jotka soveltuvat suorituskykyongelmien

ratkaisemiseen kahden IT-laitehallintatuotteen kehityksessä. Työn lopputuloksena on

päivitetty versio nykyisestä tuotekehitysprosessista, mikä huomioi sovellusten suorituskykyyn

liittyvät haasteet tuotteiden elinkaaren eri vaiheissa.

i

ABSTRACT

Lappeenranta University of Technology

School of Business and Management

Master’s Degree Programme in Computer Science

Tuomo Timonen

Applying software performance engineering methods to development of IT device

management systems

Master’s Thesis

2016

84 pages, 24 figures, 4 tables

Examiners: 	 Professor Jari Porras

		 M.Sc. Sami Mäkiniemelä

Keywords: Software performance engineering, software performance, device management,

web application

Software performance is a pervasive quality of software that is affected by everything from

design and implement to environment in which the software is run. Performance issues are a

serious problem in many projects leading to delays, cost overruns and even complete failures.

Software performance engineering (SPE) is a software oriented engineering approach that

provides methods to develop software that meets its performance goals. This master’s thesis

researches SPE methods and selects the ones suitable for solving performance issues during

development of two IT device management systems. The outcome is an updated version of

the development process currently in use that takes software performance challenges into

account during different stages of software lifecycle.

ii

ACKNOWLEDGEMENTS

I am using this opportunity to express my gratitude to Jari Porras, Sami Mäkiniemelä and

Ville Kinnunen for their guidance in the process of writing this thesis. Also, I would like to

thank Julia Virkkala for invaluable help and mental support during the work. I would not

have been able to to do this without your help!

I thank my family, friends, colleagues and everyone who supported me through writing this

thesis and my life in general!

iii

1

TABLE OF CONTENTS

.

LIST OF SYMBOLS AND ABBREVIATIONS��� 4

1 	 INTRODUCTION�� 6

1.1	 Background��� 6

1.2	 Goals and restrictions�� 7

1.3	 Structure of the thesis�� 9

2	 SYSTEMS OVERVIEW�� 10

2.1	 Architectural overview�� 10

2.2	 Performance critical features�� 11

2.2.1 	 Client-server communication ��� 11

2.2.2	 Device inventory data processing��� 13

2.2.3	 Scheduled background tasks �� 13

2.2.4	 User interface�� 14

2.2.5	 Integrations and connectors�� 14

2.2.6	 Summary of performance critical features�� 14

2.3	 Known performance issues��� 15

3	 DEVELOPMENT PROCESS�� 17

3.1	 Overview of general software development process������������������������������������ 17

3.2	 Agile software development��� 19

3.3	 Current model of operation��� 19

3.4	 Challenges with the current model of operation��� 22

4	 SOFTWARE PERFORMANCE ENGINEERING�� 23

4.1	 Definition of software performance�� 23

4.1.1	 Performance indices�� 24

4.1.2	 Time�� 25

4.1.3	 Events�� 25

4.1.4	 Sampling and instrumentation�� 26

4.2	 SPE process models�� 27

2

4.2.1	 The eight step performance modeling process���������������������������������� 28

4.2.2	 The software performance engineering process������������������������������� 31

4.2.3	 Q-Model�� 33

4.2.4	 Converged SPE process�� 36

4.3	 Performance requirements�� 39

4.3.1	 Challenges for managing performance requirements����������������������� 39

4.3.2	 Performance Requirements Framework (PeRF)������������������������������� 41

4.4	 Performance modeling notations�� 45

4.5	 Performance measurement frameworks�� 47

4.5.1	 Black-box techniques ��� 48

4.5.2	 Source code instrumentation techniques �� 49

4.5.3	 Summary of contributions��� 50

4.6	 Best practices�� 52

4.6.1	 Best practices in project management (1-11)������������������������������������ 52

4.6.2	 Best practices in performance modeling (12-16)������������������������������ 56

4.6.3	 Best practices in performance measurement (17-19)������������������������ 57

4.6.4	 Best practice techniques for SPE (20-24)��� 59

5	 SPECIFICATIONS FOR THE UPDATED SOFTWARE 				
.	 DEVELOPMENT PROCESS�� 61

5.1	 Requirements for the specification�� 61

5.2	 Updated software development process�� 61

5.2.1	 Product management��� 62

5.2.2	 Agile implementation�� 64

5.2.3	 Verification and validation ��� 65

5.3	 Performance Measurement Framework�� 66

5.3.1	 The big picture�� 66

5.3.2	 Instrumentation techniques for ASP.NET��� 67

5.3.3	 Instrumentation techniques for C# Windows Services��������������������� 69

5.3.4	 Instrumentation techniques for inventory import scripts������������������ 70

3

5.3.5	 Instrumentation techniques for background daemons����������������������71

5.3.6	 Resource monitor��72

5.3.7	 Performance measurement database���73

5.3.8	 Utilization in production environment��73

5.3.9	 Common libraries��73

5.4	 The deployment steps for the updated process���74

5.4.1	 Step 1: Product and backlog management��74

5.4.2	 Step 2: Performance Measurement Framework for ASP.NET����������75

5.4.3	 Step 3: Implement Resource Monitor���75

5.4.4	 The future steps���76

6	 CONCLUSIONS AND FUTURE WORK��77

REFERENCES��78

4

LIST OF SYMBOLS AND ABBREVIATIONS

API		 Application Programming Interface

CMD		 Command Prompt	

CMS		 Configuration Management System

CPU		 Central Processing Unit

CSV		 Comma Separated Values File

DOM 		 Document Object Model

EG		 Execution Graph

ETW		 Event Tracing for Windows

GUI		 Graphical User Interface

HTTP(S)	 The Hypertext Transfer Protocol (Secure)

IIS		 Internet Information Services

IT		 Information Technology

LQN 		 Layered Queuing Network

MDM		 Mobile Device Management

MSP 		 Managed Service Provider

NFR		 Nonfunctional Requirement

OMG		 Object Management Group

OS 		 Operating System

PA		 Performance Assertions

PeRF		 Performance Requirements Framework

PMF		 Performance Measurement Framework

5

QN 		 Queuing Network

RoI		 Return on Investment

RPC		 Remote Procedure Call

SDM		 Semantic Data Model

SIG		 Softgoal Interdependency Graph

SMS		 Short Message Service

SPA		 Stochastic Process Algebra

SPE		 Software Performance Engineering

SPEM		 Software Process Engineering Metamodel

SPN		 Stochastic Petri Nets

SQL		 Structured Query Language

UI 		 User Interface

UML		 Unified Modeling Language

UML-SPT	 UML Profile for Schedulability, Performance and Time

VB		 Visual Basic

XML 		 Extensible Markup Language

6

1 	 INTRODUCTION

Ensuring that software systems meet their performance expectations can be a difficult task,

especially when the number of clients, complexity of the software and diversity of software

deployment environment grows. A small on-premises software installation that serves few

hundreds of clients has different resource requirements compared to a cloud-based installation

that provides services for tens of thousands of clients worldwide. Regardless, the software

should function similarly in both situations and offer satisfying user experience.

A survey (Compuware, 2006) indicates that 80% of European IT (Information Technology)

executives know that customer satisfaction can be affected by performance issues and other

related effects. However, over 70% of them said that problems were actually reported by

customers rather than in-house monitoring systems.

Performance is a pervasive attribute of software systems. It is affected, for example, by the

design, implementation, runtime environment and workload. Increased workload generates

variable load on different parts of the software system. An operation that is extremely fast

on lower number of users may slow down significantly along with the number of concurrent

users. A new feature or modification to an existing feature may have a severe impact on

performance, particularly if the change is made to a critical part of the code.

Having proper tools and practices, including understanding how to utilize those is vital in

the above-mentioned case. Software performance engineering (SPE) is systematic software

oriented engineering approach to assist development of applications that meet performance

requirements. It provides means for tracking performance during the development process

and help to prevent unexpected performance problems late in the lifecycle. (Smith, 2001)

1.1	 Background

This Master’s thesis is done for a company developing solutions for IT and mobile device

lifecycle management system with integrated asset management, configuration management,

and lifecycle management features. The company has two main products: a cloud-based

mobile device management (MDM) system and a configuration management system (CMS).

7

The MDM solution is hosted at company’s own cloud servers. It provides mobile device

management functionalities, such as inventory data collection, configuration deployment,

application installation and real-time location tracking. The CMS offers information

technology (IT) asset’s lifecycle management from purchase and initial installation, through

use and maintenance to retirement of devices including features such as software asset

management, license management, incident management and security management. Using

the products, system administrators can see the status of their managed IT environment,

generate variety of reports and run maintenance operations on managed devices from the

web-based management console.

The CMS is mainly targeted for managed service providers (MSPs) that host the product in

their own premises and sell configuration management as a service to their own customers.

Configurations of the software runtime environment tend to change between different

customers and the number of managed devices per instance may differ from hundreds to

tens of thousands of devices.

Lately, the company has been growing steadily. New features have been implemented and

the number of users and managed devices has been increased constantly. This has resulted in

situations where applications performance has received increasing attention.

1.2	 Goals and restrictions

The goal of this Master’s thesis is to improve practices on detecting and resolving performance

issues before the product is released to production, thus, improving quality and reducing the

development effort and costs. The focus is on the server-side components.

Prior to this work, the company has no unified means for analyzing product performance.

There are some manual methods for inspecting performance of specific parts of the system,

but they require temporal changes to codebase and strong knowledge of the architecture.

For example, developers may add temporary instrumentation points to measure how long it

takes to execute a piece of code. These methods are neither well documented nor consistent

across developers

To begin with, the initial goal was to design and implement a performance measurement

8

framework that would visualize current performance using a traffic light. The green light

means that performance is within acceptable limits and the red light indicates presence of

performance problems. Additionally, the framework should be able to point of the origin on

the problem. The initial plan was to implement solely measurement-based tools to monitor

performance of existing features.

Quickly, it became obvious that this was not sufficient to solve performance issues.

Initial discussions with other developers in addition to literature reviews pointed out that

performance is more of a fundamental issue. It is relatively easy to measure execution times,

especially when having access to the source code. However, fixing performance issues late

in the development is complicated and expensive. Previous experiences pointed out that it

may take longer to fix an issue than it took to implement the feature at first place.

Based on the above-mentioned concerns, the following main research question was

constituted:

•	 How to integrate software performance analysis into company’s software development

process?

Additionally, the following sub-questions were derived to support the main question:

•	 What software aspects should be measured?

•	 When and how to make measures?

•	 How to get feedback from performance analysis activities back to the software

development process as early as possible?

The research done in this thesis follows the practical approach. The goal is to study the

literature and find out solutions that solve similar problems. Solutions are mirrored against

company standards, current model of operation and well-proven best practices. The most

applicable solutions should be adopted in everyday product development work.

9

1.3	 Structure of the thesis

The remainder of this thesis is structured as follows:

•	 Chapter 2 presents the architecture of the CMS and MDM system and introduces

the most critical features from performance point of view. It also highlights the best-

known performance issues of the systems.

•	 Chapter 3 presents the development process used to develop the products. It discusses

how the process has evolved over the years and presents issues with the current

model of operation.

•	 Chapter 4 casts a glance on the literature. It introduces the Software Performance

Engineering a software development approach to develop software that meet

its performance objectives. This chapter goes into details theory behind software

performance analysis, various SPE process models and techniques to examine

software system’s performance.

•	 Chapter 5 takes the process, presented in chapter 3, and introduces practices from

SPE to different stages of the process.

•	 Chapter 6 wraps things up with conclusions.

10

2	 SYSTEMS OVERVIEW

The configuration management system and the cloud-based mobile device management system

are device management systems. The systems consist of the server-side application and the

client applications installed on managed devices. The client communicates with the server over

HTTPS (Hypertext Transfer Protocol Secure) and runs different tasks. The server provides

a web-based user interface for system administrators to see status of their environment and

generate various reports. The CMS, which is installed on customer’s own premises, offers

comprehensive IT asset’s lifecycle management capabilities from purchase to retirement

of devices. The MDM system is a simplified version of the CMS providing mobile device

management features for Android, iOS and Windows phone devices from the cloud.

This chapter presents these systems in detail. The introduction starts from the big picture and

goes well into details by describing how different components take a place in the domain and

affect each other. Additionally, identified performance challenges are described to set some

baseline requirements for the work.

2.1	 Architectural overview

The architecture of the CMS and MDM systems is presented in figure 1. The products run on

a Microsoft Windows platform. The key parts are the front-end server(s) and the Microsoft

SQL Server (Structured Query Language) database. The web server hosts ASP.NET C#

applications that run on Microsoft Internet Information Services (IIS). These applications

serve as entry points to the system by providing:

•	 a web-based graphical user interface (GUI) for users and administrators

•	 communication interfaces for client applications running on managed devices

•	 application programming interfaces (APIs) for other entities that communicate with

the system.

A front-end server runs various background daemons that process the data in the systems (e.g.

generate scheduled reports and perform maintenance jobs). Daemons can be, for example,

individual executables (C#), Visual Basic (VB) or Windows command line (CMD) scripts,

or SQL Server stored procedures.

11

Additionally, the server runs Windows services implemented in C#. These services run

in the background and provide asynchronous queues for different actions, for example,

sending emails, wake-up requests and Short Message Service (SMS) messages. Finally, yet

importantly, the Microsoft SQL Server database has a large role from performance standpoint.

It serves as both long and short-term data storage for all other components. Features such

as, client-server communication, user interface, integrations and background tasks generate

constant load the database server.

2.2	 Performance critical features

This chapter introduces the features that have been identified to have the largest impact on

system’s performance.

2.2.1 	 Client-server communication

Each managed device has a client application installed that starts automatically when the device

is powered on and runs silently in the background. The client polls the server periodically to

update its status, queries for pending jobs and sends inventory data. Implementation of the

Figure 1: Architecture of the device management systems

12

client varies between platforms. For desktop operating systems (Windows, Linux and OSX),

the client is a C++ application. For Android, the client is a Java application. Apple iOS and

Windows Phone use MDM capabilities built in to those platforms, and therefore, the in-

house client application is not needed.

Common for all platforms is that the underlying communication protocol consists of XML

(Extensible Markup Language) fragments transmitted over HTTPS. The protocol specific

APS.NET web handles processes incoming requests by parsing contents into an in-memory

DOM tree (Document Object Model) authenticates and identifies the device, and update

device data to the SQL Server database.

Client’s polling interval can be configured. By default, the desktop client connects to the

server once per hour and updates its configurations once every 12 hours. The next connection

time is calculated based on the previous, which leads roughly even distribution over the

time. However, there are few exceptions, which are presented in the next chapter.

As summarization of the client-server communication, table 1 presents the average number

of incoming messages the server must process over an hour. Example calculations are done

for a desktop client. It represents a best-case scenario that contains only the basic messages

generated by the client with default polling intervals.

Table 1: Message volumes generated by the client and scheduler

Clients Client messages Config updates Avg. msg / min Avg. msg/ sec
1000 3000 83 51 1
10 000 30000 833 514 9
30 000 90000 2500 1542 26
100 000 300000 8333 5139 86

Server’s capability to process consecutive requests becomes critical when the number of

clients increases. With 1000 clients, the server must handle an average of one message per

second, but with 30 000 clients there will be 26 messages per second. That is 26 XML

fragments and even more SQL queries every second - continuously. A few seconds of

slowdown in server-side processing can cause severe congestion.

13

2.2.2	 Device inventory data processing

Inventory data collection is one of the most important features of a device management

system. Inventory data consists of, for example, hardware details, information about installed

applications and software usage reporting. There are two main sources from inventory data:

managed devices and integrated third party systems. The client collects inventory data from

managed devices, and connectors gather data from third party sources. Collected inventory

data is sent to the server’s ASP.NET inventory handlers. Inventory data flow consists three

phases:

1.	 Read incoming data (HTTPS/XML).

2.	 Decompress if needed and add to the queue.

3.	 Import data from queue to database.

Received inventory data is queued for further processing. Some inventory data is sent as

compressed archives and must be decompressed by the handler before it can be processed.

Inventory import daemon/service processes inventory queues inserts data to the database.

Inventory data imports are major performance concern in larger environments, because

incoming files can be large and it may take a while to update the database.

2.2.3	 Scheduled background tasks

As aforementioned, scheduled tasks, also known as daemons, process a lot of data in the

background. For example, file scan inventory data consists of a full list of executables found

from a target computer. The list may contain tens or even hundreds of thousands of entries,

each containing file names, file sizes and other useful metadata. Inventory import process

inserts raw data to the database as is. In order to be useful, this data must be further processed.

A customer may want to know whether a specific application (e.g. Notepad++ v.1.0.8.0) or

software bundle (Microsoft Office 2007 Enterprise) is installed in the environment. Such

software identification may take a while and is rather resource demanding operation, and

therefore, a background task is needed that will process the job during off-peak hours when

system use is lower. Device management systems consist of lots of similar background

14

daemons, which have undisputed effect on application performance.

2.2.4	 User interface

Web user interface (UI) is an ASP.NET web application. It is the primary interface for

system administrators and operators, from which they can see the status of their entire

IT infrastructure, generate various reports, distribute application and configurations, and

perform other maintenance operations. UI contains lots of dynamic content that is retrieved

from the database when a user opens a page or report.

2.2.5	 Integrations and connectors

Integrations with third-party systems and services have increased over the years. Data is

transferred from device management systems to other systems (e.g. service management

systems and financial systems) and vice versa. Data is used to complement available reports.

There are two ways to do the integrations:

1.	 Connectors

2.	 REST-based API

Connectors are in-house applications that gather desired data from third party sources

and send it to the device management system. Connector data is sent to server’s ASP.NET

handlers from which it goes to the import queue. REST-based API (ASP.NET) provides two-

way interface for custom third party system integrations.

2.2.6	 Summary of performance critical features

Previous chapters described client-server communication, inventory data imports, background

tasks, user interface and integrations as the largest factors that affect performance of the

systems. Although they all represent different scenarios there are similarities, which specify

requirements for the performance analysis. It should be possible to:

15

•	 Track HTTP requests

a.	 Number of incoming requests

b.	 Type of the request (e.g. client message type or name of the web page)

c.	 Processing time on server-side

d.	 Timestamp

•	 Track SQL queries

a.	 Identifier (e.g. entire SQL query or name of the SQL Server stored procedure)

b.	 Execution time

c.	 Timestamp

•	 Queue statuses

a.	 Number of items in queue

b.	 Throughput

In addition, it is important to link executed SQL query to associated HTTP request. This

provides additional information about the system because database issues may have system-

wide effect on application performance.

2.3	 Known performance issues

The biggest known performance issues fall under the following categories:

1.	 Incorrect or inefficient implementation

2.	 Request congestion and load accumulation

3.	 Locks and synchronization issues

4.	 Diversity of runtime environments

Every now and then, there are bugs in the code that cause performance issues. On the

16

other hand, the code might work as expected but does it too slow. This behavior might be

inconspicuous in a small environment but causes problems in a larger environment.

Request congestion and load accumulations are other critical issues. For example, Monday

morning tends to be problematic in large environments in which all users are roughly on

the same time zone. Computers have been turned off during the weekend. At the Monday

morning, many devices are powered on within short period. Because the client has not

updated its status for days, it will immediately poll the server and send inventory data. This

results in as a significant peak load on the server.

Database locks and other synchronization methods are related to the first category, but

deserve emphasis due to recently detected issues. A table in the database can be modified

simultaneously by more than one component. For example, exclusive database locks are

used to synchronize such operations. Unexpected issues may emerge if an SQL query that

holds the lock has problems to complete.

The final category is related solely to the CMS. A customer of the CMS can be a managed

service provider having thousands of devices from hundreds of their customers or a smaller

company having only a hundred of devices. The CMS has to scale to meet the needs of

both. Because of this, it has to support different infrastructure configurations. Additionally, it

supports multi-instance environments, which means that MSPs can run separate application

instances in the same physical server on behalf of different customers.

17

3	 DEVELOPMENT PROCESS

Software development process a collection of different activities that lead to a software

product. Software development processes vary between software development companies

and software products. Different companies have their own processes that are suitable for

them. Type of the software product has an influence on the process. Products having a long

lifecycle require different activities compared to ones with short lifespan (Cortellessa, et al.,

2011).

This chapter introduces the development process used in the company. Firstly, a general

example of a software development process is described. Then, the glance is cast on how

software development process used in the company has evolved over the time. Finally, the

current state of the process is described.

3.1	 Overview of general software development process

Software development process can be expressed with a software development process model.

Different software development processes contain different set of activities. However, there

are fundamental development stages that are common for every software development

process (Cortellessa, et al., 2011):

1.	 Requirement specification

During this stage, customers and developers define software products functional and

operational constraints by specifying all the requirements of the system.

2.	 Software design and implementation

During design and implementation stage, the software product is produced according

to its specifications. Software models (e.g. architecture and design models) are

created and the software is implemented based on those models.

2.	 Software verification and validation

After software is implemented it moves to verification and validation phase. This

stage ensures that the software meets its original requirements. Verification and

18

validation is usually accomplished by demonstrating the software to the customers.

3.	 Software evolution

Software moves into evolution stage after the first version has been deployed. This

stage manages the changes to the software.

Figure 2 illustrates an iterative software development process that follows these stages. An

iterative process runs concurrently to quickly develop an initial version of the software.

Later the initial version is refined through several iterations, each producing a new version

of the software. Recently, software evolution has become more important due to progresses

in the software development processes. (Cortellessa, et al., 2011).

The development process described in the following chapters an iterative process. Developed

products have a relatively long lifespan with periodical consecutive releases. For example,

the CMS has been developed over 10 years.

Figure 2: An iterative software development process (Cortellessa, et al., 2011)

19

3.2	 Agile software development

The Software development process the company used to develop its product has evolved

over the time. The process used to be rigid which caused problems. Development cycles for

new features used to be lengthy. It took excessively long until stakeholders and customers

were able to review the changes. If a feature was inadequate, it had to be fixed. Fixing severe

deficiencies, which require architectural changes, took remarkably long time.

Projects used to have strict deadlines set in advance before the development had begun.

Additionally, resources and required feature set was defined beforehand. This operational model

was suitable for small improvements, but lead frequently to issues with larger projects. Firstly,

initial planning of release dates with complete feature sets was found to be an infeasible task.

Secondly, customer needs are ambiguous and tend to change over the time. Thirdly, business

position and technology keeps shifting during a long running project. Today mobile devices

may be a hot topic, but tomorrow it might be something else. Therefore, it was identified that

instead of waiting for over six months until complete feature set is out, some parts of it should

be implemented, reviewed and possibly released at more rapid pace.

It is recognized that software development is an empirical, nonlinear process, because

of the change occurring during the time of developing a product. Such empirical process

requires frequent, short feedback loops, which can better react on rapid changes. Agile

software development is about feedback and change. It attempts to overcome above

mentioned challenges. (Laurie & Alistair, 2003). The original “Manifesto for Agile Software

Development” (Beck, et al., 2001) states that valuable outcome requires daily co-operation

between business people and developers throughout the project. This way the team can

deliver working software frequently and hence keep customers satisfied. This reasoning was

identified within the company, and therefore, the process has been shifting towards agile

software development methods.

3.3	 Current model of operation

The software development process the company used to develop its products is presented

in figure 3. The product backlog is the tool used by the product owner to keep track of the

20

features that customers, stakeholders or other contributors want. The backlog contains a

short description of each new feature, minor improvement and bug fix. These backlog items

are also known as user stories. User stories are prioritized so that the most important ones

are on the top. Prioritization is done by product owner along with product management

personnel. User stories that are near the top are also more refined as they will be earlier

in the making. It is not reasonable to specify features far into the future as it is not certain

when those features will be on the table. User stories are further refined in a weekly backlog

grooming meeting in which product owner, product management and developers are present.

For example, relative workload estimate is defined for user stories during the meeting.

Development is done in two-week sprints. During a sprint developers work independently

and iteratively to implement user stories. Each sprint is preceded by a sprint-planning meeting

where the team alongside with product owner selects the highest priority user stories to

sprint backlog. The spring is followed by a review meeting, where the completed user stories

are reviewed to rest of the company personnel, and sometimes for customers too. After the

review, the team meets in sprint retrospective session in which the sprint is reviewed in order

to identify lessons learned. This is used to improve upcoming sprints. Sprint retrospective

is followed by the planning of the next sprint. Usually, a new release comprises of multiple

sprints. In such case, the last sprint before the release is dedicated to release and integration

testing.

User stories completed during a sprint follow the workflow presented in figure 4. Stories in

the backlog, either product or sprint, remain in TO DO state. The end state for stories is either

Figure 3: Development process overview

21

DONE (implementation, review and testing ready) or REJECTED. Generally, user stories in

the backlog do not contain detailed requirement specifications. There might be some high-

level functional requirements from the customers and stakeholders, many of which are related

to common usability. Non-functional requirements and precise functional requirements are

seldom available. The development team draws the requirement specifications based on

available information and their expertise when they pull out a user story from the backlog and

start working on it. This works because all developers have long history with the company.

The situation would be different with a junior team.

The user story is divided into tasks, each representing an independent piece of work to be

done (e.g. “Add new column X to table Y” or “Add a button to the GUI”). This is rather

straightforward process, but communication between development team and product owner

is particularly important at this stage. Communication is the way the team requests feedback

on the work in progress. Moreover, the work in progress can be demonstrated to customers

to achieve valuable feedback. This is done during the IN PROGRESS state.

When a developer thinks the user story is ready, it moves to IN REVIEW state. Peer review

is performed by another member of the development team. Peer review consists of the code

evaluation, also known as code review, and quick functional overview that aims to:

•	 catch obvious bugs as early as possible

•	 share knowledge among developers

Figure 4: The lifecycle of a user story

22

•	 evaluate implementation choices.

Next, the user story moves to verification phase. Similarly compared to peer review, testing

is performed by some personnel who is a member of the development team. The main goal

of this phase is to verify whether the implemented feature meets its original requirements.

Additionally, the tester takes an overview of the feature and evaluates its usability in general.

3.4	 Challenges with the current model of operation

Perhaps the biggest problem with the current model of operation is that performance goals

and other nonfunctional attributes of software are not considered enough during the design

and development phases. This results in the fact that the performance issues are detected

late in the development. Usually, when the work is almost ready or when the feature already

released to the customers.

Naturally, this means that comprehensive measurements of application performance are

neither implemented nor performed. In addition to that, automation is not involved in

performance testing. Doing performance analysis in the current process has to be done

during a separate project that incorporates lots of overhead.

23

4	 SOFTWARE PERFORMANCE ENGINEERING

Traditionally, software development focuses on functional correctness meaning that non-

functional requirements such as software performance are considered later in the development

process. This style of development is known as the “fix-it-later” approach. Software system

complexity has increased over the years while the relative number of performance experts

has decreased. This combined with the commonness of the “fix-it-later” methodology lead to

serious problems with many software products. Critical performance issues usually evolve

from early design choices, many of which cannot be corrected with hardware that is more

powerful. The software must be designed from start to meet its performance objectives.

(Smith, 2001) (Cortellessa, et al., 2011)

Software performance engineering is systematic software oriented engineering approach to

assist development of applications that meet performance objectives. Providing a collection

of methods and tools, it spans throughout the software development lifecycle (Woodside, et

al., 2007) (Smith, 2001). This chapter describes what SPE is and how it can be taken into

consideration during software development.

4.1	 Definition of software performance

Literature contains several definitions for the software performance. Smith and Williams

describe it as a make-or-break quality for software that can be observed as software systems

responsiveness and scalability (Smith & Williams, 2003). In other words, it can be seen from

user’s point of view as the response time and throughput of the software system (Smith,

2001).

Woodside et al. consider software performance as a pervasive quality that is affected by

everything from software design and implementation to environment in which the software is

run; hence, making it difficult to understand. Performance issues alone are causes of serious

problems in many projects, leading to delays, cost overruns and even complete failures.

Although performance issues can be critical, they are seldom documented (Woodside, et al.,

2007).

Similarly, Balsamo et al. describe software performance as a runtime attribute of software

24

systems. Moreover, they add “software performance is the process of predicting (at early

phases of the lifecycle) and evaluating (at the end) whether the software system satisfies

the user performance goals. From the software point of view, the process is based on the

availability of software artifacts that describe suitable abstraction of the final software

system.” These artifacts are, for example, software requirements, and architecture and design

documents. (Balsamo, et al., 2002)

Fortier and Michel define that software performance is a part of software systems quality of

service, considering some performance attributes (e.g. response time, ease of use, reliability

and fault tolerance) as qualitative measures, which are hard to measure with quantitative

manner. Quantitative measures are easier to understand, because they can be presented with

quantifiable variables (e.g. numbers). Performance quantities, (e.g. usability) are qualitative

versus quantitative measures, meaning that they can be observed, but not measured precisely.

To be scientifically precise software performance measurement should focus on quantitative

qualities. (Fortier & Michel, 2003)

As can be seen from the above-mentioned definitions, performance is ambiguous attribute of

software. What is the performance like? Tough the question looks simple it is hard to answer

as performance can be viewed from different perspective, especially when considering

complex software systems. Performance is not a single measure, or value, but combination

of many.

4.1.1	 Performance indices

Performance indices are defined to conduct performance measures in quantitative manner.

Traditional performance indices are (Balsamo, et al., 2004) (Fortier & Michel, 2003):

•	 Response time: Time required for a request to travel from a specific source to a

specific destination and back within the software system.

•	 Throughput: Rate of tasks the system, or part of it, is capable of execute per unit

of time. For example, number of SQL statements per second.

•	 Utilization: The time that the system, or part of it, is busy. For example, how much

is the CPU (Central Processing Unit) utilization.

25

Performance indices can be divided further into two categories: user- and system-oriented

measures. Response time is a user-oriented measure, which means it can be observed directly

by the user. User-oriented measures are not accurate over the time, because of the number

of variables involved, and their dependence on system resources. For example, response

time for a web application may be affected by the network characteristics (e.g. throughput,

bandwidth and latency) and server utilization. Therefore, user-oriented measures are typically

measured as averages over the time. System-oriented resources, on the other hand, determine

system capabilities and are more accurate (Fortier & Michel, 2003). In addition to traditional

indices, new software systems and platforms, such as mobile devices, have brought need for

new indices. For example, power consumption is a major performance factor for handheld

devices (Balsamo, et al., 2004).

4.1.2	 Time

Time is the most fundamental unit in performance measurement (Fortier & Michel, 2003).

It shows up in many different contexts. Server-side processing time, response time, and

intervals are all different measures of time and present the same physical quantity in different

orders of magnitude. Processing time is usually measured in milliseconds, and response time

and interval for example in seconds. This is an important characteristic of time and must be

considered when measuring it.

4.1.3	 Events

Although time is an important quantity, it is only useful when used to measure something

within the software system. Therefore, time is usually tied to events. Events are entities in

the system, which are interesting from performance point of view (Fortier & Michel, 2003).

Figure 5 illustrates example set of events from a web application. Events are bound to time.

The time describes when an event occurs, what is the duration of it, and also what is the

interval between subsequent events. The events have relationship and hierarchy between

each other. Initially, page_load event consists of four individual events: init, query_db,

build_obj, and resp. Understanding Page_load event requires knowledge on these individual

pieces. Moreover, subsequent events depend on their predecessors. build_obj cannot start

26

before data is retrieved from the database. If the database transaction halts, the subsequent

actions cannot proceed.

Knowing all events of interest and their relations is vital to make performance analysis as

effective as possible. Event data can be used to determine (Fortier & Michel, 2003): How to

make measures, when to measures and what to measure.

4.1.4	 Sampling and instrumentation

Sampling in software performance analysis is the process of measuring system events of

interest. There are different means to do sampling, each suitable for different situations.

Method selection should be based, for example, on monitoring overhead and accessibility.

(Fortier & Michel, 2003)

Hardware monitoring requires the ability add instrumentation to the system under study.

Hardware instrumentation can be done by extracting and analyzing signals from the system,

which means it is only possible to measure items or actions within the system that are

accessible for monitoring. Signals can be extracted, for example, by adding custom designed

hardware to the system. It is important that the monitoring itself does not interfere with the

system. (Fortier & Michel, 2003)

Software monitoring, on the other hand, requires that the system under study provides means

for accessing systems hardware and software resources, for example, system clocks and

Figure 5: Example events from a web application

27

different timers. Modern operating systems provide this information. Software monitoring

is typically used for trace monitoring and sampling, in which the code contains additional

elements that allows code’s execution to be monitored at run time. Software monitoring

collects typically (Fortier & Michel, 2003):

•	 How often a segment of code (e.g. function or interface call) is run?

•	 How long it took to run the segment of code?

•	 How much of the total system time the code segment took?

Hybrid monitoring is a combination of hardware and software monitoring. It utilized both

measurement techniques to gather extensive instrumentation data of the system. To get that

data the hybrid monitoring must have access to systems hardware and software resources.

Additionally, it may require synchronization of different hardware and software domains.

(Fortier & Michel, 2003)

4.2	 SPE process models

The SPE umbrella consists of two general approaches: measurement-based approach and model-

based approach. These are usually associated with different stages of the software lifecycle.

The measurement-based approach, also known as late-cycle measurement-based approach,

focuses on running and measuring the software to investigate possible performance issues

(Woodside, et al., 2007). In turn, model-based approaches use common software modeling

techniques to predict the impact of early architectural and design decisions (Smith, 2001).

Although the above-mentioned approaches are considered different, they are not exclusive.

In fact, it is recommended to use these techniques in conjunction. Performance measurements

provide valuable information on system’s overall performance, but can be used also to validate

performance models. Moreover, model-based approaches can be used also throughout the

software lifecycle from early-cycle prediction to evaluation at the end. This chapter presents

different SPE process models to integrate SPE methods into software development (Smith,

2001) (Balsamo, et al., 2004) (Woodside, et al., 2007) (Smith & Williams, 2003)

28

4.2.1	 The eight step performance modeling process

The eight step performance modeling process, presented in figure 6, starts from identification

of critical and significant application scenarios. Critical scenarios are those associated with

performance expectations or performance requirements. Significant scenarios, on the other

hand, do not involve performance requirements, but may have an impact on critical scenarios,

especially when they occur simultaneously. Identification can be done, for example, by

analyzing use cases, user stories and service-level agreements. The second step is to identify

workload for each individual scenario. Workload is usually derived from marketing data.

It may consist of the desired number of total and concurrent users, and data volumes and

transaction volumes. (Microsoft Corporation, 2004)

An example workload for the CMS could be:

•	 The CMS needs to support 10 concurrent administrators browsing the user interface.

•	 The CMS should be able to handle 100 concurrent software installations.

Performance objectives determined by business requirements are quantifiable goals for

the application. Performance objectives should be written for each performance scenario

identified during the first step. Usually, performance objectives involve the following

performance indices (Microsoft Corporation, 2004):

Figure 6: Performance modeling process (Microsoft Corporation, 2004)

29

•	 Response time: Startup page must be displayed in less than 1 second.

•	 Throughput: The database must support 100 transactions per second.

•	 Resource utilization: CPU, memory, disk and network resource consumption.

If the application has a long lifetime, workload requirements are likely to change over

the time. Thus, performance objectives should not be based only on the initial workload

requirements, service-level agreements and response times, but also take into account the

future growth. (Microsoft Corporation, 2004)

The fourth step is dedicated to identification of budgets. Budgets specify limitations for

the corresponding scenarios. If a given budged is exceeded, the application fails to meet its

performance objectives. The budged is usually specific by either execution time or resource

utilization (Microsoft Corporation, 2004), for example:

•	 Execution time: Page_Load event must not take longer than 1 second.

•	 Resource Utilization: Memory consumption of the client application must not

exceed 100 MB.

In addition to common resources such as CPUs, available memory, network I/O and disk

I/O, there are other dimensions that may effect on the available budget. Some resources (e.g.

CPUs and memory) may be shared among other applications or dependent on underlying

software or hardware limitations (e.g. maximum number of inbound connections). From the

project perspective, time and costs are notable constraints also. (Microsoft Corporation, 2004)

During fifth step, scenarios are itemized and divided into separate processing steps. This helps

identification of critical points within the application that may require custom instrumentation

logic to provide actual execution costs and timings. Unified Modeling Language (UML) use

cases and sequence diagrams can be used to assist this step. Table 2 shows an example of

processing steps of an order submission system (Microsoft Corporation, 2004).

30

Processing Steps

1.	 An order is submitted by a client.
2.	 The client authentication token is

validated.
3.	 Order input is validated.
4.	 Business rules validate the order.
5.	 The order is sent to a database server.
6.	 The order is processed.
7.	 A response is sent to the client.

Next, scenarios are refined even further. The budged defined for a scenario is spread across

the processing steps so that the scenario meets the performance objectives. It is important to

note that some of the budget may apply to only one processing step within a scenario, but

some of it may apply across multiple scenarios. Execution time and resource utilization are

considered during this step. (Microsoft Corporation, 2004)

•	 Assigning execution time

This is accomplished by assigning a portion of the budged for each processing step. If

execution time is not known, it is possible to simply by dividing the total time equally

between the steps. At this point, most of the allocated values are predictions, which will

be re-evaluated after measuring actual time, and therefore, they do not have to be perfect.

However, reasonable degree of accuracy is desirable to stay on the right track. Budged

allocation shows whether each step has sufficient execution time available. For those that

look questionable, it is important to conduct some further experiments, for example with

prototypes, to verify actual state prior to proceed. (Microsoft Corporation, 2004)

•	 Assigning resource utilization

When assigning resources to processing steps, there are four important things to consider

(Microsoft Corporation, 2004):

1.	 Find out the cost of the materials. For example, how much API X1 does costs in

comparison to API Y2.

2.	 Find out the budged allocated for hardware. This budged defines how much resources

Table 2: Example processing steps (Microsoft Corporation, 2004)

31

are available.

3.	 Find out what hardware systems are already in places and can be utilized.

4.	 Know the functionality of the application. For example, some applications may utilize

more CPU and some may require more network capacity due to continuous web access.

The results from the previous step should be evaluated during step 7 before actual prototyping

and testing. Early evaluation helps to modify the design, revise requirements or change the

budget allocations before spending unnecessary time and effort. Firstly, verify whether the

budget is realistic and meets the objectives. In case of a performance problem, the model

should identity possible resource hot spots. Then, alternatives that are more efficient should

be evaluated starting from the high-level design choices down to the code-level specifics.

Finally, it is time to evaluate whether there are any tradeoffs involved. Is productivity,

scalability, maintainability or security traded for performance? (Microsoft Corporation,

2004)

Validation should be an ongoing activity during the process. Validation involves creation

of prototypes and measurement of actual budgets of scenarios by capturing performance

metrics. Collected data is used to validate the models and estimates. Accuracy of the validation

evolves during the project. Early on, validation is based on prototypes, thus results may be

inaccurate. Later, measurements can be more precise because validation can be done against

actual code. (Microsoft Corporation, 2004)

4.2.2	 The software performance engineering process

Figure 7 presents a software engineering process introduced by Smith (Smith, 2001).

Similarly compared to the eight-step performance modeling process, it advocates performance

modeling throughout the software lifecycle to identity potential performance problems

early in the development. On the high level, two segments. The right-hand side consists of

early-cycle performance prediction activities and the left-hand side involves performance

measurements used to verify and validate modeling results against working software.

32

Starting from the prediction-side, the first step is to define the SPE assessments for the

current ongoing lifecycle phase. This data is used to determine whether the software meets

its quantitative performance objectives. The performance objectives may wary, depending

on the developed system, from overall responsiveness as seen by the users to more

specific response time and throughput requirements, which are both certain measures of

responsiveness. Additionally, efficiency in terms of resource usage may be considered in this

stage if some important computer resource requirements must be satisfied. (Smith, 2001)

The second step is to create the concept for the lifecycle product, which changes during

the development process. Early the concept is the architecture, the requirements and high-

level designs for satisfying those. Later in the development the concept is, for example, the

software design, implemented algorithms and code. During this phase SPEs general design

principles, patters and anti-patterns are used to create responsive designs. (Smith, 2001)

Next, performance engineers estimate lifecycle concepts. They collect performance data to

create performance predictions. This is achieved by utilizing performance models which

Figure 7: The software performance engineering process (Smith, 2001)

33

are based on projected typical usage performance scenarios and software components, in

addition to best-case, worst-case and failure scenarios. The process moves to next phase

if the model results indicate satisfying performance. If not, the models indicate critical

components whose resource usage should be further analyzed. This iteration constructs more

detailed performance models that help to further refine the design concepts. Performance

engineers report results with possible alternative strategies and expected improvements to

developers who review those. If an alternative is found to be feasible, developers modify

the concept according to it. If not, the original performance objective is modified to reflect

degrade in performance. (Smith, 2001)

As aforementioned, results from performance models are predictions of the system performance.

Therefore, it is vital to verify that the performance models present the actual software execution

and to validate the predictions against measured performance data. If measured results differ

from predictions, performance models must be re-calibrated and updated to represent the

actual behavior of the system. This validation and verification phase should begin early, based

on early prototypes and continue throughout the lifecycle. (Smith, 2001)

4.2.3	 Q-Model

The Q-Model presented by Cortellessa et al. is based on a conventional waterfall software

development process. Additionally, the Q-Model takes inspiration from the familiar V-model

for software validation (Cortellessa, et al., 2011). The waterfall model, presented in figure 8,

implements the fundamental stages for software development process described in chapter 3.1.

Figure 8: The waterfall software development process (Cortellessa, et al., 2011)

34

The waterfall model presents a sequential development process in which the progress is

flowing downwards through series of steps. Each step produces software artifacts that

further describe the software under development. Artifacts from the previous step are used

as an input for the next step. In traditional software analysis, software models can be used

to produce and better understand these artifacts. Similarly, performance models can be

created to produce performance related artifacts (e.g. performance objectives) from each

step (Cortellessa, et al., 2011), for example:

1.	 Software requirement specification phase produces the requirement specifications

document, including performance requirements.

2.	 Performance models can be created based on the requirements specifications.

3.	 Performance models can be used to further refine performance requirements and

analyze software designed software.

The Q-Model refines the waterfall model by applying similar process for all of its steps.

The result is presented in figure 9. Each software development phase on the left-hand side

is connected to the corresponding performance analysis activities on the right-hand side

through the performance model generation activities. The bottom section represents the

implementation of the software and monitoring of its behavior. (Cortellessa, et al., 2011).

Figure 9: The Q-Model for a waterfall process (Cortellessa, et al., 2011)

35

The Q-Model maps the common development process stages with the following notation

(Cortellessa, et al., 2011):

•	 Requirement specification stage is renamed to requirement elicitation and analysis.

•	 Software design and implementation stage is partitioned into three stages: architectural

design, low-level design and implementation.

•	 Software verification and validation stage is partitioned and represented by the

middle and the right-hand side of the model.

Transitions in the Q-Model are described as follows (Cortellessa, et al., 2011):

•	 Downstream vertical arrows on the left-hand side

Represent the transfer to the next stage. Transfer to the next stage is not allowed

before appropriate performance analysis activities are completed. For example,

before software architecture is valid from performance point of view corresponding

performance models must be made and analyzed.

•	 Downstream vertical arrows on the right-hand side

Represent the information flow between performance analysis activities. The

previous stage produces performance boundaries that maybe be used as a reference

values for the next phase. For example, performance constrains from architectural

stage (e.g. “the maximum number of simultaneous database connections is 100”) are

the architectural limits that must be considered during low-level design.

•	 The lowest horizontal arrows

On the left side the arrow represents the definition of suitable observation functions

based on the running code. On the right side it presents the validation of performance

indices using the observation functions.

•	 The bottom vertex

This arrow presents the monitoring activity that receives what to monitor from

observation definition process that is based on the executing code and the performance

indices to validate.

36

•	 Upstream vertical arrows on both side

Performance problems may arise during later stages of the process. The monitoring

activity at the bottom provides feedback for the both sides. Because some issues may

not be corrected without re-executing the previous stages, the feedback traverses

up along both sides inducing changes on the corresponding software artifacts and

performance models.

4.2.4	 Converged SPE process

In their paper, Woodside et al. (Woodside, et al., 2007) express their view on the state of

the software performance engineering, and they are not very satisfied about it. Current

performance processes require heavy effort, and therefore, are not suitable for everyone.

There are no standards in performance measurement and there is a semantic gap between

software performance and software functionality. Lack of trust and understanding on

performance models is a common problem. Lastly, performance modeling is effective

but often costly. Models are approximations that may leave out important details, and are

difficult to validate. Presented solution is to combine measurement and modeling methods

into a single Performance Knowledge Base.

Before going into the process, the SPE domain considered in this chapter consists of the

following SPE activities summarized in figure 10 and described below. (Woodside, et al.,

2007):

•	 Identify performance concerns including important system operations (use cases)

and resources. Resources are system elements that offer services for other parts of the

system. Resources have limited capacity and include hardware (e.g. CPU and I/O),

logical resources (e.g. buffers and locks) and processing resources (e.g. processes

and threads).

•	 Define and analyze requirements. This activity requires identification of operational

profile, different workload intensities, delay and throughput requirements and system

behavior. Operational profile describes a subset of system operations important from

the performance point of view. Workloads define frequency of the system operations

37

and behavior is defined by various scenarios (e.g. UML behavior notation or execution

graphs).

•	 Performance prediction by modeling the interaction of the behavior with available

resources. Consider scenarios, architecture and detailed design.

•	 Performance testing on entire system or part of it under different load conditions.

•	 Use performance models to predict the effect of changes and new features during

product maintenance and evolution period.

•	 Perform total system analysis where the planned software system is considered in

the complete and final deployed system.

Figure 11 presents the converged SPE process that converges shattered knowledge of different

kinds and from various sources into a single domain model. The left-hand side of the process

consists of concepts related to the performance modeling, and the right-hand side consists of

performance measurement activities, where distinction is made between performance tests

in a laboratory environment and live production system monitoring. (Woodside, et al., 2007)

Figure 10: SPE activities (Woodside, et al., 2007)

38

The notation of the converged SPE process is based on the Software Process Engineering

Metamodel (SPEM) standard (OMG, 2008). “At the core of SPEM is the idea that a software

process is a collaboration between abstract active entities called ProcessRoles (e.g., use case

actors) that perform operations called Activities on concrete entities called WorkProducts.

Documents, models, and data are examples of WorkProduct specializations. Guidance

elements may be associated to different model elements to provide extra information.”

(Woodside, et al., 2007)

Similarly to SPE process introduced in the previous chapters, the converged model

incorporates performance model building and solving early in the development to get initial

performance figures out of the design. Performance tests are used to validate and to enhance

the models, and to ensure that original performance requirements are met. In addition,

iteration improves team expertise and provides valuable feedback for the future work.

Figure 11: Domain model for the converged SPE process (Woodside, et al., 2007)

39

4.3	 Performance requirements

Identification and analysis of performance requirements is a key part of every SPE process

presented. Use case and risk analysis, architecture and system design, performance modeling

and performance measurements are all dependent different data prerequisites. There data

requirements for performance are: performance objectives, workload definitions, software

execution characteristics, execution environment descriptions, and resource usage estimates.

(Smith, 2001)

Software performance is evaluated by comparing gathered performance data against

performance objectives. Precise and qualitative metrics are vital to determine whether

performance objectives are met. As aforementioned, performance objectives usually include

response time, throughput and utilization requirements. (Smith, 2001)

Workload requirements specify the performance scenarios. Initially, scenarios specify

operations that are the most frequently used. Later, scenarios also cover resource intensive

operations. Scenarios can be divided into interaction workload definitions (e.g. number

of concurrent users), batch workload definitions (e.g. programs on critical path, their

dependencies and data volumes). (Smith, 2001)

Software processing steps identity software components most likely to be invoked, invoke

frequency and execution characteristics per scenario. The execution environment defines the

computer system configuration (e.g. CPU, memory and I/O). Resource usage estimates the

available resource budged, that is how much system resources each performance scenario

requires. (Smith, 2001)

4.3.1	 Challenges for managing performance requirements

There are several challenges involved when working with data requirements. The most

important ones are listed below:

•	 Performance requirements have a global impact on the software throughout the

development process

	It is not possible simply to add a new module to fix performance issues. It may

40

require 	significant changes to different parts of the system. Therefore, performance

requirements should be considered system wide throughout the development process.

(Nixon, 2000)

•	 Trade-offs among requirements and implementation techniques

Conflicting and interacting nonfunctional requirements (NFRs) and implementation

choices can potentially lead into trade-offs in the final product. For example,

comprehensive response time optimizations may decrease flexibility for future

changes. (Nixon, 2000)

•	 Variety of implementation techniques

During development, several choices must be made between alternative implementation

techniques available, each having different performance characteristics. (Nixon,

2000)

•	 Incompleteness of the specification

Requirement specifications can be too abstract. Design approaches and algorithms

can be still open at early stages. Additionally, environment and its components to

be used may be undecided leading to uncertain final computational requirements.

(Petriu & Woodside, 2002)

•	 Unawareness of the production workload intensity

For example, the number of end users may be unknown during the performance

requirement specification stage. (Petriu & Woodside, 2002)

•	 Lack of investment in obtaining performance requirements

Requirements are often not obtained in any dept, or validated for realisms, consistency

and completeness. Developers tend to underrate importance of performance

requirements. (Smith, 2001)

•	 Identification of performance scenario for new functions

Performance scenarios can be easily derived for systems replacing previously

41

implemented systems. However, it may be difficult to identify scenarios for new

functions. Web applications the number of potential users is may be very high and

highly variable. (Smith, 2001)

•	 Identification of processing steps for existing systems

Identification of software processing steps relatively easy for new applications, but

more difficult for the software that has been already been built. (Smith, 2001)

•	 Shifting user satisfaction

As systems evolve, users tend to demand more of them. At the same time, responses

should be faster. Moreover, users do not know precisely how to use the system and

tend to expect the system to modify their way to work. (Smith, 2001)

4.3.2	 Performance Requirements Framework (PeRF)

The Performance Requirements Framework (PeRF) (Nixon, 2000) is a framework for

managing performance requirements. It consists of structured, systematic collections of

information, called catalogues of knowledge, to deal with the large body of knowledge (e.g.

performance concepts and development techniques). At any time, developers can utilize the

information that will help to deal with the large number of decisions involved. The premise

of the framework is that “performance and development knowledge must be organized”.

(Nixon, 2000)

Inputs for a process that utilizes PeRF to manage performance requirements include:

Catalogues of knowledge of particular domain, performance requirements and functional

requirements, priorities for the organization and the system, expected workload, development

techniques, and iterations and trade-offs among performance requirements. Respectively, the

process produces the following outputs: a record of development decisions made, reasons for

the decisions, list of performance requirements that are met and to what extent, a record of the

iterations and trade-offs among performance requirements, priorities, workload, decisions,

and rejected alternatives. Optionally, PeRF may produce a prediction of performance of the

system. (Nixon, 2000)

42

PeRF treats all performance requirements as NFRs, and represents those using the

NFR Framework (Mylopoulos, et al., 1992), a framework for representing and utilizing

nonfunctional requirements. NFR Framework provides a process-oriented approach to

meeting quality objectives. It is based on the view that “the quality of a software product is

largely determined by the quality of the process used to construct it”. Development decisions

justified are based on whether or not they help to meet certain NFRs. (Nixon, 2000)

NFR Framework calls NFRs softgoals due to their nature. They may not be fully satisfiable

and tend to change. Definition of NFRs is often ambiguous. Meeting them may be matter of

balancing trade-offs. Softgoals are then analyzed, interrelated and prioritized. Based on this,

the impact of decisions upon NFRs is determined. All this data is represented in softgoal

interdependency graphs (SIGs). An example of an initial performance goal and a refinement

is presented in figure 12. (Nixon, 2000)

Performance [Student Records System] is a NFR softgoal stating that there should be good

performance for the student record system. All softgoals have an NFR type (e.g. Performance

or Security) and one or more parameters (e.g. [Student Records System]). PeRF extends the

Performance type in the NFR Type Catalogue by providing a Performance Type Catalogue

presented in figure 13. The Performance Type consists of subtypes Time and Space that

describe time and space performance requirements for the system. Additionally, Time and

Space can be refined by their own subtypes. PeRF defines decomposition as the process

of refining softgoals into other softgoals. Developers use their expertise to decide what to

things refine and how much refinement is actually needed. (Nixon, 2000)

Figure 13: The performance type catalogue. (Nixon, 2000)

Figure 12: An initial performance softgoal and a refinement. (Nixon, 2000)

43

PeRF treats all performance requirements as NFRs, and represents those using the

NFR Framework (Mylopoulos, et al., 1992), a framework for representing and utilizing

nonfunctional requirements. NFR Framework provides a process-oriented approach to

meeting quality objectives. It is based on the view that “the quality of a software product is

largely determined by the quality of the process used to construct it”. Development decisions

justified are based on whether or not they help to meet certain NFRs. (Nixon, 2000)

NFR Framework calls NFRs softgoals due to their nature. They may not be fully satisfiable

and tend to change. Definition of NFRs is often ambiguous. Meeting them may be matter of

balancing trade-offs. Softgoals are then analyzed, interrelated and prioritized. Based on this,

the impact of decisions upon NFRs is determined. All this data is represented in softgoal

interdependency graphs (SIGs). An example of an initial performance goal and a refinement

is presented in figure 12. (Nixon, 2000)

Performance [Student Records System] is a NFR softgoal stating that there should be good

performance for the student record system. All softgoals have an NFR type (e.g. Performance

or Security) and one or more parameters (e.g. [Student Records System]). PeRF extends the

Performance type in the NFR Type Catalogue by providing a Performance Type Catalogue

presented in figure 13. The Performance Type consists of subtypes Time and Space that

describe time and space performance requirements for the system. Additionally, Time and

Space can be refined by their own subtypes. PeRF defines decomposition as the process

of refining softgoals into other softgoals. Developers use their expertise to decide what to

things refine and how much refinement is actually needed. (Nixon, 2000)

Figure 13: The performance type catalogue. (Nixon, 2000)

Figure 13 represents interdependency between the parent and its offspring. Performance[SRS]

is refined downwards into Space[SRS] and Time[SRS] subgoals. Respectively, Space and

Time contribute upwards to Performance. The interdependency presented in figure 17 can

be read as “Space[SRS] AND Time[SRS] SATISFICE Performance[SRS]”. In addition to

aforementioned AND contribution, PeRF defines OR, MAKES, BREAKS, HELPS and

HURTS contributions to determine the state of the parent when its subgoals are satisfied.

(Nixon, 2000)

PeRF provides similar tools for prioritizing softgoals, stating reasons for development

decisions, representing implementation techniques used to realize softgoals, evaluating impact

of decisions, and catalogues of methods that offer and organize techniques and principles

needed in software development. Figures 14 and 15 present catalogues of decomposition and

operationalization methods. These catalogues document the process and provide a kind of

roadmap to follow.

44

Figure 14: Catalogue of decomposition methods (Nixon, 2000)

Figure 15: Catalogue of operationalization methods (Nixon, 2000)

45

Methods in the catalogues are grouped in a way that left side consists of more coarse-grained

groups. The first subgroup level shows the major groupings of methods. These deal with the

structure of softgoals (type, topic, layer and priority), sources of methods (e.g. SPE, Semantic

Data Models (SDMs), databases and object-oriented systems), system characteristics such as

workload, and implementation strategies. Subgroups become more precise when moving to

the right. For example, if the source of the method is SPE, then next layer shows particular

SPE principles. Similarly to softgoal refinement, developers use their experience and

expertise to determine which methods to utilize in which context. (Nixon, 2000)

PeRF is a comprehensive framework, which provides plenty of tools to manage performance

requirements. This chapter introduced few key concepts that would be useful for this work.

Initially, performance critical features should have their performance requirements defined.

Then, developers may use composition methods to concretize those abstract high-level

requirements. Going through this process hopefully encourages developers to perform

similar actions in the future, and build experience and confidence on the process.

4.4	 Performance modeling notations

Software modeling is a process of describing software by using ad-hoc models. Software

description consists of static (modules and components) and dynamic (behavior at run time)

aspects of a software system. There are many different notations available to describe either

the statics or dynamics, but in this context, the behavioral description is more interesting

because performance is an attribute of the system dynamics. (Cortellessa, et al., 2011)

In software modeling, UML has become the standard modeling language for complex

computer systems. Yet, software performance modeling lacks such widely adopted standards.

Gap between notations for modeling the software and notations for modeling software

performance is apparent. The multiplicity of performance notations allows developers to

select the most suitable one for each application domain and model. On the other hand,

the use of different notations may require different definitions for the same concept and

obtained results may become hard to compare between different models. This chapter briefly

introduces some of the popular notations for performance modeling. (Cortellessa, et al.,

2011)

46

Object Management Group (OMG), a consortium behind UML, has standardized UML

Profile for Schedulability, Performance and Time (UML-SPT) (OMG, 2005), an extension to

enable performance and scheduling analysis of UML models. The profile enables quantitative

analysis and predictive modeling by specifying means to annotate quantitative information

into UML models (Cortellessa, et al., 2011). For example, figures 16 and 17 describe a

simple scenario modeled with UML sequence diagrams with performance annotations.

Figure 16: A UML sequence diagram describing the workload (Cortellessa, et al., 2011)

In this example, performance context («PAcontext» stereotype) describes a browse cart

activity requested by customers. In figure 16, workload for the scenario is defined by

«PAclosedLoad» stereotype with a fixed number of customers (PApopulation = 3000)

with each spending an assumed mean external delay of 1 ms between requests. In figure

17, «PAstep» stereotype models a step in the scenario. The requestBrowseCart activity is

annotated with a tag that indicates measured mean service time demand of 5 ms (PAdemand).

(Cortellessa, et al., 2011)

47

Figure 17: A UML sequence diagram describing a step (Cortellessa, et al., 2011)

As mentioned earlier there are many different kinds of notations available. For sake of this

chapter interested may refer to (Cortellessa, et al., 2011) and become acquainted with Markov

processes, Queuing Networks (QNs), Layered Queuing Networks (LQNs), Execution Graphs

(EG), Stochastic Petri Nets (SPNs) and Stochastic Process Algebras (SPAs).

Previously listed notations require definition and construction of specific models that then

needs to be solved with appropriate methods. Another approach is to use simulation models.

A simulation model is software that describes the dynamic behavior of a target system. The

model can be used to collect behavioral traces or execution times of simulated operations.

Simulation models can be implemented to simulate any specified behavior at different

levels of abstraction. Results produced by the model can be very accurate if the software

is instrumented properly. The main drawback of the simulation is that it the model requires

thorough design, implementation and verification work to ensure it can be substituted to the

real system. (Cortellessa, et al., 2011)

4.5	 Performance measurement frameworks

The previous chapter described some of the performance modeling notations used to predict

software performance before actual implementation. After parts of the software system

are implemented, either as prototypes or as final components, it is possible to conduct

performance measures to analyze performance of the software.

48

The literature contains many reports of different performance measurement techniques.

The frameworks can be divided into two categories: black-box and white-box frameworks.

Black-box solutions are aimed for software system which internal behavior is unknown.

Usually such a system is composed of software from many different vendors without access

to source code (Aguilera, et al., 2003). White-box solutions, also referred as annotation-

based monitoring schemes (Sigelman, et al., 2010), require custom instrumentation points

inserted into critical parts of the code.

To begin with, httperf (Mosberger & Jin, 1998) and NetLogger (Tierney, et al., 1998) are

early contributions associated with the topic. httperf is a simple client-side tool for measuring

web server performance. It does not require source code access or extensive application

specific knowledge. It can be configured to send requests to a server at fixed rate. Increasing

the rate at which requests are sent an analyst can detect when the server becomes saturated,

and reached its maximum throughput. NetLogger, on the other hand, provides custom event

logging framework used to collect event lifelines out from application components and

operating system components. NetLogger calls that generate logs must be implemented to

specific parts of the application.

Many newer frameworks utilize similar principles with httperf and NetLogger, but overcome

limitations of their predecessors. For example, httperf is capable of producing accurate client-

side statistics but is unable to pinpoint sources of server-side issues. NetLogger’s principle is

to log as much information as possible under realistic conditions (Tierney, et al., 1998). This

is problematic because incautious addition of logging generates too many events, concealing

actually interesting events and complicating detection of true issues (Reynolds, et al., 2006a).

The rest of this chapter comprises few other performance measurement frameworks starting

from the ones requiring no access to the source code, and followed solutions utilizing source

code instrumentation.

4.5.1	 Black-box techniques

WAP5 (Reynolds, et al., 2006b), mBrace (van der Zee, et al., 2009), Chopstix (Bhatia,

et al., 2008) and Whodunit (Chanda, et al., 2007) are example of performance analysis

frameworks that do not require source code instrumentation but are able collect adequate

49

data for performance analysis.

Whodunit and mBrace enable action-based measurement by tracing the flow of data through

multi-tier web applications in Apache environment. Whodunit provides custom wrappers for

critical system functions (e.g. pthread_mutex_lock, event_add and send/receive) and some

modifications to MySQL server that will track the transaction context used to identify the

current action (Chanda, et al., 2007). mBrace relies on customized Apache modules that will

process incoming HTTP requests. Modules will identify the request, track used CPU cycles

and log results to the database. Additionally, mBrace provides custom MySQL client library

that exposes an interface for executing traced SQL queries. (Chanda, et al., 2007)

WAP5 provides an interposition library, LibSockCap, to capture a trace of all networking

system calls. Similarly to Whodunit’s trace collection library, LibSockCap consists of system

call wrappers to log all socket-API activity. WAP5 uses trace reconciliation and causal

message linking algorithms to constitute trace logs. (Reynolds, et al., 2006b)

Chopstix is a diagnostics tool that continuously collects low-level OS events (e.g. CPU

utilization, I/O operations, page allocations and locking) using a data collector component

and aggregates raw data at multiple timescales (e.g. 5 minutes or 1 hour). Then, the data can

be visualized using the visualization component. For example, Chopstix is able to answer

the question “what was the system doing last Wednesday around 5pm when the ssh prompt

latency was temporarily high, yet system load appeared to be low?” (Bhatia, et al., 2008).

4.5.2	 Source code instrumentation techniques

This chapter introduces Magpie (Barham, et al., 2004), Dapper (Sigelman, et al., 2010), Pip

(Reynolds, et al., 2006a) and performance assertions (PA) (Vetter & Worley, 2002) which are

techniques that utilize source code instrumentation.

Magpie is Microsoft’s contribution and provides end to end request tracking capabilities.

Magpie’s instrumentation is built on Event Tracing for Windows (ETW). ETW logs contain

events collected from kernel to track CPU utilization and disk I/O, the WinPcap library

to capture transmitted and received packages, and custom application and middleware

instrumentation to capture application specific behavior. Magpie request parser links related

50

events together in order to track individual requests throughout the system. (Barham, et al.,

2004)

Dapper is Google’s performance tracing utility, which is successfully deployed in their

production environment. Dapper is able to trace the flow of requests through large-scale

distributed environment. Dapper’s core instrumentation is restricted into a small set of

common threading, control flow and RPC (Remote Procedure Call) libraries, which makes

it transparent to application developers. Dapper minimizes the overhead by optimizing trace

collection and by recording only a fraction of all traces (sampling). (Sigelman, et al., 2010)

Pip provides a set of tools for source code instrumentation and checking application behavior.

The tool chain consists of a custom middleware library that generates instrumentation

automatically. In addition to that, programmers may add more annotations to anywhere they

want. Expectations that define expected application behavior are fundamental requisites for

Pip’s operation. Pip checks all traced behavior against the expectations to expose structural

errors and performance problems. All recorded traces are stored in an SQL database and can

be visualized via GUI. (Reynolds, et al., 2006a)

Similarly, PA system provides capability for developers to assert performance expectations

to the code. The main conceptual compared to Pip is that PA combines instrumentation and

performance expectations into single notation. In other words, when a developer annotates

an individual code segment with performance assertions using the PA language (e.g. pa_

start(&pa, ‘$nInsts / $nCycles > 0.8’); <code> pa_end(pa);) the PA runtime automatically

configures any necessary instrumentation. PA limits the amount of data that must be processes

during performance analysis by highlighting only those parts of the code that fails to meet

the defined expectations. (Vetter & Worley, 2002)

4.5.3	 Summary of contributions

This chapter wraps up contributions introduces in the previous sections. Each solution is

listed along key features and other highlights valuable in this context. The summary is

shown in table 3. One important thing to note is that the table does not list low overhead as

a key feature, because it seems to be a common target for all. Each solution attempts to have

negligible performance impact on monitored system.

51

Table 3: Summary of performance measurement frameworks

Name Key features / design goals Highlights
WAP5 •	 Black-box solution

•	 Reveal causal structure and timing of
communication

•	 Wrappers for system functions

•	 Trace request path and timing (causal
structure of communication)

•	 Modified middleware / system library

mBrace •	 Black-box solution

•	 Request-based monitoring for multi-tier
web applications

•	 MySQL query profiling

•	 Use of custom HTTP modules

•	 Link SQL queries to HTTP requests

Chopstix •	 Black-box solution

•	 Collect low-level OS events

•	 Maintain comprehensive long time
history logs

•	 Continuous monitoring in production
environment

•	 Collection of low-level OS events and

•	 Could be used in all operating systems
(not only Linux)

•	 Use of sampling (sketches) to reduce
overhead

Whodunit •	 Black –box solution

•	 Request-based monitoring for multi-tier
applications

•	 MySQL query profiling

•	 Wrappers for system functions

•	 Link SQL queries to HTTP requests

•	 Modified middleware / system library

Magpie •	 No need to propagate request identifiers
through the system

•	 Use of event logs (ETW)

•	 Scalability

•	 Windows / IIS / SQL Server
environment

•	 Trace request path, timing and resource
demands

Dapper •	 Application-level transparency

•	 Ubiquitous deployment

•	 Continuous monitoring in production
environment

•	 Scalability

•	 Use of sampling to reduce overhead

•	 Minimized data collection

•	 Can be used as a general monitoring
tool

•	 Application transparent tracing

52

Pip •	 Compare actual behavior against
expected behavior

•	 Detect structural errors and performance
problems

•	 Automatic instrumentation

•	 Application behavior analysis

•	 Understand expected behavior during
development

PA •	 Assert performance exceptions directly
to source code

•	 No additional instrumentation needed

•	 Highlight only parts of code that fail to
meet the expectations

•	 Concentrates only on true problems
and discards others

•	 Understand performance goals during
development

4.6	 Best practices

Smith and Williams present 24 best practices for SPE, which are divided into four categories:

project management, performance modeling, performance measurement and general

techniques. Selection of the best practices is based on their experience in SPE techniques,

interviews and discussions, and observations from real life scenarios of companies that are

successfully applying SPE in their development process. (Smith & Williams, 2003)

4.6.1	 Best practices in project management (1-11)

The best practices in project management focus on risk management, integration of SPE into

development process and ensuring that SPE actions are executed. This chapter contains 11

useful advices (Smith & Williams, 2003):

	 1. Perform an early estimate of performance risk.

At first, the level of performance risk should be estimated. Is it possible that failing to

meet the performance goals due to inexperienced developers, use of new technologies or

working with tight schedule may jeopardize the success of the project? If so, the project has

a performance risk.

The following guidelines help to estimate the performance risk (Smith & Williams, 2003):

i.	 Identify potential performance risks.

53

ii.	 Determine impact of identifier risks. Focus on probability of happening and the

severity of damage that may occur.

iii.	 Rank risks based on their anticipated impact to address them systematically.

	 2. Match the level of SPE effort to the performance risk.

After possible risks are identified and estimated, the level of risk should be used to determine

level of effort required to put into SPE activities during the project. Used effort defines the

costs. For a low-risk project the effort might be 1% of the budged, but for high-risk project

it might be up to 10% of the total budget.

	 3. Track SPE costs and benefits.

The costs and benefits of applying SPE should be documented carefully. This is important to

justify need of SPE efforts in the future, because successfully applied SPE is often invisible.

Some managers have asked: “Why do we have performance engineers if we don’t have

performance problems? “ With good documentation, the return of investment (ROI) can be

calculated for applied SPE efforts.

	 4. Integrate SPE into your software development process and project schedule.

To be successful, SPE should be integrated into the development process. This helps to avoid

relying too much on certain individuals, because those individuals may be unavailable for

the task or leave the company. Additionally, this helps to ensure that SPE goals are kept in

mind and not neglected due to tight schedule.

	 5. Establish precise, quantitative performance objectives and hold developers 	

	 and managers accountable for meeting them.

When SPE is integrated into the process, the next practice is to define precise and quantitative

performance objectives. Well-defined performance objectives can be compared against

performance modeling results throughout the development process to determine whether the

project has a risk not to meet the performance goals. Identification of performance issues

throughout the process aids to perform appropriate remedial actions early.

“The end-to-end time for completion of a ‘typical’ correct ATM withdrawal performance

scenario must be less than 1 minute, and a screen result must be presented to the user within

54

1 second of the user’s input.” is considered as a well-defined performance objective. On the

other hand, “The system must be efficient” is not, because it is too imprecise. Some systems

may additionally have multiple different performance objectives based on system load. For

example, response time objective for 1000 users might be 1 second, but 2 seconds for 5000

users.

	 6. Identify critical use cases and focus on the scenarios that are important to 		

	 performance.

Use cases describe systems’ behavior when an actor (e.g. end-user) uses the system and

the system performs the associated action. A use case is a critical use case if the failing of

performance goals makes the system unusable or less usable from actor’s point of view.

Every complex system contains several different uses cases, but only small subset of these

is critical from performance point of view. “A small subset of the use cases (<20%) accounts

for most of the uses (>80%) of the system. There performance is dominated by these heavily

used functions”. It is impracticable and costly to focus on all possible uses cases. Performance

analysis should focus on uses cases that are executed frequently, are critical from user’s

point of view, or those that are executed infrequently, but whose performance is particularly

critical when executed.

	 7. Perform an architecture assessment to ensure that the software architecture 	

	 will support performance objectives.

One of the earliest decisions made in a software development project is the architecture design.

Performance cannot be added into the architecture afterwards. Because architectural designs

are the most costly to fix afterwards, performance must be taken into the design from the very

beginning. Smith & Williams add that based on their experience “performance problems are

most often due to inappropriate architectural choices rather than inefficient coding. By the

time the architecture is fixed, it may be too late to achieve adequate performance by tuning.”

Additionally, well-defined architecture cannot guarantee meeting performance goals, but a

bad architecture can prevent that.

	 8. Secure the commitment to SPE at all levels of the organization.

Software performance is not just a developmental concern; it’s a fundamental matter for the

55

entire organization. Software developers are usually aware of the performance and anxious

to fix it. SPE commitment issues usually arise from the middle management, because they

constantly trying to satisfy many conflicting goals. Keeping project in schedule and costs

under control are just a few to mention. Successful adoption of SPE requires full commitment

from the middle management as well as other company personnel.

	 9. Establish an SPE center of excellence to work with performance engineers 	

	 on project teams.

SPE described by Smith and Williams relies heavily on performance modeling. At early phases

of a project, the developers can utilize basic SPE techniques to build simple performance

models to assist architectural and design decisions. Later on, performance models become

more complex and more detailed. Thus, advanced SPE skills are required to conduct studies

that are more detailed. For this purpose, the company should nominate personnel from the

development organization to be responsible for performance management. Performance

managers should have enough authority in the organization to demand changes when they

are needed. Additionally, they are responsible for:

•	 Tracking and communicating performance issues.

•	 Establishing SPE process for identifying and solving issues that prevent accomplishment

of performance goals.

•	 Building performance expertise and assist other developers with SPE related issues.

•	 Create a risk management plan.

•	 Ensure that SPE activities are properly accomplished.

	 10. Ensure that developers and performance specialists have SPE education, 		

	 training and tools.

SPE consists of wide set of methods, each suitable for different project and development

phase. Additionally, performance engineering requires various modeling and measurement

tools. Successful SPE adoption requires proper expertise to know when and how to utilize

the methods and tools. This helps to build confidence on SPE among developers.

56

	 11. Require contractors to use SPE on your products.

Use of SPE should also be enforced if the company utilizes external contractors in developing

their products to avoid unpleasant surprises. These same practices apply when using a

contractor.

4.6.2	 Best practices in performance modeling (12-16)

As mentioned earlier, SPE utilizes performance modeling techniques, for instance, to model

the software architecture and design. There are total of five best practices for performance

modeling (Smith & Williams, 2003):

	 12. Use performance models to evaluate architecture and design alternatives 		

	 before committing to code.

13. Start with the simplest model that identifies problems with the system 	 	

 architecture, design, or implementation plans then add details as your 	

 knowledge of the software increases.

One challenging part of software development is balancing between quality attributes

like performance, availability and security. Often trade-offs are made in the development

when such attributes conflict with each other. Situations like this should be solved early

in the development process to avoid refactoring when the code is already written. Simple

performance models are cheap to build and evaluate before the software is implemented.

Evaluating performance issues early allows changes to architecture and design alternatives

without complex and expensive refactoring. Later in the development, as more details

are known, those simple performance models can be expanded to evaluate more complex

performance data.

	 14. Use best- and worst-case estimates of resource requirements to establish 		

	 bounds on expected performance and manage uncertain in estimates.

Software architecture, design and other details of the software are still vague. Hence, it is

impossible precisely estimate system resource requirements for the software execution. SPE

performance models rely upon such estimates. Therefore, SPE uses various strategies, for

57

example, best- and worst-case strategy to produce predictions of the best-case and worst-case

performance thresholds. If thresholds are unsatisfactory, a new alternative is required. On the

other hand, if results are satisfactory, software development can continue with confidence.

If the thresholds are in between, models can be used to identify critical components, and

analyses can focus on those.

	15. Establish a configuration management plan for creating baseline 		 	

	 performance models and keeping them synchronized with changes to the 	

	 software.

Software design evolves during software development. SPE artifacts, such as performance

scenarios and models, evolve along with the software. Changes to SPE artifacts should

be managed similarly to changes to software design and code. The software configuration

management ensures that baseline SPE artifacts evolve with the software. The configuration

plan specifies identify rules for artifacts, baseline establishment criteria for an artifact and

instructions what to do when making a change. It is not mandatory for every system, but it

is highly recommended for safety-critical systems.

	 16. Use performance measurements to gather data for constructing SPE 		

	 models and validating their results.

Performance modeling at early stages of design and development usually produces

estimates. As soon as parts of the system are implemented they can be measured to resolve

actual resource usage of key components. Measurements substantiate model predictions.

Additionally, measurements may highlight details that were originally omitted from the model

because they were thought to be negligible. Those may have critical impact on performance.

Therefore, critical components should be measured as early as possible throughout the

development process.

4.6.3	 Best practices in performance measurement (17-19)

The previous chapter concluded that performance measurement should be used to

substantiate performance model predictions. The best practices for conducting performance

measurements and performance testing include the following three instructions (Smith &

58

Williams, 2003):

	 17. Plan measurement experiments to ensure that results are both 			

	 representative and reproducible.

Performance measurements should be representative and reproducible. Representative

performance measurement results precisely reflect all of the factors affecting software

performance: the workload, the software itself and its execution environment. Perfect

measurements are very hard to conduct and they require a lot of effort to design and execute.

Therefore, unimportant details should be omitted to reduce design effort and execution

overhead. Reproducibility means that when measurements are repeated the results are the

same or very similar. Reproducibility increases confidence in the results.

The traditional scientific method can be applied to performance measurements. The following

steps are vital to success:

•	 Select appropriate test cases that accurately represent the factors affecting software

performance. Build a test plan and prioritize tests to be run.

•	 Collect only the necessary data. Too much data may ruin the result because it may conceal

essential results. Too little data, on the other hand, may render measurement inaccurate

or even useless.

•	 Collect and coordinate measurement results carefully. Synchronize data collection and

the granularity of the results, and follow the prioritized test plan.

	 18. Instrument software to facilitate SPE data collection.

Standard SPE measurement tools can be supplemented by adding instrumentation probes

at key points of the code. Firstly, well-done instrumentation of the code generated detailed

traces with all events of interest, such as event sequence and frequency. This helps to collect

and report exactly the data required. Secondly, instrumentation can be used to measure

precise measurements. Results from standard measurement tools rarely meet the desired

data granularity requirements. Lastly, instrumentation allows full control on measurement

process. Performance measurement with standard tools is not just a one click task. It requires

several execution steps and experienced personnel to analyze the results. Instrumented code

59

enables to turn on and off measurement of selected features as needed.

	 18. Measure Critical components early and often to validate models and verify 	

	 their predictions.

As previously stated, SPE should be considered early in the development process. Similarly,

performance measurement should be started on critical components as soon as possible and

continued throughout the process. This ensures that performance models are up-to-date and

changes do not void the models.

4.6.4	 Best practice techniques for SPE (20-24)

The last five best practices are techniques for co-operating SPE are (Smith & Williams,

2003):

	 20. Quantify the benefits of tuning versus refactoring the architecture design

Performance improvements can be obtained by fine tuning an existing system. Those are

unlikely to be as good as of a well-designed system. Additionally, fine tuning results are

often mistakenly believed as SPE accomplishments, which they are not. This failure in

thinking can be avoided by comparing what was achieved with tuning to what could have

accomplished by using SPE.

	 21. Produce timely results for performance studies.

SPE results should be composed and presented as soon as possible. Software development

is fast-paced and key architectural and design decisions are done in timely fashion. If SPE

results are not available when they are needed, the key decisions are likely already made.

	 22. Produce credible model results and explain them.

It is essential that developers and other members of the project team have confidence in

performance models and the performance engineer’s skills in using them. Confidence in

performance models can be enhanced by explaining the models:

•	 How they represent the software execution?

60

•	 How the model results are interpreted?

•	 How the early performance models are capable of predicting software performance and

identify problems?

	 23. Produce quantitative data for thorough evaluation of alternatives.

Whenever a problem is detected it should be presented with alternatives for solving it. When

the project knows the actual costs and benefits of alternative solutions they can make the best

choice among those.

	 24. Secure cooperation and work to achieve performance goals.

 “The purpose of SPE is not to solve models, to point out flaws in either designs or models, or

to make predictions-it is to make sure that performance requirements are correctly specified

and that they are achieved in the final product.“ Therefore, everyone accompanying the

project should have a common goal of developing a product that meets desired quality

constraints.

61

5	 SPECIFICATIONS FOR THE UPDATED SOFTWARE 			

	 DEVELOPMENT PROCESS

This chapter incorporates SPE techniques, presented in the previous chapter, into the

development process presented in chapter 3, which is used to develop the Configuration

Management and Mobile Device Management systems presented in chapter 2.

5.1	 Requirements for the specification

Current development process is built on agile practices. Developers and development teams

work independently to design, implement and test user stories in order of priority. This should

be taken into account when making changes to the process. Furthermore, the code base has

been under development for a decade. Products contain many features some of which have

not been changed for years. On the other hand, new features are being implemented on daily

basis. The updated process should provide guidelines how to work with old features and

what to do when implementing new ones.

The company wishes to receive various benefits from the updated process. Firstly, target

is to reduce costs. Performance issues should be detected early in the making because it is

cheaper to remove defects earlier than later in the software lifecycle. Secondly, performance

measurements are needed in order to estimate effects of change in performance and verity

that application’s performance is within the established performance goals. This implies that

performance requirements must be written down. Thirdly, it should be possible to conduct

performance measures in production environment also without noticeable effect on daily

usage. Lastly, Performance analysis should be able to help to create a baseline for up-to-date

system requirements.

5.2	 Updated software development process

Presented in figure 18 is the software development process model from chapter 3. It highlights

three sections that are important from SPE point of view. Each incorporates different SPE

practices to that phase of the process. These are:

62

1.	 Product management

2.	 Agile implementation

3.	 Verification and validation

As can be seen from the figure, product management is present throughout the process to

support and supervise other activities. Similarly, verification starts already during user story

planning and continues until new version is released. The following subchapters discuss

these in more detail.

Figure 18: Updated software development process model from chapter 3

5.2.1	 Product management

The product management in the company is responsible for the product strategy, roadmap

and feature specifications together with sales staff, customers, stakeholders and developers.

They define in which direction the product development will need to take in order to satisfy

customer needs, including finding new uses for the product or creating new features to

increase profits or sales. They write new user stories to the product backlog and maintain

priorities of user stories on the backlog. If a user story does not contain sufficient information

about the use case, they acquire required information from corresponding personnel.

From SPE point of view, as mentioned in chapter 4.6, product (project) management is

63

mainly responsible for supervising that software performance concerns are taken into account

throughout the software development lifecycle. They drive the development by securing

commitment to the subject at all levels of the organization, and ensure that employees have

sufficient training and tools.

Additionally, product management is responsible to identify critical user stories (scenarios)

that are important from the performance point of view. This is the first concrete new task

for them. It is accomplished by evaluating whether a user story involves a performance risk.

If the user story involves a performance risk performance objectives, target workload and

budget must be presented. If there is no risks, definition of target workloads and performance

objectives are not needed. Each user story on the backlog should have the following new

attributes defined:

•	 Performance risk: Yes / No

•	 Performance objectives

•	 Target workload

•	 Budged

These attributes are later in the process used to determine necessity to carry out subsequent

SPE activities. Table 4 lists example attributes for performance critical components presented

in chapter 2. Further examples of budgets, workload requirements and performance objectives

are presented in chapter 4.2.

Table 4: Performance attributes for user stories

ASP.NET client

handler

ASP.NET GUI Inventory data

import

Daemons/

Services
Performance

objectives

Response time Response time Throughput Throughput

Workload Clients Users Clients Managed devices

Users
Budged Resource utilization

Execution time

Resource utilization

Execution time

Resource
utilization

Execution time

Resource
utilization

Execution time

64

A common thing for the products is that there are many similar events occurring (e.g., the

client sends a message to server or a user opens an ASP.NET web page). Thus, common

system-wide performance attributes are needed to simplify this phase. A common performance

objective could be “A web page should be displayed in less than 1 second.” This objective

is suitable for a large portion of pages. However, for a complex page, product management

could write an exception stating that the response time requirement should be increased to

2 seconds.

5.2.2	 Agile implementation

As aforementioned, development teams work independently and iteratively to implement

the user stories in a sprint. Figure 19 presents steps through which each user story goes. In

addition, under each step the figure contains new SPE related activities. Complexity of these

steps varies depending on whether user story is a small improvement or a more complex

feature.

Figure 19: User story lifecycle in a sprint

Implementation starts with a design phase. Designs are usually drawn on a piece of paper or

on a blackboard. In some cases, prototyping is also used. However, use of software modeling

notations, such as UML, is not a common practice. Therefore, design and construction

of performance models can be left out until use of software modeling notations becomes

common practice during development. At that point in time, software models should be

annotated with quantitative information and analyzed from performance point of view.

65

 If a user story involves a performance risk, developers must design how to make measures

and how to stay on given budget. At any given time, if performance objectives or budged

requirements turn out to be unachievable they need to be revised. Performance objectives

define which performance indices to measure. Development team’s goal is to design the

measures (e.g. code instrumentation points) that can be used to verify that the feature meets

its objectives. Similarly, staying on budget must be measurable (e.g., how much memory is

used).

There are three important tasks, which need to be performed during the coding phase.

Firstly, all new code should be well covered by adequate instrumentation points. Secondly,

performance-profiling tools (e.g. ANTS Performance Profiler1 or Visual Studio Profiling

Tools2) should be used during development. These tools are useful to analyze performance

issues and other unusual behavior. Lastly, prototyping should be continued throughout

this phase for the understanding potential architectural advantages and disadvantages.

While reviewing the code, peer reviewers check that source code is properly instrumented.

Ultimately, before the user story is marked as complete, it has to be validated against its

performance objectives and given budged.

5.2.3	 Verification and validation

As aforementioned, verification and validation starts already during product management

phase when user stories are verified to contain all required attributes. Verification is a part

of the backlog grooming sessions. During development phase, development teams test

individual user stories before marking them as complete. Practically, each new product

release consists of several stories, usually something between 5 to 50 different user stories.

New features may or may not have an effect on existing features, and therefore, integration

and release tests have to be executed before release.

Performance tests should be included as part of this phase immediately after common

performance objectives and budget requirements are defined and the first version of

performance measurement framework, presented later on this chapter, is implemented and

first instrumentation points have been added to the code base.
1	 http://www.red-gate.com/products/dotnet-development/ants-performance-profiler/
2	 https://msdn.microsoft.com/en-us/library/z9z62c29.aspx

66

In order to be adequate, the test framework must address the following concerns. Firstly, it

should be able to repeat a particular sequence of actions. For example, open all web forms

one by one, measure response times, and compare values against previously collected data.

Secondly, it should be possible to simulate specific load conditions (e.g. 5000 managed devices

/ 100 users versus 20000 managed devices / 500 users) over and over again, making it possible

to collect performance measures over a time frame (e.g. 1 hour) and compare collected data

against previous results. Such simulation is not feasible with genuine devices because of mere

numbers, and therefore, requires some kind of load simulation utilities to be used.

5.3	 Performance Measurement Framework

This chapter discusses the specification for the Performance Measurement Framework

(PMF). The PMF consists of several components that can be used in conjunction to analyze

software system’s performance in internal test environments as well as customer’s production

environments. The main goals for the PMF are:

1.	 Collect performance indices, such as response times, processing times and

throughput out from performance critical features presented in chapter 2.2.

2.	 Collect hardware resource usage out from web and SQL servers.

3.	 Store collected data and make it possible to link the data together making it

possible to analyze what is actually going on in the system.

5.3.1	 The big picture

The concept behind the Performance Measurement Framework is depicted in figure 20. In

order to meet the goals, the framework needs ability to collect performance data out from

the following components:

1.	 ASP.NET IIS applications

2.	 C# services

3.	 Scheduled background daemons

4.	 Server hardware resources

67

Figure 20: The concept behind the Performance Measurement Framework

The impact to system’s performance while collecting performance data must be kept

constantly in mind. The overhead caused by data collection should have negligible impact

on the monitored systems performance. To achieve this data is collected and stored as is, and

all further data processing should be done later on as offline analysis. In order to minimize

the overhead caused by the data collection, it should be possible to enable it by feature basis.

For example, if it looks like inventory queues are constantly full; the PMF could be enabled

for inventory imports only. Likewise, if one is interested in client-server communication,

one can enable performance measurement for it.

5.3.2	 Instrumentation techniques for ASP.NET

This chapter specifies software-monitoring techniques for collecting performance indices

out from the ASP.NET applications. By doing this, the PMF is able to cover the following

performance critical features:

1.	 Client-server communication

2.	 User interface

3.	 Inventory data handlers

4.	 Web service and connector interfaces

•	 Performance index: response time

•	 Instrumentation technique

68

How long it takes to process a request by the ASP.NET HttpApplicaton pipeline? This can

be done by measuring spent time between BeginRequest and EndRequest events (Microsoft,

2016a). Additional instrumentation is required when tracking requests through different

layers of the web application. This can be achieved by adding more detailed custom

instrumentation points to critical parts of the code. Additional instrumentation points can be

linked to a specific request by storing a unique request identifier to ASP.NET HttpContext.

•	 Request identification

Each HTTP request can be identified by the web page part of the URL.

For example:

-	 http://www.site.com/views/device_list.aspx

-	 http://www.site.com/handlers/client.ashx

A single platform specific ASP.NET handler processes most of the client-server

communication. Different messages are defined either XML elements or XML attributes

defined in the XML elements. Therefore, in order to message level identification requires

XML parsing.

•	 An example of collected data

Presented in figure 21 is an example of an instrumented ASP.NET application. Instrumentation

starts from RequestBegin event and ends after RequestEnd event. During the request, seven

instrumentation points were bypassed and nine SQL queries were executed altogether.

Figure 21: An example of an instrumented ASP.NET HTTP request

69

5.3.3	 Instrumentation techniques for C# Windows Services

This chapter specifies software-monitoring techniques for collecting performance indices

out from Windows services implemented using C#. This covers some of the inventory data

import types and other service based queues.

•	 Performance indices: throughput and execution time

•	 Instrumentation technique

Services expose interfaces for other applications to use. For example, ASP.NET inventory

data handlers send inventory data to inventory service’s interface. Service application can

be instrumented by measuring how long it takes to process a service call. When needed,

more specific instrumentation points can be added for subsequent function calls. Additional

instrumentation points can be linked to a specific task by storing a unique request identifier

to the thread domain.

•	 Identification

Each service call can be identified by the name of the interface method.

For example:

-	 public void ImportAndroidInventory

-	 public void ImportiOSInventory

•	 An example of collected data

Figure 22 presents an example of collected data from an instrumented service call. In the

example, interface method is known as ImportAndroid and it consists of two first level

children function calls and multiple second level ones. It should be noted that inventory data

might contain thousands of installed software entries. Additionally, the PMF should keep

track about number of jobs in each queue. This information can be used to calculate how

many files are being processed within a period.

70

Figure 22: An example of an instrumented service call

5.3.4	 Instrumentation techniques for inventory import scripts

This chapter specifies software-monitoring techniques for collecting performance indices

out from the inventory import scripts. This covers some of the inventory import types.

•	 Performance indices: throughput and execution time

•	 Instrumentation technique

Inventory import scripts process inventory folders one by one. If folder contains a file, it is read

to memory and written to the database using SQL Server stored procedure. Instrumentation

can be done by measuring how long it takes to read a file from the disk and how long it takes

to execute the stored procedure.

•	 Identification

Inventory imports can be identified by name of the inventory folder and name of the stored

procedure.

For example:

-	 FileScan & dbo.usp_import_filescan

-	 HWScan & dbo.usp_import_hwscan

•	 An example of collected data

As depicted in figure 23, output generated by an instrumented inventory import script is

rather straightforward containing only the read and write operations as described earlier.

71

Additionally, PMF should keep track about number of files in each inventory import folder.

This information can be used to calculate how many inventory files are being processed

within a period.

Figure 23: An example of an instrumented inventory import script

5.3.5	 Instrumentation techniques for background daemons

This chapter specifies software-monitoring techniques for collecting performance indices

out from the background daemons.

•	 Performance index: execution time

•	 Instrumentation technique

Background tasks are run by a custom C# executable known as scheduled task engine.

Instrumentation of background tasks, such as, SQL Server stored procedures on other scripts

can be done simply by measuring how long it takes to execute. Instrumentation code can be

added to the scheduled task engine.

•	 Identification

Background tasks can be identified by their unique name.

For example:

-	 Update software reports and database cleanup

72

•	 An example of collected data

As depicted in figure 24, output of instrumented background tasks is very straightforward.

Figure 24: An example of instrumented background tasks

5.3.6	 Resource monitor

PMF’s software monitoring features should be adequate for software behavior and problem

analysis. However, sometimes the code may work as expected, but there are hardware

bottlenecks that cause the problems. Underpowered hardware is known issue in multiple

several customer cases. To detect such problems, the PMF must collect hardware resource

usage from the web and SQL servers. Collected resource usage data should be timed so that

it can be linked to specific actions in time. For example, the user interface slows down at

Monday 8AM. How high were CPU load and memory usage, and which HTTP requests and

background tasks were running at that time?

The PMF should collect data out from the following hardware resources:

1.	 Overall CPU usage (%)

2.	 Overall memory usage (MB and %)

3.	 Disk activity (Read/Write B/sec)

4.	 Per process resource usage

•	 Processes: IIS process (w3wp.exe), SQL Server process (sqlservr.exe),
custom service executables

•	 Collected data: CPU usage (%), Memory usage (MB and %) and Disk activity

(Read/Write B/sec)

73

5.3.7	 Performance measurement database

The PMF should store collected performance data into a centralized performance measurement

database. Later on, performance analysts can write queries against the database in order

to generate reports and figures about system state at any given time. The products under

analysis already utilize SQL Server database as temporary and long-term data storage. There

are existing utilities that can be used to write data to SQL Server database. Thus, use of SQL

Server database is obvious choice. Writing lots of data to the database might have an impact

on database server performance, and therefore, performance database should be configurable

on different physical server than monitored system’s database is running on.

5.3.8	 Utilization in production environment

Performance problems may occur in customer’s production environment. Resolving such

issues is very time consuming and expensive. The PMF should be easy to enable when such

problems arise. It can collect valuable data out from the system that is not possible currently.

In in-house test environment, it is straightforward task to configure a custom test server

to be used as SQL Server performance database. In customer’s production environment,

it is not that easy. Hence, use of SQL Server as performance database is not preferable

option in production environment. The solution is to write performance data into a local

file. Instead of using centralized SQL Server database, different components generate local

comma separated values files (CSV). These files can then be compressed and sent the product

support for further analysis.

5.3.9	 Common libraries

Target products consist of many similar components, for example, ASP.NET C# web

applications and C# services. It is unreasonable to copy the same source code to multiple

places. The PMF should define common language-based libraries containing the core

instrumentation utilities are available for different application types:

•	 Common C# profiling library

•	 Common scripting functions for profiling

74

5.4	 The deployment steps for the updated process

This chapter discusses the phasing and prioritization of previously introduced additions

to the software development process. Applying all changes at once is not feasible due to

various reasons.

Firstly, it will take quite a while to deploy new practices and implement the framework.

Such a project is risky and not very agile. Secondly, making all changes at once may slow

down or halt other development activities. Similar problems have been identified in the past

while implementing major projects or introducing new development methods as discussed

in chapter 3.

Lastly, feedback from the process and other development personnel is valuable in order

to improve the process iteratively. Reacting to the feedback is easier when changes are

introduced gradually. The steps and the order in which these steps are to be implemented are

described in the following sub-chapters.

5.4.1	 Step 1: Product and backlog management

The first step is to put the backlog and product management in order. Identification of

performance risks (per user story), and definition of performance objectives, target workload

and budged is mandatory for subsequent steps. JIRA3 the software development tool used

by the company should be updated to have the new attributes for user stories. Henceforth,

each new user story needs to be evaluated from performance point of view before it can be

selected for development.

In addition to that, developers should get necessary training on the topic before actual

implementation. A performance-profiling tool should be selected and started to use as

daily basis during development. Commitment to the topic should be assured during backlog

grooming, sprint planning and daily team meetings.

3	 https://www.atlassian.com/software/jira

75

5.4.2	 Step 2: Performance Measurement Framework for ASP.NET

The next step is the implementation of the Performance Measurement Framework for ASP.

NET server applications. This chapter will not go into implementation details such as whether

to use already existing components or build a custom solution from scratch. Nevertheless,

ready-made solutions should be considered if a suitable can be found and it can be fitted to

this purpose.

For example, MiniProfiler (MiniProfiler, 2016) is an easy to use profiling utility for ASP.

NET. It supports HTTP request-based tracing, SQL query profiling and a pragmatic step

instrumentation that can be used to add custom instrumentation points to the code. It provides

a simple client-side interface for inspecting collected traces and built-in support for storing

them into SQL Server database

After data collection technique is selected and implemented, instrumentation points should

be added to the source code. During the first phase, it is enough to measure duration of the

HTTP request and trace corresponding SQL queries. This provides adequate information to

verify that the PMF for ASP.NET works as expected. More detailed instrumentation points

can be added later if needed to the critical parts of the code. Collected data needs to compliant

with the specifications presented in chapter 5.3.2.

5.4.3	 Step 3: Implement Resource Monitor

The third step is to implement the Resource Monitor. As mentioned in the previous

chapter, possibility to use ready-made solutions should be carefully investigated. For

example, Windows Performance Monitor (Microsoft, 2016c) can be used to log Windows

performance counter data for later analysis. Windows performance counters can provide all

aforementioned hardware resource usage.

If Windows Performance Monitor is not suitable for this purpose, it is possible to utilize

System.Diagnostics.PerformanceCounter class (Microsoft, 2016b) that can be used to read

Windows performance counters programmatically from C# code. Additionally, performance

counter data can be collected remotely meaning that one custom-made Performance Monitor

application is capable of collecting data from multiple servers.

76

5.4.4	 The future steps

The renewal of the software development process is an iterative process. To carry out the first

three steps already takes time and provides valuable feedback to the process. Some additions

might have to be made and these should be carried out at immediately before proceeding to

the next steps. Thus, it is not feasible to make detailed plans for subsequent steps.

The remaining steps in order of importance are:

1.	 Enable performance monitoring in production environment.

2.	 Add support for remaining performance critical features to the PMF.

3.	 Add more instrumentation points to ASP.NET code.

4.	 Automate performance tests with load simulation framework.

77

6	 CONCLUSIONS AND FUTURE WORK

Software performance analysis is essential part of software development to any software

company. Software performance is present, as described in this paper, throughout the software

lifecycle: from requirement analysis to design and development to testing to software

maintenance. Software performance issues usually stem from early architectural and design

choices and have severe impact on customer experience and success of the business. Fixing

performance related issues late in the lifecycle is usually time consuming and expensive.

Still, software performance issues are rarely considered early in the development.

Presented in this paper are solutions with witch a software company can take performance

into consideration during the software development. Software performance engineering,

a systematic software oriented engineering approach to develop software that meets its

performance objectives, provides methods for different stages of the development process.

Each of which is valuable by itself, but when used in conjunction it can substantially improve

quality and cost-efficiency of the software.

The methods presented allow valuable enhancements to software development processes,

but not all of them are suitable for every software company. Selection of methods must

be made based on company’s current model of operation. Introducing too many additions

at once not only requires significant changes to the current way of doing things but may

also nullify the benefits from using the SPE in the first place. Therefore, it is important

that companies determine their individual level of effort required to put into SPE activities

during the projects. This paper proposed one real-life example of a development process

with carefully chosen SPE enhancements. The result is an updated end-to-end process model

that is agile, obeys current model of operation and is relatively light-weight to implement. It

will be put to use in the near future.

Doing this thesis aroused discussions about non-functional software requirements in general,

of which software performance is only one. There are other important non-functional

requirements, such as security, reliability and usability. For example, security of a software

system is heavily dependent on early design choices. The approach presented in this paper

could therefore also be applied with some modifications to other non-functional software

attributes.

78

REFERENCES

Aguilera, M. K. et al., 2003. Performance debugging for distributed systems of black boxes.

New York, ACM.

Balsamo, S., Di Marco, A., Inverardi, P. & Simeoni, M., 2002. Software performance: State

of the art and perspectives, s.l.: Dipartimento di Informatica, Universita dell’ Aquila.

Balsamo, S., Di Marco, A., Paola, I. & Marta, S., 2004. Model-Based Performance Prediction

in Software Development: A Survey. s.l., IEEE.

Barham, P., Donnelly, A., Isaacs, R. & Mortier, R., 2004. Using Magie for request extraction

and workload modeling. s.l., OSDI ’04: 6th Symposium on Operating Systems Design and

Implementation.

Beck, K. et al., 2001. Manifesto for Agile Software Development. [Online]

Available at: http://agilemanifesto.org [Accessed 10 7 2014].

Bhatia, S., Kumar, A., Fiuczynski, M. E. & Peterson, L., 2008. Lightweight, High-Resolution

Monitoring for Troubleshooting Production Systems. San Diego, ACM Press.

Chanda, A., Cox, A. L. & Zwaenepoel, W., 2007. Whodunit: Transactional Profiling for

Multi-Tier Applications. Lisboa, ACM Press.

Compuware, 2006. Application Performance Management Survey, s.l.: s.n.

Cortellessa, V., Di Marco, A. & Inverardi, P., 2011. Model-Based Software Performance

Analysis. s.l., Springer Berlin Heidelberg.

Fortier, P. & Michel, H., 2003. Computer Systems Performance Evaluation and Prediction.

s.l.:Elsevier.

Laurie, W. & Alistair, C., 2003. Agile software development: it’s about feedback and change.

In: Computer. s.l.:IEEE, pp. 39 - 43.

Microsoft Corporation, 2004. Improving .Net Application Performance and Scalability

(Patterns & Practices). s.l.:s.n.

79

Microsoft, 2016a. ASP.NET Application Life Cycle Overview for IIS 7.0.

[Online] Available at: https://msdn.microsoft.com/en-us/library/bb470252.aspx

[Accessed 14 February 2016].

Microsoft, 2016b. MSDN: PerformanceCounter Class (System.Diagnostics). [Online]

Available at: https://msdn.microsoft.com/en-us/library/system.diagnostics.performance-

counter(v=vs.110).aspx [Accessed 26 2 2016].

Microsoft, 2016c. Windows Performance Monitor. [Online] Available at: https://technet.mi-

crosoft.com/en-us/library/cc749249.aspx [Accessed 26 2 2016].

MiniProfiler, 2016. MiniProfiler: A Simple buteffective mini-profiler for .NET and Ruby..

[Online] Available at: http://miniprofiler.com [Accessed 26 2 2016].

Mosberger, D. & Jin, T., 1998. httperf—a tool for measuring web server performance. New

York, ACM SIGMETRICS Performance Evaluation Review.

Mylopoulos, J., Chung, L. & Nixon, B., 1992. IEE Transactions on Software Engineering,

Issue Volume: 18, Issue: 6, pp. 183-497.

Nixon, B. A., 2000. Management of Performance Requirements for Information Systems.

IEEE Transactions of Software Engineering, Issue Volume:26, Issue: 12, pp. 1122-1146.

OMG, 2005. UML Profile For Schedulability, Performance and Time. [Online] Available at:

http://doc.omg.org/formal/2005-01-02.pdf [Accessed 13 10 2015].

OMG, 2008. Software & Systems Process Engineering Metamodel (SPEM). [Online]

Available at: http://www.omg.org/spec/SPEM/ [Accessed 31 January 2015].

Petriu, D. & Woodside, M., 2002. Analysing Software Requirements Specifications for

Performance. Rome, s.n.

Reynolds, P. et al., 2006a. Pip: Detecting the Unexpected in Distributed Systems. San Jose,

NSDI.

Reynolds, P. et al., 2006b. WAP5: Black-box Performance Debugging for Wide-Area Systems.

Edinburg, Proceedings of the 15th international conference on World Wide Web.

80

Sigelman, B. H. et al., 2010. Dapper, a Large-Scale Distributed Systems Tracing

Infrastructure, s.l.: Google, Inc..

Smith, C. U., 2001. Origins of Software Performance Engineering: Highlights and

Outstanding Problems. s.l., Springer Berlin Heidelberg.

Smith, C. U. & Williams, L. G., 2003. Best Practices for Software Performance Engineering.

Dallas, TX, Computer Measurement Group.

Tierney, B. et al., 1998. The NetLogger Methodology for High Performance Distributed

Systems Performance Analysis. Chicago, IL, IEEE.

van der Zee, A., Courbot, A. & Nakajima, T., 2009. mBrace: Action-based Performance

Monitoring of Multi-Tier Web Applications. Vancouver, Computational Science and

Engineering, 2009. CSE ‘09. International Conference on (Volume:2).

Vetter, J. S. & Worley, P. H., 2002. Asserting Performance Expectations. Los Alamitos, IEEE

Computer Society Press.

Woodside, M., Franks, C. & Petriu, D. C., 2007. The Future of Software Performance

Engineering. Minneapolis, MN, IEEE Computer Society, pp. 171 - 187.

