
Lappeenranta University of Technology
Faculty of Technology Management
Intelligent Computing Major

Master’s Thesis

Joni Herttuainen

DESIGN AND IMPLEMENTATION OF A HIGH PERFORMANCE
REAL-TIME DATA BROWSER FOR POWER CONVERTERS

Examiners: Prof. Lasse Lensu
Assoc. Prof. Arto Kaarna

Supervisors: Quentin King
Prof. Lasse Lensu

ABSTRACT

Lappeenranta University of Technology
Faculty of Technology Management
Intelligent Computing Major

Joni Herttuainen

Design and implementation of a high performance real-time data browser
for power converters

Master’s Thesis

2017

68 pages, 13 figures, 5 tables, and 3 appendices.

Examiners: Prof. Lasse Lensu
Assoc. Prof. Arto Kaarna

Keywords: power converter, particle collider, Fourier transform, JavaScript, CERN,
RBAC

The experts at the European Organization for Nuclear Research are constantly
developing more accurate controllers for power converters to achieve the required
magnetic fields in the particle accelerators. To aid in the development of these
controllers, there is a need for tools that visualize the data of the converters. The
earlier tools used in the organization are inadequate for the current requirements.
The biggest issue has been the performance. A new tool, PowerSpy, is currently
under development. This thesis studies the development of PowerSpy and the
solutions made in the development process from the performance viewpoint. The
performance-wise inefficient solutions are improved by designing better impleme-
mentations to replace them and the improvement is measured. The results show
that the performance of the application can be significantly improved by making
correct decisions in the design and implementation of the software.

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto
Teknistaloudellinen tiedekunta
Älykkään Laskennan Pääaine

Joni Herttuainen

Sähkövirran muuttajien reaaliaikaisen dataselaimen suunnittelu ja toteutus

Diplomityö

2017

68 sivua, 13 kuvaa, 5 taulukkoa ja 3 liitettä.

Tarkastajat: Prof. Lasse Lensu
Assoc. Prof. Arto Kaarna

Hakusanat: virtamuuttaja, hiukkaskiihdytin, Fourier-muunnos, JavaScript, CERN,
RBAC
Keywords: power converter, particle collider, Fourier transform, JavaScript, CERN,
RBAC

Euroopan hiukkastutkimuskeskuksen asiantuntijat kehittävät jatkuvasti tarkempia
sähkövirran muuttajien ohjaimia halutunlaisten magneettikenttien aikaansaami-
seksi hiukkaskiihdyttimissä. Ohjainten kehitystyön tueksi tarvitaan muuttajien da-
tan visualisointityökaluja. Tutkimuskeskuksen aikaisemmat työkalut ovat riittämät-
tömiä nykyisiin vaatimuksiin verrattuna. Suurimpana ongelmana on ollut työkalu-
jen suorituskyky. Uusi työkalu - PowerSpy - on kuitenkin kehitteillä. Tämä diplo-
mityö tutkii PowerSpyn kehitystä ja siinä tehtyjä ratkaisuja suorituskyvyn kannal-
ta. Ongelmakohtiin suunnitellaan parempia ratkaisuja, jotka toteutetaan, ja joiden
tuoma parannus mitataan. Tulokset osoittavat, että ohjelmiston suorituskykyä voi-
daan parantaa tekemällä oikeita ratkaisuita sekä ohjelmiston suunnittelussa että
toteutuksessa.

PREFACE

First and foremost, I wish to thank my beloved wife for the tremendous support
I have received throughout the past six years I have spent studying and building
my career. It has meant the world to me. Trust me, I will have more spare time
from now on.

Also, thanks to the rest of my family, especially to my mother and father, for never
judging me or the choices I have made in life. Most of them have taken me to the
point I currently am in. Special thanks to Aki for the excessive amount of treats
brought to me during my studies. I am looking forward to have one of those NHL
evenings, again.

For all my friends, I wish to say that I am grateful for your never ending under-
standing of me putting my studies first. Thank you for letting me to have my
space and I am duly sorry for getting estranged from you all.

Most special thanks to Lassi Riihelä for not only constantly supporting me and
being the best friend one could ever hope for but also for making me apply for the
technical student position at CERN.

Thanks to CERN and the TE-EPC-CCS section for an unforgettable year and
thanks for a unique thesis’ subject.

Last, but definitely not least, I want to thank my supervisor, Dr. Lasse Lensu for
being my tireless mentor throughout my studies.

As put by Douglas Adams:
"So long, and thanks for all the fish!"

Saint-Genis-Pouilly, May 14th, 2017

Joni Herttuainen

5

CONTENTS

1 INTRODUCTION 8
1.1 Power Converters and Data Browsers 8
1.2 Objectives . 9
1.3 Limitations . 10
1.4 Structure . 11

2 BACKGROUND 12
2.1 History of CERN Power Converter Browsers 12

2.1.1 Spy . 12
2.1.2 FGCSpy . 12
2.1.3 LabVIEW Data Viewer . 13

2.2 PowerSpy . 13
2.2.1 Front-End . 13
2.2.2 Back-End . 16
2.2.3 Desktop application vs. Web application 16

2.3 PowerSpy’s Issues . 17
2.3.1 Fast Fourier Transform . 17
2.3.2 Security . 19
2.3.3 Back-End Optimization . 21
2.3.4 JavaScript performance . 21
2.3.5 Data Formats . 23
2.3.6 Communication Format . 24

3 IMPLEMENTATION 27
3.1 Fast Fourier Transform API . 27

3.1.1 Restrictions . 27
3.1.2 Candidate Selection . 27
3.1.3 Candidates . 28

3.2 Role Based Access Control . 29
3.3 Back-End Optimization . 30
3.4 JavaScript performance . 31
3.5 Data Formats . 32

3.5.1 Parsing time . 32
3.6 Communication Format . 32

4 TESTING AND PERFORMANCE 33
4.1 Test Machine . 33

6

4.2 Fast Fourier Transform API . 33
4.3 Role Based Access Control . 35
4.4 Back-End Optimization . 36
4.5 JavaScript Performance . 39
4.6 Data Formats . 40

4.6.1 Size . 40
4.6.2 Parsing Time . 40
4.6.3 Addition of JSON format . 42
4.6.4 New CSV Format . 45

4.7 Communication Format . 47

5 DISCUSSION 48
5.1 Fast Fourier Transform API Selection 48
5.2 Role Based Access Contral . 48
5.3 Back-End Optimization . 49
5.4 JavaScript performance . 49
5.5 Data Formats . 49
5.6 Communication Format . 50

6 CONCLUSION 51

REFERENCES 52

APPENDICES
Appendix 1: FGCSpy CSV data format (old format)
Appendix 2: PowerSpy JSON data format
Appendix 3: PowerSpy CSV data format (new format)

7

ABBREVIATIONS AND SYMBOLS

AC Alternating Current
ACW Accsoft Commons Web
AJAX Asyncronous JavaScript and XML
API Application Programming Interface
CERN The European Organization for Nuclear Research
DC Direct Current
DFT Discrete Fourier Transform
FEC Front-End Computer
FFT Fast Fourier Transform
FGC Function Generator/Controller
IdP Identity Provider
JSON JavaScript Object Notation
LHC Large Hadron Collider
RBAC Role Based Access Control
SAML Security Assertion Markup Language
SP Service Provider
SSE Server Sent Events
SSO Single Sign-On
TE-EPC CERN’s Electronic Power Converters section

8

1 INTRODUCTION

1.1 Power Converters and Data Browsers

The European Organization for Nuclear Research (CERN) is an international re-
search organisation lately known for its pursuit and success of finding evidence
for the existence of Higgs’ boson. However, it is probably best known for having
the largest and most powerful particle collider on the planet, the Large Hadron
Collider (LHC), the latest addition to the CERN collider complex.

LHC, as its name states, is large indeed. It has the diameter of roughly nine
kilometers, a circumference of about 27 kilometers and it consist of hundreds
of superconducting electromagnets that are used to control the particles. It is
worth noting that LHC is not an independent particle accelerator but the last link
in a chain of accelerators, each of which boosts the energy of the particle beam
before injecting it into the next accelerator.

Controlling the accelerated beam of particles is done with superconducting elec-
tromagnets. These electromagnets are further controlled by power converters
which convert the alternating current (AC) from the electrical grid to direct current
(DC) and supply it to the magnets. Correspondingly, each power converter is con-
trolled by a Function Generator/Controller (FGC). The FGC provides the power
converter with a correct amount of current to cause the electromagnets to provide
a desired amount of deflection.

The Electronic Power Converters division of CERN (TE-EPC) is responsible for
designing and implementing both the hardware and the software for these FGCs.
The Power Converters of LHC are all digital ones, which then again means a
huge number of digital signals. These signals are then logged and analysed in
order to produce a better regulation of the beam.

For analysing, an interactive software to browse the control signals is needed.
This includes good visualization of the signal with a possibility to do noise analysis
and zoom in on a selected part of the visualized signal. Of course, it would
be possible to analyze the results with non-interactive software tools that allows
charting, such as Excel, but then an excessive amount of working hours per year

9

would be used to cope with the clumsiness of the software.

From this arises the need for proper tools to aid in the development of the FGCs.
CERN has had tools in the past to partially answer these needs, but with the grow-
ing data sizes and feature requirements, these tools have, however, become less
adequate. Even the improved tools are failing to meet the increasing performance
requirements. Thus, a new tool on a different platform had to be developed.

PowerSpy is a project that begun in 2014. It is a web application that is designed
to overcome all the shortcomings of the previous tools and platforms. It consists
of an Apache server with a Perl CGI back-end and a front-end written with a
combination of JavaScript, HTML and CSS. Of course, not everything has been
written from scratch, but a few open source Application Programming Interfaces
(API) and libraries are used in the application to provide required functionalities.

This thesis studies further development of the PowerSpy application from multiple
viewpoints. These include the motivation for selected APIs, choices made to
improve the efficiency of the application, security viewpoints as well as restrictions
set by the platform or implied by the given requirements and specification for the
application. The development also comprises of adding new features, such as
Fast Fourier Transform (FFT) and new data formats to the existing application.

1.2 Objectives

Since earlier tools fail performance-wise, the main goal of the thesis is to study
and improve the performance of the PowerSpy application. In practice, this means
studying the current state of the application’s front-end, back-end, communication
protocol as well as data formats and trying to find better solutions to improve the
overall performance of the application. Different solutions are studied and their
performance is estimated by measuring the time spent on different tasks. The
best solution performance-wise is then utilized in PowerSpy. There may, how-
ever, be certain restrictions, which prevent using the performance-wise optimal
solution, in which case, the best solution that fits the given criteria is selected.

In the case of the front-end, for example, JavaScript is known to have the possi-
bility of do certain tasks in a number of different ways. To keep the application

10

as responsive as possible, performance measurements and analyses are carried
out to try to find out which methods are the most efficient for each task. Also,
some questionable decisions made in the back-end are analyzed performance-
wise and optimized.

Also, one of the main goals is to find a suitable Fast Fourier Transform (FFT) API
for the application. To achieve this, a JavaScript FFT API benchmark and feature
comparison is carried out to find an API that is not only efficient bet also meet the
other qiven requirements.

Also, since the main use case of the application is to read and visualize data, the
used data formats and communication protocols are analysed and redesigned.
The goal of the data format study is to not only gain improvements on the overall
performance of the application, but also, to ensure the portability of the data.

Since PowerSpy is a web application, which communicates with the FGCs over a
network, security is a non-trivial issue that cannot be omitted. Thus, one goal is
to study the application security-wise and find adequate solutions to ensure the
security of the users, the application and the devices it communicates with as
well as the internal CERN network. The security solutions are based either on
common practices or consulted experts’ opinions.

1.3 Limitations

The possible solutions are limited by the specifications and requirements given
for PowerSpy that must be met as well as by the limits of the tools that are used in
the development of the application. Also, generally in software projects, it is also
possible for the specifications and requirements to change.

In the optimal case, a real-time data browser would indeed get real-time updates
from the server constantly without the need for any user action. Not only are
some of the systems in LHC connected to such a slow fieldbus, that this would not
be even theoretically possible, but this could also become a problem due to the
number of buffer data requests sent to the devices. The excessive overhead could
end up in a failure of the device (cf., denial of service attack). Also, the Front-End
Computers (FEC) that handle the requests have a limited amount of resources.

11

On top of handling requests, the FECs must deliver a reliable operation of the
beam at all times. Therefore, the application is not real-time in a sense that it
would show the current data stored in the memory of a FGC, but it can make
requests to get a snapshot of the current data.

The thesis primarily focuses on observing, solving and presenting encountered
problems as well as comparing and justifying the choices made. Encountered
anomalies and their causes are only studied superficially as opposed to making
detailed analytical research on them.

Not all the choices can be based on purely quantitative measurement, but also
qualitative one have to be used . In these cases, the choice is made on the basis
of the given requirements and specifications. Also, in some cases, experts are
consulted (e.g., in case of computer security solutions) and the choises are made
based on their professional opinions.

1.4 Structure

This thesis is structured so that in Section 2, background for power converter
browsers is presented. This includes also a detailed presentation of PowerSpy.
In Section 3, the different aspects of the performance optimizaton and studies
to be carried out in this research are presented. The results of the studies are
then presented in Section 4 and are further analyzed and discussed in Section 5.
Finally, the research is concluded in Section 6.

12

2 BACKGROUND

2.1 History of CERN Power Converter Browsers

2.1.1 Spy

Spy was the very first of the digital power converter data browsers in CERN.
It was developed in early 2000 in MATLAB, but was shortly abandoned due to
the fact that MATLAB requires a software licence for development. Also, there
was not enough competence in the software section of TE-EPC division to do
MATLAB development. Back then, the vizualization elements of LabVIEW were
more competitive which lead towards developing the browser in the LabVIEW
environment.

The "Spy" in the name refers to the action of acquiring the signals from the FGCs.
The signals are recorded in circular buffers during runtime of the converter and
the data is available postmortem in case the converter trips. It is also possible
to acquire real-time data from the buffer, in other words, "spy" on the data in the
buffers, without stopping the recording.

2.1.2 FGCSpy

FGCSpy was CERNs second attempt to create a power converter data browser.
It was such a success that it is still in use. FGCSpy was created in LabVIEW,
although the platform selection made the software suffer from some of the same
shortcomings as its predecessor. Namely, the lack of competence in the devel-
opment group. A screenshot of the software can be seen in the Figure 1.

FGCSpy managed to stay in active use for over a decade, even though it had
some major deficiencies. First of all, the software were only able to show eight
signals at a time. It had the possibility acquire up to 40 signals, out of which the
signals to be visualized were then selected. What is worse, is that FGCSpy could
only show signals that shared the same time base. Thus, it could not even show
a pair of signals at the same time no matter how crucial it would have been for

13

the development of a device.

Fixing all the issues in FGCSpy would have required massive structural changes
in the software up to the level of a complete remake. However, there were not
enough man power or competent members in the development group to do the
job and, thus, the TE-EPC division managed to cope with what they had.

2.1.3 LabVIEW Data Viewer

LabVIEW Data Viewer was an unsuccessful attempt at tackling the shortcomings
in the FGCSpy software. Instead of developing the existing FGCSpy that was in
active use, a new software was developed from scratch. It included most of the
features that were lacking in the previous softwares.

The development of the work was terminated after the first prototypes were tested
due to massive performance issues. There was an attempt to optimize the soft-
ware, but LabVIEW was simply not efficient enough to handle the required amount
of data. At this point, it was clear that the next software should be built on a dif-
ferent platform.

2.2 PowerSpy

CERN’s PowerSpy is the first browser-based application to access the FGC buffer
data. The development of the application began in 2014 and it is still under de-
velopment. Even though the software is not complete yet, it is in active daily use.

2.2.1 Front-End

The front-end of the PowerSpy is written in JavaScript, HTML and CSS. The front-
end uses a multitude of open source libraries that are used to accomplish the
main functionalities of the application. A screenshot of the client application can
be seen in Figure 2.

14

Figure 1. Screenshot of FGCSpy software.

Flot and its plugins
Flot is an open source plotting library for jQuery originally started by Ole Larsen
with the support of a Danish software agency called IOLA [1] and currently main-
tained by David Schnur. It has an active community of users that contribute in the
project, for example, by developing the plugins available for Flot. [2]

Flot provides PowerSpy with the ability to plot FGC signal data. Also, a number
of plugins have been used to provide more features, such as the tool tip devel-
oped by Kris Urbas [3]. However, the most important plugin performance-wise is
the downsampling plugin which is based on Largest-Triangle-Three-Buckets al-
gorithm and is created by Sveinn Steinarsson [4]. The downsampling plugin is
crucial for PowerSpy since it allows the application to provide charts with signals
consisting of millions of datapoints without making the browser freeze. Initially,
Highcharts [5] were considered as an alternative charting library, but Flot was
finally selected due to its superior performance.

15

Figure 2. Screenshot of PowerSpy application.

jQuery
jQuery is a JavaScript library designed to simplify a multitude of tasks in JavaScript
such as DOM manipulation and event handling. The project was started in 2005
by John Resig and was inspired by Ben Nolan’s project called Behaviour [6]. One
of the earliest goals was to write more understandable code with less charac-
ters. The strive for this has remained to this date and has actually influenced
the jQuery’s slogan: "Write less, do more.". [7, 8] Since PowerSpy is designed to
have a minimal number of dependencies, jQuery is present only due to the fact
that Flot depends on it.

Bootstrap
The development team defines bootstrap as "the most popular HTML, CSS, and
JS framework for developing responsive, mobile first projects on the web". It is an
open source project started in 2010 and was originally known as Twitter Blueprint.
It is built with Less [9] preprocessor and is designed to ease and speed up front-
end development with multi-platform support. [10]

Mousetrap
Mousetrap is an open source JavaScript library designed to provide keyboard

16

shortcuts and key sequence handling in web applications. The project started in
2012 and it is created and primarily maintained by Craig Campbell. It has no ex-
ternal dependencies, works with international keyboard layouts and is supported
by all the major browsers. [11]

2.2.2 Back-End

The back-end consists of CGI scripts written in Perl. The scripts are run on an
Apache server. To communicate with the FGCs, the back-end also uses CERN’s
APIs written in Perl which was the main reason for selecting Perl as the language
of implementation. Login is provided by the CERN Single Sign-On (SSO) and
session handling is done using an Apache module called mod_auth_mellon [12].

2.2.3 Desktop application vs. Web application

Even though CERN has some Java-based data viewer tools in operation, the plan
was to go towards browser-based web application right from the start. There were
multiple reasons to choose a web application instead of a desktop application.
The software section of TE-EPC division consists of mostly programmers used
to embedded, low-level programming and there was no desire to maintain either
Java code nor competency to do Java programming in the section. There were,
of course, more to it than that.

First of all, selecting a browser-based application ensures multi-platform compati-
bility without any extra work from a developer. Also, browsers and their JavaScript
engines are actively developed to provide better performance. On the top of that,
one of the main advantages is that there is no need for the users to ever install
or update the software. What is more, browsers have advanced, easy-to-use
developer tools to aid developing and debugging software.

17

2.3 PowerSpy’s Issues

Many requirements were given by the TE-EPC division concerning PowerSpy.
The application was lacking certain features that needed to be implemented. Also,
certain features were implemented, but the alternatives for the implementation
needed to be further studied to find the most efficient way to achieve desired
functionalities.

2.3.1 Fast Fourier Transform

One of the FGCSpy’s most important functionalities is the Fast Fourier Transform
(FFT). It is used for harmonic noise detection in the FGC output signals. In circular
accelerators, if there is harmonic noise and the oscillation of the magnetic field is
linked to tune (i.e., the frequency of the transverse oscillation [13]) of the beam
of the particles, the magnetic field oscillation can cause the orbit oscillation of
particles to be amplified. This amplification can in turn cause the beam to be lost.
With FFT, these harmonic frequencies can immediately be detected.

Performance
Since the performance of PowerSpy is of such high priority, a literature review
of different FFT algorithms was done to have an overall picture of the order of
superiority of the implementations.

The term Fast Fourier Transform is generally used for algorithms that compute the
Discrete Fourier Transform (DFT) with a computational complexity of less than or
equal to O(N log N), where N is the number of samples in the data . The dis-
tinction between the terms FFT and DFT is that the DFT means the mathematical
transformation while FFT is often used to refer to the algorithm or to the algo-
rithmic process of computing the transformation. There is a multitude of ways to
compute the transformation and finding the most efficient way to do it for different
purposes has been a subject of study for decades.

In [14], the so-called Cooley-Tukey method was introduced. The method is based
on a so-called divide and conquer principle. In the method, the input sequence is
divided into smaller sets, size of which depends on the implementation. Perhaps

18

the most well-known implementation is radix-2, which recursively splits the input
sequence into two parts. Also, other radices (such as radix-4) are used.

In [15], the authors present an algorithm, which does not require complex multi-
plication in computation of the FFT. Thus, it improves the FFT computation cost
compared to the Cooley-Tukey algorithm. The difference is notable in small com-
puters.

In [16], the authors present an algorithm with similar computational cost as the
algorithm presented in [15]. The presented algorithm has lower memory require-
ments with big input sequences than the algorithms used in comparison.

In [17], the authors present the split-radix algorithm that is as flexible as the radix-
2 algorithm while requiring significantly less computation steps than any of the
algorithms used for the comparison. The split-radix method was further optimized
in [18].

In [19], the author presents a Fast Hartley Transformation [20] algorithm, which is
then further developed in [21]. The algorithm is not a FFT algorithm per se, but it
can be applied in digital signal processing tasks instead of the Fourier transform.
[19] The implementation does not require complex arithmetic computations and
the algorithm clearly outperforms the Cooley-Tukey based radix-2 algorithm [21,
22].

In [23], the author present the Decimation-in-time-frequency algorithm, which
combines the decimation-in-time and decimation-in-frequency algorithms. The
resulting algorithm results in a smaller number of computations than the radix-2
algorithm.

In [24], the Quick Fourier Transform is presented. The algorithm is capable of
computing the Fourier transform on arbitrary length data and is computationally
more efficient than Cooley-Tukey based FFT algorithms, but is less efficient than
the split-radix algorithm.

The abovementioned algorithms with their points of interest performance-wise
can be seen in Table 1. While FFT algorithms is a widely researched subject
even nowadays, these are widely used and benchmarks exist at least for a subset
of them. The general consensus of superiority is that the fast Hartley transform

19

outperforms all the FFT methods. [22, 25, 26] Also, the split-radix algorithm was
found to be superior to other Fourier transform based algorithms in [22] as well as
in [25]. However, according to the results presented in [26], the radix-4 algorithm
seems to outperform the split-radix algorithm.

2.3.2 Security

Single Sign-On
SSO is a centralized login service provided by CERN. It authenticates the user the
username and password combination and creates a session cookie for the user.
This cookie can then be used in every service or application in CERN the network,
provided that they support the SSO login protocol. PowerSpy is designed to use
the SSO.

Role Based Access Control
Role Based Access Control (RBAC) is an approach to perform access control
based on the rights granted for the given user group (i.e., a role) [27]. Assigning
a specific role to a user gives the user a permission to perform one or more tasks
on a system or, for example, access specific files on a server. The roles may
be related to a user’s actual role in a system or in an organization (e.g., system
administrator) or they may be artificial roles based on the granted rights. For
example, a role ’serverX-access-allowed’ set to a user could mean that the user
in question has access to server X. Also, the roles can be applied not only to
human users, but also to systems or processes.

In CERN, RBAC is used in power converter control system. Whenever a user
sends a request for the control system, the authority of the user is validated. The
authorization is done by a centralized RBAC server which authenticates the users,
provides them with an authentication token and also verifies the authentication
tokens. These so-called RBAC tokens are then sent with each request to the
power converter control system which will then send the token to RBAC server
for verification. If the RBAC token is valid, it is verified and the initial request is
then fulfilled or declined based on the roles assigned to the user. The RBAC
token is digitally signed, so it cannot be modified, for example, to add roles to a
user without making the token invalid in the process. [28,29]

20

Table 1. The points of interest (performance-wise) of the presented FFT Algorithms.

Algorithm Notions

Cooley-Tukey [14] Divide and conquer principle. Most commonly known
FFT algorithm. According to [26], the radix-4 varia-
tion outperforms split-radix.

Rader-Brenner [15] Does not require complex arithmetics. Outperforms
Cooley-Tukey.

Preuss [16] Low memory requirements with big input sequences.

Split-Radix [17] Outperforms all other FFT-based algorithms.

Fast Hartley Transformation
[19]

Not FFT-based. Does not require complex arith-
metics. Outperforms all the FFT algorithms.

Decimation-in-Time-
Frequency [23]

Less computations than radix-2 (Cooley-Tukey).

Quick Fourier Transform [24] Arbitrary length data possible. Outperforms Cooley-
Tukey.

Originally, each data acquisition for the FGCs was done with RBAC authentication
based on the location of the server. That is, the RBAC server authorizes requests
coming from the IP address of the PowerSpy server instead of authorizing the
actual users making the requests. Not only was there no easy way to backtrack
possibly malicious actions, there were no possibility to restrict the access to the
converters, if they were in the software. That is, if a developer would make an
error, an unwanted (even malicious) user could theoretically get access to the
LHC control system.

In Figure 3 and Figure 4, there are simplified diagrams depicting the login process
and the data acquisition process as they were originally performed in PowerSpy.
As it can be seen in Figure 3, the login process was very staightforward: the client
makes a HTTP request for PowerSpy web page, server detects that the client is
not logged in and makes a redirect to the SSO server, client signs in and gets a
session cookie with the session ID.

The data acquisition process was more complicated than the login process as
can be seen in Figure 4. The client first makes a data request, PowerSpy server
requests for a RBAC token by location, adds the acquired token to the request
and forwards it to the FEC, and then forwards the acquired data back to the client.
Not only was the data acquisition complicated, but it was also inefficient. That is,
since the server was stateless, it discarded the acquired RBAC token after use

21

and fetched it again every time it made a request for data even though the token
would have been valid for the duration of eight hours.

Figure 3. Simplified diagram of the original login protocol. The client makes a HTTP
request to PowerSpy Server (1), which redirects the user to the SSO server to login (2).
The SSO server provides the client with a session cookie (3).

2.3.3 Back-End Optimization

The API used by the back-end to communicate with the FECs was designed fol-
lowing the principles of Representational state transfer (REST) [30] API design.
That has many advantages, including ease of implementation, but it also has its
disadvantages. In the case of PowerSpy, one of the major disadvantages is not
having a possibility to cache the device information in the back-end. This informa-
tion (e.g., device names, gateways) is needed when the back-end requests data
from the devices. The device information was originally parsed from a so-called
name file for every request. Parsing this huge file is a time-consuming operation
that can be quite easily speeded-up.

2.3.4 JavaScript performance

There exists a handful of ways to implement a task in JavaScript. For example,
finding a correct DOM element can be achieved at least by using findElements-

22

Figure 4. Simplified diagram of the original data acquisition protocol. The client
makes a request for data (1), the server gets a valid RBAC token based on location (2,3),
the server forwards the client’s request with the RBAC token (4), the FEC provides the
requested data (5) and the server forwards the data to the client (6). Note that the RBAC
token is discarded after use and needs to be reacquired for every request for data.

23

ByClassName, findElementById or querySelector. On top of these, since Pow-
erSpy uses jQuery and jQuery has its own functions to achieve these function-
alities, there are even more possibilities to select from. For this reason, different
methods to achieve the often used functionalities in PowerSpy are analysed and
benchmarked. The best method performance-wise is selected and this method is
then used throughout the code to achieve as instant feedback from the front-end
as possible.

2.3.5 Data Formats

Originally, PowerSpy used a Comma-Separated-Values (CSV) as the only data
format. On top of its use as the data exchange format, it was also used to export
data from the application. This exported data could be imported to a spreadsheet
software such as Excel. However, the timestamps included in the PowerSpy CSV
file format are not needed in the application. They can be be computed if the
time of the first sample and the sampling period are known. Therefore, the data
format could be improved and more compact solution, JavaScript Object Notation
(JSON) format, was suggested as an alternative solution. What is more, parsing
the JSON format in JavaScript is a faster operation than parsing the CSV format,
which would also support using JSON.

CSV is a format for storing and transferring data. According to the de facto stan-
dard, it is structured so that each line contains one record of data consisting of
data fields that are in the same order in each of the records. These fields are
typically separated by commas (hence the name). The format can also have a
header row. [31]

JSON is a lightweight format for data exchange. The data is structured in a
human-readable, easy to understand fashion. Even though it is derived from
the syntax of JavaScript object notation, the format itself is independent of the
language. The main advantage of the format in web applications is the ability of
the JavaScript to convert data from JSON format to native JavaScript objects. [32]

24

2.3.6 Communication Format

The main use case of PowerSpy is to acquire data from a FGC buffer. Generally,
accessing new data can be implemented in two ways: either by making static
pages for each data set or by using a dynamic page, to which all data is loaded.
In the case of FGC development, the user would most likely wish to access and
compare multiple datasets at once and, thus, making the application dynamic was
the only option. There are, however, more than one method for a web application
to communicate with the server.

PowerSpy was originally designed to have a possibility to subscribe to a device
buffer. When subscribing, the client would send a request to the device’s FEC
to acquire data of the wanted buffer. The FEC would then again fetch the data
from the buffer, send it to the connecting client and keep the connection open to
send new data dumps to the client periodically. To achieve this functionality, the
communication for data acquisition between PowerSpy server and clients was
implemented using Server Sent Events (SSE) [33].

It was to be further evaluated whether or not there was an actual need for the data
subscription and, thus, the SSE. The objective was to keep the SSE if there was
a need for it or, otherwise, to replace it with a simpler, more commonly used and
more maintainable communication technology, such as Asyncronous JavaScript
and XML (AJAX) [34].

Server Sent Events
Server sent events is a unidirectional communication technology between a client
and a server. The technology was designed by Opera in 2006 [35] and is sup-
ported by all the modern browsers with the exception of Internet Explorer and
Edge. The interfaces that implement server sent events carry the name EventSource
[36]. The basic principle of server sent events is that a client establishes a persis-
tent HTML connection to a server, which provides the client with updates of data
sent as event streams. On the client side, these event streams are handled the
same way as any event (e.g., click, key press).

Figure 5 depicts the basic operation of server sent events. In this figure, it can be
clearly seen how the client initiates the communication to the server (blue arrow).

25

After the initiation, the server provides the client with new data (event streams).

Figure 5. Server Sent Events. Image published under Creative Commons Share Alike
[37] license in [38].

AJAX Request
AJAX is an approach originally defined to exchange XML data between the client
and the server. It is not, or ever was, a single invented technology, but a combina-
tion of existing technologies. It was originally designed to overcome the problem
of user needing to wait for the whole page to load before being able to interact
with the page [34]. Even though it was initially designed to be used with XML, it
is more commonly used with JSON nowadays.

There are two main advantages of using SSE over AJAX. The first advantage is
the significantly lower HTTP overhead. In the AJAX method, a client establishes
the connection to and sends a request to the server which then again responds
to the request after which the connection is closed. Thus, each data request
consists of request and response message as well as opening and closing the
connection. With the SSE method, the connection is opened only once, and
the data updates need not to be requested. The second advantage is the quick
access to new data since it can be sent to the client immediately when it becomes
available.

Figure 6 depicts multiple AJAX requests. In the figure it can easily be seen how
the client needs to keep constantly requesting for new data. By comparing this

26

figure to Figure 5, one can instantly see how the number of requests made is
bigger in the case of AJAX protocol.

Figure 6. AJAX request. Image published under Creative Commons Share Alike [37]
license in [38].

27

3 IMPLEMENTATION

3.1 Fast Fourier Transform API

3.1.1 Restrictions

In PowerSpy, the FFT feature was not yet implemented nor was there any API
suggested for it. There were certain requirements given for choosing the FFT
implementation: It had to be quick, have a free software license, it had to have an
adequate support and it had to add no unnecessary dependencies. If the API also
had windowing functions, it was considered as a positive feature. The objective
was to find a ready-to-use solution on the Internet. In a case that suitable solution
was not found, the solution would be to implement the FFT API from scratch.
Since some of the given restrictions were vaguely specified or otherwise open for
subjective interpretation, they were further specified.

Perhaps the most vague restriction was the adequate support. Adequate support
can be a person responding to an e-mail within specified time frame or it may be
immediate online support. In the case of PowerSpy, it was specified to mean that
the API has an active community of users or the API is actively developed. Again,
active is a highly subjective term, so it was further specified to mean that there
has been some activity within last 12 months.

The requirement of the API not having any unnecessary dependencies was inter-
preted that the API would need to get by itself. This means that the API would not
need any additional libraries or, for example, translators. Thus, the FFT had to be
written in pure JavaScript without dependencies to other libraries. The require-
ment was also specified to be a restriction on the ease of use: no dependencies
to expertise. That is, the user can use the API with little knowledge of FFT itself.

3.1.2 Candidate Selection

There are surprisingly many JavaScript-based open-source APIs available on the
Internet. Many APIs were found while researching the available options, some of

28

them were even targeted for servers [39]. Most of the APIs were implemented
using the Cooley-Tukey algorithm, whilst more efficient solutions were also avail-
able.

In an article written in The Breakfast Post [40], there is an exhaustive list of openly
available FFT APIs as well as some APIs that are compiled from C to asm.js [41]
using Emscripten [42]. In the article, it was found that the APIs translated to
asm.js perform better than native JavaScript APIs. All the APIs considered for
PowerSpy can be found in this list. In the article, there are also the results of
a benchmark done with a subset of the APIs. Since not every API considered
for the PowerSpy were included in the selection, a benchmark was done to find
out the algorithmic efficiency of the candidates, although other restrictions would
weigh more in the selection.

All in all, five different APIs and a modification to one of those were considered
as being potentially used in the PowerSpy application. The selection for testing
was quite straightforward: take any pure JavaScript solution that can be used to
implement the FFT in PowerSpy. All the JavaScript-based APIs presented in [40]
were selected, except for the Timbre [43] due to the fact that it is a JavaScript
library for objective sound programming and the FFT implementation is merely a
minor part of it which would complicate maintaining and updating the PowerSpy
in the future.

3.1.3 Candidates

Nayuki [44] provides the same FFT API available in six different languges. The
API is compact, light, easy to use and easy to add to PowerSpy. The computation
of the FFT is based on the Cooley-Tukey algorithm. However, the API is not being
actively developed nor does it have window functions. Also, it is difficult to find
any community support in the case it is needed. However, the efficiency is one of
the best amongst the candidates.

The aforementioned Nayuki’s FFT API was slightly modified by the author of [40]
to achieve even more efficient computing. The made modification creates an
object for the FFT, precalculates the used sine and cosine values and stores
them into the object. This seems to decrease the computation time, but in the

29

case of PowerSpy, it does not decrease the overall time due to the fact that there
is rarely a need to calculate the FFT for a signal more than once.

The fft.js [45] seems to be the slowest candidate. The API is no longer maintained
or developed. It also has no window functions nor any kind of support. Even
though the API itself would bring no extra dependencies, it is a highly uncertain
option as there has been no activity on the API for years.

The jsfft [46] API is the most recently updated FFT API of the candidate. However,
during the time of the FFT benchmark, it was not updated for over a year. The
API has no window functions, but is a pure JavaScript solution.

The most popular API of the candidates is the dsp.js [47]. It is not only a FFT
API, but a digital signal processing one. Hence the name, dsp.js. Whilst it does
not have a commununity support per se, search engines tend to find forums (e.g.,
Stack Overflow) discussing about this API more than the other candidates. This
API has window functions, and it adds no extra dependencies. What is more, it
has multiple different FFT algorithms implemented, including the split-radix algo-
rithm. The presence of the split-radix implementation lead to the hypothesis that
this would probably be the fastest API to be tested due to its efficiency noted in
Section 2.3.1.

The KissFFT [48] is the only candidate that is not written in JavaScript but in C.
It was translated to asm.js with Emscripten [42] by the author of [40]. This is
the clumsiest solution, since each time the API is modified, it would need to be
recompiled, which adds an extra dependency on Emscripten and on the know-
how to use it. Also, this particular API does not contain window functions.

3.2 Role Based Access Control

The CERN Accsoft Commons Web (ACW) team has developed an application
template together with RBAC team, which implements a so-called SSO-to-RBAC
bridge. The application template can be used as a basis when one begins to
develop new software without having to add all the libraries needed by the appli-
cation for it to run in the CERN network. The SSO-to-RBAC bridge is a method
of acquiring a RBAC token during login. Basicly, when the user signs in using

30

SSO, the login is wrapped in a Security Assertion Markup Language (SAML) re-
sponse [49], which is kind of a sealed envelope. This SAML response is signed
by the SSO service and, thus, cannot be forgered. The SAML response contain-
ing the assertion, can then be sent to the RBAC server, which then verifies the
login, and responds with a RBAC token of the user. In Figure 7, one can see how
the login is implemented in the ACW application template.

The ACW application template, however, is Java-based and it uses the Spring
framework [50]. This means that the SSO-to-RBAC bridge implemented in it
cannot be directly applied to PowerSpy. Therefore, a similar solution was im-
plemented in Perl.

The SAML response from the SSO is valid for only an hour after the login. After
the SAML response expires, it can no longer be used to get a RBAC token from
the RBAC server. Due to this, it was obvious that the RBAC token would need to
be stored somewhere to be reused later on. Also, this would mean that the back-
end does not have to retrieve a new RBAC token in each request which would, in
principle, speed up the back-end.

The previous client software, such as FGCSpy stores the RBAC token in client
side since the applications have no server between the client and the FGCs.
Hence, the initial thought was to save the token on the client side instead of
adding adding a database on PowerSpy and, thus, complicating the server. The
main reason was, that it would not matter whether a possibly malicious user got
access to the RBAC token or the SAML respons, since the outcome would be
the same. However, this was to be decided together with CERN security experts.
Also, the amount of time saved due to not needing to fetch the token in every
request would be measured out of curiosity.

3.3 Back-End Optimization

Two alternative strategies were designed for getting the needed information with-
out parsing the whole name file on the server. The first was to use regular expres-
sions to find the correct line for the device in the file and extract only the needed
information. This would theoretically speed up the process by a great deal since
the back-end can omit hundreds of lines of data. The second option would be

31

Figure 7. The login protocol as implemented in ACW project template. In the case
of PowerSpy, service provider (SP) is the PowerSpy server and identity provider (IdP) is
the CERN SSO server. Note that the RBAC token acquisition is initiated in the server
(API call with SAML response). The original diagram is presented in [51].

to include the needed information to the request so the back-end can skip the
whole process of handling the name file. These methods were to be tested and
measured.

3.4 JavaScript performance

The JavaScript performance tests are run on an online application called jsPerf
[52]. jsPerf is an application where users may create and share test cases to
compare the performance between JavaScript functions or snippets. Test cases
were restricted to those functionalities that occur often in PowerSpy.

32

3.5 Data Formats

Originally, PowerSpy used the CSV format both in the communication between
the client and the server and as the means of data output to and input from files.
The objective of the data format study was to determine if JSON format was a
better substitute for CSV in terms of network overhead (size of the data) and data
parsing time. The size of the formats was to be measured along with the parsing
time of the formats.

3.5.1 Parsing time

The main objective in a possible JSON format implementation was to reduce
the time to visualize the data after it is received. The decision, whether or not
to change the existing CSV implementation to JSON was subject to the given
requirements. In the requirements, it was specified that, on average, the time it
takes to parse the data in the CSV format should be within a factor of two times
the time it takes to parse the JSON for it to stay as the communication format.

The study was carried out by first creating synthetic data samples in both CSV
and JSON and computing the ratio of CSV parsing time to that of JSON parsing
time for each data sample. The generated data was exactly the same in both for-
mats. That is, after parsing the data, the structure parsed from CSV was identical
to the structure parsed from JSON. Every data sample was then parsed and the
parsing times were then recorded for the both formats.

3.6 Communication Format

It was to be further evaluated, whether there was a true need for the SSE and
if there was a reason to maintain it. If there was none, AJAX was to be imple-
mented to replace the existing SSE solution. The actual evaluation was done by
consulting the experts of TE-EPC to find out is there or will there be a use case
that would require the SSE to be maintained.

33

4 TESTING AND PERFORMANCE

4.1 Test Machine

All the tests were run in 64-bit CentOS Linux 7. The used browser was 64-bit
Mozilla Firefox ESR (version 52.0). The computer had Intel’s 8-core i7-4790 pro-
cessor (3.60 GHz, 8 MB cache) and 16 GiB of 1600 MHz DDR3 memory.

4.2 Fast Fourier Transform API

The considered candidates to be added in PowerSpy can be seen in Table 2.
The table rows consist of per-API information (presented in Section 3.1.3) and
columns in the table consist of candidate names, their efficiency, license infor-
mation, support for the API, window function availability and whether or not the
API adds extra dependencies. The table is colour-coded so that the green cells
denote a positive outcome for a feature, red cells denote a negative outcome and
yellow ones denote neither a positive nor a negative outcome.

The compution speed of a FFT API was measured by performing 50 Fourier trans-
forms on a 219 sample data and taking the average out of those. This result was
then compared between the all the FFT APIs. The speed was measured in two
parts: the time it takes to compute the FFT and the overall time. Overall time here
is the sum of the time to allocate the memory for the resulting data structure and
the time to compute the FFT. This was done just to further understand how the
time is spent in the computation of the transform. In Table 2, the overall time is
shown first and the mere computation time is shown in parenthesis.

Out of the candidates, the Split-Radix implementation of dsp.js clearly outper-
formed all the other candidates. It also met all the other requirements specified
for the FFT API: it is the only candidate that has window functions, has open
source software licence, active community and it does not add any extra depen-
dencies. Thus, it was selected to be integrated in PowerSpy.

34

Table 2. Candidate FFT APIs. Each row represents an API and its features selected
for the comparison. Each column represents a feature. Red, yellow and green color
represent that the features are considered as negative, neutral and positive aspects,
respectively. The time has two values: overall time and time to compute the FFT only.
The time values are averages of 50 measurements of computing the FFT for a 219-sample
signal.

API Properties

Name Time
(ms)

License Community and Support Window
functions

Extra
depen-
dencies

Nayuki [44] 71
(60)

MIT
[53]

Last update two years
ago, no recent activity.

No No

Nayuki-Obj [40] 73
(48)

MIT
[53]

Not supported in any way. No No

fft.js [45] 191
(92)

BSD
(2 clause)

[54]

The author is not currently
maintaining the API. Last
update years ago.

No No

jsfft [46] 190
(190)

MIT
[53]

Last update in February
2017, very little other ac-
tivity

No No

dsp.js [47] 65
(57)

MIT
[53]

Latest update in May
2016, active and quite
popular.

Yes No

KissFFT [48]
(C>asm.js)

90
(30)

BSD
(3 clause)

[55]

Latest update years ago
but it seems that the API
is popular and the support
forum is active.

No Yes

35

4.3 Role Based Access Control

After discussing the options with numerous CERN experts, which include com-
puter security, RBAC and SSO experts as well as system administrators, it was
clear that the SAML response did not pose as much of a threat as was initially
thought. First of all, it is valid only for an hour. Secondly, it is only sent once
for the server, after which, as long as the client has a valid session cookie, it is
never sent again. If the session cookie becomes invalid, a new login is needed.
Therefore, it was imminent that the RBAC token would need to be stored on the
server side instead of storing it in the browser. Storing the token in the browser
would increase the security risk by requiring the browser to constantly send the
token to the server.

In Figure 8 and Figure 9, there are simplified diagrams for the improved login
and data acquisition, respectively. The original login process (see Figure 3) was
augmented with the additional step of requesting the RBAC token and storing it
in a database on the server as can be seen in Figure 8. Note that even though
the RBAC token is stored on the server, the request to acquire it is initiated in the
PowerSpy client. That is, when the client is logged in, a JavaScript code launches
an AJAX request for the server to acquire the token.

Now that the RBAC token was stored on the server side, the data acquisition pro-
cess was significantly simplified. The process is depicted in Figure 9. When the
client makes a request for data, the server can now use the SessionID included
in the session cookie to retrieve the RBAC token from a database and attach it to
the request without acquiring a token for each request which used to be the case
(see Figure 4). The process was also significantly speeded up, since removing
the RBAC token acquisition caused the back-end to use 228 milliseconds less
time for each request.

The acquisition of the RBAC token could have also been implemented so that
the server would automatically request the token on login. This would have re-
quired altering the mod_auth_mellon module used for session handling. That is,
when mellon receives the SAML response, it would have to make a request to
the RBAC server with the SAML response, store the token as a session variable
and continue on its normal routine. However, changing the mellon would have
caused a maintainability issue in the case that mellon was updated and, thus,

36

this modification gained no support and was not implemented.

Figure 8. Simplified diagram of the new login protocol. The Client makes a HTTP
request to the PowerSpy Server (1), which redirects the user to the SSO server to login
(2). The SSO server provides the client with a SAML response (3). The client makes
a request for the RBAC token for the server (4), which authenticates the user with the
SAML response (5) and gets the RBAC token as a response (6) and provides the client
with a PowerSpy cookie (7). Note that in reality, between steps 3-4, the SAML Response
is actually sent to the server which provides the user with an Apache session cookie.

4.4 Back-End Optimization

There were three strategies to consider: the original, only finding the needed line
with regular expression and sending the needed data with the request. A total of
522 measurements were done and the time for each strategy.

In Figure 10, there is a box plot depicting the results for different strategies to get
the correct gateway in the back-end. The leftmost plot (ParseFile) represents the
original strategy to parse the whole file. The median time for parsing the structure
was 282 milliseconds.

The middle plot (RegexLine) represents the strategy of using a regular expression
to find the correct line. The median time for extracting the needed information was

37

Figure 9. Simplified diagram of the new data acquisition protocol. The client makes
a request for data (1) for PowerSpy server, which finds the RBAC token mathing client’s
session ID and forwards the request to the FEC (2), which provides the PowerSpy server
with the required data (3) which packs the data and sends it to the client (4).

38

24 milliseconds which means this strategy uses about 91% less time or, in other
words, is about 11 faster than the original strategy.

As expected, the third strategy of providing the needed information was the fastest
by having a median time of 9 microseconds. This short time consists of storing a
parameter from the request to a local variable in the back-end. This is represented
by the rightmost plot (InsertData) that is reduced to only a red line that represents
the median. Compared to the original strategy, providing the information is about
30,000 times faster strategy.

ParseFile RegexLine InsertData
0

100

200

300

400

500

600

700

ti
m

e
 (

m
s
)

Figure 10. Namefile parsing alternatives. In this figure, one can see the average time
for the original solution (on the left), finding the correct line from the file with regex (in the
middle) and sending the needed information (on the right). In the plot, red lines are the
median values of the averages, box boundaries represent the 25th and 75th percentile,
whiskers extend to the most extreme values not considered as outliers (within 3 standard
deviations from the mean) and red ’x’ is used to plot the individual outliers.

39

4.5 JavaScript Performance

JavaScript performance tests were done on certain functionalities that occur rel-
atively often in PowerSpy. These include adding new DOM elements to the web
page, finding a correct element on a web page, adding event listeners to the
elements and using methods versus using prototypes on objects.

In Table 3, the results for the JavaScript performance test can be seen. Each
of the test cases are introduced and explained in The test cases are further ex-
plained in the web page of each test case [56–59]. The values in te table rep-
resent the number of times the functionality in question can be performed in a
second (i.e., operations per second). In the table it can be seen, that the best
solutions are native JavaScript solutions in all of the cases but handling event lis-
teners, in which jQuery’s solution was significantly faster. In comparison between
solutions to implement objects’ methods, prototype clearly outperformed private
function.

Table 3. The JavaScript performance comparison. Each value represents how many
times the functionality can be performed in a second.

Adding DOM elements [56]

innerHTML appendChild (jQuery) .append()

79,060 56,837 4,678

Finding a DOM element [57]

querySelector getElementsByClass-
Name

(jQuery) select

73,710 1,072,283 55,868

Event listeners [58]

addEventListener (jQuery) .on()

362 184,737

Object methods [59]

prototype function

8,087,486 63,970,115

40

4.6 Data Formats

4.6.1 Size

The size of a file in PowerSpy JSON format is notably smaller than the size of a
file in PowerSpy CSV format. This is due to the fact that the JSON format does
not have the same limiting factors as the CSV file. PowerSpy only needs the time
stamp for the first sample and the sampling period and, thus, the time stamps can
be left out of the JSON file format.

Since the CSV format needs to be portable to a spreadsheet software, it has to
have the time stamps included. The time stamp format is specified to be epoch
time with microsecond accuracy. Therefore, the size of a time stamp is larger (in
characters) than the average value field for a signal. Hence, if a CSV and a JSON
file represent the same data, the size of the JSON file is definitely smaller than the
size of the CSV file, and the less there are signals, the greater is the difference.
The original PowerSpy CSV format can be seen in Appendix 1.

In Figure 11, there is a plot depicting the ratio of the PowerSpy JSON format to the
PowerSpy CSV format by the number of signals. From this figure, it can be easily
seen how significantly the JSON format is smaller than the CSV. It is worth noting
that the number of signals (the columns in CSV) is the only variable affecting the
ratio.

4.6.2 Parsing Time

A total number 100 data samples were generated for the both formats by varying
both the number of signals from 10 to 100 with 10 signal intervals and samples per
signal from 10,000 to 100,000 with 10,000 sample intervals. In the foreseeable
future, PowerSpy would only need to handle data with fewer signals than 30 most
of the time. However, the upper boundary was set notably higher to investigate
the correlation between the number of signals and the CSV to JSON ratio. The
hypothesis was that when the number of signals increases, the JSON parser
has to perform more memory allocations due to the specified format and, thus,
the ratio would decrease. The selected boundaries for the samples per signal

41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of signals in the data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
J
S

O
N
 /
 s

C
S

V

Ratio of JSON data size to CSV data size

Figure 11. The size of a PowerSpy JSON format with respect to the CSV format. It
can be seen how JSON format is significantly smaller than the CSV format. The differ-
ence is more obvious if the number of signals is small.

42

represent the range of likely use cases.

Figure 12 and Figure 13 show the results of the parsing time study. In the figures,
the vertical axis shows the CSV to JSON ratio. One can clearly see that there is
significant fluctuation in the ratio which seemed to stabilize in the region where
70 ≤ Nsignals ≤ 100 and 60,000 ≤ Nsamples ≤ 100,000. Within these ranges, the
ratio had a value of CSV/JSON ≈ 4.20. The overall average CSV to JSON ratio was
CSV/JSON ≈ 5.50.

In Table 4, one can see the previously plotted results per signal. The values
acquired with 100 signals and 10,000 samples as well as 70 signals and 20,000
samples were both considered as outliers since they were over two standard
deviations apart from the mean. These values are marked with red color in the
table. Studying the reason for the anomalies is, however, beyond the scope of
this study.

There was no clear correlation between the ratio and number of signals or be-
tween the ratio and number of samples per signal. It is, however, difficult to be
certain since there seemed to be minor lags in CSV parsing which may have af-
fected the results. The lag appeared in cycles after the test script had parsed a
certain amount of data, which was noticed after randomizing the order of parsing
of CSV data. However, researching the subject further is beyond the scope of this
study.

4.6.3 Addition of JSON format

Since the average CSV to JSON value was significantly bigger than 2, which
was used as a threshold value, the JSON format was to be implemented in the
communication between the client and the server. During the development of the
application, the need for metadata increased and new data fields were added in to
the format. Previously, trying to obey the CSV de facto standard restricted adding
metadata for the FGC devices and their signals. Now, with the possibility to use
JSON, this was no longer an issue. In Table 5, one can see which data fields the
data formats contain and the differences between the old and new data formats.
The complete PowerSpy JSON format specification can be seen in Appendix 2.

43

0

0

2

20

4

10

40 8

6

Signals

Average ratio of parsing time (CSV/JSON)

6
×10

4

Samples

8

60
4

10

80
2

100 0

Figure 12. The ratio of CSV parsing time against JSON parsing time. From this
figure, it can clearly be seen that parsing data from CSV format takes on average at least
four times the time it takes to parse similar data from JSON data.

44

1 2 3 4 5 6 7 8 9 10

Samples ×10
4

0

1

2

3

4

5

6

7

8

9

R
a
ti
o

Average ratio of parsing time (CSV/JSON)

(a)

10 20 30 40 50 60 70 80 90 100

Signals

0

1

2

3

4

5

6

7

8

9

R
a
ti
o

Average ratio of parsing time (CSV/JSON)

(b)

Figure 13. The ratio of CSV parsing time against JSON parsing time. From these
figures, it can be seen how the number of samples (a) and the number of signals (b)
affects the CSV parsing time to JSON parsing time ratio.

45

Table 4. The ratio of CSV parsing against JSON parsing time. The values considered
as outliers (over 2 standard deviations apart from the mean) are marked in red.

Samples (in thousands)

10 20 30 40 50 60 70 80 90 100

Signals

10 4.7 6.6 6.4 3.8 7.0 8.1 8.1 8.7 8.8 8.1

20 5.3 8.2 7.2 7.4 8.2 7.6 7.7 5.4 5.7 7.3

30 6.4 6.0 6.4 5.2 6.3 5.7 6.6 6.7 7.2 6.7

40 5.5 5.7 7.1 6.1 5.4 6.2 6.9 6.4 6.6 6.6

50 4.9 5.2 5.9 6.2 6.9 6.1 6.4 6.1 3.7 3.8

60 5.1 5.1 5.9 6.2 6.1 4.8 3.5 6.1 3.9 4.0

70 5.2 1.5 5.8 6.7 5.9 3.8 3.8 4.2 4.3 4.2

80 5.7 5.4 2.5 6.4 6.1 3.7 4.1 4.3 4.2 4.3

90 5.3 5.6 5.8 6.4 3.6 4.3 4.1 4.3 4.3 4.5

100 1.2 5.4 6.2 6.1 3.8 4.0 4.2 4.3 4.4 3.8

4.6.4 New CSV Format

The addition of the JSON format to PowerSpy came with new requirements. One
of the requirements for the format was that whatever data or metadata was to
be stored in the JSON format, it should also be possible to store it in the CSV
format. One of the consequences led to the need to reinvent the CSV format in
PowerSpy and to deviate from the CSV format standard due to the newly added
data fields. Also, the format had to be able to be easily imported to spreadsheet
software such as Microsoft Excel.

Initially, two options were considered for the new CSV format. In both of them,
the original would change only a little. The most obvious was to use the very
first line of the file to store all the so-called buffer parameter values. Another
solution would be to keep using the very first cell of the first line and bloat it with all
the parameters. Using the whole first line would be much more human-readable
solution, but removing contents from a single cell would be more effortless than
removing a whole line in the spreadsheet software. This would intuitively favor
the single cell solution.

Another problem was, how to tell which value represents which parameter. Origi-
nally, there were only one parameter, which was either the text ’time’ or a number.

46

Table 5. Comparison of data types between old and new data formats.

Old CSV New CSV/JSON

Buffer metadata
Buffer Name
First sample time
Period
Time Origin
Data Source
Data Type
Table type
Classes

x
x
x
x

x
x
x
x
x
x
x
x

Per-signal metadata
Signal name
Step interpolation
Time offset

x
x

x
x
x

Data types
Analog signal
Digital signal
Table

x x
x
x

Again, intuitive solution would be to keep them always in the same order. With a
few parameters, this would be a good solution, but with a large number of param-
eters of which some are conditional, it would became too complex to manage.
Also, this way, maintaining backwards compatibility would become a burden if
some parameters became irrelevant.

Therefore, there had to be another way to recognize the values from each other.
Since the CSV format had to be designed to be able to contain exactly the same
data JSON format can contain, it was only natural to look for the solution in the
JSON format itself. This problem was resolved by implementing similar key-value
pair scheme used in JSON to the CSV format.

Despite of all the additional info added to the CSV format, the format did not
change by much. In the end, the only change was made to the very first cell.
While in the old format, the cell could contain the word ’time’ or a number, in the
new format it could contain the word ’time’ or a whole bunch of buffer metadata
given in key-value pairs. The keys and values were be separated by colon and
the pairs with a blank space from each other. The complete specification for the
new CSV format can be seen in Appendix 3.

47

4.7 Communication Format

Eventually, the need for data subscription became unnecessary or at least there
were no plausible use cases for it. It was decided that PowerSpy would not have
data subscription and the data acquisition part of the communication between
the server and client was redesigned and rebuilt to use AJAX requests instead.
One use case could have been combining the requests for multiple buffers at the
same time in which case the buffers would have been sent to the client one by
one once they arrive. This was, however, not a enough of a reason to maintain
more complicated communication format.

48

5 DISCUSSION

5.1 Fast Fourier Transform API Selection

After examining the features of the selected APIs and after making a comparison
against the given restrictions, the selection process became a choice between
two satisfactory options: the Nayuki’s API and the dsp.js. Both were computa-
tionally effective and easy to use. Neither of them would add extra dependencies
and in fact adding them to PowerSpy would mean that the developer would only
be dealing with one file in the future in both cases.

However, the superior performance of the dsp.js along with the window functions,
active user base and more active development lead to it being selected to be
integrated in PowerSpy. Also, it was the only algorithm that met all the given
requirements.

5.2 Role Based Access Contral

Making the changes in the RBAC authentication process made the application
more secure by not allowing everybody who have access to the application to
have also access to the data of the devices. While acquiring data is not itself
that dangerous, there is always a risk of malicious user managing to infiltrate the
system and have access to a valid RBAC token which can then be used to control
the FGCs. If one can control the FGCs, one can control the LHC.

Not only did changing the RBAC scheme make the application more secure, it
also simplified the data transfer and significantly shortened the average request
handling time. The simplicity and speed resulted from the fact that the server
could now directly forward the request without the need to acquire a RBAC token.
The speed up with a mean of 228 ms was very noticeable especially when device
state queries were made. The response from the server came practically instantly.

49

5.3 Back-End Optimization

PowerSpy needs to send requests to the devices frequently and originally the
name file had to be parsed again for each request. According to the study results,
by far the best method is to include the needed information in the request. This
saves up to about 300 ms of time with a median of 282 ms. This corresponds to
from 0.5% in the worst case to over 50% in best case performance improvement.
The difference is best noticed when only a small amount of data is transferred
(e.g., requesting the state of a device). Depending on the type of the request,
the range of the speed-up is from 0.5% in the worst case to over 50% in the best
case.

5.4 JavaScript performance

There were no particular surprises in the results of JavaScript study. It is a com-
mon consensus that libraries tend to be slower than native code due to the fact
that the libraries usually run more code while operating. Nevertheless, event han-
dling in jQuery turned out to perform better than the JavaScript native function,
although the difference is only a few milliseconds.

Also, according to the results, using object prototypes is a faster solution com-
pared to using private functions. This was expected, since, for example, by cre-
ating thousand objects, one would create only one function in the case of a pro-
totype function and a thousand functions in the case of private functions. That
is to say, objects having the same class share common prototype functions, but
each would still have their own private functions. Creating and operating a high
number of private functions uses computing and memory resources and would,
therefore, use more time.

5.5 Data Formats

JSON was adopted as the data format for communication. There were no differ-
ences in the transfer time, but the difference in parsing time is significant. JSON
is approximately 4 times faster than CSV in parsing. A small amount of the differ-

50

ence is due to the fact that the data size is so much smaller in the case of JSON.
The bigger part of the difference is explained by the fact that the JSON format
were originally designed to be able quickly read into JavaScript.

The parsing time was not correlating with the number of signals or with the num-
ber of samples. However, there was a repeating lag in the tests which appeared
in cycles after certain amount of data had been processed. This lead to the hy-
pothesis that the lag might have something to do with the memory memory of the
JavaScript engine of FireFox but the issue was not further studied.

Also, a new specification for the CSV format was requested. The definition was
that it should be able to accomplish whatever JSON can do and it should look
similar in PowerSpy. Also, the data format should be exportable to a spreadsheet
software. This was accomplished by overloading the very first field in the CSV
file. Therefore, if the data were exported to a spreadsheet software, clearing one
cell would get rid of the unneeded metadata.

5.6 Communication Format

Eventually, the already implemented SSE protocol was changed to AJAX Re-
quest. This was expected since the SSE is only useful if there is a need for a
subscription to data. However, the PowerSpy was never going to be an actual
real-time data viewer due to the reasons explained in Section 1.3. Typically AJAX
would add network overhead compared to SSE, but if SSE was going to be used
in a similar fashion (get data once, close connection), the difference is negligible.
Also, SSE is less known than AJAX which could be a minor maintainability issue.

51

6 CONCLUSION

In this thesis, a new high-performance real-time power converter data browser,
PowerSpy, was introduced. The thesis addresses the issues with the predeces-
sors of the software as well as the current solution. The software was analyzed
considering the used data formats, communication formats, security measures
and programmatic solutions and the performance-wise weak spots were iden-
tified and new solutions were introduced. The solutions were benchmarked and
compared against the original. The development solutions were then made based
on the results of the experiments. The suggested solutions significantly improved
the overall performance of the software and resulted in a faster application.

Since FFT is a crucial tool in development of FGCs, an JavaScript FFT API bench-
mark was also done. A bunch of APIs were compared against given requirements
for the FFT API. The criterion included computational performance, ease of use,
community and support, whether or not the API adds extra dependencies, and
whether it had a free licence or not. The best option was dsp.js and it was imple-
mented in PowerSpy.

52

REFERENCES

[1] IOLA.
http://www.iola.dk/

(accessed:13/05/2017).

[2] Attractive JavaScript Plotting for jQuery.
http://www.flotcharts.org/

(accessed:13/05/2017).

[3] GitHub - Flot Tooltip.
https://github.com/krzysu/flot.tooltip

(accessed:13/05/2017).

[4] S. Steinarsson. Downsampling Time Series for Visual Representation. Mas-
ter’s Thesis, University of Iceland, 2013.

[5] Interactive JavaScript Charts for Your Webpage.
https://www.highcharts.com/

(accessed:14/05/2017).

[6] B. Nolan. Behaviour.
http://www.bennolan.com/behaviour/

(accessed:13/05/2017).

[7] The jQuery Foundation. jQuery.
https://jquery.com/

(accessed:13/05/2017).

[8] D. K. Taft. jQuery Eases JavaScript, AJAX Development, 2006.
http://www.eweek.com/development/jquery-eases-javascript-

ajax-development

(accessed:13/05/2017).

[9] Less.js - Getting Started.
http://lesscss.org/

(accessed:13/05/2017).

[10] Bootstrap - The World’s Most Popular Mobile-First and Responsive Front-
End Framework.
http://getbootstrap.com/

(accessed:13/05/2017).

53

[11] C. Campbell. Mousetrap - Keyboard Shortcuts in Javascript.
https://craig.is/killing/mice

(accessed:13/05/2017).

[12] UNINETT. An Apache Module With a Simple SAML 2.0 Service Provider.
https://github.com/UNINETT/mod_auth_mellon

(accessed:28/04/2017).

[13] R. J. Steinhagen. Tune and Chromaticity Diagnostics. 2009.
https://cds.cern.ch/record/1213281/files/p317.pdf

(accessed:21/05/2017).

[14] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation, 19(90):297–301,
1965.

[15] C. Rader and N. Brenner. A New Principle for Fast Fourier Transforma-
tion. IEEE Transactions on Acoustics, Speech, and Signal Processing,
24(3):264–266, Jun 1976.

[16] R. Preuss. Very Fast Computation of the Radix-2 Discrete Fourier Trans-
form. IEEE Transactions on Acoustics, Speech, and Signal Processing,
30(4):595–607, Aug 1982.

[17] P. Duhamel and H. Hollmann. Split Radix FFT Algorithm. Electronics letters,
20(1):14–16, 1984.

[18] S. G. Johnson and M. Frigo. A Modified Split-Radix FFT With Fewer Arith-
metic Operations. IEEE Transactions on Signal Processing, 55(1):111–119,
Jan 2007.

[19] R. N. Bracewell. The Fast Hartley Transform. Proceedings of the IEEE,
72(8):1010–1018, Aug 1984.

[20] R. V. L. Hartley. A More Symmetrical Fourier Analysis Applied to Transmis-
sion Problems. Proceedings of the IRE, 30(3):144–150, March 1942.

[21] H. S. Hou. The Fast Hartley Transform Algorithm. IEEE Transactions on
Computers, C-36(2):147–156, Feb 1987.

[22] A. Ganapathiraju et al. Contemporary View of FFT Algorithms. In Proc. of
the IASTED, pages 130–133, 1998.

54

[23] A. Saidi. Decimation-In-Time-Ffrequency FFT Algorithm. In Acoustics,
Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International
Conference on, volume iii, pages III/453–III/456 vol.3, Apr 1994.

[24] G. Haitao et al. The Quick Fourier Transform: an FFT Based on Symmetries.
IEEE Transactions on Signal Processing, 46(2):335–341, Feb 1998.

[25] M. Soni and P. Kunthe. A General Comparison of FFT Algorithms. Pioneer
Journal Of IT & Management, 2011.

[26] M. Balducci et al. Benchmarking of FFT Algorithms. In Southeastcon ’97.
Engineering new New Century., Proceedings. IEEE, pages 328–330, Apr
1997.

[27] R. S. Sandhu et al. Role-Based Access Control Models. Computer,
29(2):38–47, Feb 1996.

[28] A. D. Petrov et al. User Authentication for Role-Based Access Control.
ICALEPCS’07 proceedings, 2007.

[29] S. Gysin et al. Role-Based Access Control for the Accelerator Control Sys-
tem at CERN. K. Kostro et al., Role-Based Authorization in Equipment Ac-
cess at CERN, 2007.

[30] R. T. Fielding. Architectural Styles and the Design of Network-Based Soft-
ware Architectures. PhD Thesis, University of California, Irvine, 2000.

[31] The Internet Engineering Task Force. Common Format and MIME Type for
Comma-Separated Values (CSV) Files, October 2005.
https://tools.ietf.org/html/rfc4180

(accessed:14/05/2017).

[32] Ecma International. ECMA-404 The JSON Data Interchange Standard, Oct
2013.
http://www.ecma-international.org/publications/files/

ECMA-ST/ECMA-404.pdf

(accessed: 02/04/2017).

[33] I. Hickson. Server-Sent Events. Candidate Recommendation, W3C, Feb
2015.
https://www.w3.org/TR/eventsource/

(accessed: 15/02/2017).

55

[34] J.J. Garrett. Ajax: A New Approach to Web Applications, 2005.
https://web.archive.org/web/20080702075113/http://www.

adaptivepath.com/ideas/essays/archives/000385.php

(accessed:08/05/2017).

[35] A. Bersvendsen. Event Streaming to Web Browsers.
https://dev.opera.com/blog/

event-streaming-to-web-browsers/

(accessed: 15/02/2017).

[36] Mozilla Developer Network. EventSource.
https://developer.mozilla.org/en-US/docs/Web/API/

EventSource

(accessed:28/04/2017).

[37] Creative Commons. Creative Commons Attribution Share Alike License.
https://creativecommons.org/licenses/by-sa/3.0/

(accessed: 02/04/2017).

[38] T. Van Veen. What Are Long-Polling, Websockets, Server-Sent Events
(SSE) and Comet?
http://stackoverflow.com/questions/11077857/what-are-

long-polling-websockets-server-sent-events-sse-and-comet

(accessed: 02/04/2017).

[39] Vail Systems. Pure Node.js Implementation of the Fast Fourier Transform
(Cooley-Tukey method).
https://github.com/vail-systems/node-fft

(accessed: 14/03/2017).

[40] C. Cannam. FFTs in Javascript.
https://thebreakfastpost.com/2015/10/18/

ffts-in-javascript/

(accessed: 14/03/2017).

[41] D. Herman et al. asm.js: Working Draft, 18 August 2014.
http://asmjs.org/spec/latest/

(accessed: 15/03/2017).

[42] A. Zakai. Emscripten: an LLVM-to-JavaScript Compiler. In Proceedings
of the ACM international conference companion on Object oriented pro-
gramming systems languages and applications companion, pages 301–312.
ACM, 2011.

56

[43] Mohayonao. Timbre.js.
http://mohayonao.github.io/timbre.js/

(accessed: 14/03/2017).

[44] Nayuki. Free Small FFT in Multiple Languages.
https://www.nayuki.io/page/

free-small-fft-in-multiple-languages

(accessed: 14/03/2017).

[45] J. Nockert. Discrete Fourier Transform in Javascript.
https://github.com/JensNockert/fft.js

(accessed: 14/03/2017).

[46] N. Jones. Small, Efficient Javascript FFT Implementation.
https://github.com/dntj/jsfft

(accessed: 14/03/2017).

[47] C. Brook. Digital Signal Processing for Javascript.
https://github.com/corbanbrook/dsp.js/

(accessed: 14/03/2017).

[48] M. Borderding. Kiss FFT.
http://kissfft.sourceforge.net/

(accessed: 14/03/2017).

[49] Security Assertion Markup Language (SAML) V2.0 Technical Overview,
March 25, 2008.
http://docs.oasis-open.org/security/saml/Post2.0/sstc-

saml-tech-overview-2.0.html

(accessed:14/05/2017).

[50] R. Johnson et al. The Spring Framework–Reference Documentation.
https://docs.spring.io/spring/docs/current/

spring-framework-reference/htmlsingle/

(accessed:03/04/2017).

[51] Integrate SSO / RBAC on a Client.
https://wikis.cern.ch/pages/viewpage.action?pageId=

85363362

accessed:21/05/2017.

57

[52] jsPerf - JavaScript Performance Playground.
https://jsperf.com/

accessed:14/05/2017.

[53] Open Source Initiative. The MIT License.
https://opensource.org/licenses/MIT

(accessed: 02/04/2017).

[54] Open Source Initiative. The 2-Clause BSD License.
https://opensource.org/licenses/BSD-2-Clause

(accessed: 02/04/2017).

[55] Open Source Initiative. The 3-Clause BSD License.
https://opensource.org/licenses/BSD-3-Clause

(accessed: 02/04/2017).

[56] Realistic innerHTML vs. appendChild vs jQuery.append().
https://jsperf.com/realistic-innerhtml-vs-

appendchild/15

(accessed:21/05/2017).

[57] getElementsByClassName vs jQuery selector vs querySelectorAll.
https://jsperf.com/getelements-vs-jquery-vs-

queryselector/9

(accessed:21/05/2017).

[58] Bind vs addEventListener.
https://jsperf.com/bind-vs-addeventlistener

(accessed:21/05/2017).

[59] Prototype vs Function Performance.
https://jsperf.com/prototype-vs-factory-performance/2

(accessed:21/05/2017).

Appendix 1. FGCSpy CSV data format (old format)

These specifications here are originally presented in the CERN internal wiki.

FGCSPY data format is a CSV format used in FGCSpy. It was also initially used in
PowerSpy, although it was quickly discovered to be insufficient and was replaced
by the new format. The format is specified as follows:
TIME,...,SIGNALM_PARS

TIME1,SIGNAL1_VALUE1,SIGNAL2_VALUE1,...,SIGNALM_VALUE1

TIME2,SIGNAL1_VALUE2,SIGNAL2_VALUE2,...,SIGNALM_VALUE2

TIME3,SIGNAL1_VALUE3,SIGNAL2_VALUE3,...,SIGNALM_VALUE3

...

TIMEN,SIGNAL1_VALUEN,SIGNAL2_VALUEN,...,SIGNALM_VALUEN

in which TIME is the word "time" or an empty string, SIGNALM_PARS is signal
parameter (for parameters, see Table A1.1) field for signal number M, TIMEN is
time stamp for the Nth row and SIGNALM_VALUEN is the value of signal M on the
row N.

Example: Analog Buffer
TIME,SIGNAL1 STEP, SIGNAL2

1458137212.000000, 10.1, -5, 1

1458137212.000100, 11.5E+3, -3, 2

1458137212.000200,-12.2E-2, 1, 3

Table A1.1. Explanation for the old CSV signal parameters.

Signal
parameters

Mandatory Notes

name Yes The name of the signal.
step No If string "step" is found in the signal name field,

trailing step interpolation is applied for this signal.
Case-insensitive.

Appendix 2. PowerSpy JSON data format

These specifications here are originally presented in the CERN internal wiki.

The PowerSpy JSON format is mainly used as the only communication format
between the server and the clients. PowerSpy, however, also supports import
from a JSON file. The buffer parameters and signal parameters contained in the
format are presented in Table A2.2 and Table A2.3 respectively.

Example: Analog Signal
{

"version":"1.1",

"type":"analog",

"source":"fgc",

"device":"SYSTEM_NAME",

"name":"BUFFER_NAME",

"cycleSelector":4,

"timeOrigin":1458137212.000000,

"firstSampleTime":1458137212.000000,

"period":1.00000E-04,

"signals":[

{

"name":"SIGNAL1",

"samples":[10.1,11.5E+3,-12.2E-2]

},

{

"name":"SIGNAL2",

"step":true,

"timeOffset":0.500000,

"samples":[-5,-3,1]

},

{

"name":"SIGNAL3",

"timeOffset":-2.500000,

"samples":[1,2,3]

}

]

}

(continues)

Appendix 2. (continued)

Example: Digital Signal
{

"version":"1.1",

"type":"digital",

"source":"ccrt",

"device":"SYSTEM_NAME",

"name":"BUFFER_NAME",

"cycleSelector":21,

"timeOrigin":1458137212.000000,

"firstSampleTime":1458137212.000000,

"period":1.00000E-04,

"signals":[

{

"name":"SIGNAL1",

"timeOffset":0.000100,

"samples":[0,0,1]

},

{

"name":"SIGNAL2",

"samples":[1,0,1]

},

{

"name":"SIGNAL3",

"samples":[0,1,1]

}

]

}

(continues)

Appendix 2. (continued)

Example: Event Log
{

"version":"1.1",

"type":"table",

"class":"eventlog",

"source":"FGC",

"device":"SYSTEM_NAME",

"name":"BUFFER_NAME",

"table": {

"rows":[

{

"timestamp":1464722837.172000,

"cells":["STATUS.ST_UNLATCHED","START_EVENT","SET_BIT","+"]

},

{

"timestamp":1464722837.272000,

"cells":["STATUS.ST_UNLATCHED","START_EVENT","CLR_BIT","+"]

},

{

"timestamp":1464722837.242000,

"cells":["STATE.PC","RUNNING","SET"," "]

}

]

}

}

(continues)

Appendix 2. (continued)

Table A2.2. Explanation for JSON buffer parameters.

Buffer
parameters

Mandatory Default
value

Notes

version Yes - PowerSpy JSON format version
number.

type No "analog" Buffer type: "analog", "digital", "ta-
ble".

source No empty string Data source (e.g., "FGC’). Web
server always defines the source.

device No file name If the data is coming from a local file,
the default value will be the file name
without the .csv suffix. Web server
always defines the device.

name No empty string The buffer name will appear in the
monitor title. Web server always de-
fines the buffer name.

cycleSelector No NONE Number of the cycle, for cyclic
buffers.

Signal buffer
parameters

Mandatory Default
value

Notes

signals Yes - Array of objects containing the signal
data.

timeOrigin No firstSampleTime Time origin for all the signals in the
buffer in UTC Unix time.

firstSampleTime No 0 (1/1/1970) Time of first sample in the buffer in
UTC Unix time.

period No 1 The time between time values in
seconds.

Table buffer
parameters

Mandatory Default
value

Notes

class Yes - Specifies the type of table (only
"eventlog" currently supported).

(continues)

Appendix 2. (continued)

Table A2.3. Explanation for the JSON signal parameters.

Signal
parameters

Mandatory Notes

name Yes The name of the signal.

step No If string "step" is found in the signal name field,
trailing step interpolation is applied for this signal.
Case-insensitive.

timeOffset No If a numeric value is found in the field, it will be
used as the time offset for the signals in seconds.
A positive time offset will move the point later and
a negative time offset will move it earlier.

samples Yes Array of signal samples in time order.

Appendix 3. PowerSpy CSV data format (new format)

These specifications here are originally presented in the CERN internal wiki.

Signal Data Format

PowerSpy CSV format is an extension to FGCspy CSV format, so PowerSpy can
read FGCspy files. With PowerSpy, the first column of the header row is a space-
separated list of key:value pairs matching the equivalent buffer parameter de-
scribed for the designed JSON. The order is not significant. If the field is empty
or contains the case-insensitive word "TIME", then all the parameters are set to
their defaults (such as in FGCSpy CSV format). The buffer parameters and their
default values are presented in Table A3.1.

In addition to the buffer parameters, the first line contains the signal names as
well as the other possible parameters for each signal. The signal parameters are
presented and explained in Table A3.2. Otherwise, the new format is exactly the
same as the old format.

The format is specified as follows:
BUF_PARS, SIGNAL1_PARS, SIGNAL2_PARS, ..., SIGNALM_PARS

TIME1,SIGNAL1_VALUE1, SIGNAL2_VALUE1, ..., SIGNALM_VALUE1

TIME2,SIGNAL1_VALUE2, SIGNAL2_VALUE2, ..., SIGNALM_VALUE2

TIME3,SIGNAL1_VALUE3, SIGNAL2_VALUE3, ..., SIGNALM_VALUE3

...

TIMEN, SIGNAL1_VALUEN, SIGNAL2_VALUEN, ..., SIGNALM_VALUEN

in which BUF_PARS is the buffer parameter field, SIGNALM_PARS is the signal
parameter field for signal number M, TIMEN is the time stamp for the Nth row and
SIGNALM_VALUEN is the value of the signal M on the row N.

(continues)

Appendix 3. (continued)

Example: Analog Buffer
source:fgc device:SYSTEM_NAME name:BUFFER_NAME, SIGNAL1 +0.002

STEP, SIGNAL2 STEP

1458137212.000000, 10.1, -5, 1

1458137212.000100, 11.5E+3, -3, 2

1458137212.000200,-12.2E-2, 1, 3

Example: Digital buffer
source:ccrt device:SYSTEM_NAME name:BUFFER_NAME type:digital,

SIGNAL1, SIGNAL2 -0.5, SIGNAL3 +1.5

1458137212.000000, 0, 1, 0

1458137212.000100, 0, 0, 1

1458137212.000200, 1, 1, 1

Table Data Format

The new format has also a possibility to store table data in files and present it in
PowerSpy. The motivation is to present so-called buffer event logs in PowerSpy,
but also regular tables and text files are possible to be presented in the applica-
tion. The event log format is used by FGCs so only it will be presented here.

Eventlog has some extra table-related buffer parameters (namely, class:eventlog)
and it does not have some parameters (e.g., period, time origin, first sample
time), but otherwise it is similar to the signal data format. The format is specified
as follows:
BUF_PARS, Property, Action, Value, Status

TIME1, PROPERTY1, ACTION1, VALUE1, STATUS1

TIME2, PROPERTY2, ACTION2, VALUE2, STATUS2

TIME3, PROPERTY3, ACTION3, VALUE3, STATUS3

...

TIMEN, PROPERTYN, ACTIONN, VALUEN, STATUSN

in which BUF_PARS is the buffer parameter field, rest of the first row are the

(continues)

Appendix 3. (continued)

headings for event log, TIMEN is time stamp for the Nth row and PROPERTYN,

ACTIONN, VALUEN and STATUSN are the event log property, action, value and
status data values for the Nth row, respectively.

Example: Event Log
type:table class:eventlog..., Property, Action, Value, Status

1464722837.172000,STATUS.ST_UNLATCHED,START_EVENT,SET_BIT,+

1464722837.272000,STATUS.ST_UNLATCHED,START_EVENT,CLR_BIT,+

1464722837.242000,STATE.PC,RUNNING,SET,

(continues)

Appendix 3. (continued)

Buffer and Signal Parameters

All buffer parameters are optional and the default values will be used in the ab-
sence of them. In the case of the signal parameters, only the signal name is a
mandatory parameter.

Table A3.1. Explanation for the new CSV buffer parameters.

Buffer
parameters

Default
value

Notes

type analog Buffer type: "analog", "digital", "table".

source "FILE" Data source (e.g., "FGC’).

device file name If the data is coming from a local file, the
default value will be the file name without
the .csv suffix.

name empty string The buffer name will appear in the moni-
tor title.

cycleSelector NONE Number of the cycle, for cyclic buffers.

Signal
buffer
parameters

Default
value

Notes

timeOrigin TIME1 Time origin for all the signals in the buffer
in UTC Unix time. TIME1 is the first time
value in the series.

firstSampleTime TIME1 TIME1 is the first time value in the series.

period TIME2-TIME1 TIME1 and TIME2 are the first and sec-
ond time values in the series.

Table
buffer
parameters

Default
value

Notes

class - Specifies the type of table ("text" /
"eventlog") if not a normal table.

columns ’l’ The styling for the columns and (valid
only if class is not specified). L, C and
R are for left, center and right alignment
respectively. If the letter is uppercase,
the column is bolded.

(continues)

Appendix 3. (continued)

Table A3.2. Explanation for the new CSV signal parameters.

Signal
parameters

Mandatory Notes

name Yes The name of the signal.

step No If string "step" is found in the signal name field,
trailing step interpolation is applied for this signal.
Case-insensitive.

timeOffset No If a numeric value is found in the field, it will be
used as the time offset for the signals in seconds.
A positive time offset will move the point later and
a negative time offset will move it earlier.

	INTRODUCTION
	Power Converters and Data Browsers
	Objectives
	Limitations
	Structure

	BACKGROUND
	History of CERN Power Converter Browsers
	Spy
	FGCSpy
	LabVIEW Data Viewer

	PowerSpy
	Front-End
	Back-End
	Desktop application vs. Web application

	PowerSpy's Issues
	Fast Fourier Transform
	Security
	Back-End Optimization
	JavaScript performance
	Data Formats
	Communication Format

	IMPLEMENTATION
	Fast Fourier Transform API
	Restrictions
	Candidate Selection
	Candidates

	Role Based Access Control
	Back-End Optimization
	JavaScript performance
	Data Formats
	Parsing time

	Communication Format

	TESTING AND PERFORMANCE
	Test Machine
	Fast Fourier Transform API
	Role Based Access Control
	Back-End Optimization
	JavaScript Performance
	Data Formats
	Size
	Parsing Time
	Addition of JSON format
	New CSV Format

	Communication Format

	DISCUSSION
	Fast Fourier Transform API Selection
	Role Based Access Contral
	Back-End Optimization
	JavaScript performance
	Data Formats
	Communication Format

	CONCLUSION
	REFERENCES

