
i

Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Computational Informatics Division

Erasmus Mundus Master’s Programme in Pervasive Computing & Communications

for sustainable Development PERCCOM

Julien Dhallenne

RCOS: Real Time Context Sharing Across A Fleet Of Smart Mobile Devices

2016

Supervisor(s): Dr. Prem Prakash Jayaraman (CSIRO)

 Pr. Arkady Zaslavsky (CSIRO)

Examiners: Pr. Eric Rondeau (University of Lorraine)

Pr. Jari Porras (Lappeenranta University of Technology)

Pr. Karl Andersson (Luleå University of Technology)

ii

This thesis is prepared as part of an European Erasmus Mundus programme PERCCOM -

Pervasive Computing & COMmunications for sustainable development.

This thesis has been accepted by partner institutions of the consortium (cf. UDL-DAJ, n°1524, 2012

PERCCOM agreement).

Successful defense of this thesis is obligatory for graduation with the following national diplomas:

 Master in Master in Complex Systems Engineering (University of Lorraine)

 Master of Science in Technology (Lappeenranta University of Technology

 Master in Pervasive Computing and Computers for sustainable development (Luleå University

of

Technology)

iii

ABSTRACT

Author’s name: Julien Dhallenne

Title of thesis: RCOS: Real Time Context Sharing Across A Fleet Of Smart Mobile Devices

Universities: Lappeenranta University of Technology

Name of the school: School of Business and Management (LUT)

Name of the degree programme: Computer Science (LUT)

Name of the Master’s degree programme: Erasmus Mundus Master’s Programme in Pervasive

Computing & Communications for Sustainable Development PERCCOM

Master’s Thesis, 2016, 57 pages, 18 figures, 2 tables, 1 appendix

Examiners: Pr. Eric Rondeau (University of Lorraine), Pr. Jari Porras (Lappeenranta University of

Technology), Pr. Karl Andersson (Luleå University of Technology)

Keywords: publish/subscribe; context-awareness; ontologies; knowledge representation; semantic web

Today, biodiversity is endangered by the currently applied intensive farming methods imposed

on food producers by intermediate actors (e.g.: retailers). The lack of a direct communication

technology between the food producer and the consumer creates dependency on the intermediate

actors for both producers and the consumers. A tool allowing producers to directly and

efficiently market produce that meets customer demands could greatly reduce the dependency

enforced by intermediate actors. To this end, in this thesis, we propose, develop, implement and

validate a Real Time Context Sharing (RCOS) system. RCOS takes advantage of the widely used

publish/subscribe paradigm to exchange messages between producers and consumers, directly,

according to their interest and context. Current systems follow topic-based model or a content-

based model. With RCOS, we propose a context-awareness approach into the matching process

of publish/subscribe paradigm. Finally, as a proof of concept, we extend the Apache ActiveMQ

Artemis software and create a client prototype. We evaluate our proof of concept for larger scale

deployment. A publication1 was issued, based on this thesis work, in the international conference

ruSMART’2016.

1 Dhallenne, J., Jayaraman, P., & Zaslavsky, A. (2016). RCOS: Real Time Context Sharing Across A Fleet Of Smart
Mobile Devices. In The 9th conference on Internet of Things and Smart Spaces ruSMART 2016. Proceedings (Vol.
9870). Springer.

iv

ACKNOWLEDGEMENTS

This research is fully supported and funded by PERCCOM Erasmus Mundus Program [78] of the

European Union. The authors would also like to show their gratitude and thanks to all the partner

institutions, sponsors and researchers of PERCCOM program. Additionally, I would like to

thank my supervisors Dr. Prem Prakash Jayaraman, for his support all along the way, and Prof.

Arkady Zaslavsky, for his help and making this work possible. I would also like to thank Prof.

Ahmed Seffah, Susanna Koponen, Prof. Jari Porras and Prof. Éric Rondeau for their support

during the semester.

1

Table of Contents

Table of Contents .. 1

1. Introduction ... 3

1.1. Addressing sustainable development .. 3

1.2. Motivating scenario – Apple distribution ... 4

1.3. Thesis aim and contribution .. 5

1.4. Thesis structure ... 7

2. Body of knowledge ... 9

2.1. Publish/subscribe Systems .. 9

2.2. Subscription languages in the existing systems .. 15

2.3. Support for mobile publish/subscribe systems .. 19

2.4. Ontology representation .. 20

2.5. Comparison of the implemented publish/subscribe systems... 23

2.6. CAROMM framework .. 26

3. RCOS - Real time COntext Sharing ... 28

3.1. Overall architecture ... 28

3.2. Queue management module .. 30

3.3. Context & History Aware Broker module .. 34

3.4. Ontology Model Storage module .. 35

4. Proof of Concept – Prototype implementation.. 38

4.1. The RCOS client ... 39

4.2. The RCOS server .. 42

5. Evaluation of RCOS ... 44

6. Conclusion and future work .. 48

References ... 50

Appendix 1. Raw evaluation results ... 58

2

LIST OF SYMBOLS AND ABBREVIATIONS

API Application program interface

CC-BY-SA Creative Commons — Attribution-ShareAlike

MIT Massachusetts Institute of Technology

REST Representational state transfer

SQLITE Structured Query Language Lite

W3C World Wide Web Consortium

XML Extensible Markup Language

3

1. Introduction

1.1. Addressing sustainable development

Direct sales of farmers are decreasing to the profit of retailers who tend to obtain a quasi-

monopoly on consumers’ food distribution. This raises several issues. Firstly, due to their market

position, food retailers ask the farmers in the EU to constantly lower production prices. Many of

these farmers are starting to go bankrupt as we see it in 2016 in France and Finland. Secondly,

most of the farmers still in activity are imposed to cultivate specific species selected by different

stakeholders focused on a quantitative production. This endangers biodiversity and more species

disappear every year. In 2016, the FAO (Food and Agriculture Organization of the United

Nations) writes that “since the 1900s, some 75-percent of plant genetic diversity has been lost as

farmers worldwide have left their multiple local varieties and landraces for genetically uniform,

high-yielding varieties” [1]. The final issue that this procedure involves has to do with the

transportation. Instead of being directly or even indirectly brought through a short circuit to the

end user (consumer, cook in a restaurant, …), the food goes through different locations. This

process affects its quality, nutritional values, taste and contributes to the global warming through

greenhouse gas emissions.

In this thesis, we address the need for having a direct communication between producers and

consumers in order to break the monopoly enforced by food retailers on food distribution. The

proposed system allows producers to express and share the availability of new products and the

contextual information about the products (e.g.: price, taste, location ...) by matching the

contextual preferences of the consumer in real-time. To this end, we propose, develop,

implement and validate a context-aware message exchange system based on the widely used

publish/subscribe paradigm. Within the focus of this thesis, we define context being based on

two levels of contexts, which are the location and the personal preferences of the consumer and

producer. We consider the following context, namely location and personalization context, in-

order to deliver the most appropriate response to the producer and consumer. For example, to

determine the availability of Pink Lady Apple, we consider the location context of the publisher

and subscriber, and the personalization context of the producer and subscriber (quality, cost,

4

etc...). In order to model the context, we propose a semantic approach that uses ontologies to

express context using a consistent representation well in line with the semantic web research

community. As a proof of concept, we develop a platform enabling potential customers to be

notified about new products matching their contextual preferences based on context provided by

the producers. The platform brings near real-time information sharing to publishers and

subscribers in a context aware manner. Near real-time stands for as fast as possible. This means

that across a group of entities who subscribe to an interest with associated contextual preferences

(e.g.: type of product, location and/or price range, etc…), the availability of a product based on

contextual matching is to be delivered to the customer instantly. The entities in this case could be

mobile devices used by customers who could assume the role of publisher/subscriber.

1.2. Motivating scenario – Apple distribution

Petri is producing Pink Ladies, which are sour apples, and he wants to sell them, for delivery and

pick-up, in the surrounding areas (Lappeenranta). The price for a kilogram is 3.50 euros. In a

normal situation, this producer would wait for contractors to call him or would look for new

clients himself. This client finding procedure is often carried via a “word-of-mouth” channel or

answering demands. In this given situation, the product “Pink lady apple” produced by the

producer with the following context attributes, namely sourness, production location, delivery

location, and cost need to be matched to an interested customer. This matching procedure is then

often taken care of by a retailer. However, we want to give producers and customers the

possibility to have their interests directly matched, without the help of a third party actor. We

want the producer to be able to subscribe to a particular set of interests which will be matched in

a near real-time manner when publishers publish their interests (i.e. clients and direct consumers)

but it can also be the other way around. Customers (i.e. clients and direct consumers) can also

create a subscription to be notified when a producer will be selling apples and will be willing to

deliver / offer a pickup to them for a certain price.

Tero is holding a restaurant in the Lappeenranta area and he is looking for apples that are sour in

this area. In this situation, the consumer Tero has a set of preferences defined by the context

attributes which are the taste of the apple and the pickup location. If this set of preferences

5

matches with an existing product, we have a semantic match. This is the case, since Petri is

producing Pink Ladies in the Lappeenranta area.

In a typical publish/subscribe system, the producer has to specify, in a single string, the product

attributes he wishes to be part of the matching process. Moreover, it is not possible to express

relationships between the entities being matched, and only a limited matching based on logical

operators and string comparisons can be made. However, with the proposed context-based

system it is possible to do semantic matching. This semantic matching can also be, for instance, a

location within a certain radius of another location. In a content-based system, this could only be

handled by a client tool and not by the broker of the publish/subscribe system since it cannot

process contextual data. In the case of a topic based system, we would be required to have an

apple category with sub-categories such as “sour apple” or “apple produced in Lappeenranta”. In

this situation, cross-matching would not be possible and the operation would imply a high

computational resource need.

1.3. Thesis aim and contribution

The aim of this thesis is to propose, develop, implement and validate a real time context sharing

and subscription system using the widely used publish/subscribe paradigm. In this thesis, the

term context sharing is used to describe the ability of entities to share their context based on the

publish/subscribe paradigm. To address this aim, we break the aim into following research

questions:

(a) What are the requirements of a context-aware subscription language allowing entities to

share and subscribe to context?

In order to address this question, we have conducted an extensive literature survey to identify

the current state-of-the art and gaps in publish/subscribe based systems and the corresponding

context-aware capable subscription languages.

(b) How can we design and develop a context-aware subscription language that allows entities to

share and subscribe context?

Currently, no publish/subscribe broker directly handles representation or processing of

context data. Hence, we propose and investigate a semantic web-based approach in order to

6

represent, share and subscribe to context. To this end, we proposed and developed RCOS, a real

time context sharing system based on semantic web principles. The contribution includes the

history based approach and a mobile application enabling entities to share context via mobile

smart phones. The history is a graph, expanding as publications are removed from the main

graph, with contextual attribute values and dates. The mobile application allows seamless

exchange of context between the entities through RCOS.

(c) What are the performance issues imposed in such a system that performs context-aware

publish and subscribe?

To answer this question, through proof of concept and evaluation, we study the performance

of the system in order to determine the overhead imposed by the RCOS system.

The motivation behind our contribution is the lack of context-awareness, with easy integration to

semantic web services, in the modern publish/subscribe systems. We also bring novelty by

introducing a history consideration for certain attributes of ontologies, which to the extent of our

knowledge, has not been introduced in context-aware publish/subscribe systems. To address this

gap of knowledge we developed Real Time COntext Sharing System (RCOS), we proposed and

developed an interoperable publish/subscribe system extension which is context aware and

history-enabled.

7

1.4. Thesis structure

The below figure 1 presents the outline of this thesis.

Figure 1. Thesis outline

8

In the second section, we look at publish/subscribe systems and their language, as well as their

mobile support. We then dig into ontology representation in publish/subscribe systems. This

leads us to create a comparison review. Lastly, we introduce the CAROMM framework effort

which is used by RCOS to retrieve real-time context information.

In the third section, we describe our contribution, RCOS which includes a subscription language,

the presentation of a context aware broker reasoning according to defined ontologies.

Considering the apple ontology, we present the implementation of a proof of concept through an

integration with Apache ActiveMQ Artemis publish/subscribe system in section four.

In order to evaluate our system for larger scale deployment, section four will be dedicated to

measuring performance by introducing a high amount of ontologies, subscriptions and

publication into our system. Section five will cover the performance analysis of our proof of

concept. Finally, section six outlines the conclusion of this thesis as well as the future work.

9

2. Body of knowledge

In this section, we firstly review the different models of publish/subscribe systems introduced by

Eugster et al. [2]. From these models we position our approach as a context-based approach. We

later review the existing subscriptions language for publish/subscribe systems. Campailla et al.

[3] define three types of subscription query languages. Our finding is, that currently, existing and

researched context-aware publish/subscribe systems, such as the one introduced for Elvin [4]

follow a Simple Subscription Language, which is our case as well, because non-defined

attributes results in accepting any value for them. This allows us to keep the query representation

as small as possible. Publish/subscribe systems with a consideration of mobile devices are then

introduced. CUPUS [5] for instance, support mobile systems in the core of its broker. However,

these systems only embed specific ontologies, such as location, and cannot take into account

different context types. In our contribution, we introduce the consideration of different context

types based on ontologies defined, or to be defined, for the semantic web effort [6]. This brings

us to explore the current serialization languages which allow to model ontologies until the recent

JSON-LD [7], which we think is the most suitable when considering mobile technologies, due to

its minimal overheads. We then compare existing systems in terms of interoperability, and point

out what RCOS bring. Finally, we introduce the CAROMM effort, on which RCOS relies for

retrieving real context elements.

2.1. Publish/subscribe Systems

The publish/subscribe paradigm is constituted of publishers publishing information also known

as events and subscribers sending subscriptions representing their interests. The distribution of

such events to the corresponding subscribers is handled by a broker and the matching of these

events is usually based on a string-matching process, or in simpler cases, the queue to which they

are sent has defined subscribers. The broker allows subscribers and publishers to exchange

information without knowledge of each other and in an efficient manner, based on interests

expressed by subscribers during the subscription process. Subscribers are delivered information

about the event published matching their interests and this process is usually called notification.

10

The broker can be a single entity on a certain server or can be distributed. We will mention more

about the distributed publish/subscribe systems in the paragraph C, while covering mobile

publish/subscribe systems. Figure 2 represents the architecture of a publish/subscribe system.

Figure 2. Publish/Subscribe architecture

There are various ways to specify the events emitted by publishers to the broker or brokers, in

case of a distributed configuration. These models vary in the degree of expressiveness they offer

to subscribers and the matching precision depends on this factor. Eugster et al. [2] differentiate

four main types of subscription models.

Topic-based Model

Topic-based model has been widely available in the literature, as for instance, in the works of

Oki et al. [8], Altherr et al. [9], Castro et al. [10] and the Object Management Group [11]. The

organization of this model is based on topics, which are quite similar to groups. Notifications are

transmitted to matching topics which subscribers have declared their interests for. They are

consequently forwarded all the messages transmitted to these particular topics contained in the

notifications for most of the systems. The topic, to which one can subscribe, is carried as an

attribute of a given event, allowing distributing peers to distribute the message to the right

subscribers. Topics ideally correspond to logical domains which allow the diffusion to be

handled properly in a multicasting manner.

This approach is, however, non-hierarchical and makes it impossible for a subscriber to

subscribe to a subset of events in a given topic. Eugster et al. [2] describe it as a flat approach.

This issue is addressed by some implementations such as the one from Oki et al. [8] who are

11

creating and implementing a hierarchy model. This allows subscribers to specify, in a string-

based attribute, which group or sub-group the peer wants to express its interest for. This model of

hierarchy could be compared to the one used in the Usenet news network. Wildcards, which are

usually represented by the “*” symbol, may also be used in the attribute. This method lacks

flexibility and does not involve the content of a subscription in the process. The content-based

model fills this gap. However, an advantage to this method is the low processing time required in

order to answer a request.

Content-based Model

The previously mentioned constraint, despite the possibilities offered by the way they are

implemented, was improved by Rosenblum et al. [12] by introducing a subscription scheme

based on the actual content of the candidate event. Subscribers are also given the possibility to

specify conditions over the content of the notification they wish to receive. This is expressed

through a set of operators and a specific subscription language which regular expressions can be

part of. The more complex the language is, the more complex the matching process will be.

Examples of systems using this approach are JEDI [13], LeSubscribe [14], Ready [15], Rebeca

[16], Hermes [17], Elvin [18] and MundoCore [19].

The content of the messages, can be given a standard for easier and more interoperable

interpretation by the brokers, as it is the case in these systems [20, 21, 22] using XML as a

subscription language. Subscription languages are discussed in the next paragraph. It is worth

noticing that one of the disadvantage of XML is its mandatory envelope involving further

processing.

To our understanding, some researches, however, differentiate XML-based from the content-

based models such as the one conducted by Tarkoma et al. [23]. We consider them as being a

subset of the content-based approach in the sense that the brokers will, to the extent of our

knowledge, interpret the content without relying on an existing defined ontology.

Type-based Model

The type-based model has been introduced by Eugster et al. [24] due to the fact that topics

usually regroup events presenting similar types. This approach that matches events to

subscriptions based on type allows a direct encapsulation into attributes, as well as methods. The

12

type safety is directly embedded into the publish/subscribe system rather than into the

application by the programmer. This approach is considered a balance between the topic and the

content-based models since it is a flat approach that also allows defining the constraint but on the

typing. Systems such as [24] and [25] use this approach.

Context-based Model

This approach is based on ontologies. Some works also refer to this model as concept-based [23].

All the above models assume that, according to Tarkoma et al. [23]: “participants have to be

aware of the structure of produced events, both under a syntactic (i.e., the number, name and

type of attributes) and a semantic (i.e., the meaning of each attribute) point of view.” He also

mentions, “concept-based addressing allows to describe event schema at a higher level of

abstraction by using ontologies that provide a knowledge base for an unambiguous interpretation

of the event structure by using metadata and mapping functions.” This concept based addressing

is introduced by Buchmann et al. [26]. In our system, we use a context-based model using

ontologies as a knowledge base. These ontologies are defined in the JSON-LD format [7].

Specific ontology based Models

Tarkoma et al. [23] also distinguish a model based on location. To our understanding, any

ontology could be fitted into this category. There are several examples of publish/subscribe

systems using the location as the factor for the messages to be distributed to subscribers, such as

[22, 27, 28]. This approach, however, limits to a single and specific ontology, distinguishing the

broker message distribution by the value of the attributes of this ontology. In their paper and

implementation, Eugster et al. propose a location-based publish/subscribe system [29]. This

mixes the notion of a specific ontology based model and the content based model. This approach

gives them more contextual possibilities than classical content-based models.

Context awareness in existing publish/subscribe systems

Works on implementing the context awareness paradigm in publish/subscribe brokers already

exists in the research community. Loke et al. [30] introduced a context-based addressing effort

for Elvin. This work contributes to allowing to distribute messages to users in a chosen context

13

according to ontologies interpretation. For this, they also created a context-aware capable

language [4]. Elvin was also included in the ECORA framework from Padovitz et al. [31], which

provides a hybrid architecture for context-oriented pervasive computing. However, Elvin as well

as its open source implementation Avis [32] suffer from a lack of popularity nowadays, and are

missing maintenance as well as cross-language support, since they handle the messaging process

using its own standard that is not widely implemented.

Other recent studies such as the one realized by Tarkoma et al. [33] propose very efficient and

flexible solutions. However, the concept of ontology is not fully considered and implemented. It

is also worth noting the work and vision brought by Cugola et al. [34], which brings a distributed

protocol to publish/subscribe systems according to their location to allow a more efficient

distributed broker system. Our vision, however, places the location as a specific ontology. While

their work is focused on the physical distribution of messages, our contribution is meant to bring

a more generic way to embed context-awareness into publish/subscribe paradigm.

In [35], Zahariadis et al. introduce a novel context-aware publish/subscribe system. This system

is developed within the effort of a single digital market in the European Union. Their context-

based broker, however, does not include a subscription language, nor does it support preliminary

defined ontologies as knowledge base with history. It is also limited to the REST protocol.

Commercial publish/subscribe systems

Table 1 is a compilation of the commonly used commercial publish/subscribe systems with the

communication protocols they support.

14

Table 1. Protocols supported by common commercial publish/subscribe systems

Protocol : AMQ

P

MQT

T

OpenWir

e

REST STOM

P

STOMP

over

Websocke

ts

XMPP RE

SP

ActiveMQ 1.0 X X X X X X -

Apollo 1.0 X X X X X - -

ActiveMQ

Artemis

X X X X X X - -

Qpid X - - - - - - -

RabbitMQ X X - X X X Gatewa

y

-

ZeroMQ 0.9.1 - - - - - - -

Redis - - - - - - - X

FIWARE-

Orion [35]

- - - X - - - -

Within the commercial publish/subscribe systems, Apache ActiveMQ is a mature one that

supports a wide range of protocols. Apache Apollo is a performance oriented publish/subscribe

system, however, it has now been abandoned as a project. Comparing to the original ActiveMQ,

the Artemis project has as its main strength, a better performance [36]. While ActiveMQ 5.x

requires mapping REST to JMS, which is a less “native” approach, Artemis directly handles both

of them [37]. As of April 2015 [38], the Apache foundation started considering using this

subproject as the base for the sixth version of ActiveMQ. The presence of a migration page for

ActiveMQ also shows this case as being the most probable one for the future [39]. The Qpid

system only supports AMQP. RabbitMQ is often chosen as a favourite publish/subscribe system.

It is, however, written in Erlang which does not provide the same interoperability with mobile

systems as Java does due to its wider adoption. ZeroMQ is meant for distributed systems and

cannot involve a central configuration. Redis only supports its own protocol RESP. FIWARE-

Orion is the “commercial” result of Zahariadis et al. research [35]. It is compatible with any

15

system using REST API but it does not provide nor a subscription language, nor backward

compatibility with existing publish/subscribe systems using older protocols.

Considering these factors, we focused our choice on Apache ActiveMQ Artemis due to its

interoperability and number of protocols supported. Our choice of the REST protocol working

with ActiveMQ Artemis is due to the fact that this type of communication involves smaller

network load and faster interpretation, as well as high and lightweight interoperability [37]. Our

proof-of-concept of RCOS in section 4 could, however, be ported to other publish/subscribe

systems.

2.2. Subscription languages in the existing systems

Subscription languages used in publish/subscribe systems are more or less descriptive. The more

operations are defined in a language, the higher is the complexity and processing time. Thus,

according to Carzaniga et al. [40], in practice, scalability and expressiveness are two conflicting

goals that must be traded off.

In [3], Campailla et al. define three types of subscription query languages, which are SiSL, StSL

and DeSL. They describe them as follows:

- The Simple Subscription Language, SiSL, type of language is used where all messages are

total. This subscription language is directed to messages of known format, which are

typically used in a non-distributed setting or for specialized applications. If an attribute is not

defined in the query, it matches the pattern “*”, which means any value queried would return

true.

- The Strict Subscription Language StSL is an extension of SiSL where all attributes that occur

in the query must be defined.

- In the Default Subscription Language DeSL, all attributes are initialized to a default value,

which are then updated by the message. Using the default values, it is possible to test if the

attributes are defined by a message. This way, DeSL extends the functionality of SiSL to

16

heterogeneous message formats, as it is often the case in distributed settings. Default can be

symbolized using one of the NULL semantics such as those provided by JMS [41]

Campailla et al. also note that over total messages, SiSL, StSL and DeSL are equally expressive.

The approach they have for their filtering engine is based on binary decision reasoning while

Elvin [18] uses Łukasiewicz’s tri-state logic. In our approach, we use binary decision reasoning

as well for a more efficient processing.

To the best of our knowledge, Elvin [4] is the only publish/subscribe system in the research

community until 2014 with a subscription language defined so that it could be extended to

incorporate a general context awareness capability considering ontologies due to its <action>

<proposition> tuple integration. Others such as [33] and [29] do not fully incorporate the notions

of ontologies. Tarkoma et al. and Eugster et al. are focused on location context while we want to

incorporate context defined via ontologies.

An example of Elvin’s subscription language, reproduced from [5], is defined in figure 3.

(request-whenever

:sender (agent-identifier :name i)

:reeiver (agent-identifier :name es)

:content

 "((action (agent-identifier :name es)

 (inform

 :sender (agent-identifier :name es)

 :receiver (agent-identifier :name i)

 :content \"(notification n)\"

))

 (mathes (subexp e) (notification n))

)

 "

)

Figure 3. Elvin’s subscription query reproduced from [5]

For this case, the subscription expression be would as states the first line of figure 4 and the

notification as it is following in figure 4.

17

(TYPE == "Apple" && TASTE == "Sour" && ORIGIN == "France") && (PRICE >=

1.50 && PRICE <= 2.10)

TYPE: "Apple"

PERSON: "http://example.org/profile/Tero5872"

TASTE: "Sour

ORIGIN: "France"

PRICE: ">= 1.50"

PRICE: "<= 2.1"

TIMEOUT: 10

Message-Id: "08cf0b15003409-5i3N7XDKbEVaQ-88cf-12"

Figure 4. Elvin’s subscription expression and notification

Using a subscription language based on XML or JSON-LD [7] does not require distinguishing

the subscription expression from the notification.

In our proposed subscription language modeled through JSON-LD, the previous examples can be

expressed as in figure 5:

{

 "@context":

 ["http://schema.org/",

 {

 "lfd": "http://example-localfood.org/"

 }],

 "@type": "Person",

 "@id": "http://example.org/profile/Tero5872"

 "seeks": {

 "@type": "Demand",

 "itemOffered":{

 "@type": "lfd:Apple",

 "lfd:taste":"sour",

 "lfd:origin":"Finland",

 },

 "highPrice": "2.10",

 "lowPrice": "1.50",

 }

}

Figure 5. RCOS’s subscription query model

This approach allows defining nested relation between entities. In this manner, we can express

how an ontology relates to another ontology.

According to Campailla et al. [3], Elvin’s and our approach are Simple Subscription Language

(SiSL) since non-defined attributes results in accepting any value for them. This allows us to

keep the query representation as small as possible.

18

The way we distinguish our approach from the one presented in Elvin is that we have a defined

subscription language that does not contain operators. In our subscription language, the

comparisons are done according to defined semantics from the schema.org effort [42], which is

an effort to create schemas for structured data on the Internet by ontologies, and our semantic

modeling ontologies. JSON-LD definition allows us to directly embed in, through defined

attributes, logic operators interpreted due to their involvement as attributes in a given ontology.

For example, an ontology containing the properties maxPrice and minPrice, as defined in

schema.org, involves that the broker compares the property price for a similar ontology, so that it

defines a result for minPrice > price > maxPrice.

In Elvin, this would have been defined in the subscription language in the following way:

(PRICE >= minPrice && PRICE <= maxPrice). Moreover, Elvin’s extension for context-based

consideration relies on agents [32]. In our approach the broker takes care of both interpreting and

spreading messages.

Our contribution brings a subscription language which allows enabling publish/subscribe

systems’ brokers to semantically interpret a context by incorporating ontologies. We modelled

these ontologies through JSON-LD standard, which allows our subscription language to easily

integrate with current semantic web services. This integration is not taken into consideration in

Elvin. Our contribution is also compatible with JSON. JSON has become a de-facto standard in

the last years when it comes to REST APIs, the latest recently expanding to mobile phones and

allowing interoperability with services since this technology involves using standard web

requests. Compared to XML, used by several publish/subscribe systems, the JSON-LD standard

is minimalist and includes lighter overheads which also allows a more efficient interpretation.

Interested readers may want to read more in [43].

In case of a public publication on a webpage, a direct integration with applications gathering

publicly available JSON-LD declarations according to the schema.org effort is possible. A

known application of such a gathering is Google’s Knowledge Graph [44], which is used in their

commercial search engine and Google Now assistant. In the future, this approach could also

allow a publish/subscribe system to be able to automatically match content discovered across the

semantic web [6].

19

2.3. Support for mobile publish/subscribe systems

Mobile publish/subscribe systems are introduced in the research community as early as 2000 by

Cugola et al. [45]. In 2001, Huang et al. [46] argue that a distributed broker on stable non-mobile

networks is a safer and better approach for mobile publish/subscribe system, since a centralized

broker may introduce a performance bottleneck and a single point of failure. While we agree on

this point, the distribution and replication of the broker is beyond the scope of this thesis, as it

would require a dedicated study involving performance analysis regarding the time of

distribution as well as implementing the ontologies distribution in an optimal way (i.e.: favor

local node to include locally related contexts and ontologies).

A first introduction, to the best of our knowledge, mixing publish/subscribe mobile system with

context awareness was made by Fiege et al. [47] as they analyze the problem of mobility in such

systems. Resulting to this analysis, they implement the consideration of physical and logical

mobility in the already existing content-based Rebeca [16]. Cugola et al. later introduced an

efficient algorithm directed to enable location awareness in publish/subscribe systems [48].

Salvador et al. did further work on location awareness [49] and introduced a protocol for

seamless client mobility in publish/subscribe systems [50]. Recently researches have introduced

mobile brokers [51] into the mobile publish/subscribe paradigm. This approach allows energy

efficiency over the network and reduces the energy waste induced by the previous approaches

when it comes to including sensors into such a system. Both [51] and [52] are papers involving

mobile brokers. Antonić et al. in CUPUS [52], however, add a cloud broker. This allows efficient

mobile brokers to process, with concerns on energy efficiency, the local sensors’ data while

enabling a context aware distribution of it over the internet. Soldatos et al. involved in the

OpenIoT platform [53] integrate the W3C Semantic Sensor Networks (SSN) ontology in addition

to CUPUS. Antonić et al. also developed a mobile crowd sensing ecosystem enabled by CUPUS

[5].

The common point of the previously mentioned context-aware mobile publish/subscribe systems

is that they only consider location as a context or integrate a specific ontology. [51], [52], [53]

and [5] are oriented towards the Internet of Things and meant for a sensor integration but none of

them is actually directly meant to take into consideration different context types based ontologies

20

defined, or to be defined, for the semantic web effort [6] which we want to introduce in this

thesis.

2.4. Ontology representation

Since more than two decades, different ways have been used to describe ontologies in a machine-

readable format. The most notable ones are RDF [54], RDFS [55], OWL [56] and recently

JSON-LD [57].

While the first public draft was released in 1997 [41], the Resource Description Framework

(RDF) became a W3C Recommendation in 1999 [54]. Its primary purpose, according to the first

press release, is “to allow different application communities to define the metadata property set

that best serves the needs of each community”.

Other standards such as TriX [58], TriG [59] and Turtle [60] are containers for the RDF

specification. While TriX is used for serializing named graphs and RDF datasets as a XML

alternative to RDF/XML, TriG is a compact alternative to TriX. Turtle, on the other hand, is

based on a subset of N3 discussed below. It allows representing data in the RDF data model with

a syntax similar to SPARQL [61], which is a RDF query language.

A major revision was made in 2004 [62]. During the same year, the Resource Description

Framework in attributes (RDFa), allowing to embed rich metadata within web documents

through a set of attribute-level extensions, becomes a W3C recommendation [63].

While RDF allows you to represent a collection of triples, each consisting of a subject, predicate

and object. Notation3 (or N3) [64], being another ontology representation format, also extends it

in order to add features from first-order logic. RDFS (RDF Schema) [55] was published in 2004.

It gives a more expressive vocabulary by allowing classifying resources through classes and

subclasses, to set restrictions on proprieties in a domain knowledge or using ranges. In 2004,

then revised in 2009 and standardized by the W3C, the Web Ontology Language as known as

OWL [56], adds more possibilities of restriction to the knowledge representation by adding the

possibility to have proprieties into object and data proprieties. It also allows you to add

restriction proprieties definition via cardinalities and logic operators. It is possible to perform

21

reasoning on OWL through programs such as Pellet [65]. SPARQL language [61] defines a way

to query any representation that is convertible to RDF or OWL.

The recent JSON-LD (JavaScript Object Notation for Linked Data) [57] is designed to provide a

possibility to map JSON to the RDF format. It uses a context embedded in the JSON document

or pointed to through a URL to link its object proprieties to concepts of an ontology. It became a

W3C recommendation in 2010 [57] and was revised in 2014 [66]. Figure 6 gives an example of

such a document.

{

 "@context": "http://schema.org/",

 "@type": "FoodEstablishment",

 "name": "Joe's Pizza",

 "location": {

 "@type": "PostalAddress",

 "@id": "http://example.com/address",

 "streetAddress": "123 Main Street",

 "addressLocality": "Cambridge",

 "addressRegion": "MA",

 "postalCode": "02142"

 },

 "makesOffer": {

 "@type": "Offer",

 "priceSpecification": {

 "@type": "DeliveryChargeSpecification",

 "appliesToDeliveryMethod":

"http://purl.org/goodrelations/v1#DeliveryModeOwnFleet",

 "eligibleTransactionVolume": {

 "@type": "PriceSpecification",

 "price": "20.00",

 "priceCurrency": "USD"

 },

 "eligibleRegion": {

 "@type": "GeoCircle",

 "address": {

 "@id": "http://www.example.com/address"

 },

 "geoRadius": "5000"

 }

 }

 }

}

Figure 6. JSON-LD document example reproduced from [42] under CC BY-SA 3.0 license

This document represents a food establishment called “Joe’s Pizza” through the

FoodEstablishment ontology type of schema.org’s [42] vocabulary definition. Such an ontology

22

can carry proprieties like a name, a location that is represented by a “PostalAddress” ontology,

an offer made by the establishment, which is carried by the “Offer” ontology.

In RCOS, we use ontologies as knowledge base to represent contexts, as well as for our

subscribing language. These ontologies are also modelled through JSON-LD. A part of

ontologies we use come from the schema.org effort [42], however, for those which are not yet

standardized, we have defined them, as well as new attributes.

OpenWines [67] is an example of external actor working on modelling new ontologies in JSON-

LD. They have modelled the ontology presented in figure 7 which we reproduced from [68] in

order to semantically represent winemakers.

{

 "@context": [

 "http://schema.org/",

 { "ow": "https://github.com/OpenWines/Open-

Data/tree/master/Ontologies/1.0/" }

],

 "@type": "Winemaker",

 "ow:isLandowner": true,

 "address": {

 "@type": "PostalAddress",

 "addressLocality": "Sainte Lumine de Clisson",

 "addressRegion": "Pays de la Loire",

 "postalCode": "44190",

 "streetAddress": "26 les Défois"

 },

 "memberOf": {

 "@type": "Organization",

 "name": "Syndicat Défense Des AOC Muscadet",

 "url" : "http://www.muscadet-grosplant.fr/",

 "telephone": "+33 2 40 80 14 90"

 },

 "businessRegistration": "RCS Nantes 514582691",

 "isicV4": "11.02",

 "name": "Durand Vigneron",

 "openingHours": [

 "Mo-Sa 11:00-14:30",

 "Mo-Th 17:00-21:30",

 "Fr-Sa 17:00-22:00"

],

 "telephone": "+33 2 40 54 70 03",

 "fax": "+33 2 40 54 70 03",

 "email": "mailto:durand.verteprairie@wanadoo.fr",

 "url": "http://www.durand-vigneron.com"

}

Figure 7. OpenWines “Winemaker” ontology representation reproduced from [68] under MIT

License

23

OpenWines’ winemaker ontology represents a wine producer since schema.org proposes a

“Winery” ontology, which is a subtype of “FoodEstablishment”. They also add a non-existing

attribute “ow:isLandowner”. This attributes gives the information on whether or not a wine

producer owns land. This attribute could also include a tuple composed of whether or not a land

is owned and a land ontology. In the next paragraph, we compare the previously mentioned

publish/subscribe systems.

2.5. Comparison of the implemented publish/subscribe systems

In the table 2, we have reviewed the previously mentioned publish/subscribe systems which are

implemented. We have reviewed in which type they can be classified, their subscription protocol

and/or format, their interoperability, whether they consider mobile technologies or not and the

programming languages for which API are provided for the broker.

Table 2. Publish/subscribe systems comparison in terms of interoperability

System Model used /

type

Subscription

protocol / format

Interoperab

ility

Mobile

technology

considered

Programming

language API

(broker)

The information

bus [8]

Topic-based /

Research

Remote Method

Invocation

RMI

(CORBA

compatible)

No C++

SCRIBE [10] Topic-based /

Research

Specific over TCP None No Java, C#

CORBA [11] Topic-based /

Research

Specific over TCP None No C++, Java

JEDI [13] Content-based /

Research

Specific over TCP None Yes - not in

the first

version

Java

LeSubscribe [14] Content-based /

Research

Remote Method

Invocation

RMI

(CORBA

compatible)

No Java

Ready [15] Content-based /

Research

Specific over TCP CORBA No C++

Rebeca [16] Content-based / RMI / SNMP / 3 protocols No Java

24

Research HTTP

Hermes [17] Content-based /

Research

XML over TCP None No Java

Elvin [18] Content-based /

Research

Specific None Yes Java, C

MundoCore [19] Content-based /

Research

Specific None Yes Java, C++,

Python

XNET [20] Content-based /

Research

XML over TCP None Yes – incl.

data flow

limitation

No information

Eugster et al.

[25]

Type-based /

Research

Specific None No Java

ECA [26] Context-based /

Research

XML over SOAP SOAP Yes Java

ActiveMQ Topic-based /

Commercial

AMQP, MQTT,

OpenWire, REST,

STOMP, XMPP

6 protocols Yes Java

Apollo Topic-based /

Commercial

AMQP, MQTT,

OpenWire, REST

4 protocols Yes Java

ActiveMQ

Artemis

Topic-based /

Commercial

AMQP, MQTT,

OpenWire, REST

4 protocols Yes Java

Qpid Topic-based /

Commercial

AMQP Yes, AMQP Yes Java / C++

RabbitMQ Topic-based /

Commercial

AMQP, MQTT,

REST, STOMP,

XMPP

5 protocols Yes Erlang

ZeroMQ Topic-based /

Commercial

AMQP Yes, AMQP Yes C++

Redis Topic-based /

Commercial

RESP None, only

RESP clients

Yes C

FIWARE - Orion Context-based /

Commercial

REST Yes, REST Yes C++

25

The information bus [8] is one of the early works on publish / subscribe systems. It uses Remote

Method Invocation in order to publish and subscribe information. At the time of the publication,

this system provides a perfect tool for distributed systems, as it allows bringing the

publish/subscribe paradigm to different machines communicating together. SCRIBE [10] and

CORBA [11] are two publish/ subscribe research following the information bus. SCRIBE, being

based on Pastry [69], brings reliable and scalable alternative to IP multicasting through the

publish/subscribe paradigm on application level, balancing the load between nodes and being

focused on a peer-to-peer configuration, while CORBA is designed to facilitate the

communication of systems deployed on different platforms. This standard is implemented in

C++ and Java and has standard mappings in Ada, C, C++, C++11, COBOL, Java, Lisp, PL/I,

Object Pascal, Python, Ruby and Smalltalk. To the best of our knowledge, none of these systems

has been designed considering mobile integration. In terms of early content-based systems,

neither JEDI, LeSubscribe, Ready, Rebeca or Hermes provides a mobile device consideration.

While JEDI is later introduced mobile nodes consideration in [70] and Rebeca extended to this

possibility by Andreas et al. [71], they do not provide a “mobile-friendly” subscription language

for developers. LeSubscribe uses RMI, Ready has a specific communication protocol over TCP

while Hermes has as well but includes XML on an application level. Rebeca, however, can

communicate through RMI, SNMP and HTTP, which brings a better interoperability. In terms of

systems from the research community, the later ones all consider nodes mobility in their first

implementation. Elvin, MundoCore and Eugster et al. [25] all have a specific way of subscribing

and publishing, which limits their interoperability. XNET uses TCP connections and includes

XML on an application level, while ECA transmits XML over SOAP. The latest brings a better

interoperability since it follows the SOAP protocol. SOAP is, however, an information rich

protocol, and in terms of performance, it is less oriented towards mobile devices than REST for

example. As for the commercial publish/subscribe systems, all of them can be integrated into

mobile technology, Apache ActiveMQ projects being the ones that support the biggest number of

protocols. FIWARE Orion brings novelty in the commercial publish/subscribe systems by being

context-based. It still, however, lacks a subscription language and handles queries via REST

URLs. RCOS embeds a subscription language which is oriented towards the semantic web.

26

2.6. CAROMM framework

Sherchan et al. [72] have developed the Context-Aware Real-time Open Mobile Miner

(CAROMM) framework, which addresses according to them, “the research challenge of a highly

scalable and efficient data collection for mobile crowd sensing”. In order to address this

challenge, they leverage on-board mobile data stream mining algorithms to reduce the amount of

data transmission. This is done while still maintaining needed amount of sent information for

extracting contexts. CAROMM general overview is represented in the figure 8 below which was

reproduced from [73].

Figure 8. Overview The Here-n-Now Framework (based on CAROMM) reproduced from [73]

CAROMM is composed of two main modules, a Data Collection & Analysis Module and a Data

Processing Module, as described by Jayaraman et al. in [73].

The Data Collection & Analysis Module is embedded into the mobile device, it includes the

device’s sensors, Open Mobile Miner [74], a data collection interface and a set of Activity

Recognition Plugins. Once collected, the raw data is analysed and patterns are recognized. A

resource-aware clustering technique is used to only send analyzed and useful data to the cloud.

More about this and the resulting savings of this data transfer optimization can be found in [72]

27

for interested readers. The cloud, to which the information is sent, contains the Data Processing

Module. The Data Collection & Analysis Module can also be extended with an activity

recognition plugin, which for instance could contain an activity recognition model based on

neural network. This would allow, using the collected data from the accelerometer, to recognize

walking, running, sitting and driving activities.

The Data Processing Module, which is in the cloud, is context-aware and will be handling a deeper

analysis, management, and fusion of the data streams transmitted by the Collection & Analysis Module.

This analysis is performed using the real-time sensory data and the activity data collected from the

users. A part of the Data Processing Module also takes care of social media data collection in order to

obtain plain information data that will then be evaluated and aggregated to better extract contexts. In

the implementation “Here-N-Now” of Jayaraman et al. [73], a Fuzzy Interference (FSI) model [75] is used

for context reasoning. This model integrates fuzzy logic into the probabilistic Context Spaces model [76].

RCOS can interact with CAROMM. It relies on it for retrieving real-time contexts from the

cloud which are previously processed from the Data Collection & Analysis Module. These

retrieved elements are linked to a specific JSON-LD context. More about the involvement of the

current CAROMM framework with RCOS are given in the following section.

After going through the current publish/subscribe systems and their model, their subscription

language as well as their implementation, we identified a gap of knowledge to be addressed. This

gap of knowledge is reflected into the design of a publish/subscribe system that would meet

future needs of an expanding volume of information on the Internet with phenomenon such as

the Internet of Things and an increasing amount of information sharing. Data used to be treated

according to their type (i.e. text, images, audio and video) but we provide a semantic system that

will treat information according to its context and meaning within the context. We also went

through the current ontology representations and recognize the opportunities offered by JSON-

LD, onto which our subscription language is based. Finally, we reviewed the CAROMM

framework, developed by Sherchan et al. [72]. RCOS can interact with CAROMM in order to

retrieve real time information for ontologies' attributes requiring it and we reflected this

possibility in the subscription language we developed.

28

3. RCOS - Real time COntext Sharing

In order to answer our research questions, we created RCOS. This system is a system that can be

included in existing publish/subscribe systems in order to enable context-awareness and history

consideration into them. In RCOS, we use ontologies to semantically represent our context

information. This approach allows us to provide a system that can be easily integrated with

current and future semantic web applications. In this section, we firstly give an overview of the

overall architecture of our contribution. Secondly, we present each module and its

functionalities.

3.1. Overall architecture

Figure 9 below describes the overall architecture of RCOS. It is composed of three modules

which are the Queue management module, the Context & History Aware Broker module and

Ontology Model Storage module. Each of these modules interact programmatically together. The

Context & History Aware Broker module interacts with the existing CAROMM framework for

real-time contexts retrieval. The Ontology Model Storage module is external to the

Publish/Subscribe System in the sense that it does not interact directly with the publishing and

subscribing processes, but is invoked by them for ontology modeling and storage.

The following paragraphs give more details on the internals of each module.

29

Figure 9. RCOS overall architecture

30

3.2. Queue management module

In RCOS, an entity publishes or subscribes to information about another entity. We model this

concept through our ontology representation and subscription language. An entity emitting an

offer offers information about another entity; this can be considered as a publication. An entity

emitting a demand requests information about another entity; this can be considered as a

subscription. Our approach can also allow, for instance, someone to requests a person’s

information in the case where we know that the person is looking for a certain entity’s

information (e.g.: an apple and its offers). Offers and demand can be permanent (until they are

cancelled) or discrete.

The Queue management module handles two queues to which the offers and demands are posted

(publications and subscriptions) via a REST interface. These REST requests can be of two types.

Create requests imply that the queue management module will request for an addition to the

ontology base during the merging operation, while a cancel requests implies that the queue

management module will request for a deletion to the ontology base during the merging

operation.

For example, in order to send a subscription query to the demand queue, one will need to send a

file via a REST POST method to the address http://example.com:8081/queues/demand/create. If

the query is discrete and should not be stored in the knowledge base graph, the address

http://example.com:8081/queues/demand/request can be used.

The content of the file must follow the RCOS subscription language. The subscription language

we define in RCOS brings together two ontologies on the base of information offer/demand

relationship. In the figure 10 below, we represented the person of our scenario “Apple

distribution”. Tero wants to find sour apples (context attribute 1) in the Lappeenranta area

(context attribute 2). The subscription he emits from the RCOS’s client and his interests are

linked by the type “Demands”. The ontology, as it is represented in the knowledge base, follows

the relationship linking both ontologies. More information on the modeling of ontologies in our

knowledge base will be given in the Ontology Model Storage module paragraph.

http://example.com:8081/queues/demand/create
http://example.com:8081/queues/demand/request

31

{

 "@context":

 ["http://schema.org/",

 {

 "lfd": "http://example-localfood.org/",

 "crm": "http://example-caromm.org/"

 }],

 "@type": "Person",

 "@id": "http://example.org/profile/Tero5872",

 "seeks": {

 "@type": "Demand",

 "itemOffered":{

 "@type": "lfd:Apple",

 "description": "",

 "name": "",

 "lfd:species": "",

 "lfd:taste": "sour",

 "lfd:origin": "",

 "offers": {

 "@type": "lfd:AggregateOffer",

 "offers": [

 {

 "@type": "Offer",

 "price": "*",

 "offeredBy": {

 "@type": "lfd:Producer",

 "@id": "",

 "name": "",

 "crm:busyState": ""

 },

 "priceSpecification": {

 "@type": "DeliveryChargeSpecification",

 "eligibleRegion": {

 "@type": "GeoCircle",

 "address": {

 "@type": "PostalAddress",

 "addressCountry": "",

 "streetAddress": "",

 "addressLocality": "Lappeenranta",

 "name": "",

 "postalCode": ""

 },

 "geoMidpoint": {

 "@type": "GeoCoordinates",

 "latitude": "",

 "longitude": ""

 },

 "geoRadius": ""

 }

 }

 }

]

 }

 }

 }

}

Figure 10. Subscription query for our scenario “Apple distribution”

32

In the subscription presented in figure 10, all attributes of the ontologies that are to be returned

from the knowledge base by the Ontology Model Storage module, relayed by the Context &

History Aware Broker module, are specified. The wildcard “*” indicates to RCOS that the

history for a certain attribute is requested. Such a history will be extracted from the history graph

of previously cancelled offers by the Ontology Model Storage. This extracted information is the

same context as the returned results for the demand itself. The “crm:” attribute will be described

in the next paragraph. In this case, it allows us to know if the offer emitters are currently busy or

not, which CAROMM framework will handle.

Sending a query to the offer queue follows the same logic in terms of REST URLs but the

“demand” is replaced by “offer”. For cancelling an offer,

http://example.com:8081/queues/demand/cancel should be used with the corresponding file. As

far as the file being sent is concerned, we created a sample for our scenario given in the below

figure 11.

http://example.com:8081/queues/demand/cancel

33

{

 "@context":

 ["http://schema.org/",

 {

 "lfd": "http://example-localfood.org/"

 }],

 "@type": "Person",

 "@id": "http://kotiomena-lpr.fi",

 "name": "KotiOmena T. Kakuunen"

 "offers": {

 "@type": "Offer",

 "itemOffered":{

 "@type": "lfd:Apple",

 "description": "Nice Red and Yellow Apple",

 "name": "Apple Fuji Bio",

 "lfd:species": "Fuji",

 "lfd:label": "FI-BIO-01",

 "lfd:taste": "sweet",

 "lfd:origin": "Finland"

 },

 "priceCurrency": "EUR",

 "price": "3.50",

 "priceSpecification": {

 "@type": "DeliveryChargeSpecification",

 "appliesToDeliveryMethod":

"http://purl.org/goodrelations/v1#DeliveryModeOwnFleet",

 "eligibleTransactionVolume": {

 "@type": "PriceSpecification",

 "price": "10.00",

 "priceCurrency": "EUR"

 },

 "eligibleRegion": {

 "@type": "GeoCircle",

 "address": {

 "@type": "PostalAddress",

 "addressCountry": "Finland",

 "streetAddress": "Nuijamaantie 494",

 "addressLocality": "Lappeenranta",

 "name": "KotiOmena T. Kakuunen",

 "postalCode": "53300"

 },

 "geoMidpoint": {

 "@type": "GeoCoordinates",

 "latitude": "61.038698",

 "longitude": "28.362005"

 },

 "geoRadius": "10000"

 }

 }

 }

}

Figure 11. Publication query for our scenario “Apple distribution”

34

In this publication, the “person” offers Fuji apples for 3.50 euros per kilogram. The price

specification attribute indicates that the delivery can be handled ten kilometers radius from their

production site, and that a minimum price for delivery is ten euros. This context will be merged

into RCOS’s knowledge base by the Ontology Model Storage module, previously handled by the

Context & History Aware Broker module, which is in charge of analyzing it.

The context distribution for permanent demanders (subscribers) is handled through the context

distributor, the study of which is outside the scope of this thesis. However, results are sent to

clients in the JSON-LD format, following our subscription language. These results are then

interpreted and can be visualized in each client’s application.

3.3. Context & History Aware Broker module

The Context & History Aware Broker module consists of three sub-modules. It serves requests

from the Queue management module. We designed the sub-modules as follows:

Request interpreter sub-module

This sub-module first checks that the ontology format is valid through the isValid() function. If it

is not, the request is rejected. The ontology is then handled as an offer or a demand. If it is an

offer, it then queries the main model graph to know if the ontology exists through

ChckOntology(), and if it does not, it is created. An offer or a demand object is then passed on to

the Merge and Query sub-module.

Merge and query sub-module

The merge and query sub-module behaves according to the object type it obtains from the

request interpreter sub-module. In the case of an offer or a demand which is permanent and

marked as such by the IsPermTmp() function, it will be merged in the ontology model graph by

the Ontology Model Storage module described in the next paragraph. A demand or an offer

cancellation will then be handled by the query module. This query function also relies on the

Ontology Model Storage module.

Context distributor sub-module

35

This sub-module handles the Ontology Model Storage module’s response through

QResponseProc(). If there is a need to call the CAROMM API to retrieve context attributes

concerning the queried ontology, it will use the CAROMMContextQ() which will retrieve real-

time contextual data. Such attributes start with the “crm:” as mentioned previously. As a final

functionality, it will handle the context to distribute to the context distributor in the Queue

management module via Distribute(), and if the response was for demand request, it will return

currently existing results to the sender via Respond(). Otherwise, a simple acknowledgement is

delivered to the sender.

3.4. Ontology Model Storage module

The Ontology Model Storage module handles the ontologies’ knowledge base and history graph,

which are loaded in the RAM memory, and the database to store them. It serves the Context &

History Aware Broker module for verifying ontologies, merging them to the knowledge base

graph and handling queries to issue responses.

When a merge request is issued from the Context & History Aware Broker module, the Merger()

function will merge the ontology into the knowledge base graph. For queries, it will accordingly

serve it as a demand by matching the corresponding sub-graph and returning it (contextual

matching), or as a cancelled offer by deleting the corresponding ontology from the graph, and

calling the HistoryProcessor() function with this given ontology. The matching is not solely

based on attributes but also on their interpretation. For instance, the system can take into

consideration radius information for a location, as well as the coordinates. If a demand query

requests for the history of an attribute, it will also be handled by HistoryProcessor() function,

which will take care of querying the history graph for the requested ontology’s attributes present

in the history graph linked to a date. For instance, for the history of price of a given product, each

price returned from the history graph is linked to a date on which the offer started, this date being

an attribute of the offer.

As previously mentioned in section 2, our effort and contribution aim to bring context-awareness

respecting a semantic approach into publish/subscribe systems. To the regards of this effort, we

created a knowledge base graph model based on ontologies modeled through JSON-LD. We also

extended schema.org’s vocabulary in order to answer our scenario “Apple distribution”. Figure

36

12 on the next page gives an overview on how RCOS models ontologies for the knowledge base

graph it uses.

Schema.org’s standard ontology vocabulary allows modeling a product and its attributes, such as

name, description and type. A product can also include nested ontologies containing their own

attributes. This is the case in RCOS; an apple ontology has an offer ontology that is associated

with it. This offer ontology has attributes such as the highest price, the lowest, the average of

these prices, and how many offers are included. The offer ontology also includes the individual

offer, here represented as an array of offers in our knowledge base. An individual offer includes

information such as the availability, the seller, the minimum ordering price and the eligible area

for the offer.

The extension we bring to this vocabulary are attributes starting with “lfd:”. The schema.org’s

and other similar efforts are, for most, joint commercial effort. The apple ontology does not yet

exist as such, to the extent of our knowledge, and has not been standardized either. In this

ontology, which we modeled, we include new attributes such as vitamins, label, species and

origin of the apple. These attributes, which we have introduced for the apple ontology, would

also be valid for any edible product. In this regard, we perceive a need for further research on a

“consumable” ontology, which could then be reviewed for standardization by the schema.org

consortium.

37

{

 "@context": [

 "http://schema.org/",

 {

 "lfd": "http://example-localfood.org/"

 }

],

 "lfd:fruits": [

 {

 "@type": "lfd:Apple",

 "description": "Nice Red and Yellow Apple",

 "name": "Apple Fuji Bio",

 "lfd:species": "Fuji",

 "lfd:label": "FI-BIO-01",

 "lfd:taste": "sweet",

 "lfd:origin": "Finland",

 "nutrition": {

 "@type": "NutritionInformation",

 "calories": "39 calories",

 "carbohydrateContent": "8.16 g",

 "fatContent": "0.04 g",

 "fiberContent": "1.5 g",

 "proteinContent": "0.16 g",

 "saturatedFatContent": "0.01 g",

 "sodiumContent": "0.0 g",

 "sugarContent": "8.07 g",

 "unsaturatedFatContent": "0.03g"

 },

 "lfd:vitamins": {

 "@type": "lfd:Vitamins",

 "lfd:vitaminA": "4.46 ug",

 "lfd:vitaminC": "6.0 mg",

 "lfd:vitaminE": "0.209 mg"

 },

 "offers": {

 "@type": "lfd:AggregateOffer",

 "highPrice": "3.50",

 "lowPrice": "3.00",

 "lfd:averagePrice": "3.25",

 "offerCount": "4",

 "offers": [

 {

 "@type": "Offer",

 "priceCurrency": "EUR",

 "price": "3.50",

 "validFrom" : "2016-04-12T19:30+02:00",

 "validThrough" : "2016-07-12T19:30+02:00"

 "offeredBy": {

 "@type": "lfd:Producer",

 "@id": "http://kotiomena-lpr.fi",

 "name": "KotiOmena T. Kakuunen"

 },

 "priceSpecification": {

 "@type": "DeliveryChargeSpecification",

 "appliesToDeliveryMethod":

"http://purl.org/goodrelations/v1#DeliveryModeOwnFleet",

 "eligibleTransactionVolume": {

 "@type": "PriceSpecification",

 "price": "10.00",

 "priceCurrency": "EUR"

 },

 "eligibleRegion": {

 "@type": "GeoCircle",

 "address": {

 "@type": "PostalAddress",

 "addressCountry": "Finland",

 "streetAddress": "Nuijamaantie 494",

 "addressLocality": "Lappeenranta",

 "name": "KotiOmena T. Kakuunen",

 "postalCode": "53300"

 },

 "geoMidpoint": {

 "@type": "GeoCoordinates",

 "latitude": "61.038698",

 "longitude": "28.362005"

 },

 "geoRadius": "10000"

 }

 }

 },

 {

 "@type": "Offer",

 "priceCurrency": "EUR",

 "price": "3.00",

 "validFrom": "2016-04-12T19:30+02:00",

 "validThrough": "2016-07-12T19:30+02:00",

 "offeredBy": {

 "@type": "lfd:Producer",

 "@id": "http://kuorttasenluomuomena-lpr.fi",

 "name": "Kuorttasen luomuomena"

...

}

Figure 12. Ontologies representation for RCOS’s knowledge

base graph

38

4. Proof of Concept – Prototype implementation

Our proof-of-concept implementation is divided into two parts, and it is constituted of a

prototype of RCOS, and a mobile prototype client communicating with RCOS. We focused our

effort for this proof of concept on the possibility to emit a demand to RCOS, interpreting it and

receiving the answer which we format visually in the mobile client application. The whole

prototype accounts for an approximate amount of 1000 lines of code. Both the client and server

are described in the following paragraphs. The below figure 13 relates our prototype to our use

case, (a) represents a publication to the system, while (b) represents a subscription.

(a)

(b)

Figure 13. Sequence Diagram of RCOS’s Proof of Concept

39

4.1. The RCOS client

We developed the RCOS client using the Ionic2 framework, which allows to use the Angular

web technology to develop mobile applications. Our client allows us to emit demands

(subscriptions) and display the ontologies resulting from the sub-graph transmitted by the RCOS

server as a response. Figure 14 shows the mobile application client that we developed.

40

Figure 14. RCOS Proof-of-Concept’s client

It follows the Model-View-Controller programming paradigm and is constituted of the following

components:

41

- The connectivity provider

This component provides a way to check if the smart mobile device is connected to the Internet.

This component is present to avoid errors in case of the lack of connectivity.

- The data provider

The data provider is the core component of our application as far as the data management is

concerned. It handles the REST requests to RCOS server and provides an SQLITE local storage.

This storage is used as local cache for our application, and allows us to save network load when

transiting through the application. The RCOS server is only queried in case of a subscription and

a manual refresh from the client. We consider including a push system in the next versions, but

since this is a proof of concept, it relies on simple REST requests.

- The Google maps provider

This provider is responsible for handling the communication with Google maps and provides an

API to our producers view and controller, which includes a map of the surrounding products.

- The products view and controller

The products view is the component that displays the apples resulting from our subscription. It

relies on the products controller, which handles the needed communication invoking the data

provider to query our local SQLITE storage.

- The producers view and controller

The producers view handles both the map view of the producers who have products matching

our subscription, and the list. It relies on the producers controller, which handles the needed

communication invoking the data provider to query our local SQLITE storage in order to

retrieve the necessary data.

- The subscription view and controller

The subscription view is the component that displays the subscription view in our application.

Since it is a proof of concept, it only handles subscriptions for sour apples in the Lappeenranta

area at the moment, but this can be extended to a more generic set of choices. It relies on the

42

subscription controller, which handles the needed communication invoking the data provider to

in order to send the appropriate REST request to the RCOS server.

4.2. The RCOS server

The RCOS server relies on using Apache ActiveMQ Artemis 1.3 as an external tool. However,

the component we add can directly be embedded into the broker of a publish/subscribe system.

The history and CAROMM communication are not handled in the proof of concept. Currently,

our prototype implementation handles demands on an ontology knowledge base. This ontology

knowledge base is stored in a JSON-LD file and is loaded in memory as a graph by RCOS.

In order to create ontologies and place them in a graph for our knowledge base, we use the

software tool Apache Jena 3.0.1. We have chosen this software due to its high interoperability

and compatibility with the JSON-LD format. The main graph is loaded from a JSON-LD file and

the extracting of the sub-graph used to answer a “demand” request is processed through the Jena

SPARQL interpreter. An example of SPARQL query, which represents our case scenario “Apple

distribution”, is presented in the below figure 15.

43

PREFIX s: <http://schema.org/>

PREFIX lfd: <http://example-localfood.org/>

CONSTRUCT {

?a ?b ?c .

?d s:offers ?j .

?j s:price ?k .

?j s:offeredBy ?l .

?j s:priceSpecification ?o .

?o s:eligibleRegion ?p .

?p s:address ?q .

?q s:addressCountry ?r .

?q s:streetAddress ?x .

?q s:addressLocality ?t .

?q s:name ?u .

?q s:postalCode ?v .

?p s:geoMidpoint ?w .

?w s:latitude ?y .

?w s:longitude ?z .

?p s:geoRadius ?aa}

 WHERE {?a ?b ?c .

?a s:description ?e .

?a s:name ?f .

?a lfd:species ?g .

?a lfd:taste ?h .

?a lfd:origin ?i .

?a s:offers ?d .

?d s:offers ?j .

?j s:price ?k .

?j s:offeredBy ?l .

?j s:priceSpecification ?o .

?o s:eligibleRegion ?p .

?p s:address ?q .

?q s:addressCountry ?r .

?q s:streetAddress ?x .

?q s:addressLocality ?t .

?q s:name ?u .

?q s:postalCode ?v .

?p s:geoMidpoint ?w .

?w s:latitude ?y .

?w s:longitude ?z .

?p s:geoRadius ?aa .

?a lfd:taste "sour" .

?q s:addressLocality "Lappeenranta"}

Figure 15. SPARQL query sample used by RCOS

This query with nested elements allows us to obtain the full ontologies that present a sour taste,

and whose seller’s locality is Lappeenranta. It could be made generic independently to the

subscription’s attributes formatting by analyzing it and identifying parent nodes. However, we

limited our current proof-of-concept to a static query for simplicity reason. We evaluate our

prototype performances in the following section for larger scale deployment.

44

5. Evaluation of RCOS

In this section, we evaluate our prototype in terms of performance variation for a larger scale

deployment. We want to know which factors influence the processing time the most when

querying our knowledge base graph. In order to do that, we continuously inject ontologies into

our knowledge base graph and do measurements while querying it. We have chosen to evaluate

this part of our system, because it is the one that will be the most affected as the knowledge base

grows in a large deployment case. Current publish/subscribe systems are already able to handle a

significant amount of requests efficiently, so it is worth measuring the knowledge base graph

querying. This allows us to understand the behavior of the processing time according to the

evolution of the number of ontologies in it.

Evaluation setup

The tests in this section are made on a Lenovo G505S laptop running Windows 8. We are

interested in understanding the performance variations, and not in measuring the performances

themselves. Moreover, better performances may be obtained from a Linux system, and a better

hardware. Each test is constituted of five series of a hundred measurements, which we averaged

together. We inject ontologies that might or might not be matching the attribute restriction we

include in our query request. We use the current timestamp in order to know how long the

processing takes.

Evaluation of the matching process

In figure 16, we are interested in the performance of the matching process’s behavior. The

matching process is handled via SPARQL [61] CONTRUCT operation. This operation allows us

to extract a sub-graph from an existing graph, according to restrictions we define in the query.

During this evaluation, our knowledge base graph sample includes ten ontologies, two of which

match lfd:taste = "sour" and eight lfd:taste = "sweet". The blue curve corresponds to the case

where the SPARQL CONSTRUCT will create a sub-graph out of n-8 matching ontologies, n

being the number of ontologies in the queried knowledge base graph and 8 being a static number

of results used for realizing this test. The green curve corresponds to the case where SPARQL

CONSTRUCT will create a sub-graph out of 8 matching ontologies for any size of the queried

45

knowledge base graph. This measurement allows us to know, whether or not, the processing time

difference between the two cases grows as the knowledge base grows.

Figure 16. Processing time and number of results against number of ontologies

From these results, we consider the CONSTRUCT operation processing time to be negligible

against the time it takes for the SPARQL processor to go through the knowledge base graph, in

order to find the right ontologies matching the query. Due to this fact, and in order to obtain clear

data on the impact of the number of ontologies in the knowledge base graph, the following tests

(when they have a constraint) are made with a static n-8 ontologies result matching to the query.

We are firstly interested in knowing the actual influence of introducing a single constraint into

the SPARQL query that is represented in figure 17. In this first case, we do not involve any

nested elements (ontologies included into ontologies) in our knowledge base graph. Only the first

level attributes of our ontologies are queried.

46

Figure 17. Processing time introducing a constraint on the taste attribute against number of

ontologies

The blue line represents the case where we do not introduce a constraint in the query (n results),

and the orange line the case where we limit the results to sour apples (n-8 results). As we can

observe when introducing a constraint, the processing time of the query can increase by 20% and

we can also observe that this trend is slightly increasing as the number of ontologies increases.

This first test involves a single-level type of ontologies. Such ontologies are constituted of

attributes, and cannot include any other ontology.

In figure 18, we observe the behavior of the processing time as we introduce new ontologies

including six level of complexity. These ontologies are of the type represented in the figure 11 of

section III. They involve complex computing operations for the SPARQL engine, resulting in a

bigger processing task.

47

Figure 18. Processing time for one and six levels ontologies against number of ontologies

In the case where we do not have any constraint, the processing time of an ontology with six

levels can be three times the one of an ontology which has a single-level. In the case of a

constraint being introduced, the gap is lower but still significant.

From these measurements, we can conclude that the processing time variation follows a linear

trend against the number of ontologies in our knowledge base graph. However, it grows

significantly more as we introduce complex ontologies. Ontologies’ complexity is the most

affecting factor on the processing time as the number of ontologies grows. In a real case

deployment, one might want to limit the complexity of ontologies, and favor two separated

ontologies, which are linked together programmatically after the query, in a case of expecting a

high number of ontologies in the knowledge base graph.

48

6. Conclusion and future work

In this thesis, we propose, develop and implement RCOS and its subscription language. RCOS is

a real time context sharing system that aims to address a key problem currently experienced by

food producers and customers. It fills the gap of knowledge on the design of a real time and

contextual publish/subscribe system for the future Internet and Internet of Things, and brings a

novel subscription language for it. This type of system enables producers to directly

communicate with targeted consumers bypassing the need for an intermediate actor.

RCOS takes advantage of semantic web technologies, in particular an ontological representation,

allowing producers and consumers to exchange context about various products. The context

supported by RCOS includes location-based and personalization context. RCOS also

incorporates a novel history feature, which allows to request for the history of an attribute, such

as the price of a product.

To validate and evaluate the system, RCOS was implemented with our subscription language,

based on JSON-LD, and the context-aware broker was integrated with the widely used

publish/subscribe system Apache ActiveMQ Artemis. RCOS also incorporated the development

of a mobile application that allows seamless exchange of context between the entities.

Experiments evaluating the performance of the context-aware request matching indicate that the

performance of RCOS is linear with the increasing number of requests. However, as the

complexity of ontology representations increases, the processing resource usage follows the

same trend.

Integrating context-classification (e.g. fuzzy logic) in order to interpret the weight of contextual

information is an area in need of research. Currently, RCOS does not attribute weights to

attributes and uses static interpretation of them. However, we consider researching how to

interpret similar attributes’ meaning within different context, and their consequent ontological

classification, as being an essential point for future research in the field that needs to be

investigate a priori to the context-classification. The optimal physical distribution of the context

is also outside the scope of this thesis, but we acknowledge the need to investigate this area as

well for the future. Our current assumption is an important security of the network

49

communication. We, however, acknowledge the need for a full study of this area including

authentication, encryption and privacy. End to end encryption would be an interesting paradigm

to explore, Pallickara et al. [77] propose a framework for secure end-to-end delivery of messages

in publish/subscribe systems, which could be implemented alongside with RCOS. Lastly, we

acknowledge that such a broker combined with a web scraper could enable analysing the

semantic web. It would also instantly share, in an automated way, new contexts to the relevant

peers. Such an integration is another area to be researched.

50

References

[1] Villarreal, M. (2006, October 15). What is agrobiodiversity? - Module 1: Introduction of key

concepts. Retrieved December 5, 2016, from

http://www.fao.org/docrep/009/y5956e/Y5956E03.htm#ch1.1

[2] Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A. M. (2003). The many faces of

publish/subscribe. ACM Computing Surveys (CSUR), 35(2), 114-131.

[3] Campailla, A., Chaki, S., Clarke, E., Jha, S., & Veith, H. (2001, July). Efficient filtering in

publish-subscribe systems using binary decision diagrams. In Proceedings of the 23rd

International Conference on Software Engineering (pp. 443-452). IEEE Computer Society.

[4] Loke, S. W., & Zaslavsky, A. (2003, October). Communicative acts of Elvin-enhanced

mobile agents. In Intelligent Agent Technology, 2003. IAT 2003. IEEE/WIC International

Conference on (pp. 446-449). IEEE.

[5] Antonić, A., Marjanović, M., Pripužić, K., & Žarko, I. P. (2016). A mobile crowd sensing

ecosystem enabled by CUPUS: cloud-based publish/subscribe middleware for the internet of

things. Future Generation Computer Systems, 56, 607-622.

[6] Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific american,

284(5), 28-37.

[7] Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., & Lindström, N. (2014). JSON-LD 1.0.

W3C Recommendation (January 16, 2014).

[8] Oki, B., Pfluegl, M., Siegel, A., & Skeen, D. (1994, January). The Information Bus: an

architecture for extensible distributed systems. In ACM SIGOPS Operating Systems Review

(Vol. 27, No. 5, pp. 58-68). ACM.

[9] Altherr, M., Erzberger, M., & Maffeis, S. (1999, October). iBus-a software bus middleware

for the Java platform. In Proceedings of the International Workshop on Reliable Middleware

Systems (pp. 43-53).

51

[10] Castro, M., Druschel, P., Kermarrec, A. M., & Rowstron, A. I. (2002). SCRIBE: A large-

scale and decentralized application-level multicast infrastructure. Selected Areas in

Communications, IEEE Journal on, 20(8), 1489-1499.

[11] Object Management Group. (1995). The Common Object Request Broker (CORBA):

Architecture and Specification. Object Management Group.

[12] Rosenblum, D. S., & Wolf, A. L. (1997). A design framework for Internet-scale event

observation and notification (Vol. 22, No. 6, pp. 344-360). ACM.

[13] Cugola, G., Di Nitto, E., & Fuggetta, A. (1998, April). Exploiting an event-based

infrastructure to develop complex distributed systems. In Software Engineering, 1998.

Proceedings of the 1998 International Conference on (pp. 261-270). IEEE.

[14] Pereira, J., Fabret, F., Llirbat, F., Preotiuc-Pietro, R., Ross, K. A., & Shasha, D. (2000,

September). Publish/subscribe on the web at extreme speed. In VLDB (pp. 627-630).

[15] Gruber, R. E., Krishnamurthy, B., & Panagos, E. (1999, May). The architecture of the

READY event notification service. In icdcs (p. 0108). IEEE.

[16] Parzyjegla, H., Graff, D., Schröter, A., Richling, J., & Mühl, G. (2010). Design and

implementation of the rebeca publish/subscribe middleware. In From active data management to

event-based systems and more (pp. 124-140). Springer Berlin Heidelberg.

[17] Pietzuch, P. R., & Bacon, J. M. (2002). Hermes: A distributed event-based middleware

architecture. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd

International Conference on (pp. 611-618). IEEE.

[18] Segall, B., & Arnold, D. (1997). Elvin has left the building: A publish/subscribe notification

service with quenching. Proceedings of the I997 Australian UNLX Users Group (A UUG’I997),

243-255.

[19] Aitenbichler, E., Kangasharju, J., & Mühlhäuser, M. (2007). MundoCore: A light-weight

infrastructure for pervasive computing. Pervasive and Mobile Computing, 3(4), 332-361.

52

[20] Chand, R., & Felber, P. (2004, October). XNET: a reliable content-based publish/subscribe

system. In Reliable Distributed Systems, 2004. Proceedings of the 23rd IEEE International

Symposium on (pp. 264-273). IEEE.

[21] Chand, R., & Felber, P. (2005). Semantic peer-to-peer overlays for publish/subscribe

networks. In Euro-Par 2005 Parallel Processing (pp. 1194-1204). Springer Berlin Heidelberg.

[22] Sivaharan, T., Blair, G., & Coulson, G. (2005). Green: A configurable and re-configurable

publish-subscribe middleware for pervasive computing. In On the Move to Meaningful Internet

Systems 2005: CoopIS, DOA, and ODBASE (pp. 732-749). Springer Berlin Heidelberg.

[23] Tarkoma, S., & Nokia, N. R. C. (2009). Distributed event routing in publish/subscribe

communication systems. Middleware for Network Eccentric and Mobile Applications, Springer,

219-244.

[24] Eugster, P. T. (2001). Type-based publish/subscribe (Doctoral dissertation, ÉCOLE

POLYTECHNIQUE FÉDÉRALE DE LAUSANNE).

[25] Eugster, P. T., Guerraoui, R., & Damm, C. H. (2001, October). On objects and events. In

ACM SIGPLAN Notices (Vol. 36, No. 11, pp. 254-269). ACM.

[26] Buchmann, A. P., & Moody, K. An Active Functionality Service for Open Distributed

Heterogeneous Environments.

[27] Cugola, G., Cote, D., & Munoz, J. E. (2005, June). On introducing location awareness in

publish-subscribe middleware. In Distributed Computing Systems Workshops, 2005. 25th IEEE

International Conference on (pp. 377-382). IEEE.

[28] Fiege, L., Gärtner, F. C., Kasten, O., & Zeidler, A. (2003, June). Supporting mobility in

content-based publish/subscribe middleware. In Proceedings of the ACM/IFIP/USENIX 2003

International Conference on Middleware (pp. 103-122). Springer-Verlag New York, Inc..

[29] Eugster, P., & Holzer, A. (2008, January). Design and implementation of the pervaho

middleware for mobile context-aware applications. In e-Technologies, 2008 International

MCETECH Conference on (pp. 125-135). IEEE

53

[30] Loke, S. W., Padovitz, A., & Zaslavsky, A. (2003, January). Context-based addressing: The

concept and an implementation for large-scale mobile agent systems using publish-subscribe

event notification. In Distributed Applications and Interoperable Systems (pp. 274-284).

Springer Berlin Heidelberg.

[31] Padovitz, A., Loke, S. W., & Zaslavsky, A. (2008). The ECORA framework: A hybrid

architecture for context-oriented pervasive computing. Pervasive and mobile computing, 4(2),

182-215

[32] Matthew Phillips. (2010, July 29). Home - Avis. Retrieved March 10, 2016, from

http://avis.sourceforge.net/

[33] Tarkoma, S., Lindholm, T., & Kangasharju, J. (2005). Collection and object synchronization

based on context information. In Mobility Aware Technologies and Applications (pp. 240-251).

Springer Berlin Heidelberg.

[34] Cugola, G., Margara, A., & Migliavacca, M. (2009, July). Context-aware publish-subscribe:

Model, implementation, and evaluation. In Computers and Communications, 2009. ISCC 2009.

IEEE Symposium on (pp. 875-881). IEEE.

[35] Zahariadis, T., Papadakis, A., Alvarez, F., Gonzalez, J., Lopez, F., Facca, F., & Al-Hazmi,

Y. (2014, December). FIWARE lab: managing resources and services in a cloud federation

supporting future internet applications. In Utility and Cloud Computing (UCC), 2014

IEEE/ACM 7th International Conference on (pp. 792-799). IEEE.

[36] The Apache Software Foundation. (2016, Januay 8). Apache ActiveMQ - ActiveMQ

Atemis. Retrieved March 10, 2016, from https://activemq.apache.org/artemis/

[37] The Apache Software Foundation. (2015, Ocober 16). Apache ActiveMQ - REST.

Retrieved March 10, 2016, from http://activemq.apache.org/rest.html

[38] The Apache Software Foundation. (2015, April). Apache ActiveMQ - Apache ActiveMQ

Board Report - 2015.04 (April). Retrieved March 10, 2016, from

http://activemq.apache.org/apache-activemq-board-report-201504-april.html

54

[39] The Apache Software Foundation. (2015, May 29). Apache ActiveMQ - Migration to

ActiveMQ Atemis. Retrieved March 10, 2016, from

https://activemq.apache.org/artemis/migration.html

[40] Carzaniga, A., Rosenblum, D. S., & Wolf, A. L. (2001). Design and evaluation of a wide-

area event notification service. ACM Transactions on Computer Systems (TOCS), 19(3), 332-

383.

[41] Oracle and/or its affiliates (2013. January 11). The Java EE 6 Tutorial – Overview of JMS

API. Retrieved on April 25, 2016, from https://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html

[42] Barker, P., & Campbell, L. M. (2014). What is schema.org?. LRMI. Retrieved April, 21,

2015.

[43] Gil, B., & Trezentos, P. (2011, July). Impacts of data interchange formats on energy

consumption and performance in smartphones. In Proceedings of the 2011 workshop on open

source and design of communication (pp. 1-6). ACM.

[44] Singhal, A. (2012). Introducing the knowledge graph: things, not strings. Official Google

Blog, May.

[45] Cugola, G., Nitto, E. D., & Picco, G. P. (2000). Content-based dispatching in a mobile

environment. Proceedings of WSDAAL, 2000.

[46] Huang, Y., & Garcia-Molina, H. (2001, May). Publish/subscribe in a mobile enviroment. In

Proceedings of the 2nd ACM international workshop on Data engineering for wireless and

mobile access (pp. 27-34). ACM.

[47] Fiege, L., Gärtner, F. C., Kasten, O., & Zeidler, A. (2003, June). Supporting mobility in

content-based publish/subscribe middleware. In Proceedings of the ACM/IFIP/USENIX 2003

International Conference on Middleware (pp. 103-122). Springer-Verlag New York, Inc..

[48] Cugola, G., Cote, D., & Munoz, J. E. (2005, June). On introducing location awareness in

publish-subscribe middleware. In Distributed Computing Systems Workshops, 2005. 25th IEEE

International Conference on (pp. 377-382). IEEE.

55

[49] Salvador, Z., Lafuente, A., & Larrea, M. (2012). Design and Evaluation of a

Publish/Subscribe Framework for Ubiquitous Systems. In Mobile and Ubiquitous Systems:

Computing, Networking, and Services (pp. 50-63). Springer Berlin Heidelberg.

[50] Salvador, Z., Larrea, M., & Lafuente, A. (2012, August). Phoenix: A Protocol for Seamless

Client Mobility in Publish/Subscribe. In Network Computing and Applications (NCA), 2012

11th IEEE International Symposium on (pp. 111-120). IEEE.

[51] Podnar Zarko, I., Antonic, A., & Pripužic, K. (2013, September). Publish/subscribe

middleware for energy-efficient mobile crowdsensing. In Proceedings of the 2013 ACM

conference on Pervasive and ubiquitous computing adjunct publication (pp. 1099-1110). ACM.

[52] Antonic, A., Roankovic, K., Marjanovic, M., Pripuic, K., & Zarko, I. P. (2014, August). A

mobile crowdsensing ecosystem enabled by a cloud-based publish/subscribe middleware. In

Future Internet of Things and Cloud (FiCloud), 2014 International Conference on (pp. 107-114).

IEEE.

[53] Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J. P., Riahi, M., ... &

Skorin-Kapov, L. (2015). Openiot: Open source internet-of-things in the cloud. In

Interoperability and Open-Source Solutions for the Internet of Things (pp. 13-25). Springer

International Publishing.

[54] Lassila, O., & Swick, R. R. (1999). Resource description framework (RDF) model and

syntax specification.

[55] Brickley, D., & Guha, R. V. (2014). RDF Schema 1.1. W3C Recommendation, 25, 2004-

2014.

[56] Bechhofer, S. (2009). OWL: Web ontology language. In Encyclopedia of Database Systems

(pp. 2008-2009). Springer US.

[57] Lanthaler, M., & Gütl, C. (2012, April). On using JSON-LD to create evolvable RESTful

services. In Proceedings of the Third International Workshop on RESTful Design (pp. 25-32).

ACM.

56

[58] Carroll, J. J., & Stickler, P. (2004, May). RDF triples in XML. In Proceedings of the 13th

international World Wide Web conference on Alternate track papers & posters (pp. 412-413).

ACM.

[59] Bizer, C., & Cyganiak, R. (2014). RDF 1.1 TriG. W3C recommendation, 110.

[60] World Wide Web Consortium. (2014). RDF 1.1 Turtle: terse RDF triple language.

[61] Prud’Hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF. W3C

recommendation, 15.

[62] Beckett, D., & McBride, B. (2004). RDF/XML syntax specification (revised). W3C

recommendation, 10.

[63] Adida, B., Birbeck, M., McCarron, S., & Pemberton, S. (2008). RDFa in XHTML: Syntax

and processing. Recommendation, W3C, 7.

[64] Berners-Lee, T., & Connolly, D. (1998). Notation3 (N3): A readable RDF syntax. W3C

Team Submission: http://www.w3.org/TeamSubmission, (3).

[65] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical owl-

dl reasoner. Web Semantics: science, services and agents on the World Wide Web, 5(2), 51-53.

[66] Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., & Lindström, N. (2014). JSON-LD

1.0. W3C Recommendation (January 16, 2014).

[67] OpenWines working group. (2015, October 2). OpenWines – Open-Data, for vineyards,

winegrowers and wines. Retrieved on April 25, 2016, from http://openwines.eu/

[68] Ronan Guilloux. (2015, Jully 19). Github OpenWines – Ontology draft for Winemaker.

Retrieved on April 25, 2016, from

https://github.com/OpenWines/Ontology/blob/master/1.0/Winemaker.md

[69] Rowstron, A., & Druschel, P. (2001, November). Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In Middleware 2001 (pp. 329-350).

Springer Berlin Heidelberg.

57

[70] Cugola, G., Di Nitto, E., & Fuggetta, A. (2001). The JEDI event-based infrastructure and its

application to the development of the OPSS WFMS. Software Engineering, IEEE Transactions

on, 27(9), 827-850.

[71] Zeidler, A., & Fiege, L. (2003, May). Mobility support with REBECA. In Distributed

Computing Systems Workshops, 2003. Proceedings. 23rd International Conference on (pp. 354-

360). IEEE.

[72] Sherchan, W., Jayaraman, P. P., Krishnaswamy, S., Zaslavsky, A., Loke, S., & Sinha, A.

(2012, July). Using on-the-move mining for mobile crowdsensing. In Mobile Data Management

(MDM), 2012 IEEE 13th International Conference on (pp. 115-124). IEEE.

[73] Jayaraman, P. P., Sinha, A., Sherchan, W., Krishnaswamy, S., Zaslavsky, A., Haghighi, P.

D., ... & Do, M. T. (2012, June). Here-n-now: A framework for context-aware mobile

crowdsensing. In Proc. of the Tenth International Conference on Pervasive Computing.

[74] Haghighi, P. D., Krishnaswamy, S., Zaslavsky, A., Gaber, M. M., Sinha, A., & Gillick, B.

(2013). Open mobile miner: a toolkit for building situation-aware data mining applications.

Journal of Organizational Computing and Electronic Commerce, 23(3), 224-248.

[75] Padovitz, A., Loke, S. W., & Zaslavsky, A. (2004, March). Towards a theory of context

spaces. In Pervasive Computing and Communications Workshops, 2004. Proceedings of the

Second IEEE Annual Conference on (pp. 38-42). IEEE.

[76] Padovitz, A., Loke, S. W., & Zaslavsky, A. (2008). Multiple-agent perspectives in reasoning

about situations for context-aware pervasive computing systems. Systems, Man and Cybernetics,

Part A: Systems and Humans, IEEE Transactions on, 38(4), 729-742.

[77] Pallickara, S., Pierce, M., Gadgil, H., Fox, G., Yan, Y., & Huang, Y. (2006, September). A

framework for secure end-to-end delivery of messages in publish/subscribe systems. In

Proceedings of the 7th IEEE/ACM International Conference on Grid Computing (pp. 215-222).

IEEE Computer Society.

[78] Klimova, A., Rondeau, E., Andersson, K., Porras, J., Rybin, A., & Zaslavsky, A. (2016).

"An international Master's program in green ICT as a contribution to sustainable development,

Journal of Cleaner Production

58

Appendix 1. Raw evaluation results

1 level in ontology – 0 constraint and n results

Number
of

nodes

Measurement
1

Measurement
2

Measurement
3

Measurement
4

Measurement
5

Average

10 484 483 487 482 461 479.4

20 508 539 542 529 561 535.8

30 534 574 564 568 572 562.4

40 528 527 549 521 547 534.4

50 568 588 639 590 617 600.4

60 652 624 590 612 632 622

70 624 616 598 610 628 615.2

80 563 575 614 596 588 587.2

90 694 626 610 623 612 633

100 667 644 641 670 657 655.8

110 698 697 680 664 684 684.6

120 618 736 676 701 659 678

130 724 678 646 676 712 687.2

140 710 701 702 683 729 705

150 732 742 761 794 778 761.4

160 844 770 757 772 773 783.2

170 834 775 782 744 699 766.8

180 759 725 788 744 858 774.8

190 759 752 899 774 774 791.6

200 751 686 789 853 804 776.6

210 684 709 636 691 625 669

220 661 742 785 723 774 737

230 682 673 705 749 778 717.4

240 668 726 750 695 630 693.8

250 691 746 754 645 766 720.4

260 695 780 824 826 696 764.2

270 691 701 765 706 676 707.8

280 798 730 825 678 753 756.8

290 676 865 722 741 754 751.6

300 698 757 785 801 990 806.2

310 707 910 924 888 775 840.8

320 825 874 929 777 790 839

330 732 764 798 757 760 762.2

340 786 776 807 869 788 805.2

59

350 735 843 760 759 727 764.8

360 793 762 763 736 790 768.8

370 841 1021 725 800 852 847.8

380 814 950 880 850 912 881.2

390 763 876 977 824 833 854.6

400 850 849 809 855 968 866.2

410 868 884 820 1014 928 902.8

420 929 983 1104 894 927 967.4

430 825 1045 844 1018 919 930.2

440 1069 1059 957 1024 1029 1028

450 1039 1063 1027 934 1084 1029

460 1040 998 1060 1105 991 1039

470 1003 1083 1063 1186 1021 1071

480 988 1082 1043 1092 1041 1049

490 927 1153 940 1254 1109 1077

500 1153 1128 1023 1348 1118 1154

510 1055 1137 1068 1373 1166 1160

520 1132 1087 1228 1081 1108 1127

530 1233 1320 1214 1207 991 1193

540 1174 1023 1459 1091 1280 1205

550 1164 1116 1435 1135 1218 1214

560 1097 1116 1462 1245 1142 1212

570 1039 1161 1471 1181 970 1164

580 1298 1138 1501 1205 1181 1265

590 1104 1179 1565 1210 1078 1227

600 1244 1102 1413 1098 1051 1182

610 1400 1110 1333 1299 1192 1267

620 1175 1244 1408 1130 1107 1213

630 1377 1365 1351 1155 1160 1282

640 1215 1335 1431 1563 1183 1345

650 1410 1462 1404 1067 1184 1305

660 1373 1381 1396 1120 1346 1323

670 1336 1418 1475 1178 1322 1346

680 1594 1487 1534 1073 1345 1407

690 1481 1433 1444 1627 1285 1454

700 1394 1408 1481 1483 1226 1398

710 1441 1490 1321 1474 1377 1421

720 1334 1408 1358 1391 1580 1414

730 1150 1355 1470 1352 1458 1357

740 1464 1597 1394 1353 1619 1485

750 1363 1457 1500 1330 1336 1397

60

760 1521 1390 1379 1311 1327 1386

770 1466 1388 1456 1520 1313 1429

780 1544 1514 1685 1447 1532 1544

790 1576 1603 1525 1602 1711 1603

800 1639 1402 1476 1558 1524 1520

810 1443 1805 1617 1644 1490 1600

820 1651 1594 1627 1548 1779 1640

830 1611 1718 1760 1561 1573 1645

840 1718 1654 1618 1640 1614 1649

850 1403 1510 1493 1454 1791 1530

860 1656 1538 1588 1730 1665 1635

870 1430 1464 1432 1651 1843 1564

880 1533 1542 1457 1487 1519 1508

890 1785 1548 1648 1739 1768 1698

900 1395 1617 1508 1554 1571 1529

910 1519 1864 1586 1778 1548 1659

920 1770 1481 1430 1764 1555 1600

930 1560 1671 1742 1559 1585 1623

940 1667 1608 1685 1480 1466 1581

950 1766 1564 1742 1651 1444 1633

960 1882 1843 1784 1612 1666 1757

970 1581 1542 1601 1729 1686 1628

980 1399 1813 1696 1848 1773 1706

990 1839 1738 1582 1733 1757 1730

1000 1621 1513 1632 1636 1743 1629

1 level in ontology – 1 constraint on the taste attribute and n-8 results

Number
of

nodes

Measurement
1

Measurement
2

Measurement
3

Measurement
4

Measurement
5

Average

10 741 740 487 494 503 593

20 827 841 522 526 545 652.2

30 870 878 573 544 557 684.4

40 931 852 549 527 562 684.2

50 889 979 561 601 646 735.2

60 931 941 567 616 591 729.2

70 1018 1019 623 666 599 785

80 1115 1032 659 634 660 820

90 1204 1016 673 647 604 828.8

100 1140 1054 705 633 624 831.2

61

110 1046 1035 696 666 671 822.8

120 1103 1063 686 730 667 849.8

130 1125 1119 667 727 793 886.2

140 1106 1356 697 707 719 917

150 1140 1213 709 753 726 908.2

160 1175 1250 822 888 744 975.8

170 1146 1221 702 777 728 914.8

180 1319 1276 806 800 778 995.8

190 1349 1318 772 656 781 975.2

200 1337 1423 816 685 801 1012.4

210 1051 1312 660 716 619 871.6

220 1032 1018 827 673 634 836.8

230 1038 1087 864 665 759 882.6

240 1086 1132 898 755 735 921.2

250 1127 1096 956 685 761 925

260 1088 1275 774 806 698 928.2

270 1159 1193 762 751 749 922.8

280 1297 1315 782 751 693 967.6

290 1417 1172 816 788 714 981.4

300 1426 1209 874 772 752 1006.6

310 1423 1238 795 846 736 1007.6

320 1323 1283 816 829 835 1017.2

330 1442 1255 870 855 787 1041.8

340 1471 1396 847 842 817 1074.6

350 1297 1432 893 1000 841 1092.6

360 1386 1356 815 797 784 1027.6

370 1453 1337 890 906 962 1109.6

380 1626 1487 951 807 808 1135.8

390 1372 1505 1161 998 973 1201.8

400 1425 1639 985 1184 956 1237.8

410 1513 1420 954 1429 875 1238.2

420 1586 1521 982 1120 885 1218.8

430 1665 1721 1468 1139 987 1396

440 1703 1486 1403 986 1059 1327.4

450 1680 1803 1307 1049 1110 1389.8

460 1710 1726 1294 1018 971 1343.8

470 2035 1567 1402 1157 1092 1450.6

480 1818 1946 1437 1109 1107 1483.4

490 1840 1703 1468 1280 1001 1458.4

500 1877 1783 1475 1181 1091 1481.4

510 1903 1613 1650 1521 1132 1563.8

62

520 1960 1997 1589 1467 992 1601

530 2000 2093 1505 1233 1182 1602.6

540 1982 2083 1559 1170 1250 1608.8

550 1960 2072 1600 1191 1146 1593.8

560 2012 1833 1172 1259 1503 1555.8

570 1940 2024 1326 1248 1622 1632

580 2087 2005 1447 1283 1593 1683

590 2031 2091 1505 1188 1557 1674.4

600 2110 1817 1429 1244 1713 1662.6

610 2060 2050 1170 1246 1433 1591.8

620 1985 1913 1254 1377 1584 1622.6

630 1964 1987 1377 1568 1596 1698.4

640 2064 1954 1503 1572 1572 1733

650 2231 2035 1503 1647 1282 1739.6

660 2068 2108 1611 1594 1285 1733.2

670 2295 1954 1559 1433 1478 1743.8

680 1942 2237 1644 1402 1523 1749.6

690 1937 1820 1538 1674 1783 1750.4

700 1979 2042 1475 1584 1557 1727.4

710 2058 2151 1337 1546 1589 1736.2

720 2144 2035 1274 1680 1649 1756.4

730 2074 2042 1206 1483 1466 1654.2

740 2000 2226 1368 1705 1609 1781.6

750 2320 1977 1395 1824 1642 1831.6

760 1925 2317 1929 1893 1730 1958.8

770 2266 2401 1763 1908 1829 2033.4

780 2144 2402 1867 1626 1907 1989.2

790 2355 2328 2007 1280 1899 1973.8

800 2039 2509 1869 1705 1783 1981

810 2433 2248 1856 1679 1834 2010

820 2309 2376 1730 1883 1559 1971.4

830 2180 2633 2031 1791 1957 2118.4

840 2425 2397 1917 1793 1933 2093

850 2397 2316 1831 1890 1755 2037.8

860 2391 2323 1905 1861 1830 2062

870 2235 2331 1813 1825 1635 1967.8

880 2056 2304 1894 1835 1869 1991.6

890 2169 2274 1740 1765 1838 1957.2

900 2436 2419 1849 1893 1875 2094.4

910 2218 2371 1952 1832 1842 2043

920 2355 2022 1936 1967 1929 2041.8

63

930 2412 2349 1933 1658 1848 2040

940 2037 2464 1623 1817 1712 1930.6

950 2350 2334 1963 1920 1947 2102.8

960 2388 2495 1948 2086 1877 2158.8

970 2362 2562 1965 1918 2005 2162.4

980 2520 2458 1934 1818 2059 2157.8

990 2247 2476 1952 1635 1905 2043

1000 2473 2463 1853 1942 1525 2051.2

1 level in ontology – 1 constraint on the taste attribute and 8 results

Number
of

nodes

Mewasuremen
t 1

Measuremen
t 2

Measuremen
t 3

Measuremen
t 4

Measuremen
t 5

Average

10 559 522 494 593 478 529.2

20 526 554 537 523 525 533

30 551 578 543 552 563 557.4

40 545 538 565 558 570 555.2

50 545 553 590 600 566 570.8

60 623 579 609 595 584 598

70 609 606 623 615 622 615

80 608 602 650 601 641 620.4

90 660 639 661 611 599 634

100 615 634 652 665 683 649.8

110 661 706 662 681 696 681.2

120 685 656 727 689 706 692.6

130 696 705 691 748 708 709.6

140 750 702 706 736 722 723.2

150 719 663 690 765 700 707.4

160 813 756 781 721 774 769

170 798 784 733 765 737 763.4

180 794 763 778 720 746 760.2

190 849 800 735 769 766 783.8

200 794 790 803 750 874 802.2

210 726 700 705 728 712 714.2

220 747 701 640 636 686 682

230 813 669 654 708 672 703.2

240 785 765 708 781 772 762.2

250 808 749 757 830 775 783.8

260 673 773 698 668 765 715.4

270 687 722 801 765 727 740.4

64

280 748 770 772 775 838 780.6

290 805 829 804 906 829 834.6

300 861 829 896 765 892 848.6

310 817 920 882 788 782 837.8

320 875 846 860 889 913 876.6

330 843 934 903 878 853 882.2

340 959 934 855 877 780 881

350 863 718 870 844 802 819.4

360 870 920 824 760 925 859.8

370 962 922 949 807 931 914.2

380 875 957 848 990 755 885

390 971 978 907 958 1218 1006.4

400 1045 992 934 816 1126 982.6

410 956 941 970 1048 1289 1040.8

420 940 955 1014 951 1317 1035.4

430 909 1173 960 1009 1284 1067

440 993 1277 1315 1058 1420 1212.6

450 1140 1085 1406 1345 1451 1285.4

460 972 1276 1404 1361 1299 1262.4

470 1178 1433 1326 1586 1352 1375

480 1124 1472 1317 1412 1411 1347.2

490 1129 1443 1267 1137 1438 1282.8

500 1154 1375 1336 1678 1174 1343.4

510 1469 1409 1369 1351 1533 1426.2

520 1682 1473 1368 1532 1620 1535

530 1532 1348 1586 1405 1632 1500.6

540 1545 1541 1465 1551 1594 1539.2

550 1794 1497 1548 1493 1369 1540.2

560 1611 1516 1573 1648 1533 1576.2

570 1437 1348 1734 1728 1537 1556.8

580 1557 1497 1425 1571 1656 1541.2

590 1521 1609 1515 1678 1510 1566.6

600 1525 1421 1395 1503 1586 1486

610 1486 1315 1384 1634 1697 1503.2

620 1430 1615 1506 1416 1740 1541.4

630 1516 1880 1751 1691 1377 1643

640 1666 1611 1624 1383 1509 1558.6

650 1570 1646 1638 1543 1531 1585.6

660 1757 1480 1502 1548 1273 1512

670 1665 1501 1606 1658 1525 1591

680 1637 1598 1571 1675 1647 1625.6

65

690 1559 1348 1740 1432 1453 1506.4

700 1530 1712 1648 1648 1873 1682.2

710 1754 1447 1618 1595 1619 1606.6

720 1434 1749 1634 1572 1679 1613.6

730 1694 1571 1644 1850 1608 1673.4

740 1692 1673 1710 1894 1595 1712.8

750 1794 1488 1900 1725 1707 1722.8

760 1960 1307 1547 1522 1811 1629.4

770 1588 1817 1712 2085 1898 1820

780 2013 1750 1709 1740 1682 1778.8

790 1913 1475 1829 1893 1747 1771.4

800 1841 2005 1871 1678 1739 1826.8

810 1737 1759 1902 2016 1634 1809.6

820 2053 1798 1963 1734 1631 1835.8

830 1849 1992 2108 1893 1772 1922.8

840 1849 1702 2015 1842 1669 1815.4

850 1767 1921 1316 1873 1628 1701

860 1967 2038 1935 2140 1874 1990.8

870 1622 1549 1881 1751 1944 1749.4

880 1689 1516 1875 1953 1751 1756.8

890 1677 1769 1740 1933 1844 1792.6

900 1381 1743 1628 1811 1946 1701.8

910 1662 1930 1759 1714 1996 1812.2

920 1756 1952 1606 1852 1913 1815.8

930 1782 1689 1988 1578 1844 1776.2

940 1966 1854 2044 1626 1956 1889.2

950 1779 1874 1667 1885 1844 1809.8

960 1879 1952 1799 1990 1987 1921.4

970 2060 1885 1919 1840 1693 1879.4

980 1785 1820 2096 1875 1925 1900.2

990 1755 1871 1751 1860 2060 1859.4

1000 1815 1896 1794 1680 1985 1834

Full ontology – 0 constraint and n results

Number
of

nodes

Mewasuremen
t 1

Measuremen
t 2

Measuremen
t 3

Measuremen
t 4

Measuremen
t 5

Average

10 581 600 572 582 592 585.4

20 711 673 666 705 720 695

30 761 754 779 790 792 775.2

66

40 838 721 768 816 841 796.8

50 1005 811 907 870 898 898.2

60 947 922 949 996 1017 966.2

70 1117 1019 1053 1025 1120 1066.8

80 1078 1004 1006 1098 1013 1039.8

90 1080 1145 1126 1076 1100 1105.4

100 1219 1196 1067 1121 1253 1171.2

110 1307 1242 1188 1117 1233 1217.4

120 1424 1283 1183 1361 1371 1324.4

130 1255 1386 1393 1346 1391 1354.2

140 1298 1674 1429 1421 1389 1442.2

150 1502 1330 1489 1594 1325 1448

160 1609 1368 1524 1557 1511 1513.8

170 1539 1579 1571 1292 1406 1477.4

180 1503 1712 1368 1386 1615 1516.8

190 1637 1530 1629 1536 1642 1594.8

200 1777 1762 1613 1730 1604 1697.2

210 1381 1612 1432 1550 1659 1526.8

220 1678 1736 1366 1483 1513 1555.2

230 1676 1534 1528 1559 1379 1535.2

240 1999 1474 1628 1431 1665 1639.4

250 1690 1506 1657 1504 1588 1589

260 1594 1726 1476 1468 1741 1601

270 1857 1762 1613 1565 1745 1708.4

280 2433 1661 1704 1626 1606 1806

290 2209 1789 1919 1588 1702 1841.4

300 2129 1622 1945 1707 1613 1803.2

310 2588 1766 1640 2125 1837 1991.2

320 2248 2000 1859 1978 1734 1963.8

330 2493 1990 1915 1919 1715 2006.4

340 2426 1982 1898 1796 1895 1999.4

350 2553 1863 1712 1864 1868 1972

360 2298 1876 2135 2049 1862 2044

370 3123 2133 2129 1847 1993 2245

380 2372 2176 1848 1842 2010 2049.6

390 2669 2081 1925 1799 2172 2129.2

400 2621 2050 2083 1940 2023 2143.4

410 2712 1971 1898 1831 1950 2072.4

420 2471 1999 2319 1921 2176 2177.2

67

430 2713 2059 1940 2721 2062 2299

440 2747 2334 2250 1990 1927 2249.6

450 2800 1984 2127 2138 2563 2322.4

460 2825 2291 2436 2046 2122 2344

470 2811 1833 2335 2132 2696 2361.4

480 2899 2057 2076 2119 2294 2289

490 2685 2070 3000 2202 2474 2486.2

500 3079 2021 3044 2241 2558 2588.6

510 3205 2255 2755 2420 3297 2786.4

520 2554 2409 3128 2878 2803 2754.4

530 2826 2131 2687 3177 3083 2780.8

540 3442 2820 2913 2938 2782 2979

550 3000 2613 3271 3144 2111 2827.8

560 3031 2763 2762 3375 2424 2871

570 2754 2531 3538 3460 2343 2925.2

580 3445 3148 3123 3098 2458 3054.4

590 3410 3317 3823 3031 2988 3313.8

600 2934 3098 3024 3200 3202 3091.6

610 3815 3193 3574 2890 3379 3370.2

620 3080 2989 3000 3193 3804 3213.2

630 3230 3392 2966 3032 2791 3082.2

640 4140 3412 3152 3023 3098 3365

650 3665 4045 3018 3705 3313 3549.2

660 3204 3449 3039 3309 3092 3218.6

670 3132 3331 3361 3293 3517 3326.8

680 3023 4286 3741 3336 3813 3639.8

690 3652 3241 3294 3833 3187 3441.4

700 3299 3014 3543 3525 3601 3396.4

710 3235 3386 3686 3227 3693 3445.4

720 3411 3042 3397 3483 3364 3339.4

730 4409 3186 4035 3064 3350 3608.8

740 3387 3342 3485 4070 3410 3538.8

750 3614 4065 3473 3399 3799 3670

760 3764 3669 3475 4272 3617 3759.4

770 4288 3793 3591 4020 4213 3981

780 3998 3812 3901 3789 3895 3879

790 4688 4225 3878 3808 4783 4276.4

800 3727 4136 4328 3900 4061 4030.4

810 4186 4015 3824 3916 4214 4031

68

820 4242 3759 4086 3837 3756 3936

830 3530 4060 3718 3934 4930 4034.4

840 4238 3805 4064 4565 3864 4107.2

850 3719 4677 4776 4363 4388 4384.6

860 4098 4255 4033 3659 4511 4111.2

870 3994 3901 3720 4023 4145 3956.6

880 4251 4594 4035 4334 3813 4205.4

890 4265 4110 3649 4159 4452 4127

900 4078 4262 3813 4432 3756 4068.2

910 4134 3730 4169 4350 4437 4164

920 3960 4139 4212 3958 4026 4059

930 4233 4148 4201 3846 3879 4061.4

940 4336 4048 5105 4386 4182 4411.4

950 4681 4036 3893 3711 4291 4122.4

960 3729 4351 4454 4195 4324 4210.6

970 4824 4200 4392 4035 4187 4327.6

980 5199 3944 4130 4150 5043 4493.2

990 4574 4553 4538 4389 4325 4475.8

1000 4796 4291 3979 4398 4410 4374.8

Full ontology – 1 constraint on the taste attribute and n-8 results

Number
of

nodes

Mewasuremen
t 1

Measuremen
t 2

Measuremen
t 3

Measuremen
t 4

Measuremen
t 5

Average

10 593 570 673 576 543 591

20 678 680 863 683 665 713.8

30 837 768 939 765 778 817.4

40 790 808 861 797 816 814.4

50 818 869 895 885 837 860.8

60 960 993 974 1024 994 989

70 1000 961 1027 958 1047 998.6

80 986 1058 1253 1081 1097 1095

90 1034 1104 1344 1240 1138 1172

100 1193 1125 1308 1222 1205 1210.6

110 1215 1267 1302 1348 1320 1290.4

120 1289 1382 1331 1362 1302 1333.2

130 1349 1382 1393 1311 1385 1364

140 1496 1362 1391 1403 1442 1418.8

150 1473 1403 1510 1568 1552 1501.2

69

160 1417 1553 1587 1519 1492 1513.6

170 1514 1435 1364 1520 1687 1504

180 1562 1589 1581 1453 1606 1558.2

190 1552 1485 1682 1549 1743 1602.2

200 1804 1716 1553 1764 1475 1662.4

210 1634 1317 1600 1521 1599 1534.2

220 1464 1734 1466 1616 1440 1544

230 1672 1562 1459 1692 1398 1556.6

240 1438 1698 1480 1467 1478 1512.2

250 1465 1720 1657 1644 1417 1580.6

260 1492 1627 1795 1519 1575 1601.6

270 1766 1696 1499 1791 1832 1716.8

280 1796 2074 1620 2016 1501 1801.4

290 1664 1969 1915 1849 1588 1797

300 1656 2025 1810 1859 1898 1849.6

310 1694 2185 1606 1683 1963 1826.2

320 1686 1671 1820 2018 1797 1798.4

330 1842 2363 1927 2022 1814 1993.6

340 1949 1841 1758 2017 2025 1918

350 1750 2048 2144 1782 1859 1916.6

360 1826 1964 1989 2200 2180 2031.8

370 1811 2179 1898 2074 1862 1964.8

380 2366 1982 2087 1830 1862 2025.4

390 2022 2132 2547 1887 2361 2189.8

400 2415 2096 2112 1882 2206 2142.2

410 2227 1985 2459 2091 2267 2205.8

420 1937 2289 2482 2399 2386 2298.6

430 2332 2461 2658 2308 2356 2423

440 2374 2999 2520 2187 2225 2461

450 2262 2805 2647 1965 2186 2373

460 2384 2712 2773 2566 2437 2574.4

470 2149 2231 2665 2236 2491 2354.4

480 2253 2644 2420 2638 2926 2576.2

490 2281 2511 2184 2586 3056 2523.6

500 3201 2736 2500 3219 2526 2836.4

510 3246 3020 2239 3227 3059 2958.2

520 3105 3266 2536 2766 3190 2972.6

530 2906 2870 2925 3744 3437 3176.4

540 2995 3416 3295 3094 3293 3218.6

550 3528 3214 3278 2968 3547 3307

560 3234 3301 3272 3047 3046 3180

70

570 2997 3226 3280 3413 3279 3239

580 3142 3008 3300 3376 2993 3163.8

590 3454 3691 3154 3349 3286 3386.8

600 3447 3108 3461 2975 3783 3354.8

610 3095 3370 3090 3184 3013 3150.4

620 3131 3408 3718 4021 2986 3452.8

630 3088 3161 3496 3093 3466 3260.8

640 3171 3269 3273 3473 3749 3387

650 3228 3365 3363 3646 3248 3370

660 3588 3513 3613 3745 3114 3514.6

670 3295 3488 3031 3513 3712 3407.8

680 3282 3735 3471 3478 3322 3457.6

690 3304 3138 3651 3344 3733 3434

700 3665 3596 3667 3139 3235 3460.4

710 3552 3906 3791 3441 2881 3514.2

720 3708 3754 3780 3776 3835 3770.6

730 3756 3501 4053 3710 3630 3730

740 3596 3806 3757 3881 3847 3777.4

750 3643 4139 3676 4147 3754 3871.8

760 3983 3637 3880 3767 3529 3759.2

770 3855 3939 4007 4139 4437 4075.4

780 4337 3482 3897 4711 4010 4087.4

790 3572 4193 3936 3552 4168 3884.2

800 4350 3991 3671 3865 4013 3978

810 3932 4105 3923 3585 4100 3929

820 4079 4387 4316 3849 3936 4113.4

830 3499 4176 4119 4566 4084 4088.8

840 4393 4110 4148 4000 3915 4113.2

850 3920 3731 3629 4126 4201 3921.4

860 3966 3903 3836 4259 3977 3988.2

870 3735 4140 3879 4092 3958 3960.8

880 3871 3408 4054 3941 4198 3894.4

890 3756 4251 3910 3931 4337 4037

900 4193 4271 3893 4082 4051 4098

910 3885 3847 4362 4267 4456 4163.4

920 3904 4062 4429 4294 4387 4215.2

930 4156 4373 3871 4147 4195 4148.4

940 4017 4122 4249 4255 4460 4220.6

950 4498 4047 4065 4242 3888 4148

960 4303 3944 3949 4008 4726 4186

970 4182 4361 4463 4242 4813 4412.2

71

980 4129 4406 4498 4840 4432 4461

990 4855 4228 4768 4581 4206 4527.6

1000 4583 4237 4110 4555 4285 4354

