
Lappeenranta University of Technology
School of Engineering Science
Degree Program in Computational Engineering and Technical Physics

Tikhon Belousko

SOFTWARE FOR TRANSPORT ACCESSIBILITY ANALYSIS:
THE CASE OF MOSCOW

Examiners: Assoc. Prof. Arto Kaarna
Sen. Lec. Vitaly Bragilevsky

Supervisors: Assoc. Prof. Arto Kaarna
Sen. Lec. Vitaly Bragilevsky

ABSTRACT

Lappeenranta University of Technology
School of Engineering Science
Degree Program in Computational Engineering and Technical Physics

Tikhon Belousko

Software for Transport Accessibility Analysis: The Case of Moscow

2016

49 pages, 23 figures, 2 tables, 6 listings.

Examiners: Assoc. Prof. Arto Kaarna
Sen. Lec. Vitaly Bragilevsky

Keywords: web-based maps, GIS, transport accessibility, vector tiles

In this thesis the process of building a software for transport accessibility analysis is de-
scribed. The goal was to create a software which is easy to distribute and simple to use
for the user without particular background in the field of the geographical data analysis.
It was shown that existing tools do not suit for this particular task due to complex in-
terface or significant rendering time. The goal was accomplished by applying modern
approaches in the process of building web applications such as maps based on vector
tiles, FLUX architecture design pattern and module bundling. It was discovered that vec-
tor tiles have considerable advantages over image-based tiles such as faster rendering and
real-time styling.

PREFACE

First, I would like to thank my supervisors – Vitaliy Bragilevsky and Arto Kaarna for help
and support in course of choosing topic and writing this thesis.

Second, I am happy that I was able to do this work in Lappeenranta University of Tech-
nology, where I had personal space to work any time without being disturbed. I feel lucky
for working in Machine Vision Laboratory where people created the warmest atmosphere
to work in.

Finally, I would like to thank Vadim Smakhtin and Eduard Haiman for providing me with
topic for research. I think I learned a lot from this collaboration.

Lappeenranta, May 16th, 2016

Tikhon Belousko

CONTENTS

1 INTRODUCTION 7
1.1 Background . 7
1.2 Objectives and Delimitations . 7
1.3 Structure of the Report . 8

2 OVERVIEW 9
2.1 Geographical Analysis Software . 9

2.1.1 GRASS GIS . 9
2.1.2 QGIS . 10
2.1.3 CartoDB . 11
2.1.4 Summary . 11

2.2 Modern Web-based Maps . 12
2.3 Data Formats . 13

2.3.1 GeoJSON . 13
2.3.2 Geobuf . 14
2.3.3 MBTiles . 15

3 SOFTWARE REQUIREMENTS SPECIFICATION 16
3.1 Graphical User Interface . 16
3.2 Operating Environment . 18
3.3 System Features . 18

4 ARCHITECTURE 21
4.1 Client . 21
4.2 RESTful Server . 21
4.3 Tile Server . 24
4.4 Summary . 24

5 IMPLEMENTATION 26
5.1 Data Pre-processing . 26

5.1.1 Description of the Raw Data . 26
5.1.2 Extracting Points . 28
5.1.3 Extracting Lines . 28
5.1.4 Link Lines to Points . 29
5.1.5 Transformation to Vector Tiles 30
5.1.6 Results . 30

5.2 Web Interface . 31
5.2.1 FLUX Architecture . 31

4

5.2.2 Drawing Maps . 33
5.3 Tile Server . 34
5.4 RESTful Server . 35

6 INTEGRATION 36
6.1 Development Environment . 36
6.2 Deploying the Project . 37

7 CONCLUSION 38

REFERENCES 39

APPENDIX

5

ABBREVIATIONS AND SYMBOLS

API Application Programming Interface
FLUX Pattern for application state management
GIS Geographic Information System
JSON JavaScript Object Notation
MVC Model View Controller
REST Representational State Transfer
SRS Software Requirements Specification

6

1 INTRODUCTION

1.1 Background

In recent years, there have been many papers describing the process of the transport acces-
sibility analysis of the different regions. For effective transport network development this
kind of research becomes crucial. However, to construct visualization one should have
background in the field and be able to use special geographical data analysis software.

1.2 Objectives and Delimitations

The objective of this thesis is to design a software for transport accessibility analysis
which can be used by people without special background in the field. Another important
requirement is the simplicity of the distribution. Thus, software had to be implemented
as a web service which can be accessed with any modern browser. The performance of
the interface is crucial, hence the user would not be irritated or confused. The delays
related to the processing, rendering and data transfer should be minimized or illuminated
completely.

It is expected that the program will be useful for various groups of actors which were
divided in 5 categories such as state institution, logistics, real estate, science and citizens.
The whole list of the potential actors is presented on Table 1.

Table 1. Potential actors.

State Institutions Logistics Real Estate Science Citizens

Department of Complete
Overhaul of Moscow

Trading compa-
nies

Realtors Mapping Tourists

Department of Culture of
Moscow

Logistics compa-
nies

Post officers Ecology Travelers

Department for Housing,
Utilities and Amenities

Collector Logis-
tics

Sociology Guest workers

Department for Transport
and Road Infrastructure De-
velopment

Political science

Department for Urban De-
velopment and Construction

7

In contrast to other navigational services like Google Maps and Yandex Maps the soft-
ware is focused on the ability to evaluate current state of the transport accessibility in
different regions of Moscow. For the Department for Transport and Road Infrastructure
Development the service could be useful on the stage of the planning new infrastructures
like roads and bridges. For the Department for Urban Development and Construction the
application may provide an understanding of the accessibility level in certain location. In
the process of building new store or cinema the service would also help to visualize how
much time does it take to get to the location.

It is important to note, that this work does not contain any analysis of the transport acces-
sibility in Moscow. The main focus of the work is the development of the software for
analysis. It is also crucial that the software could be used for analysis of any other city,
the only thing that will change is the data processing step. The software is going to be
free and open-source.

The data for analysis was provided by Mathrioshka LLC, however, the algorithm of the
dataset construction is known and the same thing can be calculated for any other region.
The user interface prototype was also provided by the company.

1.3 Structure of the Report

The thesis is divided into 7 main sections. The first section is an introduction where the
background and objectives are discussed. Next section is devoted to the overview of the
tools which are currently available for geographical analysis, libraries for mapping in the
browser and description of the data formats used for storing geographical data. After that,
comes software requirements section where all of the mandatory features are listed. Then,
the architecture and implementation are described. Next, the development environment
and deployment process are outlined in the integration section. In the last section final
results are presented. There is also an appendix containing screen shots of the different
states of the application with the description.

8

2 OVERVIEW

This section is devoted to the description of the available geo-spatial data analysis tools.
Also, modern web-based maps libraries are considered. Finally, data formats used for
storing geographical data are reviewed.

2.1 Geographical Analysis Software

There are many tools available for analysis of the geo-spatial data. However, in this
section three different tools such as GRASS, QGIS, CartoDB will be described. Although,
mentioned tools may be considered as GIS, each of them provides different functionality
and oriented on different user audience.

2.1.1 GRASS GIS

Figure 1. GRASS GIS interface.

Originally, GRASS GIS [1] (see Figure 1) was developed by US Army Construction
Engineering Research Laboratories and has a history of the 30 years of the development.
It is a powerful and open-source tool with large amount of capabilities. First, GRASS
supports raster, voxel and vector analysis and visualization. In addition to that, there is a
toolbox for image processing, allowing to apply variety of filters, adjust histograms and
perform segmentation tasks. Finally, the program supports numerous formats such as
SQLite databases, PostgreSQL, mySQL, ODBC, CSV, satellite data, UAV images.

9

The application of the GRASS GIS includes various fields such as archeology, cartogra-
phy, geology, geophysics and meteorology, although in our case it does not suit for the
task. On of the biggest drawbacks is steep learning curve. The program requires extended
knowledge from the user in the field of the geographical analysis and programming. The
target audience are scientists and engineers. Another problem is complex installation
and distribution process. On Mac OS X, the installation requires six dependent libraries.
Moreover, the last version of the Mac OS X (10.11) is not supported.

2.1.2 QGIS

Figure 2. QGIS interface.

QGIS [2] is a free software for geographical data viewing, editing and analysis. The
software is licensed under GNU GPL. The development process started in 2002 with
extensive use of the Qt library. QGIS runs on multiple operating systems including Mac
OS X, Linux and Windows. The functionality of the QGIS can be extended via plug-ins
written in Python.

Although QGIS lacks some features of the GRASS GIS, it has simpler UI (see example on
Figure 2) and has a support of the latest Mac OS X (10.11). Moreover, there are web based
implementations of the QGIS such as QGIS Server and QGIS Web Client. On the other
hand, the interface is still requires some programming and geographical background.

10

Figure 3. CartoDB interface.

2.1.3 CartoDB

CartoDB [3] is a browser based open-source solution for mapping and analysis, which
provides simplest interface (example on Figure 3)in comparison to GRASS GIS and
QGIS. Indeed, CartoDB is a great tool for creating interactive maps for the user with-
out particular background in the field. Another huge plus of the platform is simplicity
of the distribution. Basically anyone with access to the Internet and modern browser can
view interactive map. However, for our purpose the performance was not sufficient and
basic filtering over the dataset was taking up to 10 seconds.

2.1.4 Summary

Among all of the presented solutions, simple user interface and access with browser
makes CartDB a good candidate for the task. Yet, there is an issue with rendering perfor-
mance which can hardly be solved. Second problem is the restrictions of the API making
it impossible to implement some of the functionality. Finally, it should be underlined that
CartoDB also requires knowledge of the SQL to perform advanced operations.

11

2.2 Modern Web-based Maps

In our application the choice of maps library should be made. In this section several
libraries for maps drawing are reviewed. The pluses and minuses for each of the libraries
are considered.

Google Maps Javascript API – one of the most popular libraries on the list [4].
Pluses:

• Maps styling.

• Supports different localization options.

• On of the most detailed maps across the world.

• StreetView.

• Support for mobile devices.

Minuses:

• Does not support vector tiles.

• Limited support for custom tiles.

• Free until exceeding 25,000 map loads per 24 hours for 90 consecutive days.

Leaflet.js – lightweight mobile-friendly interactive maps library [5].
Pluses:

• Small size – only 33 KB of JavaScript code.

• Relatively simple API.

• Support for custom tile sources.

• Support for multilayer maps.

• Considerable amount of plug-ins.

• Free and open-source.

Minuses:

• Does not support vector tiles.

• Lack of Russian localization.

Yandex Maps – best maps fidelity in Russia [6].
Pluses:

12

• Highly detailed maps of Russia.

• Support of Russian localization.

• No restrictions for map views.

Minuses:

• Does not support vector tiles.

• Does not support map styles.

• Does not support custom tiles rendering.

• Proprietary.

Mapbox GL JS – only library with whole vector tiles support [7].
Pluses:

• Supports vector tiles.

• Supports real-time maps styles.

• Supports custom tile source.

• Based on Leaflet API.

• Open source.

Minuses:

• Standard tile source has limitations on views per month.

• Not fully detailed map of Russia.

• Lack of Russian localization.

2.3 Data Formats

In the process of the development of the transport accessibility analysis tool several par-
ticular data formats were used. In this section utilized formats will be described.

2.3.1 GeoJSON

One of the most extensively used formats for encoding various types of geographical
data is GeoJSON which is actually a subset of JSON format [8]. GeoJSON can store

13

information about such objects as Point, MultiPoint, Line, LineString, MultiLineString,
Polygon. Geometric objects which have some additional properties are stored as Feature
objects. Moreover, Features can be organized in FeatureCollection. The example of the
location which represents center of Moscow can be encoded as described on Listing 1.

1 {

2 "type": "Feature",

3 "geometry": {

4 "type": "Point",

5 "coordinates": [37.61581, 55.74489]

6 },

7 "properties": {

8 "name": "The Center of Moscow"

9 }

10 }

Listing 1. GeoJSON data example.

GeoJSON is a text data format which results in larger size of the transfered data in com-
parison with binary formats. Although, usually on the server it can be compressed using
gzip [9] which has native support in modern browsers. Compression results in dramat-
ical size reduction up to 5 times in general case. However, it should be mentioned that
archiving adds small overhead in coding and decoding steps.

2.3.2 Geobuf

Geobuf is a compact data format for encoding geographical data. The format is based
on Protocol Buffers – language-neutral mechanism developed by Google for serializing
structured data [10]. Geobuf allows to perform lossless transformations of the GeoJSON
data into protocol buffers. There are several important advantages like faster compression
in comparison to even native JSON parse and stringify methods. Another valuable
attribute of this format is compact size, which is 8 times smaller than raw GeoJSON
and 2 times smaller than GeoJSON after applying gzip compression. The comparison of
GeoJSON and Geobuf in terms of the size is presented in Table 2.

14

Table 2. Sample compression sizes [11].

normal gzipped

us-zips.json 101.85 MB 26.67 MB

us-zips.pbf 12.24 MB 10.48 MB

idaho.json 10.92 MB 2.57 MB

idaho.pbf 1.37 MB 1.17 MB

2.3.3 MBTiles

Web maps may contain million of tiles, hence there is clearly a problem in storing and
managing such an enormous amount of data. To overcome the problem of handling so
many tiles, Mapbox team has developed an open-source data format for storing tiles in a
single SQLite data base.

SQLite is claimed to be ideal for the purpose of storing tiles since it is available on all of
the platforms including mobile devices. Each .sqlite data base is self-contained and
does not require any special setup, which results in high portability.

Another great feature of the MBTiles format is the ability to effectively store duplicate
tiles. As an example the tile located in the middle of the ocean can be considered (see
Figure 4). It is clear that there is considerable amount of tiles containing solid blue color.
Taking in account all of the zoom levels it can lead to millions of the duplicates. However,
MBTiles can reference thousands of tiles to the same image without the need for loading
all look-alike pictures.

Figure 4. Example of the tile duplicate which is a part of the ocean.

Important to note that MBTiles may be used to store both image-based tiles encoded in
PNG or vector tiles encoded in Protocol Buffers. This is a crucial detail since vector tiles
allow real-time styling and provide smoother zooming.

15

3 SOFTWARE REQUIREMENTS SPECIFICATION

The software development process starts with writing a software requirements specifica-
tion (SRS) so that it serve as an agreement between client and contractor about the set of
the features which need to be implemented. Another important purpose of this document
is to create understanding of the features with higher and lower priority, thus developer
would know what should be implemented in the first version of the product and what
could be added later.

In this section the simplified version of the SRS will be presented which includes descrip-
tion of the user interface, operating environment, and set of system features with detailed
explanation.

3.1 Graphical User Interface

The interface design was provided by Mathrioshka LLC, which includes set of different
states of the application with small description provided. The interface should be imple-
mented to work in a browser with use of HTML 5 standard. The whole program should be
implemented as single page application, which means that all changes in the state of the
application happen without page reload. The interface have to be responsive and support
screen sizes starting from 800× 600 pixels.

The manipulation of the data within the application is performed utilizing main control
elements. Most important elements are listed below:

1. Mode selector is needed for switching from general overview to location-wise anal-
ysis and placed in the left bottom corner of the screen.

Figure 5. Mode selector.

16

2. Overview mode selector switches different types of overview analysis tools. For
some views it has embedded slider used for filtering. The component is positioned
on the right side of the screen.

Figure 6. Overview mode selector.

3. Transport filter is a set of checkboxes where every checkbox represents a certain
type of transport. This component is placed on top of the screen.

Figure 7. Transport filter.

4. Current location indicator shows what point is selected on the map at this moment
and also allows to clear current selection. The component is located on the right
side of the window.

Figure 8. Current location indicator.

17

5. Map is the most important element of the interface which is presented on every
screen of the application and the only thing that changes is the content of the map.
This component can show points, areas, routes and also provides functionality for
selecting particular locations for analysis.

Figure 9. Map.

3.2 Operating Environment

The software is developed on x86 based computer using Mac OS X 10.11 operating sys-
tem. The computer hardware is featured 8 GB 1600 MHz DDR3 RAM and 1.6 GHz
Intel Core i5 processor. The client should operate on any system which is able to install
browsers like Google Chrome 49.0, Safari, Firefox or Microsoft Edge. Hence it works
well on Windows, Mac OS X and Linux. As for the server, it was tested to work on
Ubuntu 14.04 and 512 MB RAM. Running the server side on Windows was not tested.

3.3 System Features

Use case 1: Show all directions from specific location to all other points.

Primary actor: User

Main scenario:

18

1. The user enters “Location analysis” mode.

2. The user selects specific point on the grid.

3. The system displays all routes coming from the selected point to all other
points on the grid. The routes are colored by the type of transport. The line
which represents part of the route has a width depending on weight of the
current line. The weight is calculated as occurrence of this line in all possible
routes. More precisely, if two different routes are going over particular line
it means that the weight of this line will be equal to two. In other words
the wider the line, the more this line is used in all other directions (routes)
calculated for all points on the grid to all other points.

4. The user is able to filter lines by transport type.

5. The user is able to switch color mode from coloring by transport to coloring
by speed.

Use case 2: Show prevailing transport

Primary actor: User

Main scenario:

1. The user enters “General overview” mode.

2. The user selects “Prevailing transport” option.

3. The grid of markers is displayed. Each marker is associated with one point on
the grid. The markers are colored accordingly to certain transport type. Pre-
vailing transport is defined by calculating total time spent in particular trans-
port when moving from current points to all other points on the grid.

4. The user is able to filter markers by transport type.

Use case 3: Most accessible locations

Primary actor: User

Main scenario:

1. The user enters “General overview” mode.

2. The user selects “Most accessible locations” option.

3. The grid of markers is displayed. Each marker is associated with one point
on the grid. The markers are colored accordingly to accessibility level of the
certain point. Accessibility is defined as total time spent in transport when user
moves from current points to all other points on the grid. Once accessibility is
calculated for all points the value is scaled to 0 to 100%.

19

4. The user is able to filter markers by accessibility level from 50% to 100%.

Use case 4: Least accessible locations

Primary actor: User

Main scenario:

1. The user enters “General overview” mode.

2. The user selects “Least accessible locations” option.

3. The grid of markers is displayed. Each marker is associated with one point
on the grid. The markers are colored accordingly to accessibility level of the
certain point. Accessibility is defined as total time spent in transport when user
moves from current points to all other points on the grid. Once accessibility is
calculated for all points the value is scaled to 0 to 100%.

4. The user is able to filter markers by accessibility level from 0% to 50%.

Comments: This feature is very similar to 3rd use case except the color scheme is
different and filtering is preformed within other percentage range.

Use case 5: Fastest parts of the routes

Primary actor: User

Main scenario:

1. The user enters “General overview” mode.

2. The user selects “Fastest parts of the routes” option.

3. All of the lines (routes) are displayed which has speed in a range from 20 km/h
to 40 km/h. The lines are colored differently from yellow to green depending
on the speed.

4. The user is able to filter lines by speed using slider control.

Use case 6: Slowest parts of the routes

Primary actor: User

Main scenario:

1. The user enters “General overview” mode.

2. The user selects “Slowest parts of the routes” option.

3. All of the lines (routes) are displayed if the speed is in the range from 0 km/h to
20 km/h. The lines are colored differently from dark red to light red depending
on the speed.

4. The user is able to filter lines by speed using slider control.

20

4 ARCHITECTURE

4.1 Client

The first significant part of the application is the client which will be the interface for the
user to manipulate map and data. The core functionality of the client is follows:

1. Panning and zooming map.

2. Selecting a point on the map to build a whole graph of the routes needed to move
from selected point to all other points of the city. All of the routes are parametrized
by color and width. These parameters are calculated utilizing information about
transport type specified in this point and the coefficient which is defined as number
of times this particular line is used in all of the directions calculated from this point.

3. Showing prevailing transport in all points of the grid. Prevailing transport is defined
by calculating total time spent in each transport type. The maximum of all of the
values will be taken as prevailing.

4. Showing fastest and slowest roads. The map should also have interactive slider
which will be used to filter roads within particular speed range.

5. Showing most accessible points on the grid. The transport accessibility coefficient
of the point can be defined as total time spent in a transport while moving from
selected point to all other points. All of the values after that are scaled to be between
0 and 1. This view should also have a filter by transport accessibility coefficient.

For the reason of the easy distribution it was selected to use browser based client. Thus,
client is implemented as single-page web application, which supports all modern browsers
such as Safari, Google Chrome, Firefox and Microsoft Edge.

4.2 RESTful Server

For serving data to the client it was selected to utilize RESTful [12] architectural style,
which represents HTTP approach to read, update and delete data. Due to the fact, that our
application will only read data and not modify it, then we will only need to describe all of

21

the API resources for data access, where data will be encoded in GeoJSON [8]. For our
application following resources were selected:

• GET /points

The returned points are described as FeatureCollection of points with following
properties (see also Listing 2):

name is a string;

id is a unique identifier of the point encoded as string;

prevalingTransport could be “BUS”, “TROLLEYBUS”, “TRAM”,
“SUBWAY”, “COMMUTER_TRAIN”, “SHARE_TAXI”, “DRIVING”,
“WALKING”.

accessibility is a floating number in range from 0 to 1.

1 {

2 "type": "FeatureCollection",

3 "features": [

4 "type": "Feature",

5 "geometry": [0,0],

6 "properties": {

7 "id": 0,

8 "name": "Location Name",

9 "prevailingTransport": "SUBWAY",

10 "accessibility": 0.6

11 }

12]

13 }

Listing 2. Points response example

• GET /lines?point_id

This endpoint is parametrized by point_id which means that if point_id is
presented then the client will receive only those lines which are associated with
specified point. On the other hand, if no point_id is not specified then all lines
are returned.

The properties of the lines can be describe as follows (see also Listing 3):

id is a unique identifier of the line encoded as string;

22

travelMode is on of the “BUS”, “TROLLEYBUS”, “TRAM”,
“SUBWAY”, “COMMUTER_TRAIN”, “SHARE_TAXI”, “DRIVING”, or
“WALKING”.

weight number of times this line was used in all of the routes across all of the
directions’ set.

duration time needed to travel this line in seconds.

distance total length of this line in meters.

1 {

2 "type": "FeatureCollection",

3 "features": [

4 "type": "Feature",

5 "geometry": [[0,0], [0,0]],

6 "properties": {

7 "id": 0,

8 "width": 1,

9 "weight": 200

10 "duration": 100,

11 "distance": 400

12]

13 }

14 }

Listing 3. Lines response example

It is important to note that we could also add such filtering parameters as speed and
travelMode, but it was revealed during set of experiments that filtering on server side
can take significant amount of time which is up to few hundreds seconds. Hence, this
parameters were dropped and filtering is performed on the client.

Suggested architecture implies that client will perform rendering using GeoJSON data,
although it was investigated that for our purposes rendering becomes rather slow and
after series of optimizations the best rendering time was close to 3 seconds. The next
improvement to the current scheme will be adding tile server which can significantly
speed up rendering time.

23

4.3 Tile Server

Graphical map tiles are usually rectangular images in raster or vector format. Most of the
popular map library providers utilize tiles [13, 14] for rendering their maps. Raster tiles
are basically images which do not allow to change color of roads and landscapes. In con-
trast, vector tiles are not just images but structures which contain geometries and metadata
such as roads, rivers, places in special compact format. Vector tiles only rendered when
requested by the client.

There are several benefits of using vector tiles. The first advantage is a small size of the
tiles, which allows rendering of high resolution and caching. The second advantage is the
ability to change style of the layers: adjust colors of the geometry, line width, set borders
to polygons, set background patterns. Finally, maps based on vector tiles allow smooth
transitions between zoom levels. Although, the cost of usage of the vector tiles is the
lack of compatibility with older browsers. At the moment most of the libraries demand
WebGL support and latest browser versions which are Chrome 49.0, Safari 9, Internet
Explorer 10 and higher, Microsoft Edge 13 [15, 16]. Another drawback of tiles usage is
that geometry can not be transformed in real-time and rendering small amounts of data is
actually slower than GeoJSON approach.

Switching from GeoJSON server to vector-tile server resulted in considerable speed im-
provement. If previously rendering time took around 3 seconds and amount of transfered
data was around 1.8 Mb, then with tile server rendering takes less than a second and size
of the data transfered to the client is around 100 KB.

4.4 Summary

Although, tiles suit well for rendering considerable amounts data, for points rendering it
was decided to utilize GeoJSON data. The final architecture is illustrated on Figure 10
and can be described as follows:

1. Web-based client supporting latest browsers.

2. GeoJSON RESTfull server providing points data.

3. Tile server providing data about lines.

24

Web-based Client

GeoJSON Server Tile Server

GET /points GET /lines/:id

Figure 10. Final system architecture.

25

5 IMPLEMENTATION

5.1 Data Pre-processing

The work was started by preparing the data, so the servers could work with it the most
efficient way. This section is devoted to the description of the initial data and how it
was processed. The section also involves comparison of deferent approaches of data
structuring and summarizing of the results.

5.1.1 Description of the Raw Data

The provided original data is collected using Google Directions API [17] applying fol-
lowing algorithm. First, on top of the city the grid of points was constructed using
WGS 84 [18] coordinate system. Second, for every pair of points the directions were
calculated using HTTP request to the API. Returned data is encoded in JSON format
written to a text file. As result raw data is a text file where every line is a JSON object
received from Google Directions API. The process of data collection is demonstrated on
Figure 11.

Figure 11. The process of the collecting data.

In fact there is also a meta information such as object id, job status, waypoints order,
warnings, but if we simplify and leave only important fields that we will need in pre-
processing step, then JSON object could look like this:

26

1 {

2 "start_lat": 55.726497,

3 "start_long": 37.338183,

4 "end_lat": 55.886619,

5 "end_long": 37.579683,

6 "data": {

7 "routes": [{

8 "legs": [{

9 "distance": { "text": "45.1 km", "value": 45093 },

10 "end_address": "Novgorodskaya ulitsa...",

11 "start_address": "Razdorovskaya, Romashkovo...",

12 "steps": [{

13 "travel_mode": "DRIVING",

14 "polyline": { "points": "wicsI{u{bFs@rDC" },

15 "distance": { "text": "4.2 km", "value": 4166 },

16 "duration": { "text": "7 mins", "value": 438 }

17 }, ...]

18 }, ...]

19 }, ...]

20 }

21 }

Listing 4. Google Directions API simplified response example

As it can be seen from simplified response example, the object contains coordinates of the
start and end point, array routes which consists of legs. Legs are parts of the route be-
tween waypoints. Since in our queries we do not have middle waypoints, the routes array
will have only one element in all cases. Each leg contains total distance information about
start and end location. Also, inside legs there are steps, each step is a part of route
which can be described by single command and type of transport, for example “move
forward by bus” is clearly a step. Step keeps information about its distance and duration
which will be needed to complete this step. Other important things are travel_mode,
which indicates what type of transport is used in this step, and polyline, which is es-
sentially a set of points of points encoded using lossy Google’s algorithm that converts
array of float numbers, first, to binary representation, then to decimal integers and, finally,
to string using ASCII codes [19].

27

5.1.2 Extracting Points

The data collection was initiated before by Mathrioshka LLC thus the first task was ex-
tracting grid points from the raw data. This step was performed utilizing set script written
in Python, which is reading file line by line and extracting starting location point from the
data. The idea of the algorithm is presented in Listing 5. As can be seen from the listing,
Geohash [20] standard was used to prevent repetitions of the points. Thus, coordinates
could be mapped to strings which can be utilized as ids in points dictionary. In our imple-
mentation for encoding python-geohash library was used [21]. For storing, the result of
the algorithm the pickle [22] format was selected, since it has quite simple interface and
built into Python standard library.

1 points = []

2

3 for line in jsonfile:

4 json_obj = json.loads(line)

5 slat = json_obj[’start_lat’]

6 slng = json_obj[’start_long’]

7 point = {

8 ’point_id’: geohash.encode(slat, slng),

9 ’lat’: slat,

10 ’lng’: slng

11 }

12 points[point[’point_id’]] = point

Listing 5. Points extraction

5.1.3 Extracting Lines

Another important task was to extract lines from the file, but first to make experiments
faster it was decided to convert data to more convenient format hence it would be easier
to experiment and process data more effectively. Once we have data extracted, we will
convert it to the set of GeoJSON files and after that generate vector tiles which will be
served by our tile server.

For intermediate lines representation the CSV file format was selected due to its sim-
plicity and availability of the encoders and decoders inside standard Python library. The
algorithm is presented in Listing 6. First, we initialize table of lines which will contain
all unique lines encoded in raw data. Second, we read file object by object. Each object

28

is then decomposed into set of lines using lines_from_json() function. Once lines are
extracted the assertion is performed to check whether the line was already met before. If
the answer is no, then we initialize line, otherwise we just sum distance and duration and
increase the weight by one. The distance, duration and weight are necessary to compute
line width, speed, prevailing transport and accessibility of the point.

1 # Table of lines

2 T = {}

3

4 with open(DATA_PATH) as jsonfile:

5

6 for json_str in jsonfile:

7 json_obj = json.loads(json_str)

8

9 for line in lines_from_json(json_obj):

10 line_hash = line[’line_hash’]

11

12 if line_hash not in T:

13 del line[’line_hash’]

14 T[line_hash] = line

15 T[line_hash][’line_id’] = len(T)

16 else:

17 T[line_hash][’weight’] += 1

18 T[line_hash][’distance’] += line[’distance’]

19 T[line_hash][’duration’] += line[’duration’]

Listing 6. Lines conversion.

5.1.4 Link Lines to Points

Since we have our data extracted, now it is important to have references from lines to
points. The first approach was to store in the CSV file containing lines also point identi-
fiers thus in case we would need to get all lines for given points we would just go through
the lines table an select only those lines which have ID of the point. It was revealed that
this approach is quite slow since each line can be associated with up to 2000 points and
it would take O(N ×M) time complexity to get all lines where N is the size of the lines
table and M the length of the array points. The second approach was to store lines identi-
fiers inside points table what resulted in significant improvement and we could access all
lines for O(N). In combination with Pandas library [23], which is used for storing lines
table in memory, method with storing lines in points table results in even more consider-

29

able speed improvement. On the other hand, the points dictionary grew in size and started
to occupy more than 8 GB of the disc space. To overcome this issue the shelve [24] data
type was chosen. Shelve is a simple file-based database with object-like interface, which
is fully compatible with pickle. Thus without serious code modifications the memory
usage was dropped from 8 GB to 200 MB.

5.1.5 Transformation to Vector Tiles

Once the data is transformed to convenient form, the next step is convert it to vector tiles.
For this purpose the tippecanoe [25] tool was selected which is developed by Mapbox
team as open source project. The drawback of this instrument is that to generate tiles
with several layers one would need to have separate GeoJSON file for each tile layer. In
our application we will need 128 tile layers to render all weights, colors and also apply
filtering. Thus, we first need to generate 128 GeoJSON files for each point and then we
could easily convert set of GeoJSON files to tiles.

5.1.6 Results

The resulting preprocessing scheme is demonstrated on Figure 12. First, we transform
raw data to intermediate state which is shelve of points with links to lines and table of
lines with properties. Next, for each point we generate a folder which contains GoeJSON
file describing set of lines associated with given point (all directions from one point on
the grid to others), then GeoJSON files are transformed to vector tiles. In course of the
preprocessing there were other approaches, for instance when rendering was not utilizing
vector tiles, but just GeoJSON files there were an improvement which allowed merging
adjacent lines together to reduce the size of the occupied space, but once the the imple-
mentation started to be based in MBTiles lines merging was rejected. It is important to
note that initially the tiles generation was planned to implement in real time, but it was
discovered that real-time processing takes significant amount of time which results in
delays in server responses.

30

Raw Data

Pre-processed
Data

GeoJSON
for each layer

MBTiles

generate-data.py

generate-layers.py

tippecanoe

Figure 12. The process of the data transformation.

5.2 Web Interface

In this section the main architectural pattern used for building the interface is described in-
cluding diagrams showing hierarchy of components, the selection of map drawing library
is made.

5.2.1 FLUX Architecture

In the process of the development of the web interface the crucial thing is the state man-
agement. In 2010 the Backbone.js [26] library was introduced which was supposed to
solve the problem of the state management often applying MVC [27] pattern. Although,
on large projects there where a lot of cross-dependencies and this paradigm resulted to be
hard to maintain. Later in 2013 Facebook Inc. introduced component based React [28]

31

library which allowed to think of the interface as function which maps state to represen-
tation. Although, React was implemented only as library for creating views and was not
meant to solve problem of data state management in the application it still had significant
success. In 2014 Facebook Inc. suggested FLUX [29] pattern which gained significant
popularity. The idea behind FLUX can be described as follows: data comes from the store
to the view which renders it, the user can fire an action, for example by pressing a button,
the action is goes to the dispatcher which tells to all of the stores that certain action was
fired. The stores modify the data and broadcast it to all of the views which are subscribed
to this store. All of the views that received new data gets re-rendered. The illustration of
this process can be seen on Figure 13.

Action Dispatcher Store View

Action

Figure 13. FLUX architecture.

Eventually FLUX evolved in library called Redux [30], which introduced few important
modifications such as suppressing dispatcher, using pure functions for data modifications,
using only single store where all of the data is accumulated, introducing middlewares
for managing side effects. All this features create easier debugging experience and clear
separation of concerns. Thus, for the development Redux and React libraries were chosen.

React components were organized as it is illustrated on Figure 14 accordingly to the ap-
proach of presentational and container components [31]. The main presentational com-
ponent is App which is the only one connected to the store directly. All other compo-
nents are “dumb” and receive data as well as actions which are needed to be fired from
App. The SpeedMapButton represents a switch for choosing between coloring lines
by speed and by the type of transport. The Map components accumulates all of the logic
related to drawing maps. The TransportFilter shows what kind of transport should
be displayed on the map. The LocationSelector shows information about selected
location. The ModeSelector switches between global overview and location informa-
tion. The OverviewModeSelector is needed to switch states while being in overview
mode. The ReactSlider is a third-party component utilized for filtering by transport
speed and accessibility coefficient. The positioning of all of the components is illustrated
on Figure 15.

32

Store

App

SpeedMapButton TransportFilter LocationSelector Map ModeSelector OverviewModeSelector

TransportCheckbox Zoom ReactSlider

Figure 14. Structure of the components

5.2.2 Drawing Maps

As it was described before, there are several the most famous libraries for drawing maps
such as Yandex Mapx, Google Maps, Leaflet.js and Mapbox GL JS. To determine which
library will suite better for our program, the needed functionality should be defined. The
most important features are:

1. Panning and zooming.

2. Support vector tiles.

3. Rendering map from external data source.

4. Support of the vector tiles styling of such properties as line widths, line colors.

5. Ability to render icons at certain location.

6. Support for map styling.

7. Uses open standards.

Among all of the libraries the most suitable is Mapbox GL JS which supports all of the
listed features. Although some part of the free Mapbox toolkit has limitations, for example
free subscription plan allows not more than 50000 map views per month, but for our
project that was enough. Moreover, later the tile source can be replaced with completely

33

3

1

4

2

5

5

3

6

7

Figure 15. Components positioning. 1 – SpeedMapButton; 2 – TransportFilter; 3 –
Zoom; 4 – LocationSelector; 5 – ModeSelector; 6 – OverviewModeSelector; 7 –

ReactSlider.

free solution and hosted locally. Important to note that Mapbox uses OpenStreeMap for
geographical data provider which is free to use. As for Google Maps and Yandex Maps,
they were not supporting maps from external data sources which is needed for rendering
custom vector tiles. Although Leaflet is a very popular choice for map drawing, it is not
suitable for our particular application since it does not support vector tiles rendering.

5.3 Tile Server

For rendering all of the directions the tile server would need to be chosen. The tasks in
our application for this component are quite trivial:

34

1. Fast.

2. Support of the MBTiles format.

3. Easy to setup and configure.

4. Free and open-source.

The great candidate for this role was Tessera tile server [32] which is written in Node.js
and based on Tilelive interface (developed by Mapbox). Moreover, Tessera is really easy
to install using npm package manager. The configuration file should be written in JSON
format and can be easily generated from our data. The only needed parameters are source
path to the data and the URL on which particular vector tiles will be available.

5.4 RESTful Server

For the server implementation Python language and its ecosystem were utilized. Since
Python was already used for pre-processing to reduce the amount of different languages it
was decided to continue to work with Python for server implementation as well, however
the web framework for serving data should be chosen. Two main options were considered
such as Flask [33] and Bottle [34]. The API has only one resource for serving points
which makes server very simple. However, both Flask and Bottle are suitable for this
task, the Bottle was chosen since it is simpler and does not have any other dependencies.
On the other hand, Flask is more powerful and provides wider set of tools but for this
particular task it is redundant.

35

6 INTEGRATION

One of the most important aspects of the development process is the set of tools which
were used. In this section the particular methods and tools will be described, which were
applied on course of making this program. Another part will be devoted to the deployment
process.

6.1 Development Environment

Right set of tools can significantly speed up development process by lowering probability
of making an error, provide extensions to the language which may help to structure code
for higher maintainability. In our project tools may be split into two categories, namely
client-side and server-side utilities.

When JavaScript was used for simple interactions on the HTML page, the development
of the client code was quite straight-forward: create .js file, write some code, include
the script to the index.html. Unfortunately, when applications started to become more
complex it was clear that the code has to be split into reusable modules. This problem
was solved in ES2015 JavaScript standard [35] which introduced the concept of modules,
however, now only small percent of the browsers support new standard. To solve the
problem with compatibility the Webpack [36] was chosen. Webpack is a module bundler
which allows split the code into different files. Once the project would need to be built
Webpack is going through all of the imports and packing all modules in one solid bundle
which can be easily included into HTML page.

One of the core concepts of Webpack is the loaders. The loader is a transformation of
the file. There are pre-installed loaders such as JavaScript loader for bundling JavaScript
files together. Loaders can be chained allowing to use modern JavaScript syntax that can
be transformed into normal JavaScript. Webpack works not only with JavaScript, but also
with CSS so it becomes possible to include CSS files in JavaScript and use plug-ins like
“autoprefixer” to write cleaner styles.

It is a common problem when different projects use different versions of the same pack-
age. To overcome this issue on the server venv [37] was used. Venv allows to create virtual
environment where you can locally install all needed packages. Virtual environments are
fully isolated which illuminates the problem of the dependencies version conflict.

36

6.2 Deploying the Project

To quickly run project in development environment the make tool was used. There is
a Makefile which runs all needed commands to start up three servers on different ports.
However, to run project on remote server five steps need to be performed:

1. Install all dependencies.

2. Build client code.

3. Install proxy server such nginx [38] and wire up tile server and API server ports
with it to make it accessible on 80 port.

4. Setup nginx for serving statics (HTML, JavaScript and assets) on 80 port.

5. Start the tile server and the API server.

37

7 CONCLUSION

The system for transport accessibility analysis of Moscow was developed, which allows
to explore regions of the city. The program allows to browse locations, see and examine
what are the most used roads when traveling from particular region to all other locations of
the city. The service provides global overview of the city in terms of prevailing transport
for each region, fastest and slowest roads. Accessibility level is calculated for each region
allowing to filter and discover most accessible and least accessible parts of the city.

The software is developed applying cutting-edge techniques in the web development what
resulted in highly responsive systems and helped to achieve insignificantly small delays.
The reliability of the system was proved by test driven development approach. All of the
provided software requirements were satisfied.

38

REFERENCES

[1] GRASS GIS: General Overview. [online]. Available: https://grass.osgeo.
org/documentation/general-overview/. [Accessed: May 1, 2016].

[2] QGIS. [online]. Available: http://qgis.org/en/site/index.html.
[Accessed: May 1, 2016].

[3] CartoDB. [online]. Available: https://github.com/CartoDB/cartodb.
[Accessed: May 1, 2016].

[4] Google Maps JavaScript API. [online]. Available: https://developers.

google.com/maps/documentation/javascript/. [Accessed: April 28,
2016].

[5] Leaflet – an open-source JavaScript library for mobile-friendly interactive maps.
[online]. Available: http://leafletjs.com/. [Accessed: April 28, 2016].

[6] Maps API – Yandex Technologies. [online]. Available: https://tech.

yandex.ru/maps/. [Accessed: April 28, 2016].

[7] Render Mapbox styles in the browser using JavaScript and WebGL. [online]. Avail-
able: https://github.com/mapbox/mapbox-gl-js. [Accessed: April
26, 2016].

[8] Allan Doyle Sean Gillies Tim Schaub Christopher Schmidt Howard Butler, Mar-
tin Daly. The GeoJSON Format Specification. [online]. Available: http://

geojson.org/geojson-spec.html, 2008. [Accessed: April 19, 2016].

[9] The gzip home page. [online]. Available: http://www.gzip.org/. [Accessed:
May 1, 2016].

[10] Protocol Buffers. [online]. Available: https://developers.google.com/
protocol-buffers/. [Accessed: May 1, 2016].

[11] Geobuf. [online]. Available: https://github.com/mapbox/geobuf. [Ac-
cessed: May 1, 2016].

[12] Representational state transfer. [online]. Available: https://en.wikipedia.
org/wiki/Representational_state_transfer, 2016. [Accessed:
April 19, 2016].

[13] Map Types: Tile Coordinates. [online]. Available: https://developers.

google.com/maps/documentation/javascript/maptypes?hl=

en#TileCoordinates, 2016. [Accessed: April 19, 2016].

39

https://grass.osgeo.org/documentation/general-overview/
https://grass.osgeo.org/documentation/general-overview/
http://qgis.org/en/site/index.html
https://github.com/CartoDB/cartodb
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/
http://leafletjs.com/
https://tech.yandex.ru/maps/
https://tech.yandex.ru/maps/
https://github.com/mapbox/mapbox-gl-js
http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html
http://www.gzip.org/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/mapbox/geobuf
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://developers.google.com/maps/documentation/javascript/maptypes?hl=en#TileCoordinates
https://developers.google.com/maps/documentation/javascript/maptypes?hl=en#TileCoordinates
https://developers.google.com/maps/documentation/javascript/maptypes?hl=en#TileCoordinates

[14] Vector Tiles. [online]. Available: https://www.mapbox.com/

vector-tiles/. [Accessed: April 19, 2016].

[15] Google Maps JavaScript API: Browser Support. [online]. Available:
https://developers.google.com/maps/documentation/

javascript/browsersupport, 2016. [Accessed: April 20, 2016].

[16] Troubleshooting: Browser support. [online]. Available: https://www.

mapbox.com/help/mapbox-browser-support. [Accessed: April 20,
2016].

[17] Google Maps Directions API. [online]. Available: https://developers.

google.com/maps/documentation/directions/, 2016. [Accessed:
April 20, 2016].

[18] World Geodetic System. [online]. Available: https://en.wikipedia.org/
wiki/World_Geodetic_System, 2016. [Accessed: April 20, 2016].

[19] Google Maps Directions API: Encoded Polyline Algorithm Format. [online]. Avail-
able: https://developers.google.com/maps/documentation/

utilities/polylinealgorithm, 2016. [Accessed: April 20, 2016].

[20] Geohash. [online]. Available: https://en.wikipedia.org/wiki/

Geohash, 2016. [Accessed: April 21, 2016].

[21] python-geohash 0.8.5. [online]. Available: https://pypi.python.org/

pypi/python-geohash/0.8.5. [Accessed: April 21, 2016].

[22] 12.1. pickle — Python object serialization. [online]. Available: https://docs.
python.org/3/library/pickle.html. [Accessed: April 25, 2016].

[23] Python Data Analysis Library. [online]. Available: http://pandas.pydata.
org/. [Accessed: April 21, 2016].

[24] 12.3. shelve — Python object persistence. [online]. Available: https://docs.
python.org/3/library/shelve.html. [Accessed: April 25, 2016].

[25] Build vector tilesets from large collections of GeoJSON features. [online]. Avail-
able: https://github.com/mapbox/tippecanoe. [Accessed: April 25,
2016].

[26] Backbone.js. [online]. Available: http://backbonejs.org/. [Accessed:
April 25, 2016].

40

https://www.mapbox.com/vector-tiles/
https://www.mapbox.com/vector-tiles/
https://developers.google.com/maps/documentation/javascript/browsersupport
https://developers.google.com/maps/documentation/javascript/browsersupport
https://www.mapbox.com/help/mapbox-browser-support
https://www.mapbox.com/help/mapbox-browser-support
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/
https://en.wikipedia.org/wiki/World_Geodetic_System
https://en.wikipedia.org/wiki/World_Geodetic_System
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://pypi.python.org/pypi/python-geohash/0.8.5
https://pypi.python.org/pypi/python-geohash/0.8.5
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
http://pandas.pydata.org/
http://pandas.pydata.org/
https://docs.python.org/3/library/shelve.html
https://docs.python.org/3/library/shelve.html
https://github.com/mapbox/tippecanoe
http://backbonejs.org/

[27] Client-side MVC with Backbone.js. [online]. Avail-
able: http://www.slideshare.net/iloveigloo/

clientside-mvc-with-backbonejs. [Accessed: April 25, 2016].

[28] React: A Javascript Library for Building User Interfaces. [online]. Available:
https://facebook.github.io/react/index.html. [Accessed: April
25, 2016].

[29] Flux: Application Architecture for Building User Interfaces. [online]. Available:
https://facebook.github.io/flux/. [Accessed: April 25, 2016].

[30] Predictable state container for JavaScript apps. [online]. Available: https://

github.com/reactjs/redux. [Accessed: April 25, 2016].

[31] Dan Abramov. Presentational and Container Components. [on-
line]. Available: https://medium.com/@dan_abramov/

smart-and-dumb-components-7ca2f9a7c7d0#.2vyf9ikcr, 2015.
[Accessed: April 26, 2016].

[32] Tessera: A tilelive-based tile server. [online]. Available: https://github.

com/mojodna/tessera. [Accessed: April 26, 2016].

[33] Flask (A Python Microframework). [online]. Available: http://flask.

pocoo.org/. [Accessed: May 16, 2016].

[34] Bottle: Python Web Framework. [online]. Available: http://bottlepy.org/
docs/dev/index.html. [Accessed: May 16, 2016].

[35] ECMAScript 2015 Language Specification. [online]. Available: http://www.
ecma-international.org/ecma-262/6.0/. [Accessed: May 16, 2016].

[36] Webpack: Module Bundler. [online]. Available: https://webpack.github.
io/. [Accessed: May 16, 2016].

[37] venv – Creation of virtual environments. [online]. Available: https://docs.
python.org/3/library/venv.html. [Accessed: May 16, 2016].

[38] nginx. [online]. Available: http://nginx.org/en/. [Accessed: May 16,
2016].

41

http://www.slideshare.net/iloveigloo/clientside-mvc-with-backbonejs
http://www.slideshare.net/iloveigloo/clientside-mvc-with-backbonejs
https://facebook.github.io/react/index.html
https://facebook.github.io/flux/
https://github.com/reactjs/redux
https://github.com/reactjs/redux
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0#.2vyf9ikcr
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0#.2vyf9ikcr
https://github.com/mojodna/tessera
https://github.com/mojodna/tessera
http://flask.pocoo.org/
http://flask.pocoo.org/
http://bottlepy.org/docs/dev/index.html
http://bottlepy.org/docs/dev/index.html
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
https://webpack.github.io/
https://webpack.github.io/
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
http://nginx.org/en/

APPENDIX 1. Application demonstration

Figure A1. Inital application state where user can select particular location for analysis.

(continues)

APPENDIX 1. (continues)

Figure A2. The state when user selected particular location switched off “share taxi” and
“walking” transport types.

(continues)

APPENDIX 1. (continues)

Figure A3. User selected location and switched to speed map.

(continues)

APPENDIX 1. (continues)

Figure A4. Prevailing transport.

(continues)

APPENDIX 1. (continues)

Figure A5. Most accessible locations with range filter.

(continues)

APPENDIX 1. (continues)

Figure A6. Least accessible locations with range filter.

(continues)

APPENDIX 1. (continues)

Figure A7. Fastest parts of the routes with filter by speed.

(continues)

APPENDIX 1. (continues)

Figure A8. Slowest parts of the routes with filter by speed.

	INTRODUCTION
	Background
	Objectives and Delimitations
	Structure of the Report

	OVERVIEW
	Geographical Analysis Software
	GRASS GIS
	QGIS
	CartoDB
	Summary

	Modern Web-based Maps
	Data Formats
	GeoJSON
	Geobuf
	MBTiles

	SOFTWARE REQUIREMENTS SPECIFICATION
	Graphical User Interface
	Operating Environment
	System Features

	ARCHITECTURE
	Client
	RESTful Server
	Tile Server
	Summary

	IMPLEMENTATION
	Data Pre-processing
	Description of the Raw Data
	Extracting Points
	Extracting Lines
	Link Lines to Points
	Transformation to Vector Tiles
	Results

	Web Interface
	FLUX Architecture
	Drawing Maps

	Tile Server
	RESTful Server

	INTEGRATION
	Development Environment
	Deploying the Project

	CONCLUSION
	REFERENCES

