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The estimating of the relative orientation and position of a camera is one of the
integral topics in the field of computer vision. The accuracy of a certain Finnish
technology company’s traffic sign inventory and localization process can be improved
by utilizing the aforementioned concept. The company’s localization process uses
video data produced by a vehicle installed camera. The accuracy of estimated
traffic sign locations depends on the relative orientation between the camera and
the vehicle. This thesis proposes a computer vision based software solution which
can estimate a camera’s orientation relative to the movement direction of the vehicle
by utilizing video data. The task was solved by using feature-based methods and
open source software. When using simulated data sets, the camera orientation
estimates had an absolute error of 0.31 degrees on average. The software solution
can be integrated to be a part of the traffic sign localization pipeline of the company
in question.
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Kameran suhteellisen asennon ja sijainnin arvioiminen on yksi olennaisista aiheista
konenäön alalla. Erään suomalaisen teknologiayrityksen liikennemerkkien paikanta-
mis- ja inventointiprosessin tarkkuutta voidaan parantaa hyödyntämällä edellä mai-
nittua konseptia. Yrityksen paikantamisprossessi hyödyntää videoita, joita tuote-
taan ajoneuvoon kiinnitetyllä kameralla. Liikennemerkin arvioidun sijainnin tark-
kuus riippuu tämän kameran asennosta suhteessa ajoneuvoon. Tämä kandidaa-
tintyö esittää konenäköön perustuvan ohjelmistoratkaisun, joka pystyy arvioimaan
kameran asentoa suhteessa ajoneuvon liikesuuntaan hyödyntämällä kameran video-
dataa. Ratkaisussa hyödynnettiin kuvapiirteisiin perustuvia menetelmiä ja vapaan
lähdekoodin ohjelmistoja. Kun ohjelmistoratkaisun testauksessa käytettiin simu-
loitua dataa, absoluuttinen virhe kameran asennolle oli keskimäärin 0,31 astetta.
Ohjelmistoratkaisu voidaan integroida osaksi kyseessä olevan yrityksen liikenne-
merkkien inventoinnin prosessia.



4

CONTENTS
1 INTRODUCTION 6

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Objectives and restrictions . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 CAMERA POSE ESTIMATION 10
2.1 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Extrinsic parameters . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Intrinsic parameters . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Nistér’s five-point algorithm . . . . . . . . . . . . . . . . . . . 15
2.2.2 Pose extraction from the essential matrix . . . . . . . . . . . . 17

2.3 FAST feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Lucas–Kanade method . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 PRACTICAL IMPLEMENTATION 20

4 EXPERIMENTS AND RESULTS 22
4.1 Datasets and evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 CONCLUSIONS 26
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

REFERENCES 27



5

ABBREVIATIONS

FAST Features from accelerated segment test.
FOE Focus of expansion.
GPS Global positioning system.
LIDAR Light detection and ranging.
RANSAC Random sample consensus.
SfM Structure from motion.
SLAM Simultaneous localization and mapping.
SVD Singular value decomposition.
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1 INTRODUCTION

1.1 Background

Vionice Ltd. is a Finnish technology company that specializes in utilizing computer
vision for information production, asset management and service solutions. The
inventory and localization of traffic signs is one of the principal services provided
by the company. The outline of the localization process is as follows: Video data is
produced by using a smartphone camera. The smartphone is attached to a vehicle’s
dashboard or windshield with a stand. Video and corresponding Global positioning
system (GPS) data are uploaded to a server. The traffic signs are then extracted
from the video using computer vision. The location of each detected traffic sign
is determined by means of perspective projection and GPS data utilization. The
traffic sign detection and localization processes in question are described in [1].

Since the heights of most traffic signs are known beforehand, the distance between
a traffic sign and the camera can be triangulated. The GPS location of a traffic sign
is calculated based on its estimated distance, its location in the frame and the GPS
location of the camera. The accuracy of perspective projection results depends on
the relative orientation between the camera and the vehicle (i.e., the direction of
motion). If the exact orientation of the camera is unknown, the calculated locations
of the traffic signs will be inaccurate. This work focuses on correcting these errors
in the triangulation phase and was done in collaboration with Vionice.

Table 1 shows a computational example of how the divergence of the camera orien-
tation affects the calculated location of a traffic sign. For example, if we denote the
camera’s horizontal angle divergence as 𝛼 and the distance between a traffic sign
and the camera as 𝑑, the corresponding triangulation error 𝑒 can be calculated with
the equation 𝑒 = 𝑑 tan(𝛼). Figure 1 presents the scenario from top view and Figure
2 from the side. Point 𝐶 denotes the location of the camera and 𝑉 denotes the head-
ing of the vehicle in Figures 1 and 2. In Figure 1, 𝛼 denotes the relative horizontal
angle between the camera heading and vehicle heading. Respectively in Figure 2, 𝛽
denotes the relative vertical angle between the camera heading and vehicle heading.

These aforementioned inaccuracies can be corrected by estimating the angle diver-
gence by human vision and then manually correcting the heading for each video.
Nonetheless, this method is not very practical if a large amount of video data needs
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Table 1. Traffic sign distance and the corresponding errors (in meters) caused by camera
angle divergence.

Distance (m) 10 20 30 40 50
Angle
1° 0.17 0.35 0.52 0.70 0.87
2° 0.35 0.70 1.05 1.40 1.75
3° 0.52 1.05 1.57 2.11 2.62
4° 0.70 1.40 2.10 2.80 3.50
5° 0.87 1.75 2.62 3.50 4.37
6° 1.05 2.10 3.15 4.20 5.26
7° 1.23 2.46 3.68 4.91 6.14
8° 1.41 2.81 4.22 5.62 7.03
9° 1.58 3.17 4.75 6.34 7.92
10° 1.76 3.53 5.29 7.05 8.82

to be processed. This problem presents the need for an automated process that can
resolve the orientation divergence automatically.

Figure 1. Top view of the scenario.

1.2 Approach

In essence, the camera orientation divergence estimation problem can be formu-
lated as the estimation of the camera pose, which is the relative orientation and
position of the camera. If the relative position and orientation of the camera are
estimated between two consecutive frames, the camera orientation divergence can
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Figure 2. Side view of the scenario.

be approximated by calculating the orientation difference between the direction of
motion and orientation. A more accurate estimate for the orientation difference can
be achieved by calculating the average orientation difference of all frames. There
are various approaches for estimating a camera’s pose. Different methods for cam-
era pose estimation include e.g. Light detection and ranging (LIDAR) systems [2],
direct methods [3], depth sensing RGB-D cameras [4] or feature-based methods [5].

The task was approached by utilizing open-source software that is suitable for this
problem. In this case the chosen basis was Mono-vo [6], a monocular feature-based
visual odometry implementation created by Avi Singh. Mono-vo is open source and
utilizes OpenCV 3.0 [7], a BSD-licensed computer vision software library. Mono-vo
was chosen because it is relatively compact which makes it manageable and conve-
nient from the viewpoint of software development. Also, Mono-vo is MIT-licensed,
which means it can be used freely in commercial applications. The application served
as a basis and was further developed to provide a practical solution specifically to
the camera orientation divergence estimation problem.

Mono-vo suited the prerequisites of the use case of this thesis well, since it was
supposed that any additional devices besides a smartphone (monocular camera)
were assumed unavailable. Mono-vo utilizes Features from accelerated segment test
(FAST) algorithm for feature detection, Lucas–Kanade method for optical flow es-
timation and feature tracking, and Nistér’s five-point algorithm for estimating the
essential matrix, which is directly related to the camera pose. For convenience,
these aforementioned methods are also utilized in the final software solution for
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the problem in question and are described in Section 2. All of these methods are
implemented in the OpenCV library.

1.3 Objectives and restrictions

The objective of this bachelor’s thesis was to describe a software solution which
was developed to automatically determine the camera orientation divergence for
any given video. The specific objectives for the method implementation are the
following:

1. The software solution can process any given video that has been recorded by
a dashboard/windshield attached smartphone.

2. The accuracy of the orientation estimation is at least 1 degree for both hori-
zontal and vertical axes.

The specific assumptions and restrictions for the software implementation are the
following:

1. For each video, it is assumed that the corresponding focal length and horizontal
field of view are known.

2. It is assumed that the angle divergences remain constant during each individual
video.

1.4 Structure of the thesis

Section 2 outlines the necessary theory and the chosen methods related to the prob-
lem of camera pose estimation. Section 3 discusses the practical implementation
of the software solution to the camera orientation divergence estimation problem.
Section 4 contains the experiments and results. The results are discussed and the
thesis is concluded in Section 5.
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2 CAMERA POSE ESTIMATION

The feature-based estimation of camera pose consists of three components:

1. The extraction of image features.
2. The motion tracking of features in consecutive frames.
3. The estimation of the essential matrix, from which the camera pose can be

extracted.

The execution of these components requires that the intrinsic parameters of the
camera are known. The intrinsic parameters are depicted in Section 2.1.2 and are
part of the pinhole camera model, which is depicted in Section 2.1. The FAST
algorithm for image feature extraction is described in Section 2.3 and the Lucas–
Kanade method for feature tracking in Section 2.4. The essential matrix is presented
in Section 2.2, its estimation using Nistér’s five-point algorithm in Section 2.2.1 and
the extraction of the camera pose in Section 2.2.2.

2.1 Pinhole camera model

The mathematical model which a few of the following concepts are built upon is
the pinhole camera model. The pinhole camera model, which is also known as the
perspective camera model, describes the mathematical relationship between 3D-
points in the real world and 2D-points on the image plane. The pinhole camera
model is a simplification of how an actual camera functions [8].

A typical camera is a hollow enclosure with a small hole (aperture), from which
light can enter. A light-collecting lens is positioned in front of the aperture and a
light-sensitive surface is positioned on the opposite side of the hollow. In an ideal
pinhole camera, the aperture is a single point with no lenses. The pinhole camera
model does not take lens distortions and other physical side-effects into account.
This is why the model can be used only as an approximation for the relationship
between the real world and the image [8].

In Figure 3, we can see an overview of the pinhole camera model. The focal plane
𝐹 is at distance 𝑓 (focal length) away from the image plane 𝐼 . The pinhole 𝐶 is
located in the center of the focal plane 𝐹 . Light that enters through the pinhole
projects on the image plane and forms an inverted image. Objects in the 3D space
are projected to a 2D space. Such linear transformation is referred as perspective
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projection. The relationship between the 3D coordinates and the 2D coordinates
can be written as

⎡⎢⎢
⎣

𝑈
𝑉
𝑆

⎤⎥⎥
⎦

= ⎡⎢⎢
⎣

𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

⎤⎥⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑋
𝑌
𝑍
1

⎤
⎥
⎥
⎥
⎦

(1)

where 𝑥 = 𝑈/𝑆 is the horizontal and 𝑦 = 𝑉 /𝑆 the vertical coordinate in the image
plane [8].

Figure 3. The pinhole camera model [8].

The pinhole camera model can be extended by including the extrinsic and intrin-
sic parameters of the camera. The extrinsic parameters are used to describe the
transformation between the camera coordinates and world coordinates. The intrin-
sic parameters are used to describe the internal properties of the camera, such as
the focal length. In the context of computer vision, the camera parameters need
to be known in order to understand the relationship between the camera and the
surrounding environment. However, some parameters such as lens distortion can be
ignored if the quality of the camera is high. Lens distortions can be estimated and
corrected if necessary [9].
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2.1.1 Extrinsic parameters

The extrinsic parameters are used to transform from the camera coordinate system
to a world coordinate system [9]. The transformation is achieved by rotation R ∈
IR 3×3 and translation t ∈ IR 3×1. Thus a point in the world coordinate system, M,
can be expressed in camera coordinates, m, as follows:

m = RM + t (2)

The extrinsic parameters, or the rotation matrix R and translation vector t, are
also referred as the camera pose [10]. The rotation matrix R can be transformed to
Euler angles (yaw, pitch and roll) as follows [11]:

⎧{{
⎨{{⎩

𝜙1 = atan2(𝑅32, 𝑅33)
𝜙2 = −asin(𝑅31)
𝜙3 = atan2(𝑅21, 𝑅11)

and R = ⎡⎢⎢
⎣

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

⎤⎥⎥
⎦

(3)

2.1.2 Intrinsic parameters

The values that the intrinsic matrix K ∈ IR 3×3 contains are directly tied to the
physical properties of the camera [9]. The matrix takes the focal length, skewness
and principal point into account. Generally, the principal point (the origin of the
image plane) is not located at the center of the image plane [9]. Also the axes of
the real image may not be orthogonal (skewness). The intrinsic matrix K is defined
in Equation 4, where 𝜃 denotes the angle between the horizontal and vertical image
axes. 𝑓𝑢 and 𝑓𝑣 denote the focal length in pixel units. The horizontal and vertical
coordinates of the principal point are represented by 𝑢0 and 𝑣0 respectively.

K = ⎡⎢⎢
⎣

𝑓𝑢 𝑓𝑢cot(𝜃) 𝑢0
0 𝑓𝑣/sin(𝜃) 𝑣0
0 0 1

⎤⎥⎥
⎦

(4)

If we assume that the image axes are orthogonal, the angle 𝜃 is 𝜋/2. Thus the
matrix takes the form:
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K = ⎡⎢⎢
⎣

𝑓𝑢 0 𝑢0
0 𝑓𝑣 𝑣0
0 0 1

⎤⎥⎥
⎦

(5)

When matrices K and R and vector t are known, the camera parameters are known.
By incorporating both intrinsic and extrinsic parameters, the following projection
matrix can be written:

x = K [R t]X (6)

where x is a homogeneous representation of the corresponding 2D point on the image
and X is a homogeneous representation of the 3D point which is mapped to x by
the camera [9].

2.2 Epipolar geometry

Epipolar geometry describes the geometric relationship between two camera systems
[12]. In the context of a monocular camera system, we can treat two camera systems
as two consecutive frames from a single camera. The relation is encompassed in the
essential matrix E ∈ IR 3×3 in the case of a calibrated camera or in the fundamental
matrix F ∈ IR 3×3 in the case of an uncalibrated camera. The motivation for consid-
ering epipolar geometry is the fact that if the essential matrix or the fundamental
matrix is known, the camera pose can be recovered from these aforementioned ma-
trices [13]. Essentially, the search for the camera pose is the search for either of
these matrices. If a 3D point X is projected as x in the first view, and as x′ in the
second, the points are related to each other as follows [13]:

x′⊺Fx = 0 (7)

In Figure 4a, we can see that the camera centers, the image points x and x′, and the
world point X reside on the same plane 𝜋. The plane 𝜋 is referred as an epipolar
plane [13]. If the image points x and x′ are re-projected back to a world point,
the projection lines intersect at X. Assuming that only the image point x is known,
we can then consider how the corresponding point x′ is constrained. The plane 𝜋



14

is determined by the line connecting the camera centers of the two views and the
projection line connecting x and X. It is known that x′ lies on the plane 𝜋. Thus
x′ lies on the intersection of line l′ and plane 𝜋 on the image plane of the second
view. Line l′ is referred as the epipolar line corresponding to x [13].

Figure 4. Point correspondence geometry. (a) The point C denotes the camera center of
the first view and C′ of the second. The camera centers, the image points x and x′, and
the world point X lie on the epipolar plane 𝜋. (b) The image point x projected back to
a 3D space creating a projection ray. The 3D point X lies on this projection ray and x′
lies on the epipolar line l′ [13].

In a sense, the fundamental matrix is a generalization of the essential matrix. The
essential matrix has only five degrees of freedom, whereas the fundamental matrix
has seven [13]. The essential matrix also has additional properties and constraints.
The essential matrix can be defined as

E = K′⊺FK (8)

where K′ and K are the intrinsic calibration matrices of the two views [13]. If
the intrinsic calibration matrices are known, and x and x′ (homogeneous form)
are premultiplied by the intrinsic calibration matrices, the epipolar constraint in
Equation 7 can be expressed as [14]

x′⊺Ex = 0. (9)
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2.2.1 Nistér’s five-point algorithm

Nistér’s five-point algorithm [14] is a method for estimating the essential matrix or
the fundamental matrix which are related to a pair of camera views. The algorithm
estimates the essential matrix or the fundamental matrix from a set of five corre-
sponding image feature points. In order to estimate these matrices, the algorithm
computes the coefficients of a tenth degree closed-form polynomial and then finds
its roots.

All of the five point correspondences follow the epipolar constraint described in
Equation 9. The constraint can also be expressed as ~

q
⊺ ~
E = 0 where

~
q ≡ [𝑞1𝑞′

1 𝑞2𝑞′
1 𝑞3𝑞′

1 𝑞1𝑞′
2 𝑞2𝑞′

2 𝑞3𝑞′
2 𝑞1𝑞′

3 𝑞2𝑞′
3 𝑞3𝑞′

3]⊺
(10)

~
E ≡ [𝐸11 𝐸12 𝐸13 𝐸21 𝐸22 𝐸23 𝐸31 𝐸32 𝐸33]⊺

(11)

and 𝑞 and 𝑞′ denote the homogeneous presentations of the corresponding image
points. The subscripts in Equation 10 denote the vector elements. A 5×9 ma-
trix is formed when the vector ~

q
⊺ is stacked for all five point correspondences.

The right nullspace of this matrix is formed by vectors
~
X,

~
Y,

~
Z,

~
W. These vectors

are computed by QR-factorization. The vectors correspond to four 3×3 matrices
X,Y,Z,W. The essential matrix is of the form

E = 𝑥X + 𝑦Y + 𝑧Z + W (12)

where 𝑥, 𝑦 and 𝑧 are scalars to be solved [14].

Using the following constraints

EE⊺E − 1
2trace(EE

⊺)E = 0 det(E) = 0 (13)

and by applying Gauss-Jordan elimination with partial pivoting, equation system
𝐴 can be formed as seen in Figure 5a [14].

In equation system 𝐴, a dot denotes a scalar value and [𝑁] denotes a polynomial of



16

a) b)

Figure 5. Equation systems 𝐴 (a) and 𝐵 (b) [14].

degree 𝑁 in the variable 𝑧. Afterwards, the following equations are defined:

⎧{{
⎨{{⎩

⟨𝑘⟩ ≡ ⟨𝑒⟩ − 𝑧⟨𝑓⟩
⟨𝑙⟩ ≡ ⟨𝑔⟩ − 𝑧⟨ℎ⟩
⟨𝑚⟩ ≡ ⟨𝑖⟩ − 𝑧⟨𝑗⟩.

(14)

These equations are accommodated into a 3×3 matrix 𝐵, which contains 𝑧 poly-
nomials. Matrix 𝐵 is illustrated in Figure 5b. The vector [𝑥 𝑦 1]⊺ is a nullvector
to 𝐵, thus the determinant of 𝐵 vanishes. The determinant is the tenth degree
polynomial

⟨𝑛⟩ ≡ det(𝐵). (15)

The next step is the computation of the real roots of ⟨𝑛⟩. One way to accomplish
this is using Sturm-sequences [15] to bracket the roots, followed by a root-polishing
scheme [14]. Using the equation system 𝐵, the variables 𝑥 and 𝑦 can be found for
each root 𝑧. The essential matrix can then be obtained from Equation 12 [14].

In practice, when estimating the essential matrix, more than five point correspon-
dences are used [14]. To produce a more accurate estimate, multiple samples of five
point correspondences are used. An estimate for the essential matrix is calculated
for each sample. To eliminate outliers and to obtain a more robust estimate, the
results are processed by the Random sample consensus (RANSAC) [16] [17] method.
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2.2.2 Pose extraction from the essential matrix

The camera matrices can be recovered, when the essential matrix is known [13]. In
the case of an essential matrix, the camera matrices can be recovered up to scale.
However, there are four possible solutions. We can assume the camera matrix of the
first view as

P = [I 0] . (16)

If we factorize the essential matrix by Singular value decomposition (SVD) E =
USV⊺, the camera matrix of the second view can be determined as follows [13]:

P′ = [UWV⊺ ±u3] or [UW⊺V⊺ ±u3] (17)

where u3 is the third column vector from the matrix U and where

W = ⎡⎢⎢
⎣

0 −1 0
1 0 0
0 0 1

⎤⎥⎥
⎦

. (18)

Thus the rotation matrix R =UWV⊺ or UW⊺V⊺, and translation vector t = ±u3.
To determine which of the camera matrices is the correct one can be deduced by
testing if a single point is in front of both of the cameras.

2.3 FAST feature extraction

Features from accelerated segment test (FAST) [18] is a corner detection algorithm,
which can be used to extract features from image frames. FAST is very computation-
ally efficient compared to most other feature detection methods and was designed
real-time applications in mind e.g. Simultaneous localization and mapping (SLAM).

Suppose we have a corner candidate point 𝑝. Next, the candidate corner is sur-
rounded by a Bresenham circle of 16 pixels. The point 𝑝 is classified as a corner if a
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set of 𝑛 contiguous pixels exists in the circle which all have a brighter intensity than
the candidate pixel 𝐼𝑝 plus a threshold 𝑡, or a darker intensity than 𝐼𝑝 − 𝑡 [18]. All
of this is illustrated in Figure 6.

Figure 6. The pixel at 𝑝 is the center of a candidate corner. The highlighted pixels that
lie on the circle are used in the corner classification [18].

Multiple detected corners at adjacent locations can be pruned with indirect non-
maximal suppression. A score function 𝑉 is computed for all the detected corners.
There are multiple ways to define the score function 𝑉 . One way is to define 𝑉 as the
sum of absolute intensity difference between 𝑝 and the surrounding contiguous arc
of pixels [18]. When we consider two features at adjacent locations, their calculated
𝑉 values are assessed. The feature with the lower 𝑉 value is discarded, which means
that only the most distinctive corners are selected.

2.4 Lucas–Kanade method

The Lucas–Kanade method is a technique of optical flow estimation and can be used
for tracking feature points in consecutive image frames [19]. Optical flow is a vector
field that describes the apparent motion of objects in the image plane. Suppose we
have two consecutive image frames. By estimating the optical flow between these
two frames, one can approximate how each pixel has moved. A matching criterion
like the optical flow constraint is needed to estimate the optical flow field:

𝐼(𝑥 + 𝑢(𝑥, 𝑦), 𝑦 + 𝑣(𝑥, 𝑦), 𝑡 + 1) − 𝐼(𝑥, 𝑦, 𝑡) = 0. (19)
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In Equation 19, 𝐼 denotes the image sequence and 𝑤 = (𝑢, 𝑣)⊺ the optical flow field.
This optical flow constraint is also known as the brightness constancy constraint
[20]. The optical flow constraint is often linearized to the form

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 (20)

where the subscripts denote partial derivatives [19]. Using the optical flow con-
straint, an equation can be constructed for each pixel. There are two unknown
variables for each pixel, thus the problem is underconstrained. One way two solve
this problem is to use the Lucas–Kanade method: Instead of considering each pixel
as a single entity, a neighborhood of a fixed size is determined for each pixel. If
the chosen neighborhood size is large enough, a sufficient amount of information
is collected to determine the flow [19]. The Lucas–Kanade method was originally
proposed in [21].

The particular implementation of the Lucas–Kanade method, that is included in
the OpenCV library [22] and is utilized in the software implementation, includes a
pyramidal approach for motion tracking [23]. The pyramidal approach allows the
tracking of large pixel motions. The image is in a sense divided in to 𝐿𝑚 layers.
The first and topmost layer 𝐿0 encompasses the whole image in full resolution. The
layer 𝐿1 below it includes a portion that is half the width and height of the full
image. Each time we progress to a lower layer, the portion decreases by dividing
the width and height of the previous layer by two. First, the optical flow and affine
transformation are computed at the lowest level 𝐿𝑚 of the pyramid. The computa-
tion results are then propagated to the layer above it 𝐿𝑚 − 1. The computations
are executed again and then propagated to the upper layer until the top layer is
reached.
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3 PRACTICAL IMPLEMENTATION

The first step in the software implementation is to load the first frame of the video.
The feature points of the frame are extracted with the FAST algorithm. The sub-
sequent frame is then loaded. The features which were detected in the first frame
are tracked to the second frame using the Lucas–Kanade method. The features for
which the feature tracking fails or that which move outside the frame are removed.
Next, the essential matrix is estimated by using Nistér’s five-point algorithm which
utilizes the tracked features.

After the essential matrix is estimated, the rotation matrix and the translation vector
are extracted. The rotation matrix is decomposed into Euler angles. By using the
Euler angles, a vector representation is created for the camera heading. The angles
between the camera heading vector and the translation vector are calculated. Then
the calculated values are tested if the values are within the camera’s horizontal and
vertical fields of view. If the test is passed, these angle values are stored for later
use.

Next, the total number of remaining features is checked. If the number of features
is below a certain threshold, a redetection of features is executed. Whether the
aforementioned redetection is executed or not, the next frame is loaded and the
cycle starts over. When all of the used frames are processed, the final values for
the camera orientation divergence are determined by calculating the mean of all of
the previously computed values. A general outline of the software implementation
is illustrated in Figure 7.

In order to reduce the total computation time of the software implementation, a
frame skipping feature was implemented: Every 𝑛th cycle, the next loaded frame
jumps ahead 𝑠 frames. The variable 𝑠 can be defined for example, as the number of
total frames used in the processing divided by 10. When using the frame skipping
feature, the software implementation evaluates the camera orientation divergence
from smaller sections. By utilizing smaller sections which span the entire video, we
can lessen the effects of the occasional non-ideal conditions in the frames. A section
of a video where the vehicle is not moving is an example of a non-ideal scenario.
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Figure 7. The outline of the software implementation.
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4 EXPERIMENTS AND RESULTS

4.1 Datasets and evaluations

In order to evaluate the performance of the implementation, one should capture
video data for which the angle divergences are known accurately beforehand. Ideally,
the best way to go about the data collection would be capturing real-world video
with a smartphone camera attached to a vehicle. However, in practice, it is very
difficult to measure the camera orientation in relation to the vehicle beforehand.
This challenge led to an alternative solution: The test data were created by rendering
videos from a virtual 3D environment. In this 3D environment, the camera pose
could be manipulated easily and accurately beforehand.

The test data collection phase was carried out as follows: The test data includes
videos where the angle divergences include all possible combinations of values [0, 5,
10, 15] (degrees) for both horizontal and vertical axes. The number of different test
videos is thus 16. After the videos that contain these 16 scenarios are ran through
the software implementation, the given values are compared to the exactly known
values.

The test data were generated with Blender, an open-source 3D graphics software
product. The design chosen for the generated test data was a continuous tube.
The generated route contains a variety of gradual and sharp turns in an attempt
to provide some real-world characteristics to the test data. A checkerboard-like
texture was applied to the tube. This kind of texture provides plenty of features
for the FAST algorithm to detect. The generated data does not correlate with real
videos very well, but it allows performance evaluation in a nearly ideal test scenario.
The frame skipping feature described in Section 3 was not used when testing the
generated test data, since it was appropriate that all of the different conditions (i.e.,
the various turns) would be included in the calculations. Figure 8 shows the overview
of the modeled route, and Figure 9 shows a rendered frame from the interior of the
route.
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Figure 8. The overview of the modeled route. The orange dot presents the starting point
of the route.

Figure 9. A rendered frame from the interior of the route
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4.2 Experiment results

Table 2 shows all of the test scenarios, and the absolute and relative errors for
each scenario. 𝛼 denotes the horizontal angle divergence and 𝛽 the vertical angle
divergence. When it comes to real-world videos, in Figure 10 we can see that the
estimated camera orientation divergence is quite close to the actual direction of
motion or the Focus of expansion (FOE).

Table 2. Test results for all test scenarios.
(* Relative error cannot be calculated when the real value is zero.)

𝛼 𝛽 Abs. 𝛼 error Abs. 𝛽 error Rel. 𝛼 error Rel. 𝛽 error
0° 0° 0.4524° 0.1627° * *
0° 5° 0.4861° 0.0665° * 1.3300%
0° 10° 0.3071° 0.3834° * 3.8340%
0° 15° 0.2031° 0.5782° * 3.8547%
5° 0° 0.2311° 0.1317° 4.6222% *
5° 5° 0.1149° 0.0823° 2.2972% 1.6464%
5° 10° 0.0210° 0.3273° 0.4192% 3.2730%
5° 15° 0.2724° 0.4797° 5.4476% 3.1980%
10° 0° 0.0079° 0.0566° 0.0790% *
10° 5° 0.0061° 0.1958° 0.0613% 3.9156%
10° 10° 0.2699° 0.2363° 2.6990% 2.3630%
10° 15° 0.5788° 0.5612° 5.7880% 3.7413%
15° 0° 0.1344° 0.0682° 0.8960% *
15° 5° 0.2646° 0.2173° 1.7640% 4.3454%
15° 10° 1.2534° 0.3934° 8.3560% 3.9340%
15° 15° 0.8164° 0.5520° 5.4427% 3.6800%
Average 0.3387° 0.2808° 3.1560% 3.2596%
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Figure 10. The software implementation processing a real-world video. The black lines
indicate the center of the frame. The yellow lines indicate the estimated orientation
divergence which is the mean accumulated value. The red lines indicate the tracked points
in the current frame.
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5 CONCLUSIONS

The objective of this thesis was to present a software solution which can determine a
camera’s orientation relative to the direction of motion. When the implementation
was experimented on using a generated test data set, the accuracy of the estimation
results were more than adequate: The average absolute error for the orientation
divergence was 0.3387 degrees in the horizontal axis and 0.2808 degrees in the vertical
axis on average. If we average these results, the overall mean absolute error was
0.3098 degrees.

Because of practical reasons, accurate testing with real-world videos was not possi-
ble. Still, indicative performance could be measured by assessing the final locations
of the traffic signs on a map and through repeatability. Nonetheless, the over-
all performance on real-world videos was visually evaluated. When assessing these
observations, the results seemed quite accurate.

The orientation estimation accuracy could possibly have been further improved by
fine-tuning the parameters of the various algorithms. However, it should be noted
that the used test data was artificial. The tuning of parameters to better suit the
case of generated data does not necessarily ensure better performance in the case of
real-world videos. The software solution meets the given requirements and hereby
can be integrated to be a part of Vionice’s traffic sign inventory pipeline.

5.1 Future work

The next potential step for improving the traffic sign inventory pipeline could be
abandoning triangulation based on the known heights of traffic signs. By utilizing
the same or similar methods displayed in this thesis, a localization method based
on the 3D reconstruction of a video sequence could be built. The system would be
similar to SLAM [24] [25] and Structure from motion (SfM) [26] systems. By creating
a 3D reconstruction of a video sequence and fusing it with GPS data, the locations of
traffic signs could then possibly be estimated without knowing the heights of traffic
signs beforehand.
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