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Malaria infection remains a major health challenge in many parts of the world, especially
in sub-Saharan Africa. Although intervention strategies abound, the efficiency of control
measures emanates from understanding the host-seeking behaviors of the malaria vec-
tor species. Discrete agent-based modeling was employed to demonstrate the protective
efficacy of Insecticidal treated nets on Anopheles gambiae and Anopheles arabiensis by
considering the treatment measure alongside the control case; with just a physical net
barrier. The aforementioned modeling approach is indeed suitable in demonstrating the
dissimilar host-seeking behavioral tendencies of An. gambiae and An. arabiensis when
confronted with Insecticidal treated nets. The models are calibrated against several real
experimental hut trial datasets by employing the adaptive Markov chain Monte Carlo.
Both the control and treatment case models are able to replicate the datasets considered,
virtually within the reported error bounds. Moreover, the datasets employed are able to
properly identify the sampled parameters in both cases, and as such, reveal relatively low
uncertainties in these model parameters.
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ABBREVIATIONS AND SYMBOLS
ITN Insecticidal treated net
LLIN Long-lasting insecticidal net
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1 INTRODUCTION

In this section, a motivation for undertaking this study is given. The role of mosquitoes in
the transmission of malaria and the relevance of long-lasting insecticidal nets (LLINs) in
the reduction of such transmission is shown. Then we introduce an agent-based approach
for modeling the host-seeking behavior of mosquitoes. The problem of interest is further
stated in this section, and the purpose of the study is given together with the expected
achievements in the present work. Finally, the relevance of the study to the society is
discussed.

1.1 Background of Study

1.1.1 Global Burden Posed by Malaria

Malaria has been a health threat to humankind and is still a significant threat to virtually
half of the world’s population especially in sub-Saharan Africa [1]. It is estimated that
there were about 212 million cases of malaria worldwide, leading to about 429,000 deaths
just in 2015. In this period, 92% of the estimated deaths occurred in Africa [2]. The
groups most affected by this pandemic are children below the age of five and pregnant
women [3]. Hence, it is imperative that active and continuous research be conducted on
malaria, since the groups most vulnerable to this disease are widely of great economic
importance. Given that the socio-economic impact of malaria is so high that it contributes
highly to poverty and underdevelopment, it follows that, malaria research is more than just
a study in public health, but also a great contribution to the socio-economic improvement
of Africa and the world at large.

1.1.2 Role of Mosquitoes in Malaria Transmission

A protozoan parasite, known as Plasmodium, is the pathogen responsible for causing
malaria. In humans, Plasmodium falciparum, Plasmodium vivax, Plasmodium malar-
iae and Plasmodium ovale are the four species of Plasmodium known to cause malaria.
Among these four parasite species, the predominant source of infection in Africa is Plas-
modium falciparum. It is responsible for both 80 percent of all recorded malaria incidents
and 90 percent of malaria related deaths in Africa [4]. Malaria is transmitted during the
blood feeding of infectious female Anopheles mosquitoes that are in need of blood meals
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to nurture their eggs. Thus, the complete life cycle of malaria parasites involves two
hosts; humans and female Anopheles mosquitoes. First, the female Anopheles mosquito
ingests the parasites (gametocytes) from a person infected with malaria during blood feed-
ing which it needs to nurture its eggs. Thus, the parasites develop and reproduce inside
the mosquito gut after-which they are transferred into the mosquito salivary glands. Upon
bitting the human, the parasites (sporozoites) contained in their salivary gland are injected
into the human bloodstream from where they invade the liver cells. In the liver stage, each
sporozoite multiplies and develops into thousands of schizonts, which rupture and release
merozoites and thereafter, infest the red blood cells. After maturity, the merozoites can
either develop into gametocyte or invade and destroy other red blood cells and this makes
the infected person to experience malaria symptoms [5]. The schematic depiction of the
malaria life cycle is given in Figure 1.

Figure 1. Malaria Life Cycle (Source:[6]).

From the above figure, it can be deduced that eliminating mosquitoes from the cycle will
eradicate Plasmodium parasites and malaria from the human populace.



9

1.1.3 Host-Seeking, Resting and Feeding Traits of Mosquitoes

It is a necessity to understand the characteristics of mosquitoes under certain conditions
before planning for mosquito control strategies. Mosquito species exhibit a wide variety
of differences in their resting and feeding behaviour, alongside their host preferences.
Mosquitoes can be classified according to their behavioral traits. In the search for meals
during a gonotrophic cycle, mosquitoes exhibit an assortment of characteristic traits.

First, we consider their meal preference. Female mosquitoes have the need to feed on
blood to develop eggs in their ovaries. The blood meal does not necessarily have to come
from human sources. Some mosquitoes can have their blood meal on other vertebrates
such as cows as an alternative to humans. Mosquitoes that prefer feeding on humans
alone are known as anthropophilic for example, Anopheles gambiae [7] while the species
that have attraction for other vertebrates are known as zoophilic for instance, Anopheles

arabiensis [8]. ITNs/LLINs impact the feeding cycle of each kind of species differently.
In the case of anthropophilic species, it lengthens greatly the time required in obtaining a
blood meal since they feed primarily on humans. Consequently, either the time required
to complete a gonotrophic cycle is lengthened, or the mosquito dies of starvation. On the
other hand, zoophilic species are forced to take a larger proportion of their blood meals
from non-human sources. In either case, the number of humans bitten by mosquitoes, as
they sleep at night is reduced and the risk of malaria infection is decreased.

Considering their preference of resting place after a successful blood meal in order to
allow digestion of blood, there are two families of mosquitoes in this respect; endophilic
and exophilic mosquitoes. Mosquito species that rest indoors, inside a human abode
after a successful blood meal are endophilic mosquitoes An. gambiae, for instance while
exophilic mosquitoes pass this period of rest outside human dwellings, as in the case of
An. arabiensis [9].

Aside from resting behaviour, mosquitoes can be classified according to their preference
of biting location, whether they prefer to bite outdoors or indoors. Certain species such
as An. gambiae and An. funestus prefer feeding indoors and are described as endophagic
whereas, others such as An. arabienesis are described as exophagic since they primarily
feed outdoors [10].

A shared feature of mosquitoes which is of utmost importance to be studied in this work,
is their ability to detect the human host for blood meal by making use of the olfactory cues
that are given off by human. Mosquitoes are able to sense from a long distance, the carbon
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dioxide (CO2) exhaled by humans using their maxillary palps and other chemical odours
emitted from the human body by using their antennae [11]. As stated by [12], many
substances contained in the human sweat, were identified as attractive for mosquitoes,
such compounds include: lactic acid, phenol, ammonia and nonanol. Also, mosquitoes
are able to use the heat sensors around their mouth-parts to sense human from a distance
and to discern the warmth of a human’s body. They can also recognize movement, colors,
shapes and patterns via vision but they are not able to identify the human host from a
distance greater than 80 meters [13].

Furthermore, we focus on An. gambiae and An. arabiensis mosquitoes since in any case,
they are still susceptible to indoor interventions such as the ITNs, which are the main
control measure considered in the study.

1.1.4 Overview of Long-Lasting Insecticidal Nets

The control of mosquitoes that are capable of transmitting malaria parasites is an essential
strategy of malaria prevention. There are many strategies available for mosquito control,
among which indoor residual spraying and insecticide-treated nets are the most effective
methods [14]. This emanates from the fact that the principal malaria vectors, primarily
feed indoors at night when people are asleep [15]. Therefore, the use of nets provide an
effective way of protecting humans from such mosquito bites when they are asleep.

Nets can either be treated with insecticides or used untreated. Untreated nets only provide
a physical roadblock against mosquitoes which attempt to bite humans. However, insecti-
cidal nets provide protection through chemical action on mosquitoes as well as presenting
a material barrier against the malaria vectors. Thus, the use of insecticide-treated nets is
more advantageous than the use of untreated nets. This is because, treated nets kill some
mosquitoes that land on them and prevent them from attacking an unprotected person in
the household. Also, nets treated with repellents prevent some mosquitoes from entering
the house to bite humans.

The use of LLINs has been recommended by the World Health Organisation because of
their durability and also due to the fact that they do not require regular re-treatment unlike
the way other conventional insecticide-treated nets do, even though they should also be
replaced when their active period has expired. The aforementioned net can last for 3 years
and can still be active even after 20 standard washing because they have quality controlled
insecticide that is being incorporated in their fibres [16].
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However, irrespective of the large scale distribution of LLINs in many malaria endemic
countries, there is a wide variation in the availability and the degree of use (coverage) of
LLINs in different households. Studies have shown that most households that own LLINs
have either one or two LLINs irrespective of their household size which is not sufficient
[17]. Thus, in order to effectively control malaria, it is necessary that sufficient nets are
continually made available to protect household members so that over time, coverage can
approach 100%.

1.1.5 Agent-Based Modeling

The dynamics of malaria transmission is complex, with many factors influencing its tem-
poral and spatial patterns. Several mathematical models have been formulated over time,
to investigate the transmission dynamics of malaria. Although they proffer illuminating
headway into the transmission system, they neglect the influence of some cause-effect re-
lationships and are only applicable for modeling the collective behavior of a group. These
mathematical models rely on a compartmental structure in which humans or mosquitoes
transit from one compartment to the next at fixed parameter rates and are assumed to
have uniform characteristics within each compartment. Thus with such kind of models,
it is only possible to update the status of groups but the specific individual characteristics
cannot be tracked. In this work, however, we shall use a different model structure known
as the agent-based modeling, in order to give more insight for studying certain malaria
transmission dynamics that are often isolated in compartmental models.

Agent-based modeling (ABM) is a computational modeling approach which represents
individual entities in a complex system as discrete agents that interact autonomously in a
simulated space and time by following a set of predefined rules, in order to achieve their
objectives [18]. The agents for this study are autonomous (self directed) mosquitoes and
human that are simulated to reside in a 2 dimensional space (the hut) and are driven by
external factors of which we assume four major driving factors: the attraction of odour
emitted from the host and sensed by mosquitoes, repulsion by a physical net barrier posed
by an untreated net, repulsion effect of a treated net and the poisoning effect of the treated
net. Using this modeling approach, relevant characteristics for individual mosquitoes are
tracked. Such characteristics include position, blood meal status, quantity of accumulated
chemicals and mortality status. Each of these attributes are updated at each simulation
time-step as the mosquitoes move randomly throughout the simulated transmission do-
main. Thus, this modeling approach is discrete since it handles sequence of events that
occur at a particular instant in time and also describes the behaviour of each individ-
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ual entity. Therefore discrete ABM is employed in this work to assess the impacts of
ITNs/LLINs in controlling mosquitoes.

1.2 Statement of Problem

Variants of host-seeking behaviors of mosquitoes of different species have long been stud-
ied by many researchers in their various capacities and still, it is a major subject of con-
cern, owing to the fact that mosquitoes of different species exhibit various behavioral traits
with respect to the control measures to which they are confronted with [19], [20], [21],
[22], [23]. While learning about the outcomes emanating from researches on mosquito
host-seeking behavior, it is of paramount importance to develop robust and ideal agent-
based models and numerical frameworks that capture the essential host-seeking behaviors
of mosquitoes in different conditions (precisely at hut-level with a treated and an untreated
net) while parsimoniously employing parameters that are pivotal to the basic responses
and thereby validate these models such that they replicate multiple real experimental data
while taking data uncertainty and the uncertainty posed by the randomness inherent in the
aforementioned modeling approach into cognizance.

1.3 Research Objectives

The specific objectives emerging from the problem statement discussed above include:

• To give highlights to the existing models that describe the host-seeking behavior of
mosquitoes, in a bid of making possible restructuring, where necessary.

• To simulate a hut-level experiment in order to study the impact of ITNs/LLINs on
the host-seeking behavior of An. gambiae and An. arabiensis .

• To study the variability of the outputs of the hut experiment in the control case
alongside the sensitivity of its model parameters.

• To calibrate both the control case and treatment case, hut experiment models against
several real measurements while taking data uncertainty into consideration.



13

1.4 Significance of Study

• The findings of this study will act as a support for further research on malaria vector
control.

• The findings of this study will help the society in general, to be aware of the neces-
sity for sufficient coverage with ITNs/LLINs.

• This study will be of tremendous help to the governments as it will engender them to
take into consideration the importance of ITNs/LLINs in controlling malaria while
planning for malaria control strategies.

1.5 Scope of Study

In this study, we model the host-seeking behaviour of An. gambiae and An. arabiensis in
a hut-level experiment with two indoor intervention measures (treated and untreated bed
nets). The control case model is calibrated with five real sets of data while the treatment
case model is calibrated against four real experimental data.

1.6 Structure of the Report

This report comprises five sections. Section 1 is a general introduction to the report, and
has six subsections. Section 1.1 gives the motivation of this work, and general background
information of the problem including information about the vector species under study.
The specific question we wish to answer and what we hope to achieve at the end of the
study are given in Sections 1.2 and 1.3. The anticipated relevance of this study to the
society is discussed in Section 1.4. Section 1.5 states the scope of this work. Finally, this
section (Section 1.6) gives a roadmap to the arrangement of the entire report.

Section 2 gives an overview of Markov chain Monte Carlo (MCMC) methods for pa-
rameter estimation and how its features are employed in the work and it comprises 3

subsections. The concept of Bayesian parameter estimation as it links to MCMC is given
in Section 2.1. In Section 2.2, the algorithmic descriptions of some MCMC approaches,
alongside there modifications and extensions are discussed. MCMC convergence diag-
nostics methods are given in Section 2.3.
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The description of the models implemented in this work is given in Section 3. Its first
four subsections (Sections 3.1 to 3.4), describe the mosquito host-seeking behavior and
its mortality models. Section 3.5 presents the model algorithm and the description of the
parameters employed in the models is given in Section 3.6. Finally, the assumptions of
the models are given in the last section (Section 3.7).

Section 4 presents the results of various analysis and model calibrations done. The uncer-
tainty quantification of the model outputs in the control case and the sensitivity analysis
of its model parameters are given in Sections 4.1 and 4.2 and the calibration of the models
against real measurements is featured in Section 4.3.

Finally, Section 5 discusses the report in general. Section 5.1 gives an overview of what
has been done. The conclusion based on the results obtained in Section 4, is given in
Section 5.2. The recommendations and relevant future works are given in Section 5.3.
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2 MARKOV CHAIN MONTE CARLO METHOD FOR
PARAMETER ESTIMATION

In this section, the introduction and explanation of the basic role of Markov chain Monte
Carlo (MCMC) in parameter estimation, especially in cases of high dimensional prob-
lems, as in the case of our study, is given. We briefly explain the concepts of Metropolis
algorithm, Metropolis-Hastings algorithm and Adaptive MCMC with its improved ver-
sion. Finally, the common diagnostics that can be done in order to access the convergence
of these algorithms are discussed.

2.1 Bayesian Parameter Estimation

In statistical analysis of mathematical models we aim not only to estimate the optimal
values of unknown parameters, but the estimation of the distribution of these parameters
is also of paramount interest. This introduces us to the Bayesian parameter estimation
approach where the unknown parameters, θ, in the models are thought to be random vari-
ables from certain distributions. Hence, the first goal is to find the posterior distribution
π(θ|y) of the parameters , which gives the probability density for the values of θ, given a
measured data y, parametrised as

π(θ|y) =
l(y|θ)p(θ)

p(y)
, (1)

where l(y|θ) is the likelihood which contains the information from the sample data and
gives the probability density of observing data y, given the parameter value, θ. The prior
distribution p(θ) represents the previous knowledge about θ before taking the empirical
evidence into account. In most cases, the uninformative flat prior; which expresses a
vague knowledge of θ, is used and hence p(θ) = 1. The posterior distribution, π(θ|y)

reveals the level of uncertainty associated with the parameter set, θ after taking both
the prior information and the data into consideration. The normalizing constant; p(y) =∫
Θ

l(y|θ)p(θ)dθ ensures that the posterior π(θ|y) integrates to 1. However, working with

the posterior density is quite challenging, especially in high dimensional cases because
one has to integrate over the parameter space in order to calculate the normalising constant
for the posterior density. Thus MCMC is introduced so that the posterior distribution can
be evaluated without explicitly computing the normalising constant, p(y).
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2.2 MCMC Methods

The MCMC methods are based on generating a sequence of N -random samples (θ1,θ2,

. . . ,θN), from a proposal distribution and then correcting those draws so that their dis-
tribution asymptotically approaches the target posterior distribution as N increases [24].
The Monte Carlo term is used to describe methods that are based on generating random
numbers and subsequently averaging over the simulations while the Markov chain com-
ponent is based on the fact that the sequence of samples are generated such that each new
point θn+1 depends only on the previous point θn. The MCMC methods take into account
all the uncertainties in the data and yield a sample of the whole posterior distribution of
parameters instead of only a point estimate, as in the least squares. Some MCMC meth-
ods such as Metropolis algorithm, Metropolis–Hastings algorithm, adaptive MCMC and
delayed rejection adaptive Metropolis algorithms are hence discussed briefly.

2.2.1 Metropolis Algorithm

The Metropolis algorithm is one of the commonly used MCMC algorithm [25]. It uses
the accept/reject procedure which works by drawing candidate parameter values from a
symmetric proposal distribution, q(·|θ), which are either accepted or rejected based on
some probability. In Algorithmic form, the method is described in Algorithm 1 below.

Algorithm 1 Metropolis Algorithm
1. Initialise the parameter θ0 and set n = 0;
2. From a suitable proposal distribution, q(·|θn), sample a new candidate point θ̂ ∼
q(θ̂|θn) that depend on the previous point on the chain;

3. Compute an acceptance probability

αa(θ̂,θn) = min

(
1,
π(θ̂)

π(θn)

)
(2)

4. Sample a random number, u from a uniform distribution U(0, 1);
5. Accept θ̂, if u < αa(θ̂,θn) and set θn+1 = θ̂; otherwise, reject θ̂ and set θn+1 = θn;
6. Set n = n+ 1 and repeat steps 2 through 6.

In the Metropolis algorithm, we only need to compute the ratios of the posterior distri-
bution and in doing this, the problematic normalising constant cancels out. This is what
MCMC does to handle multi-dimensional parameter estimation problems.
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2.2.2 Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm is a simple extension of the Metropolis algorithm
since the former assumes an asymmetric proposal distribution and its acceptance proba-
bility is slightly modified to account for asymmetry [26]. Thus, in Metropolis–Hastings
algorithm, the probability density of moving from the current point to the proposed point
is different from that of moving from the proposed point to the current point [26]. So, for
two parameter values θn and θ̂ we have that q(θ̂|θn) 6= q(θn|θ̂). Thus the probability of
accepting the move from θn to θ̂ is given as

αa(θn, θ̂) = min

(
1,
π(θ̂) q(θn|θ̂)

π(θn) q(θ̂|θn)

)
. (3)

Furthermore, a major concern in implementing the Metropolis algorithm and Metropolis–
Hastings algorithms is choosing a proposal distribution. A paramount thing to consider in
choosing the proposal distribution, is that it should be easy to sample from and it should
be very close to the underlying target posterior distribution. Selecting an unsuitable pro-
posal distribution can lead to inefficient implementation [27, see]. Mostly, a good guess
for the proposal distribution if it is not known, is the Gaussian distribution with mean,
θn (current position) and a fixed covariance matrix. This is due to its theoretical and
computational properties. Both Metropolis algorithm and Metropolis–Hastings algorithm
require a manual tuning, which is laborious and so several adaptive MCMC algorithms
have been developed to update the covariance matrix during the MCMC run.

2.2.3 Adaptive MCMC

A careful choice of a proposal distribution that matches the target distribution, is a ne-
cessity for the Metropolis algorithm to work efficiently. Choosing a Gaussian proposal
distribution with mean θn and a fixed covariance matrix as in the Metropolis algorithm
approach does not always lead to efficient sampling. Thus the adaptive MCMC was de-
veloped in order to improve the proposal during the run using the information of the
previously sampled points [28]. This is achieved by computing the empirical covariance
matrix of the points sampled so far and using that as the proposal covariance matrix, thus
making the algorithm non Markovian.

For the Adaptive Metropolis algorithm, the proposal is taken to be Gaussian, centered at
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the current point and the proposal covariance matrix is an empirical covariance matrix
which is computed using the information cumulated so far. To be more exact, assuming
that we sampled points (θ0, . . . ,θn−1) the new proposal distribution, qn(·|θ0, . . . ,θn−1)

for the next candidate point, θ̂ is the (asymptotically symmetric) Gaussian distribution
with mean at the current point and the covariance matrix given as

Cn = sdCov(θ0, . . . ,θn−1) + sdωId, (4)

where d is the dimension of θ, sd is the scaling factor, ω > 0 is the diagonal regularisation
parameter that ensures the positivity of the covariance matrix and Id is a d × d identity
matrix. The candidate point θ̂ is accepted with a probability, as given in Equation 2.

The vital thing to know about adaptation is how the covariance matrix of the proposal
distribution depends on the chain history. Thus to start the adaptation process, we select
an arbitrary strictly positive definite covariance C0, based on the prior knowledge. Next,
we arbitrarily select a time index n0 > 0 for the length of the initial non-adaptation period
and define

Cn =

C0, n ≤ n0

sdCov(θ0, . . . ,θn−1) + sdωId n > n0
, (5)

where the covariance Cn may be viewed as a function of n variables from Rd whose
values are in the uniformly positive definite matrices. Thus we have that the empirical
covariance matrix determined by the points (θ0, . . . ,θk) ∈ Rd is given by

Cov(θ0, . . . ,θk) =
1

k

(
k∑
i=0

θiθ
T
i − (k + 1)θ̄kθ̄

T
k

)
, (6)

where θ̄k = 1
k+1

k∑
i=0

θi is the empirical mean and the elements θi ∈ Rd are considered as

column vectors [28]. Thus, substituting Equation 6 into Equation 5 for n ≥ n0 + 1, we
obtain that the covariance matrix Cn satisfies the recursive formula

Cn+1 =
n− 1

n
Cn +

sd
n

(
nθ̄n−1θ̄

T
n−1 − (n+ 1)θ̄nθ̄

T
n + θnθ

T
n + ωId

)
. (7)

This allows one to compute the covariance update without much computational cost since
the mean θ̄n, also satisfies the recursive formula

θ̄n =
n− 1

n
θ̄n−1 +

1

n
θn. (8)
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The Adaptive MCMC approach is summarised in Algorithm 2 below.

Algorithm 2 Adaptive Metropolis
1. Initialise θ1 and C1 and choose the chain length, N ;

While the number of iteration is less than the chain length:
2. Sample a new candidate point θ̂ ∼ N(θn,Cn);
3. Compute an acceptance probability

αa(θ̂,θn) = min

(
1,
π(θ̂)

π(θn)

)
; (9)

4. Sample a random number, u from a uniform distribution U(0, 1);
5. Accept θ̂, if u < αa(θ̂,θn) and set θn+1 = θ̂; otherwise, reject θ̂ and set θn+1 = θn;
6. Update the covariance;

Cn+1 = sdCov(θ1, . . . ,θn) + sdωId; (10)

7. Set n = n+ 1 and repeat steps 2 through 6.

There are different variants of implementing the adaptive Metropolis algorithm. The co-
variance matrix can be computed by the whole chain or by an increasing part of the chain
[28]. Also, for proper and efficient adaptation, the covariance matrix can be updated after
a certain interval of steps, instead of doing that at every step.

2.2.4 Delayed Rejection Adaptive Metropolis (DRAM)

More advanced adaptive MCMC exist such as the delayed rejection adaptive Metropolis
(DRAM) algorithm [29]. This approach combines the delayed rejection (DR) method by
[30] and the adaptive Metropolis Method. The basic idea of the DR is hence described.

Suppose that the current position of the chain is θn, a candidate point θ̂1 is generated from
a proposal q1(·|θn) and accepted with the probability

α1(θn, θ̂1) = min

(
1,
π(θ̂1)q1(θn|θ̂1)

π(θn)q1(θ̂1|θn)

)
, (11)

= min

(
1,
L1

G1

)
,
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just as in the Metropolis–Hastings algorithm. If rejected, instead of repeating the previous
value on the chain θn+1 = θn as we would do in Metropolis–Hastings algorithm, a sec-
ond stage sampling attempt is made close to the current point using a different proposal,
q2(·|θn, θ̂1) which depends on both the current point of the chain and on the point that
was proposed and rejected. According to [31], the second stage proposal is accepted with
a suitably modified acceptance probability, given as

α2(θn, θ̂1, θ̂2) = min

(
1,
π(θ̂2)q1(θ̂1|θ̂2)q2(θn|θ̂1, θ̂2)[1− α1(θ̂2, θ̂1)]

π(θn)q1(θ̂1|θn)q2(θ̂2|θn, θ̂1)[1− α1(θn, θ̂1)]

)
, (12)

= min

(
1,
L2

G2

)

If the second stage is reached, it implies that L1 < G1. Thus inG2, we replace, α1(θn, θ̂1)

with L1/G1 and we have

α2(θn, θ̂1, θ̂2) = min

1,
N2

G1q2(θ̂2|θn, θ̂1)
[
1− L1

G1

]
 ,

= min

(
1,

N2

q2(θ̂2|θn, θ̂1)[G1 − L1]

)
.

Generally, the i-th stage of the Delayed Rejection algorithm works as follows. If a previ-
ously proposed candidate point θ̂i−1 is rejected, generate θ̂i from qi(·|θn, θ̂1, . . .) which
is accepted with probability

αi(θn, θ̂1, . . . , θ̂i) = min

(
1,

{
π(θ̂i)q1(θ̂i−1|θ̂i)q2(θ̂i−2|θ̂i−1, θ̂i) · · · qi(θn|θ̂i−1, θ̂i, . . .)

π(θn)q1(θ̂1|θn)q2(θ̂2|θn, θ̂1) · · · qi(θ̂i|θ̂1,θn, . . .)[
1− α1(θ̂i, θ̂i−1)

][
1− α2(θ̂i, θ̂i−1, θ̂i−2)

]
· · ·[

1− α1(θn, θ̂1)
][

1− α2(θn, θ̂1, θ̂2)
]
· · ·[

1− αi−1(θ̂i, . . . , θ̂1)
][

1− αi−1(θn, θ̂1, . . . , θ̂i−1)
]})

= min

(
1,
Li
Gi

)
. (13)

Also, we have that if the i-th stage is reached, it implies that Lj < Gj for j = 1, . . . , i −
1, therefore, we replace αj(θn, θ̂1, . . . , θ̂j) with Lj/Gj and thereby obtain the recursive
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formula
Gi = qi(θ̂i|θn, θ̂1, . . .)[Gi−1 − Li−1], (14)

which yields

Gi = qi(θ̂i|θn, θ̂1, . . .)
[
qi−1(θ̂i−1|θn, θ̂1, . . .)

[
qi−2(θ̂i−2|θn, θ̂1, . . .) · · ·[

q2(θ̂2|θn, θ̂1)
[
q1(θ̂1|θn)π(θn)− L1

]
− L2

]
− · · · − Li−2

]
− Li−1

]
. (15)

The process of delaying rejection can be interrupted at any stage, and one way to achieve
that is that upon each rejection, we toss a fair coin, if the outcome is head, we move to
a higher stage proposal; otherwise, we let the chain stay where it is. The success of the
DR approach basically depends on the fact that at least one of the proposals is chosen
in the delaying process. Having separately discussed the AM and the DR methods, one
possible combination strategy of the two approaches is hence described.

• Just as in AM, adapt the proposal at the first stage of DR. That is, using all previous
points on the sampled chain, compute the first stage Gaussian proposal’s covariance
matrix, C1

n via the AM recursion formula.

• For higher stages, say i-th stage (i = 2, . . . ,m), compute the proposal covariance
Ci
n as a scaled version of the proposal covariance of the first stage; Ci

n = λiC
1
n

with λi as a scaling factor which can be choosing freely.

Combining these two methods has clear benefits. The AM helps to adapt the first stage
proposal to better fit the underlying target distribution. So in a case where the variance is
too small or large, the points obtained from higher stages will help to properly transform
the variance. Again, we have that sometimes, the initial guess for the proposal distribution
is far from the actual one, thereby making it difficult to start the adaptation process. This
usually occurs if the variance of the proposal is too large, or the proposal’s covariance is
almost singular. DR helps this situation by scaling down the size of the proposals at its
higher stages, ensuring that some points will be accepted and with that, adaptation usually
starts working properly.
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2.3 Convergence Diagnostics of MCMC

A major concern in using MCMC methods is determining when it is reasonable to stop
sampling, with the believe that the samples are true representative of the underlying sta-
tionary distribution, so as to use the generated samples to estimate the characteristics of
the distribution of interest. There are several diagnostics that can be done, both visual and
statistical, to check if the chain appears to be converged, as discussed below.

2.3.1 Visual Inspection

One of the easiest way to check if the chain has converged is to visualise how well our
chain is mixing or moving around the parameter space. This inspection should be done
for every parameter. Thus, if the chain is taking a long time to cover the parameter space,
then it will take longer to converge [32]. A number of graphical tools exist which can
be easily implemented to provide useful feedback about the convergence of MCMC. We
briefly describe these visual tools below.

• Time Series Plot.

According to [32], visualising the state of the chain through time is the most popu-
lar check for convergence of an MCMC algorithm. In this context, a time series plot
is a plot that shows the chains of generated parameter values at each iteration in the
algorithm. A line usually connects its successive points to allow for easy visualiza-
tion of the path cruised by the chain. If different segments of a time series plot for a
given parameter is shown to have traversed different parts of the sample space or if
there is an obvious pattern, it implies that the MCMC algorithm, depicted by such a
plot, may not have converged. In a case of multiple chains contained in the MCMC
algorithm, a time series plot is made for the generated value of each parameter on
a common graph. An evidence of non convergence in this case, is exhibited if the
chains do not traverse the sample space in the same way. A visual illustration of
time series plot is given in Figure 2.
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(a) (b)

Figure 2. Time series plot showing evidence of convergence (left) and lack of convergence
(right) (Source:[32]).The plot gives the generated values of the parameter, in the y-axis against
the iteration number. (a) Good mixing; (b) Bad mixing.

• Running Mean Plot.

The running mean plot can also be used to check how well the chains are mixing.
According to [33], the running mean is the mean of all sampled values up to a given
iteration. It is usually plotted after every n-th iteration and it is made as a plot of
the iterations against the mean draws up to each iteration. With this kind of plot,
an evidence of the convergence of the algorithm is noticed if the running mean
stabilizes at the posterior mean for each parameter. A visual illustration of running
mean plot is given in Figure 3 below.
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(a) (b)

Figure 3. Running mean plot showing evidence of convergence (left) and lack of convergence
(right) (Source:[32]). The plot gives the means of the parameter values sampled so far, in the
y-axis against the iteration number. (a) Good mixing; (b) Bad mixing.

• Plot of Autocorrelation Functions ((ACF).

Another good practice in visualising how well the chain is mixing, is to make a plot
of the autocorrelation functions of the parameter chain. It can be observed from the
plot to what extent the samples that are k steps apart correlate with each other. The
k-th autocorrelation ρk is given as

ρk =

n−k∑
i=1

(θi − θ̄)(θi+k − θ̄)

n∑
i=1

(θi − θ̄)2

. (16)

Since in MCMC the next points depends on the previous points, we would expect
subsequent points to correlate more with each other than points which are farther
away. Thus, the k-th lag autocorrelation is expected to be smaller as k increases
and as such, the 3rd and 4th draws should be more correlated than the 5th and 10th
draws. If for higher values of k, autocorrelation is still high, it implies high degree
of correlation between the draws and a slow mixing (chains traversing the sample



25

space slowly). Thus, an MCMC algorithm that generates highly autocorrelated
parameter values will require a large number of iterations in order to transverse the
whole sample space of the parameters [32]. An illustration of the ACF plot is shown
in Figure 4.

(a) (b)

Figure 4. ACF plot showing evidence of convergence (left) and lack of convergence (right)
(Source:[32]). (a) Good mixing; (b) Bad mixing.

2.3.2 Statistical Diagnostics

There are several statistical diagnostics that can be made in order to check for MCMC
convergence. These include Gelman and Rubin, Geweke, Raftery and Lewis Convergence
Measure. In this work, we describe the Gelman and Rubin Convergence Measure.

• Gelman and Rubin Convergence Measure.

According to [34] the Gelman and Rubbins [35] convergence diagnostics approach
is currently the most popular diagnostics for convergence in the Statistics. Gelman-
Rubin suggested running multiple chains with over dispersed starting values to
compute the estimates of the posterior distribution and a reduction factor which
shows how much sharper the estimate of the distribution might become if sampling
were continued indefinitely. This approach of monitoring convergence is based on
detecting when the chains are no longer influenced by their starting values, as large
number of iterations are taken. The following steps are involved in this method:

– Obtain an over dispersed estimate of the target distribution.

– Generate starting values for the desired number of independent chain from the
over dispersed estimate of the target distribution.
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– Compute the within-chain, W and between-chain, B variance as;

W =
1

m

m∑
j=1

s2
j , where s2

j =
1

n− 1

n∑
i=1

(θij − θ̄j)
2 (17)

B =
n

m− 1

m∑
j=1

(θ̄j − ¯̄θ)2 where ¯̄θ =
1

m

m∑
j=1

θ̄j (18)

– Calculate the estimate of the variance of the stationary distribution as a weighted
sum of the within-chain and between-chain variance as;

ˆV ar(θ) =

(
1− 1

n

)
W +

1

n
B, (19)

which is unbiased if the starting distribution is equal to the stationary distribu-
tion.

– Compute the potential scale reduction factor as;

R̂ =

√
ˆV ar(θ)

W
=

√
n− 1

n
+

1

n

B

W
, (20)

where n is the number of iterations which is sometimes taken after discarding
the first few iterations. Since the initial value of the chains are over dispersed,
we have that the quantity B is initially larger than W and as such, the poten-
tial scale reduction factor is considerably larger than one initially. As large
numbers of iteration are taken, the potential scale reduction factor declines to
1 if the algorithm converges. At this point, the chains are no longer impacted
by their starting values and have cruised the whole sample space.

Many other methods for the MCMC convergence diagnostics exist [32], but
in this work, we discussed the commonly used approaches.

In this study, we employ the basic features of MCMC in modelling the host-seeking be-
havior of the target mosquito species (An. gambiae and An. arabiensis) as well as for the
identification of model parameters.
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3 MODEL FORMULATION AND SIMULATION CON-
FIGURATION

The modeling approach alongside the selections and parametrization of the factors re-
quired for the modeling is presented in this section. The assumptions of the models are
also stated herein.

3.1 Modeling Mosquito Movement and Attraction to Host

3.1.1 Initialising Positions and Conditions

Initially in the simulations, the mosquitoes are represented as a number of agents in a rect-
angular patch [xmin, xmax] × [ymin, ymax] at uniformly random spatial positions generated
with the formula

xcord = xmin + (xmax − xmin)× r,

ycord = ymin + (ymax − ymin)× r, (21)

where r ∼ U(0, 1), is a vector of random numbers from the uniform distribution with
length, corresponding to the number of mosquitoes Nm. Thus, we have an (Nm × 2)

matrix of initial positions of the mosquitoes. The initial distance of each mosquito from
the human is thereby calculated as

dold =
√

x2
cord + y2

cord, (22)

and the initial concentration of attractive odour with respect to the positions is equally
calculated as discussed in details at the later part of this subsection. Furthermore, the
property list of each mosquito agent which is updated at each timestep of the simulation,
are given initially as a matrix of size Nm× 12, where such properties are 12 in number as
defined below.
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Table 1. Property lists of mosquitoes.

Conditions Properties Definition
1 In Equation 23
2 Trapped (exited) Equation 40
3 Dead Equation 59
4 Fed Equation 61
5 Time indoors Equation 62
6 Klinotaxis Equation 64
7 Inside net Equation 38
8 Time spent in one position
9 Concentration of chemical Equation 53

10 Hitted net Equation 65
11 Hitted wall Equation 67
12 Time after hitting the net Equation 65.

The detailed explanation of these conditions are given later in this section as precisely
specified in the above table. First, we check if the mosquitoe’s position enter the rectan-
gular patch (the hut), using condition 1, as we check if its old distance is less than or equal
to the hut size, denoted as hs, as given in the equation below

condition(:, 1) = (dold ≤ hs). (23)

Generally, in the hut experiment we place all the mosquitoes inside of the hut at the
beginning of the simulation. So, this condition(:,1) is redundant, and is more used in the
community level experiment. Thus, given that all mosquitoes at the hut-level experiment
have initially gained entrance into the hut, we model their candidate steps and attraction
to the host as described below.

3.1.2 Attraction Model

The mosquito attraction model is based on the assumption that a mosquito estimates the
direction of odour increase (the gradient) from the host by the mechanism of klinotaxis.
During this plume-tracking behavior, a mosquito samples the host odour at one location,
then changes location and repeats the sampling, as it uses its memory of the concentrations
previously encountered to choose the next position [13].
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Imitating the aforementioned mechanism, we can model the flight of mosquitoes as a dis-
crete time-stepping correlated random walk. Suppose that a mosquito agent is at position
xn−1 at time step n− 1, then the mosquito can randomly select a new position xn; which
relates to the first position by the formula

xn = xn−1 + ∆W, (24)

from a two-dimensional proposal distribution. The increment, ∆W ∼ N(R,Σ) is a
random point on a circle centered at the origin of the coordinate system (0,0). Thus the
next position, xn is sampled as a random point on a circle centered at xn−1 with radius;
R = 0.4m, with random numbers generated from N(0, σ2) and having σ = 0.1 added
in the direction of the radius. In this work, Σ = σ2I where I is an identity matrix and
the parameters x0 and σ were matched with the intent that they imitate the real speed of
mosquito flight which lies in the range 0.4 − 1.1 m/s, for most mosquito species [36].
Thus we have that the increment with respect to the coordinates is given in the equation
below

∆W = di [cos(φ)− sin(φ)] (25)

where di is the displacement of the n-th movement and it is calculated using the formula

di = 0.4 + 0.1 · r, (26)

where r ∼ N(0, 1) with length, corresponding to the number of mosquitoes. The sam-
pling of the increment is done in a similar way at every iteration of the algorithm. Thus
the random direction (in a circle) taken by each mosquito is given as

φ = 2π · r, (27)

where r∼ U(0, 1) with length, corresponding to the number of mosquitoes. The mosquito
flight is given by the above random walk in the absence of attraction effects towards the
host.

However, when there are attraction effects, we shall employ the main features of Metropo-
lis algorithm in order to simulate the movement of mosquito towards the host. As dis-
cussed in Section 1.1.3, that attractive odours emitted by the host are helpful clues for
mosquitoes to locate the hosts. We shall model the concentration of these attractive odours
and the area covered by the odour using the solution of the diffusion equation, with only
the diffusive spread of the odour taken into account. Thus, a particular position where the
host is situated can be said to be the region of high concentration of odour and the maxi-
mal distance at which the mosquito is able to sense the host is viewed as the region of low
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concentration. This aligns with the concept of the diffusion equation which describes the
expel of the flow of some quantity (intensity, temperature) over space [37]. Thus for the
hut experiment, we use the solution of the diffusion equation given as

C(x,xh) = exp

[
−‖x− xh‖2

2σ2
a

]
, (28)

with point source, the Gaussian Kernel centered at a spatial position of the host. The
concentration C(x,xh) at any point, obeys the Gaussian bell shape [38]. In Equation 28,
x denotes the mosquito position, ‖x−xh‖ is the distance from which the mosquito senses
the host with the influence of odour concentration, C(x,xh) and the standard deviation of
the Gaussian, σa determines the maximal distance at which the mosquito is able to sense
the host.

In a community level simulation, where there are multiple hosts, the total concentration of
attractive odour at point x, can be measured as the sum of all the individual concentrations
measured at x, corresponding to individual hosts, and it is given as

Ca(x) =

Nh∑
i=1

{
exp

[
−‖x− xhi ‖2

2σ2
a

]}
, (29)

where ‖x − xhi ‖ is the distance between the position of mosquito (x) and position of ith

host, xhi and Nh is the total number of human hosts.

Thus, the attraction is given by means of an accept-reject procedure as described by the
Metropolis algorithm. Suppose that we take the previous and new position of a mosquito
to be xn−1 and xn respectively, with respective probabilities as pn−1 and pn, we have that
the mosquito accepts the new point with probability

αa(x
n|xn−1) = min

(
1,

pn
pn−1

)
, (30)

where pn/pn−1 is the ratio of the attraction potential function p(x) defined at each point
x, which depends on the concentration and other attraction factors. So we have that steps
upwind (pn > pn−1) are always accepted while steps downwind (pn < pn−1) may as well
be accepted with probability, pn/pn−1.

Among the attraction factors, CO2 is regarded as the main attraction factor for the mosquitoes
[39]. In order to parsimoniously define the other short-distance attraction factors, we de-
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fine the attraction potential function as

p(x) = exp

(
C(x)

σacc

)
, (31)

where σacc is a scaling factor that depends on the distance to the host.

The above equation can further be modified to be

p(x) = exp

(
C(xn,xh)− C(xn−1,xh)

σacc

)
, (32)

whereC(xn−1,xh) is the initial concentration of attractive odour andC(xn,xh) is the new
concentration of attractive odour. Intuitively, if the new concentration, is greater than the
old concentration, the step is always accepted, otherwise, the step is tentatively accepted
based on some criteria as discussed in the last section. The above acceptance probability
includes all the influence of treated and untreated nets and also the hut barrier which is
given by a rejection function.

Thus, we update mosquito position if they have actually moved and if the candidate step
is accepted as given below:

update position = move & attr & acc, (33)

of which a mosquito can move if it is not dead and not trapped, defined as

move =∼ condition(:, 2) & ∼ condition(:, 3). (34)

The mosquitoes that actually moved, achieved this, based on the criteria given by ’attr’
which is different for treatment and control case as defined below

attr =


uacc < αa(x

n|xn−1) | condition(:, 6), control case

uacc < αa(x
n|xn−1) · (1− αr(x|d50, r, s))

| uacc < (1− αr(x|d50, r, s)) & condition(:, 6), treatment case,
(35)

where uacc is the set of random numbers generated for the accept/reject procedure for
candidate steps and αr(x|d50, r, s) is the probability of repulsion by a repellent which is
discussed later in details. Finally, the third criteria for updating a mosquito step, is that
which depicts the acceptance of a candidate step made and described as

acc =∼ exited hut & ∼ entered net & ∼ unphy jump, (36)
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where ‘entered net’ is used to describe the state of a mosquito whose proposed step
falls inside the net and is primarily accepted, whereas the old position is outside and the
mosquito was not able to gain full entrance into the net (accept/reject procedure) thereby,
accounting for net barrier. In this situation, we simulate the mosquito hitting the net (see
Section 3.4 ). The above description is defined as

entered net =∼ condition(:, 7) & (dnew < dp). (37)

Hence, we note that ‘entered net’ is different from a mosquito being inside the net which
is given by condition 7 and defined as

condition(:, 7) = dold < dp. (38)

In continuation of the definition of Equation (36), we have that, ‘exited hut’ is defined as

exited hut = condition(:, 1) & (dnew > hs) & ∼ condition(:, 2). (39)

Thus, this has a similar definition with that of ‘entered net’ though logically, the differ-
ence is that, it is used to account for the barrier created by the wall and we simulate the
mosquito hitting the wall (see Section 3.4) when this happens. Again, we note that ‘exited
hut’ is not the same as the mosquito actually exiting the hut as given by condition 2 and
defined as

condition(:, 2) = condition(:, 1) & (dold > hs), (40)

and the mosquito is marked as trapped under such condition.

Next we define the unphysical jump through the net, made by mosquitoes as

unphys jump = (dold ≥ dp) & (dnew ≥ dp) & Discr ≥ 0

& (t1 ≥ 0) & (t1 ≤ 1) | (t2 ≥ 0) & (t2 ≤ 1) ,
(41)

where the discriminant factor is defined as

Discr = b2 − 4ac, (42)

and the quadratic coefficients are derived by finding the intersection of the line and a circle
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(gradient) and based on natural parameterization, we have

a = xdiff + ydiff,

b = 2(xprod + yprod)− (xcord + ycord),

c = (xcord + ycord)− d2
p,

(43)

given that xdiff and ydiff give the difference between the old and new coordinates and also,
xprod and yprod denote an element-wise product of the old and new coordinates. Again,
note that xcord and ycord are the coordinates that constitute the old position of a mosquito.
Hence, we have that t1 and t2 are the resulting roots of the quadratic equation defined as

t1 =
−b+

√
Discr

2a
,

t2 =
−b−

√
Discr

2a
. (44)

Based on these descriptions, if the criteria stipulated in Equation 33 is met by any mosquito
at any time-step in the simulation, the coordinates alongside the distance from the host
and the corresponding concentration of attractive odor is updated for that mosquito.

Furthermore, an intuitive annotation of σacc in Equation 32 stems from the fact that, we
assume that at a short distance to the host, the ability of the mosquito to sense is enhanced,
since it becomes able to identify the prey via vision and heat sensors [40]. In order to
account for the increasing greediness of the mosquito in the odour plume as a result of
vision activated at short distance to the host, we introduce a linear distance dependency
of the scaling factor as

σacc(x) =

σ′acc + σ′′acc‖x− xh‖, for ‖x− xh‖ ≤ 80

σmax
acc , for ‖x− xh‖ > 80

. (45)

The above function increases from σ′acc; which is the minimum value (i.e the value of the
scaling factor when the distance to the host is zero), with a slope given by σ′′acc until it is
replaced by a constant, which suitably provides a purely random movement outside the
concentration plume (see Section 3.6).

For the community scale simulation, it is assumed that the scaling factor σacc depends
on the distance to the closest host. The algorithm that implements this, imitates that
of the Simulated Annealing optimization method [41], with the ’annealing temperature
schedule’ replaced with the ’greediness scale’. Figure 5 gives an overview of the scaling



34

factor, σacc as well as the resulting probability of accepting steps away from the host.

Figure 5. Scaling factor σacc conditioned on distance to the host (top), average probability
of accepting candidate steps taken away from the host; as a function of distance to the host
(bottom). (Source:[23])

As shown in Figure 5, the probability of accepting steps away from the host attenuates
as the mosquito approaches the host. However, this probability locally increases, just a
bit as the mosquito gets very close to the host. This is a typical property exhibited by
mosquitoes, as explained in [42] where Anopheles gambiae was observed to exhibit more
tortuous flights as it scans the environment before landing.

The table below presents the formulas of the models formed in this subsection and the
names of the functions/scripts for which they are executed in MATLAB.
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Table 2. Trace back to MATLAB.

Model executions MATLAB script/function names
Equations (21) and (22) init positions.m

Equation 23 mosq entered.m
Equations (24), (25) and (27) candidate step.m

Equation 26 and random number generations gen randoms.m
Equations (28), (30) and (32) hut experiment.m

Equation 33 mosq update position.m
Equation 34 death.m
Equation 35a control.m
Equation 35b LLIN.m

Equations (36), (37), (39) and (41) to (44) physical barrier6.m
Equation 38 mosq inside net.m
Equation 40 mosq exit.m
Equation 45 hut experiment.m .

3.2 Modeling Protective Measures

The protective measures considered in this work; untreated and LLINs, are modelled
using the properties of the logistic function given as

y =
1

1 + exp(−x/s)
. (46)

The logistic function is used to describe certain kinds of growth rate that has an S-shaped
behaviour. This function grows exponentially at first, but due to certain restrictions, even-
tually grow more slowly and levels off as |x| → ∞.

However, in modeling protective systems, we aim at getting the probability of rejection
at a candidate mosquito position, x. Thus, we should have a function that describes the
fact that, repulsion effect amplifies as the mosquito approaches the source of repellent. In
doing this, we modify the above logistic equation as

ỹ = 1−
(

1

1 + exp(−x/s)

)
. (47)

Furthermore, in order to capture the protective properties of the nets, we shall modify
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Equation 47 above to obtain a distant dependent function given as

αr(x|d50, r, s) = r

[
1− 1

1 + exp
(
− (‖x− xh‖ − d50)/s

)] , (48)

where: ‖x− xh‖ is the distance from the mosquito to the protected human, s determines
the range of repellent that causes repulsion with non zero probability, r denotes the inten-
sity of repulsion (since different repellent have different repulsion intensity), d50 stands
for the distance from the host where the concentration of repellent attains 50% of its total
and at this distance, the probability of repulsion has the value of 0.5. The above formula
models the rejection probability at the candidate position, x. Furthermore, Figure 6 gen-
erally illustrates how the probability of rejection changes with respect to distance to the
host, the repulsive range and the repellent intensity. Thus, Figure 6a features the proba-
bility of rejection with a randomly sampled repellent intensity of 0.6905 from the MCMC
chains generated for IconMaxx chemical and with different repulsive ranges, defined by
s. However, since most of the treatment chemicals act at a short distance, s was fixed to
0.01 in the simulation. Thus, Figure 6b presents the the rejection probability curves for
100 randomly sampled repellent intensity values, r from the MCMC chains generated for
IconMaxx chemical in a simulated hut experiment, with slope, s = 0.01.
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(a)

(b)

Figure 6. Rejection probability for different values of s and r, with d50 = 0.75. (a) Probability
of rejection with different values of s. (b) Probability of rejection with s fixed at 0.01.

The formula presented in Equation (48) is applied when the mosquito is still outside the
net. However, if it gains entrance into the net, the direction of net repulsion is swapped
such that the repulsion probability reduces as it approaches the host under the net. There-
fore, the probability of repulsion is generally modeled as



38

αr(x|d50, r, s) =


r

[
1

1+exp
(
−(‖x−xh‖−d50)/s

)] , for ‘inside net’

r

[
1− 1

1+exp
(
−(‖xi−xh‖−d50)/s

)] , for ‘outside net’

.

(49)

3.2.1 Untreated Nets

Nets posing just a physical barrier to mosquitoes conform with rejection probability given
as a step function which is a particular case of Equation 48 where s << 1. With this,
the mosquito can roam around the net with virtually zero probability of getting inside.
We consider the fact that realistically, some of the bed nets used in rural communities
are commonly holed and as such, deliberately holed nets are commonly used in hut trials
[43]. Hence, we simulate torn nets such that they have a non zero probability for mosquito
penetration. Each of the six holes simulated has a size of π(1 − pnet). Thus, we assign a
penetration probability of 1 − pnet < 1 for torn nets, where pnet denotes the probability
of being blocked by a net barrier and so we have that for the simulations, the acceptance
probability of a proposed mosquito step inside the net area is 1− pnet.

3.2.2 Treated Nets

For the treated nets, we model the repulsion by the LLIN in two stages. We first start with
applying the accept/reject step as given by the Metropolis type of probability

αr(x
n|xn−1) = min

(
1, αr(x|d50, r, s)

)
, (50)

where αr stands for the probability of rejection. We further take into account, the physical
barrier posed by nets just like that of the untreated net. However, the poisoning effect
which the LLIN are equipped with, is such that, the probability of insecticide induced
mortality of a mosquito increases upon consuming the chemical substance spread on the
net surface.

The function which executes these repulsion effects given by Equations (48) to (50) is
named prob rep vec.m in the MATLAB codes.
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3.3 Modeling Mortality Rates

We model the death rates of mosquitoes with cognizance of the two kinds of protective
measures considered in this work. In the control case, mosquitoes can only die a natural
death and as reported in the literature [44], a 34 hour death rate, µ of 10% is typical for
both An. gambiae and An. arabiensis. The death rate is possibly enhanced in the treat-
ment case considering the fact that it takes the poisoning effect of the chemical substance
sprayed on the net surface into account.

Thus, we model the total consumed dosage of chemical using the solution of the diffusion
equation, with the Gaussian kernel centered at a spatial position of the net, as a point
source. Thus, the dosage of poisonous chemical is defined as

D(x,xn) =
T∑
i=1

exp

[
−‖x− xN‖2

2σ2
µ

]
, (51)

of which we assume that the dosage of the chemical is taken only when contacting with
the net, not at a distance, hence, there is a unit dosage of chemical that can be computed
by replacing the norm with actual size of the net, dp. The standard deviation of the Gaus-
sian, σµ denotes the effective range of the poison. Thus, the total accumulated dosage of
the chemical is dependent on the sequence of positions; D(x1,x2, . . .xn,xN ). Hence, a
mosquito is able to accumulate chemical based on the criteria described in the equation
below

take chemical = move & entered net, (52)

where the above two criteria are defined in Equation (34) and Equation (37) respectively.
Thus, the dosage of poison (given in condition 9) for such mosquito which satisfy Equa-
tion (52) is updated as

condition(take chemical,9) = condition(take chemical,9) + D(take chemial, 9), (53)

where D denotes the total sum of dosages calculated over all the contacts with the net.
Hence we account for insecticide induced mortality rate using the properties of logistic
equation with slight modification such that it captures the poisoning properties of the
net. This mortality rate is dependent on the effective amount of chemical consumed by a
mosquito up to a particular instant in time t and so we have a dosage dependent function
parameterized as

µc =
tµ

1 + exp
(
− (µd − dµ50)/sµ

) , (54)

where tµ is the chemical toxicity which is different for different insecticides, dµ50 is the
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critical dosage of chemical at which death happens with 0.5 probability, sµ is the temporal
range of poison and it determines the range of consumed dosage that cause death with non-
zero probability and µd is the consumed dosage of chemical as given in Equation (53).
Figure 7 illustrates the increase in the chemically induced death rate based on the amount
of consumed dosage.

Figure 7. Insecticide induced death rates for different values of sµ, with dµ50 = 0.8 and tµ = 1.

In implementation sµ was taken to be 0.001 which gives a step function such that the
the chemical induced death rate for any mosquito becomes 1 if the consumed dosage is
greater or equal to dµ50 and zero, otherwise.

However, in continuous time, we usually express the natural mortality of a population as
the ordinary differential equation given in Equation 55

dP

dt
= −µP, (55)

where µ and P denote the decay rate and the population size respectively. Adopting the
above formula to capture the chemically enhanced death, we can re-write it as

dP

dt
= −(µ+ µc)P, (56)

with µc, being the insecticide induced decay rate. Relating it with the discrete-time cal-
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culations, we discretize the above equation as

P (t+ ∆t)− P (t)

∆t
= −(µ+ µc)P (t), (57)

where ∆t = tn − tn−1 is a time unit. With some mathematical manipulations below;

P (t+ ∆t)

∆t
=
P (t)

∆t
− (µ+ µc)P (t),

P (t+ ∆t)

∆t
=
P (t)(1− (µ+ µc)∆t)

∆t
,

P (t+ ∆t) = P (t)(1− (µ+ µc)∆t),

we have that the above equation becomes

P (t+ ∆t)

P (t)
= 1− (µ+ µc)∆t, (58)

which describes the relative decrease in the size of the population at a given time step.
From the above equation, the total probability of death per unit change in time, ∆t is
parametrized as

α∆t = min{1, (µ+ µc)∆t}, (59)

where ∆t = 2 seconds, is the length of time interval. Therefore at each step in the
simulations, the total probability of death for every mosquito agent is computed as the
sum of both the chemically induced and natural death rates. Hence we have that in the
control case, µc = 0 and at the initial stage in the treatment case, when the mosquito is
free from chemical poison, the death rate is restricted to be a natural mortality but after it
accumulates a lethal dose of chemical, its total probability of death, α∆t tends to one. The
probability of death is tracked and updated separately for each mosquito in the simulation.

Furthermore, we mimic the process of accounting for delayed mortality as demonstrated
by [22], where mosquitoes that have already stayed for 10 hours in the hut, were collected
alive and kept for 24 hours under the glass, before scoring for delayed mortality. In doing
this, we fix the death rates after 10 hours in the hut and account for probability of death
after a time period of 24-hours as

α∆t
24h = min

{
1,
[
µ∆t

10h + µc
]

∆t
}
, (60)

where µ∆t
10h is the 10-hour natural death and ∆t = 24 · 1800. Hence we have that a

mosquito is marked as dead if the total probability of death after 34 hours is less than some
generated random number from the uniform distribution. If a mosquito is marked as dead,
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the property list and position of such mosquito will no longer be updated. However, it is
necessary to note that the mortality status of a trapped mosquito as given in Equation (40)
is the only property of such mosquito that is updated at every step of the simulation.

In continuation of the description of the criteria for updating the property list of mosquitoes,
we have that a mosquito is scored as fed if its updated position is closer to the center point
of the host than ε (see Table 5) as given in condition 4.

condition(:, 4) =∼ condition(:, 3) & dold < ε. (61)

Hence, if marked as fed or if the maximal time tmax that it should spend for host-seeking
is used up, the mosquito switches to a pure random walk. The indoor time for each
mosquito, as given in condition 5 is incremented with the formula

condition(inside alive, 5) = condition(inside alive, 5) + 2, (62)

where ‘inside alive’ is a logical vector, with respect to each mosquito and defined as

inside alive = condition(:,1) & ∼ condition(:,2) & ∼ condition(:,3). (63)

Intuitively, the time spent indoors for all mosquitoes that are inside the hut and are neither
dead nor trapped are updated by 2 seconds. To that end, we have that a mosquito switches
to a pure random walk as given by condition 6, based on the formula

condition(:, 6) = condition(:, 4) | (condition(:, 5) ≥ tmax) (64)

and it should be noted that the barriers posed by the net and the repellent effect alongside
the impact of chemical poisoning still remain functional under this condition.

The table below presents the formulas of the models formed in this subsection and the
names of the functions/scripts for which they are executed in MATLAB.
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Table 3. Trace back to MATLAB.

Model executions MATLAB script/function names
Equation 51 conc pois.m

Equations (52) and (53) mosq acum chem.m
Equation 54 prop enh death.m
Equation 59 death.m
Equation 60 statistics.m
Equation 61 mosq fed.m

Equations (62) and (63) increment indoor time.m
Equation 64 switch to kinesis.m .

3.4 Accounting for Net and Hut Barriers

We further explicitly explain how to treat the movement at the net, inside the net, on the
walls of the hut and for exiting the hut. If a candidate step gains coordinates inside the
net and it is rejected with probability, pnet, we update the mosquitoes position with the
nearest point on the net (lying in between the old position and the new position) than that
of position xn−1 such that ‖ x−xh ‖= dp, where dp is the net width as shown in Table 5.
Thus, we mark the mosquito hitting the net as well as the time it spends after hitting the
net as

condition(ind hit & ∼ acc net, 10) = 1,

condition(ind hit & ∼ acc net, 12) = 2,
(65)

where ind hit and acc net are modeled as

ind hit = move & attr & (entered net | unphys junp),

acc net = u < 1− pnet,
(66)

where ‘move’, ‘attr’, ‘entered net’ and ‘unphys jump’ are defined in Equations (34), (35),
(37) and (41) respectively. If the coordinates gained inside the net is accepted, we switch
the direction of the net repulsion, as the mosquito moves towards the host that is under
the bed net as modeled by Equation 49. Also, the candidate step gained outside the hut
is accepted with probability, phut, of which we assume that the mosquito has entered into
the window traps. In the case of rejection, we simulate the mosquito hitting the wall and
update the mosquito’s new position xn to be the closest point on the wall, than that of
position xn−1 such that ‖ x − xh ‖= hs, where hs is the hut size as shown in Table 5.
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Thus we mark the mosquito hitting the wall as

condition(ind hit & ∼ acc hut, 11) = 1, (67)

where ind hit and acc hut are modeled as

ind hit = move & attr & exited hut,

acc hut = u < phut,
(68)

where ‘move’, ‘attr’ and ‘exited hut’ are defined in Equations (34), (35) and (39) respec-
tively. However, a mosquito which has been marked as hitted can exit the hut if acc hut
is achieved.

The table below presents the formulas of the models formed in this subsection and the
names of the functions/scripts for which they are executed in MATLAB.

Table 4. Trace back to MATLAB.

Model executions MATLAB script/function names
Equations (65) and (66) net barrrier6.m
Equations (67) and (68) hut barrier6.m

Parameter usage hut exp init.m .
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3.5 Model Algorithm

The algorithm for implementing the models are summarized in Algorithm 3.

Algorithm 3 Model Algorithm
1. Select candidate point xn by adding a stochastic increment to the previous point,

xn−1, as given by Equation 24;
2. Account for mosquito mortality by computing the total probability of death using

Equation 59; generate random number u ∼ U [0, 1] and remove the agent if u <

α∆t;
3. Measure the concentration of attractive odour C(xn) at new position xn as de-

scribed in Equation 28;
4. Compute the scaling factor σacc(xn−1) as given in Equation 45;
5. Compute the probability of accepting a new position xn influenced by attractive

odour; αa(xn|xn−1), as specified in Equation 30;
6. Compute the repellent probability; αr(x|d50, r, s) by Equation 48;
7. Account for current candidate position by checking if the criteria described in Equa-

tion 35 is met of which such mosquito’s new position xn is as primarily accepted;
otherwise, we mark it as rejected such that it remains at old position by assigning
xn = xn−1;

8. Account for net barrier. If a candidate step xn is inside the net and the old position
xn−1 is outside and xn was primarily accepted, generate random number u. If
u < 1 − pnet, accept the new position xn. Otherwise, choose the closest point on
the net xnet than xn−1 and assign xn = xnet;

9. Account for walls. If a candidate step xn is outside the hut and the old position xn−1

is inside and xn was primarily accepted, generate random number u. If u < phut,
accept the new position xn. Otherwise, choose the closest point on the wall xwall

than xn−1 and assign xn = xwall ;
10. Update the relevant property lists of mosquitoes that are not dead with the respective

formulas as given in Table 4 ;
11. Score fed mosquitoes by considering the formula given in Equation 61; where ep-

silon is the minimal distance between the mosquito and host, which is treated as an
exposure.

12. Start again from step 1 and set n→ n+ 1.

We repeat the algorithm steps so that the time period of one night, 10 hours is covered,



46

and also taking the additional delayed mortality into account. Thus, each calculation
simulates a 34-hour hut experiment. In the simulation, one iteration step corresponds to
2 seconds and there are 18, 000 iterations. The algorithm was implemented in MATLAB
and the graphical user interface (GUI) was helpful in implementing the visualization of
the experiment.

3.6 Model Parameters

Given that some of the parameters employed in the above described models are related to
given physical factors, we fix such kind of parameters for all simulations. Thus the table
below gives the values and description of these parameters.

Table 5. Fixed parameters

Parameter
symbols

Parameter description Parameter
values

Source

µs Average flight speed 0.4 m/s [36]
σ Standard deviation of the fight speed 0.1 m [42] [36]
3σa Maximal distance at which mosquito is

able to sense a host
80 m [45]

hs Size of the experimental hut 3 m [46]
dp Net width 1.5 m [46]
ε Minimal distance between mosquito and

host considered as an exposure
0.65 m

tmax Maximal host-seeking time in the absence
of chemicals

5 h [47]

s Slope of the repellent which characterizes
the spatial spread of repellent

0.01 [48]

sµ Slope of the chemical that characterizes
the temporal range of effective consumed
dosage

0.001

σµ Effective range of the poison ≤ 10 cm [48]

Furthermore, we can fix the parameters, σ′acc, σ
′′
acc of the scaling factor, σacc, by the fol-

lowing argument. We recall that outside the concentration plume (i.e at a distance of
80m), the mosquito movement is purely random. This distance is never reached in the hut
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experiment; considering the size of the experimental hut. The upper limit for σacc was
taken large enough to produce Brownian movement outside the CO2 plume. Thus, using
Equation 45 and accounting for σ′ << 1, we have that with

σacc(x| ‖ x− xh ‖= 80) = 0.001, (69)

the second attraction parameter can be given as; σ′′acc = 0.001/80, where the value, 0.001

is given by the difference in the concentration values, C(xn,xh) − C(xn−1,xh) at the
distance of 80m from the host. The value of σ′acc should be identified by parameter esti-
mation given the upper limit of σacc. From the range of possible values, considering the
upper bound for σ′acc given in [22], the choice of σ′acc = 0.0001 was made.

Hence, with these stated values, the acceptance probability for steps away from the host
tends from one to nearly zero when the distance of the mosquito from the host, ‖ x−xh ‖
decreases from 80m to zero which implies a transition from a pure random walk outside
the concentration plume to increasingly and greedy movement at a short distance from
the host as illustrated in Figure 5. Other parameters were identified from real data using
adaptive MCMC method.

The parameter chains generated with MCMC are used in the algorithm differently for
control and treatment case. In the control case, parameters ruling mosquito attraction to
the host were fixed and variable parameters; probability of penetration through the net,
1− pnet and probability of exiting from the hut, phut, were sampled from previously gen-
erated MCMC chains at each iteration of the algorithm. In the treatment case, parameters
defining the net repellent, insecticide-induced death rate and insecticide-induced exit rate
were sampled from the chains on each iteration of the algorithm while the maximum host-
seeking time in the presence of repellent is fixed to the same value as in the control case.
This is done in addition to the control case parameters.
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3.7 Assumptions of the Models

Having discussed the modelling approach, we make the following assumptions for the
simulation;

(i) The mosquitoes feed only on human and do not have any alternative source of blood
meal.

(ii) Since simulation time is relatively short and considering that it usually takes time
for mosquitoes to digest their blood meal after feeding, we assume that sufficient
amount of blood meal is obtained after one feeding. To that end, each mosquito
takes only one bite after which the mosquito agent switches to a pure random walk
(non directional movement).

(iii) There is no difference in the mosquito preference from one person to another.
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4 ANALYSIS OF MODEL RESULTS

In this section, we provide a means of getting statistically reliable results in respect of
the stochastic nature of the model outputs. Next, a sensitivity analysis is conducted for
the control case model and then, both the control case and treatment model are finally
calibrated with several real data sets from experimental hut trials.

4.1 Uncertainty Quantification

The adequacy of any model is based on the correctness and reliability of its output. How-
ever, since all models are imperfect simplifications of reality, and also due to the fact that
the obtained data with which the models are calibrated are noisy, the output values are
subject to imprecision. Thus, we outline some sources of imprecision in model outputs as
we pinpoint the source inherent in our model and thereby give ways of quantifying, and
communicating the uncertainties in the outputs.

4.1.1 Sources of Uncertainty

Imprecision and uncertainty associated with model outputs could be as a result of numer-
ous reasons. The various sources of uncertainty are as described below;

• Error in obtained measurement. Also known as observation error, this comes from
the variability of experimental measurements.

• Imperfect representation of processes in a model (model structure) as compared
to the real system alongside the approximations made by numerical methods em-
ployed in the simulation.

• Paucity of knowledge of the essential features (parameters) that the model require
to portray reality.

• Imprecision in specifying the values of parameters associated with the model struc-
ture. If the model calibration process is repeated while employing different data
sets, different parameter values would result. These values would produce different
simulated model behaviors, yielding different model outputs in return.
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• Variability emanating from observed input and output values over a region and
within a time that differ from the spatial and temporal scale of the model.

• Errors in the model solution algorithm.

• Uncertainty as a result of the natural randomness in a process.

According to [49], the above described sources of uncertainty are classified under two
broad categories as discussed below.

• Epistemic uncertainty also known as systematic uncertainty, and is as a result of
some things that one could know in principle, but doesn’t in practice. These sources
of uncertainty are reducible and can be evaluated by gaining better knowledge of
the mechanism under study.

• Aleatory variability also known as statistical uncertainty, is the inherent random-
ness in a process which usually stems from the unknowns that differ each time the
same experiment is ran. The quantification for the aleatoric uncertainties can be
relatively straightforward to perform, for instance by using Monte Carlo techniques
and thereby estimate the mean and standard deviation of the model outputs.

This study addresses the uncertainty quantification of the model outputs of which source
of uncertainty, involves the notion of randomness.

Given that the simulations are stochastic due to the random numbers generated during
the simulations (among which include random numbers generated for: selecting dead
mosquitoes, candidate steps and accept/reject) and also as a result of the fact that some of
the model parameters employed in the experiment, are not well known but are identified
with the help of sampled MCMC chains, we have that the model outputs are stochastic.
Thus, in order to calibrate the model against real measurements, by estimating the impact
of various model parameters, we need the averages of the model outputs. This is done by
repeated simulations using a given number of mosquitoes in each. To get a statistically
reliable result, we study the variability of the resulting outputs so as to get a standard devi-
ation that is low enough to be reliable; using the standard deviation in the data employed
for calibration, as the threshold for reaching to a plausible conclusion.

The standard deviation of the simulations can be reduced in two ways. First, by taking
larger number of mosquitoes and next, by taking the average of repeated simulations.
Given that the repeated simulations for swarms of mosquitoes is really CPU intensive to
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carry out, minimizing the computational times is of paramount importance. Thus, we
seek for a compromise between the number of mosquitoes and the number of simulation
repetitions that minimizes the computational times and still keeps the standard deviation
for simulations small enough within the aforementioned threshold.

In doing this, we arbitrarily and constructively considered 50, 200, 400,600 and 800 mosq-
uito populations with 1, 4, 6, 8, 10 number of repeated simulations for averaging applied
for each population size. A constant number of 20000 iterations are taken for each case
after-which we check the standard deviations of the model results based on each compu-
tation of the cost function in MCMC runs. This was done for only the control case in
this study as two factors were considered; percentage exit rate and percentage fed rate
of mosquitoes. Figure 8 gives the visual results depicting how the standard deviation
varies with respect to the number of repeated simulations and mosquito population size
alongside the computational time for each combination.
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(a) (b)

(c)

Figure 8. Results of uncertainty quantification. (a) Standard deviations of percentage exit rate.
(b) Standard deviations of percentage fed rate. (c) Computational time (in seconds).

Overall, it can be seen that that there is a clear difference in the variation of the model
outputs with respect to the population size and simulation repetitions for averaging as
standard deviation decreases with increase in the population size and the number of sim-
ulation repetitions. The computational time as expected, increases with increase in both
the mosquito population and the number of simulation repetitions.

Considering the standard deviations of the data presented in [22], calculated at 95% level
of confidence and are being used as threshold for choosing a small enough standard de-
viation, and taking the computational time to cognizance, we reach a compromise of
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600 mosquitoes at 4 simulation repetitions. Thus, the computational time for such a
run is 16463.92082 seconds (approximately 5 hours) using DESKTOP-JS2F88A, intel(R)
core(TM) i7-6700HQ CPU @ 2.26GHz. The GPU card that was employed for computa-
tions is NVIDIA Get Force GTX 980M.

4.2 Sensitivity Analysis

A sensitivity analysis which seeks to determine the changes in model output values as a
result of modest changes in model input values [50] was conducted for the control case
model. Changes in the values of model parameters can impact the values of model out-
puts in diverse ways. It should be noted that, a relatively few input variables substantially
influence the values assumed by a particular output variable. Hence, considering that the
range of uncertainty of only two of the model outputs (percentage exit and percentage
fed mosquitoes) is of interest, then undoubtedly only those parameters that significantly
influence the values of the aforementioned responses are included in the sensitivity anal-
ysis. These parameters are considered to be pnet and phut which denote the probability of
being blocked by a net barrier and the probability of exiting the hut into the window traps
respectively. Based on the model, we considered the range of values of phut and pnet to be
from 0.999 to 0.9999 and 0.0001 to 0.01 respectively which were taken as inputs. Thus,
the results obtained are showcased in Figure 9 for percentage exit rate and percentage fed
rate, dependent on the two parameters considered.
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(a)

(b)

Figure 9. Plots illustrating the effects of input parameter values on the model outputs.
(b) Percentage exit rate. (b) Percentage fed rate.

It can be seen from the above plots that pnet affects fed rate and has very little impact on
exit rate. Same thing is applicable to phut as its effect is greatly noticed in the exit rate
and has little impact on fed rate. The following relations hold as regards the impact of the
two parameters on the model outputs.

• Increase in pnet brings about a decrease in the percentage rate of fed mosquitoes and
slightly reduces the exit rate. Intuitively, we have that increasing the probability for
which a mosquito is being blocked by a net barrier (either by reducing: the size of
the holes, the number of holes in a net or both ways), causes the mosquito to stay
longer in the hut in search of a hole to penetrate and this reduces the rate at which
they exit.

• Increasing phut makes the percentage rate of mosquito that exit from the hut to
increase and brings about a slight decrease in the percentage of the fed mosquitoes.
An instinctive interpretation to this is that increasing mosquitoes’ chance to leave
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the hut can make the rate at which they loose interest in search of a host to decrease
especially for An. arabiensis which is known to have alternative sources of blood
meal other than the human host.

Furthermore, some MCMC sampling was made to check how the model fits the data
from [22] with certain parameter values. The graphical presentation of the parameter
values that make the model fit the data within reported error bounds, in respect of data
uncertainty is as shown in the Figure 11.

4.3 Model Calibration and Parameter Identification

Calibration involves the estimation of the values of various parameters in a given model,
in order to fit a given set of data [51]. Thus, the calibration process is a trial and error
effort that seeks the parameter values which have the greatest likelihood of being accurate
within acceptable error tolerance. Upon obtaining satisfactory estimates of the model
parameters, the models are checked to ensure that they adequately perform the functions
for which they are intended; which in our case, is to accurately estimate the percentage
exit, fed and mortality rates of the mosquito species under study. The overview of the
model calibration process is given in Figure 10.

(a) (b)

Figure 10. Model calibration process (source:[51])

From the illustration obtainable in the above figure, we have that an initial guess of the
parameter values are obtained and the model is thereby run, to obtain simulated data val-
ues that are compared with the corresponding observations. The process is repeated until
a satisfactory correspondence is obtained and this is what is obtainable from least squares
fitting which seeks for one best parameter estimate that reduces the sum of squared dif-
ference between the real data and the model outputs.
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Considering that there are uncertainties in the observed data sets, which are given in terms
of confidence regions, we therefore regard the parameters as random variables and seek
for the distribution of all model parameters that fit the data with regards to the obtain-
able level of noise in the measurements. Furthermore, another concept of interest is to
know the extent at which the various model parameters actually can be identified by the
available real data and this is where parameter identifiability comes into play.

A suitable head-way in that respect, is given by the MCMC approach which as described
earlier in Section 2, involves drawing candidate parameter values from a predefined pro-
posal distribution and these candidate points are either accepted or rejected based on some
level of likelihood in the sense that the closeness of the model output to the data is taken
into consideration. As there are many MCMC methods that can be employed as discussed
in Section 2.2, Adaptive MCMC is particularly employed in this study since at the ini-
tial instant, we may not be able to clearly identify a well working proposal distribution.
The MCMC technique allows the creation of possible combination of parameter values
which fit the data within a given tolerance for the measurement noise. Thus, we calibrated
the model for each data set by employing the aforementioned MCMC technique with a
chain length of at least, 20,000 using a swarm of 600 mosquitoes and 4 repetitions which
are averaged for a given sample. Considering that the task involves extensive compu-
tational sampling methods, the computations were carried out by combining MATLAB
and GPU programming which suits the simulation of each agent independently. Thus, a
CUDA code is made which is called from MATLAB by creating and running a kernel in
C CUDA and additionally a mex function, wrapped around the CUDA code is created.
The interface for compiling the dynamic library which resulted from compilation of the
CUDA project into mex was implemented in C language. The model of the GPU card that
was employed for these computations is NVIDIA Get Force GTX 980M. However, the
CPU optimization carried out in Section 4.1 is helpful to further reduce the computational
time.

The cost function which gives the sum of squared difference between the observations
and the model outputs while accounting for the measurement error variance, is used to
evaluate the fit with the data. Thus we have

Ssum =
Nr∑
i=1

(Yi − Ŷi)2

σ2
i

, (70)

where Nr is the number of responses over which the sum of squared is computed, Yi and
Ŷi denote observed data and the simulated model outputs respectively. Furthermore, in
conformance to the confidence bounds given in the various data sets in which our model
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was calibrated, we roughly allow a certain percentage rate of variation in the model out-
put by setting the measurement error variance as calculated from the confidence bounds
reports in the respective literatures.

4.3.1 Control Case

In the control case, the experimental hut trial with an untreated net is considered, under
the assumption that both species of mosquito exhibit similar host-seeking behaviors in
the absence of insecticide-impregnated bed net. To that end, the same parameters are
applicable to both species in this case.

Recalling from Table 5 that the maximum host-seeking time in the absence of any repul-
sive or poisoning effect is fixed at 5 hours, we then calibrate two more principal parame-
ters for the negative controls: probability of being blocked by just a physical barrier posed
by the untreated net (pnet) and the probability of exiting the hut (phut). Hence, we fit these
parameters in consideration of two measured factors (percentage exit rate and percentage
fed rate) from [22], [52], [53] and [54] such that Nr = 2 in Equation 70. The datasets
with which the hut experiment model for the control case is calibrated, were measured
virtually under the same experimental conditions and procedures and also conforms with
the structure of the model. Table 6 gives the initial parameter guesses for the MCMC
sampler with respect to the two variable parameters.

Table 6. Model parameters for the control case, Initial guesses for the sampler and the
standard deviation allowed with respect to each dataset.

Parameter
symbols

Parameter description Initial values

1 2 3 4 5

pnet probability of being blocked by a net barrier 0.99978 0.999699 0.999899 0.9999 0.999499

phut probability of exiting the hut 6.1 ·10−4 4.9 ·10−4 1.0 ·10−3 7.1 ·10−4 3.9 ·10−4

The results of the parameter estimation are shown in Figures 11 to 15.
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(a) (b)

(c) (d)

Figure 11. Results of model calibration with data from [22]. (a) Model outputs vs measured
data from [22]. (b) Parameter chains. (c) Pairwise distribution of parameters. (d) Sum of squared
chain.
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(a) (b)

(c) (d)

Figure 12. Results of model calibration with data from [52]. (a) Model outputs vs measured
data from [52]. (b) Parameter chains. (c) Pairwise distribution of parameters. (d) Sum of squared
chain.
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(a) (b)

(c) (d)

Figure 13. Results of model calibration with data from [53]. (a) Model outputs vs measured
data from [53]. (b) Parameter chains. (c) Pairwise distribution of parameters. (d) Sum of squared
chain.



61

(a) (b)

(c) (d)

Figure 14. Results of model calibration with the first data from [54]. (a) Model outputs vs
measured data from [54]. (b) Parameter chains. (c) Pairwise distribution of parameters. (d) Sum
of squared chain.
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(a) (b)

(c) (d)

Figure 15. Results of model calibration with the second data from [54]. (a) Model outputs vs
measured data from [54]. (b) Parameter chains. (c) Pairwise distribution of parameters. (d) Sum
of squared chain.

Overall, it can be seen from the above results that the model fits all the measurements
real good as shown in the plots of the simulated model outputs (red trace lines) against
the real measurement represented by the constant black lines. This is evident in the sum
of squared chain plots which show that the the difference between the model outputs and
the measured data tends to approximately zero at most points. However, it should be
noted that the outcome of the sum of squares partly depends on the given estimate for the
experimental error. On the other hand, the variability of the simulated model outputs has
a close match with the range of data uncertainty reported in the various literatures.

Furthermore, the distribution of the model parameters that produced the model fit to the
various data sets are given in Figures 11b, 12b, 13b, 14b and 15b and it can be seen that
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all parameters are well identified by the available real data. On the side of the joint 2D
plots, it can be seen in all cases that there is no significant correlation between pnet and
phut which conforms to the underlying expectation, with regards to their functionalities
as explained in the sensitivity analysis in Section 4.2. Thus, the credibility of the hut
experiment model for the control case has been ascertained by demonstrating its ability
to replicate actual control case data sets.

4.3.2 Treatment Case

The treatment case model, unlike the control case model where it is assumed that both
An. gambiae and An. arabiensis exhibit similar host-seeking behavior, seeks to calibrate
the behavioral differences in host-seeking of these two species upon confrontation with
ITN/LLIN.

According to the data from the hut experiments conducted using nets treated with differ-
ent chemicals in [22], the mortality rate of An. gambiae is substantially and consistently
higher than that of An. arabiensis and the exit rate in most cases is lower in An. arabi-

ensis than An. gambiae whereas, insecticide induced exiting was relatively higher for An.

arabiensis. On the other hand, the data also revealed that An. arabiensis features higher
feeding rate than An. gambiae (except for IconMaxx LN).

While several parameterization have been adopted to capture the scenario inherent in the
treatment case data sets in [22] as discussed in [23], it turned out that the fits obtained
are good enough only for the IconMaxx chemical data for which unlike in the datasets
given in [22], the death rate of An. gambiae was not up to twice higher than that of An.

arabiensis. Thus, we have that the fits obtained therein are not ideal since the model is
not a good fit to the other sets of data in [22]. Explicitly, the fact that An. arabiensis

has higher (or equal) feeding rate than An. gambiae and considerably lower death rate,
contradicts with the mechanism of the model inherent in [23] since both the probability of
death and that of successful feeding is proportional to the number of net contacts and as
such, it is not pragmatic to simultaneously have high feeding rate and low mortality rate
for a mosquito specie.

A number of probable reasons can be offered to account for the situation inherent in the
data. One of such explanations is that the rate of poisoning is different for these two
species such that, it takes time for the poison to get from the salivary glands to the neural
system of mosquito and this time delay is suspected to be different for the two mosquito
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species. However, considering that the bioassys in [22] state that a big dosage is equally
lethal for both An. gambiae and An. arabiensis but mosquitoes do not acquire the lethal
dosage upon a single contact with the net but rather a sub-lethal dosage, we postulate
that the concentration of chemical decays with time and at some rates which is different
for this two species [55]. In order to account for the detoxification rates in the mosquito
species, we introduce two parameters which accounts for chemical detoxification in An.

gambiae and An. arabiensis respectively such that with reference to Equation 51, we
model the dynamics of chemical concentration with the formula,

dD(x,xn)

dt
= −α · D(x,xn) + source(t), (71)

where α is the detoxification rate which depends on the chemical and mosquito specie and
source, is the dosage of chemical which the mosquito could contact at time t, otherwise,
it is zero. Moreover, it can be noted that there is a parameter µp which rules the impact
of chemical poison and common for both species and it is known as the poisoning rate.
For the results presented in the present work, we employed the linear poisoning function
in computing the chemically induced death rate, parameterized as

µc = µp · D(x1,x2, . . .xn,xN), (72)

where D(x1,x2, . . .xn,xN) is the total accumulated dosage which is dependent on the
sequence of positions and the poisoning rate, µp is fixed at 1.

Furthermore, in order to properly fit the exit rates, two parameters which denote the rate
of exito-repellency respective for both species [56], are employed while keeping the host-
seeking time tmax of both species fixed to the same value as in the control case. The
exito-repellency is modeled as

σacc(x, Crep) = σacc(x) + µe · Crep, (73)

where µe depends on the mosquito specie and also on the insecticide, Crep is the total
number of steps taken by the mosquito in the repellent plume and σacc(x) is the linear
distance dependent scaling factor introduced to account for the increasing greediness of
mosquito in the odour plume at short distance to the host as in Equation 45. Thus, Equa-
tion 73 presents a scaling factor which is conditioned on the distance and the repellent
effect. To that end, we have that a higher rate of increase in exito-repellency, µe will
bring about an increased value of the scaling factor, thereby giving the mosquito a greater
chance for its steps away from the host to be accepted. However, the parameters for exit-
ing the hut and penetrating the net are kept the same as in the control case. Accounting for
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the impact of repellents, we employ the function given in Equation (48) where d50 is fixed
at 0.75 and the repulsion intensity, r is estimated for different insecticides by MCMC.

Thus, we fit these parameters in consideration of six measured responses (Nr = 6 in
Equation 70): percentage exit rate, percentage fed rate and percentage mortality rate (cor-
rected for control by 10%); all of which are separate for both An. gambiae and An.

arabiensis. The data on experimental hut trials with bednets treated with IconMaxx LN,
Deltamethrin, Alphacypermethrin and Olyset kit [22], are employed in calibrating the
model. Table 7 presents the initial parameter guesses for the MCMC sampler with respect
to the supposed five variable parameters.

Table 7. Model parameters for the treatment case, Initial guesses for the sampler and the
standard deviation allowed with respect to each dataset.

Parameter
symbols

Parameter description Initial values

IconMaxx Deltamethrin Alphacypermethrin Olyset

r Repulsive strength of the ITN/LLIN 0.800 0.000 0.500 0.000

αG Detoxification rate for An. gambiae 8.25 ·10−4 3.78·10−4 7.25 ·10−4 8.06 ·10−4

µGe The rate of increase of exito-repellency in An. gambiae 0.8 3.00 ·10−5 1.00 1.00

αA Detoxification rate for An. arabiensis 1.10 ·10−3 1.20 ·10−3 2.40 ·10−3 2.60 ·10−3

µAe The rate of increase of exito-repellency in An. arabiensis 1.00 ·10−2 7.39 ·10−6 6.00 ·10−7 9.00 ·10−6

Owing to the fact that no formal sensitivity analysis has yet been conducted for the current
treatment case model parameters, we however give a description of what is obtainable
from the parameters below.

• Reducing the repulsive strength r of a net brings about a reduction in the exit rate
and increases the feeding rate for both mosquito species and vice versa.

• Increasing the poisoning rate, µp causes an increase in the death rates of both
mosquito species.

• The higher the poison detoxification rate in any specie, the lower their death rate
alongside their exit rate and the higher the fed rate of that specie and vice versa.

• The higher the rate of increase of exito-repellency, in any specie, the higher the exit
rate and the lower the death rate and fed rate of that specie and vice versa.

However, it should be noted that each of these parameters affect the measured responses
at different rates but a detailed explanation can be rendered by conducting a typical sen-
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sitivity analysis. The model calibration results with data on hut trials, employing bednets
treated with IconMaxx LN, Deltamethrin, Alphacypermethrin and Olyset kit are presented
in Figures 16 to 19 respectively.

(a) (b)

(c) (d)

Figure 16. Results of model calibration with the data for LLIN treated with IconMaxx LN
kit. (a) Model outputs vs measured data. (b) Parameter chains. (c) Pairwise distribution of
parameters. (d) Sum of squared chain.
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(a) (b)

(c) (d)

Figure 17. Results of model calibration with the data for LLIN treated with Deltamethrin kit.
(a) Model outputs vs measured data. (b) Parameter chains. (c) Pairwise distribution of parameters.
(d) Sum of squared chain.
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(a) (b)

(c) (d)

Figure 18. Results of model calibration with the data for LLIN treated with Alphacyperme-
thrin kit. (a) Model outputs vs measured data. (b) Parameter chains. (c) Pairwise distribution of
parameters. (d) Sum of squared chain.
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(a) (b)

(c) (d)

Figure 19. Results of model calibration with the data for LLIN treated with Olyset LN kit.
(a) Model outputs vs measured data. (b) Parameter chains. (c) Pairwise distribution of parameters.
(d) Sum of squared chain.

The mean value of the Monte Carlo samples in comparison with the real data for each
chemical is presented in Table 8 for An. gambiae and An. arabiensis respectively.
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Table 8. Mean value of Monte Carlo samples alognside data from experimental hut trials
with bednets treated with several insecticides.

An. gambiae
Simulated Outputs’ Mean Value Actual Data Value/Range

XXXXXXXXXXXXXX
Respnse

Chemicals
IconMaxx Deltamethrin Alphacypermethrin Olyset IconMaxx Deltamethrin Alphacypermethrin Olyset

Percentage mortality 70.40 75.62 70.25 60.09 74(59-89) 76(73-79) 71(62-80) 61(54-69)

Percentage exit rate 79.27 92.74 96.11 98.10 79(62-89) 93(89-96) 95(85-98) 98(94-99)

Percentage fed rate 9.48 9.27 5.57 7.88 9(2-34) 14(9-20) 9(4-19) 16(5-40)

An. arabiensis
Simulated Outputs’ Mean Value Actual Data Value/Range

XXXXXXXXXXXXXX
Respnse

Chemicals
IconMaxx Deltamethrin Alphacypermethrin Olyset IconMaxx Deltamethrin Alphacypermethrin Olyset

Percentage mortality 43.40 28.70 35.76 12.38 44(37-51) 29(23-44) 36(31-40) 15(11-18)

Percentage exit rate 86.89 84.71 84.63 95.56 87(77-92) 85(78-90) 84(80-88) 84(73-91)

Percentage fed rate 6.77 17.33 17.94 21.55 7(2-21) 18(13-25) 17(10-27) 22(15-30)

It can be seen from the above results presented, that the model is a real good fit to the
response measurements and the variability of the simulated model output has a close
match with the error bars of the measurement. This is evident in Figures 16a, 17a, 18a
and 19a; where the blue lines denote the error bounds of the actual measurement, de-
picted by the black constant line. On the other hand, all the sampled parameter values, via
which the above fits of the model to the measurements are obtained, are well identified
and are bounded from above and below. Thus, upon fixing the supposed variable param-
eters that were not accurately identified in preliminary samples, it can be seen that their
exist relatively low uncertainties in terms of parameter estimation. However, the pairwise
correlation plots do not reveal any consistent correlation between the sampled parameters.

Next, we provide logical explanations of the implications of the initial values which gave
rise to the distribution of parameters in Figures 16b, 17b, 18b and 19b, in relation with
the values of the measured factors. Considering the repellent effects which disorient the
movement of mosquitoes, making it difficult for them to detect the host, we have that
IconMaxx is highly repulsive and this is apparent from the low fed rate it features for
both mosquito species. This is followed by Alphacypermethrin which has has a repul-
sive strength of approximately 0.5. Moreover, Deltamethrin and Olyset have very low
repulsion intensity and this is evident in the high feeding rate associated with the bed nets
treated with these chemicals. Thus, the repulsive strength for Deltamethrin is particularly
considered as negligible and we fix the parameter r = 0 for this chemical. Fixing r = 0

for Deltamethrin implies that, its probability of rejection will generally be zero in the sim-
ulated experiments. The detoxification rates for all the chemicals are consistently higher
in An. arabiensis as compared to that of An. gambiae of which is accounted for in the
death rate of An. gambiae being up to twice higher than that of An. arabiensis from the
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datasets employed. Furthermore, while not much distinct interpretations can be given for
the values the exito repellency parameters assumes in relation to the exit rates, as there are
other parameters that rule the exit rates, it can be noticed that the rate of increase in exito
repellency is relatively lower for Deltamethrin that features a negligible repulsive strength
and higher for IconMaxx which on the other hand, has a higher repulsive strength. Again,
the values of exito repellency parameters are consistently higher for An. gambiae as com-
pared to An. arabiensis since the exit rates for An. gambiae are relatively higher than
that of An. arabiensis from the data presented in [22]. Moreover, preliminary samples
showed that the parameter, µGe is unbounded for IconMaxx, Alphacypermethrin and Oly-
set and as such, the said parameter was fixed to be equal to 0.8, 1 and 1 respectively for
the aforementioned chemicals.
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5 DISCUSSION AND CONCLUSION

In this section, a general discussion of the report, alongside the conclusions reached is
provided. Recommendations based on the report findings are given and some relevant
extensions of the work are finally stated.

5.1 Discussion

In the present work, we introduce a discrete agent-based model of mosquito host-seeking
behavior when confronted with two control measures; untreated net and ITNs/LLINs
as we employ two malaria vector species; An gambiae and An. arabiensis. First, the
overnight host-seeking behavior of mosquitoes was simulated in case of untreated net
where we assume no difference in the host-seeking behavior of both mosquito species. In
this case, the variable parameters include probability of penetration through the net bar-
rier and probability of exiting from the hut into the window traps. The parameters ruling
mosquito attraction to the host were fixed while variable parameters were sampled from
previously generated MCMC chains at each successive iteration of the algorithm. Next,
we simulate the overnight trials with the treated net where a dissimilar host-seeking be-
havior is assumed for both mosquito species. Here, in addition to the control case features,
a repulsion by net repellent and insecticide-induced mortality are taken into account. In
order to achieve closer correspondence with the data sets in [22], we introduced chemical
detoxification rates and exito-repellency rates differently for both species such that they
account for the differences in the mortality, feeding and exit rates of An. gambiae and An.

arabiensis inherent in the data. Similar to the previous case, all the variable parameters
were sampled from MCMC parameter chains at each iteration of the algorithm.

We identify an optimal configuration for model runs to compromise between the nois-
iness of the model outputs and CPU time required for computations. As a measure of
statistical reliability, we use the confidence intervals reported in the paper by [22] for ex-
perimental data, where the nets were treated with the treatment kits (IconMaxx LN). By
experimental configuration, we study a combination of number of repetitions and the size
of mosquito population over 20000 Monte Carlo iterations. A good combination of the
minimum population size and number of repeated simulations was identified to be 600
mosquitoes with 4 repeated simulations. Furthermore, we studied how changes in the
variable parameter values of the control case model affects the model outputs as we con-
sidered two factors; percentage exit rate and percentage fed rate. It was affirmed that pnet
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is the principal parameter that rules the feeding rate whereas phut basically determines the
value that the percentage exit rate assume. Thus we have that, increasing pnet causes a de-
crease in te percentage fed mosquitoes and slightly reduces the exit rate while an increase
in phut brings about an increase in the percentage exit rate with a slight decrease in the
percentage fed rate.

Furthermore, we calibrate the control case and treatment case models against several real
data on experimental hut trials reported in certain literatures [22], [52], [53], [54]. The
models are calibrated for each dataset by using Adaptive MCMC with chain length of
20,000 with each sample consisting of an average of 4 repetitions with a swarm of 600
mosquitoes. The control model really fits all the data sets considered well, within the
reported experimental error bounds and the parameters well accurately identified by the
datasets. In the treatment case, however, it was shown that the model fits virtually all the
measurements real good and the variability of the simulated outputs has a close match
with the report on data noisiness given for the datasets. While the datasets are able to cor-
rectly identify the sampled parameters and limits of the parameter values, they however,
do not reveal any logical correlations between the parameters.

5.2 Conclusion

Based on the results obtained, we conclude that the fits obtained in the control case are
ideal and the model is suitable for calibration with real data. On the other hand, the
treatment case model has demonstrated its capabilities to replicate real experimental hut
trials’ data, execpt for one of the measured responses (exit rate for An. arabiensis) for
Olyset chemical. Overall, the model calibrations evaluate the overall impact of LLINs,
different for An. gambiae and An. arabiensis.
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5.3 Recommendations and Future work

5.3.1 Recommendations

Based on the results of this work, we recommend the following:

• People living in places where they are predisposed to bites from Anopheline mosq-
uitoes should always sleep under LLINs.

• Research institutions should carry out researches aimed at improving the efficacy
of long-lasting insecticidal net in malaria control.

• Governments should incorporate in their budgets, the cost of making ITNs/LLINs
continually available and sufficient for the households. They can also create and
sponsor awareness programmes to encourage households who have the LLINs to
make use of them because reports have shown that some households who have
LLINs do not sleep under them [57].

5.3.2 Limitations of Study and Future Work

This work focused only on the hut experiment considering An. gambiae and An. arabi-

ensis as the vector specie of study and ITN/LLIN alongside untreated nets, as protective
measures. To that end, many possible and realizable extensions of the present work exist.
These include:

• Conducting a village scale experiment with various household sizes under different
degrees of protection with LLIN and afterwards, make statistical regression models
to ascertain the impact of household size and degree of net coverage on malaria
transmission.

• Improvising better parameterizations for modeling the host-seeking behaviors of
mosquitoes in the presence of ITNs/LLINs.

• Making a comparative study of the efficacy of LLIN in controlling several anophe-
line mosquitoes in a hut experiment and subsequently incorporating more interven-
tion strategies other than just the ones employed in this work so as to handle the
endogenous behavioural plasticity of some mosquito species.
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———————– APPENDICES ——————————



Appendix 1. Control Case Data

Table A1.1. Data for experimental hut trials in the control case.

Source Percentage exit rate Percentage fed rate
[22] 80 53
[52] 71(68-73) 41(38-44)
[53] 91.1(85.8-96.4) 26.8(18.6-35.0)
[54] 82.5(79.0-85.6) 24.0(20.5-27.8)
[54] 70.7(63.8 76.7) 68.6(61.7-74.8)
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