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Diabetic retinopathy, age-related macular degeneration and glaucoma are the leading
causes of blindness worldwide. Automatic methods for diagnosis exist, but their perfor-
mance is limited by the quality of the data. Spectral retinal images provide a significantly
better representation of the colour information than common grayscale or red-green-blue
retinal imaging, having the potential to improve the performance of automatic diagnosis
methods.
This work studies the image processing techniques required for composing spectral retinal
images with accurate reflection spectra, including wavelength channel image registration,
spectral and spatial calibration, illumination correction, and the estimation of depth in-
formation from image disparities. The composition of a spectral retinal image database
of patients with diabetic retinopathy is described. The database includes gold standards
for a number of pathologies and retinal structures, marked by two expert ophthalmolo-
gists. The diagnostic applications of the reflectance spectra are studied using supervised
classifiers for lesion detection. In addition, inversion of a model of light transport is used
to estimate histological parameters from the reflectance spectra.
Experimental results suggest that the methods for composing, calibrating and post-
processing spectral images presented in this work can be used to improve the quality
of the spectral data. The experiments on the direct and indirect use of the data show
the diagnostic potential of spectral retinal data over standard retinal images. The use of
spectral data could improve automatic and semi-automated diagnostics for the screening
of retinal diseases, for the quantitative detection of retinal changes for follow-up, clinically
relevant end-points for clinical studies and development of new therapeutic modalities.
Keywords: Image processing, spectral imaging, retinal imaging, diabetic retinopathy
Symbols and abbreviations
AMD age-related macular degeneration
AUC area under the curve
BDT binary decision tree
BRISK binary Robust Invariant Scalable Keypoints
BristolDB Bristol retinal image data set
CC correlation coefficient
CCD charge-coupled device
CD2 similarity measure by Myronenko et al.
CLAHE contrast limited adaptive histogram equalisation
CT computed tomography
DiaRetDB1 DiaRetDB1 diabetic retinopathy database
DiaRetDB2 DiaRetDB2 diabetic retinopathy database
DIV difference in variation
DR diabetic retinopathy
ED-DB-ICP edge-driven dual-bootstrap iterative closest point
FA fluorescein angiogram
FCM fuzzy c-means clustering
FNR false-negative rate
FOV field-of-view
FP false positive
FPR false-positive rate
FREAK fast retina keypoint
GDB-ICP generalized dual-bootstrap iterative closest point
GLCM graylevel co-occurrence matrix
GMM Gaussian mixture model
Graph graph-cuts
GrowCut GrowCut algorithm
HMA haemorrhage and microaneurysm
ICP iterative closest point
IRMA intra-retinal microvascular abnormalities
ISOS inner segment/outer segment
KDE kernel density estimate
kNN k-nearest neighbour
Lab CIE Lab
LBP local binary pattern
LBPHF local binary pattern histogram Fourier feature
LED light emitting diode
LSO laser scanning ophthalmoscopy
MAP maximum a posteriori
MC Monte Carlo
MCMC Markov-chain Monte Carlo
MI mutual information
ML maximum likelihood
MP macular pigment
MRI magnetic resonance imaging
MS similarity measure by Cohen and Dinstein
MSER maximally stable extremal regions
MSRM maximal similarity region merging
NB Bayesian probability regions
NCC normalised cross-correlation
NN neural network
NPV negative predictive value
OCT optical coherence tomography
PCA principal component analysis
PDF probability density function
PET positron emission tomography
PPV positive predictive value
QI quality index
RANSAC random sample consensus
RC minimisation of residual complexity
RF random forest
RGB red-green-blue
RMSE root-mean-square error
ROC receiver operating characteristic
ROI region of interest
RPE retinal pigment epithelium
RRGS recursive region-growing segmentation
SAD sum of absolute differences
SAM spectral angle measure
SCM spectral correlation measure
SD-OCT spectral domain optical coherence tomography
SH systemic hypertension
SID spectral information divergence
SIFT scale invariant feature transform
SN sensitivity
SNAKE active contour
SP specificity
SSD sum of squared differences
SURF speeded-up robust feature
SVM support vector machine
SWFCM spatially weighted fuzzy c-means clustering
TH5 Otsu thresholding
TN true negative
TNR true-negative rate
TP true positive
TPR true-positive rate
x a vector
A a matrix
AT the transpose of A
A−1 matrix inversion of A
I identity matrix
s photon propagation step size
φ photon propagation direction
log(x) natural logarithm of x
µt tissue interaction coefficient
µa tissue absorption coefficient
µs tissue scattering coefficient
ξ random number from uniform distribution between [0, 1]
E photon energy
Φ photon scattering azimuthal angle
θ photon scattering deflection angle
g tissue anisotropy factor
db photon distance to tissue boundary
αi angle of incidence (boundary reflection)
ni refractive index of incident medium
nt refractive index of transmission medium
R(αi) likelihood of internal reflection
αt photon angle of transmission
su camera scale factor
du pixel width
dv pixel height
δu(r) radial distortion term
δu(t) tangential distortion term
pd geometric distortion model parameters
p(x) probability of x
µ mean
x¯ sample mean of x
σ standard deviation
σxy covariance of x and y
Σ covariance matrix∑
i sum over i
m∑
i=n
sum over i from n to m
W weight matrix
T transmittance matrix
η noise term
tλ exposure time of wavelength channel λ
fill estimated illumination field
v0 vector of reflected intensities
v vector of image intensity values
Y intermediate template image
dU image width
αfov horizontal field-of-view angle of camera
R homogeneous rotation matrix
ϕx angle of rotation around x-axis
β vector of illumination field parameters
f camera focal length
α0 radial vignetting factor
γ angle of camera tilt
A ∪B union of A and B
A ∩B intersection of A and B
ω haemoglobin absorption based weight factor
res vector of residual values
P projection matrix
� reprojection error
logn(x) base n logarithm of x
p(x | y) probability of x given y
C matrix of principal component vectors
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Chapter I
Introduction
Diabetic retinopathy (DR) , age-related macular degeneration (AMD) and glaucoma
are among the leading causes of blindness world wide [78, 109, 186]. In addition to the
personal impact on quality of life due to impairment or loss of vision, the aforementioned
conditions form a significant financial cost to the society in the form of disability benefits,
medical care and early retirement. [65,104]
Prolonged high blood glucose levels associated with diabetes damage the capillaries and
disrupt the circulation of blood in the retina. As the delivery of oxygen and nutrients
is disrupted, the growth of new retinal blood vessels accelerates as the retina tries to
circumvent the disrupted circulation. The increased growth rate of vessels can cause a
dilation of small blood vessels (intra-retinal microvascular abnormalities (IRMA)) and a
formation of new vessels. IRMA and neovascularisation lead to a high risk of haemor-
rhage, and with the tendency of the new vessels to form over the retina, haemorrhages
may block light entering the photoreceptors and lead to sudden loss of vision (this pro-
cess is known as proliferative diabetic retinopathy). [219] The most common cause of
visual impairment in diabetic patients is macular edema, a condition where the increase
vascular permeability causes exudation and swelling of the macular structures.
AMD is the leading cause of blindness in the elderly [99]. With the ageing of the eye
fundus, the metabolism of the retina may begin to slowly deteriorate. Problems with
the metabolism may lead to an accumulation of extracellular material, forming yellow or
grey spots called drusen. The appearance of large drusen in significant numbers has been
associated with the development of exudative form of AMD that is the most common
cause of AMD-related visual impairment.
Despite the severity of the diseases, a number of treatments exist that can delay or stop
the progression of the pathologies and prevent the loss of vision (e.g., [33, 61, 77, 79, 168,
193]). Therefore, early detection of pathology is crucial for effective and cost-effective
treatment, and preserving the vision of the patient. Diabetic retinopathy (DR) and
AMD are typically diagnosed from colour or grayscale fundus images. Fundus imaging
offers a non-invasive view of the human retina, but due to the small aperture (the pupil),
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the curvature of the fundus, and the optical system of the eye, specialised optics are
required to acquire an in-focus image of the curved fundus on a flat digital camera sensor
array.
Eye disease screening programs have been implemented [41, 142, 199] to bring patients
in early stages of the disease (who have not yet exhibited symptoms) into the treatment
program. Widening the screening programs, however, means a significant increase in
the workload of the ophthalmologists responsible for performing diagnosis based on the
images.
To enable automatic diagnostics and support the screening programs, a significant body
of work on automatic detection of lesions related to DR and AMD exists (e.g., [23,72,138,
161,162, 184,198, 227]). However, automated methods are limited by the available data.
Early pathological changes in the retina may be difficult or impossible to automatically
detect from red-green-blue (RGB) or grayscale fundus images.
Various imaging modalities have been developed to acquire more representative views
of different features of the eye fundus. These modalities include angiography, retinal
optical coherence tomography (OCT), retinal magnetic resonance imaging (MRI) and
laser scanning ophthalmoscopy (LSO). Products providing multiple modalities in a single
device have also become available (e.g., [171,222]).
Among the promising relatively recent imaging modalities is spectral fundus imaging.
Spectral images combine the benefits of spectroscopy with the field-of-view (FOV) of
traditional retinal imaging. As the spectra are measured simultaneously over the whole
FOV, the analysis of the spectra is not limited to a set of point-wise measurements. The
spectra can be used to better discriminate between different retinal tissues and structures
than standard RGB colour information, potentially improving segmentation and contrast
of the structures.
However, spectral imaging has a number of additional challenges compared to the ac-
quisition of traditional grayscale or RGB fundus images. Depending on the approach
to spectral fundus imaging, several steps are required to compose a spectral image with
correct spectral content from the individual channel images. Depending on the system,
these steps may include image registration, correcting geometric distortions, correcting
bias due to uneven illumination fields in the channel images or due to spectral aberrations,
and dealing with artifacts caused by dust and dirt in the optics.
1.1 Objectives
Spectral fundus image data has the potential to significantly improve the automatic diag-
nosis of retinal pathologies. The goal of the work in this thesis was to study two available
spectral image acquisition systems and to study and develop methods for composing and
post-processing the spectral channel images acquired by the systems. The challenges of
the acquisition of accurate retinal spectra are addressed in this work by the study of
registration, calibration and illumination correction of the retinal spectral images.
One of the main goals of the work was the composition of a database of spectral fundus
images with gold standard of the location of lesions of multiple types, provided by two
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expert ophthalmologists. Another important goal was to provide examples and consid-
erations on the use of the spectral data.
The scope of this work was limited to the acquisition, processing and use of spectral
fundus image data in the context of automatic detection of retinal pathologies. The
study of automatic detection concentrated on intensity, colour and spectral features of
the fundus images. In-depth studies into other automatic diagnostic approaches, and the
medical and biological study of retinal pathologies were considered out of the scope.
1.2 Contribution and publications
During the thesis work, an evaluation of the performance of a number of image registra-
tion methods on spectral fundus image data was performed, and the results were reported
in [129]. An extended study on the registration has been performed and a manuscript
of the study has been submitted for review [128]. The author was responsible for the
performing and reporting of both the initial and the extended studies.
This thesis introduces a method for spectral retinal image illumination correction that
considers the consistency of the image spectra. The author has been responsible for the
reporting, partially implementing, and planning the implementation of the method.
In addition, an extension of the method by Lin and Medioni [139] for estimating the 3D-
structure of the retina from the disparities between retinal images was implemented. The
author was responsible for a part of the implementation of the original method, planning
the implementation of the extensions and the reporting of the extended method.
As a part of the ReVision consortium project, methods for visualising spectral images
with the visual contrast of lesions or retinal structures optimised were developed. The
methods were published in [57]. The author contributed to the quantitative evaluation
of the methods and participated in the reporting of the study.
Among the major contributions of the work in this thesis is the gathering of the gold stan-
dard annotations for the spectral fundus image database DiaRetDB2 diabetic retinopa-
thy database (DiaRetDB2). The author implemented the software tool used for the
annotations, guided and supported the annotation work, and was responsible for the
development, implementation and evaluation of the annotation post-processing and the
baseline lesion detection methods.
As a part of the annotation gathering, the effect of ground truth inaccuracy on different
image features and the possibility of refinement by post-processing of the annotations
was studied. A paper on the annotation refinement work has been published in [131].
The annotation refinement manuscript has been extended with results related to the
relevance of the annotation accuracy, and the extended manuscript has been submitted
for review [130]. The author was responsible for the development and implementation of
the post-processing methods, and for the experiments, evaluation and reporting of the
results.
During a research visit in the University of Birmingham, the author participated in
the extension of the inverse modelling of light transport in the retina. The author was
responsible for improving the original model (Styles et al. [216]), developing approaches
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for aligning the model with the image data, and applying the model on data from a
different spectral retinal imaging system.
The main contributions of the thesis work can be summarised as
• Quantitative evaluation of registration methods for channel image registration.
• Implementation, improvement and evaluation of the method of Lin and Medioni [139]
for estimating depth information for retinal images.
• Method for correcting uneven illumination in spectral images.
• Software tool and support for gathering gold standard annotations for DiaRetDB2.
• Study on the effect of ground truth inaccuracy on the performance of supervised
classifiers.
• A method for post-processing coarse manual annotations.
• Improvement of the light interaction model by Styles et al. [216], and the alignment
of the model with spectral image data.
1.3 Outline of the thesis
The rest of the thesis is structured as follows:
Chapter 2, Spectral fundus imaging and spectral image composition, presents a theory of
spectral fundus image formation and its modelling, detailed descriptions of the imaging
equipment utilised in this thesis, considerations and approaches to challenges in spec-
tral fundus camera calibration, and the composition of spectral images from individual
channel images. Spectral image composition includes the introduction and quantitative
evaluation of image registration methods and strategies. In addition, certain unique
features (and their use) of spectral images, such as channel-wise independent illumi-
nation fields and their correction, and stereo reconstruction from the disparity due to
inter-channel eye movement, are discussed.
Chapter 3, Spectral image database of diabetic retinopathy patients, details the acqui-
sition and composition of a new publicly available spectral fundus image database with
ground truth markings by an expert ophthalmologist, DiaRetDB2. The importance of
the level of spatial accuracy of the ground truth in lesion detection is quantitatively eval-
uated for a number of different image features. Methods and quantitative evaluation for
the post-processing of the expert annotations are presented.
Chapter 4, Medical applications of spectral fundus data, discusses the use of the spectral
image data in medical applications. A method for automatic diagnosis based on the
classification of spectral colour features is presented and evaluated. Another applica-
tion using inverse modelling of light interaction in retinal tissue to generate histological
parameter maps of the retina is presented.
Chapter 5, Discussion, presents the implications of the results, and the future work
related to the content of the thesis.
Chapter 6, Conclusion, summarises the goals, methods, experiments and results, and
concludes the thesis.
Chapter II
Spectral fundus imaging and spectral image composition
2.1 Introduction
Fundus imaging offers a non-invasive view to the eye fundus. A typical modern fundus
camera consists of a light source, a digital camera, and microscope optics for both pro-
jecting the illumination onto the eye fundus and guiding the light reflected from the eye
fundus into the camera. Due to its ease of use and relative inexpensiveness, digital fundus
imaging remains the standard method for diagnosing diseases of the eye fundus, such as
DR, AMD and glaucoma. Typically either RGB images or grayscale images taken with
a red-free filter are used (see Figure 2.1).
(a) RGB. (b) Red-free.
Figure 2.1: Example fundus images from DiaRetDB2.
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Other modalities such as OCT, MRI and angiography are available for cases where tra-
ditional retinal images are not sufficient for diagnosis or treatment planning, MRI and
OCT providing a non-invasive view to the inner structure of the retina, and angiography
providing a view of the vasculature and retinal blood flow. These, however, require spe-
cialised, and often expensive, equipment which are not available in all diagnosis centres.
Spectral fundus cameras capture images of the retina with a significantly higher wave-
length resolution than traditional RGB images. Spectral retinal images are, in short,
3-dimensional matrices with two spatial and one spectral dimension. Instead of one in-
tensity channel of a grayscale, or the three colour channels of an RGB image, the spectral
dimension of a spectral image consists of several, tens or even hundreds of channels, de-
pending on the imaging system. They can provide information on the eye fundus beyond
that of the traditional fundus cameras with low additional cost or requirements for the
operator.
The analysis of fundus reflectance spectra has been used in a number of medical applica-
tions. Retinal reflectance spectroscopy has been used to evaluate the oxygen saturation
of retinal blood (e.g., [87, 202]), for the estimation of the concentrations of xanthophyll,
melanin and haemoglobin in the retina and choroid (e.g., [84]), and for determining the
optical density of macular pigment (e.g., [20]).
Spectral images have been used to produce improved visualisations of clinically interesting
structures and pathologies. Fält et al. [55] suggest directly modifying the illumination
spectra to optimise the contrast between various retinal structures or lesions, and the
fundus background. Another approach to enhanced visualisation of retinal structures
is presented in [57], where the contrast between the structures and the background is
optimised by assigning different weights to the individual channels of the spectral images.
Due to the significant increase in the colour resolution, spectral retinal images offer a
richer feature space for automatic detection, classification and diagnosis. Thus, the use
of spectral fundus images has the potential to significantly increase the performance of
automatic diagnostics.
2.2 Related work
The eye has been studied extensively, and a significant body of work on imaging, measur-
ing and modelling the eye fundus exists. Various approaches to imaging and quantifying
the structures, both in vivo and in vitro (usually from animals), and or functional pa-
rameters (e.g., blood oxygen saturation) have been developed.
Berendschot et al. [19] review historical and modern instruments for the measurement
and applications of fundus reflectance. A number of reflectometers, fundus imaging and
video systems, and scanning laser ophthalmoscopes are presented. The paper includes a
review of reflectance models for various parts of the eye derived from the measurements
of the different systems, as well as the evaluation of the retinal microstructure such as
macular pigment (MP) density, melanin content and retinal blood oxygenation based on
the reflectance measurements.
Historical and present approaches to the MRI of the retina are presented by Duong [53].
While the emphasis is on MRI performed on animals, some studies on MRI of the hu-
man retina are presented. A more recent review of techniques and instruments used in
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ophthalmology is presented by Keane and Sadda [119]. In addition to retinal imaging,
techniques such as adaptive optics, angiography, and spectral imaging are presented. A
number of methods for retinal OCT are also introduced.
Retinal reflectometry has been used to obtain measurements of various retinal absorbers
and to study the reflectance of retinal structures. Delori and Pflibsen [51] used a reflec-
tometer based on a modified Carl Zeiss fundus camera to capture the reflectance spectra
at nasal fundus, perifovea and fovea of ten healthy subjects. A fundus reflectance model
including ocular media, inner limiting membrane, photoreceptor and retinal pigment ep-
ithelium (RPE) layers, Bruch’s membrane, choriocapillaris, choroidal stroma and sclera
was derived from the reflectance measurements.
Kaya et al. [118] used fundus reflectance to compare the optical density of MP between
patients with AMD and healthy subjects. The fundus reflectance was measured and the
optical density estimated using the system and model in [251]. The optical density of
MP was found to be reduced for patients with AMD.
Berendschot et al. [21] measured the fovea of 435 subjects of age 55 and older using a
fundus reflectometer to determine whether age-related maculopathy affected the optical
density of MP and/or melanin. No differences were found between healthy subjects and
subjects with any stage of age-related maculopathy.
Van de Kraats et al. [229] studied the interaction between light and photoreceptor layer of
the eye to derive a model of the spectral, directional and bleaching properties of the fovea
using the retinal densitometer described in [232]. The model was validated by comparing
the visual pigment density estimated using the model with results from psychophysical
experiments.
To measure the reflectance spectrum over a specific region of the retina, a number of in-
struments for retinal spectroscopy have been developed. Schweitzer et al. [200] presented
a method for measuring the oxygen saturation retinal reflectance spectra. Using a Carl
Zeiss CS 250 adapted with a Jobin Yvon CP 200 spectrograph, reflection spectra from
line scans over retinal vessels can be acquired. A model based on the transmission of
oxygenated and deoxygenated blood was used to estimate the retinal blood oxygenation
levels from 30 eyes. The mean oxygen saturation was found to be 92.2% for arteries and
57.9% for veins.
Delori [49] presented a spectrophotometer capable of both inducing fluorescence and
capturing the reflected or fluorescent light from the fundus. Utilising a motorised filter
wheel placed after a 150-W xenon-arc lamp, the system is capable of producing excitation
at wavelengths between 430nm and 550 nm. A neutral filter is included for traditional
reflectance measurements. The same optical setup is used for capturing the reflected or
fluorescence light.
Zagers et al. [251] described an apparatus for simultaneously measuring the spectral
reflectance of the fovea, and the directionality of cone-photoreceptors. A least-squares fit
of the model described in [229] to the measured spectra was performed for the purpose
of evaluating the densities of photostable ocular absorbers.
Retinal spectroscopy has been used to acquire measurements of various retinal structures.
Delori and Burns [50] measured the absorption of the crystalline lens of the human eye in
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vivo on 148 eyes of varying age and retinal health, using a fundus spectrometer. The spec-
tra acquired by the spectrometer were corrected for lens back-scatter and fluorescence,
and instrument noise using an additional baseline measurement with the illumination
field in a different position on the retina. Lens density was estimated from the measured
spectra.
Savage et al. [197] compared different non-invasive measurements of the optical density
of the ocular media of 41 healthy subjects. An objective measurement of the spectral
transmission of the lens is gained by comparing the intensity of the reflectance from
the posterior surface of the lens to an external reference on eight wavelengths. The
results of the objective measurement were compared with those from a psychophysical
procedure with low-light condition brightness-matching of the halves of a bipartite field
after 15min dark-adaptation. The two approaches were found to correlate well for the
shortest measured wavelength, but not at longer wavelengths.
Bone et al. [29] measured the distributions of macular pigment, photopigments and
melanin in the retina. They used a Topcon TRC NW5SF non-mydriatic retinal camera
with the original exciter filter replaced with two multiband interference filters to acquire
reflectance maps at wavelengths, where the density of the pigments can be estimated
based on the amount of light they absorb.
Salyer et al. [194] studied the diffuse spectral reflectance of the fundus using a Spectralon
reflectance target inserted into the eye of domestic swine. The target placed in the eye
under the retina was image in vivo. Spectral images of the fundus with reflectance
target were acquired using narrow-band illumination at a number of different central
wavelengths.
A number of systems for acquiring spectral retinal images can be found in the literature.
Fawzi et al. [60] presented an instrument for fast hyperspectral retinal imaging. The
system uses computed tomography to reconstruct images from spectra acquired by an
imaging spectrometer attached to a fundus camera. The acquired spectra were used to
recover MP optical density using spectra measured in vitro as a prior.
Retinal blood oximetry has been presented as either the motivation for or the example
use case of many of the spectral retinal imaging systems. Beach et al. [17] described
a modified fundus camera with optics dividing the light reflected from the retina to
two separate band-pass filters to acquire simultaneous dual-wavelength images. The
dual-wavelength images, where one filter is centred at a wavelength where the difference
between the spectra of oxygenated and deoxygenated blood is significant, and the other
where the difference is minimal, were used in retinal oximetry.
In [88], Harvey et al. propose a spectral imaging system capable of acquiring a multi-
spectral image in a single exposure. An optical system of polarising beam splitters and
waveplates (a plate that alters the polarisation state of the transmitted light) is used to
separate the desired wavelengths and to guide them to different parts of a sensor array.
As the system projects the wavelength channels to different locations on the same sensor
array, spectral resolution of the acquired spectral image comes at the cost of the FOV
of the system. The system has been used to study the effect of acute mild hypoxia on
retinal oxygen saturation [42].
Hirohara et al. [95] validated their spectral fundus imaging system via oxygen saturation
analysis. The imaging system consisted of a Topcon TRC-50LX fundus camera fitted
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with a VariSpec liquid crystal tunable filter. The system is capable of acquiring images in
the range 500nm to 720nm with 10nm steps. The validation was performed comparing
the spectra from imaging to the spectra measured from artificial capillaries with known
blood oxygenation levels.
Ramella-Roman et al. [182] presented a multiaperture system for acquiring spectral fun-
dus images for estimating the oxygen saturation of the retinal blood. A lenslet array is
utilised to project the light passing through an array of narrow-band filters to specific
locations of a charge-coupled device (CCD) array. The system is capable of simultaneous
acquisition of fundus images at six different wavelengths.
Mordant et al. [149] use a spectral imaging system based on a liquid crystal tunable
filter for retinal blood oximetry. By nonlinear fitting of the acquired image spectra
to a model of (wavelength-dependent) optical density of oxygenated and deoxygenated
haemoglobin, the ratio of blood oxygenation is estimated at each point of the spectral
image corresponding to a blood vessel. In [150], Mordant et al. validate the performance
of their approach to blood oximetry. The validation was performed by placing samples
of human blood, with reference oxygen saturations measured with a CO oximeter, into
quartz tubes placed inside a model eye. The mean difference between the measured
reference and the estimated oxygenation was found to be approximately 5%.
Rodmell et al. [191] study light propagation through the retina using Monte Carlo sim-
ulation. The paper concludes that illumination at the edges of the vessel, and detection
directly above the vessel result in the capture of light that has made only a single pass
through the vessel. This has relevance in retinal oximetry where light interaction with
other retinal tissue can affect the reflected spectrum and influence the estimated oxygen
saturation values.
Based on the reviewed literature, the properties of retinal structures and molecules have
been studied largely using retinal reflectometry and spectroscopy. An emphasis on the
measurement of the properties of ocular media and retinal absorbers can be found. Var-
ious approaches to spectral retinal imaging have been proposed, with an emphasis on
retinal blood oximetry. Partly due to the multitude of approaches for image acquisition,
general calibration and signal processing to acquire accurate spectra have received lim-
ited attention. Calibration and image processing are typically specific to an individual
image acquisition system or measurement. A table summarising the presented literature
is shown in Table 2.1.
2.3 Spectral fundus image formation
While relevant clinical knowledge on the eye fundus and its pathologies may be sufficient
to analyse traditional fundus images, to properly understand the characteristics of the
spectral fundus image data, insight into the process of spectral fundus image formation
is required. As the spectrum of the light reflected from the fundus is affected by the
interaction with retinal tissue, structural changes in the retina due to pathologies change
the measured spectrum. However, visual inspection of the spectra is generally not useful
diagnostically, and any individual channel is unlikely to be sufficient to identify a specific
change in structure.
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Table 2.1: Summary of literature review.
Category Modality Molecule/microstructure Property Subjects Year Reference(s)
Review Various 2003 [19]
Review Various 2014 [119]
Review MRI 2011 [53]
Instrument Spectroscopy Vasculature Oxygenation 1999 [17,200]
Instrument Spectral retinal images Vasculature Oxygenation 2005-2011 [88,95,149,150,182]
Instrument Spectroscopy, fluorescence 1994 [49]
Instrument Spectral retinal images Macular pigment Optical density 2011 [60]
Instrument Spectroscopy Ocular absorbers Density 2002 [251]
Measurement Reflectometry Macular pigment Optical density 181 2012 [118]
Measurement Reflectometry Macular pigment, melanin Optical density 435 2002 [21]
Measurement Reflectometry Various Reflectance 10 1989 [51]
Measurement Spectroscopy Various Distribution 22 2007 [29]
Measurement Spectroscopy Fundus Reflectance 2008 [194]
Measurement Densitometry Fovea Various 10 1996 [229]
Measurement Spectroscopy Lens Absorption 148 1996 [50]
Measurement Spectroscopy Ocular media Optical density 41 2001 [197]
The structures of the eye have a complex effect on the spectrum of the light that is
reflected from the eye fundus (see Figure 2.2). Longer wavelengths penetrate deeper into
the fundus, resulting in different tissue interactions than shorter wavelengths. Retinal
tissues have significantly different optical properties, with various degrees of absorption,
scatter and refraction.
Figure 2.2: Light paths in the retina. [216]
The paths the photons take through the retinal tissue before being reflected back to the
detector have a significant, non-linear effect on the resulting reflectance spectrum. As
some of the photons are reflected from the interfaces and inside the tissue layers, the
contribution of a single layer on the emitted spectrum is difficult to determine.
To the knowledge of the authors, no comprehensive physical model of light interaction
2.3 Spectral fundus image formation 27
with the eye exists. As the reflectance spectrum is the result of reflection, absorption and
back-scatter from multiple different layers with various optical properties, and accurate
reference measurements are difficult to obtain, the interactions become difficult to model
properly. However, computational models of the light interaction in retinal tissue have
been proposed (e.g., [48, 81,181,231]).
2.3.1 Structure of the eye
The human eye is a complex organ, both functionally and structurally. The eye is
composed of various tissues and media, with significant differences in how they interact
with light entering the eye. This section provides a short description of the different
parts of the eye, their function and optical properties.
Cornea and ocular media
Cornea is the transparent outermost part of the eye. It helps protect the eye from
external, often harmful forces, and refracts light to provide a larger field of vision. Behind
the cornea are the (near-) transparent parts of the eye that allow the light entering the
eye to be transmitted onto the retina. The transparent ocular media located between the
cornea and the eye fundus can be divided into aqueous humor, lens and vitreous humor.
While mostly transparent in the longer wavelengths, the lens absorbs strongly in the
near-ultraviolet and short wavelengths. Furthermore, the absorption of the lens changes
with time, the lens becoming more yellow as the person becomes older. [179]
Retina
The retina consists of several layers with different structures and functions (see Fig-
ure 2.3). The main functionality related to the sensing of light is located at the retina.
Figure 2.3: Retinal layers. [219]
Neural retina is the outermost layer of the eye fundus, located between the ocular me-
dia and the retinal RPE layer. The neural retina contains the photoreceptors that are
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responsible for converting the photons striking the retina into neural responses to be
processed by the visual system.
The inner segment/outer segment (ISOS) junction is a structure inside the neural retina
that is assumed to originate from the boundary between the inner and the outer segment
of the photoreceptor [243]. While a separate functional part of the retina, the ISOS
junction interacts with photons passing through the neural retina.
The RPE layer, located below the neural retina, is a pigmented layer that absorbs a large
portion of the scattered light in the retina, reducing false photoreceptor activations. The
RPE also protects the retina from photo-oxidation and subsequent oxidative damage,
and take part in many essential processes such as metabolism of the visual pigments,
phagocytosis of the photoreceptor outer segments, formation of the blood-retinal barrier
and homeostasis of the retinal micro-environment by producing growth factors regulating
the vital functions like angiogenesis and vascular bed maturation.
Choroid and sclera
The choroidal layer contains connective tissue and vasculature. The choroid is responsible
for the blood supply of the outer parts of the retina. While not directly a part of the
formation of visual stimuli, the choroid is vital for healthy vision as it provides parts of
the retina with nutrients and oxygen. [90].
The sclera is the white matter of the eye. It forms and maintains the shape of the eyeball.
The sclera connects the optical system it surrounds to the muscles responsible for the
movement of the eye.
2.3.2 Modelling of light interaction with retinal tissue
The model of light interaction in retinal tissue described in this section extends the model
by Styles et al. [216]. While general structure of the model remains the same, a layer
modelling the cornea is added, and the transmittance values of ocular media are altered.
The retinal interaction model discussed in this work is built upon the Monte Carlo (MC)
model of light transport in multilayered tissue by Wang et al. [239]. The model simulates
the transport of an infinitely narrow photon beam in a multilayered tissue of infinite
width, with the beam perpendicular to the tissue surface. Each layer of the tissue is
characterised by its thickness, refractive index, absorption and scattering coefficients,
and anisotropy factor. A flowchart of the simulation process is shown in Figure 2.4.
At each iteration, the photon takes a step of the size s in the propagation direction φ
(initially perpendicular to the tissue layer) before tissue interaction. The step size is
defined
s =
− log ξ
µt
, (2.1)
where ξ is a random number between [0, 1]. µt is a tissue interaction coefficient defined
as µt = µa + µs, where µa and µs are the tissue absorption and scattering coefficients.
The photon position is updated by
x` = x+ φxs
y` = y + φys
z` = x+ φzs
(2.2)
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Figure 2.4: MC modelling flowchart. [239];ξ is a random number (uniform dis-
tribution) between [0, 1], s is the path length the photon can travel before tissue
interaction, µt is the tissue interaction coefficient, db is the distance between the
photon and the boundary of the current tissue layer along the direction the photon
is travelling.
after which photon interaction with the tissue is simulated.
The photon interacts with the tissue by undergoing absorption and scattering. Absorp-
tion reduces the energy of the photon, E, by
E` = E − µa
µt
E, (2.3)
where µa is the tissue absorption coefficient and µt is the interaction coefficient of the
tissue. After absorption the photon undergoes scattering, affecting the direction of the
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photon propagation. The new propagation direction after scattering becomes
φ`x =
sin θ(φxφz cos Φ−φy sin Φ)√
1−φ2z+φx cos θ
φ`y =
sin θ(φyφz cos Φ+φx sin Φ)√
1−φ2z+φy cos θ
φ`z = sin θ cos Φ
√
1− φ2z + φz cos θ,
(2.4)
where Φ is a randomly sampled azimuthal angle defined as Φ = 2piξ. The deflection
angle θ is dependent on the anisotropy of the tissue layer, and is defined as
cos θ =
 12g
{
1 + g2 −
[
1−g2
1−g+2gξ
]2}
if g 6= 0
2ξ − 1 if g = 0
, (2.5)
where g is the anisotropy factor of the current tissue layer.
During step s, the photon may encounter a tissue boundary. The distance to the closest
tissue boundary in the photon propagation direction is defined
db =
 (z0 − z)/Φz if Φz < 0∞ if Φz = 0
(z1 − z)/Φz if Φz > 0
(2.6)
where z0 and z1 are the z coordinates of the tissue boundaries above and below the
current photon position. If the size of the evaluated step s is greater than the distance
to the closest boundary, i.e., dbµt ≤ s, the current step size is reduced to s = s − dbµt
and interaction with the tissue boundary is simulated.
Depending on the angle of incidence, αi = cos−1(|µz|), the photon has a chance to
be either transmitted or internally reflected. If αi is greater than the critical angle
sin−1(nt/ni), where ni and nt are the refractive indices of the media that the photon
is incident from and transmitted to, the likelihood of internal reflection, R(αi) is 1.
Otherwise R(αi) is defined
R(αi) =
1
2
[
sin2(αi − αt)
sin2(αi + αt)
+
tan2(αi − αt)
tan2(αi + αt)
]
(2.7)
where αt is the angle of transmission, defined as
αt = sin
−1
(
ni sinαi
nt
)
. (2.8)
Whether the photon is internally reflected or transmitted to new layer is based on a
random number ξ. If ξ ≤ R(αi) the photon is reflected, otherwise it is transmitted
to a new layer. In the case of internal reflection, the photon propagation direction is
mirrored, i.e., Φ`z = −Φz. In the case of transmission, the propagation direction is
changed according to
Φ`x = Φxni/nt
Φ`y = Φyni/nt
Φ`z =
{
cosαt if Φz ≥ 0
− cosαt if Φz < 0
(2.9)
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At the end of each propagation step, the energy remaining to the photon is compared
against a minimum energy threshold Eth. If E < Eth, the photon has a chance (indepen-
dent of the remaining energy) of being annihilated. If the photon fails the annihilation
test, the propagation stops and the propagation of a new photon is started. Otherwise
the propagation continues as before. Following these rules, the photon propagation con-
tinues until the photon either escapes the media, and its remaining energy is added to
either reflection or transmittance (in the fundus model only reflection is considered), or
the photon is randomly annihilated after its energy is reduced to zero. Typically a large
number of photon propagations are simulated, and the sum of the weights of the photons
that escaped the media form the resulting reflectance spectrum. Examples of photon
paths are illustrated in Figure 2.5.
Figure 2.5: MC modelling of spectrum formation.
Model parameter selection
As the tissue layers of the model are characterised by thickness, refractive index, absorp-
tion and scattering coefficients, and anisotropy factor, the selection of these parameters
is crucial for a realistic model of fundus image formation. As no single study of the
optical properties of the eye containing estimates for all the required parameters exists
to the knowledge of the author, the parameter values were selected based on a variety of
studies.
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Hammer et al. [83] used the double-integrating-sphere technique to measure the colli-
mated and diffuse transmittance, and diffuse reflectance of the retina, RPE, choroid,
and sclera layer of the eye fundus. From the measured reflectance and transmittance
spectra, the absorption and scattering coefficients, and the anisotropy of scattering were
estimated by inverse MC simulation.
The corneal refractive index used in the model is derived from Fitzke III [68]. The mean
of the individual values of the epithelium, stromal anterior and posterior surfaces of the
cornea was used to represent the refraction in the cornea.
The transmittance for the ocular media were taken from Boettner and Wolter [28], who
measured the transmission in human ocular media in vitro from freshly removed eyes.
Both the total transmittance and the transmittance of the individual media, cornea,
aqueous humor, lens, vitreous humor, were measured. The refractive index reported
in [124] was used for vitreous.
The yellowing of the lens is dependent on the age of the patient and has to be considered
separately from the model generation. The average lens transmission function for lenses
of different ages from [179] was used to correct the simulated spectra to account for the
age related lens yellowing. The model spectra were corrected individually based on the
age of the patient whose spectral image data was analysed using the model.
Two neural retina layers with identical parameters were used to enable the insertion of
a layer simulating the interface between the neural retinal tissue and the photoreceptors
within the neural retina layer. The free model parameters retinal haemoglobin and
macular pigment density are present in the neural retina layer. Refractive indices for
retina reported by Knighton et al. [124] were used.
An estimate of the refractive index and scattering of the ISOS layer is derived based
on the physical and biological properties of the ISOS junction [43]. The absorption
coefficient was assumed to follow that of the neural retinal layer.
The RPE layer holds retinal melanin, the distribution of which is a free parameter in the
model. An estimate for the refractive index of the RPE layer is derived by Hammer et
al. [85] from literature and OCT measurements.
No reported values of the refraction index of choroid were found in literature. However,
no experimental evidence (i.e., a reflection in OCT scan indicative of an interface be-
tween layers with different refractive indices) was found of difference in refractive indices
between choroid and sclera. There was assumed to be no (significant) difference in the
refractive indices of the choroid and the sclera. The similar (collagen matrix) structure
of the layers would also support this assumption. [43]
The sclera is the final layer simulated in the model. Any light transmitted through
the sclera is considered to be completely absorbed or scattered, as the amount of light
surviving back to the detector after passing to layers below the sclera can safely be
assumed to be negligible. The refractive index of the sclera reported by Bashkatov et
al. [15] was adopted for the model.
In addition to the characteristic optical properties of the individual layers, the main
contributors to the formation of the spectra are the haemoglobins and melanin, both
of which are strong absorbers, and the thickness of the layers. The model values were
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taken from literature: haemoglobins from Horecker [98], melanin from Anderson and
Parrish [10], and layer thickness from Rohen [192]. An 80% oxygen saturation level was
assumed for the haemoglobins based on Alm and Bill [9].
The absorption, scatter and refractive indices for the different layers are considered as
constant. The model has five free parameters that can vary within histologically plausible
limits: concentration of macular pigments in the retina, concentration of haemoglobins in
the retina, concentration of melanin in the RPE, concentration of melanin in the choroid
and concentration of haemoglobins in the choroid.
The estimations of the optical characteristics of the retinal molecules RPE melanin and
macular pigment, and haemoglobin can be expected to be relatively accurate as they
can be expected to stay constant between individuals and can be measured in laboratory
conditions. To a lesser degree, similar assumption can be made regarding the cornea, the
ocular media, and the tissues of the neural retina, RPE, choroid and sclera.
The thickness of the different layers, however, is a subject to greater individual variation.
Another potential source of inaccuracy is the level of haemoglobin oxygenation. The level
of oxygenated blood is affected by the phase of circulation, the size of blood vessels at
(or near) the location, and changes in circulation due to disease. The model also expects
majority of the retinal tissue to be free of pathologies and not (significantly) affected
by any systemic disease. As it is not possible to determine what the values of these
parameters were at the time of the acquisition of a spectral retinal image, it is difficult
to measure the representativeness of the values used in this work.
2.4 Spectral fundus image acquisition
A number of spectral fundus imaging systems have been developed (e.g., [18,54,106,166]).
This thesis considers the composition and applications of the spectral images from two
spectral fundus imaging systems with significant differences in both the image acquisition
approach and the desired features for the data.
2.4.1 30-channel spectral fundus camera
Fält et al. [56] modified a Canon CR5-45NM fundus camera system to acquire spectral
images of the eye fundus. Leaving the original fundus microscope optics, the camera
of the system was replaced by a QImaging Retiga 4000RV digital monochrome CCD
camera. A rail for a filter rack and a placement for an optical cable were fitted to the
camera casing. The original light source was replaced by broad-band illumination from
an external Schott Fostec DCR III lightbox with a 150W OSRAM halogen lamp using
a daylight-simulating filter, guided to the camera system by a fibre optic cable. The
system is shown in Figure 2.6.
The setup contains four acrylic glass filter racks with a total of 30 Edmund Optics narrow
bandpass filters with central wavelengths in the range 400nm to 700nm. The filters are
changed manually by sliding the filter rack along the rail, with a mechanical stopper
ensuring that each filter is correctly positioned after moving the rack. The broad-band
light exiting the cable is filtered by the selected narrow-band filter and guided to the eye
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Figure 2.6: Spectral camera system by Fält et al [56].
Figure 2.7: Montage of channel images acquired with the system by Fält et
al [56]. Images normalised for visualisation.
fundus through the camera optics. The reflected light captured by the camera system
represents the fundus reflectance for that wavelength. An example is shown in Figure 2.7.
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A suitable exposure time was estimated individually for each filter from the area in the
retina with the highest reflectivity (typically the optic disk). For each filter, five successive
channel images were acquired to avoid motion blur or significant difference in the imaging
angle due to eye movement. After a qualitative evaluation, the highest quality image
at each wavelength was selected and the images were automatically aligned using the
algorithm by Stewart et al [214]. Manual registration was performed for the image pairs
for which the automatic alignment failed. The registered spectral channel images were
composed into a spectral image with each channel normalised to unit exposure time (i.e.,
1 s).
2.4.2 Six-channel spectral fundus camera
Styles et al. [216] modified a Zeiss RCM250 fundus microscope. The original camera
body was replaced by a QImaging Retiga EXi 12-bit monochrome digital camera and a
Cambridge Research Instruments VariSpec LCD programmable filter was added in front
of the camera, with an additional lens to fit the image to the 1/3 inch CCD sensor array
of the Retiga EXi, which is significantly smaller than the original 35mm film. A halogen
lamp was used to illuminate the fundus through the camera optics instead of the original
xenon flash. The xenon flash was considered unsuitable due to sharp emission peaks
in its illumination spectrum, and the transient (instead of steady-state) nature of the
provided illumination. The setup is shown in Figure 2.8.
Figure 2.8: The spectral camera system by Styles et al [216].
The VariSpec LCD programmable filter is a configurable interference filter capable of im-
plementing Gaussian narrow-band filters with central wavelengths in the range 400 nm
to 700nm. The spectral image is composed of six sequentially acquired channel images,
filter central wavelengths 507, 525, 552, 585, 596 and 611 nm (the selection of the wave-
length is related to the application and is discussed in detail in Chapter 4.3), with each
channel image normalised to 1 s exposure time. An example is shown in Figure 2.9.
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Figure 2.9: Montage of channel images acquired with the spectral camera system
by Styles et al [216]. Images were normalised for visualisation.
Further development of the spectral fundus camera system is described in [54]. The
halogen white light source was replaced with a light source composed of 12 programmable
light emitting diodes (LEDs). LEDs of different emission spectra can be individually
addressed, allowing the precise control of intensity, illumination time, and the sequence
of illumination.
The total acquisition time for a set of channel images was 0.5 s. To minimise eye move-
ment between the acquisition of the channel images, three image sets were acquired
consequently for a high probability of capturing at least one set that contains no move-
ment. The absence of inter-channel movement was confirmed by registering the images
using the method by Stewart et al. [214] and examining the resulting transformation. If
the transformation required to align the images was below 2.3 pixels, any eye movement
present in the images was deemed to fall within the system error and the spectral image
composed of the set of channel images was accepted. The system error was derived from
the maximum registration error over a set of images, acquired using the system, where
no observable eye movement was present.
The system providing the data used in this thesis is a modification of the spectral fundus
camera presented in [54]. While attaining a short acquisition time, the LED illuminant
of the system caused refraction patterns to appear in the channel images. The LED light
source was replaced with a white light source and a VariSpec LCD filter.
2.5 Spectral camera calibration
Fundus cameras offer a non-invasive view to the ocular fundus and are an important
tool for diagnosing a number of eye and systematic diseases, e.g., AMD and DR [1]. A
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fundus camera system has several independent components and their characteristics that
contribute to the features and quality of the acquired image. These include the sensor,
the light source and the optics, both optics for guiding the light from the light source to
the eye and to guide the reflected light to the camera, with attributes that are often not
(accurately) known. Due to the small size and the proximity of the target (i.e., the eye),
and the magnification of the eye lens, special optics are used to acquire images with a
reasonable field of view, making radial distortions [136] and vignette (i.e., the decrease
of image intensity values towards image edges) [96] prevalent in fundus images.
There are a number of fundus camera characteristics that should be taken into account
when analysing the acquired images. The wide-angle optics cause increasing deformation
to perceived objects as their distance to the principal point of the image increases [217],
which is likely to cause error in measurements, complicate image registration and result
in an accumulation of error when compiling longitudinal data or data from multiple
sources. For any dimensional measurement of fundus features (absolute measurements
are important for certain clinical purposes such as the classification of AMD [207]), the
spatial resolution of the image has to be known or estimated. An uneven illumination
field may hinder the diagnosis and statistical classification and segmentation based on
pixel intensities, and cause problems with longitudinal data. Dirt, dust and stains on or
inside the optical system of a camera cause artifacts to the images acquired by the system.
The artifacts can cause false positive detections in an automatic analysis algorithm or
even be misclassified as lesions by a human analyst. When combining data from different
imaging systems, the accumulation of the artifacts may have unforeseen consequences if
not taken into account.
In the case of spectral imaging, the error to the spectra due to uneven illumination
distribution can be significant. Furthermore, as light passes through the multiple lenses of
the optical system in a fundus camera, wavelength-dependent differences in the refraction
indices of the lens materials and coatings may cause aberrations at different wavelengths
of the captured light. While not a significant issue in grayscale or RGB-imaging, the
spectral aberrations may cause significant errors in the captured spectra.
Quantifying the effects of and the distortions caused by the imaging system on the image
data becomes especially important in the case of longitudinal studies. When studying the
retinal changes or the progression of a pathology over years or even decades, the imaging
parameters, protocols and even equipment are likely to change between the examinations.
If the imaging systems are not properly characterised and calibrated, it may be difficult
or even impossible to differentiate between the changes in the data due to changes in the
clinical condition and changes due to differences in the data acquisition.
This section presents a protocol for calibrating a fundus camera, with special consider-
ation to spectral fundus cameras. The calibration steps include geometric and spectral
calibration, determining the spatial resolution, consideration for correcting uneven illu-
mination and vignetting, and accounting for dirt and scratches in the optics. Practical
examples of calibrating the interference filter based spectral camera system by Fält et
al. [56] will also be discussed.
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2.5.1 Related work
Xu and Chutatape [247] compare the errors of two calibration methods for a fundus
camera, one method based on a 3D target and the other on a planar calibration target.
The method using the planar calibration target was found to produce more stable and
accurate results for fundus camera calibration.
In [141], Lujan et al. use spectral domain optical coherence tomography (SD-OCT) to
calibrate fundus cameras by determining the distance between the optic nerve and the
centre of the fovea from both the SD-OCT scans and the fundus image, giving the same
measurement in millimetres and pixels.
Deguchi et al. [46] calibrate a fundus camera by utilising a transparent acrylic plate with
a regular grid painted on both sides with different colours. Using the imaged grid points,
the lines passing through the calibration planes are identified and used to account for the
optical distortions of the camera when constructing a 3D reconstruction of the fundus
from stereo images.
Martinello et al. [145] discuss the calibration of a stereo fundus camera and models
required for estimating the distortions caused by the lens system, in the context of 3D-
reconstruction of the eye fundus.
Spectral calibration of a fundus camera is discussed by, e.g., Ramella-Roman et al. [182],
who use Spectralon reflectance standards to determine the effect of their camera and
filter system on the acquired spectra.
The majority of the work including fundus camera calibration seems to have a focus
outside calibration, and deal with calibration only to the degree it is relevant to the
specific goal of the work. This section presents a general protocol for fundus camera
calibration, encompassing imaging system characteristics necessary to determined when
analysing longitudinal data, or data from multiple sources or imaging systems.
2.5.2 Methods
Correction of geometric distortions
Imaging a calibration target with a regular pattern with known dimensions, the camera
parameters and lens distortions can be approximated. While a planar calibration pattern
cannot represent all the distortion present in retinal images, as the outer parts of the eye
and individual retinal curvature contribute to the distortion, the distortion caused by
the camera system can be characterised and corrected. This is important when dealing
with data acquired by different camera systems with different distortion characteristics.
If significant vignette is present, the illumination field of the images may need to be cor-
rected (see Section 2.7 for details) to properly extract the reference points, such as corner
points or grid centroids, from the calibration target. A corner detector or thresholding
can then be applied to extract the reference points.
Knowing the grid centroid locations in the image space and the dimensions of the phys-
ical target, the intrinsic camera parameters including the principal point, focal length,
and radial and tangential distortion can be estimated using the calibration approach
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of Zhang [253], with the intrinsic camera model from Heikkilä and Silvén [91] for more
accurate modelling of the distortion. The model by Heikkilä and Silvén is defined as[
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where (u0, v0) are the image centre coordinates, (u˜, v˜) are the points projected onto the
image plane by a pinhole camera model, du and dv are the pixel width and height and
su is the camera (intrinsic) scale factor. The radial distortion terms, δu(r) and δv(r), and
the tangential distortion terms, δu(t) and δv(t), are defined as[
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where k and ρ are the radial and tangential distortion coefficients, and r =
√
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i .
The geometric calibration steps are given in algorithmic form in Algorithm 2.1.
Algorithm 2.1 Geometric calibration.
Input: Calibration image I, intensity threshold th, eccentricity threshold the
Output: Distortion parameters pd
Correct uneven illumination of I using Algorithm 2.2
Apply threshold th to I to extract binary image IBW
Perform connected component analysis on IBW
Remove connected components with eccentricity > the
Extract centroids X of remaining components
Fit distortion model to X and solve pd
When analysing data that were not acquired recently, are from a third party or from
multiple sources, the imaging system used is often not available for acquiring images of
a calibration target. Several methods have been developed for determining the camera
target parameters without the use of a calibration target, e.g., [37,58,67,180]. However,
many of the methods rely on the movement of the camera or the imaged scene between
the images. In the case of fundus images, the movement between frames is generally
minuscule, and a data set is not guaranteed to have multiple images of the same eye.
Determination of spatial resolution
When the physical dimensions of the imaged target can be measured, determining the
spatial resolution of an image is trivial. This, however, is not the case with retinal images.
While the retinal features can be measured, it requires separate measurements with spe-
cialised equipment. Determining the spatial resolution for specific imaging parameters
will not be sufficient as the size of the eye (and consequently the distance between the
retina and the imaging plane) varies from person to person. However, the spatial resolu-
tion of the image can be approximated by comparing the size of the retinal features to
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known reference measurements. Hemminki et al. [92] include a meta-analysis of the size
of the optic disc from 2774 eyes from a total of 13 publications. The mean optic disc area
was found to be 2.65mm, with standard deviation of 0.17mm. It should be noted that,
in order to estimate the spatial resolution based on the cited reference measurements,
the optic disc has to be fully visible in the image and not obscured or distorted by e.g.,
haemorrhages, scar tissue, glaucoma or inter-cranial pressure.
The area of the optic disc can be automatically approximated from images acquired by the
camera system under calibration. A number of methods for the automatic segmentation
of the optic disc from retinal images have been developed, e.g., [11,156,242]. It should be
noted that the geometric distortions caused by the lens systems may produce significant
error to the measurements. The estimation and removal of these distortions is discussed
in Section 2.5.2.
Correction of uneven illumination
Numerous methods for the correction of uneven illumination in different applications can
be found in the literature, and the selection between well-working methods for specific
data can be largely arbitrary. The method by Narasimha-Iyer et al. [154] was chosen as
an example due to good previous performance with the data from DiaRetDB1 diabetic
retinopathy database (DiaRetDB1) [116]).
Narasimha-Iyer et al. examine the correction of uneven illumination in the context of
detection and classification of changes in longitudinal retinal images due to diabetic
retinopathy. Selecting the green channel of an RGB image, retinal features including the
optic disc, macula and blood vessels are masked out, and an illumination model is fit
to the intensities of the remaining background pixels. As retinal pathologies may cause
error in the estimation, the estimation is iterated removing the highest and the lowest
10th percentile of the values of the green channel from the estimation. The process
is repeated until the difference in the image locations used in the estimation between
iterations becomes small or the maximum number of iterations is reached. The steps
are detailed in Algorithm 2.2. A fourth-order polynomial model was found to effectively
model the light field attenuated by the ocular media [154].
Algorithm 2.2 Illumination correction.
Input: Image I
Output: Corrected image Ic, maximum number of iterations imax, acceptable illumi-
nation field difference �
Remove blood vessels, macula and optic disc from the mask of accepted values mask
while Difference to previous model > � && iterations < imax do
Fit a polynomial illumination model fill to I(mask)
Ic = Ic/fill
Remove highest and lowest 10th percentile intensities from mask
end while
The parameters of the least-squares fitted illumination field estimate fill relate to the
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image values as
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where (x, y) are image coordinate values belonging tomask, A is the design matrix deter-
mining the illumination model and β is the vector of model parameters. The parameters
of the illumination field estimate fill are gained by
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An example result of the presented illumination correction approach is shown in Fig-
ure 2.10.
(a) Original im-
age.
(b) Estimated il-
lumination field.
(c) Corrected im-
age.
Figure 2.10: An example of uneven illumination correction (images from [116]).
Correction of spectral aberrations
The spectral aberrations (i.e., the effect of different wavelengths of light refracting at
different rates in the camera optics) can be determined for each wavelength by imaging a
reference white reflectance target (see Figure 2.11). For example, Labsphere Spectralon
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diffuse reflectance targets reflect > 98% of the light for wavelengths between 300nm to
1600nm. Before estimating the spectral aberrations based on a stack of channel images
captured with narrow-band interference filters, the illumination fields of the channel
images need to be corrected. Presuming that the camera stays fixed in relation to the
reference target during the acquisition, the shape of the illumination field can be assumed
to be constant across the channels, and the illumination field can be estimated from
the image resulting from taking the mean over the channels. Illumination correction is
discussed in Section 2.7.
(a) White reference
target imaged at λ =
690nm.
(b) White reference target re-
flectance. [132]
Figure 2.11: White reference target.
The spectrum for each pixel acquired by a spectral retinal camera can be defined as
v = WT 2v0v0 + η, (2.15)
where T v0 is a diagonal matrix of the ocular media transmittance, v0 is a vector of
reflected intensities, η is the noise term, and W is a diagonal weight matrix describing
the wavelength dependent aberrations. As the white reference target is expected to
reflect significant majority of the light at the visible spectrum, the transmittance can be
approximated by
T v0 = I. (2.16)
Assuming minimal noise and uniform reflection for all wavelengths, the corrected spec-
trum can be calculated as
vˆ0 = W
−1v, (2.17)
where v is the vector of values captured by the camera system. [56]
Detection of dust and dirt particles
Dirt, dust and stains on or inside the optical system of a camera cause artifacts to the
images acquired by the system. An example of the effect of dirt in the lens system on
images can be seen in Figure 2.12.
Averaging a large number of images taken with the same camera system has been used
in previous work [204] to determine the artifacts caused by the system. However, the
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white reference target used for determining the spectral aberrations can be used to detect
the artifacts caused by dirt and scratches in the optics. The white reference images are
preprocessed by applying the illumination correction method detailed in Section 2.7 to
produce a more even illumination field and to facilitate segmentation.
The extended-minima transform [209] is applied to the preprocessed images to deter-
mine the regional minima. Regional minima represent connected pixels with values with
low variation and of lower intensity than their neighbourhood. The extended-minima
transform runs through a range of thresholds and combines the binary masks with the
logical or operation. The segmented regions are thresholded based on the area to remove
artifacts.
(a) Full image
with enhanced
visualisation of the
region of interest.
(b) Dirt on vein. (c) Dirt next to
vein.
Figure 2.12: Effect of dirt in optics; channel images at λ = 600 nm of the same
patient.
2.5.3 Experiments and results
This section describes the methods for the distortion correction, and the estimation of
dirt particle locations and spectral aberrations. As in-vivo reference measurements of
the human retina for calibration purposes are very challenging, and a phantom encom-
passing the relevant characteristics of the eye (e.g., curvature, optics, transmission and
reflectance) does not exist yet, only qualitative experiments are presented. In the exper-
iments, the system by Fält et al. [56] was used.
Geometric distortions
The distortion generated by the optics of the example system was estimated by imaging
a grid distortion target (Edmund Optics #46-250 [170]), with 0.25mm to 1mm diameter
chrome circles on glass at 0.5mm to 2mm intervals, against a white background and
determining the mapping from the dot centroids of the imaged grid to the dot locations
of the physical target.
44 2. Spectral fundus imaging and spectral image composition
29 channel images of the target were acquired with the camera using filters within the
range of 410mm to 694mm. To test if the distortion varies between the channels of
the spectral image, the distortion was estimated individually for each channel. As no
systematic inter-channel change in the estimated distortion parameters was observed,
suggesting a wavelength-independent distortion, the dot centroid means over all channels
were used for the calibration to reduce error from the segmentation.
To determine the accurate centroids and to remove binarisation artifacts, the binary
regions resulting from the thresholding were tested for low eccentricity and the regions not
meeting these criteria were discarded. While a more sophisticated methods for extracting
the dot centroids could be used, the number of successfully extracted centroids using the
aforementioned approach was sufficient for estimating the distortion caused by the optics.
The calibration parameters were estimated from the centroid locations using the toolbox
by Bouguet [30]. The result of correcting the calibration images using the estimated
distortion can be seen in Figure 2.13.
(a) Original image. (b) Corrected image.
Figure 2.13: An example of distortion correction.
Spectral aberrations
The system described in [56] uses a set of 30 narrow-band interference filters to acquire
spectral images in the range of 400 nm to 700nm, with ∼ 10nm steps. The intensities
of each channel of the spectral images acquired with the system were normalised by the
image exposure time. With the near-uniform reflectance of the white reference target
and the exposure time accounted for, the remaining differences in the intensity levels
between the channels can be accounted to the spatial and spectral characteristics of the
illuminant. The spatial distribution of the illumination was normalised by taking the
mean over the channels, fitting a polynomial model to the resulting image and dividing
each individual channel with the estimated model.
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Taking the mean over the normalised intensities of each channel, the resulting mean vector
is the (relative) spectrum of the illumination. Dividing the intensities of each channel
by the illumination spectrum, the channel images can be normalised to correspond to
images acquired with uniform white illumination. The normalisation can be summarised
as
Iˆλ =
Iλ
I¯λtλ
, (2.18)
where Iλ is the channel image acquired at wavelength λ, I¯λ is the mean and tλ is the
exposure time for the wavelength λ.
After the normalisation, if no spectral aberrations are present, each individual channel
should be identical (except for small variation due to noise and numerical error due to
normalisation). The only significant source of intensity variation is the illumination field
which has been normalised with respect to wavelength.
The spectral aberrations were studied by taking a circle integral over the normalised
channel images. The area of the integrating circle was set to 10000 pixels centred at
the image focal point and with an increasing radius, with the artifacts due to dirt and
scratches masked out (see Section 2.5.3). The results are visualised in Figure 2.14.
(a) Normalised
white refer-
ence image
(mean over all
channels).
(b) Circle integral over all
channels.
Figure 2.14: Effect of aberrations on measured spectra.
The results show significant spectral aberration especially at the shorter wavelengths of
the spectrum. The maximal intensity difference due to aberration, 22%, was measured
at λ = 410 nm. Therefore, any measurement or application relying on accurate spectra
from the example system should correct or otherwise take into account the aberrations.
Dirt and dust
The dirt and dust in the optics of the example system were determined by acquiring
a 30-channel spectral image of a Labsphere Spectralon SRS-99-020 diffuse reflectance
target [132] and applying the segmentation approach detailed in Section 2.5.3. The
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resulting spatial map of the dirt particles is shown in Figure 2.15, with the pixel intensity
indicating the effect of a dirt particle.
(a) White refer-
ence.
(b) Dirt particle
map.
(c) Dirt particle
map overlaid on
white reference.
Figure 2.15: Spatial map of dirt particles.
Any image-based measurement or statistical analysis performed on the data should take
into account the artifacts caused by the extra particles. While the intensity values of
the white reference image could be used to correct any subsequent images taken with
the system, the resulting corrected values would be rough estimates of and have higher
uncertainty than the true intensities.
2.5.4 Discussion
The distortion caused by the camera system can be characterised by imaging a planar
calibration target. As the physiology of the eye varies from person to person, the contri-
bution of the ocular media and the retinal curvature is more difficult to estimate. The
magnitude of the contribution of the curvature on the distortion could be estimated by
a set of distortion targets with different curvatures within the range of physiologically
plausible retinal curvatures.
No specific reason for the maximal aberration to emerge at λ = 410nm (see Figure 2.14)
was found in the literature. Among the likely contributors to the result are the fundus
camera optics. As the amount of short wavelength light re-emitted from the eye is
very low, it may be that fundus camera manufacturers are less concerned of the optical
properties of the camera system at these wavelengths. Another notable factor is the
relatively low intensity of the halogen light source at the short wavelengths. As the ratio
of both the ingoing and re-emitted light is low for the short wavelength channels, noise
becomes more prevalent. This is likely to affect the aberration measurements.
2.5.5 Summary
A protocol for calibrating a fundus camera was presented. The protocol includes ge-
ometric and spectral calibration, determining the spatial resolution, consideration for
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correcting uneven illumination and vignetting, and accounting for dirt and dust in the
optics. Based on the presented qualitative evaluation results, significant improvements
can be achieved related to the quality of spectral retinal images, longitudinal data and
data from multiple sources.
Due to the specialised optics and illumination of fundus cameras, imaging a planar white
reference target may not accurately capture the spectral aberrations experienced when
imaging a curved retina. In general, an appropriate reference target or phantom with
similar characteristics as the human eye would improve the calibration process. The
future work includes quantitative evaluation of the different sub-tasks of the calibration
by using specialised targets, or in vivo eye measurements when possible.
2.6 Spectral image composition
Depending on the imaging technology, composing spectral images based on a set of chan-
nel images may require image registration at some stage. The purpose of the registration
is to find the geometric transformation needed to align the floating image with the base
image. Manual registration by selecting corresponding points in image pairs becomes
difficult and even infeasible when the number of individual channels increases, or when
there are large differences between the images due to differences in viewpoint or modality.
When the wavelength difference between the channel image bands increases, the salient
image features become very different, which makes manual registration slow, difficult and
error-prone.
There is a significant body of work in the field of image registration to solve the problem
of image alignment. However, the majority of the approaches are designed for images
from the same imaging modality. While registration approaches specific for multimodal
data exist (e.g. [236, 255]), the modalities are expected to have similar information con-
tent. Neither of these prerequisites are necessarily true for the channel images when the
difference in acquisition wavelength is large. Despite the fact that the channel images
are captured with a single modality, the image appearance varies significantly.
To evaluate the performance of different registration methods on spectral fundus image
data, a comparison of image registration approaches for the composition of spectral
retinal images is presented. The registration methods are quantitatively evaluated on
a set of channel images of an eye phantom and a retinal image set, with each image
deformed by a known transformation.
2.6.1 Related work
Medical image registration (and image registration in general) is a widely studied problem
and, consequently, a vast body of literature on proposed solutions exists. Maintz and
Viergever [143] present an extensive review of medical image registration approaches
published between the year 1993 and 1997. A significant number of the methods reviewed
deal with the registration of radiological images, with methods dealing with monomodal,
multimodal and modality to model registration.
A significant part of medical image registration literature concentrates on MRI, computed
tomography (CT) and other radiological modalities. In their paper, published 2001, Hill
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et al. [93] review the main approaches (of the time) for registering radiological images.
The review presents an overview of rigid feature-based methods and intra- and intermodal
(voxel) similarity-based methods.
Feature-based registration methods have been popular in general (i.e., without emphasis
on medical modalities) image registration. Zitová and Flusser [256] present a review
of general feature- and area-based registration methods. The paper discusses different
approaches to feature detection, feature matching, mapping function design, and image
transformation and resampling. The evaluation of registration performance of feature
and area based registration methods is also discussed.
Deformable transformation models have been widely used in medical image registration.
In their 2004 paper, Crum et al. [45] present an overview of deformable medical image
registration, with the presented methods dealing mostly with radiological modalities. A
number of well-known similarity measures, such as sum of squared differences (SSD),
correlation coefficient (CC) and mutual information (MI) are included. Non-rigid trans-
formation models including splines and demons are also discussed. Bhatia et al. [26]
present a qualitative evaluation of similarity metrics for group-wise non-rigid registra-
tion, including a novel metric. The methods are evaluated on MRI data. Sotiras et
al. [212] present a comprehensive study of recent approaches to deformable image regis-
tration. A large number of deformable registration methods, classified by the deformation
models, matching criteria and optimisation approach used, are described. While not lim-
ited to the application area, the study puts an emphasis on methods dealing with the
registration of medical images.
A more recent review, published in 2012, of registration methods for medical data has
been conducted by Markelj et al. [144]. Three classes of registration base and strategy
are identified: feature-, intensity- and gradient-based methods, and projection, back-
projection and reconstruction strategies. However, while the paper cites a number of
other modalities, the scope of the review is limited to 3D-to-2D registration. More mod-
ern approaches to image registration are presented in the study by Wyawahare et al. [245].
In addition to the registration approaches discussed in earlier reviews, e.g., [143], registra-
tion methods using wavelets, neural networks, genetic algorithms, fuzzy sets and rough
sets are discussed. In [169], Oliveira and Tavares describe the geometric transforma-
tions, similarity measures and optimisation methods in common (medical) registration
approaches. In addition, available registration software and methods for performance
evaluation are reviewed.
While a large part of medical image registration literature is concentrated on radiologi-
cal modalities, methods focused on the registration of retinal images have been studied.
As a part of their review on methods applicable to the automatic screening of diabetic
retinopathy, published 2002, Teng et al. [220] present an overview of feature-based reg-
istration methods (and two methods that utilise the whole image) used in relation to
retinal images. The features used include matched filter responses, vessel branching
points and manually marked anatomy markers. The reviewed methods were constrained
to rigid transformation models. Laliberté et al. [133] quantitatively evaluate registration
methods on retinal colour and fluorescein angiography images. A novel method based on
vessel network structure is also presented.
Methods for the registration of spectral images have been proposed by e.g., [89,178,215].
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However, the papers on the registration of spectral images seem to generally deal with
remote sensing data, and are not (directly) applicable to spectral retinal data. While a
significant body of work related to image registration exists (including applications in
medical imaging and spectral images), little attention has been given to the inter-channel
registration of spectral retinal images.
2.6.2 Methods
A number of methods from the registration literature were selected for a quantitative com-
parison of registration accuracy on retinal channel images. To offer a broader selection
of different approaches, a number of methods based on different frameworks (similarity-,
demons- and feature-based methods) found in medical image registration literature were
chosen for the comparison. Publicly available implementations were used for all the
methods.
Deformable registration by similarity
In local similarity based registration, the floating image is deformed in such a manner
that a set of local similarities are maximised. In the framework used in this work, the
nodes of an n × n grid are iteratively moved based on local similarity of the base and
floating image.
The final transformation is obtained by b-spline interpolation using the grid nodes as
control points. Several similarity measures were quantitatively evaluated in this frame-
work: CC, similarity measure by Myronenko et al. (CD2) [153], similarity measure by
Cohen and Dinstein (MS) [44], MI [236], minimisation of residual complexity (RC) [152],
sum of absolute differences (SAD) and SSD.
Mutual Information (MI) [236] is a measure of similarity (or dependence) between two
data sets, measured by the distance between their joint probability distribution and
the independent probability distribution. Methods based on maximisation of mutual
information have seen frequent use in registration of multimodal medical images.
Myronenko and Song [152] present a similarity measure, RC, that accounts for spatial
intensity distortions and based on the minimisation of the complexity of residual image.
The method outperforms state-of-the-art similarity measures in several medical registra-
tion problems (including retinal image registration), but is limited to monomodal data.
The maximum likelihood (ML) based motion estimation scheme by Cohen and Din-
stein [44], MS, differs from other ML schemes by assuming both images to be corrupted
by multiplicative noise that follows the Rayleigh distribution in the likelihood func-
tion formulation. Another ML based scheme by Myronenko et al. [153], CD2, assumes
Rayleigh and blurred speckle noise, and uses spherical coordinates.
Registration by demons
Thirion [221] has presented a registration approach (Demons) where the floating image
is considered as a deformable grid model diffusing through semi-permeable membranes
defined by, e.g., the gradients of the base image. The floating image is transformed by
50 2. Spectral fundus imaging and spectral image composition
a grid that is deformed by internal forces (relations between grid points) and demons
that locally push a diffusing model (grid node) based on the underlying base image.
Vercauteren et al. [233, 234] have extended the demons framework to the space of dif-
feomorphic transformations by Lie groups, and further extend the diffeomorphic demons
framework into log-domain (Log-demons) to guarantee the existence of and access to the
inverse transformation.
Feature-based registration
The generalized dual-bootstrap iterative closest point (GDB-ICP) [250] algorithm finds
a transformation aligning two images by starting from a small area of overlap (bootstrap
region) between the images and a locally stable similarity transformation. An initial
transformation derived from a scale invariant feature transform (SIFT) descriptor match
is refined and validated by feeding edge and corner points inside a growing bootstrap
region to a robust iterative closest point (ICP) algorithm.
To reduce the number of incorrect feature matches, the edge and corner points are divided
into driving and matchable features. The driving features, having stricter validation
thresholds, are matched to a larger pool of matchable features. To increase the bootstrap
region stability, GDB-ICP determines both the forward and inverse transformations and
uses bi-directional mapping of the feature points to increase the number of constraints.
The edge-driven dual-bootstrap iterative closest point (ED-DB-ICP) [225] algorithm is
a modification of GDB-ICP designed for the registration of multimodal fluorescein an-
giogram (FA) sequences. The main differences of ED-DB-ICP with respect to GDB-ICP
are the use of gradient magnitude images instead of intensity images and extending the
SIFT descriptors with a shape context descriptor presented in detail in [151].
2.6.3 Registration strategy
In the case of spectral image composition, all channels need to be transformed into the
same space to form a complete spectral image. This section discusses different strategies
for composing the set of pair-wise registrations into a spectral image where all channels
are aligned with respect to each other.
Registration to a single base image and sequential registration
A simple approach for channel image set registration is to register each image to a pre-
viously selected base image. In the case of spectral images, however, this can mean
considerable difference in image features as a result of large differences in wavelength
between the base image and the image to be registered. The difference in the wave-
length means differences with respect to their structure and intensity due to the varying
reflectance of different features of the retina.
Large differences in image structure and intensity due to wavelength can be avoided
by registering each channel image to its immediate neighbour (in the direction of the
base image). For images that are not immediate neighbours of the base image, the
transformations steps can be sequentially combined to align the images with the chosen
base image.
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Joint registration
Instead of registering the channel image set as a number of independent pair-wise regis-
trations, the overall registration result is likely to be improved if the registration strategy
considers the whole image set. Joint registration has been extensively studied, especially
in MRI and tomography [13, 25, 108, 226, 244, 249]. However, the majority of joint regis-
tration approaches in the literature are applicable (at least without significant changes)
only to registration methods based on a similarity measure, and are often an integrated
part of the method.
Considering the promising performance of feature-based methods in retinal image regis-
tration, two joint registration strategies applicable to both feature and similarity measure
based registration are presented.
Registration using intermediate templates Instead of directly registering to a neigh-
bouring or to the base image, the floating image can be registered to an intermediate
template to avoid both accumulation of error from combined transformations and large
differences in features and intensities. Each floating image is registered to a template
that is a combination of the previously registered intermediate (i.e., channels between
the floating and the base) images. Similar approaches for group-wise registration have
been presented in e.g., [82, 105].
The template Yi used as the registration target for floating image Ii can be defined as
Yi =
Ii−1 + Yi−1
2
, (2.19)
where Yi−1 is the template of the previous step and Ii−1 is the previously registered
floating image. In the first step, the base image is used as the template. Each intermediate
image can be given an equal weight in the generation of the template, but this was found
to yield poor results in initial experiments. As each template has been (not accounting
for the registration error) transformed into the same space with the base image, the
resulting transformation is of the same complexity for each channel image.
Registration using shortest path The sequential registration strategy can be im-
proved by registering only the images along the shortest path from a floating image to
the base image instead of all intermediate images. Here the cost of each registration step
is measured in image similarity. A cost matrix is defined by calculating the squared sum
of intensity error for each combination of pairs for the image set. For each image, Dijk-
stra’s algorithm is applied to the cost matrix to determine the shortest path to the base
image. The final transformation is gained by combining the pair-wise transformations
along the path.
2.6.4 Experiments
Synthetic and semisynthetic data sets
To quantitatively evaluate the performance of each method with the data acquired with
the system described in [55], five sets of channel images were used to directly estimate
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the image registration error. A fully aligned spectral image consisting of 30 channels
with spatial resolution of 1024x1024 of a phantom (artificial eye) was used as the basis.
The Carl-Zeiss Meditec eye phantom used as the basis for the synthetic images is a closed
container with a small entry pupil fitted with an optical system simulating the lens of
the human eye. The back of the container is concave (to represent the curvature of the
eye fundus), with painted retinal structures (e.g., vasculature and fovea).
A known transformation of increasing degree was applied to each set to simulate eye
movement between the acquisitions of individual channels of spectral retinal images. The
initial and the extended performance evaluation use different approaches to generating
the known transformation. The approaches are described in Sections and , respectively.
The produced sets are referred to as the (synthetic) test set A1-A5.
To evaluate the registration performance on real medical data, a semisynthetic test set
was generated by warping a set of five spectral retinal images taken with the system
in [36]. The system captures a set of six channel images in approximately 0.5 s to
avoid inter-channel eye movement [36]. The retina was illuminated at six selected wave-
lengths 507, 525, 552, 585, 596, 611 nm [216] using a halogen white-light source filtered
through a liquid crystal tunable filter. During the experiments, the maximum inter-
channel displacement was found to be 2.3 pixels (referred to as the system error). The
same approaches for generating the transformation simulating the movement of the eye
were used as with the synthetic test sets A1-A5. The produced sets are referred to as
the (semisynthetic) test set B1-B5.
Registration error and the quality of image spectra
The channel-wise registration errors can cause significant error in the image spectra. To
estimate the deterioration of the quality of the spectra as the registration error increases,
artificial systematic misalignment was applied to a spectral image of an eye phantom and
metrics measuring the quality of the spectra were calculated.
30 channel images of the eye phantom were translated n pixels in a direction unique for
each channel (by a monotonically increasing angle) to simulate a mean registration error
of n pixels. The decrease in spectral quality was calculated using a set of quality metrics
from the resulting misaligned spectral image y, using the original aligned image as the
reference x. An example is shown in Figure 2.16.
Vaiopoulos [228] has implemented a number of technical and reference metrics for the
assessment of spectral image quality. The metrics for spectral image y and reference
spectral image x adopted for the evaluation were correlation coefficient (CC), quality
index (QI) and root-mean-square error (RMSE), defined as
CC =
σxy
σxσy
, (2.20)
QI =
4σxyx¯y¯
(σ2x + σ
2
y)(x¯
2 + y¯2)
and (2.21)
RMSE =
√√√√ n∑
i=1
(xi − yi)2
n
, (2.22)
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(a) Original image. (b) 2 pixel translation.
(c) 5 pixel translation. (d) 10 pixel translation.
Figure 2.16: Examples of the reference set for the effect of registration error
on image quality. The images are mean images over the wavelength channels
with each channel translated n pixels into a different direction (except the origi-
nal). [128]
where n is the number of channel image pixels, x¯ is mean over x and σx is the standard
deviation of x.
Van der Meer [230] presents a number of similarity measures for spectral data. The
similarity measures, spectral angle measure (SAM), spectral correlation measure (SCM)
and spectral information divergence (SID), can be used as a measure of how well the
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image spectra are preserved after the alignment. The similarity measures are defined as
SAM = cos−1

d∑
i=1
xiyi√
d∑
i=1
x2i
√
d∑
i=1
y2i
 (2.23)
SCM =
d∑
i=1
xiyi −
d∑
i=1
xi
d∑
i=1
yi√[
d
d∑
i=1
x2i −
d∑
i=1
(xi)2
] [
d
d∑
i=1
y2i −
d∑
i=1
(yi)2
] (2.24)
SID =
d∑
i=1
pi(log pi − log qi) +
d∑
i=1
qi(log qi − log pi), (2.25)
where
pi =
xi
d∑
j=1
xj
, qi =
yi
d∑
j=1
yj
, (2.26)
and d is the number of channels in the spectra.
Initial performance evaluation
An initial performance evaluation was performed with all the presented methods to de-
termine a subset of the methods for more in-depth evaluation [129]. The registration
strategies were not considered in the initial evaluation, and a more straightforward ap-
proach to the artificial deformations to produce the synthetic and semisynthetic data
sets was taken. The methods with the lowest registration errors were selected for further
evaluation.
For both the synthetic and semisynthetic test sets, five image sets were generated from
the original images by transforming each channel by a known transformation with trans-
formation parameters sampled from a parameter distribution. Based on the experiments
in [214], a quadratic transformation was deemed appropriate to represent the deforma-
tions caused by eye movement during the acquisition of retinal images. The parameter
distributions for the transformation parameters is determined from a previously regis-
tered true retinal channel image set (with 1 442 images and successful registration con-
firmed by an expert) by using kernel density estimate (KDE). The parameters used for
deforming the images of the test sets were gained by randomly sampling the distributions.
The parameter distributions are shown in the Appendix I.2.
The quadratic term parameters were multiplied by an increasing weighting constant k for
each image set to simulate increasingly distorted images. For each set, a channel image
near the middle of the wavelength range (λ = 540nm for the synthetic and λ = 552nm
for the semisynthetic, respectively) was chosen as the base image for each registration.
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(a) An original im-
age of the syn-
thetic Set A (λ =
600nm).
(b) An original im-
age of the semisyn-
thetic Set B1 (λ =
585nm).
(c) An original im-
age of the semisyn-
thetic Set B5 (λ =
585nm).
(d) An example transformation
grid for synthetic Set A1.
(e) An example transformation
grid for synthetic Set A5.
Figure 2.17: Examples of synthetic and semisynthetic test sets (enhanced for
visualisation). [129]
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Examples of the test set images and the corresponding transformations are shown in
Figure 2.17.
The parameters for each registration method were systematically selected by registering
a subset of the test images whilst varying the parameter values. The parameter com-
bination that produced the smallest error on the images was chosen. The parameters
selected for the evaluation are presented in the Appendix in Tables I.1 and I.2.
The implementation of GDB-ICP released by the authors of the method was used for
the evaluation. Publicly available third party implementations were used for methods
for which the original implementations were not available.
In the semisynthetic test set, it is possible that the registration method, in addition
to estimating the synthetic transform, corrects some of the system error. This would
manifest itself as increased error despite the more accurate registration. Therefore, error
values below the system error of 2.3 pixels were considered as zero for the semisynthetic
test set. All registration errors were measured as the Euclidean distance between the
grid points of the registered image and their expected locations based on the known
transformation.
Extended performance evaluation
The three methods with the lowest registration errors in the initial study were selected
for the extended performance evaluation [128]. A more realistic transformation model
was used for the generation of the test sets, and all the presented image set registration
strategies were considered for the three methods.
In the extended performance evaluation, five image sets were generated from the original
images of both the synthetic and semisynthetic test sets by transforming each channel by
a designed transformation. To simulate the changes in retinal images as the eye moves
with respect to the camera, the test set images were first projected onto a semi-sphere
with the pixel depth values defined as
Z =
√
r2 − (X − x0)2 − (Y − y0)2, (2.27)
where X and Y are the x- and y-coordinates of the image pixels (with origin at the image
centre), and r is the radius of the semi-sphere, defined as
r = (
dU
2
+A2)/(2 ∗A), (2.28)
where dU is the image width and
A =
dU
2
/(tanαfov/2), (2.29)
where αfov is the (horizontal) field-of-view (FOV) angle of the camera.
The semi-sphere was translated and rotated to simulate an offset in the optical axis
and movement of the eye with respect to the camera. The rotated and translated 3D-
coordinates are gained by
Vi = R

Xi + tx
Yi + ty
Zi
1
 , (2.30)
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where tx and ty are the translation parameters, and R is a homogeneous rotation matrix
defined by the rotation angles ϕx and ϕy around the x- and y-axis (with no rotation
around z-axis).
The transformed image coordinates were gained from the rotated and translated 3D-
coordinates as
X˜i =
Vxi
Vwi
Y˜i =
Vyi
Vwi
, (2.31)
where Vw is the fourth component of the homogeneous transformed 3D-coordinates. The
deformed image was gained by estimating the values at the transformed image coordi-
nates by bicubic interpolation. Examples of the test set images and the corresponding
transformations are shown in Figures. 2.18 and 2.19.
(a) Original im-
age (Set A1).
(b) Transformed
image (Set A1).
(c) Grid (Set A1).
(d) Original im-
age (Set A5).
(e) Transformed
image (Set A5).
(f) Grid (Set A5).
Figure 2.18: Synthetic test set A; examples at λ = 589 nm of the original and
transformed images (enhanced for visualisation) with corresponding transforma-
tion grids. [128]
To validate the approach for the generation of the test sets, images of an eye phantom
setup, for which the angle between the phantom and camera can be accurately set, were
deformed with the approach for test set generation. The set contained three sets of
images with the phantom in 6 different rotations in relation to the camera (3◦, 1.5◦,
−1.5◦, −3◦, −4.5◦, −6◦ ). An example is shown in Figure 2.20.
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(a) Original im-
age (Set B1).
(b) Transformed
image (Set B1).
(c) Grid (set 1).
(d) Original im-
age (Set B5).
(e) Transformed
image (Set B5).
(f) Grid (Set B5).
Figure 2.19: Semisynthetic test set B; examples at λ = 585 nm of the original
and transformed images (enhanced for visualisation) with corresponding transfor-
mation grids. [128]
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An image with the phantom facing the camera directly was deformed with an increasing
angle ϕy, and the deformed image was compared to an image with the phantom phys-
ically rotated ϕy degrees. The error between the physical and simulated deformation
was determined as the displacement of speeded-up robust feature (SURF)-keypoints [16]
visible in both images. The numerical results are shown in Table 2.2.
(a) Image facing
camera.
(b) Physically ro-
tated phantom.
(c) Estimation of
rotated image.
(d) Images (b) and
(c) overlaid.
Figure 2.20: Examples of phantom set used in the validation of synthetic data
generation. [128]
It should be noted that the artificial retinal features of the phantom used for validat-
ing the synthetic data generation approach are painted on a plane (and consequently,
the pixel locations of the deformed image are projected onto a plane instead of a semi-
sphere). Due to the differences between the true retinal curvature (semi-synthetic data),
the curvature of the synthetic test set phantom and an ideal semi-sphere, the deforma-
tions in the synthetic ground truth are unlikely to correspond accurately with the eye
movements they are simulating. However, the purpose of the deformation approach is
not to accurately simulate specific eye movements, but to produce realistic deformations
to the synthetic ground truth. Based on the validation results, the approach to synthetic
ground truth generation can be expected to produce deformations similar to those caused
by the movements of the eye in relation to the camera.
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Table 2.2: Validation of the synthetic data generation approach; errors (in pixels)
between feature locations in mechanically rotated and artificially deformed images,
respectively.
ϕy −6◦ −4.5◦ −3◦ −1.5◦ 1.5◦ 3◦
Mean 2.98 1.85 1.38 0.83 1.71 2.74
Std 0.67 0.48 0.45 0.32 1.00 1.07
The same parameters for each registration method were used as in the initial study
(Appendix Tables I.1 and I.2). As with the initial study, all registration errors were
measured as the Euclidean distance between the grid points of the registered image and
their expected locations based on the known transformation, and error values below the
system error of 2.3 pixels were considered as zero for the semisynthetic test set.
2.6.5 Results
Initial evaluation
The results of the image registration performance comparison on the synthetic and
semisynthetic test sets are summarised in Tables 2.3 and 2.4, respectively.
Table 2.3: Median (Med.) and standard deviation (STD) of registration error
for the synthetic set A. Base stands for the initial error before registration. Corr
is the correlation with baseline error. Lowest median errors are in bold. [129]
Base CC CD2 MI MS RC SAD SSD Demons Log- GDB- ED-
demons ICP DB-ICP
Med. Set A1 33.7 2.9 64.4 2.3 154.1 2.0 128.8 93.9 110.4 33.5 1.0 0.7
Set A2 47.3 2.6 101.3 7.2 128.6 2.0 144.3 81.0 323.8 48.4 1.1 0.7
Set A3 28.2 3.0 105.8 3.6 233.8 2.2 177.4 114.4 143.4 28.9 1.1 0.7
Set A4 28.9 4.2 29.4 11.9 257.2 4.3 115.3 55.8 18.7 32.8 1.1 0.7
Set A5 43.0 6.1 105.0 11.8 200.1 5.4 147.4 126.6 139.9 43.3 1.0 0.7
STD. Set A1 6.6 3.0 46.4 1.9 74.9 4.9 67.8 51.2 50.8 10.3 0.4 0.4
Set A2 18.6 6.4 40.4 9.3 52.4 4.6 47.4 40.0 210.9 18.7 0.4 0.3
Set A3 9.8 3.5 22.3 5.4 53.8 6.1 47.1 42.4 63.8 15.2 0.3 0.2
Set A4 14.6 8.6 28.2 19.4 69.3 18.9 50.7 30.6 18.9 17.4 0.4 0.4
Set A5 14.5 8.3 20.7 9.0 41.5 8.9 35.2 44.0 75.4 18.4 0.4 0.3
Corr. 1.00 0.16 0.53 0.25 -0.74 0.09 0.01 0.20 0.78 0.98 -0.33 0.05
CC performed relatively well for both the synthetic and semisynthetic sets, achieving a
median registration error below five pixels for most images. The variation of error for
some images was high, especially for the synthetic sets A4 and A5, however. Excluding
some individual images, RC produced low median errors for all sets for both synthetic
and semisynthetic images. However, the error variance was high, especially for the fourth
synthetic set A5. MI produced relatively good results for the first synthetic set, but
showed sensitivity to the increasing level of deformation with the successive sets.
For the semisynthetic set B, MI performed comparably to CC. CD2, MS, SAD and SSD
managed to, at least in part, successfully register the images at wavelengths near the
base image, but produced high errors elsewhere.
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Table 2.4: Median (Med.) and standard deviation (STD) of registration error
for the semisynthetic set B. Base stands for the initial error before registration.
Corr is the correlation with baseline error. Lowest median errors are in bold. [129]
Base CC CD2 MI MS RC SAD SSD Demons Log- GDB- ED-
demons ICP DB-ICP
Med. Set B1 13.8 4.5 36.8 5.8 50.8 4.0 56.5 33.0 39.2 16.1 0.0 3.5
Set B2 51.4 0.0 18.4 0.0 21.3 9.9 44.7 15.1 15.2 39.0 0.0 0.0
Set B3 25.7 0.0 32.6 0.0 10.9 0.0 61.4 3.7 15.2 23.3 0.0 -
Set B4 58.7 4.6 167.7 4.5 6.4 5.1 17.1 4.8 8.7 34.2 0.0 34.7
Set B5 33.2 3.4 41.3 3.5 11.5 4.2 29.4 10.2 12.4 31.8 0.0 332.2
STD Set B1 5.1 3.8 14.6 21.6 21.6 11.3 21.4 13.1 14.5 6.0 0.2 2.3
Set B2 1.3 0.3 7.9 10.9 10.9 14.1 21.5 6.3 6.7 4.4 0.0 0.0
Set B3 3.5 1.1 2.4 5.6 5.6 5.0 27.6 2.2 5.3 3.5 0.0 -
Set B4 9.2 2.0 6.7 4.8 4.8 2.4 11.3 2.3 4.8 9.6 0.0 13.0
Set B5 13.6 3.2 19.9 8.4 8.4 6.4 16.9 8.0 9.6 11.1 0.0 117.6
Corr. 1.00 -0.07 0.59 -0.23 -0.65 0.59 -0.74 -0.57 -0.76 0.91 0.00 -0.15
Demons showed very high standard deviation in error and produced globally unrealistic
transformations. The method, however, registered local image areas with high accuracy,
resulting in error minimum close to zero for most images and low median errors for the
wavelengths close to the base image. Log-Demons performed similarly to Demons, but
produced less extreme errors and smaller standard deviations for most images. Further-
more, log-demons showed high correlation between the registration and baseline error,
suggesting that the method is sensitive to the initial configuration.
ED-DB-ICP was hindered because of using the gradient information, especially in the
semisynthetic test set B. While the successful registrations were highly accurate, the
method failed (i.e., the method found no stable transformation) with several images in all
sets. GDB-ICP showed very good performance for both the synthetic and semisynthetic
test sets. With the exception of failed registrations for the two shortest wavelength images
of the synthetic set A, and two partially successful registration in the semisynthetic set B,
the method achieved a close to sub-pixel accuracy with minimal standard deviation. The
channel-wise performances for Sets A1 and B1 of the test sets are shown in Figure 2.21.
As expected, the errors tend to increase with the wavelength difference of the registered
images as the prominent image features change. The channel-wise errors of the best-
performing methods are visualised in Fig. 2.22.
Extended evaluation
The registration accuracy was measured as pixel error between the resulting grid points
and the original ones before the known transformation. MI produced relatively good
results for the medium and long wavelengths of the first synthetic set A1, but performed
poorly for wavelengths shorter than 520 nm and showed sensitivity to the increasing
level of deformation with the successive sets (see Figure 2.23). Furthermore, due to the
deformable transformation, regions of high registration error could be found in otherwise
well registered images.
Using intermediate templates significantly decreases the registration error in the shorter
wavelengths (see Figure 2.24). While the shortest path strategy similarly improved the
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(a) Synthetic (Set A1). (b) Semisynthetic (Set B1).
Figure 2.21: The generalized dual-bootstrap iterative closest point (GDB-ICP)
errors; the median error is shown with a circle, the boxes represent the 25th
and 75th percentiles, and the whiskers extend to the most extreme values still
considered as inliers. The outliers are plotted individually. [129]
(a) Synthetic images. (b) Semisynthetic images.
Figure 2.22: Wavelength-wise registration error; Median errors over the sets for
each wavelength. [129]
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(a) Set A1. (b) Set A4.
Figure 2.23: The mutual information (MI) errors with the synthetic set A; all
images registered to a single base image captured at 540 nm; the median error is
shown with a circle, the boxes represent the 25th and 75th percentiles, and the
whiskers extend to the most extreme values still considered as inliers. The outliers
are plotted individually. [128]
registrations in the shorter wavelengths, there was an adverse effect to the general regis-
tration performance (shown in Figure 2.26).
In the semisynthetic set B, the intermediate template strategy improved the performance
to a point where the mean registration error was within the system error for majority of
the images. The errors are visualised in Figure 2.25. However, most of the registered im-
ages in the test set contained regions with higher registration error, i.e., the registrations
were only partially successful. For the semisynthetic set B, MI did not show similar loss
of performance with shorter wavelengths.
RC performed similarly to MI for the medium and longer wavelengths, but showed signif-
icantly better performance in the shorter wavelengths. However, similar regions of larger
error were present (although less severe than with MI) in the images, and the method
showed similar sensitivity to increasing deformation of the test images. Furthermore, for
a few images of the synthetic set A, RC failed completely (i.e., the registration error for
all pixels was over 60). Neither of the joint registration strategies provided any significant
increase in performance for RC. The errors are visualised in Figure 2.27.
GDB-ICP showed very good performance for both the synthetic and semisynthetic test
sets. With the exception of failed registrations for two of the synthetic set, and one failed
registration in Set B5 in the semisynthetic set, the method achieved a reasonable regis-
tration error with minimal standard deviation. The median registration error remained
below 2 pixels for the majority of the images. As the level of deformation increased in the
synthetic images, some regions showed increased registration error (denoted as outliers).
The results are shown in Figures 2.28 and 2.29
For GDB-ICP, registering to a single base image provided the lowest error for the method
in both synthetic and semisynthetic sets. Likely due to restricting the transformation
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Figure 2.24: The mutual information (MI) errors with the synthetic set A1;
intermediate template strategy; the median error is shown with a circle, the boxes
represent the 25th and 75th percentiles, and the whiskers extend to the most ex-
treme values still considered as inliers. The outliers are plotted individually. [128]
(a) Set B1. (b) Set B4.
Figure 2.25: The mutual information (MI) errors with the semisynthetic set B;
intermediate template strategy; the median error is shown with a circle, the boxes
represent the 25th and 75th percentiles, and the whiskers extend to the most ex-
treme values still considered as inliers. The outliers are plotted individually. [128]
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Figure 2.26: The mutual information (MI) errors with the synthetic Set A1;
shortest path strategy; the median error is shown with a circle, the boxes represent
the 25th and 75th percentiles, and the whiskers extend to the most extreme values
still considered as inliers. The outliers are plotted individually. [128]
(a) Set A1. (b) Set A4.
Figure 2.27: The minimisation of residual complexity (RC) errors with the
synthetic set A; all images registered to a single base image captured at 540 nm;
the median error is shown with a circle, the boxes represent the 25th and 75th
percentiles, and the whiskers extend to the most extreme values still considered
as inliers. The outliers are plotted individually. [128]
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(a) Set A1. (b) Set A2.
(c) Set A3. (d) Set A4.
(e) Set A5.
Figure 2.28: The generalized dual-bootstrap iterative closest point (GDB-ICP)
errors with the synthetic set A; all images registered to a single base image cap-
tured at 540 nm; the median error is shown with a circle, the boxes represent the
25th and 75th percentiles, and the whiskers extend to the most extreme values
still considered as inliers. The outliers are plotted individually. [128]
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(a) Set B1. (b) Set B2.
(c) Set B3. (d) Set B4.
(e) Set B5.
Figure 2.29: The generalized dual-bootstrap iterative closest point (GDB-ICP)
errors with the semisynthetic set B; all images registered to a single base image
captured at 540 nm; the median error is shown with a circle, the boxes represent
the 25th and 75th percentiles, and the whiskers extend to the most extreme values
still considered as inliers. The outliers are plotted individually. [128]
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complexity to quadratic, any combining of transformations or using intermediate images
resulted in a notable decrease in performance.
The intermediate template strategy worked poorly for GDB-ICP. As any displacement
due to inaccurate registration accumulates in the template and the quadratic transfor-
mation used by GDB-ICP could not fully compensate for the increasing complexity of
the accumulated error, the template became blurry and caused further error in conse-
quent registrations. The strategy of sequential registration did not work well with any of
the evaluated methods. The large number of combined transformations lead to a rapid
increase in registration error. The results of the image registration performance com-
parison on the synthetic and semisynthetic data are summarised in Tables 2.5 and 2.6,
respectively.
Table 2.5: Median (Med.) and standard deviation (STD) of registration error
for the synthetic set A. Init. stands for the initial error before registration, Base
for registration to a single base image, NN for sequential registration, T for inter-
mediate template and SP for shortest path. Lowest error for each method/set is
displayed in bold.
Method Init. GDB-ICP MI RC
Strategy All Base NN T SP Base NN T SP Base NN T SP
Med. Set A1 6.1 1.1 1.2 5.5 1.0 2.1 9.1 2.4 3.5 1.3 1.2 1.6 1.4
Set A2 11.9 1.1 2.0 8.5 1.7 2.3 18.9 6.0 4.4 1.5 3.0 1.7 1.9
Set A3 18.0 1.2 5.2 11.5 1.4 20.4 186.2 25.0 4.3 2.2 10.5 3.0 2.3
Set A4 22.7 1.2 4.6 22.3 2.4 8.0 141.1 18.0 7.1 3.0 7.7 3.9 3.9
Set A5 31.1 1.2 8.2 47.3 2.2 47.5 275.9 42.7 58.3 4.6 35.1 7.1 5.3
STD Set A1 1.6 0.4 0.7 1.8 0.5 4.1 15.1 2.5 8.9 1.5 2.4 1.3 1.4
Set A2 3.4 0.5 2.1 3.3 1.0 5.8 33.8 5.1 10.9 3.6 4.7 3.1 3.0
Set A3 6.2 0.6 3.7 5.1 0.9 19.3 73.2 17.8 15.8 5.8 9.9 6.2 5.8
Set A4 7.6 0.8 4.0 8.0 1.7 13.3 54.4 8.9 19.3 8.4 11.5 7.4 8.5
Set A5 10.9 0.9 8.2 6.3 1.8 29.4 83.2 29.7 30.8 12.6 13.4 10.8 10.2
Table 2.6: Median (Med.) and standard deviation (STD) of registration error
for the semisynthetic set B. Init. stands for the initial error before registration,
Base for registration to a single base image, NN for sequential registration, T for
intermediate template and SP for shortest path. Lowest error for each method/set
is displayed in bold.
Method Init. GDB-ICP MI RC
Strategy All Base NN T SP Base NN T SP Base NN T SP
Med. Set B1 4.1 0.0 0.0 0.0 0.0 4.8 4.6 0.0 4.6 2.6 4.0 3.3 2.6
Set B2 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Set B3 7.7 0.0 0.0 0.0 0.0 3.0 4.2 0.0 3.5 0.0 0.0 11.0 0.0
Set B4 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Set B5 15.7 0.0 2.4 7.3 2.3 2.1 3.2 10.2 3.1 2.5 3.6 5.4 2.9
STD Set B1 1.0 0.9 0.6 0.5 0.7 2.9 2.4 1.0 2.8 3.4 5.2 4.3 3.8
Set B2 2.7 0.0 0.0 1.4 0.0 1.2 1.5 1.5 1.4 1.3 1.3 3.0 0.9
Set B3 3.0 0.1 0.8 0.8 0.5 1.9 2.5 2.8 2.1 1.4 7.1 6.7 3.0
Set B4 2.1 0.1 0.0 1.3 0.0 1.0 0.8 0.9 0.5 1.0 0.8 1.3 0.8
Set B5 5.0 0.9 1.8 5.0 1.5 2.1 4.7 8.6 4.1 4.4 3.8 7.7 3.8
The deterioration of the spectral image quality of the composed image when registering
with GDB-ICP was similar to the image with linear displacement of ≈ 1 pixels, de-
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spite the more complex transformation GDB-ICP uses. Similar results were observed on
the spectral similarity metrics. The spectral image quality measures are visualised in
Figure 2.30. The spectral similarity measures are shown in Figure 2.31.
(a) Correlation coefficient. (b) Quality index.
(c) RMSE. Figure from [128]
Figure 2.30: The spectral image quality of the image after registration with
generalized dual-bootstrap iterative closest point (GDB-ICP) in relation to the
reference, with the different metrics. Synthetic set A1, to a single base image.
2.6.6 Discussion
The registration errors tended to be more concentrated towards the image edges opposite
to the optic disk (surrogate) where the blood vessels become less prominent. The retinal
background was largely unable to provide either features for GDB-ICP or reliable region
matches for MI or RC. The lowest registration errors were generally found in regions
with high-contrast retinal blood vessels.
The low error rate of GDB-ICP was partially due to the restriction to the transformation
complexity. The global transformation ensured that the registration error was reasonably
low even in regions where there were few retinal features to guide the registration process.
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(a) Spectral angle measure (SAM). (b) Spectral correlation mea-
sure (SCM). Figure from [128]
(c) Spectral information diver-
gence (SID). Figure from [128]
Figure 2.31: The spectral similarity of the image after registration with gener-
alized dual-bootstrap iterative closest point (GDB-ICP) and the reference, with
the different metrics. Synthetic set A1, to single base image.
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In contrast, MI and RC generated, for some images, transformations where the parts of
an image containing well defined features were registered to sub-pixel accuracy and the
registration errors of tens of pixels could be found elsewhere.
The sequential registration strategy causes additional problems for non-deformable regis-
tration approaches (i.e., approaches that limit the complexity of the transformation used
for registration). Even if the transformation error is negligible, as a non-rigid transforma-
tion is required to properly represent the deformation due to eye movement, combining
the sequential registrations results in different channels being registered with transfor-
mations of different complexities. In addition, complex transformations require multiple
transformation steps as the combined transformation cannot be expressed as a multipli-
cation of the transformation matrices. Quantitatively, the accumulation of registration
error significantly outweighed any benefit gained by having less difference in the image
wavelengths.
Using the shortest path can help to avoid large wavelength dependent differences between
images and limit the accumulation of error due to combined intermediate transforms.
However, unless the length of the shortest path is the same for all images, the images
will be registered with transformations of different complexity when using non-deformable
approaches. The strategy is also sensitive to the choice of the similarity measure used
in constructing the cost matrix (i.e., how the distance between images is measured when
determining the shortest path). Based on the results, the shortest path strategy is not
an effective strategy for the joint registration of spectral channel images.
In general, with the exception of using intermediate templates with MI, the evaluated
registration strategies showed limited benefit. The increase in registration error due to
even limited number of combined transformations outweighed the benefit of more similar
image content due to smaller difference in wavelength.
Unless a threshold below which the registration error cannot be distinguished from the
error inherent in the imaging system, such as in the case of the semisynthetic test set,
can be determined, a clear distinction between a successful and a failed registration is
application dependent and not trivial. In the case of spectral images, determining an
error threshold for a successful registration can be approached through the effect of the
registration inaccuracy on the spectra; a registration error of two pixels would require
the spatial resolution of the spectral image to be downscaled by a factor of two to provide
accurate spectra at each pixel.
Using maximal resolution, the system by Fält et al. [55] is capable of acquiring images
at 2048 × 2048 (at the cost of increased noise). Therefore, a registration error of two
or three pixels would still allow high-resolution images with accurate spectrum at each
pixel. GDB-ICP is capable of registering most images with the median error within this
accuracy. For the first set RC achieves similar median error, but some images contain
regions with considerably higher errors. The large errors of MI in the blue wavelength
images make the method unreliable in spectral image composition.
2.6.7 Summary
Of the compared methods, GDB-ICP outperformed the others in both number of suc-
cessful registrations and the accuracy of registration. The experiments on synthetic and
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semi-synthetic data showed that the registration error increases with increasing wave-
length difference between the floating and the base image. The other well-performing
methods were CC, MI and RC, but they could not match the accuracy and success rate
of GDB-ICP.
The non-rigid registration approaches performed poorly due to significant differences be-
tween the channels. While locally accurate, the resulting transformations were unrealistic
and inaccurate globally.
2.7 Illumination correction in spectral images
Due to the fundus camera optics, the curvature of the eye fundus and the limited aperture
(pupil), the light used to illuminate the fundus is not evenly distributed onto the fundus.
The uneven illumination field adds a low-frequency component to the intensity values of
an image, which reduces the visual quality of the image and can have significant effect
on automatic segmentation and diagnostics.
The estimation and correction of an uneven illumination field in fundus images has been
studied (e.g., [6,63,76,126,127,154]). Generally, the illumination field estimation includes
(or is limited to) the background of the fundus image. In grayscale or RGB images the
fundus background can be expected to form a reasonably uniform texture that does not
introduce a significant bias to the estimation of the illumination field.
A number of different parametric models for estimating the illumination field in an image
have been proposed. A fourth-order polynomial model for the illumination field of a
fundus image is used in, e.g., [154]. A general bivariate polynomial field for location
(x, y) is defined as
fill(x, y) =
n∑
i=0
n∑
j=0
βijx
iyj , (2.32)
where n is the degree of the polynomial and β0 . . .βn are the estimated model parameters.
Grisan et al. [76] assume the main contributors of the uneven illumination field in fundus
images to be vignette and the possible luminosity glare at the image edges. They propose
to model the vignette by elliptic paraboloids, and the glare by a sigmoid function defined
as
S(dr; p) =
1
1 + e−(dr+s1)/s2
, (2.33)
where dr is the radial distance of the point (x, y) to the image centre and p = (s1, s2) is
the vector of sigmoid function parameters. The elliptic paraboloid modelling the vignette
is defined as xˆyˆ
Li
 = Ry(p9)Rx(p8)Rz(p7)
 x− p1y − p2
p6
(
(x−p1)2
p4
+ (y−p2)
2
p5
)
+ p3
 , (2.34)
where Rx, Ry and Rz are rotation matrices and p1 . . . p9 are the estimated ellipsoid
parameters.
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Kang and Weiss [113] propose an illumination model that takes into account off-axis
illumination, vignette and the tilt of the camera. The model is defined as
fill(u, v) = (1− α0r) cos γ
(
1 +
tan γ
f
(u sinϕx − v cosϕx)
)3
1
(1 + (r/f)2)2
, (2.35)
where f is the camera focal length, α0 is a radial vignetting factor, γ is the camera
tilt angle, ϕx is the rotation of the target around x-axis, (u, v) is the image point (x, y)
relative to the image principal point, and r2 = u2 + v2.
All the presented models have been designed for grayscale or RGB images. Spectral
fundus images have a number of qualities that affect illumination correction. A fundus
background with a uniform texture is not a reasonable assumption for spectral fundus
images. Due to the wavelength-dependent absorption and scattering of different retinal
and subretinal features, and the varying penetration depth of different wavelengths, the
information content at what constitutes as the background in grayscale or RGB images
will vary for different wavelengths.
In imaging systems where the channels of the spectral image are acquired individually
(i.e., with a separate exposure for each channel), the resulting illumination fields of the
channel images are independent of each other. Any inter-channel movement of the eye
or the camera, or difference in exposure time can cause significant nonlinear changes in
the spectra of the spectral fundus image.
2.7.1 Illumination field estimation using the image spectra
The simplest approach to spectral image illumination correction is to individually esti-
mate and correct the illumination field for each channel. However, the reflectance and
scatter of retinal tissue is wavelength dependent, and longer exposure times are generally
required towards the shorter wavelengths (due to the increased absorption of the crys-
talline lens at those wavelengths). Consequently, the range of illumination field shapes
may vary between channels (requiring different models for accurate estimation).
Furthermore, channel-wise individual approximation does not take into account the con-
sistency of the image spectra. The (channel-wise) utilisation of any method that performs
contrast enhancement or otherwise modifies the image intensities relative to other chan-
nels will likewise result in incorrect spectra.
The consistency of the spectral information can be used to guide the channel-wise illu-
mination field estimations. The reflectance from similar retinal tissues can be assumed
to produce similar spectra. As the illumination fields are channel-wise independent, the
reflectance spectra from a specific type of tissue contain information on different parts
of the illumination fields depending on their spatial location in the image.
Reference spectra for guiding the illumination field estimation
If a set of image spectra that sufficiently represent the spectral variation of a specific
retinal structure while containing uniform bias (i.e., the illumination field is flat at their
spatial locations) for all channels can be found, the spectra can be used as reference for the
74 2. Spectral fundus imaging and spectral image composition
other spectra where there is inter-channel difference in the bias. Subtracting the reference
spectrum with similar underlying histological parameters (i.e., similar tissue structure),
sref , from a spectrum si, the resulting residual vector resi = si − sref should consist
only of the illumination field bias and noise (from various sources). Fitting channel-wise
illumination fields to the residuals provides illumination field estimates where the image
spectra remain consistent after correction.
Retinal blood vessels have several characteristics that make them a good candidate for
the reference spectra. Due to the strong absorption of haemoglobin (excluding the longer
wavelengths), the spectra of the retinal blood vessels can be expected to have a lower
variance than the background of the fundus, as the light reflected from the background
can be the product of reflections from multiple tissue layers. In contrast, with the
exception of smaller retinal vessels, the amount of light reaching the fundus camera
after passing twice through a retinal vessel and interacting with the tissue below the
vessel can be assumed to be negligible.
The main contributors to the reflectance spectra of retinal blood vessels are therefore
absorption and scatter by haemoglobin and a low-frequency bias caused by the uneven
illumination field. The haemoglobin absorbance depends on the oxygen saturation level
of the blood (the absorption spectrum is different for oxygenated and deoxygenated
haemoglobin). It should be noted that, unless the acquisition time for the whole spectral
image is short, the oxygen saturation level at a specific region in a vessel will vary
between the channels due to natural flow of blood. Thus, directly using the haemoglobin
absorption spectra to guide the illumination field estimation is not applicable.
Furthermore, the retinal vasculature is relatively easy to segment. Numerous automatic
segmentation methods are available, e.g., [64, 134,158,189,208,213].
Extracting the reference spectra
As the set of reference spectra is defined by the uniformity of illumination, an initial
estimation of the illumination field for each channel is required for the extraction of
the reference spectra. A polynomial model is fitted to the blood vessel intensity values
for each channel using least-squares approximation. The resulting n illumination field
estimates g1...n (where n is the number of wavelength channels) model the low-frequency
intensity component within the channels, but provide no consistency over the spectral
dimension.
Based on the estimated channel-wise illumination fields, regions of the field with sim-
ilar estimated illumination fall-off can be extracted. Selecting a set of linearly spaced
thresholds t with values between [max gi,min gi], the set of regions with similar estimated
fall-off can be defined as
Swi = ti ≤ gw ≤ ti−1, (2.36)
where gw is the estimated illumination field of wavelength channel w.
As the amount of light projected onto the eye remains the same and the angle of rotation
between the eye and the camera should be relatively small, regions of the same set level
at different channels have a similar relation to the peak illumination of that channel.
Therefore, the effect of the illumination field on the spectra can be expected to be similar
for the region where the masks of specific level overlap for all channels.
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The regions where the reference spectra can be extracted are defined as
Sref =
⋃
i
(Si ∩ Si+1 ∩ · · · ∩ Sn) . (2.37)
While the levels of bias due to the intensity fields in Sref vary, the bias can be expected
to remain relatively consistent for all the wavelength channels. The reference spectra
used to calculated the residual vector are taken from the spatial locations in Sref that
correspond to a blood vessel position. With the set of reference blood vessel spectra
with mostly coherent wavelength dimensional illumination bias, residual vectors can be
calculated for all the image spectra corresponding to a blood vessel location.
However, as the haemoglobin absorption is wavelength dependent and especially low
towards the longer wavelengths, the amount of haemoglobin contribution to the image
spectra is different between the channels. As a consequence, the blood vessel intensities
in the longer wavelength channels are influenced by the reflections from the retinal tissues
below the blood vessel. In practice, the blood vessel spectra can be expected to have a
higher variance in the longer wavelength component, which is likely to cause error in the
selection of a corresponding reference spectrum for image spectrum s.
To reduce the influence of the longer wavelength channels in the selection of the reference
spectrum, the distance between s and sref is weighted by the haemoglobin absorption
spectrum. The reference spectrum for the spectrum s corresponding to the location on
a blood vessel (x, y) is selected based on a weighted distance
argmin
i
(∑
ω
√
(s− srefi)2
)
, (2.38)
where srefi is the i:th reference spectrum and ω is a weighting factor based on the
wavelength dependent haemoglobin absorption coefficient.
With a reference spectrum for each blood vessel spectrum in the spectral fundus image,
the residuals for estimating the illumination field are defined
resi = si − srefi . (2.39)
The global illumination field is estimated by fitting n channel-wise independent illu-
mination fields g1, . . . , gn to the channel-wise residual values. Dividing the wavelength
channels using the calculated illumination field estimates reduces the bias due to uneven
illumination while retaining the consistency of the image spectra.
2.7.2 Experiments and results
The performance of the proposed illumination correction method was evaluated using
semisynthetic images based on six-channel spectral images acquired with the system by
Styles et al. [216]. The system acquires all six channels in a quick succession using a single
exposure. Therefore, while the formation of an illumination bias field cannot be avoided,
all six channels can be assumed to have an identical (or close to identical) illumination
field.
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Computing the mean over the spectral dimension of the spectral image, a good estimate
of the illumination field can be achieved as channel-wise differences are averaged while
the illumination field is retained. Estimating the illumination field of the mean image
I¯ using a fourth-order bivariate polynomial, the illumination field bias can be corrected
by dividing each channel of the spectral image with the estimated illumination field fill,
resulting in reference image Iref with (close to) uniform illumination field on each channel.
A test set of 5 semisynthetic images were gained by corrupting each channel of each of
the 5 reference images Iref using a different fourth-order bivariate polynomial (simulating
a biased illumination field) with randomly sampled parameters (normally distributed
samples with standard deviations based on parameters of estimation of fill).
The artificially corrupted semisynthetic images were corrected using both the proposed
method and (fourth-order polynomial model) channel-wise correction for reference. The
difference between the reference spectral image Iref (with no synthetic illumination field
bias) and the corrected images was measured using spectral distance measures SAM and
SID [230], defined as
SAM = cos−1

d∑
i=1
xiyi√
d∑
i=1
x2i
√
d∑
i=1
y2i
 (2.40)
SID =
d∑
i=1
pi(log pi − log qi) +
d∑
i=1
qi(log qi − log pi), (2.41)
where
pi =
xi
d∑
j=1
xj
, qi =
yi
d∑
j=1
yj
, (2.42)
and d is the number of channels in the spectra. The results, visualised in Figure 2.32,
show smaller spectral distance to the reference image after correction with the proposed
method. The channel-wise correction does not retain the consistency of image spectra,
and consequently the spectral distance to the reference image is increased. The results
are consistent for the majority of the images in the test set.
For qualitative evaluation of the performance of the presented illumination correction
method, a set of 7 spectral fundus images with visually identifiable unevenness in the
illumination field were chosen from the DiaRetDB2 data set. The selected spectral retinal
images were processed using the presented spectral image illumination correction method,
and both the corrected channel images and RGB projections (gained by integrating the
image spectra with a set of virtual filters) were visually evaluated.
Visual examination of the results suggests that the method was able to reduce the illu-
mination field bias in the spectral image while respecting the consistency of the spectral
dimension. An example are shown in Figure 2.33, where the wavelength channels show
reduction in the illumination field bias. Two RGB projections are shown in Figure 2.34.
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(a) Spectral angle mapper (SAM). (b) Spectral information diver-
gence (SID).
Figure 2.32: Spectral difference to the reference spectral image (without syn-
thetic illumination field bias).
2.7.3 Discussion
As the method relies on retinal blood vessels to extract the reference spectra, the lack
of blood vessels in locations critical to the illumination field estimation can limit the
performance of the method. An example of this can be seen in Figure 2.33b, where a
region of higher intensity (due to illumination field bias) remains after correction.
The consistency of the image spectra is difficult to evaluate without ground truth mea-
surements. Indirect proof of the proposed method retaining the consistency of the image
spectra is presented in Section 4.4.2, where the image spectra are used to estimate his-
tological parameters of the retina.
2.7.4 Summary
The fundus camera optics, the curvature of the eye fundus and the limited aperture cause
an uneven illumination field in fundus images, adding a low-frequency component to the
intensity values of an image and reducing the quality of the image spectra. Channel-
wise individual approximation and correction of the illumination field does not take into
account the consistency of the image spectra.
A method for correcting the uneven illumination field in spectral images while retaining
the spectral consistency, based on extracting reference haemoglobin spectra was pre-
sented. A set of 7 spectral retinal images and 5 semisynthetic test images were processed
using the presented spectral image illumination correction method. The method was able
to reduce the illumination field bias in the spectral image while respecting the consistency
of the spectral dimension.
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(a) Original channel image 1
(458 nm).
(b) Corrected channel image 1
(458 nm).
(c) Original channel image 1
(600 nm).
(d) Corrected channel image 1
(600 nm).
Figure 2.33: Channel images before and after correction with the presented
method.
2.8 3D-reconstruction of the retina from spectral images
The images from spectral fundus imaging systems that acquire each spectral channel
using separate exposures offer a unique possibility for image processing. As some eye
movement between the exposures is unavoidable, some disparity of spatial structures
will be present in the data. Using stereoscopic principles, the disparity in the spatial
location between two (or more) images can be used to estimate depth information at
that spatial location.
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(a) RGB image 1 (original). (b) RGB image 1 (corrected).
(c) RGB image 2 (original). (d) RGB image 2 (corrected).
Figure 2.34: RGB projection images before and after correction with the pre-
sented method.
Stereoscopic reconstructions of the fundus have clinical value, as stereo fundus pho-
tography is used to diagnose e.g., macular edema and glaucoma. Reconstructions of
(parts of) the eye fundus from fundus images have been suggested for the diagno-
sis of glaucoma [218], study of vasculature [140, 146], and other ophthalmic diagnos-
tics [38,39,47,73].
Ideally, a stereoscopic reconstruction from fundus images has several benefits over OCT
which can be considered as the de facto method for extracting structural information on
the retina. Firstly, the FOV of a fundus image is significantly larger than that of a typical
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OCT reconstruction. Multiple OCT reconstructions could be taken to acquire data over
the same FOV, but a globally accurate reconstruction would not be guaranteed, as the
acquisition could be difficult and the registration of the reconstructions would not be
trivial.
In practice, however, the acquisition of retinal images with sufficient disparity for accurate
stereo reconstruction can be challenging. Martinello et al. [145] studied the light paths in
reconstruction with both stereo fundus camera and monocular stereo reconstruction (i.e.,
from images with the target in different poses). They concluded that despite the changes
in the pose of the eye, the light reflected from the retina travels through the centre of the
pupil, in practice limiting the disparity between the images and consequently increasing
the reconstruction error. Giancardo et al. [73] suggest that the problem of disparity in
monocular retinal images can be avoided by using an aperture smaller than the eye pupil.
While the depth information of the individual OCT scans considerably surpasses the
accuracy of what a reconstruction using stereoscopy can be expected to achieve, the in-
expensiveness and larger FOV of 3D-reconstructions based on(monocular) retinal images
can be valuable for diagnostics, image registration, image post-processing or other image
analysis applications. This section presents a method for the 3D-reconstruction of the
retinal shape from (monocular) retinal images. The method is evaluated quantitatively
on synthetic data, and reconstruction examples on real medical data are given.
2.8.1 Methods
The method presented in this work is based on the stereoscopic reconstruction method
for fundus images by Lin and Medioni [139]. There are three major modifications to the
original algorithm: the replacement of SIFT and MI as the features for the coarse cor-
respondence and dense correspondence search with SURF and binary Robust Invariant
Scalable Keypoints (BRISK), the use of multiple images to calculate the dense recon-
struction, and the addition of a step to remove (dense) correspondences with multiple
good matches. The selection of the combination of SURF and BRISK features is justified
in Section 2.8.2.
Image preprocessing
As the features used for determining the coarse correspondence rely on image edges, pre-
processing is performed to increase the contrast of edge responses and to facilitate feature
extraction. Before calculating the edge responses, histogram normalisation is performed
on the images (using the same µ and σ for all images) to extend the dynamic range in the
images. Extensive stretching of the dynamic range tends to generate significant amounts
of noise. A non-local mean filter [34] is applied to the images to reduce the increased
noise and to avoid false edge responses.
The original method by Lin and Medioni [139] uses edge response images calculated from
the contrast enhanced images using a Sobel filter. For the modified method the use of
the contrast enhanced images directly was found to produce better results.
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2D-2D correspondence
The initial coarse 2D-2D correspondence is based on SURF features extracted from the
preprocessed images. Instead of directly matching the SURF features (based on the
distance of feature vectors) and estimating the homography from the matches, an iterative
matching scheme similar to the ICP algorithm is employed to produce more accurate and
robust homography estimations. The process is visualised in Figure 2.35.
Figure 2.35: Flowchart for determining the global 2D-2D correspondence (mod-
ified from [139]).
The robust homography estimation starts with the estimation of the homography as
identity (i.e., a transformation that does not change feature point positions). The SURF
feature points (of image Ii) are matched by pairing them with the feature point (of im-
age Ij) with the most similar feature vector (measured as Euclidean distance) within a
(initially large) radius r. Using random sample consensus (RANSAC) [62], a robust esti-
mation of the homography is calculated based on the matches, and the feature points are
transformed using the estimated homography. For the next iteration, the search radius
r is halved. The steps are repeated until the search radius falls into a predetermined
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minimum (rmin).
In classic RANSAC, the best homography is determined by the size of the consensus
set (i.e., set of points that would produce the transformation within some error). If
a large number of the feature points receive poor matches from the previous step, a
large consensus set might not guarantee a correct homography. To reduce the effect of
poor matches, each match is assigned a weight based on the orientation difference (good
matches are expected to have similar orientations) of the feature points. Instead of the
consensus set size, the sum of weights of the feature points in the consensus set, ω, is
used to rank the estimated homographies.
Correspondence is estimated for all combinations of image pairs. The sum of weights
ω associated with the estimated homographies are used as a measure of correspondence
accuracy for refinement of the pairwise correspondences.
Another round of pairwise correspondence estimations is performed on the combinations
of image pairs to refine the correspondences (see Figure 2.36). When refining the homog-
raphy Hij , instead of starting with an identity homography, the estimation is initialised
as a combination of all transformations in the shortest path between the image pair, i.e.,∏
HS (chained correspondence estimation). As the initial estimation is assumed to be
reasonably accurate, the search radius r is initialised to rmin (resulting in the estimation
converging after a single iteration). ωij is updated, and all homographies with their
shortest path including the step Hij are re-evaluated. The process continues until new
estimates with improved scores ω can no longer be found.
Figure 2.36: Refinement of 2D-2D correspondence (modified from [139]).
3D correspondence and reconstruction
Once the pairwise coarse correspondences are estimated and refined, the image with the
minimum distance to all the other images (along the shortest paths) is selected as the
reference image, Iref , for the camera pose estimation. As with [139], the reconstruction
is defined for points on an opaque retinal surface imaged with pinhole cameras. While
these assumptions are a gross simplification of the optical system and the light paths in
retinal imaging, they facilitate the estimation of the depth information.
The plane+parallax method is used to estimate a fundamental matrix Fi (with respect
to Iref) for each image Ii. An initial camera pose is estimated by projecting the feature
point locations of Ii (transformed to the reference frame) and of Iref , xi and xref , into
3D using the (naïve ) assumption that the points lie on a plane in front of and parallel to
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the reference camera. Using the resulting set of 3D-points, Xi, the pose for the camera
associated with the image Ii (with respect to the reference camera) is estimated by
minimising the reprojection error:
�(Pi) =
∑
‖xi − PiXi‖2 (2.43)
where Pi is the projection matrix associated with image Ii. The procedure is repeated
for all the cameras (i.e., camera poses corresponding the individual images).
After the initial pose estimation for all cameras, Xi is re-estimated using triangulation
based on the camera position estimates. After the triangulation step, estimates for both
the camera pose and the 3D-structure exist.
Once the 3D-structure and camera parameters have been estimated, the images are
rectified and dense BRISK features are extracted from the images. Based on the feature
vectors, feature point correspondences are identified across the images (e.g., the pair of
matched points aij in Ii and Ij corresponds to the point bkl in Ik and Il). The dense
BRISK features are matched for each image pair. To reduce false matches, matches
where the relative distance to the second closest match candidate is below threshold t
are discarded.
The dense matches are used to refine the estimates by bundle adjustment, i.e., both
the camera parameters and the 3D-point positions are adjusted simultaneously. The re-
projection error is minimised again, this time allowing both the camera parameters and
the 3D-locations to vary,
�(Pi, Xi) = Σ‖xi − PiXi‖2. (2.44)
2.8.2 Experiments and results
A number of features were considered for the dense point matching for the proposed
method with SIFT and SURF for the 2D-2D correspondence. The features SURF,
BRISK, MI and fast retina keypoint (FREAK) were evaluated in the framework of the
method using three synthetic data sets.
The method for generating synthetic images described in Section 2.6.4 was used to gen-
erate a data set with simulated changes in eye pose with respect to the camera. The
synthetic data consisted of retinal images projected onto a segment of a semi-sphere. A
set of images with artificial depth disparities was attained by rotating the semi-sphere and
reprojecting the image points back onto a plane. An example of the resulting synthetic
images are shown in Figures 2.37.
The reconstruction was performed using different features for the dense matching. The
implementations of both the original method by Medioni et al. and the proposed ex-
tensions used in the evaluation were implemented by the author and co-workers Jarmo
Ilonen and Antti Hannuksela.
As the underlying topology of the synthetic test images is known, the reconstruction
error can be calculated as the distance from the reconstructed points to the semi-sphere
segment. The reconstruction error for reconstructed 3D-coordinates V is defined
eˆ =
∑
i
√
(Vzi − fˆ(Vxi, Vyi))2, (2.45)
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Figure 2.37: Synthetic evaluation data set 1.
where fˆ is the bi-quadratic function defining the topology used for distorting the synthetic
test images.
BRISK features were found to produce the smallest reconstruction error for both syn-
thetic sets. The reconstruction errors for the different features are summarised in Ta-
ble 2.7. The reconstruction results for the synthetic data sets are shown in Figure 2.38.
Table 2.7: Mean reconstruction errors using different feature combinations. The
values in the parentheses are the reconstruction errors without requiring multiple
images to support point pairs.
Set 1 Set 2 Set 3
Lin & Medioni 32.88 26.07 21.21
SIFT + BRISK 13.42 (18.45) 11.88 (15.46) 9.55 (10.16)
SIFT + FREAK 14.80 (22.13) 15.20 (17.83) 11.96 (13.95)
SIFT + SURF 39.57 (42.04) 33.32 (39.42) 29.94 (37.91)
SURF + BRISK 11.54 (16.79) 12.46 (12.67) 9.34 (10.42)
SURF + FREAK 14.07 (21.03) 16.26 (18.21) 13.01 (14.04)
SURF + MI 34.82 30.14 20.96
SURF + SURF 40.47 (42.79) 33.76 (39.23) 30.21 (37.55)
To evaluate the reconstructions with real medical image data, four sets of retinal im-
ages were acquired with different parts of the retina centred. Before the acquisition
of each retinal image, the subject was asked to focus their eye in different direction
to produce disparity within the medical test sets. An example of a medical test set
is shown in Figure 2.39. The reconstructions from the medical test sets are shown in
Figures 2.40 and 2.41. Before reconstruction, the images were corrected for geometric
distortion using the approach detailed in Section 2.5.2. While the full set of reconstructed
points are visualised in the plots, median filtering was applied to the point set used for
the linear interpolation surface for better visualisation.
2.8.3 Discussion
Judging by the synthetic data, the proposed method is able reconstruct the 3D-structure
of the eye fundus relatively well. Majority of the error in the reconstructions from the
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(a) Lin and Medioni [139] (set 1). (b) Proposed method (set 1).
(c) Lin and Medioni [139] (set 2). (d) Proposed method (set 2).
(e) Lin and Medioni [139] (set 3). (f) Proposed method (set 3).
Figure 2.38: Reconstruction results on synthetic data (using BRISK) for dense
matching.
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Figure 2.39: An example medical evaluation data set.
synthetic data was due to outliers, which can usually be removed in post-processing.
The curvature of the underlying structures in the synthetic data sets is exaggerated in
comparison to the actual curvature of the fundus region captured by a fundus camera.
While the reconstructions from the medical data seem close to planar compared to the
reconstructions from the synthetic data, the result is not unexpected as the fundus camera
used for acquisition of the images has a high magnification and a relatively low FOV.
The original method by Lin and Medioni [139] failed with the medical data sets due to a
misalignment in the 2D-2D-correspondence phase. As the homography related to one of
the images was incorrect, the points from the image were estimated on a plane separate
from the rest of the reconstruction.
2.8.4 Summary
A method for the 3D-reconstruction of the retinal shape from retinal images based on
the method by Lin and Medioni [139] was presented. The method was evaluated on both
synthetic and medical data. For the synthetic data, the proposed method achieved lower
mean reconstruction error than the original method by Lin and Medioni. On the medical
data, the proposed method was able to produce a reasonable reconstruction where the
original method failed.
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(a) Lin and Medioni [139]. (b) Proposed method.
(c) Lin and Medioni [139]. (d) Proposed method.
Figure 2.40: Reconstructions from medical data. Reconstructed point clouds
with linear interpolation surface. The point sets used for the surface were median
filtered for better visualisation.
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(a) Lin and Medioni [139]. (b) Proposed method.
(c) Lin and Medioni [139]. (d) Proposed method.
Figure 2.41: Reconstructions from medical data (continued). Reconstructed
point clouds with linear interpolation surface. The point sets used for the surface
were median filtered for better visualisation.
Chapter III
Spectral image database of diabetic retinopathy patients
3.1 Introduction
Publicly available benchmark databases with clearly defined evaluation protocols benefit
the development of, e.g., computer vision methods. The evaluation of the method per-
formance is facilitated as the performance reported with descriptions of competing and
the state-of-the-art methods are directly comparable. Furthermore, publicly available
databases can usually be expected to contain more data for training and testing than an
individual research group would otherwise (easily) have access to.
Compared to typical computer vision benchmark databases, medical image databases
have a number of important differences. Medical image databases typically concentrate
on one organ imaged in a specific modality (e.g., MRI, ultrasound or positron emission
tomography (PET)). The number of images is often limited due to the number of avail-
able subjects, the cost of image acquisition, and the ethical considerations related to
imaging human subjects. Laws related to the privacy of medical information may also
limit the publication of medical data.
Medical image databases often contain some relevant information on the images related
to the purpose of the database. Typically at least the general diagnostic information is
published with the images. A number of databases provide gold standards for structural
information such as the location of the optic disk and macula, and the blood vessel pro-
files. Significantly fewer databases seem to offer gold standards for lesions or pathological
regions.
This chapter discusses the acquisition of images and gold standards of lesion locations for
the spectral fundus image database DiaRetDB2. The spectral information coupled with
gold standards for multiple lesion types provide a good basis for method development in
automatic detection and classification of retinal lesions.
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3.2 Public fundus image databases
A number of retinal image databases for various purposes exist, with representations of
different pathologies. Fumero et al. [66] present a fundus image database with accurate
gold standards of the optic nerve head for the development and evaluation of automatic
methods for the detection of glaucoma.
Niemeijer et al. [159] provide a database of 100 fundus images. The database includes
annotations of microaneurysms from four expert ophthalmologists. The data set is a
part of the Retinopathy online challenge [187], a platform for standardised evaluation for
automatic microaneurysm detection methods.
Niemeijer et al. [158] compare a number of vessel segmentation methods on a database
of 40 images with manually segmented vessel trees. In addition to the publication of the
comparison, the database has been made publicly available.
Zhang et al. [254] present an online depository of fundus images with 650 images contain-
ing expert annotations focused on biomarkers related to glaucoma diagnosis. A quantita-
tive benchmarking method focused on optic disk and cup segmentation and cup-to-disk
ratio is provided.
Budai et al. [35] have composed a database of 15 high-resolution images of healthy sub-
jects with gold standards of the locations of vessels (including differentiation between
veins and arteries), macula, and the optic disk. The database was later extended with
15 images of patients with DR and another 15 of patients with glaucoma [167].
Al-Diri et al. [7] present a reference data set of 16 images for automatic segmentation and
measurement of retinal vessels. A semi-automatic segmentation method is presented and
the resulting 193 vessel segments have been published along with the reference images.
Hoover et al. [97] have published a data set of 20 images (ten of healthy and ten of patho-
logical retinas) with manually drawn reference for blood vessels. The ten pathological
retinas were selected based on abnormalities or obstructions in the vessels.
Klein et al. [122] present a database for the evaluation of automatic methods for analysing
the severity of DR. The database consists of 1200 images with severity gradings from
three ophthalmologic departments.
Owen et al. [176] validate a number of automatic methods for vessel tortuosity measure-
ment on a data set of 28 fundus images from 14 young children. The vessel profiles from
two human observers are included in the data set.
Staal et al. [213] present a database of 40 images, 7 with pathology, for the evaluation
of automatic vessel segmentation. Manual vessel segmentations by three non-experts
trained by an ophthalmologist are included.
Significantly fewer examples of databases of images including spectral information can
be found. Styles et al. offer the data set of 35 spectral fundus images described in [216]
on request, but to the knowledge of the authors, no previous publicly available database
of spectral retinal images with a gold standard for multiple region of interests (ROIs)
exist.
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3.3 DiaRetDB2 spectral retinal image database with gold stan-
dard
3.3.1 Human subjects and ethical considerations
The DiaRetDB2 database consists of the spectral fundus images of 72 subjects ranging
from 21 to 81 years of age. 55 of the subjects were diagnosed with various stages of DR,
while 17 control subjects had healthy retinas. Of the diabetic subjects 30 were female
and 25 male. The control group consisted of 4 females and 13 males. Due to lengthy
acquisition time (total of ∼ 30min for a single spectral image) only one eye of each
patient was imaged.
The Declaration of Helsinki [12] was followed for all parts of the study involving human
subjects. The imaging of the patients was conducted by the Department of Ophthalmol-
ogy in Kuopio University Hospital (Kuopio, Finland) with the permission of the research
ethics committee of University Hospital District of Northern Savo. Written consent was
received from all patients prior to the study.
3.3.2 Imaging procedure
The process of acquiring images for the DiaRetDB2 database is described in [55]. A
spectral fundus camera capable of acquiring up to 30 wavelength channels, with central
wavelengths from 400nm to 700nm, was used to capture the spectral fundus images of the
voluntary subjects. The details of the acquisition system are discussed in Section 2.4.1.
Oftan Tropicamid (Santen Oy, Finland) eye drops were used to dilate the pupils of the
subjects before image acquisition. The head of the subject was supported by a forehead
and a chin rest to provide stability and to make the imaging process more comfortable
for the subject. A fixation target was used to reduce involuntary eye movements and to
align the eye of the subject so that optic nerve head was in the image periphery.
The initial camera focus was determined using a bandpass filter with central wavelength
at 550nm, where the retinal blood vessels are prominent. If necessary, manual adjust-
ments to the initial focus were made during the acquisition with an individual filter.
When the subject deemed it necessary, a moment was taken between the acquisition of
channels for the subject to rest their eyes before continuing with the imaging.
Images were acquired using all 30 bandpass filters where possible. In practice, however,
the low transmittance for the shorter wavelengths in cornea and the lens (see e.g., [28])
resulted in very little information to be captured at the shortest wavelength channels.
Channels where no significant information was observed were discarded.
3.3.3 Gold standard annotations
Two ophthalmologists were asked to annotate all abnormalities found in the images,
and certain retinal structures such as the optic disk and macula. The ophthalmologists
were asked not to consult others during the annotation work to guarantee independent
set of annotations. The annotators were given predetermined classes for a number of
more common lesion types (e.g., haemorrhage and exudate), and general classes with
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mandatory description fields for other pathological and non-pathological abnormalities.
Each annotation includes a confidence level on the scale uncertain - somewhat certain -
certain.
Depending on the type of the ROI, the ROI was given either as a single point or a closed
region drawn freehand. For the freehand regions, the ophthalmologists were instructed to
draw a boundary enclosing all the ROI of the same type in that area without intersecting
the boundary of the ROI. To provide representative spectra of the ROI, the annotators
were asked to delineate a representative region where all the region pixels are inside the
ROI in question.
The motivation for requesting the annotators to include the representative regions comes
from the requirements of automatic segmentation. Approximate delineation of a lesion
or a group of lesions is usually sufficient for a human observer. For an automatic segmen-
tation or classification method, however, coarse annotations may result in the training
examples of pathologies to contain a significant portion of background pixels. The loss
of representativeness in the pathological training examples can significantly reduce the
performance of the automatic method trained or developed with that data. Pixel-wise
accurate manual annotations are generally not feasible for more than a couple of images
due to the amount of work required.
The coarse manual annotations can be post-processed to produce annotations that follow
the lesion boundaries more accurately. While the resulting post-processed annotations
can no longer be considered as expert annotations or gold standard, there is a significant
potential for the improvement of the quality of training data for automatic segmentation
or classification. The refinement of manual annotations is discussed in Section 3.5.
All annotations by an ophthalmologist for a specific image are stored in a text file in an
XML-style format:
<annotationBegin>
<id>77<id>
<title>New Hard exudate annotation<title>
<visible>true<visible>
<notes><notes>
<certainty>100<certainty>
<color>125,125,0<color>
<isChild>false<isChild>
<children>78,79,80<children>
<type>Hard exudate<type>
<boundaryType>general<boundaryType>
<coordinates>728.3,672.3,...<coordinates>
<annotationEnd>,
where id is a unique identifier, visible determines whether the annotation is visible in the
view of the annotation tool (facilitates the annotation of closely grouped ROI of different
type), certainty marks the confidence level, color determines the boundary color (in
RGB), isChild determines whether the annotation is an enclosing boundary (parent)
or a representative region (child), children contains the identifiers of the representative
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regions associated with the annotation, boundaryType (single point or freehand region)
instructs the annotation tool how the region is to be drawn, and coordinates contain the
xy-coordinate pairs that define the region boundary.
In addition to the spatial annotations, the ophthalmologists were asked to give a general
diagnosis for each image (e.g., healthy, mild non-proliferative diabetic retinopathy, mild
glaucoma, etc.). The diagnostic information is stored in the beginning of each annotation
text file in a similar format:
<diagnosis>
<isHealthy>false<isHealthy>
<certainty>100<certainty>
<diabetesClassification>3<diabetesClassification>
<AMDClassification>0<AMDClassification>
<glaucomaClassification>0<glaucomaClassification>
<maculopathyClassification>1<maculopathyClassification>
<notes><notes>
<diagnosis>,
where certainty is the confidence level of the diagnosis, diabetesClassification, AMDClas-
sification, glaucomaClassification and maculopathyClassification are the diagnosed state
of diabetic retinopathy, AMD, glaucoma and diabetic maculopathy, respectively.
3.3.4 Summary
Publicly available benchmark databases benefit the development of computer vision
methods. Medical image databases typically concentrate on one organ imaged in a spe-
cific modality with the number of images often limited due to the availability of subjects,
the cost of acquisition and the ethical limitations.
The steps in the acquisition of images and gold standards of lesion locations for composing
the spectral fundus image database DiaRetDB2 were presented. The spectral information
coupled with gold standards for multiple lesion types provide a good basis for method
development in automatic detection and classification of retinal lesions.
3.4 Effect of ground truth inaccuracy on lesion classification
A number of different approaches for the automatic and semi-automatic image segmenta-
tion and detection of lesions in the retinal images have been proposed, e.g., [59,177,224].
A large number of the automatic methods are supervised, i.e., detect abnormalities us-
ing a pretrained model to classify regions of interest based on image features such as
colour [195], texture [4], or a combination of several features [74,163].
One of the main problems with supervised methods is the need for representative data of
the regions of interest, preferably spatially accurate ground truth, to train the classifier.
A common solution for composing the spatial ground truth of the abnormalities in reti-
nal images is to ask medical experts to perform manual or semi-automatic segmentation.
However, manual annotation of a set of images is time-consuming and tedious, and the
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time of medical professionals qualified to make the annotations is often limited. Conse-
quently, while some retinal image databases contain approximate manual segmentations
or delineations of the lesions, spatially accurate ground truth is often unavailable.
When producing manual annotations, approximate delineations result in an inaccurate
ground truth. Inaccuracies in the ground truth may have a significant impact on the
performance of a supervised method as the classifier is trained with examples that are
not fully representative of the lesion class. Especially in the case where multiple small
lesions of the same type, such as exudates, are spread over a region, the delineated area
may consist predominantly of the background (an example is shown in Figure 3.1).
Figure 3.1: An example of spatially inaccurate ground truth of exudate loca-
tions. [130]
Different image features are affected differently by the increase of non-representative
points in the training data, a factor that should influence the generation of training
data and the selection of features for a supervised segmentation method. This section
presents a quantitative evaluation of the sensitivity of different image features (including
colour, texture and edge features and higher level features) to inaccuracy in the ground
truth [130]. The feature sensitivity is evaluated as the classification error of pixel-wise
segmentation (i.e., if exudate or background pixels are correctly classified as such) of
exudates in retinal images. Separate instances of a classifier are trained using each
feature individually to assess the sensitivity of the feature to the inaccuracy of training
data.
3.4.1 Related work
Sánchez et al. [196] propose the use of active learning to reduce the workload of the
expert annotating medical images. Starting from a small initial training set, a query
function selects the sample from an unlabelled set for manual labelling so that it most
likely improves the classifier performance.
In [210], Sommer et al. present an interactive toolkit for medical image segmentation.
The toolkit provides semi-automatic segmentation by a Random Forest classifier that is
fine-tuned by interactive refinement of the segmentation results.
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Noronha and Nayak [165] review approaches for automatic detection of diabetic retinopa-
thy. A quantitative evaluation of method performance is presented, with an emphasis on
methods for automatic segmentation of exudates.
To the knowledge of the author, no quantitative evaluation of the effect of ground truth
inaccuracy on classifier performance exists in relation to fundus images. Furthermore, the
literature on supervised classification in the context of retinal images does not, generally,
discuss the quality of the ground truth. However, there is awareness of the difficulty
of obtaining representative ground truth in medical imaging context and its impact on
algorithm validation. The creation of common databases and performance measures for
the purpose of standardised performance evaluation has been proposed [103,224].
3.4.2 Methods
Local statistical features
Statistical measures can be used as simple descriptors of local neighbourhoods. While
simple statistical features are unlikely to provide enough distinction between exudates
and healthy tissue individually, they can be used in conjunction with other features to
improve the overall performance of a classifier. The features selected for the evaluation
are intensity range, entropy and intensity standard deviation (σ). The features are
calculated using the following formulae:
Range = Imax − Imin (3.1)
Entropy = −
L∑
i=1
p(zi) log2 p(zi) (3.2)
Standard deviation =
√√√√ 1
N
N∑
j=1
(xj − µ)2, (3.3)
where Imin and Imax are the maximum and minimum values, L is the number of different
graylevels, p(zi) is the probability of i:th graylevel value, N is the pixel count, xj graylevel
value of the j:th pixel, and µ is the mean of the neighbourhood.
Colour features
In retinal RGB images, colour is a simple feature with good discriminative properties for
a number of retinal structures. The RGB triplets of pixel values can be directly used as
feature vectors for the classifier.
The CIE Lab (Lab) colour space is intended to simulate the colour differentiation of the
human vision system (i.e., points close together in Lab correspond to visually similar
colours). As the transformation between RGB and Lab colour spaces is nonlinear, Lab
features may produce different classification results than RGB features.
The transformation from RGB to Lab using CIE D65 illuminant is defined as [101]: XY
Z
 =
 0.412453 0.357580 0.1804230.212671 0.715160 0.072169
0.019334 0.119193 0.950227
 RG
B
 (3.4)
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Xˆ =
X
0.950456
, Zˆ =
Z
1.088754
(3.5)
L∗ =
{
116(Y/Yn)
1
3 − 16, YYn ≥ 0.008856
903(Y/Yn),
Y
Yn
< 0.008856
a∗ = 500
[
(Xˆ/Xn)
1
3 − (Y/Yn) 13
]
b∗ = 200
[
(Y/Yn)
1
3 − (Zˆ/Zn) 13
]
,
(3.6)
where Xn, Yn and Zn are the tristimulus values of the reference illuminant.
Due to the colour variation of the retina between individuals, the colour features have to
be normalised before using them as training data. The approach to colour normalisation
was to calculate a colour histogram Hi for each image in the training set and perform
histogram equalisation for the set with the mean histogram H¯ as the target distribution.
Texture features
Graylevel co-occurrence matrix (GLCM) describes local texture by calculating the fre-
quency of the pixel intensity value in a specific spatial relationship (e.g., horizontal neigh-
bour) with a pixel of a specific intensity value. GLCM can be seen as a histogram of
intensities occurring in that relationship [86]. A number of features can be calculated
from the GLCM, e.g., contrast, correlation, energy and homogeneity. As the contrast
measure produced the best results for GLCM in the initial evaluation, it was selected as
the GLCM feature. The feature is defined as
Contrast =
∑
i,j
(i− j)2p(i, j) (3.7)
where i and j are vertical and horizontal coordinates of the GLCM and p(i, j) is the
(i, j):th entry of the normalised GLCM. Another approach to local texture representation
are local binary patterns (LBPs) where the neighbourhood of each pixel is thresholded by
the pixel intensity value, and the thresholded neighbourhood is summed after weighting
the binary values in order with increasing powers of two. The original framework has been
extended by, e.g., Ahonen et al. [5], who propose a rotation invariant feature calculated
from Fourier transform of LBP histograms, local binary pattern histogram Fourier feature
(LBPHF).
Higher-level features
The SURF [16] features are constructed by computing Haar wavelet responses from
square-shape sub-regions around the keypoint. Rotation invariance is achieved by rotat-
ing the sampling region by the dominant orientation of the region gained from Gaussian
weighted Haar wavelet responses within a sliding window inside a circular region around
the keypoint.
Leutenegger et al. [137] present BRISK, a keypoint descriptor based on brightness com-
parisons from locations uniformly spaced on concentric circles around the keypoint. Prior
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to sampling, the descriptor orientation is normalised by rotating the sampling pattern
by the characteristic direction of the neighbourhood, to achieve rotation invariance.
The FREAK [8] describes keypoints by calculating a cascade of binary strings from
comparisons of image intensities over a sampling pattern imitating the distribution of
retinal ganglion cells. An orientation normalisation similar to BRISK is applied. In
addition, a keypoint matching approach inspired by human vision system is presented.
Classifiers
In random forest (RF), a number of tree classifiers are generated from independent
random samples from the training data. The class of input data is determined by the
most popular class assigned by the independent tree classifiers [32].
RF classifiers have been used in segmentation and classification of retinal images (e.g., [3,
114,190]). Due to its successful application in [210] and good performance in initial exper-
iments, RF was selected for the formal experimental evaluation of the feature sensitivity.
3.4.3 Experiments and results
Due to the amount of work involved in the manual annotation of retinal images, the anno-
tations of lesion locations available for DiaRetDB2 are not pixel-wise accurate. However,
pixel-wise annotations are required for reasonable evaluation of the effect of the inaccu-
racy of ground truth on the feature performance.
Instead of using DiaRetDB2, the feature sensitivity was evaluated on a non-public eye
fundus image database, Bristol retinal image data set (BristolDB), collected by the Bris-
tol Eye Hospital, for which pixel-wise accurate ground truth of exudate locations is
available. 147 images, of which 107 were used in the evaluation in this study (17 healthy
patients and 90 with exudates), were captured using a 45 degree field-of-view Canon
CR6-45 Non-Mydriatic fundus camera with a modified digital back-unit (Sony Power-
HAD 3CCD colour video camera and Canon CR-TA). Pixel-wise accurate ground truth
of exudate locations was manually annotated in the images by a consultant ophthalmol-
ogist. [173]
To evaluate the feature performance at different levels of ground truth inaccuracy, an-
other set of manual annotations was gathered. Using the pixel accurate ground truth
as a reference for exudate locations, approximate delineations enclosing the accurate
ground truth were manually drawn to simulate expert annotations that are not spatially
accurate. Synthetic ground truth with intermediate accuracy was generated by itera-
tively thresholding the distance transform image (i.e., image where each pixel value is
the distance of that pixel to the original binary mask) of the accurate ground truth with
increasing thresholds until expanded to the coarse annotations (pixels outside the coarse
annotations were discarded at every iteration). An example is shown in Figure 3.2.
For each level of the “ground truth”, each feature was extracted from the pixels designated
by the simulated ground truth mask, with the same number of features extracted from
randomly selected background pixels within the usable image area.
Initial experiments were run on support vector machine (SVM), Gaussian mixture model
(GMM) and random forest (RF) classifiers. However, of the studied classifiers only RF
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(a) Coarse. (b) Intermediate. (c) Accurate.
Figure 3.2: Example manual (a, c) and synthetic (b) annotations. [130]
produced reasonable results (as opposed to all pixels being classified in the same or
seemingly random class) for all of the features.
A separate RF classifier was trained for each feature and for each level of simulated
ground truth accuracy. The classifier performance was cross-validated by using randomly
selected two thirds of the images in the database, with the remaining third reserved for
testing the classifier performance. Ten cross-validation steps were performed for each
classifier.
The classifiers were used to classify each pixel of each image in the remaining one third of
the image set into exudate or background class. The classification results were evaluated
against the (simulated) ground truth of the same level as used in training the classifier
(the goal of a classifier can be seen to be the reproduction of classification defined by the
training data on new input, even though more accurate ground truth was available).
To determine the classifier parameters (number of trees and number of samples for train-
ing), classifiers with different parameters were trained using each of the features under
evaluation. The classifiers were run on the same data sets used for training to determine
the learning rate with different parameters. The values selected were 3000 samples (for
foreground and background, 6000 samples in total), approx. 5% of the training set, and
100 trees. As increasing the number of samples beyond 3000, ∼ 5% of the training set,
and the number of trees beyond 100 (see Figure 3.3) does not significantly improve the
learning rate while notably increasing the time required for training, these values were
selected for the experiments.
The two commonly utilised metrics that were used to quantify the classification perfor-
mance, sensitivity (SN), specificity (SP), are defined as
SN =
TP
TP + FN
, SP =
TN
TN + FP
(3.8)
where TP is the number of true positives (exudate classified as exudate), TN true nega-
tives (background as background), FP is false positives (background as exudate) and FN
is false negatives (exudate as background).
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(a) 1000 samples. (b) 3000 samples.
(c) 5000 samples. (d) 7000 samples.
Figure 3.3: Classifier learning on coarse ground truth with different number of
samples; binary Robust Invariant Scalable Keypoints (BRISK), fast retina key-
point (FREAK), speeded-up robust feature (SURF), RGB colour (RGB), Lab
colour (Lab), intensity range, entropy, standard deviation (STD), local binary
pattern histogram Fourier feature (LBPHF) and graylevel co-occurrence ma-
trix (GLCM). [130]
The training data inaccuracy had a significant effect on the classification performance,
resulting in a mean decrease of sensitivity and specificity by approx. 20% and 13%,
respectively, between the coarsest and the accurate training data. SURF outperformed
the other features both in classification performance and in robustness to ground truth
inaccuracy by a clear margin.
On the accurate ground truth, RGB colour performed similar to FREAK and BRISK,
but its performance degraded faster as the ground truth was expanded. Local statistic
features (excluding entropy) showed similar performance to RGB colour, although less
robust to higher levels of ground truth inaccuracy. Texture features showed high sensi-
tivity to the ground truth inaccuracy, along with poor general performance. The results
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are summarised in Figure 3.4.
(a) Sensitivity. (b) Specificity.
Figure 3.4: Feature sensitivity to ground truth inaccuracy evaluated against the
simulated ground truth of the same level. The levels range from the highest (1)
to the lowest (8) spatial accuracy. [130]
3.4.4 Discussion
In part, the result can be explained by the longer feature vector of SURF compared to the
other features. However, the one-dimensional local entropy feature showed classification
performance close to FREAK and BRISK while being less affected by the decreasing
ground truth accuracy.
Only SURF achieved sufficient classification performance to be considered as the sole
feature of a detector. While most of the features managed to detect most of the exudates,
a large number of false positives resulted in worse SP. According to the results, in addition
to the higher-level features, colour and local entropy are good candidate features for a
supervised exudate detector.
3.4.5 Summary
Supervised methods require representative data of the regions of interest, preferably
spatially accurate ground truth, to train the classifier. Manual annotation of a set of
images is time-consuming and tedious, and the time of medical professionals qualified
to make the annotations is often limited, making spatially accurate ground truth often
unavailable.
The sensitivity of features to ground truth inaccuracy was evaluated on a set of 107
images with pixel-wise accurate ground truth of exudate locations manually annotated
by a consultant ophthalmologist. Another set of manual annotations was gathered using
the pixel accurate ground truth as a reference. Synthetic ground truth with intermediate
accuracy was generated by iteratively thresholding the distance transform image of the
accurate ground truth with increasing thresholds.
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A separate RF classifier was trained for a set of features on each level of simulated ground
truth accuracy. The training data inaccuracy had a significant effect on the classification
performance, resulting in a mean decrease of sensitivity and specificity by approx. 20%
and 13%, respectively, between the coarsest and the accurate training data. SURF
outperformed the other features both in classification performance and in robustness to
ground truth inaccuracy by a clear margin.
3.5 Annotation refinement
As discussed in Section 3.4, non-representative ground truth of lesion locations can have a
significant effect on the performance of automatic segmentation methods. This motivates
automatic spatial refinement of manual segmentations to improve the representativeness
of the coarse manual segmentation data either at the collection stage (semi-automatic
segmentation), or as a post-processing step.
The automatic refinement of manual annotations can be considered as a restricted seg-
mentation problem. The purpose of an automatic refinement method is to provide pixel-
wise segmentation while requiring only coarse initial segmentation or delineation of the
ROIs. In the case of medical image processing, the regions are typically anatomical
structures or lesions related to a medical condition.
In this Section, a method utilising the colour feature and maximally stable extremal re-
gions of lesion likelihoods is presented for the spatial refinement of manual segmentations
by experts [130]. The proposed method is compared to a set of methods by using the
non-public BristolDB (described in Section 3.4.3) containing spatially accurate segmen-
tations of exudates. Exudates being yellowish lesions typically with a low contrast to the
background and without clear borders make the segmentation task a challenging one.
3.5.1 Related work
Various approaches have been proposed for segmenting regions indicative of pathologies
and other ROIs in retinal images (e.g., [64,224]). A short review of different approaches
for automatic and semi-automatic segmentation, with the emphasis on retinal image
segmentation is presented.
Sinthanayothin et al. [206] use a recursive region-growing segmentation (RRGS) and a
neural network (NN) to separate blood vessels from red lesions. RRGS is used jointly
with the moat operator increasing the contrast of the edges of the lesions, followed by
thresholding.
Hipwel et al. [94] use top-hat transformation on a shade corrected image to remove
blood vessels. A Gaussian matched filter is applied to obtain candidate haemorrhage
and microaneurysm (HMA) areas used in subsequent classification.
Niemeijer et al. [160] suggest a hybrid method for the detection of red lesions. Candidate
regions were obtained by application of a top-hat based method and a pixel-based clas-
sification. The true lesion regions were detected with k-nearest neighbour classification.
Ravishankar et al. [185] suppressed blood vessels using morphological operations. The
detection of exudate boundaries was obtained from the difference between images di-
lated at two separate scales. Dynamic thresholding and application of smoothing splines
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produced closed contours which, after morphological filling, represent the candidate ex-
udates. Finally, the true exudates were determined using a linear classifier based on the
brightness and edge properties of the exudates.
Jafaar et al. [102] segment images with logical intersection of coarse segmentation based
on local variation, and the results of adaptive thresholding based on a combination of
pure splitting and histogram-based thresholding. The coarse segmentation assumes that
hard exudates have clear boundaries, and is based on the automatic thresholding of a
standard deviation image using Otsu’s method, followed by a classification of features
such as major axis length, minor axis length, area and solidity.
Walter et al. [237] proposed a segmentation technique based on morphological operations.
During the first step, blood vessels were eliminated by closing. The regions with big local
variation were considered as candidate regions after the hole filling from their borders.
Afterwards, dilation and optic disc removal were performed. To obtain the final result,
the candidate regions were set to zero and reconstructed by successive geodesic dilation.
The true exudate areas were produced by thresholding the difference between the original
image and the reconstructed one.
Many authors have utilised fuzzy c-means clustering (FCM) and its modifications for
coarse and final image segmentation. FCM [24] minimises the distances between the
samples and iteratively updated cluster centres, with each sample belonging to each
cluster with degree of membership w. At each iteration the cluster centres are updated
based on sample values weighted by their degree of membership for the given cluster.
Kande et al. [112] apply spatially weighted fuzzy c-means clustering (SWFCM) to the
graylevel histogram of the image after removing the optic disc. Maximum membership
procedure produces the mask corresponding to the true HE regions. Chutatape [252]
obtained candidate lesion regions using Improved FCM in Luv colour space after local
contrast enhancement. Classification is performed by SVM utilising region edge strength,
colour difference between region and its surrounding area, and region size.
Another popular approach of image segmentation is based on the features extracted
using different filters. For instance, Osareh et al. [174] utilised a bank of Gabor filters to
segment candidate regions obtained by FCM clustering. To identify the best subset of
features, a genetic optimisation algorithm was employed. Multilayer perceptron neural
network with three layers was used to classify the extracted regions.
Region growing is another clustering technique applied in the detection of hard and soft
exudates. Sinthanayothin et al. [206] used a Recursive Region Growing Segmentation in
order to find similar pixels in detection of bright lesions. Thresholding was utilised to
produce an exudate mask after all pixels have merged into regions.
Reza et al. [188] applied watershed transform for bright lesion detection. They used
average filtering that blends the small objects with low intensity variations into the
background, and contrast stretching transformation as preprocessing procedures. After-
wards, bright parts of the image were isolated by thresholding. Morphological opening of
resulting binary image and the result of extended maxima operator applied to the initial
image gave regions with high intensity values, that were used for obtaining markers in
subsequent watershed transform.
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A significant body of work exists in automatic detection of regions of interest in retinal
images based on classifying pixels. In [173], Osareh et al. perform histogram specification
and local contrast enhancement followed by evaluation of Gaussian smoothed histograms
of each colour band of the image in order to produce initial classification of retinal
exudates. FCM clustering is used to assign remaining pixels to the previously determined
clusters followed by neural network object classification.
Similar segmentation scheme was realised in [172]. The major difference is observed
in the preprocessing step where colour normalisation instead of histogram specification
was implemented. Osareh et al. [174] segment candidate regions from FCM using a
bank of Gabor filters and identify the best feature subset with genetic optimisation. The
extracted regions are classified by a multilayer perceptron NN. Xu and Luo [248] propose
a combination of stationary wavelet transform and graylevel co-occurrence matrix as a
feature for pixel-level classification by SVM. However, classifiers, such as NN and SVM,
cannot be utilised in refinement of manual segmentations as no training data is available
as such.
In addition to medical image processing, various segmentation approaches have been
applied in numerous other fields. The following short review of segmentation approaches
outside the medical field is limited to publications that are relevant to the methods
evaluated in Section 3.5.3.
Kakumanu et al. [110] present a review of methods for modelling and detection of skin-
colour. The review includes the use of different colour spaces, modelling with Gaussians
and Gaussian mixtures, and classification with naïve Bayes classifier.
Donoser and Bischof [223] use colour likelihood maps with modified maximally stable
extremal regions (MSER) tracking for robustly tracking a hand through a sequence of
images. The likelihood map is based on Kullback-Leibler distance between Gaussian
distributions fit to the neighbourhood of a pixel and the background distribution.
Guo et al. [80] propose pixel-based hierarchical features for weak classifiers for hand
detection. Adaboost is used to form a strong classifier of the combination of the proposed
weak classifiers for skin-colour segmentation.
Wang et al. [240] use graph cuts to segment foreground objects in video frames to obtain
more precise colour histogram of the object for mean shift tracking. Graph-cuts (Graph)
based segmentation methods [31] view labelled image areas as nodes of a connected graph,
and rearrange the labels corresponding to a minimum cut on the graph.
Ning et al. [164] present an interactive image segmentation method. Unlabelled regions
are merged with initial regions from mean shift segmentation based on similarity (colour
histogram distance) until all regions have been labelled.
GrowCut algorithm (GrowCut) by Vezhnevets and Konouchine [235] is a cellular automa-
ton based semi-automatic segmentation method. The image is labelled by interaction of
cellular automata containing different labels, mimicking the growth and competition of
bacteria.
Many of the proposed semi-automatic segmentation methods can be considered as suit-
able for the refinement of manual segmentations. A selection of approaches are evaluated
in Section 3.5.3.
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3.5.2 Region refinement through stable probability regions
The DiaRetDB1 [116, 117] used as the case study (an example is shown in Figure 3.5)
includes manual segmentations for the retinopathy lesions together with representative
points inside each segment. To estimate the parameters of statistical models representing
sets of pixels or image features, the values of a single pixel closest to that point (repre-
sentative pixel) are not sufficient, however. Thus, small (area ∼ 5− 10 pixels) manually
drawn representative regions were used.
Figure 3.5: An example image from DiaRetDB1 [117].
The proposed method for the refinement of manual segmentations is based on stable
regions of a naïve Bayesian posterior probability map of lesion presence following the ap-
proach in [223]. Empirical probability density functions (PDFs) are fit to the colour values
of the background and lesions by kernel smoothing density estimate using a Gaussian ker-
nel. The data samples representing the lesions arise from manually made representative
regions.
A probability map of each pixel belonging to the lesion is calculated as plesion(1 − pbg)
where p is the Bayesian posterior probability of the pixel colour value in the lesion and the
background model, respectively. The lesion mask is produced based on the MSER [147]
of the resulting probability map.
MSER, can be seen as a systematic search for regions where local binarisation stays stable
over a wide range of thresholds. Thus, the selection of an explicit probability threshold
can be avoided and small spurious high-probability regions inconsistent with the pixel
neighbourhood removed. Algorithm 3.1 presents the details of the proposed method.
3.5.3 Experiments and results
As explained in Section 3.4.3, as only coarse annotations of lesion locations are available
for DiaRetDB1, another data set is used for quantitative evaluation of the segmenta-
tion performance. The performance of the segmentation methods was evaluated on the
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Algorithm 3.1 Stable probability regions based region refinement: kernel density esti-
mate (KDE), maximally stable extremal regions (MSER).
Input: RGB image I, coarse segment set s, representative region set R
Output: Refined segmentation binary mask Mref
Mref ← 0
for all segment si do
Fit KDE Gbg to boundary colour values of si
Fit KDE Glesion to colour values of region Ri
for all pixel colour value vj of si do
pmapj ← p(vj |Glesion)(1− p(vj |Gbg))
end for
Mref(MSER(pmap))← 1
end for
BristolDB, a non-public data set collected by Bristol Eye Hospital, consisting of 107 RGB-
images of subjects with diabetic retinopathy and healthy control subjects. Exudates,
when present, were marked with pixel-level accuracy by a consultant ophthalmologist.
The test set with coarse segmentations was produced by collecting coarse manual segmen-
tations of exudate regions and representative regions (foreground for the segmentation
methods) for each segment. Possible representative region pixels outside the spatially
accurate ground truth were removed.
To implement the method comparison, the following methods were used: binary de-
cision tree (BDT) based classification (with Gini’s diversity index optimisation crite-
rion) [52], FCM clustering [24, 40], segmentation based on Graph-cuts [31], maximal
similarity region merging (MSRM) [164], GrowCut [235], and the automatic threshold-
ing by Otsu [175]. Publicly available third party implementations were used for methods
for which the original implementation by the author was not available.
The performance of the methods was evaluated by using the Dice similarity criterion
between the ground truth and the exudate mask refined by a given method, together
with the standard detection performance metrics. Dice coefficient is defined as [14]
DSC =
2|A ∩B|
|A|+ |B| , (3.9)
where A and B are region masks, and |·| is the number of pixels in the region.
In addition, the experiments on the effect of annotation inaccuracy on classifier perfor-
mance were performed using the refined exudate masks as training data. The experiments
related to the classifier performance follow the framework described in Section 3.4.3, and
the performance is measured in sensitivity (SN) and positive predictive value (PPV),
defined as
SN =
TP
TP + FN
(3.10)
and
PPV =
TP
TP + FP
, (3.11)
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where TP is the number of true positives (exudate classified as exudate), TN true nega-
tives (background as background), FP is false positives (background as exudate) and FN
is false negatives (exudate as background). The method evaluation results are shown in
Table 3.1.
Otsu thresholding performed well when there was a clear and uniform intensity differ-
ence between the lesion and the background. However, its very large variation over the
whole image set made the method unreliable for segmentation refinement. While Otsu
achieved the highest SN, it produced a very high number of false positive detections.
Poor performance of MSRM was mostly due to the inability of mean shift segmentation
to provide reasonable regions in the initial segmentation. BDT segmentation, GrowCut
and the proposed method outperformed the other evaluated methods by a large margin.
Table 3.1: Performance metrics of the methods binary decision tree (BDT), fuzzy
c-means clustering (FCM), GrowCut algorithm (GrowCut), maximal similarity
region merging (MSRM), Bayesian probability regions (NB) and Otsu threshold-
ing (TH5). The metrics are as follows: Dice similarity coefficient, sensitivity (SN),
positive predictive value (PPV). [130]
Dice SN PPV
Median Std Median STD Median Std
NB 0.6634 0.1753 0.6213 0.2318 0.7821 0.1357
BDT 0.6577 0.1444 0.6617 0.1915 0.7188 0.1738
FCM 0.4975 0.1897 0.6674 0.1582 0.4413 0.2823
GrowCut 0.4622 0.1868 0.6101 0.1961 0.4251 0.2184
OTSU 0.3576 0.2027 0.8610 0.1648 0.2301 0.2090
GraphCut 0.3409 0.2425 0.5957 0.2442 0.2287 0.2782
MSRM 0.1242 0.1411 0.1636 0.2533 0.1030 0.2206
A boxplot of the Dice coefficients achieved by the methods is shown in Fig. 3.6. The
results show that BDT and NB outperform the other methods with a statistically sig-
nificant margin. The proposed method has a slightly larger variation in the results and
some challenging images (i.e., images containing a number of small low-contrast lesions)
cause outliers for both methods. The differences of the best methods are elaborated
more in Fig. 3.7 where the resulting Dice coefficients are sorted in increasing order. The
differences emphasise that BDT produces fewer bad segmentations than NB, but after
the set of weakest segmentations (one third of the image set in size), NB consistently
produces higher Dice coefficient values.
The classifiers trained using the exudate masks refined with BDT and NB showed per-
formance close to the classifiers trained with the spatially accurate ground truth. The
discriminativeness of NB for the BristolDB data set resulted in some decrease in the
sensitivity of the classifier (while still producing results comparable to using the accu-
rate training data), but enabled NB to outperform the other refinement methods when
measured in classifier specificity. The mean (over 10 cross-validation test sets) sensitivity
and specificity are presented in Tables 3.2 and 3.3, respectively.
In preliminary tests on annotations in DiaRetDB1 [116, 117], the performance of the
proposed method was promising (as can be seen in Figure 3.8). The initial results suggest
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Figure 3.6: Similarity of refined regions and ground truth. The methods are
as follows: binary decision tree (BDT), fuzzy c-means clustering (FCM), graph-
cuts (Graph), GrowCut algorithm (GrowCut), maximal similarity region merg-
ing (MSRM), Bayesian probability regions (NB), Otsu thresholding (TH5). The
red lines mark the medians, the boxes represent the 25th and 75th percentiles,
the whiskers extend to inlier extrema, and the individual markers represent the
outliers. [130]
Figure 3.7: Dice coefficients of the best performing methods, binary decision
tree (BDT), fuzzy c-means clustering (FCM), GrowCut algorithm (GrowCut)
and Bayesian probability regions (NB), sorted in ascending order. [130]
that, for lesions for which colour is a good discriminating feature such as haemorrhages
and exudates, the proposed method is able to considerably improve the coarse manual
data.
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Table 3.2: Classification result sensitivity using refined annotations as train-
ing data. binary decision tree (BDT), fuzzy c-means clustering (FCM), graph-
cuts (Graph), GrowCut algorithm (GrowCut), maximal similarity region merg-
ing (MSRM), Bayesian probability regions (NB), Otsu thresholding (TH5).
BRISK FREAK SURF RGB LAB Range Entropy STD LBPHF GLCM
BDT 0.8626 0.8294 0.9034 0.8003 0.8097 0.7875 0.7586 0.7883 0.6504 0.4991
FCM 0.8757 0.8469 0.9325 0.7873 0.771 0.7392 0.7203 0.7395 0.7705 0.4988
GraphCut 0.822 0.79 0.9098 0.7448 0.7246 0.7348 0.7293 0.7345 0.6804 0.4991
GrowCut 0.786 0.7359 0.8742 0.8019 0.7858 0.7628 0.7554 0.7715 0.684 0.4991
MSRM 0.7885 0.6897 0.9046 0.7261 0.6881 0.7225 0.7253 0.7287 0.7023 0.4991
NB 0.8098 0.7876 0.87 0.7694 0.7778 0.7768 0.7416 0.7757 0.6605 0.4991
TH5 0.8816 0.8443 0.9319 0.7866 0.764 0.7145 0.7048 0.7293 0.6612 0.4967
Table 3.3: Classification result specificity using refined annotations as train-
ing data. binary decision tree (BDT), fuzzy c-means clustering (FCM), graph-
cuts (Graph), GrowCut algorithm (GrowCut), maximal similarity region merg-
ing (MSRM), Bayesian probability regions (NB), Otsu thresholding (TH5).
BRISK FREAK SURF RGB LAB Range Entropy STD LBPHF GLCM
BDT 0.7428 0.7587 0.9202 0.815 0.8211 0.7298 0.7202 0.685 0.6629 0.7639
FCM 0.6866 0.6837 0.8395 0.6979 0.6991 0.5894 0.5657 0.5517 0.528 0.7639
GraphCut 0.6007 0.6215 0.8236 0.6375 0.6328 0.5742 0.5671 0.5407 0.6342 0.7639
GrowCut 0.6442 0.6857 0.8815 0.6857 0.6817 0.6084 0.6121 0.5672 0.6272 0.7639
MSRM 0.5797 0.6156 0.8269 0.6062 0.6293 0.5633 0.5892 0.5492 0.5987 0.7639
NB 0.8091 0.7941 0.9496 0.8575 0.8526 0.7946 0.7863 0.7727 0.6463 0.7639
TH5 0.6049 0.6284 0.8228 0.6206 0.6323 0.5643 0.5525 0.5324 0.6413 0.7641
3.5.4 Discussion
The proposed method performed well with most images of the set. The majority of the
differences between the ground truth and refined mask were false negatives. Therefore,
the refined segments can be considered to provide more robust training data also on
images with low contrast between the lesions and the background.
While the median results of BDT and the proposed method were very close, NB re-
peatedly provided higher Dice coefficients. However, the larger variation in the results
decreased the median Dice value for the method. A plausible reason for larger Dice
variation with NB arises from the fact that for some larger segments, the data contains
representative regions of only a few of many small lesions, resulting in Gaussian mixtures
too limited to represent all the exudates within the segment. Nevertheless, the results
show that the proposed method has good overall performance in refining the synthetic
inaccurate annotations for the BristolDB retinal image database.
3.5.5 Summary
Supervised methods require representative data of the regions of interest to train the
classifier. A common solution to composing the spatial ground truth of the abnormal-
ities in retinal images is to ask medical experts to perform manual or semi-automatic
segmentation. When producing manual annotations, approximate delineations result in
inaccurate ground truth. The training data inaccuracy was found to have a significant
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Figure 3.8: Examples of retinal images, manual segmentations and the refine-
ment task. Top row from left to right: RGB image, coarse segmentation of exu-
dates (white pixels mark the representative regions) and spatially accurate ground
truth. Bottom row (refinement example by using DiaRetDB1 [117]): RGB image,
coarse segmentation of exudates and the refined segmentation result. [130]
effect on the classification performance, resulting in a mean decrease of sensitivity and
specificity by approx. 20% and 13%, respectively, between the coarsest and the accurate
training data.
A method for refining coarse manual annotations based on stable Gaussian probability
regions, NB, was presented. The performance of several segmentation methods in refining
coarse annotation was evaluated by applying the methods on a data set where both coarse
and accurate ground truth is available. Measured in Dice coefficient, BDT segmentation,
GrowCut and the proposed method outperformed the other evaluated methods by a
large margin. Classifiers trained using the annotations refined with BDT and NB showed
performance close to the classifiers trained with the spatially accurate annotations.
Chapter IV
Medical applications of spectral fundus data
4.1 Introduction
Automatic diagnosis of diabetic retinopathy (DR) is typically based on the detection
of lesions in the eye fundus caused by the prolonged high blood glucose levels. The
earliest signs of DR visible in traditional retinal images are microaneurysms. They are
caused by ballooning of capillaries, and appear as small red dots in the retinal images.
Larger red lesions with irregular outlines are caused by ruptured small blood vessels
in the deeper retinal layers, called blot haemorrhages. The weakening of the capillary
walls can result in excess leakage of plasma, manifesting in yellowish-white lesions with
well defined borders, called exudates. Furthermore, the increased vascular permeability
causes swelling and disruption of the macular structures, which is known as diabetic
macular edema. As the delivery of oxygen and nutrients is disrupted due to the failure of
and damage to capillaries, the resulting swelling of the retinal nerve fibres causes cotton
wool spots, pale areas with poorly defined edges, to appear in the retinal images. [219]
The lack of oxygen and nutrients will stimulate the growth of new blood vessels in an
attempt to circumvent the disrupted circulation. The increased growth rate of ves-
sels can cause the dilation of small blood vessels (intra-retinal microvascular abnormali-
ties (IRMA)), and the formation of new vessels. The newly formed vessels are generally
very fragile and have a high risk of haemorrhaging, possibly causing a sudden and dras-
tic deterioration of vision. [219] The neovascularisation process is known as proliferative
diabetic retinopathy, that is in most cases a result of type 1 diabetes, causing increased
health care costs due to the necessity of increased follow-ups, laser treatments and vit-
reoretinal surgeries, and visual impairment. As IRMA and neovascularisation appear
as irregularities of the retinal vasculature, their automatic detection is generally more
difficult than that of some of the other retinal lesions. Consequently, they are not as well
represented in the (computerised) medical image analysis literature.
Another pathology causing visible changes to the retina is age-related macular degenera-
tion (AMD). As the retina ages, extracellular material may start to accumulate, forming
local deposits of the material. The deposits, called drusen, appear as yellowish or grey
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spots of various sizes and shapes, and are the earliest signs of AMD. In about 10-
15% of eyes suffering from AMD the so called dry AMD progresses to development of
neovascularisation and, thus, to an exudative form of AMD commonly causing visual
impairment.
As the lesions can be identified from retinal images and are strong evidence of a pathology,
the automatic diagnosis of these diseases by the segmentation or classification of retinal
images has been studied. When a sufficient number of images with lesions manually
annotated by an ophthalmologist is available as training data, supervised classification
can be used to classify image pixels to representations of healthy or pathological tissue.
Supervised classification relies on training examples of healthy and pathological data to
determine rules for good separation of the training examples. The rules are then used to
determine classes for new input data.
Pixel-wise supervised classification of retinal images has been used for the segmentation
of lesions related to DR (e.g., [161, 162, 211, 238]). Supervised classification has been
applied to the detection of drusen [148] but, due to the variability in the appearance of
drusen, has been less popular.
Although the reflectance spectra of a fundus image are results of a complicated set of
photon interactions with layered tissue, traditional fundus images represent a single spec-
trum using only up to three values (red, green and blue). As spectral images capture the
colour information of an image considerably more accurately than grayscale or RGB im-
ages, there is significant potential for the improvement of lesion segmentation. However,
as the spectral dimensionality increases, preprocessing and the extraction of meaningful
features becomes less obvious.
One great benefit of supervised classification is that the often complicated relationship
(especially in the case of spectral data) need not be known. The classifiers simply finds
an optimal (for the given classifier) separation of the training examples, and uses those
parameters to classify new data. Potentially, a good segmentation performance can
be achieved without completely understanding the characteristics of the spectra from
healthy and pathological tissue. However, all pathological changes in the retina do not
show as salient lesions in the fundus images. It may not be possible for even a trained
ophthalmologist to diagnose states such as changes in blood circulation or loss of macular
pigment from typical fundus images. Still, the information of the pathological change is
retained in the reflectance spectrum, and can be extracted if the spectral resolution of
the measurement device is sufficient.
Prior knowledge of the formation of the reflectance spectra in spectral fundus images
can be applied to the extraction of diagnostically interesting regions from the image
spectra. With sufficient understanding of the image formation process and the properties
of tissues and histological parameters affecting the reflected spectrum, an estimation of
the concentrations of the diagnostically interesting parameters can be derived from the
reflectance spectra.
The distributions of certain histological parameters are of diagnostic interest and can
indicate a forming pathology. The decrease in retinal circulation has been linked to
diabetic retinopathy [125, 241] and glaucoma [183], and the loss of macular pigment
has been (indirectly) linked with AMD [20]. Fundus spectra have been used for the
measurement of the histological parameters. This includes the estimation of melanin
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concentrations [100], the quantitative analysis of retinal blood flow [48], and the detection
of changes indicative of retinal pathologies [121,123,201]. Methods for spectral reflectance
measurements, especially spectral imaging of the retina, have been developed [22,55,69,
107,120,216].
4.2 Lesion detection by supervised classification
The spectral fundus image data presented in Chapter 3 can be directly used for both
training and testing of supervised classifiers for the detection of lesions related to retinal
pathologies. The ophthalmologists annotating the images were asked to mark a repre-
sentative region of each annotated lesion (or group of lesions), which contains only pixels
that represent the lesion (the gold standard annotations are discussed in detail in Sec-
tion 3.3.3). The representative regions can be used as positive examples of lesion spectra,
while negative examples can be extracted from random regions from the spectral image
background (with no lesion annotations).
Several well-known supervised classification schemes, with applications in the segmenta-
tion or classification of retinal lesions, do not have restrictions on the dimensionality of
the data and are, thus, directly applicable to spectral images. SVM has been used for
the classification of retinal lesion (e.g., [2, 27, 246]). Support vector machine (SVM) is
generally used to classify candidate lesion regions (healthy vs. unhealthy or to a spe-
cific lesion type) after a segmentation step. Neural networks (NNs) have been used to
classify retinal lesions in, e.g., [70, 71, 155]. Similar to SVM, NNs are usually applied
after a separate segmentation step. Random forests (RFs) have been popular especially
in the field of medical image analysis. RF classifiers have been used in segmentation and
classification of retinal images (e.g., [3, 114, 190, 210]). Kauppi [115] used GMMs as the
baseline retinal lesion detection method for the DiaRetDB1.
4.2.1 SVM
SVM is a linear machine classifier with the data preprocessed by mapping them into a
higher dimension where the existence of a hyperplane separating the two classes of data
can be ensured. Support vectors are the transformed training samples with distance
equally close to the separating hyperplane. The optimal separating hyperplane is one
that maximises the margin between the support vectors of the different classes. The
class of new data is determined by which side of the hyperplane the transformed data
resides. [52]
4.2.2 Gaussian Mixture Models
A Gaussian mixture model (GMM) models data by a set of weighted Gaussian distribu-
tions parametrised by corresponding mean µi and covariance matrix Σi. The GMM for
multivariate data is defined
p(θ) =
n∑
i=1
ωiN (µi,Σi), (4.1)
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where p(θ) is the likelihood of a sample with values θ, n is the number of components,
and ωi, µi and Σi are the weight, mean and covariance matrix of the i:th component,
respectively.
4.2.3 Neural Networks
A (feed-forward) NN consists of a set of computing nodes arranged in layers such that the
output of each node in a layer is connected to the input of all nodes of the next layer. The
input to a node is the weighted sum of the outputs from the previous layer adjusted by an
activation function. The architecture of individual interconnected nodes is reminiscent
of the human brain, where a large number of interconnected simple neurons are capable
of solving complicated tasks. [75].
4.2.4 Random Forests
In RF, a number of decision tree classifiers are generated from independent random sam-
ples from the training data. The tree classifier Oi is trained using a vector Vi generated
by randomly sampling the training data. The vectors V1...n are independent but follow
the same distribution. After the RF model is trained, new (input) samples are classified
by the most popular class assigned by the independent tree classifiers [32].
4.2.5 Evaluation
To quantify the performance of each classifier, the receiver operating characteristic (ROC)
curves were computed for the pixel-wise classification results for each method. ROC
curves have found frequent use in medical imaging in evaluating the performance of
computational methods for decision support, diagnosis, and prognosis [135]. The perfor-
mance of a binary classifier can be characterised by sensitivity and specificity, defined
as
SN =
TP
TP + FN
, (4.2)
SP =
TN
TN + FP
, (4.3)
where TP is true positive classification, TN is true negative, FP is false positive and
FN is false negative, respectively. In a medical setting, SN can be seen as a measure
for how well a method is able to classify pathological data as pathological. Similarly, SP
can be seen as a measure of how likely the data contain pathologies when the method
classifies them as such.
For a classifier returning continuous membership values, the calculation of the SN and SP
values requires the selection of a threshold to produce a binary classification for the data.
As a less discriminatory threshold value results in increased detection rate at the cost of
incorrect classifications, and vice versa, the threshold selection becomes a compromise
between SN and SP. The resulting SN and SP values are valid only for that specific
threshold and consequently do not properly characterise the classifier performance as a
whole.
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ROC curve is the relationship of SN and SP estimated over linearly increasing thresh-
olds. The shape of the curve, and area under the curve (AUC), gives a more complete
understanding of the method performance.
4.3 Histological parameter maps from spectral images
Instead of classifying image spectra into representations of pathologies or healthy tissue,
the model of fundus image formation (see Section 2.3.2) can be used, together with the
result spectra, to estimate the histological parameters that contribute to the formation
of the spectra by the absorption and scatter of light.With a one-to-one mapping (or an
approximation of one) between the model and image data, the model of image formation
can be used to estimate what molecular concentrations formed the reflectance spectrum
captured in the image.
4.3.1 Model generation
The model is characterised by the concentrations of retinal haemoglobin, RPE melanin,
choroidal melanin, macular pigment and choroidal haemoglobin. The optical parameters,
such as absorption and scatter, of the retinal tissues and the molecules they contain are
considered constant between individuals. While the optical properties of the retinal
tissues and molecules can be expected to be constant between individuals, the thickness
of the tissue layers can have a larger variance. However, the in vivo measurement of
the layer thicknesses is difficult. The selection for the constant optical parameters of the
model is discussed in Section 2.3.2.
The model spectra were computed for a set of parameters, with 9 unique values for
choroidal haemoglobin, 7 for choroidal melanin, and 10 unique values for RPE melanin,
macular pigment and retinal haemoglobin. As the number of unique parameter values
is constrained by the increasing computational cost, the choice of limiting the number
of simulated choroidal layer values was influenced by the fact that no prior distributions
for the choroidal parameters are known (i.e., the possibility to evaluate the choroidal pa-
rameter maps extracted from the model is very limited). The combination of parameters
resulted in a total of 63000 spectra. The parameters are shown in Table 4.1.
Table 4.1: Parameters for the model generation (arbitrary units).
Choroidal haemoglobin 0.95 1.90 2.85 3.80 4.75 5.70 6.65 7.60 8.55 -
Choroidal melanin 0.0 0.165 0.33 0.495 0.66 0.83 1.0 - - -
RPE melanin 0.80 1.22 1.64 2.375 3.11 3.845 4.58 5.07 5.56 6.05
Macular pigment 0.0 0.025 0.05 0.0713 0.10 0.185 0.30 0.40 0.50 0.60
Retinal haemoglobin 0.0 0.0588 0.12 0.1792 0.25 0.3651 0.50 0.625 0.75 0.875
4.3.2 Alignment of model and image data
Without proper calibration, no mapping between the image spectra and the spectra
generated by the model exists. As the concentrations of the molecules in the retina vary
between subjects, and in vivo measurements are not possible in practice, calibration is
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generally not available. Styles et al. [216] propose the use of image quotients to allow the
mapping to be determined for uncalibrated data. Instead of using the absolute spectral
intensities, the n spectral channels are divided by the longest wavelength channel to
produce an n− 1 channel vector of relative image quotient values.
The longest wavelength channel is used due to the optical properties of the eye towards
the infrared. Haemoglobin, a strong absorber in short and middle wavelengths, is nearly
transparent in the longer wavelengths. With the strong scattering of long wavelengths
by water, the lack of strong absorption results in a near diffuse reflection with limited
information of individual retinal structures.
In addition, as the general reflectance of the eye fundus is highest in longer wave-
lengths [51], the maximal reflectance values can generally be found in the channel with
the longest acquisition wavelength. Using that channel to produce the relative quotients
results in quotient values in the range [0 1]. For spectral imaging systems acquiring
all channels with a single exposure, the largely diffuse and strong reflection of the long
wavelength channel is a relatively close estimate of the illumination field present in all
the channel images. Therefore, computing the quotients will remove much of the effects
of uneven illumination.
However, this approach assumes that all channels are acquired with the same exposure.
In systems where the channels are acquired individually, the variance in exposure times
(resulting in different levels of motion blur on different channels) and illumination fields
can cause significant error in the computation of the quotients.
Prior knowledge of the histology of the retinal structures can be used to find a mapping
between the model and the image data. The values of the foveal region form reasonably
distinct distributions in the histological parameter space. Additionally, the foveal region
is usually distinct in retinal images and can be segmented with reasonable accuracy.
Running the MC simulation with parameters realistic for the foveal region (e.g., high
concentrations of macular pigment and no haemoglobin) provides quotient values that
can be compared with the image quotients to align the model with the image data. As
a number of fovea detection methods have been presented [157, 203, 205], the process of
model alignment can be automated.
The transformation aligning the model values with the image data is estimated by align-
ing the model and the image foveal region data clouds in principal component analy-
sis (PCA) space. A scaling factor s is derived from the ratio of standard deviations of
the image foveal region data PCA scores and the model foveal region values Q projected
into the image data PCA space
s =
Sσ
S˜σ
, (4.4)
where S is a matrix of image foveal region data principal component scores and S˜ is
defined as
S˜ = CQ, (4.5)
where C is a square matrix where each column is a principal component vector of the
image foveal region data.
The translation t is derived from the difference in the means of the foveal region values
after projecting the model data into the image foveal data PCA space. The translation
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is defined
t = Q¯img − s(CQ¯)CT, (4.6)
where Qimg is a matrix of image foveal region values.
The aligning transformation is achieved by projecting the model data into the space de-
fined by the image foveal region data principal components. Multiplying the projected
data by the scaling factor s, projecting back to the original space, and adding the trans-
lation vector t to the projected model data aligns the data clouds. The full alignment is
defined as
M˜ = s(CQ)CT + t. (4.7)
The transformation parameters that align the foveal region data are used to align the
full model with the image data. Examples of the resulting alignments on the full model
and image data are shown in Figure 4.1. Some portion of the image data falls outside
the model. This is in part explained by the illumination field bias in the channel images,
and the spectra of the optic disk, which is not included in the model.
4.4 Experiments and results
4.4.1 Lesion detection by supervised classification
The performance of SVM, GMM, NN and RF in the pixel-wise detection of lesions was
evaluated using the 55 spectral images of diabetics from DiaRetDB2 presented in Chap-
ter 3. The representative regions of exudates and haemorrhages, and random background
regions outside the full annotations where no lesions were present, were used to train the
different classifiers. For a reference to the performance of the spectral data, RGB projec-
tions of the same images were used to train another set of classifiers, with the performance
evaluated using the (RGB projections of the) same test set. Matlab built-in functions
were used for the SVM, NN and RF classifiers, and the MVPRMATLAB-toolbox [111]
implementation for GMM.
Due to the limited number of examples (not all images contained all lesion types and
many images contained only a few lesions), the classifier performance was evaluated by
leave-one-out cross-validation. Each of the 55 images were in turn used as the test image,
with the lesions in the remaining images providing the training examples.
As the representative regions amount to only a part of the complete set of lesion pixels,
testing the classifier output against only the representative regions would cause signifi-
cant bias to the classification result. Similarly, the full annotations contain a significant
number of background pixels, again biasing the classification result as some of the target
classes would be opposite of what the classifier was trained with. While pixel accurate
annotations would be required for a completely unbiased evaluation, the bias can be
reduced by classifying the representative regions as lesions and areas outside the full an-
notations as healthy. As the true class for the regions inside the annotation but outside
the representative region is not know, those areas are not included in the evaluation.
While less biased than the other two approaches, some positive bias will be introduced
to the results.
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Figure 4.1: Model and image data after alignment (image 1). The dimensions
of the five-dimensional data are plotted pairwise. The model values are plotted
in red and the image data in blue.
Trained with the unprocessed image spectra, the SVM, RF and NN classifiers generally
produced high scores for the true lesion locations. However, especially the classifiers
trained with examples of soft exudates give high scores for the background spectra.
Examples of the classifier scores are given in Figures 4.2, 4.3 and 4.3.
The inter-expert variation in the annotations was evaluated by considering, in turn,
one set of annotations as ground truth and evaluating the performance (measured as
sensitivity and specificity) of the remaining set of annotations. The mean results of the
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inter-expert evaluation over all annotations are presented in Table 4.2.
Table 4.2: Mean and standard deviation (in parentheses) inter-expert agreement.
Exudates Soft exudate Hard exudate Haemorrhage
Annotator 1
Sensitivity 0.4038 (0.3688) 0.5653 (0.4778) 0.3121 (0.3672) 0.4220 (0.3714)
Specificity 1.0000 (0.0000) 1.0000 (0.0001) 1.0000 (0.0000) 1.0000 (0.0001)
Annotator 2
Sensitivity 0.8757 (0.3232) 0.5691 (0.5324) 0.9711 (0.0744) 0.8637 (0.3378)
Specificity 0.9997 (0.0017) 0.9998 (0.0010) 0.9999 (0.0004) 0.9997 (0.0009)
The ROC curves and the AUC for the different classifiers summarising the results are
shown in Figure 4.5, Figure 4.7 and Figure 4.6, and Tables 4.3 and 4.4. It should be
noted that due to the spatial coarseness of the ground truth, the pixels inside the lesion
annotation but outside the representative region are not considered in the quantitative
evaluation. This will cause a positive bias to the classification results.
Likely due to the limited amount of training data compared to the dimensionality of
the spectra, the GMM classifiers trained with the raw spectra consistently failed to
produce reasonable results (i.e., the construction of the GMM failed or the resulting
GMM returned uniform class probabilities for the whole image). Therefore, the GMM
results are omitted. The SVM classifier trained with the RGB data exhibited similar
behaviour, explaining the linear shape of the ROC curve.
Table 4.3: Classifier performance with annotations from Annotator 1. Mean area
under the curve (AUC) for support vector machine (SVM), random forest (RF)
and neural network (NN) classifiers.
Exudates Soft exudate Hard exudate Haemorrhage
Spectral data
SVM 0.8219 0.7721 0.8343 0.7924
RF 0.8327 0.7543 0.8372 0.7892
NN 0.8159 0.6396 0.8133 0.8096
RGB data
SVM 0.6286 0.4200 0.7250 0.5272
RF 0.8118 0.7216 0.8263 0.7801
NN 0.7879 0.6832 0.7790 0.7616
The inter-expert agreement between the annotators was relatively low. While the high
specificity of the annotations is explained in part by the ratio of background and fore-
ground (i.e., the ratio of true negative (TN) and false positive (FP)), there was a signifi-
cant difference in the sensitivity between the annotators. Annotator 2 generally marked
more area as containing lesions than Annotator 1. The annotators disagreed especially
on the classification of soft exudates.
The classifiers trained with the spectral data showed similar performance. However,
there was a significant difference between classifiers trained with data extracted from the
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Table 4.4: Classifier performance with annotations from Annotator 2. Mean area
under the curve (AUC) for support vector machine (SVM), random forest (RF)
and neural network (NN) classifiers.
Exudates Soft exudate Hard exudate Haemorrhage
Spectral data
SVM 0.7836 0.5230 0.8178 0.7907
RF 0.8103 0.6125 0.8213 0.7982
NN 0.7965 0.7421 0.8143 0.8099
RGB data
SVM 0.5271 0.4214 0.5794 0.8055
RF 0.8035 0.7167 0.8144 0.7979
NN 0.7936 0.7221 0.8134 0.7996
(a) Soft exudate. (b) Hard exudate. (c) Haemorrhages.
Figure 4.2: Support vector machine (SVM) classifier scores for different lesions
(trained with spectral data). Intensity value depicts the estimated likelihood of
the pixel belonging to the lesion class.
annotations of Annotator 1 and Annotator 2. The classifiers provided best accuracy for
hard exudates, while soft exudates were classified significantly more poorly.
Using the refined annotations did not significantly improve the performance of the NN
and SVM classifiers using spectral data, but the performance of the classifiers trained with
RGB data improved somewhat when using refined annotations (see Tables 4.5 and 4.6).
Contrary to the coarse annotations, the SVM classifiers trained with RGB data using
the refined annotations produced relatively good results. The results are visualised in
Figures 4.8, 4.9 and 4.10 .
4.4.2 Histological parameter maps from spectral images
Quantitative evaluation of the histological parameter maps derived from image spectra
by inverting the model is not possible as neither in vivo or in vitro measurement of
the molecule concentrations in the target eye can be performed. Qualitative assessment
of the resulting parameter maps is also problematic to a degree. There is only some
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Table 4.5: Classifier performance with annotations from Annotator 1. Mean area
under the curve (AUC) for support vector machine (SVM), random forest (RF)
and neural network (NN) classifiers using refined annotations.
Exudates Soft exudate Hard exudate Haemorrhage
Spectral data
SVM 0.8140 0.7390 0.8358 0.8043
RF 0.8279 0.7064 0.8373 0.7918
NN 0.8213 0.7022 0.8266 0.7831
RGB data
SVM 0.7839 0.6774 0.8077 0.8133
RF 0.8039 0.7151 0.7876 0.6877
NN 0.7974 0.7161 0.8328 0.7974
Table 4.6: Classifier performance with annotations from Annotator 2. Mean area
under the curve (AUC) for support vector machine (SVM), random forest (RF)
and neural network (NN) classifiers using refined annotations.
Exudates Soft exudate Hard exudate Haemorrhage
Spectral data
SVM 0.8203 0.5138 0.8165 0.7998
RF 0.8060 0.6168 0.8148 0.8051
NN 0.7966 0.8074 0.8159 0.8006
RGB data
SVM 0.7921 0.7190 0.5792 0.7821
RF 0.8076 0.7207 0.8128 0.7890
NN 0.8073 0.7313 0.8152 0.7795
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(a) Soft exudate. (b) Hard exudate. (c) Haemorrhages.
Figure 4.3: Neural network (NN) classifier scores for different lesions (trained
with spectral data). Intensity value depicts the estimated likelihood of the pixel
belonging to the lesion class.
(a) Soft exudate. (b) Hard exudate. (c) Haemorrhages.
Figure 4.4: Random forest (RF) classifier scores for different lesions (trained
with spectral data). Intensity value depicts the estimated likelihood of the pixel
belonging to the lesion class.
statistical knowledge of the retinal parameters, and for the choroidal parameters no prior
distributions are available.
While the accuracy of the histological parameter maps is difficult to evaluate, some
retinal structure provide reference for the evaluation. The significant majority of the
retinal haemoglobin should be found in the retinal blood vessels. Furthermore, macular
pigment should appear only in the macula, and the macula should show an increase in the
amount of RPE melanin. These factors can be used to guide the qualitative evaluation
of the derived parameter maps.
A set of parameter maps were derived from the image data of 7 spectral images using
k-nearest neighbour (kNN) to select the nearest quotient in the model for each image
quotient. The images were selected from DiaRetDB2 based on perceived health of the
retina of the subject (the model is defined for healthy tissue) and image quality. The
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(a) Haemorrhages. (b) Hard exudates.
(c) Soft exudates. (d) All exudates.
Figure 4.5: Support vector machine (SVM) classifier ROC curves.
number of suitable spectral images was limited by the fact that the majority of the sub-
jects in DiaRetDB2 are diabetics. The maps were derived for the model after performing
the alignment described in Section 4.3.2.
For one of the images, the image foveal region data do not have the expected relationship
with the rest of the image data. Figure 4.11 shows an example of a failed alignment due
to a strong illumination field bias affecting the image foveal region. Examples of the
derived parameter maps are shown in Figures 4.12 and 4.13.
The illumination field bias present in the spectral images is assumed to affect the inversion
result. Straightforward channelwise correction of the illumination field bias drastically
changes the shape of the point cloud of image data (see Figure 4.14), causing the align-
ment approach to fail and the inversion to produce unrealistic parameter maps.
Applying the illumination correction approach proposed in Section 2.7 retains the shape
of the image data point cloud and parameter maps derived from the corrected data show
improved correspondence to the histological prior. The parameter maps derived from
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(a) Haemorrhages. (b) Hard exudates.
(c) Soft exudates. (d) All exudates.
Figure 4.6: Random forest (RF) classifier ROC curves.
the corrected image data are shown in Figures 4.15 and 4.16.
For the most part, the parameter maps follow distributions expected from the reti-
nal structures. Retinal haemoglobin is found mostly in the blood vessels. Increased
haemoglobin is also found at haemorrhages, and reduced haemoglobin is found in the
avascular region at the macula. As expected, macular pigment is concentrated at the
macula. The macula also shows an increased amount of RPE melanin, which is consistent
with the histological prior.
Parameter maps derived from the images where the alignment failed followed the expected
distributions poorly (see Figure 4.13). It is not known whether the poor alignment is
due to errors in the spectra during the acquisition, changes in the retina due to diabetes,
or some other factor not included in the model.
124 4. Medical applications of spectral fundus data
(a) Haemorrhages. (b) Hard exudates.
(c) Soft exudates. (d) All exudates.
Figure 4.7: Neural network (NN) classifier ROC curves.
4.5 Discussion
Even with the direct use of unprocessed image spectra as training data, the performance
of the classifiers in the detection of retinal lesions was promising, especially for hard
exudates. The lesion detection performance could likely be improved significantly by
adding heuristics, optimising the acquisition wavelengths, normalising the inter-person
variance of the spectral data or applying dimensionality reduction.
A major challenge for the lesion detection method development is the lack of accurate
ground truth for the lesion locations. Annotation refinement can be an intermediate so-
lution, but accurate annotations by medical experts would be required for proper method
development and evaluation. A possible approach would be to implement the annotation
refinement as a part of a semi-automatic annotation framework, where a medical expert
would verify and correct the results of the automatic refinement.
Based on the experiments on illumination correction, the uneven illumination fields in the
channel images can have a significant effect on the parameter map estimation. However,
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(a) Haemorrhages. (b) Hard exudates.
(c) Soft exudates. (d) All exudates.
Figure 4.8: Support vector machine (SVM) classifier ROC curves (refined an-
notations).
the loss in the visual quality of an image due to moderate uneven illumination fields
may not be very significant. Especially if the quality of an acquired spectral image is
estimated channel-wise (which is likely to be the case for systems requiring a separate
alignment post-processing step), it can be difficult to avoid the channel-wise illumination
field bias.
Channel-wise illumination correction is not a viable option as it can affect the consistency
of the spectra and consequently cause significant error in the inversion. If the illumination
field cannot be compensated for in the imaging phase, the performance of the illumination
correction method proposed in Section 2.7 suggests that using the retinal structures to
guide the illumination field estimation is a viable approach to spectral retinal image
illumination correction.
The development of the model of light interaction with the retinal tissue and the inversion
method would benefit from a dedicated data set of healthy subjects with emphasis on the
quality and consistency of the image spectra. With fewer sources of error, the evaluation
126 4. Medical applications of spectral fundus data
(a) Haemorrhages. (b) Hard exudates.
(c) Soft exudates. (d) All exudates.
Figure 4.9: Random forest (RF) classifier ROC curves (refined annotations).
of the effects of changes in the model or inversion would be facilitated.
In addition to more suitable data, a more sophisticated inversion method can potentially
provide significant improvement to the parameter map estimation. The kNN algorithm
is simple, relatively fast, and guarantees the inversion result from the set of simulated
model parameters (instead of, e.g., interpolated parameter values). However, kNN has a
number of drawbacks. The nearest neighbour depends on the choice of distance measure,
and while Euclidean distance is sufficient for many applications, it may give sub-optimal
results on the high-dimensional and non-linear model. The implementation of a more
refined inversion method would likely provide more accurate parameter maps.
4.6 Summary
The spectral fundus image data can directly be used for both training and testing of
supervised classifiers for the detection of lesions related to retinal pathologies. Using
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(a) Haemorrhages. (b) Hard exudates.
(c) Soft exudates. (d) All exudates.
Figure 4.10: Neural network (NN) classifier ROC curves (refined annotations).
the DiaRetDB2 database with coarse expert annotations for training and testing, the
performance of several supervised classifiers in the detection of lesions was evaluated.
Of the exudates, the soft exudate class was more often misclassified. Excluding soft
exudates, the classifiers trained with the unprocessed image spectra outperformed the
classifiers trained with RGB features.
Another set of classifiers was trained using spectra and RGB values extracted from the
ROI defined by the expert annotations after refinement using the method proposed in
Section 3.5. Using training data extracted from the refined regions did not improve
the performance of the classifiers using spectral data. For the RGB data, however, a
significant increase the performance of the SVM classifier and a slight improvement in
the NN classifier performance was observed.
An approach to the estimation of the molecular concentrations of retinal haemoglobin,
RPE melanin, choroidal melanin, macular pigment and choroidal haemoglobin from the
image spectra using a model of light interaction with retinal tissue was presented. The
presented approach to aligning the model and image data was able to find reasonable
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Figure 4.11: Poorly aligned model and image data (image 7). The dimensions
of the five-dimensional data are plotted pairwise. The model values are plotted
in red and the image data in blue.
translations and rotations, but returned too small scaling factors.
The qualitative evaluation show the parameter maps to follow distributions expected
from the retinal structures. Retinal haemoglobin was found mostly in the blood vessels.
Increased haemoglobin was also found at haemorrhages, and decreased haemoglobin was
found in the avascular region at the macula. Macular pigment was generally concentrated
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(a) RGB image. (b) Choroidal
haemoglobin.
(c) Choroidal
melanin.
(d) RPE melanin. (e) Macular pig-
ment.
(f) Retinal
haemoglobin.
Figure 4.12: The parameter maps derived from image 5.
at the macula. The macula also showed an increased amount of RPE melanin.
Channel-wise correction of illumination field bias caused changes in the image data
that resulted in unrealistic parameter maps after inversion. The illumination correc-
tion method proposed in Section 2.7 seemed to improve the inversion results (macular
pigment became more concentrated to the macula region and blood vessels showed as
more defined on the retinal haemoglobin channel).
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(a) RGB image. (b) Choroidal
haemoglobin.
(c) Choroidal
melanin.
(d) RPE melanin. (e) Macular pig-
ment.
(f) Retinal
haemoglobin.
Figure 4.13: The parameter maps derived from image 7.
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Figure 4.14: Aligned model and image data after channel-wise illumination field
correction (image 5). The dimensions of the five-dimensional data are plotted
pairwise. The model values are plotted in red and the image data in blue.
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(a) RGB image. (b) Choroidal
haemoglobin.
(c) Choroidal
melanin.
(d) RPE melanin. (e) Macular pig-
ment.
(f) Retinal
haemoglobin.
Figure 4.15: The parameter maps derived from image 5 after proposed illumi-
nation correction.
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(a) RGB image. (b) Choroidal
haemoglobin.
(c) Choroidal
melanin.
(d) RPE melanin. (e) Macular pig-
ment.
(f) Retinal
haemoglobin.
Figure 4.16: The parameter maps derived from image 7 after proposed illumi-
nation correction.
Chapter V
Discussion
5.1 Main contributions
The methods for and considerations on composing and the post-processing of spectral
retinal images presented in this thesis can potentially provide significant improvements
to the quality of spectral retinal image data. The geometric and spectral calibration,
correcting of uneven illumination and accounting for dirt and dust in the optics can help
to remove multiple sources of errors in spectral retinal images, longitudinal data and
data combined from multiple sources.
With further development and evaluation, the maps of estimated molecular concentra-
tions of retinal haemoglobin, RPE melanin, choroidal melanin, macular pigment and
choroidal haemoglobin from the image spectra may provide a useful modality for the early
detection of changes in the retina or the formation of lesions. The 3D-reconstruction of
the retinal shape from retinal images can be used to improve both the spectral image
composition and the model of light interaction in the retina (by using the estimated reti-
nal shape instead of uniform layers). If evaluations with medical data suggest reasonable
accuracy, the reconstructions can have clinical value in the diagnosis of macular edema,
glaucoma and other retinal conditions.
A supervised classifier trained with the unprocessed image spectra produced reasonable
detection results for haemorrhages and hard exudates. The performance of the classifiers
suggests that a lesion detection method outperforming current state-of-the-art method
based on RGB data could be developed using the spectral data. With the publication of
spectral retinal image database DiaRetDB2 with gold standard annotations, the develop-
ment of methods relying on spectral retinal data becomes more viable, as every research
group does not need to collect their own spectral retinal images and expert annotations
for the development, training and evaluation.
With the ageing population and changed living habits, retinal diseases such as diabetic
retinopathy (DR) and age-related macular degeneration (AMD) will increasingly burden
the health care systems of the developed countries. Early detection and personalised
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diagnostics directing the limited resources to the patients in most need of and most ben-
efiting from the therapeutic interventions will be paramount in the proper management
of these diseases.
Broadening the utilisation of spectral information could improve automatic and semi-
automated diagnostics for large scale screening of retinal diseases and enable an early
entry to a treatment program. With the improvement in the quality of the spectral data,
and the development of image analysis methods based on retinal reflectance spectra,
there is a potential for the improvement of the quantitative detection of retinal changes
for follow-up, clinically relevant end-points for clinical studies and development of new
therapeutic modalities.
5.2 Limitations of the study
One of the major challenges in developing and comparing methods for composing and
processing spectral fundus images is the difficulty of obtaining meaningful reference mea-
surements. Without a proper reference, method development becomes difficult as the per-
formance of a method cannot be properly evaluated or compared to other approaches.
In vitro measurements do not properly capture the characteristics of a living eye, and
while techniques such as OCT and spectroscopy can be used to accurately measure the
retinal structures and reflectance in vivo, the alignment and comparison with the fundus
image spectra is challenging.
The alignment of the retinal image data and the model of light interaction in tissue
remains challenging. While the foveal region data of both the model and the images pro-
duce similar distributions, the exact range of the parameter values that can be expected
to be present in the macular region of the image is not known.
After the alignment, a number of images showed a significant portion of the data outside
the model. Some of the data outside the model is due to retinal structures that are
not included in the model, e.g., the optic disk. Another potential source for disparity is
pathological changes in the retina. Problems with the image acquisition and illumination
field bias can also affect the image data. Further studies are needed to determine the
source (or sources) of the disparities between the model and the image data.
5.3 Future work
While the GDB-ICP registration method showed good performance on the synthetic
and semisynthetic test data, the composition of a spectral retinal image from a set of
channel images remains a challenging problem. A method designed specifically for the
registration of spectral retinal data would likely be required for improved alignment. As
general registration methods do not take into account the change in information content
between the channels, the space of transformations realistic to correct for the inter-
channel eye movements, and the potentially large number of images to be registered,
there is room for improvement in the registration of channel images.
The use of synthetic data can provide quantitative measurements on an approximation
of the in vivo measurements. While complete correspondence to measurements from the
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true medical data should not be expected, results from quantitative evaluation using
synthetic data can be more representative than comparisons derived from measurements
from other modalities (e.g., sparse spectroscopy measurements or mean values based
on patient information). With a sufficiently accurate synthetic data as a reference, the
development and evaluation of the composition and processing of spectral fundus images
would be significantly facilitated. A commonly accepted synthetic benchmark would
enable proper comparison of methods by different researchers.
The stereoscopic reconstruction of the fundus can be improved by considering the spec-
tral dimension of the data. As the depth of tissue penetration is dependent on the
wavelength of the light entering the fundus, the information content of the individual
channels represents the structures at different levels of the fundus. Taking into account
the possible light paths in the retinal interaction would very likely benefit the recon-
struction. In theory, prior knowledge (e.g., from simulation) of the expected penetration
depth could be used to refine the reconstruction. With proper characterisation of both
the reflectance spectra and the retinal tissue, possibly even (a number of) the individual
layers of the retina could be reconstructed. A reconstruction containing both spatial
and spectral information of the retina open the possibility of a subject specific optical
model of the retina. Furthermore, replacing the very simplified pinhole camera model
used by the current reconstruction approach with a more sophisticated model based on
the fundus camera could significantly improve the reconstruction result.
While no histological ground truth for the distributions of the molecules in the retina
can be achieved, prior knowledge of average distributions could be used to guide the
alignment of the model of light interaction with the retina with the spectral image data.
In practice this could be implemented by iterating the transformation parameters aligning
the model and the image data, and computing a cost function based on the average
distributions versus the inversion result. In addition, more sophisticated methods than
kNN can be used for more reasonable inversion. As no histological ground truth is
available for performance evaluation, the quantification of error in the intermediate steps
(e.g., model generation, model alignment and inversion) becomes important in evaluating
the uncertainty of the results. By estimating the error within the inversion process
(e.g., by distance between image spectra and closest model reference spectra), some
understanding of the uncertainty of the inversion process can be achieved.
Chapter VI
Conclusion
In this thesis, the image processing techniques required for composing spectral retinal
images with accurate reflection spectra were studied. A protocol for calibrating a fundus
camera was presented, including geometric and spectral calibration, determining the
spatial resolution, consideration for correcting uneven illumination and vignetting, and
accounting for dirt and dust in the optics. The qualitative evaluation results suggest
that significant improvements can be achieved related to the quality of spectral retinal
images, longitudinal data and data from multiple sources.
The wavelength channel image registration was quantitatively evaluated using synthetic
and semisynthetic data. Of the compared methods, GDB-ICP outperformed the rest.
The experiments on synthetic and semi-synthetic data showed that the registration error
increases with increasing wavelength difference between the floating and base image.
GDB-ICP outperformed the other evaluated methods in both the number of successful
registrations and registration accuracy.
A method for the 3D-reconstruction of the retinal shape from retinal images based on the
method by Lin and Medioni [139] was presented. The proposed method achieved lower
mean registration error than the original method, and was able to produce a reasonable
reconstruction where the original method failed.
A method for correcting the uneven illumination field in spectral images was presented.
The method was able to reduce the illumination field bias in the spectral image while
retaining the consistency of the spectral dimension.
The steps in the acquisition of images and gold standards of lesion locations for composing
the spectral fundus image database DiaRetDB2 were presented. The spectral information
coupled with gold standards for multiple lesion types provide a good basis for method
development in automatic detection and classification of retinal lesions.
The feasibility of the spectral retinal image data for the detection of lesions related
to retinal pathologies was studied using supervised classifiers trained with the spectral
data. Of the exudates, the soft exudate class was more often misclassified. While some of
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the classifiers struggled with the high dimensionality of the spectral data, the classifiers
trained with the unprocessed image spectra outperformed the classifiers trained with
RGB features.
An approach to the estimation of the molecular concentrations of retinal haemoglobin,
RPE melanin, choroidal melanin, macular pigment and choroidal haemoglobin from the
image spectra using a model of light interaction with retinal tissue was presented. The
density maps for retinal haemoglobin and macular pigment extracted from the image
spectra correspond to the histological prior (i.e., haemoglobin in the veins and a concen-
tration of macular pigment in the macula).
The methods and experimental results presented in this thesis suggest that spectral
retinal images can be a cost-effective and valuable addition to the diagnosis and screening
of eye diseases. The acquisition of accurate retinal spectra remains challenging, but with
the presented methods and further development of spectral imaging and spectral image
processing, the spectral retinal data can be significantly improved.
Bibliography
[1] Abràmoff, M., Garvin, M., and Sonka, M. Retinal imaging and image anal-
ysis. IEEE Reviews in Biomedical Engineering 3 (2010), 169–208.
[2] Acharya, R., Chua, C., Ng, E., Yu, W., and Chee, C. Application of
higher order spectra for the identification of diabetes retinopathy stages. Journal
of Medical Systems 32, 6 (2008), 481–488.
[3] Acharya, U., Dua, S., Du, X., Sree, S., and Chua, C. Automated diagnosis
of glaucoma using texture and higher order spectra features. IEEE Transactions
on Information Technology in Biomedicine 15, 3 (2011), 449–455.
[4] Acharya, U., Ng, E.-K., Tan, J.-H., Sree, S., and Ng, K.-H. An integrated
index for the identification of diabetic retinopathy stages using texture parameters.
Journal of Medical Systems 36, 3 (2012), 2011–2020.
[5] Ahonen, T., Matas, J., He, C., and Pietikäinen, M. Rotation invariant
image description with local binary pattern histogram fourier features. In Image
Analysis. Springer, 2009, pp. 61–70.
[6] Aibinu, A., Iqbal, M., Nilsson, M., and Salami, M. A new method of
correcting uneven illumination problem in fundus images. In Proceedings of In-
ternational Conference on Robotics, Vision, Information, and Signal Processing
(Penang, Malaysia, November 2007), pp. 445–449.
[7] Al-Diri, B., Hunter, A., Steel, D., Habib, M., Hudaib, T., and Berry,
S. Review-a reference data set for retinal vessel profiles. In Proceedings of In-
ternational Conference of the IEEE Engineering in Medicine and Biology Society
(Vancouver, Canada, August 2008), IEEE, pp. 2262–2265.
[8] Alahi, A., Ortiz, R., and Vandergheynst, P. Freak: Fast retina keypoint. In
Proceedings of Computer Vision and Pattern Recognition (2012), IEEE, pp. 510–
517.
[9] Alm, A., and Bill, A. Ocular and optic nerve blood flow at normal and increased
intraocular pressures in monkeys (macaca irus): a study with radioactively labelled
microspheres including flow determinations in brain and some other tissues. Ex-
perimental Eye Research 15, 1 (1973), 15–29.
139
140 BIBLIOGRAPHY
[10] Anderson, R., and Parrish, J. The optics of human skin. Journal of Inves-
tigative Dermatology 77, 1 (1981), 13–19.
[11] Aquino, A., Gegúndez-Arias, M., and Marin, D. Detecting the optic disc
boundary in digital fundus images using morphological, edge detection, and feature
extraction techniques. IEEE Transactions on Medical Imaging 29, 11 (2010), 1860–
1869.
[12] Association, W. M. World medical association declaration of helsinki. ethical
principles for medical research involving human subjects. Bulletin of the World
Health Organization 79, 4 (2001), 373.
[13] Balci, S., Golland, P., and Wells, W. Non-rigid groupwise registration using
b-spline deformation model. Open Source and Open Data for MICCAI (2007), 105–
121.
[14] Bankman, I. Handbook of Medical Image Processing and Analysis, second ed.
Academic Press, 2009.
[15] Bashkatov, A., Genina, E., Kochubey, V., and Tuchin, V. Estimation of
wavelength dependence of refractive index of collagen fibers of scleral tissue. In
Proceedings of EOS/SPIE European Biomedical Optics Week (2000), International
Society for Optics and Photonics, pp. 265–268.
[16] Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. Speeded-up robust
features (surf). Computer Vision and Image Understanding 110, 3 (2008), 346–
359.
[17] Beach, J., Schwenzer, K., Srinivas, S., Kim, D., and Tiedeman, J. Oxime-
try of retinal vessels by dual-wavelength imaging: calibration and influence of pig-
mentation. Journal of Applied Physiology 86, 2 (1999), 748–758.
[18] Beach, J., Tiedeman, J., Hopkins, M., and Sabharwal, Y. Multispectral
fundus imaging for early detection of diabetic retinopathy. In Proceedings of In-
ternational Biomedical Optics Symposium (1999), International Society for Optics
and Photonics, pp. 114–121.
[19] Berendschot, T., DeLint, P., and van Norren, D. Fundus re-
flectanceâĂŤhistorical and present ideas. Progress in Retinal and Eye Research
22, 2 (2003), 171–200.
[20] Berendschot, T., and van Norren, D. Objective determination of the mac-
ular pigment optical density using fundus reflectance spectroscopy. Archives of
Biochemistry and Biophysics 430, 2 (2004), 149–155.
[21] Berendschot, T., Willemse-Assink, J., Bastiaanse, M., Jong, P. D., and
van Norren, D. Macular pigment and melanin in age-related maculopathy in a
general population. Investigative Ophthalmology and Visual Science 43, 6 (2002),
1928–1932.
BIBLIOGRAPHY 141
[22] Berendschot, T. T. J. M., DeLint, P. J., and van Norren, D. Fundus
reflectance – historical and present ideas. Progress in Retinal and Eye Research 22
(2003).
[23] Bernardes, R., Serranho, P., and Lobo, C. Digital ocular fundus imaging:
a review. Ophthalmologica 226, 4 (2011), 161–181.
[24] Bezdek, J. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, 1981.
[25] Bhatia, K., Aljabar, P., Boardman, J., Srinivasan, L., Murgasova, M.,
Counsell, S., Rutherford, M., Hajnal, J., Edwards, A., and Rueck-
ert, D. Groupwise combined segmentation and registration for atlas construction.
In Proceedings of Medical Image Computing and Computer-Assisted Intervention.
Springer, 2007, pp. 532–540.
[26] Bhatia, K., Hajnal, J., Hammers, A., and Rueckert, D. Similarity metrics
for groupwise non-rigid registration. In Proceedings of Medical Image Computing
and Computer-Assisted Intervention. Springer, 2007, pp. 544–552.
[27] Bock, R., Meier, J., Michelson, G., Nyúl, L., and Hornegger, J. Clas-
sifying glaucoma with image-based features from fundus photographs. Pattern
Recognition (2007), 355–364.
[28] Boettner, E., and Wolter, J. Transmission of the ocular media. Investigative
Ophthalmology and Visual Science 1, 6 (1962), 776–783.
[29] Bone, R. A., Brener, B., and Gibert, J. C. Macular pigment, photopigments,
and melanin: Distributions in young subjects determined by four-wavelength re-
flectometry. Vision Reserch 47 (2007), 3259–3268.
[30] Bouguet, J.-Y. Camera calibration toolbox for matlab. http://www.vision.
caltech.edu/bouguetj/calib_doc/, 2013. Accessed: 2015-01-07.
[31] Boykov, Y., Veksler, O., and Zabih, R. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on Pattern Analysis and Machine
Intelligence 20, 12 (2001), 1222–1239.
[32] Breiman, L. Random forests. Machine Learning 45, 1 (2001), 5–32.
[33] Brown, D., Kaiser, P., Michels, M., Soubrane, G., Heier, J., Kim, R.,
Sy, J., and Schneider, S. Ranibizumab versus verteporfin for neovascular age-
related macular degeneration. New England Journal of Medicine 355, 14 (2006),
1432–1444.
[34] Buades, A., Coll, B., and Morel, J.-M. A non-local algorithm for image
denoising. In Proceedings of Computer Vision and Pattern Recognition (San Diego,
California, USA, June 2005), vol. 2, IEEE, pp. 60–65.
[35] Budai, A., Odstrcilik, J., Kolar, R., Hornegger, J., Jan, J., Kubena,
T., and Michelson, G. A public database for the evaluation of fundus image
segmentation algorithms. Investigative Ophthalmology and Visual Science 52, 14
(2011), 1345–1345.
142 BIBLIOGRAPHY
[36] Calcagni, A., Gibson, J. M., Styles, I. B., Claridge, E., and Orihuela-
Espina, F. Multispectral retinal image analysis: a novel non-invasive tool for
retinal imaging. Eye 25, 12 (2011).
[37] Chandraker, M., Agarwal, S., Kriegman, D., and Belongie, S. Globally
optimal algorithms for stratified autocalibration. International Journal of Com-
puter Vision 90, 2 (2010), 236–254.
[38] Chanwimaluang, T., Fan, G., Yen, G., and Fransen, S. 3-d retinal cur-
vature estimation. IEEE Transactions on Information Technology in Biomedicine
13, 6 (2009), 997–1005.
[39] Cheriyan, J., Menon, H., and Narayanankutty, K. 3d reconstruction of
human retina from fundus image–a survey. International Journal on Modern En-
gineering Research 2 (2012), 3089–3092.
[40] Chiu, S. Fuzzy model identification based on cluster estimation. Journal of Intel-
ligent and Fuzzy Systems 2, 3 (1994), 267–278.
[41] Choremis, J., and Chow, D. Use of telemedicine in screening for diabetic
retinopathy. Canadian Journal of Ophthalmology 38, 7 (2003), 575–579.
[42] Choudhary, T., Ball, D., Fernandez-Ramos, J., McNaught, A., and
Harvey, A. Assessment of acute mild hypoxia on retinal oxygen saturation using
snapshot retinal oximetry. Investigative Ophthalmology and Visual Science 54, 12
(2013), 7538–7543.
[43] Claridge, E. personal communication.
[44] Cohen, B., and Dinstein, I. New maximum likelihood motion estimation
schemes for noisy ultrasound images. Pattern Recognition 35, 2 (2002), 455–463.
[45] Crum, W., Hartkens, T., and Hill, D. Non-rigid image registration: theory
and practice. The British Journal of Radiology 77 (2004), S140–S153.
[46] Deguchi, K., Kawamata, D., Mizutani, K., Hontani, H., and Wak-
abayashi, K. 3d fundus shape reconstruction and display from stereo fundus
images. IEICE Transactions on Information and Systems 83, 7 (2000), 1408–1414.
[47] Deguchi, K., Noami, J., and Hontani, H. 3d fundus pattern reconstruction and
display from multiple fundus images. In Proceedings of International Conference
on Pattern Recognition (2000), vol. 4, IEEE, pp. 94–97.
[48] Delori, F. Noninvasive technique for oximetry of blood in retinal vessels. Applied
Optics 27, 6 (1988), 1113–1125.
[49] Delori, F. Spectrophotometer for noninvasive measurement of intrinsic fluores-
cence and reflectance of the ocular fundus. Applied Optics 33, 31 (1994), 7439–7452.
[50] Delori, F., and Burns, S. Fundus reflectance and the measurement of crystalline
lens density. Journal of the Optical Society of America A 13, 2 (1996), 215–226.
BIBLIOGRAPHY 143
[51] Delori, F., and Pflibsen, K. Spectral reflectance of the human ocular fundus.
Applied Optics 28, 6 (1989), 1061–1077.
[52] Duda, R., Hart, P., and Stork, D. Pattern Classification. John Wiley & Sons,
2001.
[53] Duong, T. Magnetic resonance imaging of the retina: a brief historical and future
perspective. Saudi Journal of Ophthalmology 25, 2 (2011), 137–143.
[54] Everdell, N., Styles, I., Calcagni, A., Gibson, J., Hebden, J., and Clar-
idge, E. Multispectral imaging of the ocular fundus using light emitting diode
illumination. Review of Scientific Instruments 81, 9 (2010), 093706.
[55] Fált, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V.,
Pietilá, J., and Uusitalo, H. Spectral imaging of the human retina and compu-
tationally determined optimal illuminants for diabetic retinopathy lesion detection.
Journal of Imaging Science and Technology 55, 3 (2011), 030509–1–030509–10.
[56] Fält, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V.,
and Uusitalo, H. Extending diabetic retinopathy imaging from color to spectra.
In Proceedings of Scandinavian Conference on Image Analysis (Oslo, Norway, June
2009), pp. 149–158.
[57] Fält, P., Yamaguchi, M., Murakami, Y., Laaksonen, L., Lensu, L., Clar-
idge, E., Hauta-Kasari, M., and Uusitalo, H. Multichannel spectral image
enhancement for visualizing diabetic retinopathy lesions. In Image and Signal Pro-
cessing. Springer, 2014, pp. 52–60.
[58] Faugeras, O., Luong, Q.-T., and Maybanks, S. Camera self-calibration:
Theory and experiments. In Proceedings of European Conference on Computer
Vision (Santa Margherita Ligure, Italy, May 1992), pp. 321–334.
[59] Faust, O., Acharya, R., Ng, E., Ng, K.-H., and Suri, J. Algorithms for the
automated detection of diabetic retinopathy using digital fundus images: a review.
Journal of Medical Systems 36, 1 (2012), 145–147.
[60] Fawzi, A., Lee, N., Acton, J., Laine, A., and Smith, R. Recovery of macular
pigment spectrum in vivo using hyperspectral image analysis. Journal of Biomedical
Optics 16, 10 (2011), 106008–106008.
[61] Ferrara, N., Damico, L., Shams, N., Lowman, H., and Kim, R. Develop-
ment of ranibizumab, an anti–vascular endothelial growth factor antigen binding
fragment, as therapy for neovascular age-related macular degeneration. Retina 26,
8 (2006), 859–870.
[62] Fischler, M., and Bolles, R. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM 24, 6 (1981), 381–395.
[63] Foracchia, M., Grisan, E., and Ruggeri, A. Luminosity and contrast nor-
malization in retinal images. Medical Image Analysis 9, 3 (2005), 179–190.
144 BIBLIOGRAPHY
[64] Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.,
Owen, C., and Barman, S. Blood vessel segmentation methodologies in retinal
images âĂŞ a survey. Computer Methods and Programs in Biomedicine 108, 1
(2012), 407–433.
[65] Frick, K., Gower, E., Kempen, J., and Wolff, J. Economic impact of visual
impairment and blindness in the united states. Archives of Ophthalmology 125, 4
(2007), 544–550.
[66] Fumero, F., Alayón, S., Sanchez, J., Sigut, J., and Gonzalez-
Hernandez, M. Rim-one: An open retinal image database for optic nerve eval-
uation. In Proceedings of International Symposium on Computer-Based Medical
Systems (Porto, Portugal, June 2011), IEEE, pp. 1–6.
[67] Fusiello, A., Benedetti, A., Farenzena, M., and Busti, A. Globally con-
vergent autocalibration using interval analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence 26, 12 (2004), 1633–1638.
[68] F.W. Fitzke III, F. W. Refractive index of the human corneal epithelium and
stroma. Journal of Refractive Surgery 11, 2 (1995), 100.
[69] Gao, L., Smith, R., and Tkaczyk, T. Snapshot hyperspectral retinal cam-
era with the image mapping spectrometer (ims). Biomedical Optics Express 3, 1
(January 2012), 48–54.
[70] García, M., López, M., Álvarez, D., and Hornero, R. Assessment of four
neural network based classifiers to automatically detect red lesions in retinal images.
Medical Engineering and Physics 32, 10 (2010), 1085–1093.
[71] García, M., Sánchez, C., López, M., Abásolo, D., and Hornero, R.
Neural network based detection of hard exudates in retinal images. Computer
Methods and Programs in Biomedicine 93, 1 (2009), 9–19.
[72] Gardner, G., Keating, D., Williamson, T., and Elliott, A. Automatic
detection of diabetic retinopathy using an artificial neural network: a screening
tool. The British Journal of Ophthalmology 80, 11 (1996), 940–944.
[73] Giancardo, L., Meriaudeau, F., Karnowski, T., Jr, K. T., Grisan, E.,
Favaro, P., Ruggeri, A., and Chaum, E. Textureless macula swelling detection
with multiple retinal fundus images. IEEE Transactions on Biomedical Engineering
58, 3 (2011), 795–799.
[74] Giancardo, L., Meriaudeau, F., Karnowski, T., Li, Y., Garg, S., Tobin,
K., and Chaum, E. Exudate-based diabetic macular edema detection in fundus
images using publicly available datasets. Medical Image Analysis 16, 1 (2012),
216–226.
[75] Gonzalez, R., and Woods, R. Digital image processing, second ed. Prentice-
Hall Inc., 2001.
BIBLIOGRAPHY 145
[76] Grisan, E., Giani, A., Ceseracciu, E., and Ruggeri, A. Model-based illu-
mination correction in retinal images. In Proceedings of IEEE International Sym-
posium on Biomedical Imaging: From Nano to Macro (2006), IEEE, pp. 984–987.
[77] Group, D. R. S. R. Photocoagulation treatment of proliferative diabetic retinopa-
thy: the second report of diabetic retinopathy study findings. Ophthalmology 85,
1 (1978), 82–106.
[78] Group, E. D. P. R. Causes and prevalence of visual impairment among adults
in the united states. Archives of Ophthalmology 122, 4 (2004), 477–485.
[79] Group, E. T. D. R. S. R. Treatment techniques and clinical guidelines for
photocoagulation of diabetic macular edema: Early treatment diabetic retinopathy
study report number 2. Ophthalmology 94, 7 (1987), 761–774.
[80] Guo, J.-M., Liu, Y.-F., Chang, C.-H., and Nguyen, H.-S. Improved hand
tracking system. IEEE Transactions on Circuits and Systems for Video Technology
22, 5 (2012), 693–701.
[81] Guo, Y., Yao, G., Lei, B., and Tan, J. Monte carlo model for studying the
effects of melanin concentrations on retina light absorption. Journal of the Optical
Society of America A 25, 2 (2008), 304–311.
[82] Hamm, J., Ye, D., Verma, R., and Davatzikos, C. Gram: A framework
for geodesic registration on anatomical manifolds. Medical Image Analysis 14, 5
(2010), 633–642.
[83] Hammer, M., Roggan, A., Schweitzer, D., and Muller, G. Optical prop-
erties of ocular fundus tissues-an in vitro study using the double-integrating-sphere
technique and inverse monte carlo simulation. Physics in Medicine and Biology 40,
6 (1995), 963.
[84] Hammer, M., and Schweitzer, D. Quantitative reflection spectroscopy at the
human ocular fundus. Physics in Medicine and Biology 47, 2 (2002), 179–191.
[85] Hammer, M., Schweitzer, D., Thamm, E., and Kolb, A. Optical proper-
ties of ocular fundus tissues determined by optical coherence tomography. Optics
Communications 186, 1 (2000), 149–153.
[86] Haralick, R., Shanmugam, K., and Dinstein, I. Textural features for image
classification. IEEE Transactions on Systems, Man, and Cybernetics, 6 (1973),
610–621.
[87] Hardarson, S., Harris, A., Karlsson, R., Halldorsson, G., Kage-
mann, L., Rechtman, E., Zoega, G., Eysteinsson, T., Benediktsson, J.,
Thorsteinsson, A., Thorsteinsson, A., Jensen, P., Beach, J., and Ste-
fánsson, E. Automatic retinal oximetry. Investigative Ophthalmology and Visual
Science 47, 11 (2006), 5011–5016.
[88] Harvey, A., Fletcher-Holmes, D., Gorman, A., Altenbach, K., Arlt,
J., and Read, N. Spectral imaging in a snapshot. In Proceedings of Biomedical
Optics (Changchun, China, August 2005), International Society for Optics and
Photonics, pp. 110–119.
146 BIBLIOGRAPHY
[89] Hasan, M., Jia, X., Robles-Kelly, A., Zhou, J., and Pickering, M. R.
Multi-spectral remote sensing image registration via spatial relationship analysis
on sift keypoints. In Proceedings of IEEE International Geoscience and Remote
Sensing Symposium (2010), IEEE, pp. 1011–1014.
[90] Hayreh, S. Segmental nature of the choroidal vasculature. British Journal of
Ophthalmology 59, 11 (1975), 631–648.
[91] Heikkiä, J., and Silvén, O. A four-step camera calibration procedure with im-
plicit image correction. In Proceedings of Computer Vision and Pattern Recognition
(San Juan, Puerto Rico, June 1997), pp. 1106–1112.
[92] Hemminki, V., Kähönen, M., Tuomisto, M. T., Turjanmaa, V., and Uusi-
talo, H. Determination of retinal blood vessel diameters and arteriovenous ratios
in systemic hypertension: Comparison of different calculation formulae. Graefe’s
Archive for Clinical and Experimental Ophthalmology 245, 1 (2007), 8–17.
[93] Hill, D., Batchelor, P., Holden, M., and Hawkes, D. Medical image
registration. Physics in Medicine and Biology 46, 3 (2001), R1.
[94] Hipwell, J., Strachan, F., Olson, J., McHardy, K., Sharp, P., and
Forrester, J. Automated detection of microaneurysms in digital red-free pho-
tographs: a diabetic retinopathy screening tool. Diabetic Medicine 17 (2000),
588–594.
[95] Hirohara, Y., Okawa, Y., Mihashi, T., Yamaguchi, T., Nakazawa, N.,
Tsuruga, Y., Aoki, H., Maeda, N., Uchida, I., and Fujikado, T. Validity
of retinal oxygen saturation analysis: Hyperspectral imaging in visible wavelength
with fundus camera and liquid crystal wavelength tunable filter. Optical Review
14, 3 (2007), 151–158.
[96] Hoover, A., and Goldbaum, M. Locating the optic nerve in a retinal image
using the fuzzy convergence of the blood vessels. IEEE Transactions on Medical
Imaging 22, 8 (2003), 951–958.
[97] Hoover, A., Kouznetsova, V., and Goldbaum, M. Locating blood vessels in
retinal images by piecewise threshold probing of a matched filter response. IEEE
Transactions on Medical Imaging 19, 3 (2000), 203–210.
[98] Horecker, B. The absorption spectra of hemoglobin and its derivatives in the
visible and near infra-red regions. Journal of Biological Chemistry 148, 1 (1943),
173–183.
[99] Huang, D., Kaiser, P., Lowder, C., and Traboulsi, E. Retinal imaging,
first ed. Elsevier Inc., 2006.
[100] Hunold, W., and Malessa, P. Spectrophotometric determination of the
melanin pigmentation of the human ocular fundus in vivo. Ophthalmic Research 6,
5-6 (1974), 355–362.
[101] Hunt, R. The Reproduction of Colour, sixth ed. John Wiley & Sons, 2008.
BIBLIOGRAPHY 147
[102] Jafaar, H., Nandi, A., and Al-Nuaimy, W. Detection of exudates in retinal
images using pure splitting technique. In Proceedings of International Conference of
the IEEE Engineering in Medicine and Biology Society (Buenos Aires, Argentina,
August 2010), pp. 6745–6748.
[103] Jannin, P., Krupinski, E., and Warfield, S. Validation in medical image
processing. IEEE Transactions on Medical Imaging 25, 11 (2006), 1405–1409.
[104] Javitt, J., Canner, J., and Sommer, A. Cost effectiveness of current ap-
proaches to the control of retinopathy in type i diabetics. Ophthalmology 96, 2
(1989), 255–264.
[105] Jia, H., Wu, G., Wang, Q., and Shen, D. Absorb: Atlas building by self-
organized registration and bundling. NeuroImage 51, 3 (2010), 1057–1070.
[106] Johnson, W., Wilson, D., Fink, W., Humayun, M., and Bearman, G.
Snapshot hyperspectral imaging in ophthalmology. Journal of Biomedical Optics
12, 1 (2007), 014036–014036.
[107] Johnson, W. R., Wilson, D. W., Fink, W., Humayun, M., and Bearman,
G. Snapshot hyperspectral imaging in ophthalmology. Journal Biomedical Optics
12, 1 (2007), 014036.
[108] Joshi, S., Davis, B., Jomier, M., and Gerig, G. Unbiased diffeomorphic atlas
construction for computational anatomy. NeuroImage 23 (2004), S151–S160.
[109] Kahn, H., and Hiller, R. Blindness caused by diabetic retinopathy. American
Journal of Ophthalmology 78, 1 (1974), 58–67.
[110] Kakumanu, P., Makrogiannis, S., and Bourbakis, N. A survey of skin-color
modeling and detection methods. Pattern Recognition 40, 3 (2007), 1106–1122.
[111] Kämäräinen, J. Mvprmatlab. http://www.optovue.com/ifusion://
bitbucket.org/kamarain/mvprmatlab, 2015. Accessed: 2016-02-23.
[112] Kande, G., Subbaiah, V., and Savithri, S. Segmentation of exudates and
optic disc in retinal images. In Indian Conference on Computer Vision, Graphics
and Image Processing (Bhubaneswar, India, December 2008), pp. 535–542.
[113] Kang, S., and Weiss, R. Can we calibrate a camera using an image of a flat, tex-
tureless lambertian surface? In Proceedings of European Conference on Computer
Vision. Springer, 2000, pp. 640–653.
[114] Kankanahalli, S., Burlina, P., Wolfson, Y., Freund, D., and Bressler,
N. Automated classification of severity of age-related macular degeneration from
fundus photographs. Investigative Ophthalmology and Visual Science 54, 3 (2013),
1789–1796.
[115] Kauppi, T. Eye Fundus Image Analysis for Automatic Detection of Diabetic
Retinopathy. PhD thesis, Lappeenranta University of Technology, 2010.
148 BIBLIOGRAPHY
[116] Kauppi, T., Kalesnykiene, V., Kämäräinen, J.-K., Lensu, L., Sorri, I.,
Raninen, A., Voutilainen, R., Uusitalo, H., Kälviäinen, H., and Pietilä,
J. The diaretdb1 diabetic retinopathy database and evaluation protocol. In Pro-
ceedings of British Machine Vision Conference (Warwick, UK, September 2007),
pp. 15.1–15.10.
[117] Kauppi, T., Kämäräinen, J.-K., Lensu, L., Kalesnykiene, V., Sorri, I.,
Uusitalo, H., and Kälviäinen, H. Constructing benchmark databases and
protocols for medical image analysis: Diabetic retinopathy. Computational and
Mathematical Methods in Medicine 2013 (2013), 1–15.
[118] Kaya, S., Weigert, G., Pemp, B., Sacu, S., Werkmeister, R., Dragosti-
noff, N., Garhöfer, G., Schmidt-Erfurth, U., and Schmetterer, L.
Comparison of macular pigment in patients with age-related macular degenera-
tion and healthy control subjects–a study using spectral fundus reflectance. Acta
Ophthalmologica 90, 5 (2012), e399–e403.
[119] Keane, P., and Sadda, S. Retinal imaging in the twenty-first century: state of
the art and future directions. Ophthalmology 121, 12 (2014), 2489–2500.
[120] Khoobehi, B., Beach, J. M., and Kawano, H. Hyperspectral imaging for mea-
surement of oxygen saturation in the optic nerve head. Investigative Ophthalmology
and Visual Science 45 (2004), 1464–1472.
[121] Kilbride, P., Alexander, K., Fishman, M., and Fishman, G. Human macu-
lar pigment assessed by imaging fundus reflectometry. Vision Reserch 29, 6 (1989),
663–674.
[122] Klein, J.-C., Menard, M., Cazuguel, G., Fernandez-Maloigne, C.,
Schaefer, G., Gain, P., Cochener, B., Massin, P., Lay, B., and Char-
ton, B. Methods to evaluate segmentation and indexing techniques in the field
of retinal ophthalmology. http://messidor.crihan.fr/index-en.php. Accessed:
2015-09-16.
[123] Knighton, R. Quantitative reflectometry of the ocular fundus. IEEE Engineering
in Medicine and Biology Magazine 14, 1 (1995), 43–51.
[124] Knighton, R., Jacobson, S., and Roman, M. Specular reflection from the
surface of the retina. In Proceedings of Optoelectronics and Laser Applications in
Science and Engineering (Los Angeles, California, USA, January 1989), Interna-
tional Society for Optics and Photonics, pp. 10–17.
[125] Kohner, E., Patel, V., and Rassam, S. Role of blood flow and impaired
autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 44, 6 (1995),
603–607.
[126] Kolar, R., Odstrcilik, J., Jan, J., and Harabis, V. Illumination correction
and contrast equalization in colour fundus images. In Proceedings of European
Signal Processing Conference (Barcelona, Spain, August 2011), IEEE, pp. 298–
302.
BIBLIOGRAPHY 149
[127] Kubecka, L., Jan, J., and Kolar, R. Retrospective illumination correction of
retinal images. Journal of Biomedical Imaging 2010 (2010), 11.
[128] Laaksonen, L., Claridge, E., Fält, P., Hauta-Kasari, M., Uusitalo, H.,
and Lensu, L. Comparison of image registration methods for composing spectral
retinal images. Biomedical Signal Processing and Control . Submitted for review
6.5.2016.
[129] Laaksonen, L., Claridge, E., Fält, P., Hauta-Kasari, M., Uusitalo, H.,
and Lensu, L. Comparison of image registration methods for composing spectral
retinal images. In Proceedings of International Workshop on Ophthalmic Medical
Image Analysis (Boston, Massachusetts, USA, September 2014), pp. 57–64.
[130] Laaksonen, L., Hannuksela, A., Claridge, E., Fält, P., Hauta-Kasari,
M., Lensu, L., and Uusitalo, H. Significance and refinement of spatial accuracy
of ground truth in the detection of retinal lesions. Computerized Medical Imaging
and Graphics. Submitted for review 31.1.2016.
[131] Laaksonen, L., Herttuainen, J., Uusitalo, H., and Lensu, L. Refining
coarse manual segmentations with stable probability regions. In Proceedings of
International Workshop on Ophthalmic Medical Image Analysis (Munich, Germany,
October 2015).
[132] Labsphere. Labsphere: Spectralon targets. http://www.labsphere.com/
products/reflectance-standards-and-targets/reflectance-targets/
spectralon-targets.aspx. Accessed: 2015-01-10.
[133] Laliberté, F., Gagnon, L., and Sheng, Y. Registration and fusion of retinal
images - an evaluation study. IEEE Transactions on Medical Imaging 22, 5 (2003),
661–673.
[134] Lam, B., and Yan, H. A novel vessel segmentation algorithm for pathological
retina images based on the divergence of vector fields. IEEE Transactions on
Medical Imaging 27, 2 (2008), 237–246.
[135] Lasko, T., Bhagwat, J., Zou, K., and Ohno-Machado, L. The use of receiver
operating characteristic curves in biomedical informatics. Journal of Biomedical
Informatics 38, 5 (2005), 404–415.
[136] Lee, S., Abràmoff, M., and Reinhardt, J. Feature-based pairwise retinal
image registration by radial distortion correction. In Medical Imaging (2007), In-
ternational Society for Optics and Photonics, pp. 651220–651220.
[137] Leutenegger, S., Chli, M., and Siegwart, R. Brisk: Binary robust invariant
scalable keypoints. In Proceedings of International Conference on Computer Vision
(2011), IEEE, pp. 2548–2555.
[138] Liang, Z., Wong, D., Liu, J., Chan, K., and Wong, T. Towards automatic
detection of age-related macular degeneration in retinal fundus images. In Proceed-
ings of International Conference of the IEEE Engineering in Medicine and Biology
Society (2010), IEEE, pp. 4100–4103.
150 BIBLIOGRAPHY
[139] Lin, Y., and Medioni, G. Retinal image registration from 2d to 3d. In Proceed-
ings of Computer Vision and Pattern Recognition (2008), IEEE, pp. 1–8.
[140] Liu, D., Wood, N., Xu, X., Witt, N., Hughes, A., and Thom, S. 3d
reconstruction of the retinal arterial tree using subject-specific fundus images. In
Advances in Computational Vision and Medical Image Processing. Springer, 2009,
pp. 187–201.
[141] Lujan, B., Wang, F., Gregori, G., Rosenfeld, P., Knighton, R., Puli-
afito, C., Danis, R., Hubbard, L., Chang, R., Budenz, D., Seider, M.,
and Knight, O. Calibration of fundus images using spectral domain optical co-
herence tomography. Ophthalmic Surgery, Lasers and Imaging 39, 4 (2008), 15–20.
[142] Maberley, D., Walker, H., Koushik, A., and Cruess, A. Screening for
diabetic retinopathy in james bay, ontario: a cost-effectiveness analysis. Canadian
Medical Association Journal 168, 2 (2003), 160–164.
[143] Maintz, J., and Viergever, M. A survey of medical image registration. Medical
Image Analysis 2, 1 (1998), 1–36.
[144] Markelj, P., Tomaževič, D., Likar, B., and Pernuš, F. A review of 3d/2d
registration methods for image-guided interventions. Medical Image Analysis 16, 3
(2012), 642–661.
[145] Martinello, M., Favaro, P., Nieto, G. M., Harvey, A., Grisan, E.,
Scarpa, F., and Ruggeri, A. 3-d retinal surface inference: Stereo or monocular
fundus camera? In Proceedings of International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (2007), IEEE, pp. 896–899.
[146] Martinez-Perez, M., and Espinosa-Romero, A. 3d reconstruction of retinal
blood vessels from two views. In Proceedings of Indian Conference on Computer
Vision, Graphics & Image Processing (Kolkata, India, December 2004), pp. 258–
263.
[147] Matas, J., Chum, O., Urban, M., and Pajdla, T. Robust wide-baseline
stereo from maximally stable extremal regions. Image and Vision Computing 22,
10 (2002), 761–767.
[148] Mora, A., Vieira, P., Manivannan, A., and Fonseca, J. Automated drusen
detection in retinal images using analytical modelling algorithms. Biomedical En-
gineering Online 10, 1 (2011), 59.
[149] Mordant, D., Al-Abboud, I., Muyo, G., Gorman, A., Sallam, A.,
Ritchie, P., Harvey, A., and McNaught, A. Spectral imaging of the retina.
Eye 25, 3 (2011), 309–320.
[150] Mordant, D., Al-Abboud, I., Muyo, G., Gorman, A., Sallam, A., Rod-
mell, P., Crowe, J., Morgan, S., Ritchie, P., Harvey, A., and Mc-
Naught, A. Validation of human whole blood oximetry, using a hyperspectral
fundus camera with a model eye. Investigative Ophthalmology and Visual Science
52, 5 (2011), 2851–2859.
BIBLIOGRAPHY 151
[151] Mortensen, E., Deng, H., and Shapiro, L. A sift descriptor with global
context. In Proceedings of Computer Vision and Pattern Recognition (San Diego,
California, USA, June 2005), pp. 184–190.
[152] Myronenko, A., and Song, X. Intensity-based image registration by minimizing
residual complexity. IEEE Transactions on Medical Imaging 29, 11 (2010), 1882–
1891.
[153] Myronenko, A., Song, X., and Sahn, D. Maximum likelihood motion estima-
tion in 3d echocardiography through non-rigid registration in spherical coordinates.
Functional Imaging and Modeling of the Heart 5528 (2009), 427–436.
[154] Narasimha-Iyer, H., Can, A., Roysam, B., Stewart, C., Tanenbaum, H.,
Majerovics, A., and Singh, H. Robust detection and classification of longitu-
dinal changes in color retinal fundus images for monitoring diabetic retinopathy.
IEEE Transactions on Biomedical Engineering 53, 6 (June 2006), 1084–1098.
[155] Nayak, J., Acharya, R., Bhat, P., Shetty, N., and Lim, T.-C. Automated
diagnosis of glaucoma using digital fundus images. Journal of Medical Systems 33,
5 (2009), 337–346.
[156] Niemeijer, M., Abràmoff, M., and Ginneken, B. V. Segmentation of the
optic disc, macula and vascular arch in fundus photographs. IEEE Transactions
on Medical Imaging 26, 1 (2007), 116–127.
[157] Niemeijer, M., Abràmoff, M., and van Ginneken, B. Fast detection of the
optic disc and fovea in color fundus photographs. Medical Image Analysis 13, 6
(2009), 859–870.
[158] Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., and Abramoff,
M. Comparative study of retinal vessel segmentation methods on a new publicly
available database. In Proceedings of SPIE Medical Imaging (2004), International
Society for Optics and Photonics, pp. 648–656.
[159] Niemeijer, M., van Ginneken, B., J, M. C., Mizutani, A., Quellec, G.,
Sánchez, C., Zhang, B., Hornero, R., Lamard, M., Muramatsu, C.,
et al. Retinopathy online challenge: automatic detection of microaneurysms in
digital color fundus photographs. IEEE Transactions on Medical Imaging 29, 1
(2010), 185–195.
[160] Niemeijer, M., van Ginneken, B., Russell, S., and Abràmoff, M. Auto-
mated detection and differentation of drusen, exudates, and cotton-wool spots in
digital color fundus photographs for diabetic retinopathy diagnosis. Investigative
Ophthalmology and Visual Science 48, 5 (2007), 2260–2267.
[161] Niemeijer, M., van Ginneken, B., Russell, S., Suttorp-Schulten, M.,
and Abramoff, M. Automated detection and differentiation of drusen, exudates,
and cotton-wool spots in digital color fundus photographs for early diagnosis of
diabetic retinopathy. Investigative Ophthalmology and Visual Science 48, 5 (2007),
2260–2267.
152 BIBLIOGRAPHY
[162] Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M., and
Abràmoff, M. Automatic detection of red lesions in digital color fundus pho-
tographs. IEEE Transactions on Medical Imaging 24, 5 (2005), 584–592.
[163] Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M., and
Abràmoff, M. Automatic detection of red lesions in digital color fundus pho-
tographs. IEEE Transactions on Medical Imaging 24, 5 (2005), 584–592.
[164] Ning, J., Zhang, L., Zhang, D., and Wu, C. Interactive image segmentation
by maximal similarity based region merging. Pattern Recognition 43, 2 (2010),
445–456.
[165] Noronha, K., and Nayak, K. A review of fundus image analysis for the auto-
mated detection of diabetic retinopathy. Journal of Medical Imaging and Health
Informatics 2, 3 (2012), 258–265.
[166] Nourrit, V., Denniss, J., Muqit, M., Schiessl, I., Fenerty, C., Stanga,
P., and Henson, D. High-resolution hyperspectral imaging of the retina with a
modified fundus camera. Journal français d’ophtalmologie 33, 10 (2010), 686–692.
[167] Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek,
J., Kubena, T., Cernosek, P., Svoboda, O., and Angelopoulou, E. Reti-
nal vessel segmentation by improved matched filtering: evaluation on a new high-
resolution fundus image database. IET Image Processing 7, 4 (2013), 373–383.
[168] Ohkubo, Y., Kishikawa, H., Araki, E., Miyata, T., Isami, S., Motoyoshi,
S., Kojima, Y., Furuyoshi, N., and Shichiri, M. Intensive insulin therapy
prevents the progression of diabetic microvascular complications in japanese pa-
tients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-
year study. Diabetes Research and Clinical Practice 28, 2 (1995), 103–117.
[169] Oliveira, F., and Tavares, J. Medical image registration: a review. Computer
Methods in Biomechanics and Biomedical Engineering 17, 2 (2014), 73–93.
[170] Optics, E. Edmund optics: Chrome on glass, 3 frequency grid distortion
target. http://www.edmundoptics.com/testing-targets/test-targets/
distortion-test-targets/multi-frequency-grid-distortion-targets/
46250/. Accessed: 2015-05-21.
[171] Optovue. ifusion - sd-oct & digital fundus photography. http://www.optovue.
com/ifusion/, 2016. Accessed: 2016-02-18.
[172] Osareh, A., Mirmehdi, M., Thomas, B., and Markham, R. Automatic
recognition of exudative maculopathy using fuzzy c-means clustering and neural
networks. In Proceedings of Medical Image Understanding and Analysis Conference
(Birmingham, United Kindom, July 2001), pp. 49–52.
[173] Osareh, A., Mirmehdi, M., Thomas, B., and Markham, R. Automated
identification of diabetic retinal exudates in digital colour images. The British
Journal of Ophthalmology 87, 10 (2003), 1220–1223.
BIBLIOGRAPHY 153
[174] Osareh, A., Shadgar, B., and Markham, R. A computational-intelligence-
based approach for detection of exudates in diabetic retinopathy images. IEEE
Transactions on Information Technology in Biomedicine 13, 4 (2009), 535–545.
[175] Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans-
actions on Systems, Man, and Cybernetics 9, 1 (1979), 62–66.
[176] Owen, C., Rudnicka, A., Mullen, R., Barman, S., Monekosso, D., Whin-
cup, P., Ng, J., and Paterson, C. Measuring retinal vessel tortuosity in 10-
year-old children: validation of the computer-assisted image analysis of the retina
(caiar) program. Investigative Ophthalmology and Visual Science 50, 5 (2009),
2004–2010.
[177] Patton, N., Aslam, T., MacGillivray, T., Deary, I., Dhillon, B., Eikel-
boom, R., Yogesan, K., and Constable, I. Retinal image analysis: Concepts,
applications and potential. Progress in Retinal and Eye Research 25, 1 (2006),
99–127.
[178] Pfingsthorn, M., Birk, A., Schwertfeger, S., Bülow, H., and Pathak,
K. Maximum likelihood mapping with spectral image registration. In Proceed-
ings of IEEE International Conference on Robotics and Automation (2010), IEEE,
pp. 4282–4287.
[179] Pokorny, J., Smith, V., and Lutze, M. Aging of the human lens. Applied
Optics 26, 8 (1987), 1437–1440.
[180] Pollefeys, M., and Gool, L. V. A stratified approach to metric self-calibration.
In Proceedings of Computer Vision and Pattern Recognition (San Juan, Puerto
Rico, June 1997), IEEE, pp. 407–412.
[181] Preece, S., and Claridge, E. Monte carlo modelling of the spectral reflectance
of the human eye. Physics in Medicine and Biology 47, 16 (2002), 2863–2877.
[182] Ramella-Roman, J., Mathews, S., Kandimalla, H., Nabili, A., Duncan,
D., D’Anna, S., Shah, S., and Nguyen, Q. Measurement of oxygen saturation
in the retina with a spectroscopic sensitive multi aperture camera. Optics Express
16, 9 (2008), 6170–6182.
[183] Rankin, S., Walman, B., Buckley, A., and Drance, S. Color doppler imag-
ing and spectral analysis of the optic nerve vasculature in glaucoma. American
Journal of Ophthalmology 119, 6 (1995), 685–693.
[184] Rapantzikos, K., Zervakis, M., and Balas, K. Detection and segmentation of
drusen deposits on human retina: Potential in the diagnosis of age-related macular
degeneration. Medical Image Analysis 7, 1 (2003), 95–108.
[185] Ravishankar, S., Jain, A., and Mittal, A. Automated feature extraction for
early detection of diabetic retinopathy in fundus images. In Proceedings of Com-
puter Vision and Pattern Recognition (Miami, Florida, USA, June 2009), pp. 210–
217.
154 BIBLIOGRAPHY
[186] Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Pararajasegaram,
R., Pokharelal, G., and Mariotti, S. Global data on visual impairment in
the year 2002. Bulletin of the World Health Organization 82, 11 (2004), 844–851.
[187] Retinopathy online challenge. http://webeye.ophth.uiowa.edu/ROC/. Accessed:
2015-09-16.
[188] Reza, A., Eswaran, C., and Hati, S. Automatic tracing of optic disc and
exudates from color fundus images using fixed and variable thresholds. Journal of
Medical Systems 33, 1 (2009), 73–80.
[189] Ricci, E., and Perfetti, R. Retinal blood vessel segmentation using line op-
erators and support vector classification. IEEE Transactions on Medical Imaging
26, 10 (2007), 1357–1365.
[190] Rigamonti, R., and Lepetit, V. Accurate and efficient linear structure segmen-
tation by leveraging ad hoc features with learned filters. In Proceedings of Medical
Image Computing and Computer-Assisted Intervention. Springer, 2012, pp. 189–
197.
[191] Rodmell, P., Crowe, J., Gorman, A., Harvey, A., Muyo, G., Mordant,
D., McNaught, A., and Morgan, S. Light path-length distributions within
the retina. Journal of Biomedical Optics 19, 3 (2014), 036008–036008.
[192] Rohen, J. Anatomie und embryologie. Augenheilkunde in Klinik und Praxis 1
(1977), 1.1–1.5.
[193] Rosenfeld, P., Moshfeghi, A., and Puliafito, C. Optical coherence tomog-
raphy findings after an intravitreal injection of bevacizumab (avastin) for neovas-
cular age-related macular degeneration. Ophthalmic Surgery, Lasers and Imaging
36, 4 (2004), 331–335.
[194] Salyer, D., Denninghoff, K., Beaudry, N., Basavanthappa, S., Park, R.,
and Chipman, R. Diffuse spectral fundus reflectance measured using subretinally
placed spectralon. Journal of Biomedical Optics 13, 4 (2008), 044004–044004.
[195] Sánchez, C., Hornero, R., López, M., Aboy, M., Poza, J., and Abásolo,
D. A novel automatic image processing algorithm for detection of hard exudates
based on retinal image analysis. Medical Engineering and Physics 30, 3 (2008),
350–357.
[196] Sánchez, C., Niemeijer, M., Abràmoff, M., and van Ginneken, B. Ac-
tive learning for an efficient training strategy of computer-aided diagnosis systems:
Application to diabetic retinopathy screening. In Proceedings of Medical Image
Computing and Computer-Assisted Intervention. Springer, 2010, pp. 603–610.
[197] Savage, G., Johnson, C., and Howard, D. A comparison of noninvasive ob-
jective and subjective measurements of the optical density of human ocular media.
Optometry & Vision Science 78, 6 (2001), 386–395.
BIBLIOGRAPHY 155
[198] Sbeh, Z., Cohen, L., Mimoun, G., and Coscas, G. A new approach of geodesic
reconstruction for drusen segmentation in eye fundus images. IEEE Transactions
on Medical Imaging 20, 12 (2001), 1321–1333.
[199] Scanlon, P. The english national screening programme for sight-threatening
diabetic retinopathy. Journal of Medical Screening 15, 1 (2008), 1–4.
[200] Schweitzer, D., Hammer, M., Kraft, J., Thamm, E., Königsdörffer, E.,
and Strobel, J. In vivo measurement of the oxygen saturation of retinal vessels
in healthy volunteers. IEEE Transactions on Biomedical Engineering 46, 12 (1999),
1454–1465.
[201] Schweitzer, D., Klein, S., Guenther, S., and Hammer, M. Early diagnosis
of glaucoma by means of fundus reflectometry. New Trends in Ophthalmology 7
(1992), 241–241.
[202] Schweitzer, D., Leistritz, L., Hammer, M., Scibor, M., Bartsch, U.,
and Strobel, J. Calibration-free measurement of the oxygen saturation in human
retinal vessels. In Proceedings of Ophthalmic Technologies V (San Jose, California,
US, February 1995), International Society for Optics and Photonics, pp. 210–218.
[203] Sekhar, S., Al-Nuaimy, W., and Nandi, A. Automated localisation of op-
tic disk and fovea in retinal fundus images. In Proceedings of European Signal
Processing Conference (2008), IEEE, pp. 1–5.
[204] Sharp, P., Olson, J., Strachan, F., Hipwell, J., Ludbrook, A.,
O’Donnell, M., Wallace, S., Goatman, K., Grant, A., Waugh, N.,
McHardy, K., and Forrester, J. The value of digital imaging in diabetic
retinopathy. Health Technology Assessment 7, 30 (2003), 1–119.
[205] Sinthanayothin, C., Boyce, J., Cook, H., and Williamson, T. Automated
localisation of the optic disc, fovea, and retinal blood vessels from digital colour
fundus images. British Journal of Ophthalmology 83, 8 (1999), 902–910.
[206] Sinthanayothin, C., Boyce, J., Williamson, T., Cook, H., Mensah, E.,
Lal, S., and Usher, D. Automated detection of diabetic retinopathy on digital
fundus images. Diabetic Medicine 19 (2002), 105–112.
[207] Smith, R., Nagasaki, T., Sparrow, J., Barbazetto, I., Klaver, C., and
Chan, J. A method of drusen measurement based on the geometry of fundus
reflectance. Biomedical Engineering Online 2, 1 (2003), 10.
[208] Soares, J., Leandro, J., Jr, R. C., Jelinek, H., and Cree, M. Retinal
vessel segmentation using the 2-d gabor wavelet and supervised classification. IEEE
Transactions on Medical Imaging 25, 9 (2006), 1214–1222.
[209] Soille, P. Morphological Image Analysis: Principles and Applications. Springer-
Verlag New York, Inc., 1999.
[210] Sommer, C., Straehle, C., Kothe, U., and Hamprecht, F. ilastik: Inter-
active learning and segmentation toolkit. In Proceedings of IEEE International
Symposium on Biomedical Imaging: From Nano to Macro (2011), IEEE, pp. 230–
233.
156 BIBLIOGRAPHY
[211] Sopharak, A., New, K., Moe, Y., Dailey, M., and Uyyanonvara, B. Auto-
matic exudate detection with a naive bayes classifier. In International Conference
on Embedded Systems and Intelligent Technology (Bangkok, Thailand, February
2008), pp. 139–142.
[212] Sotiras, A., Davatzikos, C., and Paragios, N. Deformable medical image
registration: A survey. IEEE Transactions on Medical Imaging 32, 7 (2013), 1153–
1190.
[213] Staal, J., Abràmoff, M., Niemeijer, M., Viergever, M., and van Gin-
neken, B. Ridge-based vessel segmentation in color images of the retina. IEEE
Transactions on Medical Imaging 23, 4 (2004), 501–509.
[214] Stewart, C., Tsai, C.-L., and Roysam, B. The dual-bootstrap iterative closest
point algorithm with application to retinal image registration. IEEE Transactions
on Medical Imaging 22, 11 (2003), 1379–1394.
[215] Stone, H., and Wolpov, R. Blind cross-spectral image registration using pre-
filtering and fourier-based translation detection. IEEE Transactions on Geoscience
and Remote Sensing 40, 32 (2002), 637–650.
[216] Styles, I., Calcagni, A., Claridge, E., Orihuela-Espina, F., and Gibson,
J. Quantitative analysis of multi-spectral fundus images. Medical Image Analysis
10, 4 (August 2006), 578–597.
[217] Swaminathan, R., and Nayar, S. Nonmetric calibration of wide-angle lenses and
polycameras. IEEE Transactions on Pattern Analysis and Machine Intelligence 22,
10 (2000), 1172–1178.
[218] Tang, L., Kwon, Y., Alward, W., Greenlee, E., Lee, K., Garvin, M.,
and Abràmoff, M. 3d reconstruction of the optic nerve head using stereo fundus
images for computer-aided diagnosis of glaucoma. In SPIE Medical Imaging (2010),
International Society for Optics and Photonics, pp. 76243D–76243D.
[219] Taylor, R. Handbook of Retinal Screening in Diabetes, first ed. John Wiley &
Sons, 2006.
[220] Teng, T., Lefley, M., and Claremont, D. Progress towards automated
diabetic ocular screening: a review of image analysis and intelligent systems for
diabetic retinopathy. Medical and Biological Engineering and Computing 40, 1
(2002), 2–13.
[221] Thirion, J.-P. Image matching as a diffusion process: an analogy with maxwell’s
demons. Medical Image Analysis 2 .
[222] TOPCON. 3d oct-2000, optical coherence tomog-
raphy. http://www.topcon-medical.eu/eu/products/
32-3d-oct-2000-optical-coherence-tomography.html#description, 2015.
Accessed: 2016-02-18.
BIBLIOGRAPHY 157
[223] Tracking, R. T. A. B. H. M. donoser and h. bischof. In Proceedings of In-
ternational Conference on Pattern Recognition (Tampa, Florida, December 2008),
pp. 1–4.
[224] Trucco, E., Ruggeri, A., Karnowski, T., Giancarlo, L., Chaum, E.,
Hubschman, J., Al-Diri, B., Cheung, C., Wong, D., Abramoff, M., Lim,
G., Kumar, D., Burlina, P., Bressler, N., Jelinek, H., Maiaudeau, F.,
Quellec, G., MacGillivray, T., and Dhillon, B. Validating retinal fundus
image analysis algorithms: Issues and a proposal. Investigative Ophthalmology and
Visual Science (2013), 3546–3559.
[225] Tsai, C.-L., Li, C.-Y., Yang, G., and Lin, K.-S. The edge-driven dual-
bootstrap iterative closest point algorithm for registration of multimodal fluorescein
angiogram sequence. IEEE Transactions on Medical Imaging 29, 3 (2010), 636 –
649.
[226] Twining, C., Cootes, T., Marsland, S., Petrovic, V., Schestowitz, R.,
and Taylor, C. A unified information-theoretic approach to groupwise non-rigid
registration and model building. In Information Processing in Medical Imaging
(2005), Springer, pp. 1–14.
[227] Usher, D., Dumskyj, M., Himaga, M., Williamson, T., Nussey, S., and
Boyce, J. Automated detection of diabetic retinopathy in digital retinal images:
a tool for diabetic retinopathy screening. Diabetic Medicine 21, 1 (2004), 84–90.
[228] Vaiopoulos, A. Developing matlab scripts for image analysis and quality as-
sessment. In SPIE Remote Sensing (2011), International Society for Optics and
Photonics, pp. 81810B–81810B.
[229] van de Kraats, J., Berendschot, T., and van Norren, D. The pathways of
light measured in fundus reflectometry. Vision Reserch 36, 15 (1996), 2229–2247.
[230] van der Meer, F. The effectiveness of spectral similarity measures for the analysis
of hyperspectral imagery. International Journal of Applied Earth Observation and
Geoinformation 8, 1 (2006), 3–17.
[231] van Norren, D., and Tiemeijer, L. Spectral reflectance of the human eye.
Vision Reserch 26, 2 (1986), 313–320.
[232] van Norren, D., and van de Kraats, J. Retinal densitometer with the size of
a fundus camera. Vision Reserch 29, 3 (1989), 369–374.
[233] Vercauteren, T., Pennec, X., Perchant, A., and Ayache, N. Non-
parametric diffeomorphic image registration with the demons algorithm. In Pro-
ceedings of Medical Image Computing and Computer-Assisted Intervention (Bris-
bane, Australia, October 2007), pp. 319–326.
[234] Vercauteren, T., Pennec, X., Perchant, A., and Ayache, N. Symmetric
log-domain diffeomorphic registration: a demons-based approach. In Proceedings
of Medical Image Computing and Computer-Assisted Intervention (New York, New
York, USA, September 2008), pp. 754–761.
158 BIBLIOGRAPHY
[235] Vezhenevets, V., and Konouchine, V. Growcut: Interactive multi-label nd
image segmentation by cellular automata. In Proceedings of Graphicon (Novosi-
birsk, Russia, June 2005), pp. 150–156.
[236] Viola, P., and Wells III, W. Alignment by maximization of mutual informa-
tion. International Journal of Computer Vision 24, 2 (1997), 137–154.
[237] Walter, T., Klein, J.-C., Massin, P., and Erginay, A. A contribution of
image processing to the diagnosis of diabetic retinopathy. IEEE Transactions on
Medical Imaging 21, 10 (2002), 1236–1243.
[238] Wang, H., Hsu, W., Goh, K., and Lee, M. An effective approach to detect
lesions in color retinal images. In Proceedings of Computer Vision and Pattern
Recognition (Columbus, Ohio, USA, June 2000), vol. 2, IEEE, pp. 181–186.
[239] Wang, L., Jacques, S., and Zheng, L. McmlâĂŤmonte carlo modeling of light
transport in multi-layered tissues. Computer Methods and Programs in Biomedicine
47, 2 (1995), 131–146.
[240] Wang, Y., Jiang, G., and Jiang, C. Mean shift tracking with graph cuts based
image segmentation. In Proceedings of IEEE International Congress on Image and
Signal Processing (Chongqing, China, October 2012), pp. 675–679.
[241] Wangsa-Wirawan, N., and Linsenmeier, R. Retinal oxygen: fundamental and
clinical aspects. Archives of Ophthalmology 121, 4 (2003), 547–557.
[242] Welfer, D., Scharcanski, J., Kitamura, C., Pizzol, M. D., Ludwig, L.,
and Marinho, D. Segmentation of the optic disk in color eye fundus images
using an adaptive morphological approach. Computers in Biology and Medicine
40, 2 (February 2010), 124–137.
[243] Wong, I., Iu, L., Koizumi, H., and Lai, W. The inner segment/outer segment
junction: what have we learnt so far? Current Opinion in Ophthalmology 23, 3
(2012), 210–218.
[244] Wu, G., Wang, Q., Jia, H., and Shen, D. Feature-based groupwise registration
by hierarchical anatomical correspondence detection. Human Brain Mapping 33, 2
(2012), 253–271.
[245] Wyawahare, M., Patil, P., and Abhyankar, H. Image registration tech-
niques: An overview. Signal Processing, Image Processing and Pattern Recognition
2, 3 (2009), 11–28.
[246] Xiaohui, Z., and Chutatape, O. Detection and classification of bright lesions
in color fundus images. In Proceedings of IEEE International Conference on Image
Processing (Singapore, Singapore, October 2004), vol. 1, IEEE, pp. 139–142.
[247] Xu, J., and Chutatape, O. Comparative study of two calibration methods on
fundus camera. In Proceedings of International Conference of the IEEE Engineering
in Medicine and Biology Society (2003), vol. 1, IEEE, pp. 576–579.
BIBLIOGRAPHY 159
[248] Xu, L., and Luo, S. Support vector machine based method for identifying hard
exudates in retinal images. In IEEE Youth Conference on Information, Computing
and Images (Beijing, China, September 2009), pp. 138–141.
[249] Xue, Z., Wong, K., and Wong, S. Joint registration and segmentation of serial
lung ct images for image-guided lung cancer diagnosis and therapy. Computerized
Medical Imaging and Graphics 34, 1 (2010), 55–60.
[250] Yang, G., Stewart, C., Sofka, M., and Tsai, C.-L. Registration of chal-
lenging image pairs: Initialization, estimation and decision. IEEE Transactions on
Pattern Analysis and Machine Intelligence 29, 11 (2007), 1973 – 1989.
[251] Zagers, N., van de Kraats, J., Berendschot, T., and van Norren, D.
Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor
directionality. Applied Optics 41, 22 (2002), 4686–4696.
[252] Zhang, X., and Chutatape, O. Detection and classification of bright lesions in
color fundus images. In Proceedings of IEEE International Conference on Image
Processing (Singapore, October 2004), pp. 139–142.
[253] Zhang, Z. Flexible camera calibration by viewing a plane from unknown orienta-
tions. In Proceedings of International Conference on Computer Vision (Kerkyra,
Greece, September 1999), vol. 1, pp. 666—673.
[254] Zhang, Z., Yin, F., Liu, J., Wong, W., Tan, N., Lee, B., Cheng, J., and
Wong, T. Origa-light: An online retinal fundus image database for glaucoma
analysis and research. In Proceedings of International Conference of the IEEE
Engineering in Medicine and Biology Society (Buenos Aires, Argentina, August
2010), IEEE, pp. 3065–3068.
[255] Zheng, J., Tian, J., Deng, K., Dai, X., Zhang, X., and Xu, M. Salient
feature region: a new method for retinal image registration. IEEE Transactions
on Information Technology in Biomedicine 15, 2 (2011), 221–232.
[256] Zitova, B., and Flusser, J. Image registration methods: A survey. Image and
Vision Computing 21, 11 (2003), 977–1000.
160 BIBLIOGRAPHY
Appendix I
Spectral image composition
I.1 Registration method parameters
Table I.1: Method parameters for synthetic test set (RW= regularization weight,
SW = similarity weight, C = correlation parameter, UFR = update field regular-
ization, DFR = deformation field regularization)
Window size RW Scaling Alpha Corr Bins
CC 50 0.01 - - - -
CD2 50 0.01 0.01 - - -
MI 50 0.01 - - - 90
MS 50 0.1 0.01 - - -
RC 50 0.1 - 1 0.38 -
SAD 50 0.05 - - - -
SSD 30 0.05 - - - -
Alpha UFR DFR SW Max step
Demons 9 45 - - -
Log-demons - 45 45 5 5
Table I.2: Method parameters for semisynthetic test set (RW = regularization
weight, SW = similarity weight, C = correlation parameter, UFR = update field
regularization, DFR = deformation field regularization)
Window size RW Scaling Alpha Corr Bins
CC 50 0.05 - - - -
CD2 50 0.05 1 - - -
MI 15 0.1 - - - 15
MS 50 0.1 1 - - -
RC 10 0.01 - 1 0.38 -
SAD 10 0.1 - - - -
SSD 30 0.1 - - - -
Alpha UFR DFR SW Max step
Demons 5 20 - - -
Log-demons - 10 5 10 5
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162 I. Spectral image composition
I.2 Transformation parameter distributions used for sampling
(a) X2 coefficient. (b) Y 2 coefficient.
(c) X × Y coefficient. (d) X coefficient.
(e) Y coefficient. (f) Translation in X.
Figure I.1: Distributions for X-coordinate parameters.
I.2 Transformation parameter distributions used for sampling 163
(a) X2 coefficient. (b) Y 2 coefficient.
(c) X × Y coefficient. (d) X coefficient.
(e) Y coefficient. (f) Translation in X.
Figure I.2: Distributions for Y-coordinate parameters.
Appendix II
Histological parameter maps from spectral images
(a) RGB im-
age.
(b) Choroidal
haemoglobin.
(c) Choroidal
melanin.
(d) RPE melanin. (e) Macular pig-
ment.
(f) Retinal
haemoglobin.
Figure II.1: The parameter maps derived from image 1.
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Figure II.2: The parameter maps derived from image 1 after proposed illumi-
nation correction.
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Figure II.3: The parameter maps derived from image 1 after channel-wise illu-
mination correction.
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Figure II.4: The parameter maps derived from image 2.
168 II. Histological parameter maps from spectral images
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Figure II.5: The parameter maps derived from image 2 after proposed illumi-
nation correction.
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Figure II.6: The parameter maps derived from image 2 after channel-wise illu-
mination correction.
170 II. Histological parameter maps from spectral images
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Figure II.7: The parameter maps derived from image 3.
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Figure II.8: The parameter maps derived from image 3 after proposed illumi-
nation correction.
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Figure II.9: The parameter maps derived from image 3 after channel-wise illu-
mination correction.
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Figure II.10: The parameter maps derived from image 13.
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Figure II.11: The parameter maps derived from image 13 after proposed illu-
mination correction.
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Figure II.12: The parameter maps derived from image 13 after channel-wise
illumination correction.
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Figure II.13: The parameter maps derived from image 16.
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Figure II.14: The parameter maps derived from image 16 after proposed illu-
mination correction.
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Figure II.15: The parameter maps derived from image 16 after channel-wise
illumination correction.
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Figure II.16: The parameter maps derived from image 20.
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Figure II.17: The parameter maps derived from image 20 after proposed illu-
mination correction.
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Figure II.18: The parameter maps derived from image 20 after channel-wise
illumination correction.
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Figure II.19: The parameter maps derived from image 37.
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Figure II.20: The parameter maps derived from image 37 after proposed illu-
mination correction.
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