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Due to the considerable differences between transactional and analytical workloads, a “one 

size does not fit all” paradigm is typically applied to isolate transactional and analytical data 

into separate database management systems. Even though the separation has its advantages, 

it compromises real-time analytics. To blur boundaries between analytical and transactional 

data management systems, hybrid transactional/analytical processing (HTAP) systems are 

turned into reality. HTAP systems mostly rely on in-memory computation to present 

profound performance. Also, columnar data layout has become popular specifically for 

analytical use-cases. 

 

In this thesis, a quantitative empirical research is conducted with the goal of evaluating the 

performance of an HTAP system with a transactional workload. HANA (High-Performance 

Analytic Appliance), an in-memory HTAP system, is used as the underlying data 

management system for the research; HANA comes with two data stores: a columnar and a 
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row data store. Firstly, the performance of HANA’s columnar store is compared with the 

row store. To generate the required workload, an industry-grade transactional benchmark 

(TPC-E) is implemented. Secondly, a profiling tool is employed to analyze primary cost 

drivers of the HTAP system while running the benchmark. Finally, it is investigated how 

optimal an HTAP-oriented stored procedure language (SQLScript) is for the transactional 

workload. To investigate this matter, several transactions are designed on top of TPC-E 

schema; the transactions then are implemented with and without using SQLScript iterative 

constructs. The transactions are studied regarding the response time and growth rate. 

 

The experiment shows that the row data store achieves 26% higher throughput compared to 

its counterpart for the transactional workload. Furthermore, the profiling results demonstrate 

that the transactional workload mainly breaks down into eight components of HANA 

including query compilation and validation, data store access and predicate evaluation, index 

access and join processing, memory management, sorting operation, data manipulation 

language (DML) operations, network transfer and communication, and SQLScript 

execution. Lastly, the experiment reveals that the native SQL set-based operations 

outperform the iterative paradigm offered by SQLScript. 
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1 INTRODUCTION 
 

1.1 Problem Description 
 

Nowadays data is at the heart of organizations; in fact, data is crucial for businesses not only 

to operate their businesses but also to make sound decisions in a competitive market. 

Consequently, regardless of their sizes and business domains companies are exploiting 

database management systems (DBMSs) as the backbone to store and manage their data. 

Data-intensive applications can be classified into two broad categories: online transactional 

processing (OLTP) and online analytical processing (OLAP), and each one exhibit specific 

characteristics and requirements [1]. In OLTP systems, such as enterprise resource planning 

(ERP), DBMSs have to cope with a massive number of concurrent, short-lived transactions, 

which are usually simple (e.g., displaying a sale order for a single customer) while 

demanding milli-seconds response times. On the other hand, OLAP workloads are 

characterized by comparatively low volumes of yet complex and long-running queries. 

 

Due to substantial differences between OLTP and OLAP workloads, different optimizations 

are applied in database management systems. To put it another way,  the architecture of some 

database systems has been highly optimized for transaction processing like Microsoft SQL 

Server Hekaton [2] and H-Store [3] ; that of the others has been calibrated in conformity 

with analytical workload requirements (i.e., data warehouses) such as MonetDB [4] and HP 

Vertica [5]. Besides the optimizations, the data management systems have utilized disparate 

data layouts for OLTP and OLAP data. For instance, analytical data are traditionally 

consolidated into multi-dimensional data models such as star and snowflake, whereas the 

transactional data is mostly modeled using highly normalized relations [6]. One approach to 

serving the different requirements is separating the systems and running extract, transform, 

load (ETL) process to load operational data from OLTP systems to the OLAP ones. The 

periodical ETL process brings about four significant disadvantages [7]. Firstly, the ETL 

process is time-consuming and of high complexity. Secondly, the process compromises real-

time analytics by relying on historical data. Also, acquiring two separate solutions increases 

the total cost of ownership (TCO). Last but not the least, keeping data inside two distinct 

systems leads to data redundancy. 
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In a conventional relational DBMS, data is stored in a row-wise manner meaning that records 

are stored sequentially. Copeland and Khoshafian [8] introduced an alternative approach to 

store the relations in the 1980s; the proposed data storage named columnar (also called 

column-oriented), keeps relations by columns as opposed to rows of data. Advantages of the 

columnar storage are fourfold compared to the row-oriented layout [9]. To start with, 

uniformity of the data stored as columns will pave the way for far better compression rates 

and space efficiency. Secondly, the columnar storage architecture enables extensive data 

parallelism. Moreover, it provides better performance for aggregations; aggregation is an 

essential operation for analytical queries. Finally, fewer data should be scanned in the 

columnar storage if queries access a few attributes.  Recently, using columnar databases is a 

prominent approach for analytics gradually replacing the multi-dimensional data models [7]. 

However, it is lively discussed that the storage does not meet OLTP requirements due to two 

main reasons [10, 11]:   

• OLTP queries mostly operate upon more than one relation field. Thus, accessing 

multiple fields is more scan-friendly in the row-oriented approach.  

• Maintaining columnar storage in an update-intensive environment is expensive.  

 

Besides the popularity of the columnar storage, in-memory database systems (IMDBs, also 

called main-memory database systems or MMDBs) are becoming more widespread. In the 

past decade, we have experienced a plummeting cost of dynamic ram (DRAM) modules and 

an ever-growing DRAMs’ capacities Hence, in-memory database systems have turned into 

reality. The in-memory data management systems eliminate disk latencies and operate upon 

the data loaded into main memory. The systems present profound performance 

improvements as well as a foundation to satisfy new business requirements. [6] 

 

To blur boundaries between analytical and transactional data management systems, some 

disruptive approaches have been taken toward building a single data management system 

capable of processing a mixture of both analytical and transactional workloads. The systems 

are so-called hybrid transactional/analytical processing (HTAP). Presently, a number of 

HTAP systems are available in the market including SAP HANA [12], HyPer [13], and 

VoltDB [14]. For instance, SAP (a multinational software company headquartered in 

Germany) has embraced the advantages of the columnar storage plus the strengths of in-
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memory data management into a single solution, HANA (HANA stands for High-

Performance Analytics Appliance). SAP HANA, an in-memory DBMS initially designed 

for purely analytical workloads, has evolved to a system which supports mixed workloads 

on a columnar representation; the system can serve enormous enterprise resource planning 

(ERP) installations with 5 million queries per hour and more than 50K concurrent users [12]. 

 

1.2 Research Questions  
 

There is no consensus on the efficiency of having a single data management system which 

can serve both analytical and transactional workloads. On the one hand, the approach has 

been overtly questioned by several studies [11, 10]. For instance, M. Stonebraker and U. 

Çetintemel [11] have argued that the hybrid approach is a marketing fiction. On the other 

hand, some HTAP systems such as SAP HANA are widely used as explained in the previous 

section. In fact, HANA has been designed to combine OLAP and OLTP workloads and the 

underlying data set based on columnar representation [9]. 

 

This study aims to answer the following research questions using SAP HANA as the 

underlying system. 

• RQ1) How does an in-memory columnar HTAP perform with OLTP workload? 

• RQ2) How does OLTP workloads breakdown into major components of an HTAP 

system? 

• RQ3) How optimal an HTAP-oriented stored procedure language like HANA 

SQLScript is (see section 2.4.4) for OLTP workloads? 

 

1.3 Research Methodology 
 

This research consists of two central actions: a systematic literature study and a quantitative 

empirical research. The literature study covers: 

• In-memory databases 

• HTAP systems 

• OLTP benchmarks 

• SAP HANA.  
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The empirical study demands two major requirements. 

 

1. An enterprise HTAP system supporting both row and columnar stores: SAP HANA 

is the data management system used in the thesis.  

2. Implementing an industry-grade OLTP benchmark: TPC-E benchmark, an OLTP 

benchmark published by Transaction Processing Performance Council (TPC), is used 

for in the thesis. The benchmark is open source; it is designed to represent 

requirements of a contemporary OLTP system, and widely recognized by the 

database community. 

 

After the implementation of the benchmark, it is run against both the data-storages to 

understand to what extent they differ regarding throughput. Then, profiling tools are used to 

understand how the OLTP workload decomposes into different components in SAP HANA. 

Finally, the study drills down into the mechanics of SQLScript language to analyze its 

efficiency for OLTP workloads. 

 

1.4 Structure of the thesis 
 

This subsection contains a short description of the structure of this thesis. The thesis is 

divided into six chapters. Chapter 2 of the thesis incorporate the literature study. Section 2.1 

explores in-memory databases. The purpose of this section is to understand what are 

enablers, inner mechanics, and challenges with in-memory databases. Then, HTAP systems 

are investigated in section 2.2. The section 2.2 aims first to understand the main requirements 

of OLTP and OLAP systems. It is then explained how columnar and row-oriented databases 

correspond to the requirements. The section 2.2.5 finally wraps how a hybrid system can 

break the gap between transactional and analytical processing. 

 

Afterwards, OLTP benchmarks are studied in section 2.3. A proprietary and an open-source 

benchmark have been reviewed in this chapter. The chapter presents how the benchmarks 

portray activities of OLTP systems. 

 

Section 2.4 studies SAP HANA to understand how an HTAP system is designed. 

Understanding internal mechanisms of HANA then aids analyzing the experiment results. 
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An overview of SQLScript, a stored procedure language provided by SAP, is also provided 

since in the experiment transactions are implemented using the scripting language. 

 

The TPC-E benchmark is inspected in section 2.5. The study helps the implementation and 

the analyzing stages. It also depicts how OLTP requirements have changed over the course 

of time by comparing the benchmark with its predecessor (i.e., TPC-C). 

 

Chapter 3 explains the implementation of the benchmark used for the experiment. 

Technologies and the architectural designs applied to the implementation are also discussed 

in the section. 

 

Finally, Chapters 4 and 5 demonstrate the results of the experiment and the main findings. 

The chapters also point out the limitations of the current work and the opportunities for future 

research.  
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2 RELATED WORK 

 

2.1 Database Management System 
 

A database (DB) is a set of data being organized in a meaningful way and accessible in 

different logical orders [15]. Furthermore, a database management system is a combination 

of a DB and a management system (MS). The primary objective of the management system 

is to aid data store and retrieval with efficiency and convenience [1]. DBMS can be regarded 

as an intermediary between entities who desire accessing a database (i.e., applications or 

end-users), and the actual physical data.  

 

Database systems have been widely used over the course of the last five decades in 

multitudes of different applications including enterprise information systems, banking, 

education, telecommunication, and many more. Before database management systems are 

introduced, organizations mostly stored their organizational information in so-called flat 

files. Leveraging the database management systems is advantageous in several aspects 

compared to the file-processing systems. To begin with, the central data management system 

circumvents problems related to data redundancy and inconsistency. Moreover, the DBMS 

offers data independence by applying different levels of abstraction. What’s more, using 

systems ensures ACID (Atomicity, Consistency, Isolation, and Durability) properties in 

transaction level. Finally, the systems enable data security by applying access control 

constraints. [1] 

 

Databases utilize a collection of conceptual tools for describing data, relationships among 

them, data semantics, and consistency constraints. The collection is called data model and is 

the underlying structure of a database. The data models can be classified into several 

different categories such as relational and object-based as well as some semi-structured and 

unstructured data models. Among the data models, the relational is the most widely used. 

The relational model takes advantage of a collection of tables to represent data and the 

relationships between the data. The tables in the model are known as relations, and each 

relation consists of multiple columns with unique names. IBM developed the first 

experimental prototype for a relational DBMS as “System R” in the late 1970s. The focus 
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of this paper is on Relational DBMS (RDBMS) which is referred as DBMS for the sake of 

consistency. [1] 

 

2.1.1 Memory Hierarchy 

 

As can be seen in Figure 1, a memory system is a hierarchy of storage devices. Each device 

has different costs, capacities, and access times. There is one specific characteristic in the 

hierarchy: the higher in the pyramid, the higher performance will be achieved. It is worth 

mentioning that the higher performance compromises the costs. [7] 

 

Figure 1 Conceptual view of memory hierarchy [7] 

 

The CPU caches are made from static ram (SRAM) cells which provide data remanence as 

long as power supplied and are usually built out of four to six transistors [7].  In contrast, 

main memory is typically built of dynamic ram (DRAM) cells that are constructed using 

much simpler structure (i.e., a transistor and a capacitor). The more straightforward structure 

of DRAM cells makes it more economical compared to SRAM. However, the capacitor 

discharges over time; hence, DRAM chips should be refreshed periodically [16]. The 

charging and discharging of the capacitor limits the speed of DRAM cells. The hard disk is 

at the very bottom of the view. Even though hard disks offer massive capacities at 

economical prices, they are attributed to high access and read times.  

 

Latency is a measurement to grasp how different storage media act in terms of performance. 

The latency is the time delay to load the data from the storage device until it is available in 

one of CPU registers [6]. While an L1 CPU cache reference (modern processors have 

multiple levels of cache including L1, L2, and L3) takes 0.5 ns, accessing the main memory 

reference takes 100 ns and a simple disk access takes 10 ms [7].  In the next section, it is 
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explained how the significant difference in latency between the hard disk and main memory 

has led to building a new generation of database management systems. 

 

 

2.1.2 Evolution Toward In-Memory Databases 

 

Enterprise applications today demand more stringent throughput and response time 

requirements than ever before. Also, companies have become more data-driven and require 

to process ever-growing enormous data volumes to support their management decisions. 

Consequently, it is a must that data management systems meet the imposed requirements 

and constraints. Conventional disk-resident database systems (DRDBs) use disks as the 

primary storage and bring data into main memory as needed. This frequent disk access 

introduces a main bottleneck for the systems since disk input/output (I/O) could cause orders 

of magnitudes higher latency compared to main memory [6]. 

 

To address the disk I/O bottleneck, in-memory database systems (IMDBs, also called main 

memory database systems or MMDBs) are adapted as a new breed of database management 

systems. The database systems place data inside main memory and operate upon the data 

kept in the memory. The approach not only provides a profound performance improvement 

but also presents a foundation to satisfy new business requirements. Figure 2 depicts the 

advantage of using an in-memory database engine for a single primary key fetch and single 

row update based on the primary key in solidDB, an in-memory solution offered by IBM. In 

IMDBs, the role of disks could be left as persistent storage [6, 17]. 

 

Figure 2 Advantage of using in-memory data management for a single fetch and a single row update [18] 

 

To alleviate the disk I/O barrier, disk-resident database systems have extensively applied 

caching mechanisms to keep frequently accessed data in main memory. According to [17, 
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19], there are three primary differences between an IMDB and a DRDB with a huge cache. 

First, a DRDB still needs a buffer pool manager even when the data being accessed is already 

cached in main memory; accessing data through a buffer manager brings about overhead. A 

study by Lehman et al. [19] suggests that using the buffer manager increases execution times 

up to 40% even the database is cached in memory. Secondly, the related techniques 

developed for DRDBs are optimized under the assumption of disk I/O as the main cost of 

the system [20]. On the other hand, in designing and optimizing in-memory database systems 

achieving high performance on memory-bound data is of concern. Thirdly, using a main 

memory cache strategy still requires a buffer manager to compute the corresponding disk 

address of each requested tuple and check the existence of the computed address data in 

main memory while in IMDB data are accessed directly by referring to their memory address 

[17]. In other words, logical addressing will be replaced by memory-based addressing.  

 

2.1.3 Key Enablers of In-Memory databases 

 

IMDB is not a brand-new notion and has been studied as early as the 1980s [17, 21]; 

however, there are two dominant reasons that a wide range of IMDB solutions have turned 

into reality. The reasons are studied in the two next subsections. 

 

2.1.3.1 Main Memory Cost Development 
 

The past decade has witnessed a plummeting cost of main memory by a factor of 10 every 

five years; in addition, the main memory storage capacity and bandwidth have been 

developed strikingly [6]. Figure 3 demonstrates an overview of the decreasing price trend of 

main memory, flash drives, and disk drives over the course of time. At the time, systems 

with terabytes of memory are becoming common. Considering the increasing main memory 

densities, it can be believed that many applications’ data can fit into main memory. Hence, 

the main memory developments might be considered as one of the major reasons that a range 

of IMDBs are offered by a variety of vendors. At present, an array of both proprietary and 

open source in-memory database systems are offered such as SAP HANA [22], Oracle 

TimesTen [23], Microsoft SQL Server Hekaton [2], IBM solidDB [18], VoltDB [14], HyPer 

[13] and so on. 
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Figure 3 Storage price development [6] 

 

2.1.3.2 Shift Toward Multi-Core Paradigm 
 

Besides the availability of main memory as discussed, there is another trend in hardware 

realm which has been converged toward the in-memory revolution. This trend is the advent 

of multi-core central processing units (CPUs) [6]. In the past, single-core processors led the 

home and business computer domains and increasing clock speed was the dominant 

paradigm in CPU development. Since 2001, a paradigm shift from the increasing clock rate 

to increasing number of cores per CPU has taken place [24]. The transformation is illustrated 

in Figure 4 (b). The multi-core paradigm can pave the way for a massive parallelism in 

IMDBs which is not achievable in DRDBs since disk access latency could skew the 

processing time among parallelized steps. By harnessing the multi-core computation power, 

in-memory database systems are able to process more and more data per time interval and 

achieve excellent levels of performance and scalability.  

 

  

(a)  (b) 

Figure 4  (a) Clock speed, FSB speed, and transistor development, (b) Development of number of cores. [1] 
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2.1.3.3 Impact of memory resident data 
 

As explained in Section 2.1.2, IMDBs provide a profound implication on performance 

comparing to DRDBs. However, such an excellent performance cannot be gained merely by 

placing data in the memory. Indeed, it demands specific optimizations to maximize the 

performance. In this section, the critical issues and optimizations required while building a 

main-memory database system are briefly introduced. The challenges and choices are 

discussed based on the following concepts. 

1. Data storage: Unlike the disk-resident DBMSs in which on-disk formats constrain 

data layout, in-memory database management systems are more flexible in 

leveraging formats that could gain better performance and design goals [17]. To 

illustrate, clustering records per a primary key index is often used for storing data in 

the disk-resident systems [25]. However, in main memory databases, sets of pointers 

to data values could represent relational tuples [17]. As it is discussed in [17], taking 

advantage of the pointer following sequences for the data representation is twofold. 

First, in cases there are variables appeared multiple times in the database, pointers 

could refer to a single stored value and save space [26, 27]. Secondly, it streamlines 

handing variable-length fields because the fields are represented as a pointer into a 

heap [28, 29]. 

2. Buffer Management: DRDBs traditionally exploit buffer managers to hide disk 

access latency. Upon receiving a block access, the buffer manager seeks inside an 

array of page objects (called buffer pool) and returns the corresponding main 

memory address providing that the block is found in the buffer pool. Otherwise, it 

reads the block from disk into the buffer pool. The buffer manager should use a 

replacement strategy like Least Recently Used (LRU) in cases that the pool is full. 

In addition, using the buffer manager requires synchronization techniques to 

synchronize data between disk and the buffer pool.  Even though the buffering could 

provide a performance gain, it has some expenses like calculating the addresses and 

high paging overheads. On the other hand, IMDBs are free from the buffer 

management overheads since all operating data is kept inside main memory. [19] 

3. Indexing structure: It has been discussed that traditional data structures like 

balanced binary search trees are not efficient for main memory databases running on 
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a modern hardware [30, 17, 31]. Firstly, the traditional data structures do not 

optimally exploit on-CPU caches (are not cache-efficient) [30]. Secondly, main 

memory trees do not require short bushy structures because traversing deeper trees 

is much faster in main memory comparing to disk [17]. Hence, several new indexing 

structures have been designed and proposed for use in main memory like  Bw-Tree 

[32], T-Tree [31] and ART [30]. According to [25], multi-core scalability and 

NUMA-awareness (NUMA stands for Non-Uniform Memory Access) are also of 

high importance in designing indexing methods since indexing structures could 

provide a foundation for parallelism.  

4. Concurrency control: It is argued that in an IMDB, lock contention may not be as 

significant as in a DRDB since transactions are likely to be completed more quickly 

and locks will not be held as long [17]. Hence, choosing small locking granules such 

as fields or records might not be effective in reducing lock contentions; it is suggested 

that large lock granules (e.g., relations) are more efficient for memory resident data 

[28]. It is also proposed that the objects in memory can contain lock information to 

represent their lock status instead of using hash tables containing entries for the 

locked objects [17]. Besides the mentioned concurrency control optimizations, most 

modern systems are shifting from pessimistic two-phase locking mechanism to the 

optimistic ones that ideally never block readers while still supporting high ANSI 

isolation levels like serializability [25]. Also, using latch-free data structures is 

another approach that has been adapted for achieving high levels of concurrency [2].  

5. Query processing and compilation: Most conventional database systems translate 

a given query into algebraic expressions. The iterator (also called Volcano-style 

processing) is a traditional method for executing the algebraic expressions and 

producing query results; each plan operator yields tuple streams that are iterable by 

using the next function of the operator [33]. While the iterator model is acceptable 

in disk-resident database systems, it shows poor performance on in-memory database 

systems due to frequent instruction mispredictions and lack of locality [34]. The 

issues have led several modern main memory systems to depart from the algebraic 

operator model to query compilation strategies which compile queries and stored 

procedures into machine codes [34]. 
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6. Clustering and distribution: There are two dominant architectural choices in 

handling the intensifying workloads and volumes of data in IMDBs: vertical scaling 

and horizontal scaling [25]. Scale-up (i.e., vertical scaling) is the capability of 

handling the growing workloads by adding resources into a given machine while in 

scale-out (i.e., horizontal scaling) the increasing workload would be dealt with by 

adding new machines to the system [6]. Systems like H-Store/VoltDB are built from 

the square one to scale-out by running on a cluster of shared-nothing machines [25]. 

On the other hand, systems like Hekaton are initially built to be deployed using a 

shared-everything architecture and scale up to larger multi-socket machines with 

massive amounts of resources [25]. Shared-everything within a database node is any 

deployment in which a single database node manages all available resources 

whereas, in shared-nothing deployment, several independent instances process the 

workload [35]. There are also some systems such as SAP HANA which leverage 

both approaches to enable scalability according to the requirements [36]. 

7. Durability and recovery: IMDBs require having a persistent copy and a log of 

transaction activities to protect against crashes and power loss [17]. The log should 

be kept in a non-volatile storage, and each transaction’s activities must be recorded 

in the log [37]. Logging can affect response times and throughput and threatens to 

undermine the achieved performance advantages of memory resident data since each 

transaction demands a disk operation. To mitigate the problem, several solutions 

have been proposed [21, 38, 39, 29]. The first proposed solution is using a stable 

main memory for keeping a portion of the log. In this approach, each transaction 

commits by writing its log information in the stable memory, and a special process 

is required to replicate the log information to the log disks. The approach will 

alleviate the response times, yet the log bottleneck will not be remedied. The second 

proposed solution includes using the notion of pre-committed transactions. In this 

scheme, the transaction management system places a commit record into the log 

buffer whenever a transaction is ready to complete. The transaction does not wait for 

the commit record to be propagated to disk. The solution might reduce the blocking 

delays of other concurrent transactions. Finally, group commits have been introduced 

to amortize the cost of the log bottleneck. In the group committing, records of 

multiple transaction logs can be accumulated in the memory before being flushed to 
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disk. The group committing will improve application response times and transaction 

throughput. It is worth mentioning that many modern main-memory systems have 

employed new durability methods since the row-oriented log-ahead mechanisms 

bring about performance overheads [25]. For example, a study has shown 1.5X 

higher throughput by applying a command-logging technique which only records 

executed transactions [40]. The technique facilitates the recovery by replaying the 

logged commands on a consistent checkpoint. 

 

2.1.4 Memory Wall 

 

As explained in Section 2.1.2, the increasing availability of main memory and the paradigm 

shift toward many-core processors are the two major trends which can profoundly affect in-

memory data management systems. The proliferations give rise to new possibilities yet new 

challenges. Processor caches are connected to main memory through a front side bus (FSB). 

In the past decades, advances in processing speed have outpaced advances in main memory 

latency [41]. Thus, CPU stalls while loading data from main memory to CPU cache has 

become a new bottleneck. The widening gap between the processing speed and the main 

memory access is widely known as the ”memory wall” [41]. In the following subsections, 

we study different mechanisms to hide the memory wall. 

 

2.1.4.1 NUMA ARCHITECTURE 
 

To take advantage of the increasing process capacity, FSB performance should keep up with 

the exponential growth of the processing power. Unfortunately, during the past decade, FSB 

performance has not been developed conforming with processing power as shown in Figure 

4(a). In traditional symmetric multiprocessing (SMP) architecture, all processors are 

connected to the main memory via a single bus. Consequently, bus contention and 

maintaining cache coherency will intensify the situation. To partially circumvent this 

problem, non-uniform memory architectures (NUMA) have become the de-facto 

architecture of new generation of enterprise servers. NUMA is a new trend in hardware 

toward breaking a single system bus into multiple busses, each serving a group of processors. 

[6] 
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In the NUMA architecture, processors are grouped by their physical locations into NUMA 

nodes (i.e., clusters), and each node has access to its local memory module. Even though the 

nodes can access to memory associated with other nodes (called foreign memory or remote 

memory), accessing the local memory is faster. Figure 5 demonstrates an overview of 

memory architecture on Nehalem, a NUMA compatible processor produced by Intel. As 

shown in the figure, quick path interconnect (QPI) coordinates access to remote memory. To 

fully utilize the potentials of NUMA, applications should be implemented in a way to 

primarily load data from the local associated memory and avoid remote memory access 

latencies [7].  

 

Figure 5 Memory architecture on Intel Nehalem [7] 

 

2.1.4.2 Cache Efficiency 
 

As described in Section 2.1.1, accessing the bottom levels in the memory hierarchy results 

in high latencies. Thus, it is a reasonable approach to avoid accessing the lower levels as 

much as possible. To this end, a crucial aspect in hiding the main memory latency is cache 

efficiency [41]. Cache efficiency can be achieved through a fundamental principle: reference 

locality. There are two kinds of the locality regarding memory access which are temporal 

locality and spatial locality [7]. Temporal locality refers to the fact that whenever CPU 

accesses an item in memory, it is likely to be reaccessed soon. Spatial locality refers to the 

likelihood of accessing the adjacent memory cells while accessing a memory address. 

Caches are organized in cache lines (e.g., the smallest unit of transfer between cache levels). 

Whenever CPU requests to access a particular memory item, the item will be searched within 

the cache lines. If the corresponding cache line is found, a cache hit will occur; otherwise, it 

results in a cache miss. A cache efficient strategy will achieve a high hit/miss ratio.  
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2.1.4.3 Prefetching 
 

A complementary solution to overcome the memory wall is using data prefetching. Data 

prefetching is a technique that tries to guess which data will be accessed in advance and 

loads the data before the data access. Modern processors support software and hardware 

prefetching; Hardware prefetching utilizes multiple prefetching strategies to automatically 

identify access patterns whereas software prefetching can be regarded as a hint to the 

processor, implying the next address that will be accessed [7]. Data prefetching has been 

widely used in data management systems. For example, Calvin, a transaction scheduling and 

replication management layer for distributed storage systems, uses software prefetching in 

transaction level [42]. After receiving a transaction request, Calvin performs a cursory 

analysis of the transaction and sends a prefetch hint to storage back-ends contributing to the 

transaction while it begins executing the transactions. 

 

2.2 Hybrid Analytical/Transactional processing System 
 

Applications handled by database systems can be classified into two main types: OLTP and 

OLAP. The two next sections study the characteristics and requirements of the database 

systems. 

 

2.2.1 Online Transactional Processing Systems 

 

According to [43], “A transaction processing application is a collection of transaction 

programs designed to do the functions necessary to automate a given business activity.” 

Transaction processing involves a wide variety of sectors of the economy like 

manufacturing, banking, media, transportation. Transaction processing workloads fall into 

two categories: batch processing and online processing. In batch transaction processing, a 

series of transactions (called a batch) are processed without user interaction. Payroll and 

billing systems are examples of the batch processing. Alternatively, in online transaction 

processing, a transaction is executed corresponding to a request from an end-user device or 

a front-end interface. Withdrawing money from an automated teller machine (ATM), placing 

an order using an online catalog, and purchasing an online airline reservation system are 

some examples of online transactions. In its early years, online transaction processing 
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systems were driven mostly by large enterprises. Nowadays, OLTP systems are omnipresent 

even in small and mid-size businesses.  

 

In the context of transaction processing, a transaction is a set of operations exhibiting a single 

unit of work. A transaction is characterized by four properties: atomicity, consistency, 

isolation, and durability (commonly referred as ACID). These properties [44] are discussed 

below. ACID-compliancy is one of the essential requirements of OLTP systems. 

▪ Atomicity: A transaction should be considered as a single unit of operations meaning 

that either all the transactions’ operations should be completed or none of them. If a 

transaction fails, all modifications applied by the transaction should be rolled back. 

▪ Consistency: Running a transaction should maintain the consistency of the database 

state. In other words, running a transaction transforms the state of a DBMS from a 

consistent state to another consistent one. In particular, this includes that all integrity 

constraints are met by transactions.  

▪ Isolation: Changes made by a transaction must be isolated from the changes made by 

other concurrent transactions accessing the same data. Put it differently, concurrent 

transactions should affect the system in a manner that the transactions are executed 

one at a time. 

▪ Durability: Durability guarantees that after successful completion of a transaction, 

the results will be permanent even in case of failures like power outages and system 

crashes. 

 

OLTP systems share some unique features which are listed as follows. 

1. OLTP systems only rely on operational data and do not store historical data. In other 

words, the systems only store current version of data. 

2. OLTP schemas are usually normalized; the schemas are typically in 3NF or Boyce-

Code Normal Form (BCNF) to minimize the data entry volume and guarantee data 

consistency. The high degree of normalization also stimulates inserts, updates, and 

deletes while it might degrade data retrievals. [7] 

3. OLTP queries are predominately simple and do not include complex joins, 

aggregations, and groupings [10].  
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4. Number of users who frequently issue modifying statements is significant in OLTP 

environments (OLTP environments are update-intensive) [11, 10]. As a result, the 

systems deal with high levels of concurrency. 

5. Typical OLTP queries only access one or a small number of sets, and only a few 

tuples match their selection predicates [10].  

6. OLTP systems mostly execute pre-determined queries [10]. In other words, ad-hoc 

queries are not common in the systems. 

7. OLTP systems demand swift response times. Psychological studies suggest that the 

suitable maximum response time for a human is around three seconds [7]. To set a 

tangible example, a person trying to dispense cache from an ATM expects his/her 

transaction to be completed in few seconds. Considering that one or several 

transactions might incorporate only some parts of a user interaction, each transaction 

probably needs to be completed in milliseconds. 

8. OLTP applications play a critical role in many enterprises, and there is no space for 

compromising reliability, availability, or scalability [43].  

 

In OLTP architectures, database management systems play an essential role since they are 

the underlying entity managing the data shared by transaction processing applications. OLTP 

systems are the predominant use case for relational DBMSs. The reasons for the dominance 

are flexibility, performance, robustness, and simplicity in managing structured data. [15, 43] 

 

2.2.2 Online Analytical Processing Systems 

 

Computer-based analytics is not a new concept and have persisted even before the 

emergence of relational database systems [6]. Management Information Systems (MISs) can 

be regarded as the first generation of analytical systems introduced in 1965 with the 

development of mainframe systems. At that time, the management information systems did 

not support interactive data analysis. To support the interaction, decision support systems 

(DSSs) are introduced in the 1970s. During the time, spreadsheets are the typical form of 

DSSs widely used to derive information from raw data. However, the spreadsheets focus on 

single users and are not able to provide a single view for multiple end-users. During the time, 

continuous development of different transaction processing systems has instigated growing 

heterogeneity in data sources. The term OLAP is coined in 1993 by Ted Codd referring to a 
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product which facilitates consolidation and of data from multiple sources in a 

multidimensional space based on twelve rules [45]. In a multidimensional data model, there 

is a set of measure attributes which represent the objects of analysis. Each of the attributes 

depends on a set of dimensions which provides the analysis contexts. Additionally, 

hierarchies can be defined within each dimension. Figure 6 demonstrates sale measurement 

among city, product, and date dimensions. In the data model, the product includes a 

hierarchy of industry and category. 

 

 

Figure 6 An example of Multidimensional Data [46] 

  

Like OLTP system, OLAP schemes share some distinct characteristics [10] which are listed 

in the follows. 

1. In OLAP systems ad-hoc queries are dominant.  

2. OLAP queries predominately include complex joins, aggregations, and groupings.  

3. Selection predicates in typical OLAP queries access a large number of sets.  

4. OLAP queries are usually long-running. 

5. OLAP queries are widely read-only. 

6. Number of concurrent users running OLAP queries is small. 

 

The substantial differences between transactional and analytical workloads are the reason 

that many companies began to separate their OLTP databases from OLAP. In the 1990s, 

Data Warehouses (DW, also called DWH) were developed as a foundation for analytical 

workloads. DWHs mostly model information into multidimensional data cubes and apply 

OLAP-oriented database management systems. To represent the multi-dimensional data 

model, DWHs enact different schemas among which star, snowflake, and fact constellations 
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are the most widely used. Star schema includes a single fact table and a single table for each 

dimension. The connection between the fact tables and the dimension tables is coordinated 

using a foreign key. Figure 7 shows an example of a star schema. More recently, using 

columnar databases has become of particular interest for analytical processing [9]. The 

columnar databases are explained in sections 2.2.3 and 2.2.4.  

 

Figure 7 A star schema [46] 

 

OLAP operations can be classified into four groups [46] as detailed below. 

• Rollup is performing aggregation on a data cube by reducing dimensions or climbing 

up a concept hierarchy for a dimension. 

• Drill-down is decreasing the amount of aggregation or expanding detail along one or 

more dimension hierarchies. 

• Slice and dice is selecting and projecting a dimension of a cube as a new sub-cube.  

• Pivot is rotating the multidimensional view of data. 

Data warehouses might be implemented on top of relational DBMS by mapping 

multidimensional data into relations. The approach is called relational OLAP (ROLAP). It 

is also possible to apply specific data structures to store the multidimensional data, which is 

named multidimensional OLAP (MOLAP). 

 

As mentioned, the data in a data warehouse is comprised of different OLTP systems and 

external sources. Consequently, a process is required to consolidate the data from various 

sources into DWHs. The method is named extract, transform, load (ETL) and consists of 

three primary steps. During the extraction, the desired data is extracted from data sources. 

The second stage includes converting the extracted data into a proper format consistent with 

OLAP data structure. The process is completed by materializing the transformed data into 
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target data storages. To maintain data freshness, the ETL process should be done periodically 

(usually overnight). 

 

2.2.3 Relational data layouts 

 

In the relational data model, tables are used to represent the logical structure of data. Tables 

(also called relations) include attributes and tuples. Hence, each relation consists of two 

dimensions including rows (i.e., tuples) and columns (i.e., attributes). Table 1 demonstrates 

a straightforward relation with five attributes and two tuples. To store a relation inside 

memory, it is required to map the two-dimensional structure to a unidimensional memory 

address space. There are two approaches to storing a relation in memory: row and columnar 

layout [7]. 

ID FName LName City Country 

1 Bahman Javadi Lappeenranta Finland 

2 Ted Smith Walldorf Germany 
Table 1 Sample Relation 

 

The row-based layout is the most classical way of representing relations in memory. The 

layout stores relations in memory using a row-based (or record-based) structure. In other 

words, the record-based layout will store tuples consecutively and sequentially in memory.  

Considering the sample relation, the data would be stored as a sequence of tuples in memory 

as follows, where each line represents a record stored in a memory region. 

1 Bahman Javadi Lappeenranta Finland 

2 Ted Smith Walldorf Germany 

 

The second approach in storing the two-dimensional structures is storing relations based on 

attributes. The approach is called columnar or column-oriented. In the columnar layout, 

values of columns are store together. The columnar layout of the sample relation would be 

as:  

1 2 

Bahman Ted 

Javadi Smith 

Finland Germany 
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Using the different memory layouts has a significant impact on memory access patterns as 

shown in Figure 8 where A, B, and C represent three different columns of a table. 

Considering set-based operations like aggregate calculations which only access a small 

subset of columns, the columnar layout is more efficient since the values of columns will be 

scanned sequentially in fewer CPU cycles. On the other hand, the row-wise layout 

outperforms the column-wise for row-based operations which operate on a single or a set of 

tuples (e.g., a projection using SELECT *). As a result, considering the workload should be 

a significant factor in selecting the memory layout. Typically, the row-wise layout is mostly 

used in OLTP databases since transactional queries are associated with row operations such 

as accessing or modifying a few rows at a time. Conversely, columnar storages are more 

suitable for OLAP queries that are characterized by large sequential scans traversing a few 

attributes of a big set of tuples. It is also possible to use a combination of both row and 

columnar layouts, a hybrid design. [9] 

 

 

Figure 8 Memory access pattern for set-based and row-based operations on row and columnar data 

layouts [7] 
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2.2.4 Column-Oriented Data Layout 

 

As mentioned in the previous section, row-wise databases can perform better in some 

scenarios. Nonetheless, there are some benefits in the usage of the columnar layout that are 

not applicable to the row stores. The benefits are highlighted in this section. 

 

Even though main memory capacities are growing exponentially as discussed in section 

2.1.2, enterprise data volumes are also becoming extremely large. Respectively, efficient 

compression techniques are of high importance to keep more data in main memory. Some 

compression techniques like dictionary encoding are applicable to both data layouts [7]. 

Dictionary encoding represents distinct values by a smaller value and typically reduces 

required space by a factor of five (factors of 47 are also reported for attributes with a 

relatively low number of distinct values like country name) [47]. However, several 

compression techniques like Run-Length Encoding (RLE) or indirect encoding can be only 

leveraged in the columnar layout. For instance, RLE algorithm stores consecutive distinct 

values as a single data value. Hence, the technique will not be efficient in row-layout which 

stores tuples including heterogeneous data types and semantics. It can be concluded that row 

storage with horizontal compression cannot compete its counterpart for memory usage. A 

study [9] reveals that a relation with 34 million tuples using the row layout as the underlying 

database consumes about 35 GB of space; while the same table stored in columnar layout 

uses eight GB of memory. 

 

As mentioned in section 2.1.4, cache efficiency plays a significant role in overcoming the 

memory wall. It is discussed that the columnar layout is more cache-efficient due to two 

reasons [47, 7]. First of all, considering a relation with many attributes stored in a row layout, 

almost every access to the next value of an attribute causes a cache miss even when utilizing 

compression techniques and prefetching; CPU cache is limited in size and storing a complete 

row in a cache could cause many evictions. Put it differently, storing data in column chunks 

is more cache-friendly. Also, the layout could exhibit a better data locality since cache lines 

are full of related values (attributes) and only the data of interest will be brought into cache.  

 

Moreover, using the columnar layout will simplify data parallelism.  In data parallelism, data 

is partitioned into data sets, and a query involves running operators of the query on the 
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separate data sets in parallel. Figure 9 shows data parallelism for a JOIN and SORT operator 

while evaluating a predicate. Although data partitioning is also possible in the row-wise 

layout, the columnar layout implicitly partitions data vertically. The implicit vertical 

partitioning allows vectorized query execution using single instruction/ multiple data 

(SIMD) processing. SIMD, as the name suggests, allows performing a single operation on 

multiple data words stored in specific CPU registers in one instruction. Using SIMD can 

dramatically improve the efficiency of aggregate functions like SUM, AVG, and COUNT. 

[7] 

 

Figure 9 Sample Data Parallelism [7] 

 

2.2.5 Breaking the Wall Between Transaction and Analytical Processing 

 

As noted previously, different characteristics of transactional and analytical workloads led 

many organizations to separate OLTP and OLAP databases. The separation drove the 

adoption of ETL to migrate data from several operational data sources into data warehouses. 

The approach resulted in successful business intelligence (BI) implementations. 

Nonetheless, this separation has its downsides [12, 9]. First, ETL tools and methods are 

complex and error-prone. Besides the complexity and the error-proneness, the approach 

increases the total cost of ownership (TCO) since companies need to invest in acquiring and 

maintaining two distinct systems. On top of the challenges above, ETL is time-taking and 

imposes data latency. For instance, analytical queries will run on at least one-day old data if 

the ETL jobs are executed at the end of each business day. The latency compromises real-

time business intelligence which is highly desired nowadays. Recent years have seen the 

emergence of big data applications and Internet of Things (IoT) which demand real-time 

analytics over large datasets. To fill the gap, the industry, as well as academia, have targeted 

building data management solutions supporting mixed workloads without requiring data 
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duplication. Hybrid transactional/analytical processing (HTAP) is a term coined by Gartner 

to define such systems [48]. 

 

Several vendors currently offer HTAP systems such as HANA, VoltDB, and HyPer. Two 

questions then arise: What are the primary enablers of the hybrid systems and how the 

solutions mainly differ? It is discussed that in-memory database technologies and advances 

in modern hardware (e.g., increasing main memory capacity, the advent of multi-core 

processors, and levels of memory caches) can be considered as the principal drivers for rising 

the systems [48, 12, 9, 13]. To support a single system for both OLTP and OLAP, HTAP 

solutions today apply a variety of design practices like resource management and data layout. 

For instance, HyPer can be configured as a row or column store and may utilize a virtual 

memory (VM) snapshot to manage resource utilization for mixed workloads [13]. The VM 

snapshot architecture generates consistent snapshots of the transactional data for OLAP 

query sessions. The snapshots are created by forking a single OLTP process, and the 

consistency of the snapshots are implicitly maintained by an OS/processor-controlled lazy 

copy-on-update synchronization mechanism. By injecting OLAP-style queries into a 

different queue, OLTP transactions will not wait for long-running analytical queries while 

still access the current memory state of OLTP process. Likewise, SAP HANA employs 

different design practices to handle mixed workloads. The system incorporates a row engine 

which is suitable for extreme OLTP workloads as well as a column store optimized to 

support OLAP and mixed workloads. The design of the column store enables both highly 

efficient analytics and at the same time very decent OLTP performance, allowing both 

workloads on a single copy of the data in main memory [12]. To support co-existence of 

OLTP and OLAP queries, HANA utilizes a dynamic task scheduling mechanism for 

servicing analytical queries expressed as a single or multiple tasks [49]. One worker thread 

per hardware context continuously fetches tasks from queues and processes them. The 

scheduler is responsible for balancing the number of worker threads according to the number 

of hardware contexts. The scheduler also decides how OLTP and OLAP queries consume 

resources according to an adjustable configuration. 

 

As discussed in sections 2.2.1 and 2.2.2, OLTP workloads are characterized by update-

intensive and tuple-oriented operations while OLAP workloads are attributed to sequential 
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scans over a few attributes but many rows of the database. However, the typical DBMS 

interaction pattern are also changing over the time: A study [50] turns out that read-oriented 

set operations dominate actual workloads in modern enterprise applications. In other words, 

OLTP and OLAP systems are not necessarily as different as typically explained. In the study, 

the customers’ workloads of a business suite are analyzed as shown in Figure 10. The study 

demonstrates that more than 80% of all OLTP and OLAP queries are read-access. Whereas 

both systems deal with permanent modifications and inserts, the number of inserts and 

modifications are a little higher on OLTP side. Also, lookup rate is only 10% higher in OLTP 

systems compared to OLAP systems. The study concludes that a read-optimized data layout 

will satisfy update operations for both workloads. 

 

Figure 10 Comparison of OLTP and OLAP workloads based on distribution of query types extracted 

from a customer database statistics [50] 

 

 

2.3 OLTP WORKLOAD BENCHMARKS 
 

Currently, a variety of benchmarks are available to measure the performance of database 

management systems. These benchmarks not only provide a tool for vendors to improve 

their products but also customers can achieve a comparison baseline using the benchmarks’ 

results. This section presents a brief study of two OLTP benchmarks:  

• TPC-C (an open source benchmark provided by TPC) 

• Sales and distribution (SD) benchmark (a proprietary benchmark provided by SAP) 
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2.3.1 TPC-C Benchmark 

 

TPC is formed in 1988 as a non-profit corporation with the goal of standardizing objective, 

and verifiable data-centric benchmarks [51]. From then on, the council has published about 

16 benchmarks to measure the performance of different systems such as OLTP, OLAP, big 

data, IoT, and so on. Among the standardized benchmarks, TPC-C is an online transaction 

processing benchmark approved in 1992 and since then has been widely used in the industry 

[50, 52].  

 

The benchmark simulates activities related to an order-entry system for a wholesale parts 

supplier (known as the company). The company works out of several warehouses and their 

associated sales districts as demonstrated in Figure 11. TPC-C is a scalable benchmark 

meaning that it is possible to scale out the benchmark just like the company expands and 

new warehouses are created.  Each warehouse covers ten districts, and each district serves 

3000 customers. The test configuration of the benchmark consists of driver(s), a system 

under test (SUT), and Driver/SUT communications interfaces. The driver is used to emulate 

customers during the benchmark run. The driver also records response times and statistical 

accounting. The SUT consists of a single or multiple processing units running the 

transactions. [52] 

 

Figure 11 TPC-C's business environment [52] 

 

The workload of the benchmark consists a mix of five concurrent transaction types [52] as 

given below.  
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• New-order: The transaction represents entering a complete order. It is a read-write 

transaction having a high frequency of execution. 

• Payment: This transaction represents updating a customer’s balance and reflecting 

the payment on the company and the district sales statistics. Just like the new-order 

transaction, it is a read-write transaction with a high frequency of execution. 

• Delivery: The transaction incorporates delivering a batch up to 10 new orders. This 

is a read-write transaction with a low execution frequency. 

• Order-status: This is a read-only transaction with a low frequency of execution. The 

order-status transaction queries the position of a customer’s last order. 

• Stock-level: This is a read-only transaction with a low frequency of execution. It 

queries the number of recently sold items below a specific threshold. 

 

TPC-C requires that all ACID properties be maintained during the test. The benchmark 

demands that at least 90% of all transactions except the stock-level to be completed within 

5 seconds while the stock level transactions should be completed within 20 seconds. The 

benchmark measures two metrics: One performance metric is in terms of the number of 

completed new-order transactions per minute (called tpmC). The benchmark also requires 

reporting a price-per-tpmC metric. The benchmark starts with a ramp-up phase in which 

tpmC reaches a steady level. Then, the measurement interval starts and should continue for 

at least 120 minutes. After the measurement interval, a ramp-down stage closes the 

benchmark test-run. Figure 12 depicts a sample run graph of the benchmark. The x-axis 

portrays the elapsed time from the beginning of the run as the y-axis sketches the Maximum 

Qualified Throughput (MQTh) rating expressed in tpmC. TPC-C implementations must 

scale both the number of customers and the size of the database proportionally to the 

measured throughput. [52] 
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Figure 12 Sample TPC-C run graph [52] 

 

The benchmark’s database comprises nine individual tables as sketched in Figure 13. 

Numbers inside the entity blocks exhibit the cardinality of the tables whereas those numbers 

starting with W denotes a scaling factor of the number of warehouses. The numbers next to 

relationship arrows show the average cardinality of the relationships. The plus symbol after 

the relationships’ cardinality demonstrates that the number is subject to a small variation in 

the initial database population over the measurement interval. [52] 

 

Figure 13 TPC-C ER diagram of tables and relationships among them [52] 

 

 

2.3.2 SD Benchmark 

 

Similarly to TPC, SAP offers a variety of benchmarks for different business scenarios under 

the umbrella of SAP Standard Application Benchmark suite. The business scenarios include 

Sales and Distribution (SD), Assemble-to-Order (ATO), production planning (PP), and 

many more. The suite is developed and published in 1993 to facilitate necessary sizing 

recommendations of SAP systems and for platform comparisons. SAP Application 

Ramp - up Steady State Ramp - down 

Elapsed Time  ( sec. ) 0 

MQTh 

Measurement Interval 
Start 

Measurement Interval 
End 

  

Warehouse District 

History 

Customer 
New-Order 

Order Order-Line Item 

Stock 

W W*10 

3 k 

1+ 

W*30k 

W*30k+ 
5-15 

0-1 

1+ 
W*30k+ 

W*9k+ 

W*300k+ 

3+ 

100 k 

W 

W*100k 

100 k 

10 

  



 

38 

 

Benchmark Performance Standard (SAPS) is the metric of measurement in the suite and 

expresses the performance of a system configuration in the SAP environment. SAPS is 

derived from the Sales and Distribution (SD) benchmark in a manner that 2000 fully 

processed order line items per hour are equivalent to 100 SAPS. Fully processed here means 

that the entire process of an order line item including creating the order, creating the delivery 

note for the order, viewing the order, making changes to the delivery, posting an item issue, 

listing orders, and generating an invoice has to be completed. In technical terms, this is 

equivalent to 6000 dialog steps plus 2000 postings per hour in the SD benchmarks, or 2400 

SAP transactions. A dialog step imitates a screen change corresponding to a user request. 

[53] 

 

The SD benchmark measures the maximum number of users in a SAP sales and distribution 

scenario satisfying a defined average dialog response time. The business scenario covers a 

sell-from-warehouse scheme that includes six transactions. Each transaction can be mapped 

to a real dialog step in SAP sales and distribution environment. The list of transactions and 

dialog steps are provided in Table 2. [54] 

Transaction Code Dialog step 

VA01 Generating a sale order with five line items 

VL01N Generating an outbound delivery schedule 

VA03 Displaying the customer order 

VL02N Modifying the outbound delivery 

VA05 Generating a list of sales orders 

VF01 Generating invoice for an order 

Table 2 Transactions and dialog steps in the SD benchmark 

 

Like TPC-C, the SD benchmark starts with a ramp-up phase during which the number of 

concurrent users increases gradually until all users are active. After the stage, the test interval 

starts (the interval is also called high load phase). During the high load phase, the 

performance level (i.e., throughput) must be maintained for at least 15 minutes. Then, users 

are continuously taken off the system in a ramp-down stage until there is no active user. The 

benchmark comprises three components which are:  presentation layer, application layer, 

and database layer. The presentation layer (also called benchmark driver) simulates users 

logging to the system and placing a fully business processed order. Configurations for a 



 

39 

 

benchmark simulation comes in a 2-tier or 3-tier flavor. In the 2-tier architecture, the 

application layer and the database layer reside on a single system while in the 3-tier 

architecture the layers reside on separate systems. The architectures are shown in Figure 14. 

[54] 
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Figure 14 SD Benchmark 2-tier and 3-tier environment 
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2.4 SAP HANA 
 

SAP HANA is an in-memory database offered by SAP. Initially, the system was built from 

the ground up to support only analytical workloads [12]. However, it unfolded over the 

course of time from a pure analytical appliance to a system capable of handling mixed 

workloads. The evolutionary process of this system is not a one-time journey: In fact, the 

system evolved within three steps. The following subsections study the steps and the major 

developments in each stage. 

 

2.4.1 HANA for Analytical Workloads 

 

The initial architecture of the scheme was based on providing a sound basis for analytical 

processing. SAP employed three design principles [12] in developing HANA: (1) 

performing extensive parallelization, (2) embracing a scan-friendly data layout, and (3) 

supporting advanced analytical engine capabilities.  

 

Massive parallelization at all levels is one of the core design principles of SAP HANA 

motivated by recent trends in developing many-core CPUs. HANA supports parallel query 

processing at different levels. Inter-query parallelism is achieved by maintaining multiple 

concurrent user sessions. Intra-query parallelism is gained by running different operations 

within a single query in parallel. HANA also supports intra-operator parallelism by 

executing individual operators in multiple threads.  

 

Moreover, HANA relies on a columnar data layout to provide a scan-friendly foundation for 

analytical queries. HANA columnar layout is accompanied by dictionary compression and 

hardware prefetchers to minimize memory consumption while hiding memory access 

latencies. Besides, SAP HANA presents a rich collection of analytical engines including 

geospatial, graph, text, and planning engines.  

 

2.4.2 HANA for Transactional Workloads 

 

Over the course of time, SAP decided to broaden the scope of HANA from a pure analytical 

processing toward a system also supporting OLTP workload. Although the system comes 

with a row-store suitable for transactional workloads, the evolution of HANA toward 
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transactional processing was mostly based on optimizing the column store. SAP enacted 

several tunings to maintain OLTP workloads, as follows. 

• Query compilation in OLTP queries can dominate query run-times; To avoid re-

compiling frequently executed statements, the system inserts the compiled query 

plans into a cache (i.e., query plan cache) [12]. When a query needs to be executed 

later, HANA checks for a corresponding execution plan in the cache. The system 

reuses the cached plan it finds, saving the overhead of recompilation.  

• As previously mentioned, the column store in SAP HANA is encoded using a 

dictionary-based compression. Nevertheless, using the compression has an overhead 

of re-encoding for update operations. To minimize the overhead of frequent updates, 

each column in the column store is composed of two tables: a read-optimized main 

table, and a write-optimized delta table [55]. The main table uses a sorted dictionary 

to speed up scans while the delta tables use an unsorted dictionary to enhance update 

operations. The delta table includes recently added, deleted, and updated data. In 

other words, update operations only affect this table. During the read operations, both 

tables will be queried. The delta tables will be periodically merged into the main 

tables. Figure 15 portrays the use of the main and delta tables in HANA columnar 

storage.  

 

Figure 15 (a) The core data structures of the main and the delta parts of a column. (b) The 

delta merge operation. [55] 

 

• In OLTP scenarios, it is often found columns that store only a single or empty value. 

In case of finding a single default value, HANA bypasses storing the value in a 

columnar representation and stores it inside the column header. This optimization 

could amplify throughput and improve CPU consumption. [12] 

• SAP HANA relies on snapshot isolation concurrency control in transaction 

management. The transaction manager in its initial version was based on a visibility 

tracking mechanism via an explicit bit-vector per transaction on table-level. 
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However, the tracking mechanism turned out to be expensive and memory-

consuming for transactional workloads. To handle this shortfall, HANA applied a 

new row-based visibility tracking mechanism depending on time-stamps associated 

with each row. The timestamp indicates when the row is created or deleted. Further, 

the timestamps can be periodically replaced by a bit indicating the rows’ visibility to 

reduce memory consumption overhead. [12] 

• Efficient synchronization of in-memory data structures has a critical effect on 

scalability and performance of transactional database systems. To maintain both the 

performance and the scalability, HANA carefully optimizes table latching and 

applies advanced synchronization primitives. For instance, Intel Transaction 

Synchronization Extensions (TSX) is used in the system to decrease lock 

contentions. [12] 

• SAP HANA exploits application-server/DBMS co-design for efficient data transfer. 

Advanced Business Application Programming (ABAP) is a platform for developing 

business applications on top of SAP HANA. The platform comprises ABAP 

programming language and its runtime including an application server. HANA 

natively optimizes for the platform. For instance, Fast Data Access (FDA) is a feature 

which enables efficient data transfer by directly reading and writing into special data 

structures shared between the database system and ABAP application server. [12] 

 

2.4.3 HANA for Mixed Workloads 

 

In the final step of the journey, SAP took a disruptive approach toward extending HANA to 

an HTAP system on top of OLTP-style database schema [12]. SAP employed three design 

practices to achieve this goal: 

• Resource management is a major challenge in handling mixed workloads since 

analytical queries are resource-intensive and might result in delayed transactional 

queries. Within SAP HANA, a scheduler is responsible for running queries and 

monitoring resource utilization as described in section 2.2.5.  

• In HANA, full columns are loaded into main memory during the first access; 

subsequently, the loaded columns might be unloaded in case of memory pressure 

[12]. Keeping both historical and operational data inside main memory might be 

expensive as well as inefficient since the rarely accessed, historical data might cause 
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eviction of frequently accessed columns. SAP HANA make use of a data aging 

process to identify certain data as cold (A.K.A aged data) or warm. There are two 

techniques to store the cold data. The aged columns can be declared as page-loadable 

inside the system [56]. The page-loadable columns are partially loaded into main 

memory upon a request. It is also possible to store the aged data on disk to reduce 

the memory footprint in HANA. Storing the cold data on disk using a separate storage 

engine is called dynamic-tiering [57].  

• Executing analytical queries on normalized database schemas requires data-models 

suitable for reporting purposes. SAP HANA employs a layered architecture of 

database views to facilitate analytics queries; the hierarchy of views are called Core 

Data Services (CDS) views [58]. These views provide a rich semantic data model 

consisting of layered views on top of normalized relational schemas. 
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2.4.4 SAP HANA SQLSCRIPT 

 

As of today, there are two approaches to implement data-intensive business logic. A classical 

approach is executing application logic in an application layer and leaving the database only 

to perform limited functionality using SQL. This approach has two main drawbacks [59]. 

First, running business logic in another layer than database requires data transfer within the 

two layers; the data transfer could be expensive regarding processor and transfer time. 

Secondly, in this approach developers mostly follow a single-tuple-at-a-time semantic that 

decreases the chance for leveraging query optimization and parallelization. In the second 

model, the application logic will be shipped into the database layer. Relational databases 

traditionally offer imperative language extensions using a dialect of SQL such as Procedural 

Language/Structured Query Language(PL/SQL) or Transact-SQL(T-SQL) [60]. SAP 

HANA exposes an interface for pushing the application logic to the database which is called 

SQLScript. 

 

SQLScript addresses several limitations with pure SQL statements. First, decomposing 

complex SQL queries is only possible using views. The decomposition using views requires 

that all intermediate results be visible and explicitly typed. The SQL views also cannot be 

parameterized. SQLScript facilitates the decomposition by assignments and parametrization. 

Secondly, SQL statements do not have features for expressing business logic (e.g., currency 

conversion). SQLScripts provides three extensions to the SQL dialect of HANA: an 

imperative (procedural), a declarative (functional), and a data extension. Furthermore, an 

SQL query can only return single result at a time. Hence, computation of related result sets 

should be split into usually unrelated, separate queries. SQLScript offers multiple input and 

output parameter to overcome this deficit. [60] 

 

2.4.4.1 SQLScript Data Extension 
 

The data extension in SQLScript is based on the SQL-92 type system. The built-in supported 

scalar data types comprise of the ones shown in Table 3. The extension also allows defining 

table types for tabular values. The syntax for defining table variables is similar to the SQL 

syntax for defining a new table. For instance, “CREATE TYPE tt_year AS TABLE (year 

VARCHAR(4), price DECIMAL, cnt INTEGER)“  defines a table type named tt_year 
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representing price and count per a specific year. Local variables are declared by the 

DECLARE keyword. Local variables are bound using the equality operator and referenced 

via their name prefixed by <:> like <:var>. [59] 

Numeric Types TINYINT, SMALLINT, INT, BIGINT, DECIMAL, SMALLDECIMAL, 

REAL, DOUBLE 

Character String Types VARCHAR, NVARCHAR, ALPHANUM 

Date-Time Types TIMESTAMP, SECONDDATE, DATE,TIME 

Binary Types VARBINARY 

Large Object Types CLOB NCLOB BLOB 

Spatial Types ST_GEOMETRY 

Table 3 SQLScript Scalar Data Types [59] 

 

2.4.4.2 SQLScript Procedural Extension 
 

With SQLScript’s procedural extension, it is possible to define orchestration logic using 

imperative constructs. The supported imperative constructs in SQLScripts include 

conditionals (IF, ELSE, and ELSEIF) and loops (while and for loops). Using cursors is also 

supported in the procedural extension to iterate through result sets. Data definition and data 

manipulation statements (i.e., updates, deletes, and inserts) are allowed inside procedures of 

this kind. Additionally, the extension supports array-typed variables. The arrays are indexed 

collections of elements of a single data type declared by the keyword ARRAY. For example, 

“DECLARE arr INTEGER ARRAY” declares an array of type INTEGER. In SQLScript, 

The syntax “:<array_variable_name> ‘[‘<array_index>’]’ ” is used to refer to an element in 

an array. There are some functions which operate upon arrays like UNNEST, 

ARRAY_AGG, TRIM_ARRAY, and CARDINALITY. Altogether, the procedural 

extension presents a solid foundation for developing imperative business logic in the 

database layer. However, the procedures of this kind cannot be efficiently optimized and 

parallelized due to their single-tuple-at-a-time semantics. [59] 

 

ROLLBACK and COMMIT are natively supported in SQLScript’s procedural extension 

[59]. The COMMIT statement makes all the modifications performed since the start of the 

procedure a persistent part of the database. On the other hand, the ROLLBACK statement 

undoes all the modification performed by the procedure since the last COMMIT, if any, 

otherwise from its beginning. The transaction boundary in SQLScript is not tied to the 
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procedure block. In other words, if a nested procedure contains a COMMIT/ROLLBACK, 

then all statements of the invoking procedure are also affected. 

 

2.4.4.3 SQLScript Functional Extension 
 

SQLScript also supports a functional extension to tackle the optimization difficulties in the 

procedural extension. The functional extension is designed to construct and encapsulate 

declarative data-intensive computations. Put in other words, procedures in SQLScript are 

either functional and apply a set-oriented semantics or they are of a procedural type and 

follow one-tuple-at-a-time paradigm. [59] 

 

Two prerequisites should be fulfilled in defining declarative functions. First, they should be 

free of side-effect (i.e., read-only) and they should be transformable into a static dataflow 

graph where each node denotes a data transformation. Read-only means that the operators 

which make modifications to the database or its structures are not allowed. The reason for 

the prerequisites is that SQLScript’s optimizer will translate the functional logic into a highly 

parallelizable data-flow. Language constructs in the functional extension are single 

assignments and calls to other read-only procedures. The assignments can be used to bind 

the tabular result of a SQL statement. Cyclic dependencies caused by intermediate result 

assignments or calling other functions are not permitted in the functional procedures. [59] 

 

2.4.4.4 Creating and Calling Procedures 
 

The CREATE PROCEDURE statement can be used to define both types of procedures. 

However, the functional extension requires marking the procedures as read-only in the 

signature of the procedure via READS SQL DATA [60]. The orchestration logic (i.e., the 

procedural extension) can call functional code; however, this is not allowed vice versa [59]. 

 

Figure 16 exhibits two examples of procedures named orchestrationProc and analyzeSales. 

The orchestrationProc has no input or output parameter and features multiple imperative 

constructs including using a cursor and several local scalar variables. The procedure also 

calls other procedures (i.e., init_proc and ins_msg_proc) via the CALL statement. The 

analyzeSales procedure follows a declarative semantic and is defined as read-only. It accepts 
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multiple table-types and scalars as input and output parameters. This procedure utilizes two 

local table variables to store intermediate results that are big_pub_books and big_pub_ids. 

CREATE PROCEDURE orchestrationProc LANGUAGE SQLSCRIPT 

AS  

BEGIN  

  DECLARE v_id BIGINT;  

  DECLARE v_name VARCHAR(30);  

  DECLARE v_pmnt BIGINT;  

  DECLARE v_msg VARCHAR(200);  

  DECLARE CURSOR c_cursor1 (p_payment BIGINT) 

      FOR  

      SELECT id, name, payment FROM control_tab  

      WHERE payment > :p_payment  

      ORDER BY  id ASC;  

  CALL init_proc();  

  OPEN c_cursor1(250000);  

  FETCH c_cursor1 INTO v_id, v_name, v_pmnt;  

  v_msg = :v_name || ' (id ' || :v_id || ') earns ' || :v_pmnt ||                                           

' $.';  

   CALL ins_msg_proc(:v_msg);  

   CLOSE c_cursor1;  

END 

CREATE PROCEDURE analyzeSales (IN cnt INTEGER, IN year INTEGER, 

OUT output_pubs t t_publishers , OUT output_year tt_years) 

LANGUAGE SQLSCRIPT  

READS SQL DATA AS 

BEGIN 

    --Query Q1 

    big_pub_ids = SELECT pub_id FROM books  

        GROUP BY pub_id HAVING COUNT (isbn) > : cnt ; 

   --Query Q2 

    big_ pub_books = SELECT o.price , o. year , o.pub_id 

         FROM :big_pub_ids p , orders o 

         WHERE p.pub_id = o.pub_ id ; 

   --Query Q3 

    output_pubs = SELECT SUM(price) , pub_id 

        FROM : big_ pub_books 

        GROUP BY pub_id ; 

   --Query Q4 

    output_ year = SELECT SUM(price ) , year 

         FROM : big_pub_books 

         WHERE year BETWEEN : year −10 AND :year 

         GROUP BY year ; 

 END; 

(a) (b) 

Figure 16 (a) A procedural extension [59], (b) A functional extension [60] 

 

With SQLScript, application logic can be defined using both the procedural and functional 

extensions. The invoke activity while calling a procedure can be divided into two stages: a 

compilation stage and an execution step. The compilation step generates a data-flow graph 

(called calculation model) for the procedure. The Language L [12] is used as an intermediate 

language for expressing the calculation models. The generated calculation models then are 

bound to actual parameters and further optimized for the concrete input by a calculation 

engine within SAP HANA. The optimization distinguishes between declarative and 

imperative logic. As the declarative logic is guaranteed to be free of side-effects, the resulting 

calculation models can be better optimized and parallelized during execution. For instance, 

the procedure in Figure 16 (b) is comprised of four queries. In the calculation model for the 

procedure, the intermediate results generated by query Q2 can be consumed by queries Q3 

and Q4 in parallel. [59] 

 

As mentioned earlier, calling a procedure is possible via the CALL statement. There are two 

approaches for calling the procedures with input parameters. Considering the analyzeSales 
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procedure in Figure 16, it can be called by using query parameters in the callable statement 

like “CALL analyzeSales (cnt=>?, year=>?, output_pubs =>?, output_year=>?)”. Besides, 

the query can be called without query parameters using constant values directly like “CALL 

analyzeSales (cnt=>1000, year=>2015, output_pubs =>?, output_year=>?)”. Like 

mentioned before, HANA exploits a query plan cache (see section 2.4.2). In the first 

approach, the cached query plan can be re-used even if the values of variables cnt and year 

change. Notwithstanding, calling with constant values will lead to generating the most 

optimal query at the cost of frequent query compilations for different parameter values. 
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2.5 TPC-E Benchmark 
 

TPC-E is an OLTP benchmark approved by TPC in 2007. This benchmark models the 

activities of a stock brokerage firm as illustrated in Figure 17 (b). The activities include (1) 

managing customer accounts, (2) executing customer trade orders, and (3) organizing 

interactions between customers and financial markets. The benchmark focuses on measuring 

the performance of the central database running transactions associated to the firm’s 

customer accounts. Although the benchmark exhibits the activities of a brokerage firm, its 

design is based on simulating the activities found in a complex transactional environment. 

[61] 

 

 

(a) (b) 

Figure 17 (a) TPC-E application components (b) TPC-E business model transaction flow [61] 

 
 

As highlighted in section 2.3.1, TPC-C is approved in 1992, and it follows an old-fashioned 

OLTP environment. Consequently, TPC-E is designed to incorporate more current 

requirements like realistic data skews and referential integrity requirements. Table 4 

compares TPC-E with its predecessor, TPC-C. Firstly, TPC-E defines over three times as 

the number of tables as TPC-C. Secondly, TPC-E has twice as number of columns as its 

ancestor. Thirdly, TPC-E is more read-intensive than TPC-C, and the number of transaction 

types is twice as defined in TPC-C. Furthermore, TPC-E exhibits realistic data skews by 

populating the database with pseudo-real data. TPC-E data generator is based on U.S. census 

data and actual listings on New York Stock Exchange (NYSE). Finally, TPC-C lacks 

multiple features that are found in real-world transactional systems like check constraints 

and referential integrity while TPC-E incorporates such requirements. In summary, TPC-E 

is a more accurate OLTP benchmark compared to TPC-C, yet its implementation and test 

setup is more sophisticated. [62] 
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 TPC-E TPC-C 

Business Model Brokerage house Wholesale supplier 

Tables 33 99 

Columns 188 92 

Column per table 2 – 24 3 – 21 

Transaction mix 4 RW (23.1%) 

6 RO (76.9%) 

3 RW (92%) 

2 RO (8%) 

Data generation Pseudo-real, based on census data Random 

Check constraints 22 0 

Referential Integrity YES NO 

Table 4 Comparison between TPC-C and TPC-E features [62] 

 

2.5.1 TPC-E Transactions 

 

TPC-E is composed of 10 transactions (see Figure 17-a) following a target mixed percentage. 

A short description [61] of each transaction is provided in the follows. Just like TPC-C as 

described in section 2.3.1, a TPC-E test run includes three stages: a ramp-up, a steady, and 

a ramp-down state. The benchmark requires a measurement interval of at least 120 minutes. 

Besides, at least 90 percent of each transaction type should meet a specified response-time 

during the measurement interval. Each transaction within TPC-E is invoked as a single or 

multiple frames. In fact, the frames are the execution units of the transactions and the 

benchmark increases complexity by using multiple frames within a transaction. 

1. Broker-Volume emulates a business intelligence type of query in the brokerage house 

like reporting the current performance potential of different brokers. It is consisted 

of a single frame and has a target mix of 4.9 percent. 

2. Customer-Position is a transaction with a target mix of 13 percent and emulates the 

process of fetching the customer’s profile and outlining their total standing based on 

current market values for all assets. The transaction includes three frames. 

3. Market-Feed emulates tracking the current market activity with a mix of one percent. 

It is a single-frame transaction.  

4. Market-Watch emulates a customer tracking the current daily trend of a collection of 

securities. The transaction has a mix of 18 percent and includes one frame. 
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5. Security-Detail represents a customer investigating a security before deciding about 

executing a trade. This single-frame transaction comprises 14 percent of total 

transactions. 

6. Trade-Lookup exhibits information retrieval by a customer or a broker to analyze a 

set of trades. This transaction comprises of four frames and incorporates eight percent 

of the whole transactions. 

7. Trade-Order is designed to imitate a customer, broker, or authorized third-party that 

sells or buys a security. The trading person can trade at the current market price or 

place a limit order. Transactions of this type take in 10.1 percent of the total mix. 

Also, it encompasses six frames. 

8. Trade-Result emulates the process of finalizing a stock market trade within six 

frames. The transaction involves 10 percent of the total mix. 

9. Trade-Status is a single-frame transaction with 19 percent mix percentage that 

portrays a customer checking a summary of the recent trading actions for one of their 

accounts. 

10. Trade-Update is a transaction with three frames which emulates the process of 

updating a set of trades. In total, 2 percent of total transactions are of this type. 

 

As mentioned earlier, TPC-E imposes constraints on response times during the measurement 

interval. According to the benchmark’s specification, 90 percent of the Trade-Status 

transactions must be completed within 1 second. Likewise, the Market-Feed, Trade-Order, 

and Trade-Result transactions must have a response time below two seconds. All other 

transactions that are part of the maintained transaction mix have a required response time 

within the bounds of three seconds. Besides the mentioned transactions, there are two other 

transactions which are not a part of the mixed transactions including Data-Maintenance and 

Trade-Cleanup. The Data-Maintenance is a time-triggered transaction that must be invoked 

once each minute and completed in 55 seconds or less. It emulates periodic modifications to 

the database and is similar to updating data that seldom changes. The Trade-Cleanup 

transaction runs once at the start of test-run and cancels pending or submitted trades from 

the database. [61] 
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2.5.2 TPC-E Required Isolation Levels 

 

The benchmark demands to enforce full ACID properties during the test run. TPC-E defines 

four concurrency anomalies: Dirty-read, dirty-write, non-repeatable read, and phantom read. 

The dirty-write phenomenon happens while a transaction can modify an intermediate, 

uncommitted data element from another transaction and commit the changes. In the same 

way, the dirty-read occurs when a transaction can access any intermediate, uncommitted data 

element from another transaction. The non-repeatable read occurs, when a data element is 

retrieved twice during a transaction, and the values differ between reads. Finally, the 

phantom read happens, when two identical read queries in a transaction obtain different sets 

of data elements. [61] 

 

According to [61],  three types of isolations must be retained during a test run. The dirty-

read and dirty-write anomalies must not occur in the Broker-Volume, Customer-Position, 

Data-Maintenance, Market-Watch, Security-Detail, Trade-Lookup, and Trade-Status 

transactions. The Market-Feed and Trade-Order transactions should also be isolated from 

the non-repeatable reads. Besides, the Trade-Result transactions should keep the highest 

level of isolation and be prevented from the phantom reads. 

 

2.5.3 Scaling the Benchmark 

 

TPC-E has three primary metrics including a performance metric, a price metric, and an 

availability date. The price metric is TPC-E three years pricing divided by the reported 

throughput. The availability date is the date that all products required to achieve the reported 

throughput will be available. The performance metric is of particular interest to the thesis; 

more explicitly, the other metrics are ignored. The performance metric is expressed in 

transactions-per-second-E (tpsE). The tpsE is calculated by the number of Trade-Result 

transactions that complete in a one-minute interval divided by 60. Measuring the throughput 

should be done during a measurement interval with at least 120 minutes. Besides, the 

measurement interval must entirely occur during steady state. The computed throughput 

during the measurement interval is called measured throughput. [61] 
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The benchmark database schema includes 33 tables which can be classified into four groups: 

Customer, broker, market, and dimension. The customer tables contain customer-related 

data. The broker tables keep the data related to the brokerage firm and brokers. In addition, 

the market tables store data for the financial market like exchanges, companies, and 

securities. The dimension tables contain generic information such as addresses and zip 

codes. The benchmark also enforces referential integrity (i.e., primary keys and foreign 

keys). [61] 

 

As stated by the benchmark, the measured throughput should scale with the database size; 

to maintain throughput proportional to database size, more customers, and their associated 

data must be set up. The cardinality of the CUSTOMER table is the base for database sizing 

and scaling. The minimum cardinality for the table is 5000, and it can be increased in 

increments of 1000 customers (called load unit). For each load unit, 20 percent of the 

customers belong to Tier1, 60 percent to Tier2, and others to Tier3. Tier1 customers have an 

average of 2.5 accounts while the Tier2 customers have averagely five accounts. Customers 

of Tier3 have 7.5 accounts on average. Tier2 Customers trade twice as often as customers in 

Tier1. In the same way, Tier3 customer trade three times as often as Tier1 customers. TPC-

E benchmark defines three types of tables: Fixed, scaling, and growing tables. The fixed 

tables have a fixed cardinality regardless of the database size. Moreover, the scaling tables 

have a defined cardinality with a constant relationship to the number of rows in the 

CUSTOMER table. Finally, the growing tables have an initial cardinality with a defined 

relationship to the number of customers. However, the growing tables increase at a rate that 

is relative to transaction throughput rates. [61] 

 

TPC-E defines the concept of a nominal throughput. The nominal throughput is calculated 

based on the number of customers configured for data generation. The nominal throughput 

for every 1000 customers is equal to 2.00 tpsE. For instance, a database configuration with 

5000 customers has a 10.00 tpsE nominal throughput. The measured throughput should be 

in the range of 80% to 102% of the nominal throughput. Similarly, the measured throughput 

for the database sized for 5000 customers must be in the range of 8.00 tpsE and 10.20 tpsE. 

If the measured throughput is between 80% and 100% of the nominal throughput, the 

measured throughput should be reported as the gained performance. If the measured 
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throughput is between 100% and 102% of the nominal throughput, the nominal throughput 

must be reported as the achieved performance. All other values are not valid results and 

should not be reported. [61] 

 

2.5.4 TPC-E Functional Components 

 

Functional components of the benchmark can be divided into a Driver and SUT. The Driver 

includes three pieces: Customer emulator (CE), Market Exchange Emulator (MEE), and 

Data-Maintenance (DM) generator. The CE emulates customers interacting with the 

brokerage house. The CE Driver generates transactions and their inputs, submits them to the 

SUT, receives the transaction responses from SUT, and measures the response times. In the 

same way, the MEE emulates stock exchanges; it receives trade request from the SUT and 

simulates the behavior of the market. The MEE initiates market-triggered transactions (i.e., 

Trade-Result and Market-Feed), sends the transactions to the SUT, and measures the 

response times. The DM generator simulates the periodic Data-Maintenance transactions. It 

generates data for and executes the Data-Maintenance transaction while supplies an interface 

to invoke the Trade-Cleanup transaction once prior to the test-run. The Driver focuses on the 

essential transactional performance; application functions linked to user interface and 

display have been excluded from the benchmark. [61] 

 

The SUT is defined to be the sum of two tiers: Tier A and Tier B. The Tier A operates as an 

intermediary (i.e., application layer) between the Driver and the database server. The 

database server is called Tier B. TPC-E mandates the use of a network between Driver and 

Tier A. It is possible for the Driver and SUT to share implementation resources providing 

that the Driver and Tier A communicate through a network layer. Also, the benchmark 

permits using both synchronous and asynchronous network architecture for the 

communication between the Driver and Tier A. [61] 
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3 TPC-E BENCHMARK IMPLEMENTATION FOR SAP HANA 

 

TPC-E comes with a software package to facilitate the benchmark implementation; the 

software package is called EGen and implemented in C++. In fact, EGen is a software 

environment that must be used in the implementation of the benchmark. Figure 18 

demonstrates the functional components of an implemented TPC-E test configuration. The 

core components of the EGen are EGenLoader, EGenDriver, and EGenTxnHarness. The 

EGenLoader is the part of EGen that generates the initial data to populate the database. The 

EGenLoader uses several text files (i.e., EGenInputFiles) to generate the data, and it comes 

with two data loaders, one that generates flat files, and the other that provides functionality 

for direct loading of a Microsoft SQL Server database via Open Database Connectivity 

(ODBC) interface. The EGenDriver aids the implementation of the benchmark’s driver. It 

uses the EGenInputFiles to generate the transactions inputs. It has three classes: 

EGenDriverCE (Customer Emulator), EGenDriverMEE (Market Exchange Emulator), and 

EGenDriverDM (Data Maintenance Generator). Furthermore, the EGenTxnHarness defines 

a set of interfaces that should be implemented by the benchmark sponsor (the company 

officially submitting the results). These interfaces control the invocation of the transactions’ 

frames according to the input generated by the EGenDriver. [61] 

 

 

Figure 18 Functional Components of the TPC-E Test Configuration [61] 

 

As shown in Figure 18, a sponsor is accountable for writing the code to implement these 

functionalities: The test driver, the emulators, the network connectors (i.e., EGenDriver 

Connector and EGenTxnHarness Connector), and the defined EGenTxnHarness interfaces. 
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The EGenDriver Connector is invoked from the EGenDriver and is responsible for sending 

the generated transactions data to, and receiving the corresponding resulting data from, the 

EGenTxnHarness Connector through the network. The EGenTxnHarness Connector 

receives the transactions data from the EGenDriver Connector and communicates with 

EGenTxnHarness via a TPC defined interface. In the same way, the EGenTxnHarness 

invokes the sponsor’s implementation of the transactions frame and return the resultant data 

to the EGenTxnHarness Connector. [61] 

 

In this work, all of the necessary functionality to be provided by a sponsor to run TPC-E 

against SAP HANA are implemented. The benchmark is implemented using C++ and 

SQLScript. C++ is used to code the sponsor-provided functionalities while SQLScript is 

applied to implement the transactions’ frames. Our TPC-E implementation consists of 

almost 11000 lines of C++ code and 2000 lines of SQLScript code. In total, several primary 

modules collaborate to provide the functional requirements of the benchmark, as described 

in the following subsections.  

 

3.1 Data Loader 
 

An extended database loader is implemented via the EGenLoader. The extended loader can 

be employed for generating the flat files, bulk importing from the flat files into HANA or a 

combination of both operations. Data generation and data import are separated to provide 

more flexibility since the data generation is time-consuming and can be done only once.  

 

The data generation is implemented by using the CGenerateAndLoad class shipped with the 

EGenLoader. The class delivers routines for generating and loading the data tables which 

among them we used only the data generation interfaces. The data generation can be 

configured by command line arguments to generate fixed, scaling, growing tables or a 

mixture of them.  

 

The data import is completed in five stages. First, the tables are generated in a schema called 

TPCE. In HANA, databases can be divided into logical sub-databases known as a schema. 

After generating the TPCE schema, the loader imports the delimited flat files using IMPORT 

FROM statement supported by HANA. Then, the TPC-E referential integrity constraints are 
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enforced at the third step. Afterwards, several indexes are generated to speed up the search 

operations. Finally, the transactions’ procedures are created in the database. The data loader 

uses HANA ODBC driver to communicate with the DBMS. 

 

 

3.2 Common Functionalities 
 

There are several functionalities in the benchmark which are shared between the driver and 

Tier A (the application layer). The common functionalities can be classified into multi-

tasking, networking, and logging features. This section briefly explains the design principles 

and architectural choices applied to them. 

 

Firstly, some parts of the benchmark demand parallel execution. For example, a multi-

threading architecture is necessary for replicating CEs and MEEs as single instances of the 

customer emulator and market exchange emulator can achieve a limited throughput 

compared to the nominal throughput. The job execution framework of the HANA DBMS 

kernel is utilized for thread pooling and running job nodes. The job execution framework is 

NUMA-aware and exploits task scheduling to prevent CPU saturation. The classes that 

define job nodes follow a naming convention; the job node classes end with a ‘JobNode’ 

postfix like DMJobNode, CEJobNode, and MEEJobNode. The job node classes should 

inherit from a base class and implement a pure virtual function named run. The run function 

contains the code that needs to be executed as a parallel task. 

 

As mentioned before, TPC-E demands a mandatory network layer between the driver and 

the Tier A. Two class named CNetworkServer and CClientConnector are implemented to 

handle streaming data over network sockets. The CClientConnector is the class used for 

transmitting transaction requests and transaction orders over the network (from driver to the 

Tier A, and from the Tier A to MEE server). SendReqReceiveResp is the method 

implemented for sending the requests and receiving the response. Before the transmission, 

the transactions are serialized into a union data type. CNetworkServer class is responsible 

for receiving the request from the network client, processing the request, and sending back 

the results. The network server class uses synchronous data transfer architecture; however, 

a job is executed upon receiving each request to prevent blocking concurrent requests. The 
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CNetworkServer can be launched by calling the run method. After receiving any request, it 

calls the processMessage method of the derived class (the processMessage is defined as a 

pure virtual function class inside CNetworkServer). 

 

Furthermore, a class named BenchMLogger is implemented for logging transactions’ 

response times. The log files later can be employed to analyze the validity of the results. It 

uses a TPC-provided class (CEGenLogger) for data logging. In other words, BenchMLogger 

is a decorator class extending CEGenLogger. 

 

3.3 Driver 
 

The driver is mainly responsible for: 1) Executing the Trade-Cleanup transaction prior to the 

test-run; 2) Emulating the customers (CE); 3) Emulating the market exchange (MEE); 4) 

Executing the time-triggered Data-Maintenance transaction; 5) Measuring and logging the 

response times. Figure 19 demonstrates the structure of the primary classes and their 

essential attributes and methods. 

BenchTPCERunner

+ startRun()

CEJobNode

+run()

DMJobNode

+run()

CMEEServer

#meeQeue : Queue

+ProcessMessage()

CNetworkServer

+ run()

CClientConnector

+ SendReqReceiveResp ()

MEEJobNode

+run()

TPCE::
CMEESutInterface

+ BrokerVolume()

HDBMEESUTConnector

TPCE::
CMEESUTInterface

+ TradeResult()

TPCE::CCE

+ doTxn()

TPCE::CDM

+ doTxn()

TPCE:CMEE

+submitTradeRequest()

HDBCESUTConnector

HDBDMSUTConnector

TPCE::
CDMSutInterface

+ DataMaintenance()

+startMEEJobExecutor()

+ processMessage()

BenchMLogger

+ logElapsedTime()

+ CustomerPosition()
+ MarketWatch()
+ SecurityDetail()
+ TradeLookup()
+ TradeOrder()
+ TradeStatus()
+ TradeUpdate()

+ TradeCleanup()

+ MarketFeed()

+ DoCleanupTxn()

# mutex : Mutex

 
Figure 19 High-level class diagram of the implemented driver 
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As shown in the class diagram, BenchTPCERunner is the class implemented for launching 

and orchestrating the test run. It executes job nodes of data maintenance (DMJobNode) and 

customer emulator (CEJobNode). It also starts the market exchange emulator server 

(CMEEServer). 

 

DMJobNode is the job node for executing Trade-Cleanup and Data-Maintenance 

transactions. The job node is dispatched only once (single thread) and calls the methods of 

the CDM class. CDM class is a part of EGen package and delivers the data maintenance and 

trade cleanup operations by CDM::DoTxn and CDM::DoCleanupTxn member functions. 

The Data-Maintenance transaction is a time-triggered transaction called in intervals of 60 

seconds. The CDM receives a class derived from CDMSutInterface in its constructor; 

HDBDMSUTConnector class is implemented to transmit data-maintenance and trad-

cleanup transaction requests to the Tier A. The class logs the response times and response 

values into the corresponding log file. 

 

To achieve the necessary nominal throughput, there can be multiple instances of customer 

emulator and market exchange emulator. The number of threads is configurable using the 

driver’s command line arguments. Each CE thread cycles through calling DoTxn member 

function of an instantiated CCE class. The CCE class is a part of EGen software package 

and generates the next transaction type and its required inputs. The produced transaction data 

is then sent to the HDBCESUTConnector class. HDBCESUTConnector realizes 

CMEESutInterface (an interface provided by TPC); it is in charge of sending customer-

initiated transactions to the SUT, receiving the results, measuring the response times, data 

logging through an instance of BenchMLogger. 

 

The implemented CMEEServer listens on a specified network port and receives the trade 

requests from the brokerage house. The MEE enqueues any received trade request to a queue 

shared among the MEE job nodes (i.e., threads). The threads continuously check the queue 

and try to dequeue a trade result from the queue. A mutex is used to protect the shared queue 

from being simultaneously accessed by the multiple threads. The MEE passes the request to 

the brokerage house via HDBMEESUTConnector (an implementation of 

CMEESUTInterface interface). 
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3.4 Tier A 
 

Figure 20 shows the structure of the primary classes and their important attributes and 

methods used in the Tier A (also called application layer). CTxnHarnessConnector is 

primarily accountable for listening on a specific network port. The class inherits from 

CNetworkServer; it checks the transaction type upon receiving any customer-initiated or 

market-triggered transaction. Subsequently, CTxnHarnessConnector instantiates a TPC-

provided class corresponding to the requested transaction. The instantiated classed can be of 

types: CBrokerVolume, CCustomerPosition, CDataMaintenance, CMarketFeed, 

CMarketWatch, CSecurityDetail, CTradeCleanup, CTradeLookup, CTradeOrder, 

CTradeResult, CTradeStatus, or CTradeUpdate. Any of these classes requires implementing 

a class conforming a specific interface. For instance, CBrokerVolume requires an 

implementation of CBrokerVolumeDBInterface (HdbBrokerVolume in our 

implementation). The classes in the class diagram starting with “Hdb” are implementations 

for specific interfaces. The Hdb-starting classes receive transactions’ inputs, bind stored 

procedures’ parameters, and call the equivalent stored procedure using ODBC. Finally, the 

Hdb-starting classes return transactions output to CTxnHarnessConnector. The stored 

procedures are implements in SQLScript language (see section 2.4.4). In total, 30 stored 

procedures incorporate the benchmark’s transactions. 

 

As shown in the application layer’s class diagram, two classes (i.e., CMarketFeed and 

CTradeOrder) contain references to CSendToMarket class. The CSendToMarket class 

inherits from CClientConnector and CSendToMarketInterface; it controls sending trade 

requests to market exchange emulator server (via SendToMarket member function) through 

the network.  
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CTxnHarnessConnector

+ProcessMessage()

CNetworkServer

+ run()
- processMessage()

TPCE::CBrokerVolumeDBInterface

+ DoBrokerVolumeFrame1()

HdbCustomerPosition
TPCE::CCustomerPositionDBInterface

+DoCustomerPositionFrame1()

+DoCustomerPositionFrame2()

+DoCustomerPositionFrame3()

HdbDataMaintenance

TPCE::CDataMaintenanceDBInterface

+DoDataMaintenanceFrame1()
HdbMarketFeed

TPCE::CMarketFeedDBInterface

+DoMarketFeedFrame1()

HdbMarketWatch

TPCE::CMarketWatchDBInterface

+DoMarketWatchFrame1()

HdbSecurityDetail

TPCE::CSecurityDetailDBInterface

+ DoSecurityDetailFrame1()

HdbTradeCleanup

TPCE::CTradeCleanupDBInterface

+ DoTradeCleanupFrame1()

HdbTradeLookup

TPCE::CTradeLookupDBInterface

+ DoTradeLookupFrame1()

+ DoTradeLookupFrame2()

+ DoTradeLookupFrame3()

+ DoTradeLookupFrame4()

HdbTradeOrder

TPCE::CTradeOrderDBInterface

+ DoTradeOrderFrame1()

+ DoTradeOrderFrame2()

+ DoTradeOrderFrame3()

+ DoTradeOrderFrame4()

+ DoTradeOrderFrame5()

+ DoTradeOrderFrame6()

HdbTradeResult

TPCE::CTradeResultDBInterface

+ DoTradeStatusFrame1()

+ DoTradeResultFrame2()

+ DoTradeResultFrame3()

+ DoTradeResultFrame4()

+ DoTradeResultFrame5()

+ DoTradeResultFrame6()

HdbTradeStatus

TPCE::CTradeStatusDBInterface

+ DoTradeStatusFrame1()

HdbTradeUpdate

TPCE::CTradeUpdateDBInterface

+ DoTradeUpdateFrame1()

+ DoTradeUpdateFrame2()

+ DoTradeUpdateFrame3()

CSendToMarket

+ SendToMarket()

TPCE::CSendToMarketInterface

+ SendToMarket()

CClientConnector

+ SendReqReceiveResp ()

HdbBrokerVolume
TPCE::CBrokerVolume

+ DoTxn()

TPCE::CCustomerPosition

+ DoTxn()

TPCE::CDataMaintenance

+ DoTxn()

TPCE::CMarketFeed

+ DoTxn()

TPCE::CMarketWatch

+ DoTxn()

TPCE::CSecurityDetail

+ DoTxn()

TPCE::CTradeCleanup

+ DoTxn()

TPCE::CTradeLookup

+ DoTxn()

TPCE::CTradeOrder

+ DoTxn()

TPCE::CTradeResult

+ DoTxn()

TPCE::CTradeStatus

+ DoTxn()

TPCE::CTradeUpdate

+ DoTxn()

 
Figure 20 High-level class diagram of the implemented Tier A 
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4 EXPERIMENT 

 

This section explores the experiment’s results. First, the underlying experiment 

configuration is provided including the database management system and the hardware. 

Then, the benchmark is run against both row and columnar data stores to answer RQ1. 

Afterwards, the results of profiling are provided to explore RQ2. Finally, SQLScript is 

evaluated for OLTP workload (RQ3). 

 

4.1 Experiment Configuration 
 

4.1.1 Database Management System 

 

To launch the benchmark, a research version of SAP HANA 2 is used as the underlying 

database management system. In the experiment, the benchmark is configured with 20000 

customers (see section 2.5.3 for a detailed explanation about scaling the benchmark).  The 

reason for selecting 20000 customers is that higher number of customers demand complex 

hardware configurations (e.g., a server cluster with multiple terabytes of memory). 

Furthermore, data generation and import become significantly time-consuming while the 

number of customers increases. Also, a configuration with 20000 provides an acceptable 

initial database size. An initial trade days (ITD) of 300 days and a scale factor (SF) of 500 

are used for data generation. Table 5 shows the initial cardinality of tables after the database 

population. 

 

In total, the generated data for the database population amounts to 142 GB of raw flat files. 

The initial database size for storing the generated data in the columnar layout (aka column 

store) is 51 GB, and the initial size for storing the same data in the row-wise layout (aka row 

store) is 151 GB. The initial database size is the allocated space for storing all database 

entities including data, indexes, and database metadata [63]. Even though both the row-store 

and column store employ compression mechanisms to save space, the column store achieves 

a significant space saving compared to the row store (a factor of 2.96). This implicates the 

benefits of the columnar layout regarding memory saving as explained in section 2.2.4. 
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Table  Cardinality Table Cardinality 

ACCOUNT_PERMISSION 141.979 INDUSTRY 102 

ADDRESS 30.004 LAST_TRADE 13.700 

BROKER 200 NEWS_ITEM 20.000 

CASH_TRANSACTION 317.950.537 NEWS_XREF 20.000 

CHARGE 15 SECTOR 12 

COMMISION_RATE 240 SECURITY 13.700 

COMPANY 10.000 SETTLEMENT 345.600.000 

COMPANY_COMPETITOR 30.000 STATUS_TYPE 5 

CUSTOMER 20.000 TAXRATE 320 

CUSTOMER_ACCOUNT 100.000 TRADE 345.600.000 

CUSTOMER_TAXRATE 40.000 TRADE_HISTORY 829.434.764 

DAILY_MARKET 17.878.500 TRADE_REQUEST 0 

EXCHANGE 4 TRADE_TYPE 5 

FINANCIAL 200.000 WATCH_ITEM 1.999.003 

HOLDING 17.664.875 WATCH_LIST 20.000 

HOLDING_HISTORY 463.172.112 ZIP_CODE 14.741 

HOLDING_SUMMARY 993.000   

Table 5 Initial cardinality of tables 

 

 

4.1.2 Underlying Hardware 

 

A single server is utilized to execute the benchmark; the driver, Tier A, and Tier B share 

hardware resources. The server has four 10-core processors Intel Xeon Processor E7-4870 

at 2.40 GHz; in total, 80 hardware contexts are supported using hyper-threading. Each core 

has 32 KB L1d (i.e., L1 data cache), 32 KB L1i (i.e., L1 instruction cache), and 256 KB of 

L2 cache. Besides, each processor employs 30 MB of L3 cache that is shared among its 

cores. The processors incorporate four NUMA nodes (each node includes ten cores). Also, 

the server has 512 GB of RAM and 5.7 TB of rotating disks.  

 

The operating system (OS) installed on the server is a 64-bit SUSE Linux Enterprise Server 

12 with service pack 1 (SP1). The operating system runs a 3.12 Linux kernel. 

 

4.2 Throughput Evaluation 
 

The evaluation is run in two primary stages. First, the column store engine of HANA is used 

to evaluate the achievable throughput. Then, the benchmark is executed against the row store 

engine. The gained throughput is measure in tpsE (see section 2.5.3). Due to confidentiality 

concerns and SAP legal policies, we cannot disclose the absolute throughputs; the achieved 
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throughputs are normalized to a percent. This does not hinder us from presenting results of 

the experiment since the focus is on comparing the performance of the data stores. 

 

As discussed in section 3.3, the implemented driver receives the number of CEs and MEEs 

from the command line. This helps us to configure the number of threads to replicate 

customer emulators and market exchange emulators to generate the necessary nominal 

throughput for database size with 20000 customers. The nominal throughput for a database 

with 20000 customers is 40 tpsE (2.00 tpsE for every 1000 customers). Also, the measured 

throughput for such a database sizing must be in the range of 32 tpsE and 40.8 tpsE (80 to 

102 percent of the nominal throughput) according to the benchmark rules. Hence, the test is 

executed multiple times to find the number of threads necessary to achieve an acceptable 

measured throughput for the column store. During the experiment, a single instance of the 

driver configured with 35 threads of CE and five threads of MEE is used. The throughput 

evaluation incorporates several critical steps, as follows. 

 

1. The flat files are generated.  

2. The column store is populated via the data loader. 

3. The benchmark is performed against the columnar engine to measure its throughput. 

Each test run takes 140 minutes: one-minute ramp-up, 138 minutes of the 

measurement interval, and one-minute ramp-down. The test is repeated five times to 

achieve verifiable results. The throughput expressed in this thesis is the average of 

the five test-runs. 

4. The row store is populated using the loader. 

5. The procedure explained in step 3 is executed for the row store. 

 

The steps explained above will aid understanding how an in-memory columnar HTAP 

perform with OLTP workload comparing to the row store (RQ1).  

 

4.2.1 Achieved Throughput and Response-times 

 

As shown in Figure 21, the row-store engine outperforms the column-store engine for the 

OLTP workload with a 26% difference; the normalized throughput of the column-store is 



 

65 

 

74% of the achieved throughput for the row-store engine. The x-axis in the figure shows the 

achieved throughput in a percent scale. 

 
Figure 21 measured throughputs of the row-store and column-store engines 

 

While both test runs (column and row store engines) maintain the ninetieth percentile of the 

required response times, the valid response times are measured for two groups of 

transactions: read-only and read-write transactions. Figure 22 and Figure 23 render box plots 

of the response times per individual transactions for column store and row store engine. The 

y-axis in the figures sketches response times (log scale) while the x-axis includes boxes 

representing transactions grouped into the column and row store. The ends of the whiskers 

show the minimum and maximum response times. The bottom and top of the boxes show 

first and third quartiles, whereas the bands inside the boxes denote the medians. Also, the 

Trade-Cleanup transaction is omitted since it is executed only once at the beginning of the 

test run and does not affect the throughput. 

 
Figure 22 Response times of the read-only transactions 
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Figure 23 Response times of the read-write transactions 

 

As the figures illustrate, the minimum and maximum response times exhibit more variations 

in the column store due to three major reasons. Firstly, the column store applies a more 

aggressive parallelism. Secondly, the row-based operations dominance the workload; hence, 

accessing a single or a set of tuples demands more memory accesses in the column store (see 

section 2.2.4). Thirdly, the data manipulation language (DML) operations that constitute a 

significant part of the workload are more expensive for the column store. Table 6 and Table 

7 express the measured response times for individual transactions in the row and column 

store respectively. 

Response Times in Seconds 

Transaction Minimum Maximum First Quartile Median Third Quartile 

Broker-Volume 0.0114 0.8432 0.0194 0.0221 0.0260 

Customer-Position 0.0150 1.0536 0.0258 0.0306 0.0364 

Market-Feed 0.1196 1.1243 0.2602 0.2750 0.2910 

Market-Watch 0.0096 0.9030 0.0232 0.0458 0.0618 

Security-Detail 0.0139 0.9602 0.0202 0.0229 0.0266 

Trade-Lookup 0.0125 1.1019 0.0806 0.0885 0.1007 

Trade-Order 0.0375 1.3337 0.0522 0.0576 0.0639 

Trade-Result 0.0367 0.8119 0.0534 0.0578 0.0632 

Trade-Status 0.0176 0.9496 0.0351 0.0425 0.0540 

Trade-Update 0.0815 1.1832 0.1070 0.1207 0.1673 

Data-Maintenance 0.0107 0.2027 0.0150 0.0193 0.0262 

Table 6 Response times summary for the row store 

  



 

67 

 

 
Response Times in Seconds 

Transaction Minimum Maximum First Quartile Median Third Quartile 

Broker-Volume 0.0118 1.9577 0.0188 0.0214 0.0255 

Customer-Position 0.0150 2.7597 0.0251 0.0414 0.0729 

Market-Feed 0.1301 1.9863 0.1966 0.2093 0.2229 

Market-Watch 0.0171 2.0236 0.0338 0.0585 0.0701 

Security-Detail 0.0163 2.1202 0.0245 0.0274 0.0316 

Trade-Lookup 0.0159 2.2371 0.0961 0.1087 0.1221 

Trade-Order 0.0358 1.9998 0.0535 0.0591 0.0658 

Trade-Result 0.0396 1.9734 0.0590 0.0680 0.0778 

Trade-Status 0.0328 0.9983 0.0643 0.0724 0.0826 

Trade-Update 0.1159 2.7909 0.1811 0.2073 0.2363 

Data-Maintenance 0.0133 0.1134 0.0185 0.0219 0.0283 

Table 7 Response times summary for the column store 

 

Next section inspects how the workload breaks down into main components of HANA. 

 

4.3 Profiling Results 
 

HANA architecture consists of several servers; index server is one of the core components 

among them. The index-server consists of the in-memory data stores and data processing 

engines. During the test runs, a profiler embedded in HANA is employed as an instrument 

to collect information about the performance of the index server. The profiler operates by 

sampling the index server’s call-stacks at regular intervals. Using the profiler assist us in 

analyzing the call stacks and the processor time spent in individual function calls as well as 

identifying wait conditions. The output of the profiler is two graphs created via DOT [64] 

language: a wait graph and a processor utilization graph. Consequently, the profiling results’ 

contributions are twofold. First, it assists analyzing how OLTP workloads breakdown into 

key components of an HTAP system (RQ2). Second, the results aid identifying the 

bottlenecks affecting the benchmark throughput.  

 

The whole profiler graphs are not provided here since they are huge and cannot be fit in the 

text size. However, an excerpt of the profiling graph is given in Figure 24. Each node in the 

graph represents a process/function, and each edge denotes the calling relationship between 

a caller and a callee. The graph nodes include two numbers: ‘I’ is an abbreviation for 

inclusive time and ‘E’ stand for exclusive time. The inclusive time is the amount of processor 

time used by a function including the time spent in the child functions. On the other hand, 
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the exclusive time shows the amount of time spent purely in a function excluding the child 

functions. Also, the numbers next to the arrows show the percentage of CPU time spent in 

the child functions. Moreover, the more reddish boxes express the higher processor time 

spent in a function. In the figure, ptime::Query::_execute is the query execution function 

taking almost 62 percent of the total CPU time. It calls ptime::proc_update_trex::operator 

(the function responsible for SQL update statement), ptime::proc_delete_trex::operator (the 

function corresponding to SQL delete statement), and ptime::proc_insert_trex::operator 

(the function applying SQL insert statement). By looking at the graph, it can be understood 

that 6.8% of the processor time is taken for DML operations (4.4% update + 1% delete + 

1.4% insert). The main findings of the profiling process are explained in the next subsections. 

 

 

Figure 24 An excerpt of the profile graph for the column store 

  



 

69 

 

4.3.1 Workload Decomposition 

 

The benchmark’s workload breakdown is shown in Figure 25 and Figure 26 for the column 

store and the row store. Only the main cost drivers are included in the charts because the 

focus is on the key drivers (miscellaneous costs are shown as others in the figures). The key 

drivers are classified into sorting operation, data store access and predicate evaluation, 

memory management, DML operations, query compilation and validation, network transfer 

and communication, SQLScript execution and overhead, and index access and join 

processing. 

  

 
Figure 25 Workload breakdown for the row store engine 
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Figure 26 Workload breakdown for the column store engine 

 

As shown in the figures, query compilation and validation incorporates a significant part 

(roughly 15%) of the workload for both engines. The query compilation comprises activities 

such as looking up in the HANA SQL plan cache, compiling queries, and query validation. 

The primary reason for the costly query compilation is due to the iterative nature of TPC-E 

transactions; we identified a typical pattern among most of the transactions. All TPC-E 

transactions except the Broker-Volume and Trade-Status require at least one form of 

iterative constructs (e.g., conditional statements, loops, and cursors). This matter is explained 

in detail in section 4.4. 

 

Besides, index access and join processing constitute almost 13.5% of the workload for both 

engines. This includes tasks like scanning indexes, index range scan, and join evaluations.  

While implementing the transactions, the transactions are analyzed regarding predicates and 
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Also, data-store access and predicate evaluation is another cost driver of the experiment 

workload. The store access and predicate evaluation take 11.1% of the total processor time 

for the column store and 13.8% for the row store. This includes both sargable (i.e., predicates 

that could take advantage of indexes to accelerate query execution) and non-sargable 

predicates.  

 

Furthermore, 13% of the CPU time is spent in memory management for the column store. 

The memory management takes 10.8% of the processor time for the row store. HANA 

utilizes a memory manager which pre-allocate and manages memory pools. Memory 

management mostly consists of memory allocation and deallocation. It is worth mentioning 

that the memory management and query compilation costs are intertwined; the less query 

compilation decreases the overhead of memory allocation. 

 

Besides, network transfer and communication is also a key part consuming 11.6% of the 

processor time for the column store and 12.3% for the row store. This includes accepting 

new network connections, session management, and data transfer. 

 

Furthermore, almost nine percent of the total processor time is spent for sorting operations 

during the benchmark run (8.7% for the column store and 8% for the row store). This can be 

justified by the fact that majority of the transactions (all except Market-Watch) include at 

least one ORDER BY clause (for intermediate tables and/or final results). 

 

In addition, DML handling constitutes 6.8% of the workload for the column store and 6.2% 

for the row store. This includes insert, update, and delete operations. Finally, execution of 

the SQLScript procedures and the overhead of the execution (e.g., converting arguments, 

binding intermediate results to internal tables, and creating contexts to store data globally) 

incorporate 7% of the total workload for the column store and 4.1% for the row store engine. 
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4.3.2 Checkpointing and Recovery 

 

HANA uses a persistence layer server to store a persistent copy of data and transaction logs; 

they ensure database recovery after failures such as crashes and power loss. In HANA, all 

changed pages are persisted to disk periodically (called savepoint or checkpoint). However, 

the periodical savepoints by themselves cannot guarantee the durability of all changes since 

persistence is not synchronized with the end of write transactions. Hence, the system stores 

log files (redo logs and undo information); the redo log contains committed changes while 

the undo log stores entries about rolled-back changes. The log entries are persisted while a 

transaction is committed or rolled-back. [65] 

 

During a recovery process, HANA performs a log replay process upon the last version of the 

persisted data to store database to a consistent state. It should be mentioned that the recovery 

process is possible even without running checkpoints since logs can be replayed upon the 

initial version of the persistent data (the version of data loaded into memory). Nevertheless, 

periodical save-points accelerate the recovery process because fewer log entries must be 

replayed. The checkpointing interval is by default 300 seconds, yet it can be configured or 

even disabled. [65] 

 

The checkpointing in HANA includes three stages: A page-flush, a critical, and a post-

critical phase. During the page-flush, all modified pages are identified and written to disk. 

Next, all changes made throughout the page-flush stage are written to disk asynchronously 

in the critical phase. Also, the current log position is altered and stored on disk through the 

critical phase. While running the critical phase, all concurrent update transactions are 

blocked. Lastly, the post-critical phase waits for finishing all the asynchronous I/O 

operations and marks the save-point as complete. [65] 

 

In the initial runs of the benchmark, it was found out that the checkpointing process causes 

fluctuations during the benchmark’s steady state. Thus, the checkpointing interval is changed 

in several steps to understand effects of the checkpointing on the test run. First, the 

benchmark is run with checkpointing every five minutes as shown in Figure 27. The x-axis 

in the figure shows the elapsed time while the y-axis demonstrates the achieved throughput 

(the throughput is normalized to 100). Then, the checkpointing interval is increased to ten 



 

73 

 

minutes (see Figure 28). Afterwards, the checkpointing interval is expanded to 60 minutes 

as can be seen in Figure 29. Finally, Figure 30 exhibits the experiment run graph while 

checkpointing is disabled. The graphs manifest running experiment on the row store, yet, the 

instabilities also exist with the column store. 

 

 
Figure 27 Experiment run graph with checkpointing at intervals of 5-minute 

 

 

 
Figure 28  Experiment run graph with checkpointing at intervals of 10-minute 
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Figure 29  Experiment run graph with checkpointing at intervals of 60-minute 

 

 

 
Figure 30  Experiment run graph while checkpointing is disabled 

 

 

The figures validate implication of the checkpoints on the experiment. To begin with, the 

number of variations drops by enlarging the checkpoint intervals; though, the duration of the 

fluctuations increase since more changes must be synchronized each time. Also, the 

fluctuations are diminished by disabling the checkpoints. 

 

The throughputs explained in section 4.2 are measured without checkpointing. The 

checkpointing issues mostly stem from poor I/O performance; the underlying server used for 
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the experiment employs rotating disks. Consequently, using more performant non-volatile 

storages like solid-state drive (SSD) might alleviate the issue. However, future work is 

needed to establish this. At the time, SAP is adopting non-volatile RAM (called NVRAM or 

NVM) technologies like Intel 3D XPoint in HANA’s architecture [66]. There is room for 

further research in determining how using the NVRAM technologies could alleviate the 

throughput variations during the experiment. 

 

4.4 SQLScript Evaluation for OLTP Workload 
 

Relational databases traditionally offer imperative language extensions using a dialect of 

SQL such as Procedural Language/Structured Query Language(PL/SQL), Transact-SQL(T-

SQL), and SQLScript [60]. Even though the offered iterative extensions ease pushing 

application logic to the database, performance requirements also of concern while using such 

constructs. The performance requirements play a crucial factor for OLTP workloads. In this 

section, it is explored how optimal an HTAP-oriented stored procedure language like 

SQLScript is for OLTP workloads (RQ3). 

 

During the experiment, it was found out that query compilation and validation is one of the 

major cost drivers while running the benchmark (roughly 15% of the total processor time). 

Therefore, this matter was investigated in a greater detail, and the iterative nature of TPC-E 

transactions turned out to be the primary reason of the costly query compilations. We 

identified a typical pattern among most of the transactions; all TPC-E transactions except 

the Broker-Volume and Trade-Status require at least one form of iterative constructs (e.g., 

conditional statements, loops, and cursors). Put it differently, SQLScript provides a 

suboptimal performance for queries of this kind. In some situations, iterative-approach can 

be converted to a set-based logic; however, this is not always possible. For instance, FOR 

loops containing dependent SQL statements are less probable to be converted into a set-

based logic. Hence, it was decided to produce a simplified version of the situation and 

examine our theory using it. 

 

Two exemplified transactions are built on top of TPC-E schema called L1 and L2. L1 and 

L2 access four tables of TPC-E schema as shown in Figure 31. The only change made to the 

TPC-E schema is dropping the primary key from the TRADE_HISTORY table since it is 
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needed to insert non-unique data into the table. The initial cardinality of the TRADE and 

SETTLEMENT tables are roughly 345.600.000 records while the cardinality is 830.000.000 

records for the TRADE_HISTORY table. Also, the TRADE_TYPE relation contains five 

records. 

 

 

Figure 31 ER diagram of the tables accessed by L1 and L2 

 

L1 is a read-only transaction that retrieves trade and settlement information about a set of 

trades. The transaction receives an integer (ids_count) indicating the number of trade IDs 

which should fetch information about. The transaction first fetches the trade IDs into a table 

variable named trade_ids. Then, it retrieves the trade and settlement information about the 

IDs stored in the trade_ids. The transaction is implemented using two approaches. First, an 

iterative approach (by means of a FOR loop) is used to fetch the information record by record 

as shown in Figure 32 (a); the procedure is called L1_Iteration. Secondly, L1 is implemented 

as a procedure called L1_SetBased and using SQL set-based paradigm (Figure 32- b). 
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CREATE PROCEDURE L1_Iteration(IN ids_count INT) 

LANGUAGE SQLSCRIPT AS 

BEGIN 
DECLARE i INT; 

DECLARE trade_ids TABLE(tid BIGINT); 

DECLARE trade_id BIGINT; 

 

trade_ids = SELECT TOP : ids_count T_ID as tid FROM TRADE;           

 

FOR i IN 1.. ids_count DO 

      trade_id = :trade_ids.tid[:i]; 

 

       SELECT T_BID_PRICE, T_EXEC_NAME, T_IS_CASH,   

       TT_IS_MRKT, T_TRADE_PRICE 

       FROM TRADE, TRADE_TYPE WHERE T_ID = :trade_id  

       AND T_TT_ID = TT_ID; 

 

       SELECT SE_AMT, SE_CASH_DUE_DATE, SE_CASH_TYPE 

       FROM SETTLEMENT WHERE SE_T_ID = :trade_id; 

 

END FOR; 

 

END; 

CREATE PROCEDURE L1_SetBased(IN ids_count INT) 

LANGUAGE SQLSCRIPT AS 

BEGIN 
DECLARE i INT; 

DECLARE trade_ids TABLE(id BIGINT); 

 

trade_ids = SELECT TOP : ids_count T_ID as id FROM TRADE; 

 

SELECT T_BID_PRICE, T_EXEC_NAME, T_IS_CASH, 

TT_IS_MRKT, T_TRADE_PRICE 

FROM TRADE, TRADE_TYPE WHERE T_ID in  

(select id from :trade_ids) AND T_TT_ID = TT_ID; 

 

SELECT SE_AMT, SE_CASH_DUE_DATE, SE_CASH_TYPE 

FROM SETTLEMENT WHERE SE_T_ID in  

(select id from :trade_ids); 

 

END; 

(a) (a) 

Figure 32 (a) L1 implementation using iterative constructs, (b) L1 implementation using a set-based approach 

 

In addition, L2 is a read-write transaction that updates timestamp of the trades (T_DTS) and 

inserts the updated trade information into the TRADE_HISTORY table. Just like L1, the 

transaction receives an integer (ids_count) expressing the number of trades which have to be 

updated. The transaction is implemented using three styles. First, an iterative approach (by 

a FOR loop) is used to retrieve the information record by record as shown in Figure 33(a); 

the procedure is called L2_Iteration. The L2_Iteration procedure performs L2 in a single-

tuple-at-a-time fashion; SELECT, UPDATE, and INSERT operations are iteratively 

performed in a loop. Furthermore, another implementation of L2 is provided in Figure 33(b). 

The procedure is named L2_Mixed and differs from L2_Iteration in the way it handles 

UPDATE operations; IDs of the trades are stored in a table variable (inserts_itab), and the 

update operation is executed in a single execution. Finally, the L2_SetBased procedure 

(Figure 33 - c) performs L2 using a SQL set-based approach (Figure 32- b). 
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CREATE PROCEDURE L2_Iteration(IN ids_count INT,  

OUT updated INT, OUT inserted INT)  

LANGUAGE SQLSCRIPT AS 

BEGIN 

 

DECLARE now_dts SECONDDATE; 

DECLARE i INT; 

DECLARE tid BIGINT; 

 

updated = 0; 

inserted = 0; 

now_dts = NOW(); 

 

FOR i IN 1.. ids_count DO 

       SELECT TOP 1 T_ID INTO tid FROM TPCE."TRADE"  

       WHERE T_DTS != :now_dts; 

 

        UPDATE TPCE."TRADE" SET T_DTS = :now_dts WHERE  

        T_ID = :tid; 

         

        updated = updated + ::ROWCOUNT; 

 

         INSERT INTO TPCE."TRADE_HISTORY" 

         (TH_T_ID, TH_DTS, TH_ST_ID)  

         VALUES(tid, :now_dts, 'SBMT'); 

         inserted = inserted + ::ROWCOUNT; 

          

          SELECT tid from dummy; 

END FOR; 

 

COMMIT; 

END; 

CREATE PROCEDURE L2_Mixed(IN ids_count INT,  

OUT updated INT, OUT inserted INT)  

LANGUAGE SQLSCRIPT AS 

BEGIN 

 

DECLARE now_dts SECONDDATE; 

DECLARE i INT; 

DECLARE tid BIGINT; 

DECLARE inserts_itab TABLE(id BIGINT, dts SECONDDATE, 

status VARCHAR(4)); 

 

updated = 0; 

inserted = 0; 

now_dts = NOW(); 

 

FOR i IN 1.. ids_count DO 

      SELECT TOP 1 T_ID INTO tid FROM TPCE."TRADE"  

      WHERE T_DTS != :now_dts; 

       

      UPDATE TPCE."TRADE" SET T_DTS = :now_dts WHERE  

      T_ID = :tid; 

      updated = updated + ::ROWCOUNT; 

 

      :inserts_itab.insert((:tid, :now_dts, 'SBMT')); 

END FOR; 

 

INSERT INTO TPCE."TRADE_HISTORY"(TH_T_ID, TH_DTS, 

TH_ST_ID) SELECT id, dts, status FROM :inserts_itab; 

inserted = inserted + ::ROWCOUNT; 

 

COMMIT; 

 

SELECT id from :inserts_itab; 

END; 

(a) (b) 
CREATE PROCEDURE L2_SetBased(IN ids_count INT, OUT updated INT, OUT inserted INT)  LANGUAGE SQLSCRIPT AS 

BEGIN 

 

DECLARE now_dts SECONDDATE; 

DECLARE i INT; 

DECLARE trades TABLE(id BIGINT, dts SECONDDATE, status VARCHAR(4)); 

 

updated = 0; 

inserted = 0; 

now_dts = NOW(); 

 

trades = SELECT TOP : ids_count T_ID as id, :now_dts as dts, 'SBMT' as status FROM TPCE."TRADE" WHERE T_DTS != :now_dts; 

 

UPDATE TPCE."TRADE" SET T_DTS = :now_dts WHERE T_ID in (SELECT id from :trades); 

updated = updated + ::ROWCOUNT; 

 
INSERT INTO TPCE."TRADE_HISTORY"(TH_T_ID, TH_DTS, TH_ST_ID) SELECT id, dts, status FROM :trades; 

inserted = inserted + ::ROWCOUNT; 

 

COMMIT; 

 

SELECT id from :trades; 

END; 

(c) 
Figure 33 (a) L2 implementation using iterative constructs, (b) L2 implementation using a mixed approach, (c) 

L2 implementation using a set-based approach 

 

The L1 and L2 procedures are called with an increasing sequence of ids_count to 

comprehend how the procedures differ in connection with response times. It also facilitates 

understanding how increasing the ids_count correspond with the procedures’ response times. 

A client application is implemented using C++ to execute the procedures and measure 

response times. To achieve verifiable results, each procedure is called 100 times and the 

average response time is reported. 
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Figure 34 portrays how the procedures performed in respect of response time. The x-axis 

characterizes a sequence of ids_count (number of trade IDs). The y-axis describes the 

response times (log2 scale). It is apparent from the figure that L1_SetBased and 

L2_SetBased outperform their counterparts. The set-based procedures also excel regarding 

the growth rate. While the running times for the procedures using iterative constructs 

increase almost linearly in relation to ids_count, the L1_SetBased and L2_SetBased grow at 

a sub-linear scale. Besides, despite the fact that L2_Mixed executes fewer SQL statements 

inside the loop (INSERT statement is done in a single execution), there is no significant 

difference between the performance of L2_Iteration and L2_Mixed. 

 

 

Figure 34 L1 and L2 response times 

 

The profiling tool explained in section 4.3 is applied to compare cost drivers while executing 

the L1_Iteration and L1_SetBased. It is shown that query compilation cost is orders of 

magnitudes higher for L1_Iteration; query compilation takes 4.5% and 19.5% of CPU 

service time for L1_SetBased and L1_Iteration respectively. The query compilation also 

affects memory management costs. The L1_Iteration takes 17% process time for memory 

allocation and deallocation while the costs are almost zero for L1_SetBased. The results 

validate our theory about the connection between query compilation cost and the iterative 

nature of TPC-E transactions. Accordingly, we strongly believe that the experiment’s 

throughput and workload decomposition dramatically improves if the benchmark 

transactions are converted to set-based approach. 
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Application logic is becoming more complex, and it is not always possible to implement the 

logic only via native SQL statements. To this end, languages like SQLScript could be 

equipped with some mechanisms converting imperative logic to pure SQL statements during 

query optimization. This is an important issue for future research; one optimization approach 

can be converting iterative SQL queries into SQL nested queries and set-based operation 

(like what is done in L1_SetBased and L2_SetBased manually) during query compilation 

and optimization. This also might require a dependence analysis (data dependency and 

control dependency) to determine whether operations inside iterative constructs can be un-

nested or unrolled. To this end, some studies [67, 68, 69] have been conducted to analyze 

identifying batch-safe iterations and replacing imperative loops with single batch calls. This 

impovement is picked up for future HANA development efforts. 
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5 CONCLUSION 

 

5.1 Scope and Background 
 

Typically, the “one size does not fit all” has been the dominant paradigm used to separate 

OLTP and OLAP data into different database management systems. Even though the 

separation could be advantageous, it also gives rise to several deficiencies like data 

redundancy and lack of real-time analytics. To blur boundaries between analytical and 

transactional data management systems, some disruptive approaches have been taken toward 

building HTAP systems. HTAP systems mostly rely on in-memory computation to present 

profound performance improvements. In addition, columnar data layout has become popular 

mainly for OLAP use-cases. 

 

The primary goal of this thesis is evaluating the performance of an in-memory HTAP system 

using a columnar data layout with OLTP workload. Firstly, it investigates how a columnar 

HTAP perform with transactional workload comparing to a row-wise data storage (RQ1). 

Secondly, the thesis examines the main cost drivers of OLTP workload in an HTAP system 

(RQ2). Thirdly, it studies how optimal an HTAP-oriented stored procedure language 

(SQLScript) is for OLTP workloads (RQ3). To answer the research questions, a systematic 

literature review is combined with a quantitative experimental research. A research version 

of SAP HANA is used as the underlying HTAP system during the experiment. Also, an 

industry-grade OLTP benchmark (TPC-E) is implemented to generate the needed workload 

for the research. 

 

Studies on the performance of columnar databases have mostly focused on OLAP and mixed 

workloads [55, 70, 71, 72, 73, 74, 75]. However, far little attention has been paid to how 

column-oriented data layout perform with pure transactional processing. For instance, a 

study by D.J. Abadi, S.R. Madden and N. Hachem [70] has compared the performance of a 

column store database with several row-store systems using star schema benchmark 

(SSMB), a data warehousing benchmark. Likewise, A. Kemper and T. Neumann [71] have 

used a mixed workload benchmark (TPC-CH) to compare the performance of an HTAP 

system supporting columnar data layout, HyPer, with several OLTP and OLAP-oriented 

databases. Similarly, I. Psaroudakis et al. [55] investigate the performance of two HTAP 
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systems with a mixed workload benchmark (CH-benCHmark). In the same way, Z. Feng et 

al. in their study [72] assess the performance of data scan and lookup operations in an in-

memory column store with TPC-H (a decision support benchmark provided by TPC). Also, 

the study conducted by E. Petraki, S. Idreos and S. Manegold [73] measures the performance 

of an indexing mechanism for column-oriented database architectures via TPC-H. In the 

same manner, I. Alagiannis, M. Athanassoulis and A. Ailamaki [74] utilize TPC-H and SSB 

(two analytical benchmarks) to analyze scaling up queries with column stores. J. Wang et al. 

[75] analyze the performance of a column store SQL engine with a TPC-H like benchmark 

as well. Hence, the thesis tries to fill the gap between the performance of columnar HTAP 

systems and transactional workload. 

 

Besides, very few studies have investigated and applied TPC-E benchmark [76, 62, 77]. This 

is also the dominant trend in the industry, and the benchmark results have been published 

only for one DBMS (Microsoft SQL Server) [78]. This matter could stem from complex 

nature of the benchmark comparing to the other OLTP benchmarks such as TPC-C. TPC-E 

incorporates a three-tier architecture and requires a complex code base (our TPC-E 

implementation consists of almost 11000 lines of C++ code). Also, TPC-E transactions 

exhibit elaborate structures (roughly 2000 lines of SQLScript code in our implementation). 

TPC-E also demands sophisticated DBMS requirements such as referential integrity 

constraints and the highest ANSI transaction isolation level (i.e., serializability). Using TPC-

E workload in this thesis aids achieving results representing requirements of a modern OLTP 

environment. 

 

5.2 Main Findings 
 

To evaluate the performance of an in-memory columnar data management system for OLTP 

workload, TPC-E benchmark is run against both the row and columnar data engines 

embedded in HANA. The column store exhibits more fluctuations regarding the 

transactions’ response times due to three major reasons. Firstly, the column store engine 

applies a more aggressive parallelism. Secondly, the row-based operations dominance the 

benchmark workload, hence, accessing a single or a set of tuples demands more memory 

accesses in the column store. Thirdly, DML operations that constitute a significant part of 

the workload are more expensive for the column store. Despite the variations, our experiment 
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shows that the column store achieves an acceptable throughput comparing to its counterpart 

(the achieved throughput for the column-store is 74% of the row-store throughput). 

Therefore, the evidence from this study suggests that the in-memory columnar data 

management system can keep up with OLTP use-cases. 

 

Furthermore, a profiling tool is employed to inspect decomposition of the workload into 

main HANA components. It is identified that the experiment workload breaks down into 

eight primary cost drivers: Query compilation and validation, data store access and predicate 

evaluation, memory management, network transfer and communication, index access and 

join processing, sorting operation, DML operations, and SQLScript execution.  

 

Among the identified cost drivers, the query compilation and validation constitutes a major 

part (roughly 15% of the total processor time). Therefore, this matter was investigated in 

greater detail, and the iterative nature of TPC-E transactions turned out to be the primary 

reason of the costly query compilations. We identified a typical pattern among most of the 

transactions; all TPC-E transactions except the Broker-Volume and Trade-Status require at 

least one form of iterative constructs (e.g., conditional statements, loops, and cursors). 

Hence, it was decided to produce two simplified transactions (called L1 and L2) and examine 

our theory using them. The transactions are implemented using SQLScript in two ways: A 

set-based approach and a single-tuple-at-a-time paradigm. The transactions are also utilized 

to examine how optimal SQLScript performs for transactional requirements. 

 

Running the profiler on L1 transactions validates our theory about the connection between 

query compilation cost and the iterative nature of TPC-E transactions.  It is shown that the 

query compilation cost is a factor of more than 4X higher for the iterative-based 

implementation comparing to the set-based one. The query compilation also affects memory 

management costs. Then, the transactions are analyzed regarding the response times and the 

growth rates. Running L1 and L2 shows that transactions using SQL set-based operations 

outperform those applied iterative constructs in terms of response time and growth rate. Put 

it differently, SQLScript provides a suboptimal performance for queries applying iterative 

extensions. 
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5.3 Future Work 
 

Some questions remain unanswered and need future research. First, it is found out that 

checkpointing causes throughput variations during the experiment. This matter could stem 

from the experiment’s underlying hardware configuration; however, future work is needed 

to pinpoint the situation. At the time, SAP is adopting non-volatile RAM (called NVRAM 

or NVM) technologies like Intel 3D XPoint in HANA’s architecture [66]. There is room for 

further research in determining how using the NVRAM technologies could alleviate the 

throughput instabilities during the experiment. 

 

Also, further research is required to study the optimization of stored procedures using 

iterative paradigm. One optimization approach can be converting iterative SQL queries into 

SQL nested queries and set-based operation (like what is done in section 4.4 manually) 

during query compilation and optimization. This also might require a dependence analysis 

(data dependency and control dependency) to determine whether operations inside iterative 

constructs can be un-nested or unrolled. To this end, some studies [67, 68, 69] have been 

conducted to analyze identifying batch-safe iterations and replacing imperative loops with 

single batch calls. This improvement is picked up for future HANA development efforts. 

 

Moreover, the experiment could be repeated to understand other factors contributing to the 

results. First, TPC-E defines 22 check constraints on the benchmark schema; the check 

constraints put overhead for DML operations since more operations are required for each 

insert, update, and delete statement. Hence, it can be inspected how dropping the constraints 

could improve the throughput. Also, the workload breakdown can be analyzed to 

comprehend the cost of enforcing the constraints. Secondly, the Trade-Result transaction is 

executed with serializable isolation level. The experiment could be further executed with 

degrading the isolation level to repeatable read; it is expected that this would improve the 

measured throughput since the Trade-Result transactions incorporate 10 percent of the total 

workload. Overhead of locking and latching perhaps would go down by changing the 

isolation level as well. In addition, the effects of data partitioning on the experiment can be 

investigated. No partitioning is used at the current experiment; a further study with more 

focus on this matter is therefore suggested. In other words, vertical and horizontal 
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partitioning for the row store, and horizontal partitioning for the column store can be applied 

to evaluate how partitioning is in tune with performance optimization.   
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