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Abstract

In this work we create a connection between AFS (Axiomatic Fuzzy
Sets) fuzzy logic systems and Zadeh algebra. Beginning with simple
concepts we construct fuzzy logic concepts. Simple concepts can be in-
terpreted semantically. The membership functions of fuzzy concepts
form chains which satisfy Zadeh algebra axioms. These chains are
based on important relationship condition (1) represented in the in-
troduction where the binary relation Rm of a simple concept m is
defined more general in Definition 2.10. Then every chain of member-
ship functions form a Zadeh algebra. It demands a lot of preliminaries
before we obtain this desired result.

Keywords: AFS fuzzy logic system, Zadeh algebra, simple
concepts, membership functions.

1 Introduction

Starting with simple concepts such as ”young people” or ”tall people” it is
possible to form AFS logic system (EM,∨,∧,′ ). The elements are fuzzy con-
cepts constructed by simple concepts. Notice that (EM,∨,∧) is a completely
distributive lattice and is called the EI (expanding one set M) algebra over
M . So the AFS logic system is a completely distributive lattice equipped
with the logical negation ′. Let X be a non-empty set. For any ζ ∈ EM , let
µζ : X −→ [0, 1] be a membership function of the concept ζ. Moreover, we
assume that all the elements µζ in the set {µζ | ζ ∈ EM} satisfy the three
conditions, Definition 2.17. Consider a binary relation Rζ ∈ X × X of the
concept ζ. For example, for any two persons x and y, (x, y) ∈ Rζ if and only
if

Rζ = {(x, y) | (x, y) ∈ X ×X agex ≥ agey}
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where ζ is a fuzzy concept ”old”. The exact definition is represented in
Definition 2.10. In Section 2 all the results are known and can be found from
[5]. Also the used examples are there. For Zadeh algebra axioms we refer to
[3]. In Section 3 it is proved new results. But all the preliminaries represented
in Section 2 are necessary to know for understanding these results and their
proofs. The crucial condition is

(x, z) ∈ Rm =⇒ (y, x) ∈ Rm (1)

for simple concepts m and for all the pairs (x, z) and (y, x) in X × X. In
fact, the condition determines a chain (ζ)ζ∈EM , Lemma 3.1 (c). Let

{µζ |µζ : X −→ [0, 1]}

be a set of membership functions of the concept ζ of the AFS fuzzy logic
system (EM,∨,∧,′ ). According to Proposition 3.4 a chain (µζ)ζ∈EM corre-
sponding to the chain (ζ)ζ∈EM satisfies the seven Zadeh algebra axioms and
then forms some Zadeh algebra, Proposition 3.5. These are the two main re-
sults. Observe that by Lemma 3.1 (a) the condition (1) implies the condition
(2) needed in Proposition 3.4.

(x, z) ∈ Rm =⇒ (y, z) ∈ Rm (2)

In the conclusion it is illustrated the research motivation and contribution of
this paper.

2 Preliminaries

2.1 Lattices

In this subsection we refer to [1], pages 1, 2, 6, 8, 9, 10, 119 and [5], pages
61-64, 67, 77.

Definition 2.1. A partially ordered set or a poset is a set in which a binary
relation ≤ is defined satisfying the following conditions (P1) - (P3):

(P1) For all x, x ≤ x.

(P2) If x ≤ y and y ≤ x, then x = y.

(P3) x ≤ y and y ≤ z, then x ≤ z.

Let
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(P4) Given x and y, either x ≤ y or y ≤ x.

A poset which satisfies (P4) is said to be linearly ordered and is called a chain.

Let X be a subset of a poset P . Denote the least upper bound of X by l.u.b.
i.e. supX and the greatest lower bound of X by g.l.b. i.e. infX.

Definition 2.2. A lattice L is a poset P where any two of whose elements
x and y have g.l.b. or a meet denoted by x ∧ y, and l.u.b. or a join denoted
by x∨ y. A lattice L is complete if each of its subsets has l.u.b. and g.l.b. in
L.

It is clear that any nonvoid complete lattice contains a least element 0 and
a greatest element 1.
In any lattice L (or a poset), the operations ∧ and ∨ satisfy the following
laws, whenever the expressions are refered to exist:

(L1) x ∧ x = x, x ∨ x = x

(L2) x ∧ y = y ∧ x, x ∨ y = y ∨ x

(L3) x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z

(L4) x ∧ (x ∨ y) = x ∨ (x ∧ y) = x

Conversely, any system L with the two binary operations satisfying (L1) -
(L4) is a lattice.
Moreover, x ≤ y is equivalent to each of the conditions

x ∧ y = x and x ∨ y = y

If a poset P (or a lattice) has an 0, then 0 ∧ x = 0 and 0 ∨ x = x for all
x ∈ P . If P has a universal upper bound I, then x∧ I = x and x∨ I = I for
all x ∈ P .

Definition 2.3. A lattice L is distributive if and only if the conditions

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

hold in L. In fact, these conditions are equivalent if they are valid.
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Definition 2.4. [5], pages 77, 116 or [1], page 119
Let L be a complete lattice. Then L is called a completely distributive lattice
if it satisfies the extended distributive laws: for any family {aij ∈ L | i ∈
I, j ∈ Ji} where I and Ji are non-empty indexing sets, the following equations
are valid

∧
i∈I

(
∨
j∈Ji

aij) =
∨

f∈
∏

i∈I Ji

(
∧
i∈I

aif(i))∨
i∈I

(
∧
j∈Ji

aij) =
∧

f∈
∏

i∈I Ji

(
∨
i∈I

aif(i))

2.2 A survey to simple concepts and their operations

In this subsection we approach to simple concepts and their operations be-
cause it is necessary to form the idea what do simple concepts mean. The
exact definition will be represented in Definition 2.13. All these are based on
[5], pages 113,114.
Consider the set of four people x1, x2, x3, x4 and a simple concept ”hair
colour”. By intuition, we may set: x1 has ”hair black” with number 6 and
x2, x3, x4 with numbers 4,6,3. So, the numbers imply the order x4 > x2 >
x3 = x1 which can be interpreted as follows: Moving from right to left, the
relationship states how strongly the hair colour resembles black colour. More
exactly, xi > xj means that the hair of xi is closer to the black colour than
the colour of the hair which xj has.
Let M be a set of fuzzy or Boolean concepts on the set X. For each m ∈ M
we associate to a single feature. For example m1 : ”old people” is a fuzzy
concept but m2 : ”male” is a Boolean concept. In fact, M is a set of simple
concepts. In general let A ⊆ M and denote by

∏
m∈A m a conjugation of the

concepts m on A. Correspondingly
∑

m∈Am means a disjunction.

Example 2.5. Let m1 : ”old people”, m2 : ”male”, m3 : ”tall people”.
Then m1m2 : ”old males” and m1 + m3 : ”old or tall people”. Further,
m1m2 + m2m3 + m1m2m3 : ”old or tall males”. However, m1m2 + m2m3

means the same. This is because for any person x the degree of x belonging
to the fuzzy concept represented by m1m2m3 is always less than or equal
to the degree of x belonging to the fuzzy concept represented by m1m2 or
m2m3. Therefore the former m1m2m3 is including in both of the latter ones
m1m2 or m2m3.
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2.3 AFS fuzzy logic system

All the definitions and the propositions with their proofs are represented in
[5], pages 115-123. For a moment we give up the assumption that M consists
only of simple concepts. Let M be a non-empty set. The set EM⋆ is defined
by

EM⋆ = {
∑
i∈I

(
∏
m∈Ai

m)|Ai ⊆ M, i ∈ I, I is any non-empty indexing set}

where the elements of EM⋆ are expressed semantically with ”equivalent to”,
”or” (disjunction) and ”and” (conjunction).

Definition 2.6. Let M be a non-empty set. A binary relation R on EM⋆ is
defined as follows: for

∑
i∈I(

∏
m∈Ai

m),
∑

j∈J(
∏

m∈Bj
m) ∈ EM⋆,

[
∑

i∈I(
∏

m∈Ai
m)] R [

∑
j∈J(

∏
m∈Bj

m)] ⇐⇒

(i) ∀Ai, i ∈ I, ∃Bh, h ∈ J such that Ai ⊇ Bh ,

(ii) ∀Bj, j ∈ J , ∃Ak, k ∈ I such that Bj ⊇ Ak.

R is an equivalence relation and we define EM as the quotient set EM⋆/R.

Proposition 2.7. Let M be a non-empty set. Then (EM,∨,∧) forms a
completely distributive lattice under the binary compositions ∨ and ∧ defined
as follows: for any

∑
i∈I(

∏
m∈Ai

m),
∑

j∈J(
∏

m∈Bj
m) ∈ EM,

∑
i∈I

(
∏
m∈Ai

m) ∨
∑
j∈J

(
∏

m∈Bj

m) =
∑

k∈I⊔J

(
∏

m∈Ck

m) ,
∑
i∈I

(
∏
m∈Ai

m) +
∑
j∈J

(
∏

m∈Bj

m)

∑
i∈I

(
∏
m∈Ai

m) ∧
∑
j∈J

(
∏

m∈Bj

m) =
∑

i∈I,j∈J

(
∏

m∈Ai∪Bj

m)

where the disjoint union I ⊔ J means that every element in I and every ele-
ment in J are always regarded as different elements in I ⊔ J . Therefore for
any k ∈ I ⊔ J , Ck = Ak if k ∈ I, and Ck = Bk if k ∈ J .

The proof of the proposition can be found from [5].
To be a distributive lattice means that for any γ, ζ, η ∈ EM

γ ∧ (ζ ∨ η) = (γ ∧ ζ) ∨ (γ ∧ η)

γ ∨ (ζ ∧ η) = (γ ∨ ζ) ∧ (γ ∨ η)
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A completely distributive lattice is defined in Definition 2.4. Because (EM,∨,∧)
is such a lattice it guarantees the existance of the EM elements

∑
i∈I(

∏
m∈Ai

m)
and

∑
j∈J(

∏
m∈Bj

m). We can also define the order in (EM,∨,∧) as follows:

∑
i∈I

(
∏
m∈Ai

m) ≥
∑
j∈J

(
∏

m∈Bj

m) ⇐⇒ ∀Bj, j ∈ J,∃Ak, k ∈ I such that Bj ⊇ Ak.

Further, as a (distributive) completely lattice (EM,∨,∧) is also a complete
lattice.
The lattice (EM,∨,∧) is called the EI (expanding one set M) algebra over
M .

Proposition 2.8. Let M be a set and g : M −→ M be a map satisfying
g(g(m)) = m for all m ∈ M . If the operator g : EM −→ EM is defined as
follows (∑

i∈I

(
∏
m∈Ai

m)
)g

=
∧
i∈I

( ∨
m∈Ai

g(m)
)
=

∧
i∈I

( ∑
m∈Ai

g(m)
)

Then for any α, β ∈ EM , g has the following properties:

(1) (αg)g = α,

(2) (α ∨ β)g = αg ∧ βg, (α ∧ β)g = αg ∨ βg,

(3) α ≤ β =⇒ αg ≥ βg

Therefore the operator g is an order reversing involution in the EI algebra
(EM,∨,∧).

The operator g defines the negation m′ of the concept m : m′ = g(m). Then
m′′ = (g(m))′ = g(g(m)) = m.
Let ζ =

∑
i∈I(

∏
m∈Ai

m) ∈ EM . Then

ζ
′
=

∧
i∈I

( ∨
m∈Ai

m
′)

=
∧
i∈I

( ∑
m∈Ai

m
′)

stands for the logical negation of ζ. (EM,∨,∧,′ ) is called an AFS fuzzy logic
system.

Example 2.9. Let m1: ”old people”, m2: ”tall people”, m3: ”males”. Then
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ζ = m1m3 +m2 = m1m3 ∨m2

ζ
′

= (m1m3 +m2)
′ = (m1 ∧m3 ∨m2)

′ = (m′
1 ∨m′

3) ∧m′
2

= (m′
1 ∧m′

2) ∨ (m′
3 ∧m′

2) = m′
1m

′
2 +m′

3m
′
2.

where ζ: ”old males or tall people” and ζ
′
: ”not old and not tall people or

not tall males”.

The AFS fuzzy logic system (EM,∨,∧,′ ) can be regarded as a completely
distributive lattice. It is also a complete lattice. But this lattice is equipped
with the logical negation.

We conclude that the complexity of human concepts is a direct result of
the combinations of a few relatively simple concepts. In fact, some suitable
simple concepts play the same role as used in linear vector spaces and we can
regard them as a ”basis”.

2.4 Relations, simple and complex concepts

For this subsection we refer to [5], pages 124,125.

Definition 2.10. Let ζ be any concept on the universe of discourse X.
Rζ ⊂ X × X is called the binary relation of the concept ζ if Rζ satisfies:
x, y ∈ X, (x, y) ∈ Rζ if and only if x belongs to concept ζ at some extent or
x is a member of ζ and the degree of x belonging to ζ is larger or equal to
that of y, or x belongs to concept ζ at some degree and y does not at all.

Example 2.11. Let fuzzy concept ζ: ”old” and

Rζ = {(x, y) | (x, y) ∈ X ×X agex ≥ agey}

Therefore (x, x) ∈ Rζ means that x belongs to ζ at some degree and that
(x, x) /∈ Rζ means that x does not belong to ζ at all. If for the two persons
x and y, agex = 30 and agey = 20 then (x, y) ∈ Rζ but (y, x) /∈ Rζ .

Example 2.12. Let fuzzy concept ζ: ”hair black” and define Rζ in the cor-
responding way as above. By human intuition, we assume that for the three
persons xi, i = 1, 2, 3 the degree of ζ is the following: blackx1 > blackx2 >
blackx3 but the fourth person x4 has no hairs. Then (x1, x2), (x1, x3), (x2, x3) ∈
Rζ and (x4, x4) /∈ Rζ but (xi, x4) ∈ Rζ . See Definition 2.13 (2).
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Definition 2.13. Let X be a set and R be a binary relation on X. R is
called a sub-preference relation on X if for x, y, z ∈ X, x ̸= y, R satisfies the
following conditions:

(1) if (x, y) ∈ R, then (x, x) ∈ R,

(2) if (x, x) ∈ R and (y, y) /∈ R, then (x, y) ∈ R,

(3) if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R,

(4) if (x, x) ∈ R and (y, y) ∈ R, then either (x, y) ∈ R or (y, x) ∈ R.

We define that a concept ζ on X is simple if Rζ is a sub-preference relation
on X. Otherwise ζ is called a complex concept on X.

Example 2.14. Let ζ: ”old people”. The concept is simple. For example
if for the persons x1, x2, x3 we have agex1 > agex2 > agex3 Rζ is a sub-
preference relation on the set {x1, x2, x3} where Rζ is the binary relation
defined in Example 2.11. Observe that the latter of the assumptions of (2)
in Definition 2.13 is not valid and so the condition (2) is valid. In general it
is known that all elements belonging to a simple concept at some degree are
comparable and are arranged in a linear order, that is, they form a chain. In
above we can think shortly that x1 > x2 > x3.

Further, there exists a pair of different elements belonging to a complex
concept at some degree such that their degrees in this complex concept are
incomparable.

Example 2.15. The set X consists of disjoint sets Y : ”males” and Z: ”fe-
males”. The concept ζ: ”beautiful” is simple on Y and on Z:

Rζ = {(x1, x2) | (x1, x2) ∈ Y × Y, bx1 ≥ bx2}
Rζ = {(y1, y2) | (y1, y2) ∈ Z × Z, by1 ≥ by2}

However, if we apply ζ to the whole set X it is a complex concept because
the degrees of the elements x ∈ X and y ∈ X may be incomparable:
If x ∈ Y and y ∈ Z, then (x, y) /∈ Rζ and If y ∈ Y and x ∈ Z, then (y, x) /∈ Rζ

In this case (x, x) ∈ Rζ and (y, y) ∈ Rζ implies that both (x, y) /∈ Rζ and
(y, x) /∈ Rζ . The condition (4) in Definition 2.13 is not satisfied and so ζ is
a complex concept.
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2.5 The AFS fuzzy logic and coherence membership
functions

For introduction to characteristic and membership functions we refer to [2],
page 255, and [4], pages 12-18. Definitions 2.16 and 2.17 can be found from
[5], pages 128,130. We first become acquainted with concepts fuzzy sets and
membership functions.
Let X ̸= ∅ and x ∈ X, A ⊂ X. Define a characteristic function for the set A
as follows:

fA : X −→ {0, 1} fA =

{
1 , x ∈ A
0 , otherwise

Consider an extended case 0 ≤ fA(x) ≤ 1, that is, 0 < fA(x) < 1 is also
possible. We call for the set A ⊂ X

(a) a crisp set, if its characteristic function is fA : X −→ {0, 1},

(b) a fuzzy set, if its extended characteristic function or a membership
function is µA : X −→ [0, 1].

Therefore for every element x ∈ X there is a membership degree µA(x) ∈
[0, 1]. The set of pairs

A = {(x, µA(x)) |x ∈ X}
determines completely the fuzzy set A. The characteristic function of a crisp
set A is a special case of a membership function µA : X −→ [0, 1].

Definition 2.16. [5] Let X, M be sets and 2M be the power set of M . Let
τ : X × X −→ 2M . (M, τ,X) is called an AFS structure if τ satisfies the
following axioms:

(1) ∀(x1, x2) ∈ X ×X, τ(x1, x2) ⊆ τ(x1, x1),

(2) ∀(x1, x2), (x2, x3) ∈ X ×X, τ(x1, x2) ∩ τ(x2, x3) ⊆ τ(x1, x3).

We again return to the case that M is a set of simple concepts.

Let X be a set of objects and M be a set of simple concepts on X. τ :
X ×X −→ 2M is defined as follows: for any (x, y) ∈ X ×X

τ(x, y) = {m |m ∈ M, (x, y) ∈ Rm} ∈ 2M

where Rm is the binary relation of simple concepts m ∈ M defined in Defi-
nition 2.10 (it was defined more general than for simple concepts).
It is proved in [5] that (M, τ,X) is an AFS structure.
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Definition 2.17. [5] Let (M, τ,X) be an AFS structure of a data set X.
For x ∈ X,A ⊆ M , the set Aτ (x) ⊆ X is defined as follows:

Aτ (x) = {y | y ∈ X, τ(x, y) ⊇ A}

For ζ ∈ EM , let µζ : X −→ [0, 1] be the membership function of the concept
ζ. {µζ(x) | ζ ∈ EM} is called a set of coherence membership functions of the
AFS fuzzy logic system (EM,∨,∧,′ ) and the AFS structure (M, τ,X), if
the following conditions are satisfied:

(1) For α, β ∈ EM , if α ≤ β in lattice (EM,∨,∧,′ ), then µα(x) ≤ µβ(x)
for any x ∈ X.

(2) For x ∈ X, η =
∑

i∈I(
∏

m∈Ai
m) ∈ EM , if Aτ

i (x) = ∅ for all i ∈ I then
µη(x) = 0.

(3) For x, y ∈ X, A ⊆ M, η =
∏

m∈Am ∈ EM , if Aτ (x) ⊆ Aτ (y), then
µη(x) ≤ µη(y); if A

τ (x) = X then µη(x) = 1.

Remark: It is important to see that M consists of simple elements m.

2.6 Zadeh algebra

We refer to [3].

Definition 2.18. Suppose that (L,∨,∧) is a complete distributive lattice.
Let LX = {µ |µ : X −→ L} be the set of all functions from X to L. Assume
that the lattice operations the least upper bound ∨ and the greatest lower
bound ∧ on L are extended pointwise for the functions on LX . Further,
define the extreme constant functions X −→ L, 0 : x 7→ ⊥ and 1 : x 7→ ⊤
for all x ∈ X, where ⊥ and ⊤ are the least and the greatest elements of
L, respectively. A unary operation η on L satisfies the involution property
for any a ∈ L, and η is extended pointwise for the functions on LX , i.e.,
η(η(µ)) = µ for any µ ∈ LX . Then Z = (LX ,∨,∧, η,0,1) is called Zadeh
algebra if it satiesfies the following conditions:

(Z1) The operations ∨ and ∧ are commutative on LX .

(Z2) The operations ∨ and ∧ are associative on LX .

(Z3) The operations ∨ and ∧ are distributive on LX .

(Z4) The neutral elements of the operations ∨ and ∧ are 0 and 1, respec-
tively, i.e., for all µ ∈ LX and for all x ∈ X, (µ ∨ 0)(x) = µ(x) and
(µ ∧ 1)(x) = µ(x).
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(Z5) For any function µ ∈ LX and for all x ∈ X, there exists η(µ) ∈ LX

such that η(1(x)) = 0(x) ≤ η(µ(x)) ≤ η(0(x)) = 1(x), i.e., η is order
reversing.

(Z6) 0 ̸= 1.

(Z7) Zadeh algebra fulfils the Kleene condition: for any function µ, ν ∈ LX

and for any x, y ∈ X, µ(x) ∧ ¬µ(x) ≤ ν(y) ∨ ¬ν(y), where ¬µ and ¬ν
are the logical negations of µ and ν, respectively.

3 Connection between coherence membership

functions of the AFS fuzzy logic system

(EM,∨,∧,′ ) and Zadeh algebra

Lemma 3.1. Let (
∑

i∈I(
∏

m∈Ai
m) and

∑
j∈J(

∏
m∈Bj

m) be elements in EM
where concepts m are simple and let X be a non-empty set. If every relation
Rm ⊂ X ×X satisfies the condition

(x, z) ∈ Rm =⇒ (y, x) ∈ Rm (1)

for pairs (x, z) and (y, x) ∈ X ×X, then

(a) (x, z) ∈ Rm =⇒ (y, z) ∈ Rm

(b) there exists Ak in the set {Ai | i ∈ I} such that Ak ⊆ Bj for every Bj,
that is, ∑

i∈I

(
∏
m∈Ai

m) ≥
∑
j∈J

(
∏

m∈Bj

m)

(c) Let α = (
∑

i∈I(
∏

m∈Ai
m) , β = (

∑
j∈J(

∏
m∈Bj

m), δ = (
∑

ν∈V (
∏

m∈Cν
m)), · · ·

be the elements in EM such that the condition (a) is satisfied for all
pairs (α, β), (β, δ), · · · . Then α ≥ β ≥ δ ≥ · · · .

Proof. Assume that the condition (1) holds.

(a) Let (x, z) ∈ Rm. Then (y, x) ∈ Rm. Because m is simple, Rm is a
sub-preference relation and by Definition 2.13 (3) it is transitive. This
implies that (y, z) ∈ Rm and (a) is valid.
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(b) Let

τ(x, z) = {m ∈ Ai | (x, z) ∈ Rm}
τ(y, x) = {m ∈ Bj | (y, x) ∈ Rm}

Because m is simple τ(x, y) and τ(y, z) are defined.

Because (x, z) ∈ Rm =⇒ (y, x) ∈ Rm we conclude that τ(x, z) ⊆ τ(y, x)
and so there exists Ak in the set {Ai | i ∈ I} such that for every Bj is
Ak ⊆ Bj. If there exists Br which does not contain Ak then Br ⊇ ∪Ai

does not hold. This is a contradiction. According to discussion after
Proposition 2.7 we have∑

i∈I

(
∏
m∈Ai

m)
)
≥

(∑
j∈J

(
∏

m∈Bj

m)

(c) Consider a pair (β, δ), where β =
∑

j∈J(
∏

m∈Bj
m) and δ =

∑
v∈V (

∏
m∈Cv

m).
We will prove that β ≥ δ, that is,

∑
j∈J

(
∏

m∈Bj

m) ≥
∑
v∈V

(
∏

m∈Cv

m)

if (y, w) ∈ Rm =⇒ (v, y) ∈ Rm (condition (1)).
Repeating the proof of (b) we obtain the following: Let τ(y, w) =
{m ∈ Bj | (y, w) ∈ Rm}, τ(v, y) = {m ∈ Cv | (v, y) ∈ Rm}. Then
τ(y, w) ⊆ τ(v, y) and there exists Bl in the set {Bj | j ∈ J} such that
Bl ⊆ Cv for all Cv. This proves β ≥ δ. In the same way we can prove
that α ≥ β for a pair (α, β) and then we conclude that α ≥ β ≥ δ ≥ · · ·

Lemma 3.2. Let ζ =
∑

i∈I(
∏

m∈Ai
m) ∈ EM . If the condition

(x, z) ∈ Rm =⇒ (y, x) ∈ Rm

holds for every simple concept m ∈ Ai then

µζ(x) ≤ µζ(y)

where µζ : X −→ [0, 1] is the membership function of the concept ζ.
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Proof. Let m ∈ M be simple concepts and

τ(x, z) = {m ∈ Ai | (x, z) ∈ Rm}
Aτ

i (x) = {z ∈ X | τ(x, z) ⊇ Ai}

Assume that the condition

(x, z) ∈ Rm =⇒ (y, x) ∈ Rm

holds for every m ∈ Ai. By Lemma 3.1 (a)

(x, z) ∈ Rm =⇒ (y, z) ∈ Rm

also holds. Then τ(x, z) ⊆ τ(y, z) and so

Ai ⊆ τ(x, z) =⇒ Ai ⊆ τ(y, z)

It follows that Aτ
i (x) ⊆ Aτ

i (y).
Let ζi =

∏
m∈Ai

m. These ζi exist because EM is a completely lattice. By
Definition 2.17 (3) µζi(x) ≤ µζi(y) for every i ∈ I where µζi : X −→ [0, 1] is
a membership function. Let ζ =

∑
i∈I(

∏
m∈Ai

)m = supi∈Iζi. Also ζ exists
and we obtain µζ(x) ≤ µζ(y)

Lemma 3.3. Assume that the binary relations Rm ⊂ X × X of simple
concepts m satisfy the condition

(x, z) ∈ Rm =⇒ (y, x) ∈ Rm

for pairs (x, z), (y, x) ∈ X ×X.
Let α =

∑
j∈J(

∏
m∈Bj

m) and β =
∑

i∈I(
∏

m∈Ai
m) be elements in EM .

Then α ≤ β and membership functions µα and µβ satisfy the Kleene condi-
tion

µα(x) ∧ ¬µα(x) ≤ µβ(y) ∨ ¬µβ(y)

Proof. By Lemma 3.1 (b), α ≤ β. On the other hand, by Lemma 3.2

µβ(x) ≤ µβ(y)

Because α ≤ β, by Definition 2.17 (1), µα(x) ≤ µβ(x). We obtain

µβ(y) ∨ ¬µβ(y) ≥ µβ(y) ≥ µβ(x) ≥ µα(x) ≥ µα(x) ∧ ¬µα(x)

13



Proposition 3.4. Let

[0, 1]X = {µζ |µζ : X −→ [0, 1]}

be a set of membership functions of the AFS fuzzy logic system (EM,∨,∧,′ ).
The EM elements ζ are of the form

ζ =
∑
i∈I

(
∏
m∈Ai

m)

Let Rm be binary relations of simple concepts m. If the condition

(x, z) ∈ Rm =⇒ (y, z) ∈ Rm

is valid for every simple concept m ∈ Ai, i ∈ I and x, y, z ∈ X then the
membership functions µζ satisfy the conditions (Z1) - (Z7) of Zadeh algebra
in Definition 2.18.

Proof. We verify the Zadeh algebra axioms: The first three axioms (Z1) -
(Z3) are clear.

(Z1) The operations ∨ and ∧ are commutative on [0, 1]X .

µζ1(x) ∨ µζ2(x) = µζ2(x) ∨ µζ1(x)

µζ1(x) ∧ µζ2(x) = µζ2(x) ∧ µζ1(x)

(Z2) The operations ∨ and ∧ are associative on [0, 1]X .

(Z3) The operations ∨ and ∧ are distributive on [0, 1]X .

(Z4) The neutral elements of the operations ∨ and ∧ are µ0 : X −→ [0, 1],
µ0(x) ≡ 0 and µ1 : X −→ [0, 1], µ1(x) ≡ 1.

µζ(x) = 0 ∨ µζ(x) = µ0(x) ∨ µζ(x) = (µ0 ∨ µζ)(x)

µζ(x) = 1 ∧ µζ(x) = µ1(x) ∧ µζ(x) = (µ1 ∧ µζ)(x)

(Z5) For any µζ : X −→ [0, 1] and for all x ∈ X there exists a unary
operation

η : [0, 1]X −→ [0, 1]X , η(µζ) = µg(ζ)

where the operation g : EM −→ EM is defined by

(∑
i∈I

(
∏
m∈Ai

m)
)g

=
∧
i∈I

(∑
i∈Ai

g(m)
)

14



Let m ∈ M be simple concepts. Observe that we need this assumption
for Definition 2.17 used bellow: In Definition 2.16 and Definition 2.17
the definition of τ(x, y) demands m to be simple. According to Propo-
sition 2.8 g is an order reversing involution and g(g(m)) = m but in
this case m need not be simple. We obtain

η(η(µζ)) = η(µg(ζ)) = µg(g(ζ)) = µζ

Therefore η is an involution. Here ζ is not necessary simple.

Let α ≤ β be elements in EM , and since g is order reversing, g(α) ≥
g(β). Using Definition 2.17 (1) it is µg(α)(x) ≤ µg(β)(x). Therefore

η(µα) = µg(α) ≥ µg(β) = η(µβ)

and η is order reversing.

(Z6) µ0(x) ̸= µ1(x) for all x ∈ X

(Z7) The Kleene condition. For any function β, α ∈ [0, 1]X and for any
x, y ∈ X we have

µβ(y) ∨ ¬µβ(y) ≥ µβ(y) ≥ µβ(x) ≥ µα(x) ≥ µα(x) ∧ ¬µα(x)

which is proved in Lemma 3.3.

Proposition 3.5. Let

[0, 1]X = {µζ |µζ : X −→ [0, 1]}

be a set of membership functions µξ of the AFS fuzzy logic system (EM,∨,∧,′ ).
The EM elements ζ are of the form

ζ =
∑
i∈I

(
∏
m∈Ai

m)

Let Rm be binary relations of simple concepts m. If the condition

(x, z) ∈ Rm =⇒ (y, x) ∈ Rm

is valid for every simple concept m ∈ Ai, i ∈ I and x, y, z ∈ X then

(a) Functions µζ form a chain corresponding to the chain (ζ)ζ∈EM .
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(b) Any chain (µζ)ζ∈EM constitutes some Zadeh algebra ([0, 1]X ,∨,∧, η, µ0, µ1).

Proof. We conclude

(a) By Lemma 3.1 the elements ζ forms a chain (ζ)ζ∈EM . By Definition
2.17 (1) ζk ≤ ζl =⇒ µζk ≤ µζl .

(b) Lemma 3.1 (a) implies that

(x, z) ∈ Rm =⇒ (y, z) ∈ Rm

and in Proposition 3.4 it is proved that every chain (µζ)ζ∈EM satisfies
(Z1)− (Z7)

4 Conclutions

Simple concepts form chains. The elements of any chain form a ”basis” in
AFS fuzzy logic system (EM,∨,∧,′ ) with operations disjunction ∨, conjunc-
tion ∧ and the logical negation ’ . The elements are of the form

∑
i∈I(

∏
m∈Ai

m)
where simple concepts m ∈ Ai are defined in Definition 2.13 and operations
in (EM,∨,∧,′ ) are defined in Proposition 2.7. (EM,∨,∧) is a completely
distributive lattice. By means of the binary relations Rm ∈ X ×X defined
in Definition 2.10 we construct the condition (x, z) ∈ Rm =⇒ (y, x) ∈ Rm

which implies the condition (x, z) ∈ Rm =⇒ (y, z) ∈ Rm. Here X is a non-
empty set and x, y, z on X and m are simple concepts. Then the conditions
constitute the two things: First, the membership functions µζ : X −→ [0, 1]
of the fuzzy concepts ζ form chains (µζ)ζ∈EM in (EM,∨,∧,′ ). Second, ev-
ery chain (µζ)ζ∈EM forms a Zadeh algebra. These results are represented in
Propositions 3.4 and 3.5 and we can use them as starting points to continue
theoretical considerations. The other way to continue the investigations is to
utilize direct the conditions above: there are two kinds of successive events.
The first one implies the second one or they have no connection. In the latter
case the second event only follows the first one although they are indepen-
dent of each other. In the first case it is possible to apply to the conditions
(above) (1) or (2) represented in the introduction.
In Example 2.1, [3], the set {µ |µ : X −→ [0, 1]} of membership functions
forms a Zadeh algebra. More exactly, if I = [0, 1] then (I,∨,∧) is a complete
distributive lattice. Further, IX = {µ |µ : X −→ [0, 1]} is the set of member-
ship functions. The operations ∨ and ∧ are extended pointwise on IX . Now
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Z = {IX ,∨,∧,¬,0,1} is a Zadeh algebra with 0(x) = 0, 1(x) = 1, and the
logical negation of µ is ¬µ(x) = (1−µ)(x). In this paper we have considered
more general membership functions and constructed Zadeh algebras.

References

[1] Garret Birkhoff. Lattice Theory. American Mathematical Society. Collo-
qium Publications. Third Edition, eight printing 1995, ISBN 0-8218-1025-
1. Printed in the United States of America.

[2] Jorma K. Mattila. Sumean logiikan oppikirja. Johdatus sumean mate-
matiikkaan. Kolmas uusittu painos, Dark Oy, ISBN 951-884-300-7, Van-
taa 2002.

[3] Jorma K. Mattila. Zadeh algebra as the basis of Lukasiewicz logics.
Lappeenranta University of Technology, Department of Mathematics and
Physics.

[4] L.V. Negoita and D.A.Ralescu. Applications of Fuzzy Sets to Systems
Analysis. Birkhauser Verlag, ISBN 3-7643-0789-7, Basel und Stuttgart
1975.

[5] Xiaodong Liu and Witold Pedrycz (2004). Axiomatic Fuzzy Set The-
ory and its Applications. Studies in Fuzziness and Soft Computing, 2009
Springer-Verlag, ISSN 1434-9922, ISBN 978-3-642-00401-8, Berlin Hei-
delberg.

17


