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Various sensors and monitoring equipment, such as infrared sensors and laser scanners for 

sensing welding quality have recently become affordable. The most advanced application 

for these sensors would be an adaptive, self-adjusting welding station. Equipment 

manufacturers have successfully developed systems for online quality monitoring 

commonly used in for example continuous pipe manufacturing. However there is still no 

perfectly developed and completely adaptive welding software available. The benefits of 

adaptive welding would be increased quality due to automatic correction when welding 

conditions change and decreased fabricating time and cost as, for example, weld backing 

supports would be replaced with an adaptive weld penetration control. 

 

In this study, an infrared thermography based sensor was studied with regard to usability and 

the accuracy of sensor data as a weld penetration signal in gas metal arc welding. The object 

of the study was to evaluate a specific sensor type which measures thermography from 

solidified weld surface. The purpose of the study was to provide expert data for developing 

a sensor system in adaptive metal active gas (MAG) welding. Welding experiments with 

considered process variables and recorded thermal profiles were saved to a database for 

further analysis. To perform the analysis within a reasonable amount of experiments, the 

process parameter variables were gradually altered by at least 10 %. Later, the effects of 

process variables on weld penetration and thermography itself were considered. SFS-EN 

ISO 5817 standard (2014) was applied for classifying the quality of the experiments. As a 

final step, a neural network was taught based on the experiments. The experiments show that 

the studied thermography sensor and the neural network can be used for controlling full 

penetration though they have minor limitations, which are presented in results and 

discussion. The results are consistent with previous studies and experiments found in the 

literature.  
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Hitsauksen anturit ja monitorointijärjestelmät ovat kehittyneet viimeaikoina riittävän 

käyttökelpoisiksi ja edullisiksi hitsauksen laadunhallintaan. Kehittynein sovelluskohde 

kyseisille laitteille olisi itsesäätyvä hitsausjärjestelmä. Laitevalmistajat ovat kehittäneet 

järjestelmiä laadunvalvontaan esimerkiksi putkien hitsaamisessa jatkuvana prosessina, 

mutta kuitenkaan kaupallisia, täysin adaptiivisia järjestelmiä ei ole saatavilla. Adaptiivisen 

hitsauksen etuja ovat parantunut laatu hitsausparametrien automaattisen säädön ansiosta ja 

pienenevät kustannukset, kun esimerkiksi juurituet korvataan automaattisella 

läpihitsautuvuuden hallinnalla. 

 

Tässä tutkimuksessa tarkasteltiin infrapuna-termografiaan perustuvan anturin 

käyttökelpoisuutta läpihitsautuvuuden hallinnassa. Tutkimuksen tarkoitus oli tuottaa 

asiantuntijadataa adaptiivisen itsesäätyvän hitsausjärjestelmän kehittämisen pilottihanketta 

varten. Kokeet suoritettiin päittäisliitoksena V-railotyypille robotisoidulla 

metallikaasukaarihitsauksella. Hitsauskokeiden muuttuvia hitsausparametreja varioitiin 

vähintään 10 % kerrallaan, jotta tulosten analysointi onnistui järkevällä koemäärällä. 

Kokeiden aikana hitsausparametrit ja termografiadata tallennettiin sähköisesti arviointia 

varten. Koehitsien laadun luokitteluun käytettiin SFS-EN ISO 5817 -standardia (2014). 

Hitsauskokeiden pohjalta opetettiin neuroverkko, jolla simuloitiin hitsausprosessin säätöä. 

Tutkimustuloksina havaittiin, että tutkittu infrapuna-termografia-anturi ja neuroverkko ovat 

käyttökelpoisia läpihitsautuvuuden anturoinnissa, vaikka myös rajoituksia, joista 

keskustellaan tuloksissa ja johtopäätöksissä, havaittiin. Tämän työn tutkimustulosten 

huomattiin olevan linjassa aiempien tieteellisten julkaisujen tulosten kanssa.  
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1 INTRODUCTION 

 

 

The welding industry is one of the major players in maximal production automation. The 

motivation of production automation is to increase competitiveness by improving 

productivity, quality and cost efficiency. Robotic arc welding is currently the most common 

application of welding automation. With a share of more than 60 %, the automotive industry 

is currently the predominant user of robotics for various welding processes and material 

handling (Hägale, Nilsson & Pires, 2008, p. 963–964.) Thus, there are also several other 

products made by robotic welding. In addition, other mechanisation and automation 

solutions, for example welding tractors and manipulators, are also applied. 

 

Welding processes tend to be complicated due to the huge amount of variables, requiring 

high accuracy, knowledge, and great skills. Modern automation equipment, such as welding 

robot is able to make better single welds than a human welder. However, robot welding 

systems have lacked one crucial skill that human welders have: adjusting to variations in 

welding conditions. Welding conditions are never exactly the same, therefore professional 

welders use their senses to produce the best possible weld quality. Even small faults on pre-

machining the seam and heat distortion are likely to cause imperfections and decrease the 

welding quality, especially if the welding process is not adjusted to changing welding 

conditions. In addition, manually teaching a robot for every welding task is time-consuming 

and unproductive. That is why there has been a great need to develop welding robots that 

automatically adjust to variations in the welding conditions just like a talented professional 

welder does. (Hägale et al., 2008, p. 969–970; Chen & Lv, 2014, p. 109–110.) 

 

Fully automatic, self-adjusting welding requires a reliable feedback quality control system. 

However, the progress in the field of development and research of modern welding 

technology has made self-adjusting, adaptive welding possible. Nowadays, this type of 

adaptive welding automation is technically possible also for demanding welding processes, 

such as gas metal arc welding, gas tungsten arc welding and laser welding, requiring accurate 

weld pool control. Various welding quality control approaches, such as infrared 

thermography sensors and neural network based welding control systems, have been studied 

and proposed. Though, there is still a lot of further development needed for developing 
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commercial adaptive welding control systems. (Chen et al., 2014, p. 109–110; Pires, 

Loureiro, & Bölmsjo, 2006, p. 1–5, 73.) 

 

1.1 Background 

Investments for state-of-art welding research have always been on the agenda of the 

Lappeenranta University of Technology. One of the latest projects is aiming to develop a 

prototype of a commercial adaptive welding system. This study is related to the development 

of a sensor monitoring system for the prototype adaptive welding system. 

 

1.2 Objectives and limitations 

The objective of this research was to evaluate the usability of an infrared thermography 

sensor and a neural network for monitoring full penetration in robotic gas metal active gas 

(MAG) welding. The purpose of this study was to provide information about the special 

features of infrared sensing for the development of an adaptive sensor monitoring system. 

This study focuses experimentally on a specific infrared sensor type and the welding 

experiments were performed only in a specific butt welding case. 

 

Research questions of the study are: 

1. What kind of state-of-art studies has been recently executed about adaptive welding 

technology and what is the general level of adaptive technology in the welding 

industry? 

2. Can weld penetration be monitored by infrared thermography in adaptive MAG 

welding and what is the accuracy of the measurements? 

3. What are the practical benefits and limitations of infrared thermography? 

4. Can weld penetration be estimated by neural network based welding process 

modelling and studied infrared thermography sensor? 

5. How should infrared thermography data be processed and linked for an adaptive 

control system? 

 

1.3 Research methods 

This study consists of two main sections: literature review and description of the 

experimental work. The literature review introduces the fundamentals of adaptive welding 

in chapter 2, modern arc welding sensors in chapter 3, welding process control strategies in 
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chapter 4 and recent state-of-art studies of adaptive welding as well as industrial cases in 

chapter 5. The purpose of the literature review is to gather scientific information from recent 

studies to support the analysis of the results of this study. The information presented in the 

literature review is based on scientific articles and textbooks. Reliability of the references is 

surveyed. 

 

Welding experiments were performed using robotic gas metal arc welding. The varied 

parameters and variables used were travel speed, wire feed rate, arc length (voltage), root 

gap and root face. The analysis of the effects of the parameters or variables on the results of 

the study was made possible by comprehensive classification and varying the parameters in 

the experimental procedure at least 10 % at a time. Specimens for macroscopic examination 

and weld attribute evaluation by applying SFS-EN ISO 5817 standard (2014) were used for 

evaluating the full penetration in the experiments. Later, a neural network was taught and 

verified based on the classified experiments. The neural network was applied for simulating 

and testing penetration control by the infrared thermography sensor data. 

 

1.4 Significance of the topic and used references 

Reliability of used information was ensured by using scientifically valid articles, books and 

conference papers. The information was acquired from several scientific instances, such as 

Science Direct, Springer, Google Scholar and Scopus database. The validity of the 

information was ensured by using cross-referencing and by preferring peer reviewed articles. 

The terminology used in this thesis was based on SFS 3052 standard (1995). As well, Scopus 

was used for analysing the sources. 

 

Scopus searches were executed using search term: 

- “adaptive” AND “welding” 

- “adaptive” OR “intelligent” OR “automated” AND “welding” 

- “infrared thermography” AND “welding” 

- “neural network” AND “welding” 

 

The literature analysis using search terms “adaptive” OR “intelligent” OR “automated” AND 

“welding” resulted in 3922 documents found. At least 1328 documents were related to neural 

networks. However, only 195 documents were related to infrared thermography. Most of the 
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documents were produced in China, United States, Germany, United Kingdom and Japan. 

The distribution of documents by year is shown in figure 1. Most of the adaptive welding 

publications are written in 2000’s and 2010’s. The number of publications has increased 

significantly since 1970. It can also be detected that the 1980’s was a significant period 

because sensor technology rapidly developed. 

 

 

Figure 1. Documents published by year that include the search term “adaptive” OR 

“intelligent” OR “automated” AND “welding” (Scopus, 2016). 

 

The specific types of documents published about adaptive welding are categorised in figure 

2. The published documents are mostly articles and conference papers, although all other 

types are present as well. 
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Figure 2. The types of documents published that include the search term “adaptive” OR 

“intelligent” OR “automated” AND “welding” (Scopus, 2016). 

 

Adaptive welding and infrared thermography have been studied for a few decades, however 

there is still a lot of work to be done. Sensor signals play a significant role when developing 

an adaptive welding system. Since previous studies with similar infrared thermography 

sensor were not available, this experimental study was found necessary. 
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2 ADAPTIVE WELDING 

 

 

Industrial robots are the dominant class of welding mechanisation equipment. Although 

robots are themselves efficient and flexible machines able to perform demanding welding 

tasks almost perfectly, there are several problems for exploiting the full benefits of the 

flexibility of these robots. In fact, applying a robot to a welding task will increase the 

complexity of the process because programming and maintaining robot systems require a 

high level of knowledge and skill from the operators. In addition, traditional teaching 

methods for path programming are time-consuming. That leads to a need to develop more 

efficient and easy to use robot-human user interfaces. (Pires et al., 2006, p. 17–23; Chen et 

al., 2014, p. 109–110.) 

 

2.1 What does adaptive welding mean? 

The terms “robotic welding” and “mechanised welding” themselves do not mean that the 

welding is done completely automatically. Most of the robots and manipulators used in the 

industry are still teach and playback based systems, requiring a weld path teaching for every 

welding situation. This class of welding systems does not represent a high level of 

automation, although they represent a good level of mechanisation. In general, fully 

automatic and self-adjusting welding has been referred to by the well-established term 

“adaptive welding” and sometimes with terms such as “intelligent welding” or “automatic 

welding”. The adaptive, high-end welding systems are equipped with software and systems 

that provide automatized features and more efficient productivity with higher duty cycle. 

Adaptive welding has to have at least some kind of quality based feedback signal. (Pires et 

al., 2006, p. 17–23; Heston, 2005, p. 41–44; Chen et al., 2014, p. 109–110.) 

 

2.2 Benefits and possibilities of adaptive welding 

The motivation of adaptive welding is to offer solutions to the needs of the industry, such as 

minimising costs, improving productivity and improving quality. Adaptivity is an important 

factor in welding automation. Adaptive welding tries to simulate experienced human 

welders’ logic of making decisions and performing welding. Without adaptivity, a robot is 

unable to automatically adjust to varying circumstances and perturbations, for example 

inaccuracies caused by machining, plate distortions and path teaching problems. Welding 
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also involves some dangerous factors, such as hot metal and unhealthy fumes, which can be 

solved by keeping the welding operator away from the welding process. However, the 

considered factors change when humans are replaced by robots. The most important features 

that make robots suitable for welding are: high accuracy and repeatability (better than 0.1 

mm), good payload capacity, degrees of freedoms (usually 6 DOF), fast actuator speed and 

acceleration as well as comprehensive communication buses. (Pires et. al., 2006, 22–23; 

Chen et al., 2014, p. 117–119; Heston, 2005, p. 41–44.) 

 

2.3 Levels of adaptive welding technology 

According to Chen’s review on intelligent welding manufacturing (IWM), adaptive welding 

technology, also known as intelligent welding manufacturing technology (IWMT) can be 

classified into various levels of technological fields of research.  Intelligent welding 

technology consists of three fields of modern welding technology: the virtual and digital 

welding manufacturing technology (V&DWMT), the intelligent robot welding technology 

(IRWT) and the flexible and agile welding manufacturing technology (F&AWMT). The 

framework, research fields and applications of IWMT are presented in figure 3. (Chen, 2015, 

p. 5–7.) 

 

 

Figure 3. The framework of intelligent robotic welding technology (Chen, 2015, p. 6). 
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Adaptive welding also has adapted applications from modern artificial intelligence (AI) 

technology. The most important applications of artificial intelligence are related to neural 

networks and fuzzy logic, which are suitable for modelling complex nonlinear processes, 

such as arc welding and laser welding. As well, an adaptive welding station itself consists of 

several technological levels. The technological composition and the hierarchy of intelligent 

welding technology are illustrated in figure 4. (Chen et al., 2014, p. 118.) 

 

 

Figure 4. The technological levels of intelligent welding technology [in the figure, WP: 

welding power source, GIP: guiding image processor, TIP: tracking image processor, PIP: 

picture image processor, and CCD: charge coupled device] (Chen et al., 2014, p. 118). 

 

Basically, the executing level of adaptive welding includes all essential welding equipment, 

including sensors and their image processors. The coordinator level includes all controllers 

coordinating welding process. The intelligent level includes the expert models of the welding 

process, virtual program simulator, AI and the centre computer. The supervise level is 

connected to the centre computer via internet access. (Chen et al., 2014, p. 118.) 
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2.4 Characteristics of development of adaptive welding 

Generally, the development of an adaptive welding system has to begin with identifying the 

process related parameters and building a sensor system for monitoring these parameters. 

The final step is related to creating and testing an artificial intelligence, which controls the 

process in the future. Following steps are necessary to be considered while developing an 

adaptive welding system (Chen et al., 2014, p. 109–110): 

1. Sensing and acquiring information of the welding process 

2. Identifying the characteristics of the welding process 

3. Developing an AI process controller. 

 

The second step of identifying the characteristics in a robotic gas metal arc welding 

(GMAW) means also considering and classifying the GMAW process related parameters 

into three categories (Pires et al., 2006, p. 106–107): 

1. Primary input variables that can be adjusted online during the welding 

2. Secondary input variables that are defined before the actual welding job 

3. Fixed input parameters that cannot be changed by the users. 

 

The important basic parameters of GMAW process that affect the obtained welding result 

are: welding current (wire feed rate), polarity, arc voltage (arc length), travel speed, electrode 

extension (contact tip to work distance), electrode orientation (torch angle) and electrode 

diameter. (Olson et al., 1993, p. 575–576.) The primary variables of the GMAW process that 

can be adjusted online during the welding are the arc voltage, electrode feed rate together 

with the resulting current, and the travel speed. The secondary variables are set when the 

used welding process is selected comprising of the type of shield gas and the amount of gas 

flow, the torch angle and the type of the welding electrode wire. The fixed inputs include 

variables that cannot be altered such as the joint geometry, plate thickness and physical 

properties of the plate metal. For obtaining the desired quality as shown in figure 5, the 

primary parameters should be managed and monitored with some kind of feedback process 

controller. (Pires et al., 2006, p. 106–107.) 



19 

 

 

Figure 5. Overview of a robotic welding control system (Pires et al., 2006, p. 107). 

 

All these input parameters should be considered and managed carefully to obtain acceptable 

results. The correct preparation of the setup and the selection of the secondary inputs are 

fundamental to efficient control of the primary inputs. (Pires et al., 2006, p. 107.) It must be 

realised that the parameters are not independent, for instance, wire feed rate affects welding 

current and hence the arc energy. Moreover, varying one parameter usually requires 

adjusting also another. (Olson et al., 1993, p. 575.) 

 

2.5 The effect of GMAW parameters on weld attributes 

The effects of GMAW parameters altering weld attributes, such as penetration, deposition 

rate, bead size and bead width in the usual welding situations is shown in table 1. However, 

the table shows only a general review for traditional welding situations. In special cases, the 

effect of one parameter may be stronger or weaker. (Olson et al., 1993, p. 575; Cornu, 1988, 

p. 232–237, 242–247, 262–264.) 
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Table 1. Effect of changes in GMAW variables on weld attributes (Olson et al., 1993, p. 

575). 

 

 

The table 1, which was published in ASM Handbook of Welding, Brazing and Soldering 

states that arc voltage and travel speed have “No effect” on penetration, which is true in the 

usual cases (Olson et al., 1993, p. 575). However, in this study, arc voltage and travel speed 

were found effective for fine adjusting penetration while welding relatively thin 5 mm steel 

sheets together without backing. Generally, thin sheets are more sensitive to heat input, 

thereby arc voltage might be considered to have an effect on penetration. As well, travel 

speed can be used for fine adjusting the penetration, even if only within certain limits. It 

should be kept in mind that for every welding case there is only one optimum operating zone 

or quality window which produces stable weld pool without spatters. (Cornu, 1988, p. 232–

237, 242–247, 262–264.) 

 

2.5.1 Welding current and wire feed rate 

The current has the most significant influence on the deposition rate and therefore on the 

shape of the weld. GMAW is based on a constant voltage power source, hence when wire 

(electrode) feed rate is altered the welding current varies while the arc voltage remains 

almost the same. Since welding current and wire feed rate are interdependent, an increase in 

current means more wire fused per unit of time resulting greater penetration and weld pool 

size, while bead width remains almost the same. In addition, the polarity of the welding torch 

has an effect on weld attributes. Usually mainly direct current, electrode positive (DCEP) is 

used, because it provides a stable arc, low spatters, a good bead profile and greater 
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penetration when compared to alternative direct current, electrode negative (DCEN) setup. 

(Olson et al., 1993, p. 575–576; Cornu, 1988, p. 228–229.) 

 

2.5.2 Arc voltage 

Arc voltage is traditionally considered primarily affecting to bead width, and not having 

significant effect on other weld attributes such as penetration. Increasing the arc length 

makes the arc higher and wider and hence it widens the bead. Generally, when welding with 

high amperes, arc voltage has less than 1 mm effect on penetration. Since the arc voltage can 

be varied only a few Volts, it does not such a significant effect on penetration as current. 

And even though an increase in voltage increases the heat input as well, it may usually 

simply dissipate. However, when welding thin sheets with low current, the effect of arc 

voltage is more significant. Thereby, altering the arc voltage for fine adjusting the 

penetration and the bead shape might be important in certain welding cases. However, it 

must be realised that excessively high arc voltage can cause imperfections, such as porosity, 

spatters and undercut. (Olson et al., 1993, p. 575; Cornu, 1988, p. 235–237.) 

 

2.5.3 Travel speed 

Travel speed has a great impact on bead size together with wire feed rate. These two 

parameters should be considered in relation and adapted to particular welding conditions. If 

travel speed is reduced the bead becomes wider, flatter and smoother, because more filler 

material is deposited per unit of length. Correspondingly, if travel speed is increased the 

bead becomes narrower, higher and sharper. The effective depth of penetration increases 

slightly at first and at very low speeds suddenly reduces as the molten pool is flooding 

forward and weakening the penetrative effect of the arc. The travel speed and wire feed rate 

that cause maximum penetration can only be verified by tests. (Olson et al., 1993, p. 576; 

Cornu, 1988, p. 242–245.) 

 

2.5.4 Electrode orientation 

Electrode orientation is defined as an angle between the welding torch and the normal of the 

welding surface, as well the direction of travel. Trailing travel angle (“pulling welding”) of 

5 to 15° provides maximum penetration and a narrow, convex bead surface. Leading travel 

angle (“pushing welding”) provides flatter bead profile and good weld pool protection. The 

trailing travel angle is better adapted to axial spray transfer (long arc) and the leading travel 
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angle is better adapted to short-circuit transfer, and therefore to the welding of thin sheets. 

(Olson et al., 1993, p. 576; Cornu, 1988, p. 249–250.) 

 

2.5.5 Electrode extension 

Electrode extension is the distance between the last point of electrical contact (usually the 

contact tip of the welding torch) and the end of an electrode wire. The true electrode 

extension is hard measure as true arc length between the end of the electrode and the work 

object surface is difficult to measure be accurately. Alternatively, easily measurable contact 

tip to work distance (CTWD) can be used for estimating the effect of the length of electrode 

wire. An increase in the electrode extension causes a greater amount of metal deposited by 

the energy of the Joule effect, resulting in a higher and narrower weld bead. Shorter electrode 

extension results in a higher current and a greater penetration. In addition, the electrode 

extension affects metal transfer mode (short-circuit, axial spray and globular transfer) due to 

the influence of the Joule effect. The recommended CTWD in GMAW is usually between 

10 and 35 mm depending on the electrode type, the application and the desired metal transfer 

mechanism. (Olson et al., 1993, p. 576; Cornu, 1988, p. 257–258.) 

 

2.5.6 Electrode diameter 

The electrode wire diameter affects the weld bead composition. A thicker electrode wire 

requires higher minimum current for achieving the same metal transfer characteristics than 

a thinner electrode. However, a higher current causes greater deposition and deeper 

penetration. Nevertheless, position welding applications may prevent the use of some 

electrodes. (Olson et al., 1993, p. 576.) 

 

2.5.7 Shield gas type and flow rate 

The composition and flow rate of shield gas are fixed parameters, affecting welding 

attributes, such as metal transfer mode, depth of fusion, weld bead attributes, travel speed 

and cleaning action. Metal inert gas welding (MIG) process consumes inert shield gas, 

usually argon (Ar). Metal active gas welding (MAG) process consumes active shield gas, 

usually a mixture of carbon dioxide and argon (CO2 + Ar). (Olson et al., 1993, p. 580.) The 

flow of shield gas must be determined carefully, as inadequate flow results in turbulence and 

the introduction of air, predisposing the weld to porosity. Correspondingly, a too great a flow 
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may also generate turbulence, drawing in air and predisposing the weld to porosity again. 

(Cornu, 1988, p. 258–258.) 

 

2.6 Arc energy 

The arc energy defines an amount of energy transferred to the workpiece by welding. Arc 

Energy (E), calculated as in upcoming equation, is dependent on welding current, arc 

voltage, and travel speed (Olson et al., 1993, p. 1075; Cornu, 1988, p. 178): 

 

𝐸 (
𝑘𝐽

𝑚𝑚
) =

𝑊𝑒𝑙𝑑𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴) × 𝐴𝑟𝑐 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉)

𝑇𝑟𝑎𝑣𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 (
𝑚𝑚

𝑠
) × 1000

    (1)

  

Arc energy has to be considered at least when welding materials with metallurgical 

properties delicate to the amount of energy input, such as high strength steels. Arc energy 

can be converted to heat input by multiplying by the specific heat-transfer efficiency factor. 

However, arc energy also has a significant effect on the resulted weld attributes together 

with the energy of metal drops transferred from the electrode. Thereby, arc energy might be 

considered a factor among other variables while developing an adaptive welding system. 

(Olson et al., 1993, p. 119–123, 1075, 2695, 2803.)  
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3 ARC WELDING SENSORS 

 

 

This chapter describes modern sensors used for sensing arc welding processes. The arc 

welding sensors can be classified to contact and non-contact sensors, as well geometrical 

and technological sensors. Geometrical sensors can include seam tracking sensors. 

Technological sensors are related to the primary process variables, for instance, current, 

voltage and wire feed sensors. Due to high temperatures and the demand for accuracy and 

response, state-of-art welding process sensors are often non-contact and digital. (Garašić, 

Kožuh & Remenar, 2015, p. 1069–1070, 1973.) 

 

3.1 Arc voltage sensors 

To obtain the best results in sensing the arc voltage, the measurement should be made near 

the welding arc. The contact tube conveys the welding current to the electrode wire and 

someone could propose the contact tube as a good place for arc voltage measurement. 

However, the actual arc voltage is approximately 0.3 V higher than the measured voltage at 

the contact tube. In practise, measuring true arc voltage is difficult if not impossible. A more 

reliable method is locating the voltage sensor directly on the electrode wire inside the wire 

feeding unit. (Pires et al., 2006, p. 75–76; Garašić et al., 2015, p. 1070.) 

 

3.2 Welding current sensors 

Generally, two types of sensors are used for the measurement of the welding current: Current 

Shunt and Hall Effect (Pires et al., 2006, p. 76; Garašić et al., 2015, p. 1070). 

 

3.2.1 Current Shunt 

The core component of a current shunt is a resistor, through which the current is conveyed. 

The current is measured as a dip in the voltage past the resistor, similar to the measurement 

procedure with a multimeter. However, the major drawback of this simple method is 

sensitivity to noise due to small dynamic measurement range. (Pires et al., 2006, p. 76; 

Garašić et al., 2015, p. 1070.) 
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3.2.2 Hall Effect sensor 

The Hall Effect has a current cable run though its circular cast iron core. The actual device 

is located at the top of the iron cast measuring changes in the magnetic field and its currents. 

The Hall Effect has the advantage being non-contact and disruption-free. (Pires et al., 2006, 

p. 76; Garašić et al., 2015, p. 1070.) 

 

3.3 Wire feed rate 

Wire feed rate is an important control parameter in obtaining a steady welding process, hence 

it also affects the welding current due to the constant voltage and the synergy technologies 

of modern GMAW power sources. In robotic applications, wire feed unit is usually installed 

at the top of the actuator giving reliable push due to close distance to the torch. However, 

measuring wire feed rate with an independent sensor ensures proper functionality of the 

feeding equipment and thereby ensures resulted quality. (Pires et al., 2006, p. 76–77; Garašić 

et al., 2015, p. 1070.) 

 

3.4 Optical sensors 

Optical sensors are an alternative for contact seam tracking, for example through-arc 

sensing. The optical sensors are faster and provide more information than contact 

geometrical sensors. However, they are more expensive and complex than the simple contact 

sensors. (Garašić et al., 2015, p. 1071–1073.) 

 

The optical geometrical sensors are generally laser scanners, non-contact sensors, based on 

laser triangulation. A laser beam sweeps the measured surface in linear or circular motions 

and an imager captures data from the reflection of the laser. The principle of laser 

triangulation is illustrated in figure 6. (Pashkevich, 2009, p. 1034; Pires et al., 2006, p. 78–

79.) 
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Figure 6. The principle of laser triangulation (Juneghani & Noruk, 2009). 

 

Basically, laser scanning is measuring distances from multiple points and creating a model 

of the measured surface. The imagers are either charge-coupled devices (CCD) or 

complementary metal oxide semiconductors (CMOS). The sensor acquires two-dimensional 

(2D) information of the groove width and depth as a group of coordinates. During the 

welding, when the sensor is moving, a three-dimensional (3D) profile of the weld can be 

created. (Pires et al., 2006, p. 79–83; Garašić et al., 2015, p. 1071.) 

 

A typical laser scanning sensor has a scan sweep frequency of 10–50 Hz and an accuracy of 

at least ±0.1 mm, which is more than sufficient for most welding processes. However, some 

high travel speed cases may require a faster scanning rate. Moreover, it should be kept in 

mind that single scans may generate outlier errors due to perturbations and reflections caused 

by the welding process and the highly reflective metallic surfaces. Laser scanners are reliable 

and accurate sensors that have good enough capabilities within welding process. However, 

they need to be attached to the welding torch, taking some place and limiting reachability. 

Laser scanners are also relatively expensive, costing approximately 40,000 € a piece. (Pires 

et al., 2006, p. 83–84; Garašić et al., 2015, p. 1071–1072.) 

 



27 

 

One product example of a laser sensor is Meta’s Smart Laser Sensor SLS-050, introduced in 

2009. The sensor can acquire geometrical data with a framerate of 30 fps (frames per second) 

and locate within the accuracy of ±0.1 mm. Network connection enable real-time process 

monitoring and controlling by guiding used welding robot or manipulator. The sensor is 

cooled by flowing compressed air. This type of a sensor can be used for seam finding and 

seam tracking as well as for measuring groove geometry. (Meta Vision Systems, 2012; Meta 

Vision Systems, 2014.) 

 

3.5 Infrared sensors 

Since welding is a thermal process, non-contact infrared imaging is ideal for sensing welding 

information, especially crucial parameters such as heat transfer, predicting joint depth 

penetration and bead width of a weld. Thermographic infrared sensing using infrared (IR) 

sensors is a predominant and widely used method for sensing, monitoring and controlling 

the welding process. The basic principle of infrared thermography (IRT) is that a proper 

weld would generate a temperature distribution on the surface that shows a regular and 

repeatable pattern. Perturbations in weld attributes, such as penetration and variations in 

welding conditions should be seen as notable changes in the thermal profiles. 

(Chokkalingham, Chandrasekhar & Vasudevan, 2012, p. 1996; Alfaro, 2011, p. 88.) 

 

In the past, various configurations of thermocouples were used for monitoring temperature 

distributions during welding processes. However, the slow response and low spatial response 

of thermocouples are problematic in their use for process control. Thermal changes during 

welding are quick, so a more responsive thermal monitoring method was needed and infrared 

sensing ousted thermocouples. Infrared (IR) sensing is superior when compared to standard 

techniques, such as thermocouples. The advantages of IR cameras are contactless 

temperature field measurement, true multidimensional view, high sensitivity (down to 20 

mK) and low response time (down to 20 µs). (Chokkalingham et al., 2012, p. 1996; 

Carlomagno & Cardone, 2010, p 1187.) 

 

Infrared sensing is based on measuring electromagnetic radiation in IR spectral band, emitted 

from the body surface. In welding processes, IR sensing is used for measuring surface 

temperatures from the weld pool and plasma or alternatively from the solidified, but still 

glowing weld. It has to be remembered, that infrared sensing measures only surface 
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temperatures, not internal temperatures. IR sensing can be carried out by using dot, line and 

image analysis techniques. The dot analysis is the lightest technique to compute, but it cannot 

provide a multidimensional view. The line and image analysis techniques enable acquisition 

of a multidimensional thermal distribution on a weld surface for more comprehensive 

analysis. (Alfaro, 2011, p. 88; Chokkalingham et al., 2012, p. 1996.)  

 

3.5.1 Basic radiative heat transfer theory 

Heat transfer by radiation is an energy transfer mode that occurs as electromagnetic waves. 

The movement of charged protons and electrodes result in electromagnetic radiation, 

carrying energy away from the body surface. All bodies, even liquid, and gas emit this 

electromagnetic radiation at temperatures above absolute zero. Depending on the 

characteristics of the material, electromagnetic energy can be also reflected and/or absorbed 

by a body as well as passed through. The amount of thermal radiation being emitted or 

absorbed depends on the material characteristics, surface finish, thermodynamic state of the 

material (temperature) and the specific wavelength of the electromagnetic wave considered. 

(Carlomagno et al., 2010, p. 1188–1190; Astarita & Carlomagno, 2013, p. 5–6.) 

 

Important approaches to the theory of electromagnetic radiation are the Planck’s law and the 

blackbody concept. The blackbody is an idealized solid body that absorbs and emits all 

incident electromagnetic radiation. (Astarita et al., 2013, p. 5–6.) Planck’s law, originally 

proposed in 1900, defines the amount of electromagnetic energy emitted from a black body 

as a function of wavelength. It is known as the spectral hemispherical emissive power Ib(𝜆) 

[W/m2]. The Planck’s law is presented in upcoming equation: 

 

𝐼𝑏(𝜆) =
𝐶1

𝜆5(𝑒𝐶2/𝜆𝑇 −1)
   (2) 

 

in which 𝜆 is the radiation wavelength (m), T the absolute black body temperature (K), e is  

the Euler’s number and C1 and C2 are the first and the second universal radiation constants 

(equal to 3.7418×10-16 Wm2 and 1.4388×10-2 mK). The Planck’s equation shows that the 

spectral hemispherical power (Ib) goes to zero when the wavelength is approaching to zero 

or infinity (𝜆→0 or 𝜆→∞). We have to pay attention to the fact that for a black body, the 
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intensity of radiation is independent on the angle of radiation. (Planck, 1900, p. 202–204; 

Carlomagno et al., 2010, p. 1188–1190.) 

 

The electromagnetic spectrum (shown in figure 7) is divided into different wavelength 

intervals, called spectral bands or just bands. The thermal radiation includes the spectral 

bands of infrared, visible light and ultraviolet. (Astarita et al., 2013, p. 6.) 

 

 

Figure 7. Electromagnetic spectrum [wavelength 𝜆 in µm] (Astarita et al., 2013, p. 6). 

 

The infrared band can be further sub-divided into four bands, called: near infrared (0.75–3 

µm), middle infrared (3–6 µm), far or long infrared (6–15 µm) and extreme infrared (15–

1000 µm). Most IR camera (2D) detectors are sensitive in the middle (MWIR) or the long 

wavelength (LWIR) band, although some more specialised detectors use the near infrared 

(NIR) band. (Carlomagno et al., 2010, p. 1189.)  

 

The real objects emit significantly less electromagnetic radiation than the theoretical black 

body at a similar wavelength and temperature. However, the Planck’s law can be applied to 

a real body by introducing the spectral emissivity coefficient ε, which depends on the 

hemispherical emissivity power of the black body and the corresponding hemispherical 

emissivity power I(𝜆) of the particular real body, such as defined in the following equation. 

(Carlomagno et al., 2010, p. 1189.) 

 

           𝜀(𝜆) =
𝐼 (𝜆)

𝐼𝑏(𝜆)
   (3) 

 

Thereby, the Planck’s equation (2) can be adjusted for real bodies, as presented in upcoming 

equation, by multiplying its second term by ε(𝜆): 
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𝐼(𝜆) = 𝜀(𝜆)
𝐶1

𝜆5(𝑒𝐶2/𝜆𝑇 −1)
   (4) 

 

However, the emissivity of real bodies, such as especially metals, is usually dependent on 

the viewing angle and wavelength. These factors should be considered to obtain the best 

possible results on IR applications. (Carlomagno et al., 2010, p. 1189–1190.) 

 

3.5.2 Accuracy of IRT when measuring metals 

Measuring metallic objects is challenging because their emissivity is usually low compared 

to 0.8–0.9 of the grey body materials, such as wood and plastics. Metallic bodies not only 

emit less but also reflect a large amount of ambient radiation. Therefore, metals are not the 

best measurable materials for standard IR cameras. However, despite all these problems, 

metallic materials can be accurately measured at high temperatures (600–1500 °C), when a 

short waveband (NIR) detector is applied. This is based on the physical fact that at high 

temperatures the energy of emitted thermal radiation is greatest at the shorter wavelengths 

as shown in figure 8. (Carlomagno et al., 2010, p. 1189; Astarita et al., 2013, p. 9–10, 

Schiewe & Schindler, 2013, p. 1–2; Gruner, 2003, p. 12.) 

 

 

Figure 8. Spectral hemispherical emissive power of a black body [W/m2 µm] in vacuum for 

various absolute temperature values [K] as a function of the wavelength [𝜆] (Astarita et al., 

2013, p. 9). 
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Additionally, short waveband NIR detectors have the benefit being tolerant to the error of 

varying emissivity as shown in table 2 (Schiewe et al., 2013, p. 1–2; Gruner, 2003, 12). 

 

Table 2. Temperature measurement error [ΔTO] and relative temperature measurement 

error [ΔTO/TO] at an emissivity setting error of 10 % dependent on object temperature and 

spectral band (Shiewe et al., 2013, p. 2). 

 

 

Basically, NIR sensors would have only about 1 % measurement error, even if there is a 10 

% error at emissivity setting value. This explains why IR sensors dedicated for measuring 

metals at high temperatures are short waveband NIR detectors rather than MWIR or LWIR 

detectors. By understanding the radiation theory, IR sensor can also be accurate for 

measuring metals if essential variables, such as emissivity of the object material, waveband 

and angle are considered. (Schiewe et al., 2013, p. 1–2; Gruner, 2003, 12; Carlomagno et al., 

2010, p. 1189–1190.) 

 

3.5.3 Technologies of IR radiation detectors 

The core component of an IR camera is the radiation detector. Radiation detectors can be 

classified into two technological groups: thermal detectors and quantum detectors. The 

thermal detectors are made of a metal compound or a semiconductor that is sensitive to the 

energy flux of infrared radiation. The sensitivity of quantum detectors is based on photon 

absorption. The quantum detectors are usually more sensitive than thermal detectors. 

However, quantum detectors require a strong cooling and are more expensive than thermal 

detectors. Typical IR detectors can measure up to 1500 °C, and the measurement range can 

be improved further by filtering the ongoing radiation. (Carlomagno et al., 2010, p. 1190–

1191; Astarita et al., 2013, p.  29–35.) 
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3.5.4 Filtering of thermographic images 

Infrared sensing the molten weld pool requires filtering the unwanted thermal emissions, 

such as the interference of arc radiation and welding electrode emission. The filtering is done 

by ignoring the wavelength range of the arc, for example by scanning the infrared sensor 

with a spectral response greater than 2 µm or by using CCD cameras with specific band pass 

filters. (Chokkalingham et al., 2012, p. 1996.) Spatters may also require filtering because 

they cause unwanted “Salt and Pepper noise” type temperature spikes to thermal profile 

distributions (figure 9).  

 

 

Figure 9. Spatters and perturbations in unfiltered thermal profile distribution. 

 

Spatters can be filtered out from measurements by using median filters (for example 

“medfilt2” function in MATLAB). Median filtering is based on going through the signal, 

entry by entry, and replacing the value of each entry with the median of the neighbouring 

entries. The same thermal profile distribution, as in figure 9, is shown with median filtering 

and slight scaling in figure 10. 
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Figure 10. Median filtered thermal profile distribution. 

 

As seen in figure 10, the median filtering results in a smooth and perturbation free thermal 

profile. The neighbourhood entry size was able to be kept small enough, thereby the filtering 

result was good and essential details were retained. 

 

3.5.5 ThermoProfilScanner 

HKS-Prozesstechnik has recently developed an infrared thermal field monitoring device 

ThermoProfilScanner (TPS) for almost real time weld quality monitoring. The device tracks 

the area of the thermal field after the welding torch at a framerate up to 400 fps, allowing 

recordable travel speeds up to 180 m/min. Hence, thermal field has a direct relation to seam 

attributes, and imperfections such as lack of penetration, offset and holes can be identified. 

(HKS-Prozesstechnik, 2016a.) The principle of weld quality monitoring with TPS is 

illustrated in figure 11. 
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Figure 11. ThermoProfilScanner, a faulty brazed joint and the fault shown as an abnormal 

thermal profile (HKS-Prozesstechnik, 2016b). 

 

ThermoProfilScanner is based on an optic less line type quantum detector, cooled and 

protected by flow of shield gas (Ar or CO2). The TPS is sensitive at a spectral band of 0.8–

1.1 µm (NIR), thus it has a very high measurement accuracy of about 0.2 % at the 

temperature of 1000 ºC. The recordable temperature range of TPS is 600–1350 ºC, at 

standard settings. TPS device variants can be calibrated to the emissivity of steel and 

stainless steel as well other metals, such as aluminium. When coupled with WeldQAS-

device, TPS provides five pre-calculated thermal field attributes for every measurement, 

which are: max temperature, the width of temperature zone, symmetry, profile position and 

form differences. As Schauder et al. presented at the IIW (International Institute of Welding) 

2013 conference, IRT by TPS had provided better results for inspecting penetration of 

induction welded pipes than conventional non-destructive testing (NDT) methods with 

electromagnetic testing and ultrasonic testing, of which the ladder did not reveal any defects 

while the former did. (Köhler, 2016; Köhler, 2015; Schauder et al., 2013.) 

 

3.6 Non-destructive testing sensors 

In addition to the standard welding process sensors, non-destructive testing methods by 

sensors can be applied for inspection of the weld quality behind the weld pool. These sensor-

based NDT methods include visual inspection techniques, real-time radiography, ultrasonic 

imaging techniques, and eddy current testing. (Ithurralde et al., 2000; Zahran et al., 2013, p. 

26–34.) 
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4 WELDING PROCESS CONTROL STRATEGIES 

 

 

The welding process can be controlled either manually or automatically. An automatic 

welding process control requires a closed loop or feed forward control system with feedback 

control. The automatic feedback control can be built either by classical methods or intelligent 

methods. The classical welding control methods, such as applying a proportional-integral 

(PI) or proportional-integral-derivative (PID) controller together with a reference model are 

usable. As a drawback, these classical methods require precise mathematical modelling of 

the welding process which is challenging, because arc welding is generally a very complex 

multivariable process. In contrast, the intelligent control methods, such as neural networks 

and fuzzy logic, do not require accurate modelling of the welding process which explains 

why intelligent control strategies have been used in various applications. (Naidu, Ozcelik & 

Moore, 2003, p. 147–149, 160, 171–174; Einerson et al., 1992, p. 853–857; Tay & Butler, 

1997, p. 61–69.) 

 

4.1 Classical control methods 

Arc welding processes can be controlled by using classical control methods such as PID 

control. As an example, Smartt and Einerson applied a PI controller to obtain desired heat 

and metal transfer in GMAW process with spray transfer mode. The difference between the 

welding current based on the reference model and the actual measured current was used as 

a feedback signal to obtain the correct wire feed rate and travel speed as presented in figure 

12. (Smartt & Einerson, 1993, p. 217–229.) 

 

 

Figure 12. PI control of the GMAW process [in the figure, G: metal transfer, H: desired 

heat, R: travel speed, S: wire feed rate, I: model current and J: measured current] (Smartt et 

al., 1993, p. 220). 
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4.2 Intelligent control methods 

Modern machine intelligence is based on soft computing methods such as neural networks, 

fuzzy set theory, genetic algorithms and simulated annealing, because they perform well on 

complex, non-linear cases when classical rule-based systems struggle. A neural network is 

a classifier and/or pattern recogniser which can be taught or adapted to complex processes 

when enough teaching data is provided. Fuzzy logic simulates human logic to make if-then 

rules, such as describing ages to young, teenager, middle-aged, quite old etc., which is 

difficult to be done with two-value or rule-based logic. Thereby, fuzzy sets have been applied 

to knowledge representation. Genetic algorithms and simulated annealing can be applied to 

systematic random search when the search space is too large for an exhaustive search and 

too complex to be reduced. Artificial intelligence (AI) methods and techniques can be 

divided into (currently) four generations (Jang, Sun & Mizutani, 1997, p. 1–9): 

1st (old) generation - Rule-based systems 

2nd generation - Neural networks, fuzzy sets, etc.  

3rd generation - Big data & correlation analysis 

4th (next) generation - Integrated pre-processed heuristics. 

 

Current AI techniques usually apply both fuzzy logic and neural networks. These neuro-

fuzzy AIs are typically taught with big data sets and verified with correlations. Neuro-fuzzy 

systems have successfully been applied to complex non-linear cases, such as classifying 

species, controlling consumer electronics, financial trading as well as industrial process 

control. However, it is usually difficult to explain how and why a neuro-fuzzy system makes 

its decisions. In addition, teaching and testing a neuro-fuzzy system is a slow process and a 

correlation does not automatically mean causation. That is why the next generation AIs are 

proposed to include pre-processed heuristics used to explain these issues. (Jang et al., 1997, 

p. 1–9; Tay et al., 1997, p. 61–69.)  

 

4.2.1 Basic principle of neural networks 

Neural networks are a class of modelling tools inspired by biological neural networks of the 

brain. A neural network is based on linked nodes that feed the input signals forward as 

illustrated in figure 13. The number and the structure of nodes and layers can be varied. Each 

node has built in node function, weight and threshold (bias) that define how the input signal 

is sent forward. (Jang et al., 1997, p. 199–205.) 
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Figure 13. A 3-3-2 neural network (Jang et al., 1997, p. 205). 

 

Usually, neural networks are taught by the procedure of backpropagation. The 

backpropagation is based on finding a gradient vector in the structure of a neural network.  

Once the gradient vector is found, various derivation based optimization and regression 

techniques can be applied for adjusting the node parameters. Basically, the input signal is 

fed back to the neural network several times. After each iteration, the actual output signal is 

compared to the desired output and the error signal is presented back to the neural network. 

The desired output is obtained by adjusting the weights of the nodes by the error signal and 

the teaching algorithm. (Jang et al., 1997, p. 205–210.) A number of pre-programmed neural 

network tools are available, as an example in MATLAB-software. 

 

4.2.2 Performance of neural networks 

The advantage of the neural network compared to linear and non-linear models in an example 

case of predicting the welding current can be seen in figures 14, 15 and 16, presented as 

regressions of predicted currents and measured currents. (Carrino et al., 2007). 
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Figure 14. Measured current and predicted current using linear model (Carrino et al., 2007, 

p. 466). 

 

 

Figure 15. Measured current and predicted current using non-linear model (Carrino et al., 

2007, p. 466). 
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Figure 16. Measured current and predicted current using fuzzy model (Carrino et al., 2007, 

p. 466). 

 

As it can be seen in figures, the neuro-fuzzy model performed well predicting the current 

very accurately. In this case, the regression of the neuro-fuzzy model is 99.8 % while the 

linear and the non-linear models have regressions equal to 69.2 % and 89.8 %. (Carrino et 

al., 2007, p. 466.)  



40 

 

5 STATE-OF-ART IN ADAPTIVE WELDING 

 

 

Although adaptive welding has been studied for decades, there is still a lot of work to do. 

Generally speaking, sensing methods have evolved suitably fast and accurately for adaptive 

welding applications, but modelling the welding process itself still causes problems. 

(Heston, 2005, p. 42–44; Hägale, Nilsson & Pires, 2008, p. 963–971.) 

 

5.1 Industrial examples 

In the industry, adaptive welding is still not at the highest possible level. For example, while 

laser tracking is nowadays relatively standard method for automatic seam finding and seam 

tracking, it is questionable whether such applications can be called fully adaptive if the 

welding process itself is not automatically controlled. (Chen et al., 2014, p. 109–121; 

Mortimer, 2006, p. 272–276.) 

 

5.1.1 Laser tracking in automotive industry 

As an example, the car manufacturer Jaguar applied laser tracking to automatic MIG (metal 

inert gas) welding of aluminium C-pillars of XK sports car for the first time in 2006. The 

system was based on automatic seam finding and seam tracking. The system was also able 

to “adapt” to small variations of groove geometers by seam tracking. However, the welding 

parameters were possibly not adaptively controlled. (Mortimer, 2006, p. 272–276.) 

 

5.1.2 Autonomous mobile welding robots 

At least a few autonomous mobile welding robots, such as the so called NOMAD have been 

developed. Basically, these mobile manipulators aim to be more flexible than standard fixed 

welding robot cells and manipulators in specific cases when advanced reachability is needed. 

(Herman, Spong & Lylynoja, 2004; Chen et al., 2014, p. 120–121.) 

 

5.1.3 Welding expert systems 

As an example, a Finnish company specialised in welding automation has developed welding 

expert systems. This company’s most advanced expert system “Weld Control 500 Adaptive” 

has some adaptive features such as automatic filling in multi-run welding. The system can 

be connected to welding equipment such as robot cells and seam tracking devices. 
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(Pemamek, 2015.) Expert systems and sensors are available for process monitoring as well, 

although feedback parameter correction is still a rare feature. These systems are usually more 

for quality monitoring than controlling the welding process itself. (Pemamek, 2015; HKS-

Prozesstechnik, 2016c; Thermatool, 2016.) 

 

5.2 Recent studies 

The adaptability of welding has been studied with various welding processes and sensor 

types. Usually, several sensors have been applied simultaneously since welding is a multi-

variable process. Predicting and controlling process parameters with neural networks has 

also been studied notably. (Chen, 2015, p. 3–34.) 

 

5.2.1 Intelligent control of welding process parameters 

Several configurations of neural networks and fuzzy logic have been found to bring good 

results in predicting process parameters, such as bead geometry and penetration depth. In 

these studies, a neuro-fuzzy control has been considered to be accurate enough for welding 

process control. However, a neuro-fuzzy approach still requires work in the teaching and 

testing stages. (Nagesh & Datta, 2002, p. 303–311; Xiong et al., 2013a, p. 743–745; Aviles-

Viñas, Lopez-Juarez & Rios-Cabrera, 2015, p. 156–162.) 

 

5.2.2 Current and voltage signals 

Current and voltage are the basic parameters of the arc welding process which affect material 

deposition, heat input, penetration and bead size. Current is usually measured by a non-

contact Hall-effect-sensor, based on induction. Voltage can be measured straight from wire 

feeding unit even if is it not the most accurate method for measuring the true arc voltage, 

also known as the arc length. (Pires et al., 2006. p. 75–76.) 

 

An alternative and more accurate method for sensing arc voltage is based on acoustic 

emission analysis by a microphone and digital signal processing. Lv, Zhong, Chen and Lin 

(2014) found acoustic emission analysis to be an accurate method for measuring arc voltage 

within lengths of 3-7 mm in TIG (Tungsten inert gas welding) welding. Acoustic emission 

measuring has a potential for e.g. full penetration control when coupled with other sensing 

techniques. (Lv et al., 2014, p. 235–248.) 
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In addition, pulse welding signals have been studied with current and voltage sensors. (Pal, 

Bhattacharya & Pal, 2009, p. 1113–1129). Wang, Zhang and Wu (2012) developed a system 

for predicting penetration in pulse MAG welding, based on measuring features of the arc 

voltage signal. The study stated that measuring and adjusting the arc voltage during the pulse 

of a current can be used for controlling penetration in pulse welding. (Wang, Zhang & Wu, 

2012, 233–237.) 

 

5.2.3 Infrared sensing 

In the early 1990’s, Nagarajan, Chen and Chin (1989) proposed applying infrared 

thermography for sensing and controlling weld penetration, as they found a relation between 

the isotherms of the weld pool and the depth of penetration. Experiments were performed by 

IR camera, connected to a PC, and MAG welding process. As well, studies have been 

executed about IR filtering, since excluding perturbations caused by arc away from IR 

images is important. Usually, filtering is done by selecting a bandwidth that excludes the 

wavelengths of the arc. (Chen & Chin, 1990, p. 181–185; Nagarajan, Chen & Chin, 1989, p. 

462–466; Chokkalingham et al., 2012, p. 1996.) 

 

As a reference, Chandrasekhar, Vasudevan, Bhaduri and Jayakumar (2015) recently 

succeeded in estimating full penetration in TIG welding from thermographic images by 

employing neural network, fuzzy logic and an IR camera system. Root Mean Square (RMS) 

errors of predicted bead wide and penetration were considerably low, equal to 0.11 and 0.07. 

This result was achieved with 90 data, 70 of which were used for neural network training, 

10 for checking and 10 for testing. The penetration estimation characteristics considered 

were: the weld pool IR width and IR length, the thermal area under Gaussian approximation 

of thermal profile as well as the welding current. (Chandrasekhar et al., 2015, p. 59–71.) 

 

Other IR characteristics such as IR peak (maximum) temperature, mean & standard 

deviations of the Gaussian temperature profile, widths of thermography curves, and bead 

width estimations from the Gaussian temperature profiles have also been considered as 

potential characteristics to estimate weld penetration in other reference studies. However, 

applying these characteristics requires understanding the fundamentals of the weld pool 

thermal behaviour or alternatively again neuro-fuzzy methods. (Nagarajan et al., 1989, p. 
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462–466; Chen et al., 1990, p. 181–185; Chokkalingham et al., 2012, p. 1998; Ghanty et al., 

2008, p. 396–397.) 

 

5.2.4 Improved non-destructive testing methods 

Applying NDT based techniques, such as ultrasonic, radiography and acoustic emissions has 

been studied as feedback signals in adaptive welding. As an example, non-contact laser 

ultrasonic probe has been developed allowing ultrasonic inspection during welding. An 

improved approach for weld defect identification from radiographic images has also been 

developed by neural network feature matching. (Hopko, Ume & Erdahl, 2002, p. 351–357; 

Zahran et al., 2013, p. 26–34.) 

 

5.2.5 Vision sensing 

Vision sensing is an extensively studied field of adaptive welding. Among laser seam 

tracking the variety of studies include specific cases such as visual inspection techniques, 

work object scanning, automatic seam recognition, weld pool size estimation and bead width 

measurement. The results of the studies show that modern camera technology together with 

a specific filter and image processing techniques is capable of monitoring hot and reflective 

metallic objects. (Chen, 2015, p. 21–22; Chen, Luo, & Lin, 2007, p. 257–265; Dinham & 

Fang, 2013, p. 288–300; Xiong et al., 2013b, p. 82–88.) 

 

5.3 Future studies 

The future research and development of adaptive arc welding are predicted to focus on the 

further improvement of artificial intelligence methods, expert systems, and intelligent 

modelling of the welding process. Still, a lot of research work is required to develop an 

efficient human brain like welding process controller and expert system.  Similarly, various 

sensors need to be developed to be more accurate, robust and compact. (Chen et al., 2014, 

p. 109–111; Chen, 2015, p. 1–7, 21.) On the other hand, future studies of adaptive laser 

welding are expected to include the detection of internal imperfections, such as porosity, hot 

cracks and lack of fusion to be monitored with spectrometers and emission detectors. High 

sample rate sensors (over 10 kHz) and multi sensor integration are also expected to be 

studied. (You, Gao & Katayama, 2014, p. 194–198.) 
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6 EXPERIMENTAL SETUPS AND EXPERIMENTAL PROCEDURE 

 

 

The usability and accuracy of an IRT sensor and a neural network in estimating full 

penetration was studied in the experimental part of the study. The motivation of the 

experiments was to find a clear relation between penetration and thermal profiles. 

Penetration estimating was the main reason why ThermoProfilScanner was acquired, 

although at first it needed to be adjusted to optimal measuring distance and the monitored 

parameters needed to be figured out. The experiments also complete a parameter library and 

expert system, essentially needed in adaptive welding. The neural network was selected as 

the control strategy of the welding process because further studies are likely to apply 

intelligent control strategies as well. Physical modelling of the welding process was 

considered to have benefits, though it was not applied in this study. The chronological 

workflow of the experimental procedure from preliminary testing towards adaptive 

application is explained step by step in figure 17. 

 

 

Figure 17. The workflow of the experimental procedure and the project. 

Building adaptive feedback system

Testing neural network efficiency Testing real life cases

Building parameter library

Classification and evaluation of experimental samples

Full penetration experimentals
Welding experiments with penetration 

monitoring
Producing samples for parameter library

Configuring IR thermography setup

Defining optimal TPS measuring distance Defining monitored IRT parameters

Preliminary testing

Exploring usable parameter combinations Considering parameters for process control
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At the preliminary testing stage, approximately 50 experiments were welded for exploring 

usable process parameter combinations. It was found that welding speed around 6-7 mm/s 

and wire feed rate of 9-10 m/min would be optimal for welding 5 mm thick steel plates with 

V-grooves and without backing. Arc length correction was also found useful for fine 

adjusting arc energy. However, at the preliminary testing stage, TPS was not optimally 

located causing further experiments described in this chapter necessary. 

 

The measurement range of TPS, which is 600–1350 ºC, limits the installation position. The 

melting and the boiling points of steel are equal to about 1500 ºC and about 2850 ºC, hence 

the weld pool is expected to reach temperatures between these values. Thereby, if the 

measurement point of TPS is too close to the weld pool, the temperatures of the weld pool 

exceed the highest recordable temperature and the measurement is unusable. 

Correspondingly, if the measurement point is too far away from the weld pool the 

temperature is below the lowest recordable temperature. In addition, direct weld pool 

monitoring would require a strong filtering. 

 

Later, TPS was configured so that it was able to record the maximum temperature of the 

thermal distribution. By making test welds and moving the TPS further away from the 

welding spot until temperatures did not peak over the measurement range, an optimal 

distance for the TPS could be defined. About 34 mm after the tip of the welding electrode 

was found as an optimal distance for the TPS measurement point. After this TPS 

configuration, the experimental setup was ready for full penetration experiments and 

following neural network teaching and testing stages. The ultimate goal of this project is to 

test real life welding cases with adaptive control as a follow-up for this study. 

 

6.1 System layout 

The adaptive welding station (figure 18) at Lappeenranta University of Technology (LUT) 

was built for fulfilling the preconditions needed in adaptive welding. The system layout 

consists of: 

 Robot manipulator (ABB IRB-A1600) 

 Robot controller (ABB IRC5 M2004) 

 Power supply with network connections (Fronius Trans Puls Synergic 5000) 

 Wire feeder (Fronius) 
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 Welding torch (Dinse DIX METZ 542) 

 Collision sensor (Dinse DIX SAS 100) 

 Positioner (NewFiro 800 HHT) 

 Torch cleaning and calibration station (ABB TSC) 

 Two laser sensors (Meta SLS 50 V1 with Meta Smart Laser Pilot system) 

 HKS-Prozesstechnik ThermoProfilScanner and WeldQAS monitoring system 

 Process sensor with current/voltage measurement (HKS-Prozesstechnik P1000) 

 Gas sensor (HKS-Prozesstechnik GM30L 10B) 

 Wire feed sensor (HKS-Prozesstechnik DV 25 ST) 

 Master computer with ABB RobotStudio, Meta Laser Tools, SQL-server and custom 

made real time welding parameter adjustment program for adaptive welding. 

 

 

Figure 18. Adaptive welding station at Lappeenranta University of Technology. 

 

The adaptive welding station was built around an industrial robot. The sensor set up and the 

adaptive welding head are shown in figure 19. The sensors around the torch take common 

welding orientations, such as butt joint and fillet joint are still usable. 
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Figure 19. Adaptive welding head, including two laser sensors and TPS 34 mm behind the 

tip of the electrode wire. The arrow indicates travel direction. 

 

The pilot laser in front of the welding torch finds and tracks the path as well as measures the 

groove geometry. ThermoProfilScanner behind the torch measures the thermography of the 

solidified, but still glowing weld. The second laser scanner is dedicated to measuring bead 

height. ThermoProfilScanner is based on measuring electromagnetic emissions in NIR band, 

emitted from hot weld surface. Both laser scanners are based on laser triangulation, typically 

used in laser tracking applications. All three sensors in the welding head send their data to a 

master computer. 

 

6.1.1 Materials and test specimens 

Since welding experiments have multiple variables, the results will be complex to analyse, 

unless essential parameters are identified. However, a neural network can solve this kind of 

problems, even though unimportant teaching parameters might cause noise and decrease the 

performance of the generated model. This issue led to the consideration that the most 

reasonable procedure to accomplish the experiments would be welding test specimens using 

constant process parameters while the root opening varies. The idea of the procedure was to 

achieve experiments that would include different penetration values, reducing the number of 

experiments and making comparison easier.  
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Experiments were carried out by butt welding machined V-grooves, without backing. The 

material used is S355K2 steel. Groove geometry, dimensions, and variables are shown in 

figure 20. 

 

 

Figure 20. Groove cross-section geometry, dimensions and variables. 

 

The experiments were performed by welding plates that have an opening root gap as 

illustrated in figure 21. Both step by step and linearly opening root gaps were tested. In 

addition, a few experiments were performed by welding plates that have a correspondingly 

decreasing root gap. 

 

 

Figure 21. Illustrative sketches of the root openings of the test specimens. 

 

The length of the test specimens was 400 mm, which allowed taking multiple specimens for 

macroscopic examination from one pair of workpieces. 

 

6.1.2 Fixed process parameters 

Fixed process parameters are presented in table 3. The constant welding parameters used are 

considered standard procedure for the MAG welding application studied. 
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Table 3. Constant welding parameters used in the experiments. 

Description Values 

Material S355K2 

Plate thickness 5 mm 

Groove angle 60° 

Shield gas & flow rate Ar + 12% CO2, 17 l/min 

Welding electrode Esab OK Autrod 12.51, ⌀ 1 mm 

Contact tip to work distance (CTWD) 18 mm 

  

6.2 Welding of test specimens 

The test specimens were tack welded and the root height and root face were measured before 

welding. To avoid distortion, the test specimens were clamped to the positioner table. 

  

6.2.1 Procedure 

The range of used process parameters is shown in table 4. Used parameter range was defined 

at the preliminary testing stage. It was found that even small adjustments had great effects 

on resulted weld attributes. 

 

Table 4. Variable welding parameters and the identification of weld specimens. 

Identification Values 

Gx.xHy.yWzz.zVqq.q (ArcL±pp) 

G = Root gap 0…1.5 mm 

H = Root face height 0, 1, 2 mm 

W = Electrode wire feed rate 9…10 m/min 

V = Travel speed 6…7 mm/s 

ArcL = Arc length (voltage) correction 0… +10 % 

E.g. G1.0H2W10.0V7.0 ArcL+10 

 

To decrease the amount of experiments, the varied process parameters were altered by at 

least 10 % at a time. The welds specimens and the specimens for macroscopic evaluation 

were named with identifications represented in table 4. 
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6.2.2 Monitoring and data 

Welding data was saved and extracted to an excel database by WeldQAS-system. The 

monitored parameters were IR thermography, current and voltage. Wire feed rate and gas 

flow were secondarily monitored to ensure a stable process. Fronius Trans Puls Synergic 

5000 MAG welding power source was used in synergic mode. 

 

6.3 Evaluation 

Experiments were classified and evaluated on an Excel sheet, used as a neural network 

teaching data set (appendices). Penetration depth and the most important weld geometry 

attributes were measured from scaled pictures of specimens for macroscopic examination. 

Thermography temperatures were measured by median maximum temperature values of 40 

neighbouring samples, which means about 0.5 s and 5 mm tolerance of the exact specimen 

point in a weld. 

 

6.4 Qualification 

The classification of the weld quality was based on the commonly used ISO 5817 standard. 

Penetration depth and root geometry were the analysed weld attributes. The standard does 

not allow incomplete root penetration in the most demanding B quality level welds nor in C 

level welds. The standard allows short term shrinkages and concavities in the groove (max. 

5 % of the plate thickness, but max. 0.5 mm). However, all shrinkages and concavities were 

considered as faults in the experiments. In addition, excess penetration is a fault as defined 

in the standard. The limit for excess penetration in B level weld is presented in equation 

upcoming equation: 

  

 ℎ ≤ 1 𝑚𝑚 + 0.1 × 𝑏, 𝑏𝑢𝑡 𝑚𝑎𝑥. 3 𝑚𝑚  (5) 

 

in which h and b are the height and width of the root reinforcement. (SFS-EN ISO 5817, 

2014.) 

 

The test specimens were qualified with a scale of 0 to 2 in which 0 means proper B quality 

level weld, 1 means almost faulty B level weld and 2 faulty, non B level weld (appendix 2). 

The quality based classification of welds with different parameters was used for verifying 

the TPS sensor feedback as well as a teaching data set for the neural network. 
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The neural network was tested to simulate correction of wire feed rate based on the TPS 

sensor data and root geometry. However, arc length (voltage) correction was also found to 

impact penetration considerably due to its significant effect on heat input as presented in 

figure 22. 

 

 

Figure 22. Wire feed and arc length relation to arc power. 

 

However, this wire feed and arc length relation to arc power depend on the specific synergy 

curves of the used power supply. In addition, at least travel speed and groove filling require 

a closed loop control to be developed as a follow-up for this study.  
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7 RESULTS AND DISCUSSION 

 

 

The experimental procedure was successful and it provided answers to the research 

questions. The infrared sensor and neural network both showed potential to evaluate the full 

penetration in MAG welding. 

 

7.1 Accuracy of infrared thermography 

The accuracy of near infrared photon detectors should in theory be about 1 °C which should 

be accurate enough for identifying crucial weld defects such as lack of penetration. 

Experiments in this study confirm this in practise, as can be seen in figure 23, where 

unmelted tack welds (2 and 3) can be seen as lower maximum temperatures and narrower 

width of thermal profile.  

 

 

Figure 23. Unmelted tack welds vs. maximum IR temperature. 
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In this particular experiment, the tack welds were the only variable while process parameters 

were constant and air gap and root face were equal to 0 mm and 2 mm. Travel speed was 7 

mm/s and wire feed rate was 10 m/min. The tack weld were welded to the root side by TIG 

welding equipment and grinded with an angle grinder. Tack welds were approximately 3–4 

mm wide and 1–2 mm high. At the locations of the unmelted tack welds, the maximum 

temperatures are equal to 1000–1015 °C while elsewhere the maximum temperatures was 

significantly higher, equal to about 1050 °C. An interesting point is that the maximum IR 

temperature seems to indicate that the lack of penetration is longer than it actually is. 

 

7.2 Thermal profile as a penetration control signal 

The maximum IR temperature was found to have a relation to penetration as shown in figure 

24. In this experiment, the welding parameters were constant except for the root gap which 

was increasing step by step. Travel speed, wire feed rate and arc length correction are equal 

to 6 mm/s, 9 m/min and +10 units. A hotter maximum temperature indicates a deeper weld 

penetration and correspondingly a colder maximum temperature indicates a shallower weld 

penetration. At the locations of specimens for macroscopic examination (1, 2 and 3),  the 

maximum temperatures were equal to 1078 °C, 1126 °C and 1152 °C. The width of a thermal 

profile has a correlation to penetration as well, even though it does not have as much dynamic 

range as the maximum temperature with the studied sensor type. Previously, the maximum 

IR temperature and IR width have been proposed as penetration control signals by Nagarajan 

et al. (1989), Chen et al. (1990), and Chokkalingham et al. (2012). The sensor measurement 

distance was causing a measurement delay of 5–6 s, depending on the used welding speed. 

Even though arc welding seems to generate waving to thermal profiles possibly due to its 

short circuit based characteristics, there is still enough measurement range to identify the 

level of penetration. 
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Figure 24. Penetration vs. maximum IR temperature. 

 

7.3  Neural approach of weld penetration 

Based on the experimental samples (appendices), a Levenberg-Marquard backpropagation 

neural network was created using MATLAB-software. The neural network (figure 25) has 3 

input variables, maximum IR temperature (Tmax), wire feed rate/travel speed ratio (W/V) and 

welding energy (E). These inputs are calculated in the hidden layers, which consist of 12 

nodes. The output was the amount of wire feed correction required to obtain an acceptable 

weld. The teaching, testing and validation were made by randomly chosen samples. The 

distribution of samples was 60 % for teaching, 20 % for testing and another 20 % for 

validation.  
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Figure 25. The basic structure of the neural network, where W is weight and b is bias. 

 

During the first runs, the neural network performed with an average reliability of about 70 

% with 39 randomly chosen teaching, testing and validation samples. The reliability of the 

neural network could be further improved to about 80 % by feeding more samples as 

presented in figure 26. The mean squared error (MSE) and the root mean squared error 

(RMSE) of the neural network fitting were equal to 0.114 and 0.338. 

 

Some previous studies such as Chokkalingham et al. (2012) and Chandrasekhar et al. (2015) 

have achieved better results, however, they had twice the amount of teaching samples and 

more input parameters. In addition, in this study, the accuracy of the neural network could 

be improved by teaching more samples. 
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Figure 26. Success of the predictions tested with three different data sizes. In this case, an 

iteration means a full neural network teaching loop. 

 

The logic of the neural network decision making principles was considered with known 

relations and causations, presented in figure 27. As it can be seen, there are two clusters 

linked together with arc energy (E) and travel speed (V). Thereby, the neural network is 

considered to model the right phenomenon. 

 

 

 

 

 

 

 

 

 

 



57 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Known relations and causations of the maximum IR temperature (Tmax) and the 

other process variables. 

 

It is interesting that the neural network returned good results, even if groove geometry 

variables were excluded. Hence, it can be considered that maximum IR temperature (Tmax) 

reveals the amount of penetration using only arc energy (E) and wire feed rate/travel speed 

ratio (W/V). Considering the accuracy of the neural network, it also indicates that the 

maximum IR temperature is an efficient signal for penetration control. The performance of 

the taught neural network in controlling the actual welding process will be studied in practise 

as a follow-up for this study.  

 

ThermoProfilScanner has benefits compared to standard IR cameras, such as good accuracy, 

attachability to robot welding heads, less expensive price, good protection and small size. 

Though it still limits the reachability of the welding robot. For monitoring the penetration, 

the TPS needs to be coupled with current and voltage sensors as well as travel speed, because 

the measured maximum temperature also depends on the heat input. In addition, measuring 

the groove geometry before welding, for example by a laser sensor, has benefits in predicting 

the obtained penetration and groove filling. 
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8 CONCLUSIONS AND SUMMARY 

 

 

An infrared thermography sensor and a neural network was studied as a full penetration 

control approach in gas metal arc welding. Experiments were performed by butt welding of 

S355 steel with V-grooves and without backing. During the experiments, the infrared 

thermography data and the other weld attributes were classified to a database which was 

used for verifying the infrared thermography sensor feedback as well as a teaching data set 

for the neural network. Based on literature review of the topic and executed experiments, the 

following conclusions can be stated: 

 

Adaptive welding has been studied extensively, including various welding process control 

approaches. However, in the industry, adaptive welding is still not at the highest possible 

level. There is still a lot of need to develop more efficient adaptive welding systems. 

 

Infrared thermography has shown potential in the estimation of weld penetration. Based on 

the experiments, the maximum temperature and the width of the temperature distribution 

were proved to correlate to the amount of weld penetration. Near infrared band is tolerant to 

emission variation of the measured object and suitable for measuring temperatures between 

approximately 500–1500 ºC. Photon detectors have an accuracy of approximately 1 ºC, 

which is more than enough for estimating the weld penetration. Based on the carried out 

experiments and previous studies found in literature, near infrared photon detectors are 

considered to be accurate enough to monitor full penetration. 

 

The studied neural network showed potential as a penetration control approach. The neural 

network was performing well in the simulation of penetration estimation and wire feed rate 

correction considering that the teaching, validation and testing data included 55 samples. 

However, the neural network needs further development and improvement as a follow-up 

for this study. The thermography signal needs to be coupled with current and voltage sensors, 

because the measured temperature depends on heat input as well. The studied NIR line 

thermography sensor provides less information than actual NIR cameras. However, it is 

smaller, less expensive and still able to give reliable feedback on the amount of penetration. 
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Currently the most used approaches to model characteristics of the welding process are 

neural networks, fuzzy logic or combinations of these, which do not require accurate 

physical modelling of the welding process. However, neural networks tend to require a lot 

of work with teaching and validation. Nevertheless, the development of self-learning 

intelligent systems and pre-processed heuristics have potential to solve these problems.  
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9 FURTHER STUDIES 

 

 

The following topic ideas can be proposed for further studies based on the result of this 

study: 

 

1. Testing real life welding cases with the proposed full penetration control by the 

application of infrared thermography and neural network. 

 

2. Improving the performance of the neural network model. 

 

3. Developing a control of travel speed and groove filling. 

 

4. Testing different seam types and groove geometries, plate thicknesses and materials 

such as stainless steel. 

 

5. Multi sensor integration experiments with laser sensors. 

 

  



61 

 

REFERENCES 

 

 

Alfaro, S. C. A. 2011. Sensors for Quality Control in Welding. In: Prof. Wladislav Sudnik 

(Ed.). Arc Welding. InTech. Pp. 81–106. 

 

Astarita, T. & Carlomagno, G. M. 2013. Infrared Thermography for Thermo-Fluid 

Dynamics. Springer-Verlag Berlin Heidelberg. 224 p. 

 

Aviles-Viñas, J. F., Lopez-Juarez, I. & Rios-Cabrera, R. 2015. Acquisition of welding skills 

in industrial robots. Industrial Robot: An International Journal, vol. 42:2. Pp. 156–166. 

 

Carlomagno, G. M. & Cardone, G. 2010. Infrared thermography for heat transfer 

measurements. Experiments in Fluids, vol.49:1. Pp. 1187–1218. 

 

Carrino, L., Natale, U., Nele, L., Sabatini, M.L. & Sorrentino, L. 2007. A neuro-fuzzy 

approach for increasing productivity in gas metal arc welding processes. International 

Journal of Advanced Manufacturing Technology, Vol. 32. Pp. 459–467. 

 

Chen, W. H. & Chin, B. A. 1990. Monitoring Joint Penetration Using Infrared Sensing 

Techniques. Welding Journal, Vol. 69. Pp. 181–185. 

 

Chen, S. B. 2015. On Intelligentized Welding Manufacturing. Robotic Welding, Intelligence 

and Automation, Advances in Intelligent Systems and Computing. Springer Switzerland. 32 

p. 

 

Chen, S. B. & Lv, N. 2014. Research evolution on intelligentized technologies for arc 

welding process. Journal of Manufacturing Processes, Vol. 16:1. Pp. 109–122. 

 

Chen, X. Q., Luo, H. & Lin, W. J. 2007. Integrated Weld Quality Control System Based on 

Laser Strobe Vision. In: T.J. Tarn et al. (Eds.). Robot, Weld, Intelligence, & Automation. 

LNCIS. Springer-Verlag Berlin Heidelberg. Pp. 257–266. 



62 

 

Chandrasekhar, N., Vasudevan, M., Bhaduri, A. K. & Jayakumar, T. 2015. Intelligent 

modeling for estimating weld bead with and depth of penetration from infra-red thermal 

images of the weld pool. Journal of Intelligent Manufacturing, Vol. 26. Pp. 59–71. 

 

Chokkalingham, S., Chandrasekhar, N. & Vasudevan, M. 2012. Predicting the depth of 

penetration and weld bead width from the infra red thermal image of the weld pool using 

artificial neural network modeling. Journal of Intelligent Manufacturing, Vol. 23:5. Pp. 

1995–2001. 

 

Cornu, J. 1988. Advanced welding systems. Welding Automation Vol. 2 Consumable 

electrode processes. IFS Publications Ltd, UK. 301 p. 

 

Dinham, M. & Fang, G. 2013. Autonymous weld seam identification and localisation using 

eye-in-hand stereo vision for robotic arc welding. Robotics and Computer-Integrated 

Manufacturing, vol. 29. Pp. 288–301. 

 

Einerson, J. C., Smartt, H. B., Johnson, J. A., Taylor, P. L. & Moore, K. L. 1992. 

Development of an intelligent system for cooling rate and fill control in GMAW. 

Proceedings of the 3rd International Conference on Trend in Welding Research, Washington, 

D.C., USA. Pp. 853–857. 

 

Garašić, I. Kožuh, Z. & Remenar, M. 2015. Sensors and their classification in the fusion 

welding technology. Technical Gazette, Vol. 22:4. Pp. 1069–1074. 

 

Ghanty, P., Vasudevan, M., Mukherjee, D. P., Pal, N. R., Chandrasekhar, N., Maduraimuthu, 

V., Bhaduri, A. K., Barat, P. & Raj, B. 2008. Artificial neural network approach for 

estimating weld bead width and depth of penetration from infrared thermal images of weld 

pool. Science and Technology of Welding and Joining, Vol. 13:4. Pp. 395–401. 

 

Gruner, K. 2003. Princibles of Non-Contact Temperature Measurement [online]. Raytek 

GmbH. [Referred 6.1.2016]. 29 p. Available: http://support.fluke.com/raytek-

sales/Download/Asset/IR_THEORY_55514_ENG_REVB_LR.PDF 

 



63 

 

Herman, K. Spong, N. & Lylynoja, A. 2004. Autonymous Manufacture of Large Steel 

Fabrications EC Contract: G1RD-CT-2000-00461 ‘NOMAD’. Proceedings of 35th 

International Symposium on Robotics, 23–26. March, Paris. 

 

Heston, Tim. 2005. The Adaptability of Welding. Fabricating & Metalworking, Nov/Dec 

2005; 4, 10; ProQuest. Pp. 41–45. 

 

Hopko, S. N. Ume, I. C. & Erdahl, D. S. 2002. Development of a Flexible Laser Ultrasonic 

Probe. Journal of Manufacturing and Engineering, Vol. 124. Pp. 351–357. 

 

HKS-Prozesstechnik. 2016a. ThermoProfilScanner [online]. [Referred 6.1.2016]. Available: 

http://www.hks-prozesstechnik.de/en/products/thermoprofilscanner/ 

 

HKS-Prozesstechnik. 2016b. ThermoProfilScanner [online]. [Referred 6.1.2016]. 

Available: http://www.hks-prozesstechnik.de/fileadmin/uploads/Downloads/flyer_tps_engl 

.pdf 

 

HKS-Prozesstechnik. 2016c. WeldAnalyst [online]. [Referred 6.1.2016]. Available: 

http://www.hks-prozesstechnik.de/en/products/weldanalyst/ 

 

Hägale, M., Nilsson, K. & Pires, J. N. 2008. Industrial Robotics. In: Siciliano, B. & Khatib, 

O. (Eds.). Springer Handbook of Robotics. Springer-Verlag Berlin Heidelberg. Pp. 963-986. 

 

Ithurralde, G., Simonet, D., Choffy, J.-P. & Bernard, L. 2000. NDT Approach and multi-

sensors tools for the Inspection of aeronautics Welds. 15th World conference on non-

destructive testing, Brescia. 

 

Jang, J.-S. R., Sun, C.-T. & Mizutani, E. 1997. Neuro-Fuzzy and Soft Computing: A 

Computational Approach to Learning and Machine Intelligence. Upper Saddle River (NJ): 

Prentice Hall, cop. 614 p. 

 



64 

 

Juneghani, B. & Noruk, J. 2009. Keeping welding costs from spiraling out of control 

[online]. [Referred 16.12.2015]. Available: http://www.thefabricator.com/article/ 

automationrobotics/keeping-welding--costs-from-spiraling--out-of-control 

 

Köhler, T. 2015. Der ThermoProfilScanner in der Entwicklung und seine gegenwärtigen 

Eigenschaften und Formen zur Erfassung von Wärmefeldern in stark verschmutzten 

Umgebungen. HKS-Prozesstechnik GmbH. 10./11. Juni 2015. 24 p. 

 

Köhler, T. 2016. ThermoProfilScanner - Technical data. HKS-Prozesstechnik GmbH. 

17.2.2016. 1 p. 

 

Lv, N., Zhong, J., Chen, H. & Lin, T. 2014. Real-time control of welding penetration during 

robotic GTAW dynamic process by audio sensing of arc length. The International Journal of 

Advanced Manufacturing Technology, Vol. 74. Pp. 235–249. 

 

Meta Vision Systems, 2012. SLS-050 Preliminary Data Sheet [online]. Uploaded 04.2012. 

[Referred 17.11.2015]. Available: http://www.metamak.com.tr/wp-

content/uploads/2012/04/MetaVision-SLS-Sensor-Datasheet.pdf 

 

Meta Vision Systems, 2014. SLPi, Meta Laser Vision System for Robotic Welding [online]. 

Updated 28.1.2014. [Referred 17.11.2015]. Available: http://www.meta-

mvs.com/QXBKN2146662 

 

Mortimer, J. 2006. Jaguar uses adaptive MIG welding to join C-pillars to an aluminium roof 

section in a new sports car. Sensor Review, Vol. 26:4. Pp. 272–276. 

 

Nagarajan, S., Chen, W. H. & Chin, B. A. 1989. Infrared Sensing for Adaptive Arc Welding. 

Welding Journal, vol. 68. Pp. 462–466. 

 

Nagesh, D. S. & Datta, G. L. 2002. Prediction of weld bead geometry and penetration in 

shielded metal-arc welding using artificial neural networks. Journal of Materials Processing 

Technology, vol. 123:2. Pp. 303–312. 

 



65 

 

Naidu, D. S., Ozcelik, S. & Moore, K. L. 2003. Modeling, Sensing and Control of Gas Metal 

Arc Welding. First edition. Elsevier Science Ltd, Kidlington. 372 p. 

 

Olson, D. L., Siewert, T. A., Liu, S. & Edwards, G. R. 1993. ASM Handbook, Volume 6: 

Welding, Brazing and Soldering. 10th edition. ASM International. 2872 p. 

 

Pal, K., Bhattacharya S. & Pal, S. K. 2009. Prediction of metal deposition from arc sound 

and temperature signatures in pulsed MIG welding. The International Journal of Advanced 

Manufacturing Technology, Vol. 45. Pp. 1113–1130. 

 

Pashkevich, A. 2009. Welding Automation. In: Nof, S. Y. (Ed.). Springer Handbook of 

Automation. Springer-Verlag Berlin Heidelberg. Pp. 1027–1040. 

 

Pemamek. 2015. WeldControl 500 Adaptive [online]. [Referred 30.11.2015]. Available: 

http://www.pemamek.com/automated-welding/pema-weldcontrol/weldcontrol-500-

adaptive 

 

Pires, J. N., Loureiro, A. & Bölmsjo, G. 2006. Welding Robots: technology, system issues 

and applications. Springer-Verlag London Limited. 180 p. 

 

Planck, M. 1900. Über eine Verbesserung der Wien'schen Spectralgleichung. 

Verhandlungen der Deutschen Physikalischen Gesellschaft 2. Verlag von Johann Ambrosius 

Barth, Leipzig. Pp. 202–204. 

 

Schauder, V., Köhler, T., Wenzl, B., Prasek, & M. Schmitt, M. 2013. Thermal Weld Seam 

Inspection in Pipe Production Lines. IIW International Conference on “Automation in 

Welding” 16th/17th September, 2013. Essen, Germany. 

 

Schiewe, C. & Schindler, K. 2013. The influence of the emissivity on the non-contact 

temperature measurement [online]. DIAS Infrared Systems. [Referred 14.2.2016]. 3 p. 

Available:  http://www.dias-infrared.com/wp-content/uploads/sites/2/2013/03/ 

Influence_Of_Emissivity.pdf 

 



66 

 

SCOPUS. 2016. Tools for analyzing scientific articles [online]. [Referred 14.2.2016]. 

Available: https://www.scopus.com/term/analyzer.uri?sid=09D6F01A8E652CB44BBA2E 

86EACF0811.CnvicAmOODVwpVrjSeqQ%3a20&origin=resultslist&src=s&s=TITLE-

ABS-KEY%28adaptive+OR+intelligent+OR+automated+AND+welding%29&sort=plf-

f&sdt=b&sot=b&sl=63&count=3982&analyzeResults=Analyze+results&txGid=0 

 

SFS 3052. 1995. Welding terminology. The Finnish Standard Association. Approved on 

25th September 1995. 122 p. 

 

SFS-EN ISO 5817. 2014. Welding. Fusion-welded joints in steel, nickel, titanium and their 

alloys (beam welding excluded) - Quality levels for imperfections. The Finnish Standard 

Association. Approved on 31st March 2014. 61 p. 

 

Smartt, H. B. & Einerson, C. J. 1993. A Model for Heat and Mass Input Control in GMAW. 

Welding Journal, May 1993. Pp. 217–229. 

 

Tay, K. M. & Butler, C. 1997. Modelling and optimatizing of a MIG welding process – A 

case study using experimental designs and neural networks. Quality and Reliability 

Engineering International, Vol. 13. Pp. 61–70. 

 

Thermatool. 2016. SeamScan [online]. [Referred 14.2.2016]. Available: 

http://thermatool.com/blog/products/seamscan/ 

 

Wang, Z. Zhang, Y. & Wu, L. 2012. Adaptive interval model control of weld pool surface 

in pulsed gas metal arc welding. Automatica, Vol. 48:1. Pp. 233–238. 

  

Xiong, J., Zhang, G., Hu, J. & Li, Y. 2013a. Forecasting process parameters for GMAW-

based rapid manufacturing using closed-loop iteration based on neural network. 

International Journal of Advanced Manufacturing Technology, Vol. 69. Pp. 743–745. 

 

Xiong, J., Zhang, G., Hu, J. & Li, Y. 2013b. Vision-sensing and bead width control of a 

single-bead multi-layer part: material and energy savings in GMAW-based rapid 

manufacturing. Journal of Cleaner Production, Vol. 41. Pp. 82–88. 



67 

 

You, D. Y. Gao, X. D. & Katayama, S. 2014 Review of laser welding monitoring. Science 

and Technology of Welding and Joining, Vol. 19:3. Pp. 181–201. 

 

Zahran, O.Hasban, H. El-Kordy, M. & El-Samie, F. E. 2013. Automatic weld defect 

identification from radiographic images. NDT & E International, Vol. 57. Pp. 26–35. 

 

  



68 

 

APPENDIX I, 1 

Welding parameters and identifications. 

 

Specimen number (#), groove geometry and welding parameters 

# Groove G H Parameters W V ArcL 

  mm mm  m/min mm/s  

1 G0.5H1 0.5 1 W9V7 ArcL +10 9 7 +10 

2 G0.9H1 0.9 1 W9V7 ArcL +10 9 7 +10 

3 G0.6H1 0.6 1 W9V7 ArcL +10 9 7 +10 

4 G0H1 0 1 W9V7 ArcL +10 9 7 +10 

5 G0H1 0 1 W9V7 ArcL +10 9 7 +10 

6 G0.6H1 0.6 1 W9V7 ArcL +10 9 7 +10 

7 G1.0H1 1 1 W9V7 ArcL +10 9 7 +10 

8 G0H2 0 2 W9V6 ArcL +10 9 6 +10 

9 G0.4H2 0.4 2 W9V6 ArcL +10 9 6 +10 

10 G0.8H2 0.8 2 W9V6 ArcL +10 9 6 +10 

11 G0.5H2 0.5 2 W9V6 9 6 0 

12 G0.7H2 0.7 2 W9V6 9 6 0 

13 G0.9H2 0.9 2 W9V6 9 6 0 

14 G1.0H2 1 2 W9V6 9 6 0 

18 G0.2H2 0.2 2 W10V7 ArcL +10 10 7 +10 

19 G0.7H2 0.7 2 W10V7 ArcL +10 10 7 +10 

20 G0.9H2 0.9 2 W10V7 ArcL +10 10 7 +10 

21 G0.2H0 0.2 0 W10V7 10 7 0 

22 G0.2H0 0.2 0 W10V7 10 7 0 

23 G0.8H1 0.8 1 W9V6 ArcL +10 9 6 +10 

24 G0.4H1 0.4 1 W9V6 ArcL +10 9 6 +10 

25 G1.1H1 1.1 1 W10V7 ArcL +10 10 7 +10 

26 G0.8H1 0.8 1 W10V7 ArcL +10 10 7 +10 

27 G0.6H1 0.6 1 W10V7 ArcL +10 10 7 +10 

28 G0.9H2 0.9 2 W10V7 10 7 0 

29 G0.5H2 0.5 2 W10V7 10 7 0 

30 G0H2 0 2 W10V7 10 7 0 

31 G1.1H2 1.1 2 W9V7 ArcL +10 9 7 +10 

32 G0.7H2 0.7 2 W9V7 ArcL +10 9 7 +10 

33 G0H2 0 2 W9V7 ArcL +10 9 7 +10 

34 G0.4H0 0.4 0 W9V6 9 6 0 

35 G0.7H0 0.7 0 W9V6 9 6 0 

36 G0H0 0 0 W9V7 9 7 0 

37 G0.8H0 0.8 0 W9V7 9 7 0 

38 G0.5H2 0.5 2 W9V7 9 7 0 

39 G0.7H2 0.7 2 W9V7 9 7 0 

40 G0.2H2 0.2 2 W9V7 9 7 0 
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APPENDIX I, 2 

Welding parameters and identifications. 

 

Specimen number (#), groove geometry and welding parameters 

# Groove G H Parameters W V ArcL 

  mm mm  m/min mm/s  

41 G0H2 0 2 W9V7 9 7 0 

42 G0H2 0 2 W9V7 ArcL +10 9 7 +10 

43 G0H2 0 2 W9V6 9 6 0 

44 G0.7H2 0.7 2 W9V6 ArcL +10 9 6 +10 

45 G0H2 0 2 W9V6 ArcL +10 9 6 +10 

46 G0.7H2 0.7 2 W9V6 9 6 0 

47 G0.5H2 0.5 2 W9V6 ArcL +10 9 6 +10 

48 G1H2 1 2 W9V6 ArcL +10 9 6 +10 

49 G0.2H2 0.2 2 W10V7 10 7 0 

51 G0H2 0 2 W10V7 ArcL +5 10 7 +5 

52 G1H1 1 1 W10V8 ArcL +5 10 8 +5 

53 G0.2H1 0.2 1 W9,5V7 ArcL +10 9.5 7 +10 

57 G0.3H2 0.3 2 W9V7 ArcL +10 9 7 +10 

58 G0.3H2 0.3 2 W9V7 ArcL +10 9 7 +10 

62 G0.3H2 0.3 2 W9V7 ArcL +10 9 7 +10 

66 G0.2H1 0.2 1 W9,5V7 ArcL +10 9.5 7 +10 

70 G0.2H2 0.2 2 W9,5V7 ArcL +10 9.5 7 +10 

74 G1H0 1 0 W9V7 ArcL +10 9 7 +10 

75 G1,5H0 1 0 W9V7 ArcL +10 9 7 +10 
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APPENDIX II, 1 

Weld attributes and qualifications. 

 

# Root width Root height  Quality Tmax E 
Arc 

power 

 mm 

(- = lack of 
penetration) 

mm 

Allowed 
root 

height 

0 = OK, 1 = 
‘almost’ and 

2 = fault 
(Median) 

°C 
(Median) 

kJ/mm W 

1 4.9 1.4 2.0 0 1091.2 0.792 5544 

2 5.3 1.5 2.1 0 1113 0.813 5688 

3 3.7 0.3 1.7 0 1117 0.819 5739 

4 1.8 0 1.4 1 1076.8 0.821 5746 

5 5.4 1.2 2.1 0 1064.8 0.785 5496 

6 5.1 1.4 2.0 0 1079.1 0.772 5406 

7 5.5 1.4 2.1 0 1113 0.776 5430 

8 0.0 -0.4 1.0 2 1077.8 0.924 5546 

9 2.5 0.14 1.5 1 1126.3 0.915 5492 

10 3.7 0.7 1.7 0 1151.5 0.930 5581 

11 0.0 -1.1 1.0 2 948.9 0.731 4388 

12 1.2 0 1.2 1 960.9 0.735 4411 

13 2.7 0.5 1.5 0 977.3 0.753 4517 

14 3.6 1 1.7 0 971.3 0.711 4266 

18 5.8 2.5 2.2 2 1211.2 0.959 6717 

19 5.0 1.9 2.0 0 1253.6 0.959 6717 

20 6.1 2.6 2.2 2 1234.3 0.959 6717 

21 5.3 1.6 2.1 0 1052.6 0.721 5050 

22 2.8 0 1.6 2 1014.6 0.697 4882 

23 3.8 0.3 1.8 0 1161.5 0.931 5588 

24 3.4 0.3 1.7 0 1128.6 0.941 5647 

25 6.3 2.0 2.3 0 1287.9 0.956 6691 

26 5.4 1.6 2.1 0 1266.5 0.965 6754 

27 3.8 0.3 1.8 0 1291.1 0.969 6780 

28 4.9 1.5 2.0 0 1069.2 0.712 4983 

29 1.7 0.2 1.3 1 989.1 0.712 4984 

30 0.0 -0.7 1.0 2 956.9 0.704 4929 

31 5.0 1.5 2.0 0 1127.4 0.805 5636 

32 3.0 0.2 1.6 0 1119.7 0.809 5664 

33 0.9 0 1.2 1 1070 0.808 5653 

34 2.1 0.1 1.4 0 1024.3 0.740 4442 

35 4.2 0.8 1.8 0 1023.1 0.758 4546 

36 1.4 0.1 1.3 1 945.6 0.644 4506 

37 5.0 1.3 2.0 0 989.2 0.649 4541 

38 1.5 0.1 1.3 1 939.6 0.639 4479 

39 0.2 -0.1 1.0 2 951.4 0.634 4439 

40 0.0 -0.5 1.0 2 936.6 0.641 4485 
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APPENDIX II, 2 

Weld attributes and qualifications. 

 

# Root width Root height  Quality Tmax E 
Arc 

power 

 mm 

(- = lack of 
penetration) 

mm 

Allowed 
root 

height 

0 = OK, 1 = 
‘almost’ and 

2 = fault 
(Median) 

°C 
(Median) 

kJ/mm W 

41 0.0 -1.4 1.0 2 882.6 0.623 4358 

42 3.6 1.0 1.7 0 1092.5 0.864 6049 

43 0.0 -1.7 1.0 2 955.9 0.726 4355 

44 3.4 0.4 1.7 0 1121.8 0.931 5583 

45 0.0 -1.4 1.0 2 1101.6 0.932 5594 

46 2.9 0.2 1.6 0 951.3 0.725 4352 

47 5.6 1.8 2.1 0 1122.5 0.917 5501 

48 5.3 1.7 2.1 0 1123.7 0.925 5551 

49 1.3 0.1 1.3 0 1006.3 0.738 5167 

51 3.8 0.8 1.8 0 1130.1 0.883 6179 

52 5.8 1.7 2.2 0 1134.9 0.783 6260 

53 4.6 1.0 1.9 0 1166 0.901 6305 

57 0.0 -1.0 1.0 2 1028.4 0.768 5377 

58 0.0 -0.9 1.0 2 1028.2 0.783 5478 

62 2.4 0.2 1.5 0 1026.9 0.783 5482 

66 3.2 0.2 1.6 0 1128.6 0.873 6114 

70 3.2 0.3 1.6 0 1127.5 0.875 6128 

74 6.9 1.5 2.4 0 1125.3 0.784 5491 

75 5.9 1.0 2.2 0 1124.8 0.792 5547 

 


