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Road surface maintenance is essential for transportation safety, but the task of
manually gathering information on the condition of roads is time-consuming and
laborious for maintenance personnel. This thesis proposes a system for generating
road orthophotos from which the maintenance information can be extracted auto-
matically. The only equipment required by the system consists of a smartphone
and a vehicle. The approach was based on the inverse perspective mapping method,
which required the automatic calibration of the camera. The automatic calibration
was the main research problem of the thesis and was solved with the Structure from
Motion technique. The performance of the camera calibration method is insuffi-
cient as estimates for the relative orientation of the camera—a critical part of the
camera calibration—exceeded the acceptable error threshold 38% of the time on
average. The camera calibration method requires further development to enable the
orthophoto generation system to be put into use.
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Teiden kunnon ylläpito on välttämätöntä liikenneturvallisuuden kannalta, mutta
manuaalinen tiedonkeruu teiden kunnosta on aikaavievää ja työlästä. Tämä diplo-
mityö esittelee järjestelmän, jolla voidaan luoda tie-ilmakuvia. Järjestelmän avul-
la kunnossapitotieto saadaan tuotettua automaattisesti näistä ilmakuvista. Ainoat
järjestelmän vaatimat välineet ovat älypuhelin ja ajoneuvo. Järjestelmän toiminta
perustui käänteiseen perspektiivimuunnokseen, joka edellytti kameran automaattis-
ta kalibrointia. Kameran automaattinen kalibrointi oli työn pääasiallinen tutkimus-
ongelma, joka ratkaistiin Structure from Motion -tekniikalla. Kalibrointimenetelmän
tarkkuus ei ole riittävä: Kameran suhteellisen asennon arviointi, joka on olennainen
osa kalibrointia, ylitti hyväksytyn virheen rajan keskimäärin 38% ajasta. Kameran
kalibrointimenetelmä vaatii jatkokehittämistä, jotta ilmakuvien tuotantojärjestelmä
voitaisiin ottaa käyttöön.
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91 INTRODUCTION
This section introduces the background, motivation, objectives, and restrictions and
summarizes the content of the rest of the thesis.
1.1 Background
Regular maintenance of road infrastructure is essential for ensuring transportation
and social safety. Having knowledge of the current state of the road surface and its
features is paramount, but the task of gathering information on roads manually on
the field is time-consuming and laborious [1]. With orthoimagery of the road surface
and computer vision, key surveillance and maintenance tasks, such as detecting
worn out lane markings and sections of the asphalt which require repairs, could
be automated. The automation of these tasks could ease the total workload of
road maintenance personnel. Orthoimagery is an intuitive way of viewing road
surface data, because the road and its features are inherently plane-like, as shown
in Figure 1. The orthogonal viewpoint simplifies computer vision tasks in turn.
Figure 1. Road markings in an orthophoto composite.
Traditionally, orthoimagery has been collected using aircraft or satellites, but the
approach has several drawbacks limiting its applicability for road inspections: Using
aircraft or satellites for capturing orthoimagery can be expensive, which can set a
limit on how often the information can be updated. This can lead to a situation
where the information is outdated most of the time. The resolution of aerial or
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satellite orthoimagery is often poor, which can make them useless in the context of
road surface maintenance. An example of poor resolution can be seen in Figure 2a).
Furthermore, when images are taken from a high altitude, objects above the road
surface, such as trees, can obstruct the regions of interest. Figure 2b) presents an
instance of this kind of obstruction.
a) b)
Figure 2. Google satellite imagery: a) A highway; b) Trees obstructing the view to the
road.
Alternative methods for creating road orthophotos exists, however. There have
been multiple instances where road orthophotos have been created by manipulating
imagery captured using a front-facing vehicle-mounted camera employing the Inverse
Perspective Mapping (IPM) method [2, 3, 4]. This approach does not suffer from
the same shortcomings as traditional orthophotos: The resulting imagery can be
of high resolution and updated regularly. Depending on the sensors used, the cost
of creating road orthoimagery can be relatively low. The approach requires that
the camera is calibrated appropriately for the task. Surveying vehicles with fixed
pre-calibrated sensor rigs such as Mobile Mapping Systems (MMS) can be used, for
example [4, 5].
This work was carried out in collaboration with Vionice Ltd., a Finnish technology
company that specializes in utilizing computer vision for information production,
asset management, and service solutions. The operating model of the company
includes the goal of bringing computer vision to every vehicle. The company has
opted to use smartphones for data collection and computer vision, making the usage
of the aforementioned MMS’s incompatible with the company’s mode of operation.
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MMS’s can be costly and not available at all times, whereas it is far easier to install
a smartphone to a vehicle’s windshield. The IPM method is a prime candidate for
orthophoto generation, but it should be implemented in a manner that is compatible
with the company’s mode of operation.
1.2 Objectives and restrictions
The primary objective of this work was to develop a robust system for the auto-
matic generation of orthoimagery of the road surface. The system implementation
includes an approach for the extraction of road features from the orthoimagery and
their condition evaluation as a secondary objective. The system was developed fol-
lowing the objectives and restrictions brought upon by the operational model of
Vionice Ltd., with the most distinguishable attributes being the ease of use and low
associated costs. In practice, the solution needed to be implemented in a manner
that only a smartphone (Android) and its sensors would be needed. These sensors
include a monocular camera, a Global Positioning System (GPS) receiver, and a
tri-axis accelerometer.
The generation of the orthoimagery would be carried out after the data has been
collected with the smartphone and uploaded to a server, according to the company’s
practices. During the data collection, the smartphone would be installed to a ve-
hicle’s windshield and the camera would be facing approximately forward to the
direction of movement. The data collection setup is presented in Figure 3.
Figure 3. The data collection setup: A smartphone installed to a car’s windshield.
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The chosen method for the generation of orthoimagery was the IPM transform, the
use of which requires an appropriately calibrated camera. A simplified overview of
the orthoimage generation system is presented in Figure 4. Since a smartphone can
be installed in various ways to a vehicle, the camera would need to be automatically
calibrated. The problem of the automatic calibration of the camera was consequently
the main research objective and focus of this thesis. The chosen camera calibration
method was experimented on, by assessing how accurately it estimates the variables
used in the IPM transformation and orthoimage compositing.
Figure 4. Simplified overview of the orthoimage generation system.
The following assumptions are applied to constrain the camera calibration problem:
• The camera is installed fixedly to the vehicle, i.e., the camera will not move
relative to the vehicle during the data collection.
• The roll angle of the camera 𝛽 (rotation about the axis of forward motion) is
negligible, i.e., the camera installation is assumed level.
• The road surface can be interpreted as a plane in the proximity of the vehicle.
• A single IPM transform is enough to describe the projective relationship be-
tween the camera and the road surface for a video (no longer than 5 minutes).
1.3 Structure of the thesis
The rest of the thesis is structured as follows: In Section 2, the theory behind the
IPM method is explored, which is the corner-stone for generating orthoimages from
front-facing images. Section 3 focuses on the camera calibration for IPM and other
methods for creating road orthoimagery. The section maps out various existing
approaches and some novel ones, including the method that utilizes Structure from
Motion (SfM), which was the chosen method for the definitive implementation of
the IPM camera calibration.
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In Section 4, factors that can improve SfM reconstruction results and the georeg-
istration of the reconstruction are introduced. The information presented in the
section can be valuable in other applications apart from the one of this thesis. Sec-
tion 5 describes the implementation of the components that finalize the orthophoto
generation system and views the system as a whole. The experiments and results
are presented in Section 6. The experiment results are analyzed and possible future
improvements are discussed in Section 7. The thesis is concluded in Section 8.
14
2 INVERSE PERSPECTIVE MAPPING
This section outlines the necessary theory behind the IPM transform, which is the
basis for creating orthoimagery in the use case of this thesis. Section 2.1 introduces
the used camera model, Section 2.2 sets out the theory on which the IPM is based
on, and lastly Section 2.3 describes the formation of the IPM transform using a
virtual camera.
2.1 Camera model
A camera is an enclosure with a lens, an opening, and a photosensitive surface [6].
Light focused by the lens enters the camera through the opening referred as the
aperture and an inverted image is formed on the photosensitive surface. The func-
tions of a camera can be approximated using the pinhole camera model [7], which
is the model used throughout this work. The aperture is the size of a singular point
in the pinhole camera model. A virtual image plane is generally positioned between
the aperture and the camera’s focal point so that a non-inverted image is formed.
Lens distortions, which always occur with physical cameras to some degree, are not
taken into account in the model since a lens is not considered to be a part of the
model. Due to the aperture’s infinitely small size and the lack of a lens, the camera
model represents the ideal pinhole camera [6].
The camera model describes how 3D objects are projected on the 2D image plane,
a process which is referred as perspective projection. The perspective projection is
a linear mapping and can be expressed in matrix form. The projection is divided
into two parameterizations, the intrinsic and extrinsic parameters. The intrinsic
parameters model the camera’s physical properties [8]. These properties include the
focal length, pixel skewness, pixel aspect ratio, and the principal point of the image
plane. The extrinsic parameters of the camera can be considered as the transforma-
tion that transforms the camera coordinate space into the world coordinate space [8].
In other words, the extrinsic parameters of the camera describe the position and ori-
entation of the camera in the world coordinate space. This combination of position
and orientation is often referred as a pose [9].
The used camera coordinate system is right-handed. The right, down, and forward
axes are denoted by x, y, and z, respectively. The pinhole camera model is visualized
in Figure 5.
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Figure 5. The pinhole camera model.
If we combine the intrinsic and extrinsic camera parameters, the camera projection
matrix P3×4 can be formulated:
P3×4 = K [R t] =
⎡⎢⎢
⎣
𝑓 0 𝑐𝑢 0
0 𝑓 𝑐𝑣 0
0 0 1 0
⎤⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟
K
⎡
⎢
⎢
⎢
⎣
R3×3 t3×1
0 0 0 1
⎤
⎥
⎥
⎥
⎦
. (1)
In Equation 1, the 3× 4 matrix K is called the intrinsic matrix, which contains the
intrinsic camera parameters. The latter is called the extrinsic matrix, containing
the extrinsic parameters. In the intrinsic matrix, 𝑓 denotes the camera focal length.
Scalars 𝑐𝑢 and 𝑐𝑣 denote the horizontal and vertical components of the principal
point of the image plane. This intrinsic matrix is simplified with the assumptions
that the image pixels are of square aspect ratio and the pixels are not skewed.
The intrinsic parameters of the camera K are assumed known, as the necessary
information is retrieved from the smartphone’s metadata. The 4×4 extrinsic matrix
consists of the camera rotation matrix R and translation vector t. The translation
vector does not represent the location of the camera, but the position of the origin
of the world coordinate system, expressed using the camera coordinate system. The
translation vector can be calculated with t = −R⊺c, where c is the camera position
in the world coordinate system.
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2.2 Planar projective transform
The frames recorded by the monocular camera of the smartphone are 2D projections
of the physical 3D scene. From a single frame, it is impossible to recover the original
scene due to the loss of one dimension. However, if the road surface is viewed as
a plane, in a sense it is possible to recover this plane and project it in any way we
wish. This process is known as IPM [3, 10, 11], which is in itself an application
of the planar projective transform. The planar projective transform is defined as a
linear transformation by a non-singular 3 × 3 matrix on homogeneous vectors [12]:
⎛⎜⎜⎜
⎝
𝑥′1
𝑥′2
𝑥′3
⎞⎟⎟⎟
⎠
= ⎡⎢⎢
⎣
ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33
⎤⎥⎥
⎦
⎛⎜⎜⎜
⎝
𝑥1
𝑥2
𝑥3
⎞⎟⎟⎟
⎠
(2)
which can also be expressed more compactly as x′ = Hx, where H is referred
as a homography matrix. If we denote x as a point on the road plane and x′
as the projection of the point on the image plane, the points are related by the
homography matrix H, which has 8 degrees of freedom. Using the homography
matrix H, a planar object can be transformed as if it was viewed from another
perspective, without losing any information in the process.
2.3 Virtual camera
If an orthographic projection of the road surface is required, a homography can
be calculated for the purpose. Let us assume that the homography we seek repre-
sents how the road plane is projected to a virtual camera which is facing directly
downwards. Lines which are parallel in reality appear to converge to the Vanishing
Points (VP) of the scene. After the virtual camera homography is applied to a
camera frame, these lines become visibly parallel.
Let us denote a set of points on the road plane as Q𝑟 in homogeneous coordinates.
The projections of these points on the image plane of the physical camera are Q𝑝
and on the virtual camera Q𝑣 through homographies H𝑝 and H𝑣, respectively. The
projective relationships can be expressed as follows:
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Q𝑝 = H𝑝Q𝑟 (3)
Q𝑣 = H𝑣Q𝑟. (4)
By employing Equations 3 and 4, we can express the points projected to the virtual
camera using the points projected on the physical camera and the two homographies:
Q𝑣 = HIPMQ𝑝, where HIPM = H𝑣H−1𝑝 . (5)
This leaves the task of finding homography HIPM which maps the points on the
physical camera directly to the virtual camera, which can be referred as the IPM.
The IPM transform can be defined using the variables listed in Table 1 with the
following formula [2, 12]:
HIPM = K ⋅ (R+
t⊺n
𝑑𝑝
) ⋅K−1. (6)
Table 1. Variables used in the virtual camera IPM transformation.
Variable Symbol Dim.
Intrinsic parameter matrix of the camera K IR3×3
Relative rotation between the physical and virtual camera R IR3×3
Relative translation between the physical and virtual camera t IR3×1
Normal vector of the road plane n IR3×1
Camera height from the road plane 𝑑𝑝 IR1×1
The virtual camera scenario is presented in Figure 6, where c𝑝 and c𝑣 present the
locations of the physical and virtual camera, respectively. The road plane is denoted
by 𝑃 and its normal vector by n. The heights of the cameras from 𝑃 are denoted
by 𝑑𝑝 and 𝑑𝑣 using the same convention as previously. The extrinsic parameters of
the virtual camera are defined by the translation vector t and rotation matrix R.
If we denote 𝑡𝑧 and 𝑡𝑦 as the forward and upward translations, respectively, then
t = [0 𝑡𝑧 𝑡𝑦]
⊺.
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Figure 6. Visualization of the physical and virtual camera.
The relative pose of the virtual camera can be regarded as static. Since the intrin-
sic parameters of the camera are known, the variables which remain unknown in
Equation 6 are the plane normal vector n, the camera height 𝑑𝑝, and the rotation
matrix R. These unknown parameters are the starting point of the camera calibra-
tion problem. The search for the normal vector n is essentially the search for the
orientation difference between the physical camera and the road surface, which will
be also referred as the camera–road orientation from now on.
Including the assumption that the camera roll angle 𝛽 is negligible, the estimation
of the normal vector n can be simplified to finding the angle difference between the
camera and road surface along the x-axis, denoted by 𝜃. When angle 𝜃 is known, the
normal vector can be calculated with n = [0 cos(𝜃) sin(𝜃)]. Angle 𝜃 is visualized
in Figure 7a) along with 𝑑𝑝. The rotation matrix R can be defined to apply a
90 degree rotation about the x-axis, but the rotation about the y-axis has to be
considered as well: The heading of the physical camera and the recording vehicle
are often not equal, which needs to be taken into account, to ensure accurate IPM
image compositing. The angle difference between the camera and the vehicle about
the y-axis, denoted by Δ𝛾, should be included in R. From now on, Δ𝛾 will be
also referred as the camera heading deviation. The formation of the angle Δ𝛾 is
visualized in Figure 7b). Examples of the IPM transform being used on images are
shown in Figure 8.
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a)
p
b)
Figure 7. System component variables visualized: a) Side view of the setup. The physical
camera’s position is denoted by c𝑝 and the road plane by 𝑃 . 𝑃 ′ is 𝑃 translated to the
level of c𝑝 so that the formation of angle 𝜃 becomes clear. b) Top view of the setup. The
angle∆𝛾 is formed by the z-axis of the camera and the movement direction of the vehicle,
which is denoted by 𝑀.
a) b)
Figure 8. IPM in operation: a) Camera frames; b) Corresponding inverse-perspective
frames. Notice how the car (a non-planar object) appears in the second IPM image.
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3 GENERATING ORTHOIMAGERY
This section outlines methods for generating road orthoimagery and obtaining the
necessary information needed by the IPM transform. These methods can be divided
into two categories: Methods requiring user interaction to some extent, such as the
manual calibration of the camera (manual), and methods requiring little or no user
involvement (automatic). The manual methods are covered in Sections 3.1 and 3.2
and the automatic methods in the subsequent sections.
The manual methods include some approaches that are incompatible with the thesis’
use case due to the required resources or the mode of operation. These methods
are presented because they can be useful for parties in different circumstances. The
automatic methods focus solely on the problem of camera calibration for the IPM
transform and were selected on the basis of their compatibility with the resources
available in the thesis’ use case.
The methods outlined in Sections 3.2, 3.4, and 3.5 are methods devised by the
author and the rest originate from related literature unless stated otherwise. It
should be noted that from all of the automatic camera calibration methods, the
method outlined in Section 3.5 was the only method capable of estimating the camera
height from the road surface automatically. The method was chosen as the definitive
solution for the IPM camera calibration problem.
3.1 Mobile mapping systems
One of the more robust ways of generating orthoimagery of the road is the usage
of MMS’s, due to accurately calibrated sensor rigs. The rigs usually consist of
sensors such as cameras, accelerometers, gyroscopes, gravimeters, Light Detection
And Ranging (LIDAR) scanners, and GPS receivers. The larger the variety and the
accuracy of the sensors, the potentially more accurate the image generation results.
In the research by Yagishita and Chikatsu [13], an approach is detailed where or-
thophotos are generated using a camera and a laser scanner. The sensor rig is
pre-calibrated and presumably the system uses a single IPM transform for warping
the imagery. The novelty factor in the study comes from the manner the laser scan-
ner is used: Shadows in the resulting orthophotos can reduce visibility and overall
image information content. However, shadows have little effect on laser intensity
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readings from the scanner, allowing for the removal of shadows from the images
through brightness correction.
Laser scanners have been used for orthophoto generation with a different approach
as well, as has been presented in the work by Vallet and Papelard [14]. In their
approach, the LIDAR point cloud is used directly to generate orthoimagery of the
road surface. In addition, a digital terrain model of the road is created, while points
that are not part of the ground are filtered out. Due to the gaps of varying size
in the point cloud, the authors used Poisson interpolation to obtain a continuous
raster image from the original reflectance values. The produced orthoimages are in
grayscale since laser scanners typically can only measure reflection intensity. Sensor
fusion could potentially resolve this shortcoming by registering the point cloud with
camera images [15, 16, 17]. A laser-scanned point cloud and a generated orthophoto
are shown in Figure 9.
a) b)
Figure 9. Images from the research by Vallet and Papelard [14]: a) Laser-scanned point
cloud, with the color presenting reflectance; b) Poisson-interpolated grayscale orthophoto.
Oliveira and Correia have presented a framework for the automatic detection and
classification of cracks in the road surface [18]. The road cracks are detected from
orthophotos generated using the Laser Road Imaging System (LRIS) which consists
of two high-resolution line scan cameras and two high-power lasers. The cameras and
the lasers are located in the back of the surveying vehicle and point down towards
the road surface. Due to the consistent illumination provided by the lasers, the
system is unaffected by variations in the outside lighting conditions and shadows.
Meguro et al. have proposed a method for generating orthoimages of the road by
using a single-frequency GPS, speed and yaw-gyroscope sensors, accompanied by
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a camera [4]. The orthoimage generation is based on the IPM method. In their
approach, the relative position of the camera is estimated beforehand, and a single
fixed homography is being used during the recording. A similar execution can be
seen in the work by Yang et al., where the used sensors include two cameras, a GPS
receiver, and an inertial measurement unit [5]. The camera calibration is carried out
after the installation of the cameras, which should not move relative to the vehicle
during the data collection.
3.2 Accelerometer calibration
A semi-automatic method for calibrating the camera for the IPM transform was
devised by the author during the development of the orthophoto generation system.
The strength of the approach lies in the fact that it requires no technical skills
and can be carried out by anyone, given that an adequate software implementation
with proper instructions exists. The method is based on making use of the tri-
axis accelerometer of the smartphone. It is required that the camera does not move
relative to the vehicle during recording, as the method provides a one-off calibration.
The calibration process begins with the user laying the smartphone flat on the
ground at the four corner points around the used vehicle. At each corner, a reading
is saved from the device’s accelerometer. When the phone is at rest on the ground,
the accelerometer provides a good estimate of the device’s gravity vector. The
gravity vector can be interpreted as the orientation of the device. From these four
measurements, we can calculate the mean orientation vector, which approximates
the normal vector of the road surface around the vehicle.
Finally, the phone is installed to the vehicle and a final accelerometer reading is
recorded. When the last accelerometer measurement is done, the driver should sit
in the driver’s seat, since the orientation of the vehicle can change depending on the
weight distribution. When we calculate the orientation difference between the road
plane normal vector and the gravity vector of the phone’s final position, we acquire
an estimate for the relative orientation between the camera and the road plane. In
the context of a fleet of recorders, the method seemed a bit too cumbersome to be
practical, which caused the technique to be discarded during the ideation phase.
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3.3 Vanishing point estimation
The VP of the scene can be used to estimate the relative orientation of the camera
given the assumption that the field of view is known. An image can have up to
three VP’s, the dominant one being closest to the image center. By determining
the location of the dominant VP, the relative camera rotations about the x- and
y-axes can be determined, which then could be used as estimates for 𝜃 and Δ𝛾,
respectively. If required, the roll angle 𝛽 would need to be determined by other
means, as its estimation is not possible using a single VP.
In the work by Kheyrollahi and Breckon [19], a method for estimating the location
of the dominant VP is presented and is then used to determine the orientation of
the camera for the IPM transform as a one-time calibration. On top of the orthoim-
age generation, the authors also present a solution for the automatic detection and
classification of road markings. The VP detection algorithm is based on line inter-
sections, where the lines are obtained by the Hough transform [20]. First, Canny
edge detection [21] is applied to the images. Then the images are preprocessed by a
temporal filter, in order to reduce errors caused by textures and other obstructions.
After the filtering, line-like image features which seem to intersect at the VP are
more prominent, as can be seen in Figure 10.
a) b)
Figure 10. Effects of temporal filtering [19]: a) Output of Canny edge detection for a
single frame; b) Result of temporal filtering on a Canny edge image sequence.
From the temporally filtered image, the lines can be detected using clustering in
the Hough space. The intersection points are then calculated for all possible com-
binations of lines. The resulting points are then clustered with k-nearest neighbor
clustering, with 𝑘 = 3 as no more than three VP’s can be present in a single image.
The point clusters are given a score as follows:
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Ψ(𝑈) =
𝑛
∑
𝑖=1
(|𝑥𝑐 − 𝑥𝑖| + |𝑦𝑐 − 𝑦𝑖|). (7)
The score for cluster 𝑈 is the sum of the Manhattan distances between the VP of
the previous frame (𝑥𝑐, 𝑦𝑐) for all the intersection points in 𝑈 . The centroid of the
lowest scoring cluster is selected as the VP of the frame, after it has been averaged
using the VP of the preceding frame. The authors estimate that the VP estimation
converges after about 100 frames.
Nieto et al. have also proposed a method for the camera calibration for the IPM
transform using VP estimation [22]. In their approach, the VP estimation is also
based on lines obtained with the Hough transform. However, these lines are based on
temporally filtered road lane markings, which are obtained through histogram-based
segmentation of the original images. The intersection point of the lines is solved by
an overdetermined system of equations using Singular Value Decomposition (SVD).
The obtained vanishing points are then stabilized using a low-pass filter, reducing
the errors caused by possible outlier VP’s.
The presented VP detection methods include some factors which can cause problems:
Canny edge detection requires two threshold parameters, and may produce poor
results if the parameters are chosen poorly. Parameter configurations which work
well on a specific video may not function at all for another video if the lighting or
other conditions are different enough. Multiple methods exist for finding suitable
parameters for Canny edge detection automatically [23, 24, 25], but there is no
guarantee that they will work in all conditions. The detection of Hough lines suffers
from the same problems, as it requires some parameters to function. The method
proposed by Nieto et al. will not function in a gravel road scene, where there is no
lane markings present since the method is based on them. An assumption, that lane
markings would be always present, cannot be made in the use case of this thesis.
3.4 Optical flow
Optical flow is a 2D vector field, which is used to estimate the apparent motion in
a pair of images by directly using the change in pixel intensities [26]. In its basic
form, the problem of determining the flow is an underconstrained problem. The
Lucas–Kanade (LK) optical flow algorithm is based on the assumption that the flow
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is constant in a small neighborhood of pixels. These pixel neighborhoods contain
enough information to make the problem not underconstrained and the flow can
then be determined [26]. The LK optical flow can be used for the tracking a sparse
feature set, for example, corner points. A dense variant of optical flow has been
proposed by Farnebäck, where the flow is calculated for all pixels in the images [27].
An example of the dense optical flow is presented in Figure 11.
a) b)
Figure 11. Dense optical flow: a) Frame from an image sequence; b) Optical flow vector
field.
The optical flow vector field can be used to estimate the camera orientation relative
to the road surface in at least two ways. The first approach is based on the estimation
of the main VP in an image sequence using the vector field. When calculating the
dense optical flow between a pair of images, the result can contain errors caused
by large pixel displacements, lack of texture, or erratic camera vibrations. When
more image pairs are used, a temporal filter can be applied to the vector field, which
reduces the effect of the errors present in individual image pair vector fields.
After a sufficient amount of frames, the filtered vector field represents a good esti-
mate for the average scene motion. From the filtered vector field, the position of the
main VP can be estimated by interpreting the field vectors as lines. In a successful
case, the lines seem to intersect at a common point, which can be interpreted as
an estimate for the VP. Using methods presented in Section 3.3, the position of the
point can be calculated and then used to determine the relative orientation of the
camera.
The second approach is based on the LK method and Nistér’s five-point algo-
rithm [28]. For a pair of frames, a set of corner points is calculated for the first
frame using Features from Accelerated Segment Test (FAST) [29], for example. The
positions of the corner points are tracked to the second frame using LK optical
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flow. The matching points are then used to compute the essential matrix E [12]
between the two views with the five-point algorithm. From the essential matrix E,
the extrinsic matrix, i.e., the pose of the second camera, can be extracted using
SVD [12].
Using the rotation matrixR and camera position vector c obtained from the extrinsic
matrix, the difference between the orientation and actual movement direction of the
camera can be estimated. Using this information, the orientation of the camera
relative to the road can be approximated, if we assume that the relative camera
movement matches the movement of the vehicle since the camera is fixedly installed.
As in the previous method, a temporal filter can be applied to the retrieved camera
orientations to obtain a more robust result. A more detailed description of this
method can be found in the author’s previous work [30].
3.5 3D reconstruction
3D reconstruction is an application of photogrammetry, a science in which geomet-
ric and semantic information is extracted from images [31]. One approach for 3D
reconstruction is the SfM technique [32]. SfM computes a camera pose for each
of the input images and a point cloud which represents the global structure of the
scene. The relative camera poses are calculated by matching image features between
input images and the scene structure is calculated by triangulating the 3D positions
of the image features. A high-level visualization of the SfM technique is presented
in Figure 12. Another possible approach for 3D reconstruction is the Simultaneous
Localization And Mapping (SLAM) method, in which the camera pose and the scene
structure are estimated online [33, 34] whereas in SfM this is done offline. SLAM
algorithms have been developed real-time applications in mind, meaning that the
focus is primarily on performance.
Having all of the scene’s images as a starting point has its inherent advantages and
processing time was not an issue, as real-time performance was not required. These
factors steered the development towards SfM utilization. SfM is used extensively
in other applications of Vionice, making the use of it in the orthophoto generation
even more suitable: Reconstruction results which have been calculated previously
for different purposes can be reused in the orthophoto generation. On top of that,
by using SfM we can retrieve all the information required by the IPM method (cam-
era height, relative orientation, and absolute heading of the camera) meaning that
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Figure 12. Structure from Motion [35].
additional calibration techniques would not be needed. The specific implementa-
tion of SfM being used was the one found in the Open Multiple View Geometry
(OpenMVG) software library [36].
OpenMVG provides two methods for solving the camera positions and orientations:
global and incremental. The global method [37] attempts to solve all the camera
poses in the scene simultaneously while the incremental one [35] starts to build
the reconstruction from an initial pair of frames, adding more frames one by one.
The incremental method can automatically find candidates for the initial pair of
frames [35], but this entails some inherent problems: The quality of the reconstruc-
tion can be highly dependent on which image pair is selected for the initialization of
the reconstruction and on the order in which the rest of the images are added [38].
The incremental method can be slow and subjected to drift [39], i.e., errors in the
pose and structure estimation accumulate over time while new frames are added. By
contrast in the global method, the errors are distributed evenly across the reconstruc-
tion [37]. The global pipeline was the method of choice for the implementation of
the solution due to the presented disadvantages regarding the incremental method.
Algorithm 1 presents the global SfM algorithm [37] at a high level starting from
the feature extraction phase. The first step in the SfM algorithm is the extraction
of feature points from the input images. Usually, these features consist of corner
points, where the image gradient intensity is high and trackable. Then, the features
extracted from the images are matched with features from other images using in-
formation in the feature descriptors in order to find correspondences. The decision
which images will be matched to which can be based on image proximity or succes-
sion, for example. It is also possible to match all images with each other, but this
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can be computationally expensive. After the matches have been computed, they can
be filtered to ensure they match a certain mathematical model, such as the essential
matrix.
Algorithm 1: Sketch of the global SfM algorithm
input : Image sequence
Camera intrinsics
output: 3D point cloud
Camera poses
Extract features from each image
Match features between images
Filter out false matches
Compute the relative pairwise camera rotations
Compute the global camera rotation
Compute the relative camera translations
Compute the global camera translation
Compute the global structure by triangulation
Refine the structure, camera poses, and camera parameters with Bundle
Adjustment (BA)
At this point, the estimation of the camera poses and the global structure begins.
The relative pairwise camera rotations are estimated first, followed by the global
rotation estimation. Next, the relative translations are estimated followed by the
global translation estimation. After the camera poses are determined, the structure
of the scene can be reconstructed using triangulation of the feature points. The
final optional, but a recommended step, is BA, where the scene structure, camera
poses, and camera parameters are optimized to reduce errors through a non-linear
least-squares algorithm. The Levenberg–Marquardt algorithm [40] has become a
popular choice in this application [41].
Once the reconstruction of a scene is complete, a point cloud of the environment and
the camera poses for each used image frame are retrieved. An example of a point
cloud created using OpenMVG is presented in Figure 13. Initially, the coordinate
system of the reconstruction has no connection to the real world, as only the relative
scale of objects is attained. Through the process of georegistration, the detailed
description of which can be found in Section 4.3, the point cloud and the camera
poses can be tied to the real world. After the reconstruction has been georegistered,
we can measure absolute distances in the coordinate space, for example.
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Figure 13. Example of a point cloud created from a vehicular video using SfM. The
bright green points show the camera locations. Notice the sparsity of the cloud compared
to the laser-scanned point cloud presented in Figure 9a).
3.5.1 Camera–road orientation
If the orientation of the camera and the road surface are known for a frame, the
relative orientation between the camera and road surface is their orientation differ-
ence. Since the camera orientations are known, this leaves the task of estimating the
road surface orientation. The point clouds that OpenMVG produces are relatively
sparse. This is the case especially with the road surface, since usually the speed of
the vehicle is high enough that motion blur occurs, leading to worse conditions for
stable feature detection and matching.
The assumption that the camera is installed to a vehicle in a static way, provides a
useful constraint which assists in solving the problem of determining the road surface
orientation: While this constraint applies, the motion of the camera itself contains
information about the road orientation: For example, if the camera points directly
in the direction of the movement, we know that the road must be perfectly level
relative to the camera from the x-axis perspective. Rather than using the sparse
point cloud of the road surface to determine the road surface orientation, we can
use the camera locations which have been calculated using the relative motions of
the whole scene structure.
By analyzing the interaction between the camera orientation and movement, we can
estimate the relative road orientation: For each frame used in the reconstruction,
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a window of preceding and following frames is selected and the camera locations
and rotations of these frames are stored. The windowed approach was used so that
the effect possible errors present in single frames would be diminished. The window
size used was 30 frames and was determined experimentally. For each of the stored
location points, denoted by 3-vector c𝑖, an additional point p𝑖 is created using the
rotation matrix of the camera R𝑖 as follows:
p𝑖 = R⊺𝑖 v + c𝑖, where v = [1 0 0]
⊺ . (8)
In Equation 8, v is the unit direction vector of side-ways motion relative to the
camera. Using these camera locations and the additional points, we can form a plane
by fitting it to these points in the least-squares sense using SVD. After the plane is
formed, its normal vector can be used as an approximation of the normal vector of
the road plane. The process is visualized in Figure 14. Using the retrieved normal
vector, we can calculate the orientation difference between it and the camera. When
we take into account the assumption of the negligibility of the camera’s roll angle
𝛽, only the x-axis component is retrieved from n. After the relative orientation
difference has been calculated for each frame used in the reconstruction, a mean
value is calculated and then used for creating the homography HIPM which is then
used throughout the video.
Figure 14. Formation of plane 𝑃 for estimating the road orientation using camera centers
and additional alignment points. The camera of the examined frame is denoted by c𝑖. The
preceding camera is c𝑖−1 and the subsequent one is c𝑖+1. The normal vector of the plane
𝑃 is denoted by n.
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3.5.2 Camera heading deviation
The absolute heading 𝛾 for each frame in the GPS coordinate space is needed for
the compositing of the orthoimages. The GPS data provided by an Android device
includes a heading estimate for each data point, but their calculation is based on
the movement of the camera. In cases where the heading of the camera does not
match the vehicle’s heading, the heading estimate cannot be directly used for the
compositing. The heading difference between the camera and the vehicle Δ𝛾 has
to be first applied to the rotation matrix of the virtual camera as described in
Section 2.3.
Since the 3D reconstruction provides us the orientations of the video frames and the
reconstructions are georegistered, we can use that information to obtain Δ𝛾. The
absolute heading or the yaw angle of a single camera can be calculated as follows:
First, we need the camera rotation matrix R𝑤 in the world coordinate frame, the
calculation of which is detailed in Section 4.3.1. The heading vector v𝑧 of R𝑤 is
then calculated with v𝑧 = R⊺𝑤 [0 0 1]
⊺. The absolute heading angle can then be
determined by calculating the angle between v𝑧 and a baseline vector defining the
heading value 0. For each frame for which the pose estimation has been successful,
we determine the difference between the heading obtained via reconstruction and
GPS data. Then, a median value of the differences is calculated, defining Δ𝛾.
3.5.3 Camera height
It is relatively simple to estimate the distance between the camera and the road
surface (camera height) using the georegistered reconstruction of the scene: For
each frame in the reconstruction, we select points from the point cloud for which
the distance to the camera corresponding to the current frame is under 5 meters.
This distance threshold was determined experimentally. From the selected points,
we filter out those points which are above the camera. Then, using these remaining
points we fit a plane using the least-squares method with SVD. Once the plane is
defined, we calculate the orthogonal Euclidean distance between the plane and the
camera. The final estimate of the camera height, which is used to calculate the IPM
transform for all frames, is the mean value of all measurements from all the frames.
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4 3D RECONSTRUCTION PRE- AND
POST-PROCESSING
This section discusses processing methods which can be applied to the reconstruction
data besides the actual reconstruction process. With 3D reconstruction being the
foundation of the automatic camera calibration method of choice for the IPM trans-
form, it is important to ensure that the reconstruction data is as robust as possible.
The pre-processing methods presented in Sections 4.1 and 4.2 have proven them-
selves useful in increasing the successfulness and robustness of 3D reconstructions.
The georegistration process of reconstructions is introduced in Section 4.3.
4.1 Sequence segmentation
The more images we use for a SfM reconstruction, the more data there is to opti-
mize in the BA. The optimization cost of the objective function of BA is cubic in
complexity, which is tied to the number of used images [42]. This limitation led to
an approach where the reconstruction would be processed in separate segments to
keep the processing times manageable. The fact that the reconstruction may fail at
any point for various reasons also advocated the use of the segmentation approach.
If a single segment fails, it is not as detrimental compared to a reconstruction of a
whole video failing. For example, if a segment fails due to an anomaly in the images,
we can attempt the reconstruction again, but start after the failed section.
4.2 Frame masking
One of the key assumptions which need to hold to ensure a successful 3D recon-
struction is the staticity of the scene. Dynamic scenes, where there are other mov-
ing objects besides the camera, can result in inaccurate estimation of the camera
poses and the global structure. The presence of moving objects, such as vehicles
and people, is unavoidable in the context of road scenes. A method for reducing
the deteriorating effects of moving objects was required and a simple way to accom-
plish this was frame masking: Before the calculation of the feature descriptors is
carried out for the images, moving objects are masked so that no feature descriptors
will be created for them. Objects which have no associated feature descriptors are
effectively non-existing in the context of SfM.
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During the development of the reconstruction system, it was observed that particu-
larly other moving vehicles in the scene had a substantial effect on the accuracy of
the camera poses and the global structure estimation. An example of this effect can
be seen in Figure 15. In the scenario, the surveying vehicle moved straight ahead,
but an overtaking car caused significant errors in the estimation of the camera poses.
When the other moving vehicles are masked out, these kinds of errors are greatly
reduced.
a) b)
Figure 15. Effects of a dynamic scene in 3D reconstruction: a) Video frame with an
overtaking vehicle; b) Top view of the reconstruction. The red points denote the camera
positions. Notice how the overtaking vehicle affects the trajectory of the recording vehicle,
which is linear in reality.
The automatic masking of vehicles required their automatic detection, which was
accomplished using the method proposed by Viola and Jones [43], which is based on
the cascade classification of Haar-like features. The specific implementation which
was used can be found in the OpenCV software library [44]. The robustness and
accuracy of the method are not exactly state-of-the-art, but it produced adequate
results for the frame masking and the computational performance of the method is
high while using only a Central Processing Unit (CPU).
The road images often contain large areas which contain no relevant information for
the reconstruction, namely the sky. By masking out the sky, we can slightly speed up
the feature matching process. The sky may also cause errors in the reconstruction if
clouds are present: The clouds can be so distant that they appear static in the image
sequence while the scene close to the camera is clearly moving. The detection of sky
pixels was achieved with an algorithm based on detecting large contours in the image
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with a high average pixel intensity which are also connected to the upper boundaries
of the image frame. The algorithm utilizes image thresholding and morphological
operations for forming the contours.
The vehicle hood can cause errors in the reconstruction since it conflicts with the
motion estimation: When the surrounding scene moves relative to the camera, the
hood stays in place. With smaller vehicles, it is often difficult to install the camera
to the windshield so that the vehicle’s hood would not be visible in the frame. An
algorithm was created for the automatic masking of parts of the image which are
static throughout a video. The approach was based on absolute image differences for
frame pairs selected randomly from the video. The image difference results would be
then averaged out. After about 150 image differences, an image would form where
the static parts of the video would have lower intensity values compared to the rest
of the image. Often the road surface in front of the camera is relatively static when
it comes to pixel intensity changes, which has caused problems.
4.3 Georegistration
When a 3D reconstruction is created using SfM with no prior data on the absolute
locations of the images, the coordinate frame of the result does not match the
real world. The relative structure is obtained, but meaningful absolute distances
cannot be measured, for example. Through the process of georegistration, a 3D
reconstruction can be tied to the real world by transforming it to a world coordinate
frame, enabling further applications for the data.
Let us assume we have two sets of 3D points, set S𝑠 and S𝑡. The source point set
S𝑠 contains the camera locations in the coordinate frame which the reconstruction
process has defined. The target point set S𝑡 contains the corresponding camera
locations in the world coordinate frame. By finding the 4 × 4 affine transformation
matrix T which minimizes the difference between the transformed source point set
TS𝑠 and the target point set S𝑡, we can georegister the entire reconstruction, both
camera poses and the point cloud. The transformation matrix T includes transla-
tion, rotation, and uniform scaling components.
The set S𝑡 can be defined using the collected GPS coordinates, which leaves the
task of determining set S𝑠. The GPS receiver sampling rate and frame times are
not related to each other. If we interpolate the camera positions in the reconstruction
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frame to match the sample times of the GPS points, we obtain the corresponding
source point set S𝑠. The GPS points are initially expressed in World Geodetic
System (WGS) coordinates. In order to find the optimal transformation, the GPS
points need to be converted to Euclidean coordinates. The Universal Transverse
Mercator (UTM) coordinate system was used for this case.
4.3.1 Affine transformation
The optimal transformation matrix T between the source point set S𝑠 and the tar-
get point set S𝑡 can be found using the method proposed by Kabsch [45], which
is based on the minimization of weighted sums of squared deviations. Besides the
reconstruction, the GPS camera locations can have errors as well. For example,
high rise buildings can have a deteriorating effect on the accuracy of the GPS read-
ings [46]. Consequently, two methods for estimating the optimal transform robustly
were applied, to reduce the effect of possible outliers in the source and target point
sets.
For each image sequence segment, a transformation model was computed using both
methods and the model having the lowest mean error would be selected. The first
method was RANdom SAmple Consensus (RANSAC) [47]. The second was an
iterative method, where in each iteration, point pairs with an error exceeding a
threshold 𝑡 were removed from the model as described in Algorithm 2. The main
loop will be exited if the maximum number of iterations is reached, no point pairs
were deleted, or the number of point pairs reaches the minimum of 3. The threshold
𝑡 was defined as 𝑡 = ̄𝑒 + 3𝜎𝑒, where ̄𝑒 is the mean and 𝜎𝑒 the standard deviation
(normal distribution) of the model error. The error of the model for a single point
pair was defined as the Euclidean distance between the source point, which has been
transformed by the model, and the corresponding target point.
Transforming points, such as the camera locations or cloud points from a coordinate
frame to another is a simple task: With the transformation matrix T, a point in
homogeneous coordinates x can be transformed to x′ with the matrix multiplication
x′ = Tx. Transforming the camera rotations to a new coordinate frame is not so
straightforward. There are at least two approaches for solving the problem. One
possibility is the decomposition of the transformation matrix T to its translation,
rotation, and scaling components by methods proposed by Thomas [48] and Gold-
man [49]. We can then apply the rotation component R𝑡 to a camera rotation R𝑟 in
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Algorithm 2: Robust iterative affine transformation estimation algorithm
input : S𝑠 - source point set
S𝑡 - target point set
𝑚 - maximum number of iterations
output: T - affine transformation matrix
for 𝑖 = 1,… ,𝑚 do
Compute model T with sets S𝑠 and S𝑡
Calculate mean ̄𝑒 and standard deviation 𝜎𝑒 error of the model T
Calculate error threshold 𝑡 = ̄𝑒 + 3𝜎𝑒
𝑑 = 0
for 𝑗 = |S𝑠|,… , 1 do
if ‖TS𝑠[𝑗] − S𝑡[𝑗]‖2 > 𝑡 then
Delete S𝑠[𝑗] and S𝑡[𝑗]
𝑑 = 𝑑 + 1
if 𝑑 = 0 ∨ |S𝑠| = 3 then
Break from loop
the reconstruction frame, to obtain the rotation in the world frame R𝑤 as follows:
R𝑤 = R𝑡R𝑟. (9)
Alternatively, transforming camera rotations to a new coordinate frame without the
decomposition of the transformation matrix T can be accomplished as follows: The
camera rotation R𝑤 in the world frame can be thought to be composed of four
column unit 4-vectors:
R𝑤 = [x𝑤 y𝑤 z𝑤 w] (10)
where the vectors x𝑤, y𝑤, and z𝑤 define the axes of the world camera frame and
w = [0 0 0 1]⊺. The world camera frame, reconstruction camera frame, their
corresponding axes, and the georegistration process are visualized in Figure 16.
To ensure that the axes of the world camera frame are of unit length, let us define
these vectors as follows by using x𝑤 as an example:
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Figure 16. Camera georegistration.
x𝑤 =
v𝑥
‖v𝑥‖2
. (11)
To define these vectors v∗, we require their start and end points. The starting point
c𝑤 is the camera location in the world coordinate frame and the ending point p𝑤
is the corresponding point p𝑟 in the reconstruction frame transformed by T. Both
points are in homogeneous coordinates. For example, the vector v𝑥 can be expressed
as follows:
v𝑥 = p𝑤 − c𝑤 = Tp𝑟 − c𝑤. (12)
The camera position c𝑤 can also be expressed using T and so the previous expression
takes the form v𝑥 = Tp𝑟 −Tc𝑟 = T (p𝑟 − c𝑟). The point p𝑟 is defined as:
p𝑟 = c𝑟 + x𝑟 = c𝑟 +R⊺𝑟 [1 0 0 0]
⊺ . (13)
In Equation 13, x𝑟 is the vector which defines the x-axis in the reconstruction
camera frame, which corresponds to vector x𝑤 in the world camera frame. Using
this definition we can further the expression of v𝑥:
v𝑥 = T (p𝑟 − c𝑟) = T(c𝑟 +R⊺𝑟 [1 0 0 0]
⊺ − c𝑟)
= T(R⊺𝑟 [1 0 0 0]
⊺) .
(14)
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Now that we have the definition of vector x𝑤, we can apply it to vectors y𝑤 and
z𝑤 as well. As a whole, the formation of the camera world rotation R𝑤 can be
calculated as follows:
R𝑤 = [x𝑤 y𝑤 z𝑤 w]
x𝑤 =
v𝑥
‖v𝑥‖2
and v𝑥 = TR⊺𝑟 [1 0 0 0]
⊺
y𝑤 =
v𝑦
∥v𝑦∥2
and v𝑦 = TR⊺𝑟 [0 1 0 0]
⊺
z𝑤 =
v𝑧
‖v𝑧‖2
and v𝑧 = TR⊺𝑟 [0 0 1 0]
⊺
w = [0 0 0 1]⊺ .
(15)
4.3.2 Gravity alignment of linear segments
In the georegistration process, a problem can occur when the movement of the
camera is linear, i.e., the vehicle has moved in a straight line: The linearity of the
source and target camera points introduce an additional degree of freedom in finding
the optimal transformation. The reconstruction camera positions can rotate by any
amount around the axis defined by the movement direction. In this case, additional
information is needed on the orientation of the cameras in the world coordinate
frame in order to find an accurate transformation T.
When the recording vehicle moves straight forward at a constant speed, forces which
affect the smartphone are small. Here, the accelerometer readings of the smartphone
provide a reasonable estimate for the gravitational acceleration. Using the tri-axis
data, the orientation of the camera can be approximated. The accelerometer sam-
pling rate does not match the frame times. With linear interpolation, a gravity
vector can be determined for each frame. Using the gravity vectors g𝑖, we can
create additional points p𝑖 to the source point set S𝑠 as follows:
p𝑖 = c𝑖 +
R⊺𝑖 v𝑖
𝑠 , where v𝑖 =
g𝑖
‖g𝑖‖2
. (16)
In Equation 16, c𝑖 denotes the camera position and R𝑖 the camera rotation in the
original coordinate frame. The scalar 𝑠 is the uniform scale factor in the transforma-
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tion matrix T. Corresponding to these additional points in S𝑠, we also add points
to the target set S𝑡 as follows:
p𝑖 = c𝑖 + v, where v = [0 1 0]
⊺ . (17)
In Equation 17, c𝑖 denotes the camera position in the UTM coordinate system and v
is the unit vector pointing up in the vertical direction in the coordinate system. After
the additional points have been added to sets S𝑠 and S𝑡, the optimal transformation
T is again found, with the extra degree of freedom removed.
When the camera is not moving in a linear fashion, the accelerometer readings most
likely do not reflect the camera orientation accurately. Thus, the gravity alignment
is utilized only for segments where the camera has moved in a straight line. These
kinds of segments are automatically detected by fitting a line using the camera
position points c𝑖. If the orthogonal distances between of all of the points and the
line do not exceed a threshold, the segment is classified as linear. The line fitting is
done in 2D, with the altitude component omitted.
4.3.3 Altitude filtering
The altitude readings provided by a typical Android device’s GPS sensor are much
more inaccurate compared to the longitude and latitude readings. The altitude
values have also been discretized to a step of 1 meter. The altitude data is filtered
in order to have it reflect the real world more accurately. The filtering method used
was Gaussian kernel convolution. The kernel is defined as
𝐾(𝑥) = exp(− 𝑥
2
2𝜎2), (18)
where 𝜎 is the standard deviation [50]. The boundary effects in the kernel convolu-
tion are handled by using only those parts of the kernel for which corresponding data
points are available. The kernel is always normalized, whether the kernel is used
fully or not. An example of the GPS altitude data convolution filtering is presented
in Figure 17.
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Figure 17. Gaussian kernel convolution of GPS altitude data, where the kernel size
𝑤 = 21 and the standard deviation 𝜎 = 4.0.
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5 SYSTEM IMPLEMENTATION
This section outlines the implementation of the components which finalize the or-
thoimagery generation system, including the creation of orthophoto composites and
the extraction of road surface features. Factors which can affect the quality of the
orthoimages are discussed and solutions are provided for the problem cases. Lastly,
the complete system is recapitulated and viewed as a whole.
5.1 Orthophoto composite generation
The orthoimages created from individual video frames are not that useful on their
own. By using the collected GPS data and the absolute camera headings, the IPM
frames can be composited together, creating a map layer of the road surface which
can cover a large distance. The GPS locations are interpolated for each frame since
the sampling rates of the GPS receiver and the camera do not match. In order to
position the images accordingly, a pixel position p𝑖 and a heading angle 𝛾𝑖 is needed
for each IPM image.
The calculation of the pixel positions requires the georegistration of the individual
IPM images. In this case, the georegistration of an IPM image consists of deter-
mining the UTM coordinates of the top-left and bottom-right corners of the IPM
image, which has been rotated by the angle 𝛾𝑖, the absolute heading of the frame.
The georegistration begins with the calculation of the image scale ratio 𝜔, which
denotes the number of pixels in the distance of one meter.
The calculation of 𝜔 is carried out as follows: First, we calculate where the physical
camera is located on the image plane of the virtual camera. The projection matrix
P is calculated for the virtual camera and the position of the physical camera x′
is determined with the projection x′ = Px, where x is the physical camera’s 3D
location. After x′ is retrieved, we can measure the distance 𝑑𝑞 between x′ and the
center of the IPM image q in pixels. Since the forward translation 𝑡𝑧 between the
physical and virtual camera is known in world coordinates, 𝜔 can be calculated using
the pixel and world coordinate distance with 𝜔 = 𝑑𝑞/𝑡𝑧.
The UTM coordinates of the IPM image center can be calculated using 𝑡𝑧. Now
that we have two points in the IPM image for which we know the UTM coordinates,
we can retrieve the UTM coordinates of the IPM image corners. After the IPM
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images have been georegistered, the image pixel positions p𝑖 can be calculated with
p𝑖 = 𝜔u𝑖, where u𝑖 is the UTM coordinate of the top-left corner of the IPM image.
The georegistration process is visualized in Figure 18.
Figure 18. IPM image georegistration. The red frame denotes the bounds of the IPM
image before rotation and the blue frame after. The position of the physical camera on
the virtual camera’s image plane is denoted by x′. The center of the IPM frame is denoted
by q. The top-left corner of the rotated IPM frame is denoted by p.
The IPM images are composited in chronological order. This way, the most accurate
part of the IPM images is preserved in the composite, given that the vehicle has
been moving forward. The last IPM image added in the composite can be seen fully
as it is not obstructed by other images. The georegistration of the composite can
be achieved by simply calculating the bounding rectangle for all the used images.
Figure 19 presents a comparison between Google satellite imagery and a orthoimage
composite generated with the system.
When the vehicle is stationary during data recording, the GPS signal often starts to
deteriorate, which leads to erroneous orthophoto composites. Solving the problem
requires using the other available sensors to determine if the vehicle is stationary.
Using SfM to determine this is not a reliable solution, as the reconstruction can fail
for reasons other than the absence of camera movement. One possibility to determine
the vehicle immobility could be the usage of the accelerometer. The solution should
take into account the factor that the engine of the vehicle can cause strong periodic
vibrations which can make the solving of the problem less straightforward. Figure 20
presents frequency spectra of tri-axis accelerometer data for trucks and smaller cars.
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a) b)
Figure 19. Comparison of orthoimage resolution: a) Google satellite image of a highway;
b) Previous image with a generated orthophoto layer superimposed.
The sampling rate of the accelerometer is 500 Hz meaning that the Nyquist frequency
is 250 Hz. From the figure we can see that a common primary frequency cannot be
determined and most of the spectra contain multiple peaks. The strongest vibrations
occur below 80 Hz.
5.2 Road surface features
The orthophoto composites can be augmented by applying the IPM transform to
annotation data in the original frames. This annotation data can consist of pixel
masks which identify certain objects in the scene. As a result, we receive an aug-
mented composite which includes the annotation data. For example, if the road
markings and other road surface features have been annotated, the results can be
projected and composited to an orthophoto. The annotation of objects of interest
was accomplished with semantic segmentation, a method which pursues to under-
stand images at the pixel level: Each pixel in an image is given a label corresponding
to the class of the object the pixel is part of [51, 52]. The specific implementation
of semantic segmentation used was Full-Resolution Residual Networks (FRRN) [53]
proposed by Pohlen et al. which has been designed specifically street scenes in mind.
When semantic segmentation is applied to an image, the resulting segmentation im-
age contains the class information for each pixel. The class information is encoded
in the image using the pixel gray-value. Each class has its own unique gray-value.
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a) b)
c) d)
Figure 20. Frequency spectra for tri-axis accelerometer data. The data collection vehicles
were stationary with the engine on. Subfigures a) and b) show data from trucks. Subfigures
c) and d) show data from smaller cars. Note that the vertical axes are logarithmic.
Unlike in the case of the original frames, when applying the IPM transform to the
segmentation images, nearest-neighbor interpolation must be used, because linear
interpolation can introduce errors to the result: Assume that we have two neigh-
boring areas segmented to different classes. If linear interpolation were to be used
in IPM, in the resulting IPM frame the boundary of the two areas would contain
gray-values that would not present either of the two classes. When nearest-neighbor
interpolation is used, the IPM frame will have the same gray-values as the original.
From the augmented composite, various road features, such as lane markings, road
cracks, and potholes, can be extracted by masking the composite with the appropri-
ate gray-value of the class in question. After the masking, the contours presenting
the road features can be extracted from the binary image. An example feature mask
can be seen in Figure 21.
The condition evaluation of road markings can be carried out as follows: A histogram
is computed for the road surface using its segmentation mask. The histogram is
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a) b)
Figure 21. Extraction of road features: a) Orthoimage composite; b) Corresponding
segmentation orthoimage with the road markings mask visible.
computed from the value channel after the image is converted to the Hue Saturation
Value (HSV) color space. Similarly, a histogram is computed for each of the road
marking contours. All of the road marking histograms are then compared to the road
histogram using the Bhattacharyya distance [54] as a similarity measure. Markings
similar to the road are classified as being in poor condition and vice versa.
5.3 Camera positioning
The manner how the camera is installed to the vehicle plays an integral part in the
final orthophoto accuracy. When applying the IPM to the original image in a typical
road scene, pixels at the bottom of the image are closer to each other compared to
their initial state. After a certain point, the pixels begin to be farther from each
other as we proceed upwards in the image. When comparing these distances of
sequential pixels in the original and warped image, the relative differences can be
used as multipliers for the base pixel size. After applying the multipliers to the base
pixel size, we can survey how the inverse-perspective image quality degrades as we
move upwards in the image.
Figure 22 presents two different scenarios for camera installation. The vehicle used
in the first scenario is a truck and in the second it is a smaller passenger car. The
scenarios are presented in Subfigures a) and b) respectively and include the original
and IPM frames. In Subfigure c), the effective pixel size of the inverse-perspective
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image is shown as a function of the relative vertical position of the original image for
both scenarios. The effective pixel sizes were calculated for the IPM images using
the base pixel size 𝜔−1. In both of the scenarios, the original image resolution was
1920 × 1080.
In the truck scenario, the hood of the vehicle is practically vertical. This means
that the bottom part of the frame can be utilized in its entirety, which is the most
accurate part of the inverse-perspective frame. The distance between the camera
and the road was 2.1 meters and the camera–road orientation 𝜃 was 2.9 degrees.
In the car scenario, the hood of the vehicle is elongated. The car hood covers a
large part of the bottom of the image, rendering that part unusable for the inverse-
perspective frame. With most passenger cars, this problem cannot be completely
avoided. After the road becomes visible in the inverse-perspective frame, the quality
of the image has already degraded greatly. The distance between the camera and
the road was 1.5 meters and the camera–road orientation 𝜃 was 0.7 degrees.
In the truck scenario, the effective pixel size of the lowest usable position is 8.2 mm
and in the passenger car case it is 14.2 mm. Even though the camera is higher from
the road in the truck scenario, the effective pixel size is smaller in the usable image
region compared to the car scenario. From these observations, we can reason that
using vehicles with shorter hoods is preferable for creating road orthophotos.
5.4 Image obstructions
The video frames can contain many features which can impair the quality of the
resulting orthoimage. These effects can be bad purely from a human perspective, i.e.,
the result may not be pleasing to look at. In some cases, subsequent computer vision
tasks can also be negatively affected. These kinds of features or image obstructions
can be divided into two categories: static and dynamic. Next, these two types of
obstructions and their countermeasures are explored.
5.4.1 Static
As detailed in Section 5.3, the vehicle hood can significantly decrease the quality
of the orthophotos, since less of the accurate area of the original image remains.
Before the image compositing can be done, the pixels which belong to the car hood
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a)
b)
c)
Figure 22. Effect of camera positioning on orthophoto accuracy. Subfigure a) shows the
original and IPM frames for the truck scenario. Subfigure b) shows the original and IPM
frames for the car scenario. A blue overlay shows the usable part of the image in both
subfigures. Subfigure c) presents the effective pixel size in the IPM frame as the function
of the vertical position of the original image. Position 0% is the bottom of the image.
The dashed yellow line shows the location of the bottom of the usable image area in the
car scenario. Note that the vertical axis is logarithmic.
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need to be automatically detected, to prevent the hood from ending up in the final
composite. An example of what occurs when the hood is not masked out from the
images before compositing can be seen in Figure 23. The problem can be solved by
masking out static objects using semantic segmentation.
a)
b) c)
Figure 23. Effects of a visible car hood for an orthophoto composite: a) Original frame
from a video; b) Image composite with a visible car hood; c) Image composite with the
car hood masked.
Reflections caused by diffuse light in the vehicle’s windshield can be problematic in
the same sense as the vehicle hood. Although semantic segmentation is not affected
by these kinds of reflections, the orthophoto composite may look unappealing to a
human eye, as the reflections can create a repeating pattern. One possible hardware
solution could be the installation of a polarizing lens in front of the camera, which
could remove or at least attenuate reflections. This solution may have the drawback
of increased motion blur in the video: Due to the lens, the amount of light reaching
the camera is reduced, which may prompt the camera to lower the shutter speed
automatically. Effects of a polarizing filter can be seen in Figure 24.
5.4.2 Dynamic
Other vehicles on the road are not objects of interest in the context of road surface
orthophotos and they do not fulfill the planarity assumption. For these reasons,
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a) b)
Figure 24. Effects of a polarizing lens in a dash cam scenario: a) Image without a
polarizing lens with the reflection of the vehicle’s dashboard (dark horizontal stripes)
outlined; b) Image with an adjusted polarizing lens.
other vehicles should be masked out of the IPM frames. An overtaking vehicle can
have a detrimental effect on numerous consecutive frames in the orthophoto, for
example. Again, semantic segmentation is a good solution for masking out vehicles
so they do not end up in the orthophoto composite. An example of masking out an
overtaking vehicle from a composite can be seen in Figure 25.
a)
b) c)
Figure 25. Masking of an overtaking vehicle in an orthophoto composite: a) Original
frame from a video; b) Image composite with no masking; c) Image composite with masking
enabled.
50
5.5 System overview
A complete overview of the orthoimage generation system is presented in Figure 26.
The raw data sources are marked with gray and the two major subsystems (cam-
era calibration and orthophoto generation) with dashed lines. The images provided
by the camera are used in the camera calibration, semantic segmentation, and or-
thophoto generation. The GPS coordinates are used in the camera calibration and
the georegistration of the orthophoto composites. The accelerometer readings are
used only in the camera calibration.
Figure 26. Overview of the orthoimage generation system.
In the camera calibration, the masked camera frames are used to create a 3D re-
construction with global SfM and the results are then georegistered using filtered
GPS and raw accelerometer data. The necessary components for the calculation of
the IPM transform are derived from the reconstruction. The retrieved IPM trans-
formation is then used on the original and semantically segmented camera frames,
from which unwanted objects are subsequently masked. The IPM frames are then
composited and georegistered using GPS and heading data. After composition, the
road surface features can be extracted using the semantic segmentation data.
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6 EXPERIMENTS AND RESULTS
This section presents the experiments which were carried out to test the accuracy
of the chosen camera calibration method. The general approach of the experiments
is described and then the experiment results are presented for the core components
of the solution.
6.1 Approach and dataset
The SfM based camera calibration method presented in Section 3.5 was experi-
mented on regarding its accuracy. The three core components examined were the
following:
• The orientation difference between the camera and the road surface about the
x-axis (pitch), denoted by 𝜃. It will be referred as the camera–road orientation
from now on since it is its sole considered component.
• The orientation difference between the camera and the vehicle about the y-axis
(yaw), denoted by Δ𝛾.
• The height of the camera from the road surface, denoted by 𝑑𝑝.
All of the variables are visualized in Figure 7. With all of the components, a single
test case consisted of calculating an estimate for the variable in question and then
calculating the absolute error regarding the ground truth value.
Even though Vionice possesses a vast and diverse database of road videos, it could
not be used for assembling a dataset for testing. This is because the camera height
𝑑𝑝 is not known beforehand for any of the videos and cannot be measured reliably
afterward. A new dataset for the testing of all components was recorded by the
author on the field. Sample frames from the dataset can be seen in Figure 27. The
true camera heights were physically measured before the data collection.
The ground truth values for 𝜃 and 𝛾 were determined by hand after the data col-
lection, by testing what values would produce an accurate IPM transform: For each
video, segments with a straight road were selected and values for 𝜃 and 𝛾 were tuned
to produce a result where the edges of the road would be parallel and straight. A
grid was used to help determine if the IPM transform was accurate which can be
seen in Figure 28. The virtual camera was positioned higher than normal during this
process, increasing the length of the visible road segment in the IPM frame. This
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Figure 27. Frames from the dataset demonstrating the different conditions and environ-
ments present.
adjustment enabled more accurate parameter tuning, as errors in the configuration
become more apparent as we move farther from the camera in the IPM frame.
a) b)
Figure 28. Determining ground truth values for 𝜃 and 𝛾: a) Original frame from a video;
b) IPM frame with an alignment grid.
The dataset included multiple different camera installations with varying orienta-
tions and heights. Most of the videos in the dataset had a length of five minutes,
which is the upper limit with the recording software. In total, there were 3 hours and
26 minutes of footage. All of the videos had a resolution of 1920×1080 and a frame
rate of 30 frames per second. To increase the sample size for the experimentation
on each component, the videos were divided into roughly four parts. By increasing
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the sample size, the way the errors are distributed becomes more apparent.
The dataset was collected during two non-consecutive days and includes scenes with
road, rural, suburban, and urban environments. Normal and snowy weather condi-
tions can be found in the dataset. Examples for each environment and condition
class are presented in Figure 29. The definition of snowy conditions was not based
on the requirement that there should be snow on the road surface, but if there is any
snow present in the environment. The different environment and condition classes
were taken into account in the experiments to discover how they are related to the
observed estimation errors.
The average speed of the recording vehicle was taken into account in the experiments
with all of the components. When the speed of the recording vehicle is high, the
accuracy of the 3D reconstruction may be negatively affected due to motion blur,
which can make the extraction of stable features more difficult. Since all of the
experiment components depend on the 3D reconstructions, it is worthwhile to test
if a quantitative correlation can be measured between the estimation errors and
the corresponding vehicle speeds. The average accuracy of the GPS readings was
considered in the experiments with the camera height estimation component. The
accuracy of a GPS location is given in the Android operating system as a meter
reading, which is the radius of a circle. The center of the circle is defined by the
GPS coordinate. By the definition, the true device location is inside the circle with
a 68% confidence [55].
a) b) c)
d) e) f)
Figure 29. Examples of the environment and condition classes. Environment classes: a)
Road; b) Rural road; c) Suburban; d) Urban. Condition classes: e) Normal; f) Snow.
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6.2 Parameters
The working resolution used with the Haar cascade classifier was 1440 × 810 for
shorter processing times. The working resolution in SfM was 1920 × 1080 (original
image resolution). The used feature descriptor was Scale-Invariant Feature Trans-
form (SIFT) [56], which is the default feature descriptor in OpenMVG version 1.2.
The used descriptor parameters can be seen in Table A1.1, which were determined
experimentally. The video mode matching was used with the SfM feature match-
ing, where consecutive frames are matched to each other. The other SfM parameters
used were the defaults in OpenMVG version 1.2. For more information about the
default parameters, access the OpenMVG documentation [57]. The experimentally
determined parameters used in reconstruction georegistration can be found in Ta-
ble A1.2.
6.3 Experiment results
With the estimation of the camera–road orientation 𝜃, the absolute mean error was
1.22 degrees and the median was 0.84 degrees. The distribution of the absolute
errors is presented in Figure 30. If we divide the errors by environment class, we
can see that the mean error was significantly higher in the road class compared to
the others, as shown in Figure 31a). Regarding the condition classes, the normal
class shows a much higher mean error compared to the snow class, as shown in
Figure 31b).
The absolute mean error was 0.97 degrees and the median was 0.58 degrees with the
estimation of the camera heading deviation Δ𝛾. The distribution of the absolute
errors is presented in Figure 32. Similar to the camera–road orientation estimation,
the road class had the highest mean error among the other environment classes,
as shown in Figure 33a). Figure 33b) shows that the normal condition class had
a much larger mean error compared to the snow class, as was the case with the
camera–road orientation estimation.
In the case of estimation of the camera height 𝑑𝑝, the absolute mean error was 9.77
cm and the median was 7.15 cm. Figure 34 shows the distribution of the absolute
errors. Figure 35a) shows that the observed errors were the highest in samples
belonging to the rural road condition class. The prevalent weather conditions seemed
to have minimal effect on the errors as Figure 35b) shows. Figure 36a) shows that
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the GPS accuracy was fairly equal in all environments except in the urban class
where it was slightly worse, which is excepted as large buildings can interfere with
the GPS signal.
The threshold lines in Figures 30, 32, and 34 show the acceptable maximum error
for each of the experiment components. The definition of these error thresholds is
introduced in Section 7.2.1.
A scatter plot of absolute camera height estimation errors and corresponding average
GPS accuracy values is shown in Figure 36b). Figure 37 shows scatter plots of the
absolute experiment errors and the corresponding average vehicle speeds. For the
previously mentioned cases, the intervariable correlation coefficients are presented
in Tables 2 and 3 using the Pearson correlation coefficient and the Spearman rank
correlation coefficient, respectively. The corresponding 𝑝-values are also presented
in these tables.
The Pearson correlation coefficient measures linear correlation between two vari-
ables [58]. The Spearman correlation coefficient is calculated by applying the Pear-
son correlation to the ranks of the observations in the data [59]. In other words, the
coefficient assesses how well a monotonous function can describe the relationship
between two variables. The Spearman correlation was taken into consideration as
well because we have no prior indication that the relationships between the variables
would be linear in nature.
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Figure 30. Histogram of absolute camera–road orientation estimation errors. For the
visual clarity of the histogram, two samples with the absolute errors of 10.75 and 13.68
degrees are not displayed. Both of these samples belong to the road environment class.
a) b)
Figure 31. Bar plots of absolute camera–road orientation estimation errors: a) Errors
grouped by environment classes; b) Errors grouped by condition classes.
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Figure 32. Histogram of absolute camera heading deviation estimation errors. For the
visual clarity of the histogram, two samples with the absolute errors of 8.75 and 11.12
degrees are not displayed. Both of these samples belong to the road environment class.
a) b)
Figure 33. Bar plots of absolute camera heading deviation estimation errors: a) Errors
grouped by environment classes; b) Errors grouped by condition classes.
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Figure 34. Histogram of absolute camera height estimation errors.
a) b)
Figure 35. Bar plots of absolute camera height estimation errors: a) Errors grouped by
environment classes; b) Errors grouped by condition classes.
a) b)
Figure 36. Figures on GPS accuracy: a) GPS accuracies grouped by environment classes;
b) Scatter plot of absolute camera height estimation errors and corresponding average GPS
accuracy values.
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a)
b)
c)
Figure 37. Scatter plots of the absolute experiment errors and the corresponding aver-
age vehicle speeds: a) Camera–road orientation estimation; b) Camera heading deviation
estimation; c) Camera height estimation.
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Table 2. Correlations between the experiment variables using the Pearson correlation
coefficient.
Variable 1 Variable 2 Coefficient 𝑝-value
𝜃 abs. estimation error Average vehicle speed 0.3211 5.5829 × 10−5
Δ𝛾 abs. estimation error Average vehicle speed 0.1357 0.0912
𝑑𝑝 abs. estimation error Average vehicle speed 0.2719 0.0015
𝑑𝑝 abs. estimation error Average GPS accuracy −0.002 0.9813
Table 3. Correlations between the experiment variables using the Spearman rank corre-
lation coefficient.
Variable 1 Variable 2 Coefficient 𝑝-value
𝜃 abs. estimation error Average vehicle speed 0.2472 0.0023
Δ𝛾 abs. estimation error Average vehicle speed −0.02 0.8026
𝑑𝑝 abs. estimation error Average vehicle speed 0.246 0.0042
𝑑𝑝 abs. estimation error Average GPS accuracy −0.04 0.6441
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7 DISCUSSION
This section analyses the results attained in Section 6 to resolve if the performance
of the system implementation is adequate and how different factors affect the results.
Possibilities for the further development of the system are also discussed.
7.1 Intervariable correlations
The absolute camera height 𝑑𝑝 estimation error and the average GPS accuracy show
no clear visible correlation, as can be seen in Figure 36b). The same applies to the
average vehicle speed and all of the experiment components, as shown in Figure 37.
Next, the quantitative correlation measures shown in Tables 2 and 3 are reviewed.
A significance level of 0.01 will be used when assessing the 𝑝-values in the tables.
By reviewing the correlation tables, we can see that the absolute estimation errors
of the camera–road orientation 𝜃 and the camera height 𝑑𝑝 show a weak positive
correlation regarding the average vehicle speed. The correlation coefficients are in
the range of 0.246–0.3211. The 𝑝-values are 0.0042 or lower, signifying that the
probability of observing this kind of correlation is highly unlikely in the case that
the variables were uncorrelated in reality. Since the 𝑝-values are well below the used
significance level, the correlations are regarded as statistically significant.
The other intervariable relationships (absolute camera heading deviation Δ𝛾 esti-
mation error and average vehicle speed, absolute camera height 𝑑𝑝 estimation error
and average GPS accuracy) show no evidence of correlation, as the correlation co-
efficients are in the range of −0.04–0.1357. If the variables are not correlated in
reality, the received low correlation coefficients are likely, because the 𝑝-values are
in the range of 0.0912–0.9813.
7.2 System performance analysis
An understanding of how different errors affect the orthophoto results is required in
order to survey the performance of the system implementation. Next, a maximum
acceptable error threshold is determined for each of the experiment components by
using the visual quality of the orthoimages as the main criterion.
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7.2.1 Error thresholds
How the estimation error of the camera–road orientation 𝜃 deteriorates the end
result can be seen in Figure A2.1. By viewing the figure, we can reason that an
error between 0.0 and 1.0 degrees does not significantly impair the visual quality of
the orthophoto composite. The visual artifacts can be seen clearly in the composite
when the error reaches 1.5 degrees. Based on these observations, an error of 1.0
degrees is regarded as the acceptable maximum.
Figure A2.2 demonstrates how the camera heading deviation Δ𝛾 estimation error
affects the quality of orthophoto composites. When the error is between 0.0 and 0.75
degrees, the visual quality of the composite is not substantially compromised. As
the error reaches 1.0 degrees, the visual artifacts seem too prevalent. The acceptable
maximum error for the component is set at 0.75 degrees.
The effects of the camera height 𝑑𝑝 estimation error are visualized in Figure A2.3.
We can see that an error between 0 and 20 cm does not seem to reduce the quality
of the orthophoto composite meaningfully. When the error reaches 30 cm, the
orthophoto appears to be too distorted. Thus, the acceptable maximum error for
the camera height estimation is set at 20 cm in the evaluation of the robustness of
the method.
7.2.2 Analysis of results
Looking at the results presented in Section 6.3, we can say that the accuracy of the
camera–road orientation estimation is not adequate, as 38% of the samples exceeded
the acceptable maximum error threshold of 1.0 degrees. A probable cause for the
errors could be the instability of image features which can lead to errors in the
rotations estimation. Empirical tests have shown that depending on the conditions
in the video, the estimates for the camera–road orientation can fluctuate wildly
between segments. An extreme case of this is presented in Figure 38, where a large
portion of the image is covered by the road.
The road surface often has little or no texture, leading to fewer feature points and less
robust feature matching. When the data collection vehicle is moving at high speed,
the road surface near the camera can suffer from motion blur, making its contribution
to the previously mentioned problem. In Figure 38a), the only trackable regions are
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a) b)
Figure 38. Highly varying camera–road orientation estimates within a single video:
a) Single frame from the video; b) Graph showing the ground truth and the changing
orientation estimate. The different segments can be identified by the locally even sections.
the vegetation on both sides of the road, which is a rather small part of the whole
image, making the camera pose estimation more difficult since fewer keypoints are
available.
Figure 39 shows the same road scene with the SIFT features plotted. The scales
of the keypoints extracted from the road surface are relatively small on average,
making them more unstable from the tracking viewpoint. The keypoints for which
a match was not found in the subsequent frame are marked with red. For most of
the keypoints belonging to the road surface, a match was not found. The obtained
results support these observations since samples belonging to the road class had the
highest mean error in the camera–road orientation estimation.
37% of the samples exceeded the acceptable maximum error of 0.75 degrees in
the camera heading deviation estimation experiments, indicating its performance as
insufficient. The component is dependent almost solely on the 3D reconstructions,
like the camera–road orientation component. The previously mentioned problems
regarding the reconstructions concern the camera heading deviation component as
well.
The estimation of camera–road orientation and camera heading deviation both
demonstrated a much higher mean error with the normal environment class com-
pared to the snow class. This may be due to issues experienced regarding the auto-
matic focus of the camera, which was used during the day the videos which belong
to the normal class were recorded. Occasionally, the recorded frames were not fully
in focus, deteriorating the reconstruction results. As both of the components are
highly dependent on the reconstructions, their performance degraded expectedly.
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Figure 39. Visualization of SIFT keypoints. The keypoints for which there is a match
in the subsequent frame are marked with blue and the keypoints for which a match has
not been found are marked with red.
In the case of the accuracy of camera height estimation, 14% of the samples exceeded
the error threshold of 20 cm, which is a much better result than with the previous
components. The rural road environment class had the highest mean and median
error. With the camera–road orientation estimation, the same class showed a low
mean and median error compared to the other classes, implying successful pose
estimation, which again suggests successful structure estimation. In the likely case
that the accuracy of the GPS data has no influence on the camera height estimation
error, it is possible that the errors in the rural road class are caused by inaccurate
structure estimation of the road surface. These inaccuracies may be caused by
the instability of feature points extracted from the road surface, as was previously
discussed with the camera–road orientation estimation errors within road class.
7.3 Future work
One possible approach for improving the estimation accuracy of the camera–road
orientation and camera heading deviation could be the tuning of the feature de-
scriptor parameters for SfM or using a different feature descriptor altogether. If this
proves to be ineffective, another possibility is to replace the camera pose estimation
method (SfM) completely. The latter option may be necessary, because it seems
unlikely that drastic errors for example seen in Figure 38b) could be corrected by
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just parameter tuning. The methods based on optical flow, which were presented in
Section 3.4, could be good candidates for an alternative solution.
The camera height estimation accuracy could be improved by employing RANSAC
in the plane formations and applying constraints to the plane formation e.g., the
steepness of the plane should not exceed a certain limit. Usually multiple videos are
recorded with the same camera installation in succession, i.e., videos often belong
to a session of videos. Another viable approach for improving the performance of all
the components of the camera calibration would be the expansion of the estimation
context from a single video to all of the videos in a session. The more data there
is available in the camera calibration, the more accurate results are potentially
produced.
Apart from improving the performance of the camera calibration, future develop-
ment could include the implementation of the following:
• Employing semantic segmentation in the reconstruction frame masking pro-
cess, completely replacing the initial algorithms.
• Detecting if the data collection vehicle is stationary automatically as described
in the end of Section 5.1.
• Extraction and analysis of more useful road feature data from the orthophoto
composites augmented by semantic segmentation, e.g., road width.
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8 CONCLUSION
The objective of this study was to create a robust system for generating road or-
thoimages using only a smartphone installed to a vehicle. The creation of the or-
thoimages was based on IPM. The primary research problem was set to be the cali-
bration of the camera for the IPM transform. An introduction to the theory behind
the IPM transform was given. Different methods for camera calibration for IPM and
orthophoto generation in general were surveyed. A novel camera calibration method
based on SfM reconstructions was chosen for the system implementation. Points on
how 3D reconstruction results could be improved were outlined, which may prove
useful in other applications as well. In addition, the georegistration process for 3D
reconstructions was introduced.
The implementation for the compositing and georegistration of orthophotos was
explained. Factors which affect the quality of the orthophoto composite, e.g., camera
positioning and image obstructions, were gone through and solutions were presented
for problem cases. The extraction and condition analysis of road features were
introduced, which were based on semantic segmentation and histogram similarity
measures, respectively.
The proposed novel method for the camera calibration was experimented on regard-
ing its robustness and accuracy using a road video dataset collected by the author.
The experiment results demonstrated that the accuracy of the calibration method
was insufficient: Components which depend on the estimation of the relative orien-
tation of the camera were not performing adequately as 38% of the samples exceeded
the threshold of acceptable error on average. The camera calibration method re-
quires further development to enable the orthophoto generation system to be put
into use.
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Appendix 1. Additional information on experiments
Table A1.1. Parameters used for the SIFT feature descriptor.
Name Explanation Value
octaves number of progressively downsized versions of the orig-
inal image
4
scales number of Gaussian blurring stages for each octave 5
edge threshold threshold used to filter out edge-like features 20.0
peak threshold minimum contrast threshold 0.001
Table A1.2. Parameters used for the georegistration of 3D reconstructions. The param-
eters regarding the iterative method and RANSAC refer to the robust estimation of the
affine transformation T described in Section 4.3.1.
Name Explanation Value
𝜎 standard deviation of the Gaussian kernel for GPS alti-
tude filtering
4.0
𝑤 size of the Gaussian kernel for GPS altitude filtering 21
nMaxIterI maximum number of iterations used in the iterative
method
10
inlierRANSAC RANSAC inlier distance threshold 5.0 m
nIterRANSAC number of RANSAC iterations 4000
lineThreshold inlier distance threshold used to determine the linearity
of a segment
5.0 m
Appendix 2. Figures on orthophoto errors
a) b)
c) d)
Figure A2.1. Impact of camera–road orientation 𝜃 estimation error on an orthophoto
composite: a) No error; b) Error of 0.5∘; c) Error of 1.0∘; d) Error of 1.5∘.
Appendix 2.
a) b)
c) d)
Figure A2.2. Impact of camera heading deviation∆𝛾 estimation error on an orthophoto
composite: a) No error; b) Error of 0.5∘; c) Error of 0.75∘; d) Error of 1.0∘.
Appendix 2.
a) b)
c) d)
Figure A2.3. Impact of camera height 𝑑𝑝 estimation error on an orthophoto composite:
a) No error; b) Error of 10 cm; c) Error of 20 cm; d) Error of 30 cm.

