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SIMULATION DECOMPOSITION: NEW APPROACH FOR BETTER 

SIMULATION ANALYSIS OF MULTI-VARIABLE INVESTMENT PROJECTS   

 

Abstract: This paper presents a new method to enhance simulation-based analysis 

of complex investments that contain multi-variable uncertainty. The method is called 

“simulation decomposition”. Typically the result of simulation-based investment 

analysis is in the form of histogram distributions - here we propose a method for first 

classifying the possible outcomes of selected uncertain variables into states and then 

using combinations of the created states in the decomposition of the simulated 

distribution into a number of sub-distributions. The sub-distributions that can be 

matched to state-combinations of the variables contain relevant actionable 

information that helps managers in decision-making with regards to the studied 

investments.  

A numerical illustration of a renewable energy investment is used to demonstrate the 

usability, the enhanced analytical power, and the intuitively understandable benefits 

that can be reached by using the simulation decomposition method. The proposed 

method is generally usable and can be utilized independent of the investment context. 

       

Keywords: Corporate Finance and Governance, Capital Budgeting, Simulation 

Modeling, Renewable Resources and Conservation



 

 
Abbreviations  
 
CapEx – Capital expenditures 
CPI – Consumer price index 
IRR – Internal rate of return 
MCS – Monte Carlo simulation 
MW – Megawatt 
NPV – Net present value 
PV – Photo-voltaic 
RE – Renewable energy 
ROV – Real option value 
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1. INTRODUCTION 

 

In this paper we are interested in exploring how typical simulation based investment analysis can be enhanced to 

offer better managerial decision-support in terms of providing better actionable information about threshold values 

for identified important-to-the-investment variables that affect investment profitability. Our focus is on analysis that is 

performed before the investment decision. The decision support before investment is “actionable”, because it is 

before the investment that decision managers are often in a position that allows them to still plan and steer 

investments towards the most profitable configurations, and by their actions ensure that critical to profitability issues 

are properly accounted for.    

 

What we propose is a new approach that we call “simulation decomposition”. The method is based on setting artificial 

(expert chosen) thresholds to divide the possible value distributions of the most important uncertain variables of an 

analyzed investment. Typically in Monte Carlo simulation these distributions are from where the simulator draws 

random variable values. After having “decomposed” each variable´s uncertainty, or “range”, into sub-ranges, the 

combinations of these sub-ranges are listed. When the simulation is run, the results are registered separately for 

each combination, in addition to the overall simulation results. This allows for constructing a separate distribution of 

outcomes for each combination that is a sub-distribution of the overall simulation result. By studying the sub-

distributions managers can infer important information about the profitability-critical threshold values for each variable 

that will help them plan their actions with regards to managing the investment better.  

 

Modern investment decision-making is most often an exercise that involves comparing the value of an upfront 

investment cost and a stream of uncertain future cash-flows that is expected to result from the prospective 

investment. In practice, the methods “used for the job” are the “classical” capital budgeting methods, such as the net 

present value (NPV) method, the pay-back method, and the internal rate of return method (IRR) that are often used 
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together with complementary sensitivity, scenario, and simulation analysis methods (Block, 2007; Graham & Harvey, 

2001; Ryan & Ryan, 2002). Real option analysis (Amram & Kulatilaka, 1998; Trigeorgis, 1995) is among the latest 

additions into the investment analysis toolkit of managers and has been gaining a foothold in academic research, as 

well as, a following in the industry. The benefit of real option analysis over the classical methods is that it is able to 

capture the value of managerial flexibility that is to be found within investments, and when investments are 

considered as a whole. Often a mixture of different investment analysis techniques is used simultaneously in hopes 

of gaining a better holistic picture of the situation surrounding the investment and in order to comprehensively treat 

the risks involved. 

 

Simulation and more specifically Monte Carlo simulation (commonly attributed to Stanislaw Ulam), is a technique 

that has been used in asset valuation since the late 1970´s, e.g., (Boyle, 1977), and in investment analysis of real 

investments for more than two decades. In connection with the classical profitability analysis methods simulation 

has been used, e.g., in enhancing scenario analysis for complementing the investment analysis (Sheel, 1995). 

Simulation has also been used together with dynamic system models in investment analysis and profitability 

evaluation of, e.g., mining and oil investments (Johnson, Taylor, & Ford, 2006; O'Regan & Moles, 2001; O'Regan & 

Moles, 2006; Sontamino & Drebenstedt, 2014; Tan, Anderson, Dyer, & Parker, 2010), and to offer a better 

understanding of how uncertain variables affect profitability of energy investments (Bastian-Pinto, Brandão, & Alves, 

2010; Boomsma, Meade, & Fleten, 2012; Kozlova, Collan, & Luukka, 2015; Monjas-Barroso & Balibrea-Iniesta, 

2013; Reuter, Fuss, Szolgayová, & Obersteiner, 2012; Vithayasrichareon & MacGill, 2012; Yang, Nguyen, De 

T’Serclaes, & Buchner, 2010). Simulation is also an underlying technique in many modern real option valuation 

methods such as the Datar-Mathews method (Datar & Mathews, 2004; Mathews, Datar, & Johnson, 2007) and the 

Matching Method (Jaimungal & Lawryshyn, 2015). Typically what is achieved as an end result from a simulation 

based profitability analysis is a histogram (distribution) of project profitability, a NPV distribution. Simulation is also 

used in many fields of engineering as a standard multi-purpose tool; these other purposes are however left outside 

the scope of this paper, but we suggest the interested reader to see, e.g., (García-Redondo, López-Vallejo, Ituero, 

& Barrio, 2012; Rane et al., 2014). The proposed method may be useful in providing new insight in such simulation-

based analysis as e.g. (Nembhard, Shi, & Aktan, 2003; Ridlehoover, 2004; Savolainen, Collan, & Luukka, 2016). 

 

Although the Monte Carlo simulation technique has been applied to many different problems throughout the years, 
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the simulation method itself and the way the simulation results are analyzed has remained relatively unchanged. 

Here we propose an enhancement to the simulation procedure and as a consequence to the analysis of the received 

results that enhances the explanatory power of the results in terms of increased understanding of the cause-effect 

relationship between the variables and the simulation results. 

 

The proposed new approach is illustrated numerically with a case that is based on a renewable energy investment 

into Russia that may enjoy the support offered by the Russian renewable energy incentive mechanism (Government 

of Russian Federation, 2013a; Government of Russian Federation, 2013b). The case is especially suitable for the 

task, as the complex incentive mechanism “naturally” creates what can be called artificial thresholds for the variables 

that are important to the profitability of the investment (Boute, 2012; International Finance Corporation, 2011; Kozlova, 

2015; Vasileva, Viljainen, Sulamaa, & Kuleshov, 2015). 

 

The remainder of the paper is structured as follows: the following section presents the proposed simulation approach 

in more detail, then a numerical case illustration based on a renewable energy investment in Russia is presented to 

show real-world use of the approach, and finally conclusions are drawn and some future research directions are 

identified.  

 

2. THE NEW SIMULATION DECOMPOSITION APPROACH 

 

It needs to be observed first that we expect that a simulation model has been built and on the model one can run 

Monte Carlo simulation. As this is in place we directly present how the simulation procedure is to be changed 

according to the simulation decomposition approach. In order to do this the simulation decomposition process is 

presented as a five step algorithm:   

 

Step 1: Identify key variables 𝑉̃𝑖 and the possible range of the values that each identified key variable can take.  

The first step is to start from identifying key variables, where important to the project profitability uncertainty exists. 

These can be identified by consulting the managers inside the organization involved in the planning of the investment 

project, or by simply performing typical sensitivity analysis to find out which variables are the most important. These 

variables are “the same variables” that would “normally” be identified, when a classical Monte Carlo simulation model 
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is built, and for which values are simulated. In the case example used in this paper five uncertain key variables were 

identified. After identification, the range of values that each identified key variable may have is estimated. The 

determination of the ranges can be done by asking managers to identify them by, for example, giving minimum and 

maximum possible values for each variable, or by deriving the range from historical data. It is worth mentioning that 

only this first step belongs also to the procedure used in the classical Monte Carlo simulation (Mooney, 1997), while 

the rest form a unique basis for the decomposition approach.   

  

Step 2: Identify key variables that the organization can affect and relevant states 𝐴̃𝑖𝑗 for these.  

The second step in the simulation decomposition approach is to identify two, or more, “managerially relevant” states 

𝐴̃𝑖𝑗 for the identified key variables that the organization undertaking the project can affect. This part of the process 

is specific to each problem under analysis, but the point is that the identified states point to different outcomes in 

terms of project success, or organizational achievement in terms of the variable in question. For instance, in the 

example used in this paper, states of “failure” or “success” can be identified with regards to reaching a level of 

production that “earns” the project a subsidy. Typically, when there are no naturally “given” or derivable states they 

can be managerially determined, based perhaps on issues such as, “certainly reachable” variable values, “usual” or 

“normal” values of a variable, “good” or “sufficient” variable values, and so forth. The number of identified states may 

very well be only two, for example, “good” and “bad” – this is not a problem in terms of how the simulation 

decomposition approach can be used. In the case example used in this paper one identified key variable has three 

states and two key variables have two states. States are not identified for variables whose values the organization 

cannot affect, such as market prices. 

 

Step3: Identify suitable boundaries 𝐵̃𝑖𝑗  for each state 𝐴̃𝑖𝑗. 

The third step of the decomposition analysis is to identify the boundaries 𝐵̃𝑖𝑗 between the identified states 𝐴̃𝑖𝑗. For 

binary variables the boundary is naturally between the two states 𝐵̃𝑖𝑗 = {0,1}, if one is dealing with a real valued 

variable, boundaries of the variable are specified by using a threshold value 𝑡̃𝑖, e.g., 𝐵̃𝑖1 = [0, 𝑡̃𝑖] 𝐵̃𝑖2 = (𝑡̃𝑖 , 100], 

where the two identified states of the variable 𝑉̃𝑖 for which the range of possible outcomes is [0,100] (for example %) 

are separated by the threshold value 𝑡̃𝑖. Similarly (𝑁𝑖 − 1) threshold values are identified for ith variable with more 

than two states. For the purposes of this research we focus on using crisp threshold values, uncertainty can be 

introduced in the threshold values i.e. by using fuzzy sets, but we leave discussion about fuzzy threshold values as 
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a matter of further research and outside the scope of this research. 

 

Step 4: Form groups 𝐺̃𝑘 of combinations to specify the to-be-decomposed parts of the simulation. 

The fourth step is to form relevant groups 𝐺̃𝑘 of possible outcomes to investigate by selecting a possible state 𝐴̃𝑖𝑗 

from each variable 𝑉̃𝑖. The resulting list of groups represents all possible combinations of the states of the key 

variables. The total number of groups is, therefore, a product of a number of the states of the key variables, ∏ 𝑁𝑖  
𝑛
𝑖=1 , 

where 𝑁𝑖 denotes the number of states in ith variable. For example, having two key variables 𝑉̃1 and 𝑉̃2 with two 

states identified for each variable, the total number of groups is four and is comprised of 𝐺̃1 = {𝐴̃11, 𝐴̃21}, 𝐺̃2 =

{𝐴̃11, 𝐴̃22}, 𝐺̃3 = {𝐴̃12, 𝐴̃21}, 𝐺̃4 = {𝐴̃12, 𝐴̃22} (where first index stands for the variable index and the second one for 

the state). Each group corresponds to a piece of the total simulation, what is essentially done is a specification of 

the to-be-decomposed parts of the simulated (NPV) distribution for the project.   

 

Step 5: Run the simulation model, while assigning the result of each simulation round not only to the distribution of 

the “full” simulation, but also to the specified decomposed group 𝐺̃𝑘 or sub-distribution of the simulation.   

 

The fifth step is to run the simulation model n times and to track the resulting NPV value of each simulation round 

and to store it not only as a part of the “full” NPV distribution from the project, but also as a part of a specifically 

identified “decomposed” NPV sub-distribution NPVk (here NPVk denotes NPV of group 𝐺̃𝑘). The identification of the 

correct sub-distribution for each round is done by mapping randomly drawn values from each variable 𝑉̃𝑖 to its 

corresponding state 𝐴̃𝑖𝑗 and finding a correct group 𝐺̃𝑘 by matching states 𝐴̃𝑖𝑗 with corresponding group 𝐺̃𝑘. In 

practice this can be established, for example, by using lookup tables, or by running an if-loop over the variables to 

find, which particular states are valid for a given round of the simulation run. This way we end up with having 

∏ 𝑁𝑖  
𝑛
𝑖=1 sub-distributions.  

 

For all steps 1-5, 𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑁𝑖 , 𝑘 = 1, ⋯ , ∏ 𝑁𝑖  
𝑛
𝑖=1  , n is number of variables, and 𝑁𝑖  is number of 

possible states in ith variable. 

 

After this five-step approach is run, one is left with a typical simulated (NPV) distribution for the (whole) project and 

∏ 𝑁𝑖  
𝑛
𝑖=1 sub-distributions, NPVk, each specified for a particular group 𝐺̃𝑘. These can then be used to help plan the 
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managerial actions connected to the prospective investment and to understand better the drivers of the profitability 

of the investment. The simulation decomposition approach can be easily used on top of almost any existing 

simulation model. The method is also flexible in terms of the software environment used. The main requirement for 

successfully implementing the method on top of a suitable existing simulation model is constructing a block that 

matches the (NPV) result of each simulation round with the correct sub-distribution. 

 

3. NUMERICAL CASE ILLUSTRATION 

 

The case used to illustrate the method is an analysis of a renewable energy (RE) investment into a 10MW solar 

photo-voltaic (PV) power plant in Russia. The revenues from this investment comprise of electricity sales in the 

Russian wholesale energy market and of subsidy cash-flows from a long-term capacity delivery contract. The latter 

is calculated based on the rules laid-out in the Russian law governing the incentive mechanism for RE investments 

that has the target of providing a certain level of return on investment. The mechanism considers changing market 

conditions and project-specific characteristics, for details see (Government of Russian Federation, 2013a; 

Government of Russian Federation, 2013b). The Russian mechanism is different from the typically used RE 

incentive schemes in use, e.g., in Central Europe. For more on the Russia RE support mechanisms see (Boute, 

2012; International Finance Corporation, 2011; Kozlova, 2015; Vasileva et al., 2015).    

 

The investment analysis model for the solar power plant investment is a simple system dynamic model that combines 

a typical discounted cash-flow calculation with a model of the Russian RE investment incentive mechanism. Block 

diagram of the model used is presented in Figure 1, where input variables are located on the left-hand side of the 

model and outputs are visible on the right. The two largest blocks represent the main computational parts of the 

model, where the effects of the incentive mechanism are determined for each simulation run and the resulting project 

NPV are calculated. A more detailed description of the case and the assumptions behind the model used can be 

found in (Kozlova, 2015).        
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Figure 1. Block-diagram of the used model 

 

The model has been built in Matlab Simulink and the simulations are run ten thousand times (rounds). Next we go 

through the simulation decomposition procedure in the order of the algorithm presented above.  

 

3.1. SIMULATION DECOMPOSITION FOR THE CASE IN AN ALGORITHMIC FORM 

 

First step is the identification of the (uncertain) key variables and the possible range of values each key variable can 

take. The identified key variables are five:  

 

𝑉̃ = {𝑉̃1,𝑉̃2, 𝑉̃3, 𝑉̃4, 𝑉̃5} = {𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟, 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝐶𝑎𝑝𝐸𝑥 𝑙𝑒𝑣𝑒𝑙, 𝐶𝑃𝐼, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒} 

 

and the possible range of each key variable´s value is presented in Table 1. For the purposes of this paper the 

ranges from within which the random draws are made are modeled as uniform distributions (probability is the same 

for drawing any value from within the range).  



 

10 

 

Table 1. Uncertain key variables for the RE investment 

Key variable 

Possible range of values 

Minimum Maximum 

Electricity price, rub./MWh 1000 3000 

Consumer price index CPI (inflation) 1.00 1.70 

Capital expenses (CapEx) level 80% 150% 

Capacity factor (percent of target) 30% 120% 

Localization requirement Failed (0) Fulfilled (1) 

   

 

The second step is to identify the key variables the organization can affect and to identify relevant states for these 

variables. The first two factors in Table 1, electricity price and inflation, represent external or “market” factors that are 

outside the influence of the investor, whereas the remaining three variables represent project-internal factors that 

can be managed to some extent by project managers: {  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟, 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝐶𝑎𝑝𝐸𝑥 𝑙𝑒𝑣𝑒𝑙 .. The 

relevant states to be studied for each of these three key variables are:   

 

Capacity factor={𝐴̃11, 𝐴̃12, 𝐴̃13}={Low, Medium, High} 

 

Localization={𝐴̃21, 𝐴̃22}={Failed, Fulfilled} 

 

CapEx level={𝐴̃31, 𝐴̃32}={within the limit, over the limit} 

 

Thus we have one three-state variable and two binary variables. The identified “states” directly and realistically reflect 

the features of the Russian RE investment incentive mechanism. The level of the capital expenditures, the level of 

annual electricity production (capacity factor), and fulfilling a requirement for local production in the investment 

(localization) affect the amount of support that the investment can receive in the form of RE capacity payments. For 

example, failing the localization requirement will cut the received RE capacity payments to roughly a half of the 
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maximum. Details of the Russian RE incentive mechanism and the effect of the three variables can be found, e.g., 

in (Government of Russian Federation, 2013a; Government of Russian Federation, 2013b; Kozlova & Collan, 2016; 

Kozlova, 2015). 

 

The third step is to identify what was called “suitable boundaries” for the identified states. This means setting, in this 

case numerical, thresholds 𝑡̃𝑖𝑗 that separate the different states, while observing the bounds of each state. Here 

these thresholds are given by the underlying Russian RE incentive mechanism: for “Capacity factor” we have two 

threshold values 𝑡̃11 = 50%  and 𝑡̃12 = 75%  and the boundaries of the three resulting states become 𝐵̃11 =

[30%, 50%], 𝐵̃12 = (50%, 75%], and 𝐵̃13 = [75%, 120%], where the minimum and the maximum we get from the 

range of possible values, see Table 1. Similarly for the binary variable “Localization” we have 𝐵̃21 = 0 and 𝐵̃22 = 1 

and for “CapEx level” 𝐵̃31 = [80%, 100%] and 𝐵̃32 = (100%, 150%]. 

 

The fourth step is to form groups 𝐺̃𝑘  from a list of “combinations of states” between different variables, these 

combinations will be the to-be-decomposed parts of the simulation. The combinations of states can also be called 

“scenarios” as denoted in block-diagram in Figure 1. Simulation results for each round are matched to these 

scenarios. In this particular case we get 12 scenarios that are listed in Table 2.  

Table 2. List of different scenarios with states of the variables identified and boundaries indicated 

Scenario, 𝐺̃ Capacity factor (percent of target) Localization CapEx level 

1 High (75%, 120%] Fulfilled Within the limit [80%, 100%] 

2 High (75%, 120%] Fulfilled Over the limit (100%, 150%] 

3 High (75%, 120%] Failed Within the limit [80%, 100%] 

4 High (75%, 120%] Failed Over the limit (100%, 150%] 

5 Medium (50%, 75%] Fulfilled Within the limit [80%, 100%] 

6 Medium (50%, 75%] Fulfilled Over the limit (100%, 150%] 

7 Medium (50%, 75%] Failed Within the limit [80%, 100%] 

8 Medium (50%, 75%] Failed Over the limit (100%, 150%] 
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Scenario, 𝐺̃ Capacity factor (percent of target) Localization CapEx level 

9 Low (30%, 50%] Fulfilled Within the limit [80%, 100%] 

10 Low (30%, 50%] Fulfilled Over the limit (100%, 150%] 

11 Low (30%, 50%] Failed Within the limit [80%, 100%] 

12 Low (30%, 50%] Failed Over the limit (100%, 150%] 

 

The fifth step is to run the simulation model, while matching the result of each simulation round (the NPV of the RE 

investment) not only to the results of the “full” simulation, but also specifically to each of the twelve scenarios. 

Matching is based on the correspondence of the randomly drawn values for the three variables to the particular 

states identified by the boundaries of the states. For example, if randomly drawn capacity factor is “79%” that 

matches the state “high”, randomly drawn localization “failed”, and randomly drawn CapEx level “105%” that matches 

the state “over the limit”, the NPV from this simulation round would be attributed to scenario number four in Table 2. 

This process will finally create twelve sub-distributions, one for each scenario and the result will be a decomposition 

of the simulated distribution. The input-recording part of the used model is denoted with green arrows and block 

borders in Figure 1. 

 

From the resulting NPV values for the project as a whole and for each scenario separately one can build histograms 

for the results. The parts must equal the whole. Typically, in a real-world analysis situation one would go about to, 

e.g., calculate descriptive statistics such as expected NPV, real option value, standard deviation of the NPV, et cetera. 

Next we look at the results from the numerical case illustration. 

 

3.2. SIMULATION RESULTS 

 

Simulation and simulation decomposition results are used to create histograms of the NPV for the whole project and 

for the twelve scenarios separately. The histogram for the whole project without decomposition is shown in Figure 2 

on the left. What can be seen is that the form of the distribution is interesting. The shape of the distribution is caused 

by the effect of the Russian RE incentive policy. In Figure 2 on the right one can see the twelve scenarios´ 

distributions inputted in the same picture and highlighted with different colors. Bars of different scenarios do not 
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overlap in the histogram, but are “summed up” for each NPV value bin. What can be intuitively understood is “where” 

in the total distribution each scenario is present and what kind of initial values lead to which kinds of NPV results. 

Expected NPV and real option value (ROV in Figure 2) are indicated for both to highlight the fact that they are (and 

should be) the same, because both graphical presentations represent the same simulated NPV outcomes. 

 

Figure 2. Simulated net present value (NPV) distributions. For legend key, see Table 2 

Breaking down the overall simulation results into outcomes of different scenarios provides more information for 

decision-making. In particular, from the right graph of Figure 2 one can immediately see that the first scenario NPV’s 

are entirely in the positive zone. This implies that an investor, who is able to manage the key variables to end up in 

the first scenario, can benefit from secure project profitability and independence from volatile market conditions. 

Another insight that can be easily obtained from observing the decomposed histogram is sensitivity of project 

profitability to the key variables. In the presented case, for instance, one can see the influence of electricity production 

performance by comparing the batches of green (1-4), yellow (5-8), and violet (9-12) scenarios. The gap between 

1-2 and 3-4 scenarios (as well as between 5-6 and 7-8) appears due to failing localization requirement that implies 

severe effect on the investment profitability and, thus, requires particular management attention to ensure reaching 

this requirement. In contrast, capital cost increase is not such crucial (compare scenarios 1 and 2), and an investor 

can allow some overspending keeping the project profitable. All this information cannot be obtained from the 

conventional histogram alone. Thus, simulation decomposition reveals actionable information for planning an 

investment.        

 

Table 3 presents a selection of calculated descriptive statistics from the results for the whole distribution and for each 



 

14 

 

sub-distribution separately.  

Table 3. Descriptive statistics  

 Expected 

NPV 

ROV Standard 

deviation 

Minimum Maximum Probability that a 

simulation result 

hit the scenario 

Total 

distribution 

-538 112 3 888 444 537 -1 543 126 211 925 100 % 

Scenario 1 163 426 163 426 18 153 123 772 211 925 7 % 

Scenario 2 -58 143 22 629 133 644 -325 310 205 211 18 % 

Scenario 3 -414 466 0 42 643 -519 048 -284 235 7 % 

Scenario 4 -701 176 0 135 105 -971 933 -404 229 18 % 

Scenario 5 -65 746 0 13 302 -110 960 -30 473 4 % 

Scenario 6 -308 654 0 135 064 -577 623 -56 636 10 % 

Scenario 7 -544 211 0 40 795 -635 715 -439 060 4 % 

Scenario 8 -842 300 0 134 252 -1 105 438 -565 459 10 % 

Scenario 9 -834 610 0 54 708 -966 813 -689 509 3 % 

Scenario 10 -1 164 512 0 143 629 -1 453 132 -867 893 8 % 

Scenario 11 -916 016 0 58 886 -1 056 890 -766 296 3 % 

Scenario 12 -1 254 252 0 143 134 -1 543 126 -952 481 8 % 

 

For this investment the only sub-distribution that lies entirely in the “positive zone” is that of the first scenario. Notice 

that also a part of the second scenario distribution is positive. In this case the difference is caused by the CapEx 

level (see Table 2) and further study shows that to be positive the project should fulfill the localization requirement, 

keep high average capacity factor, and make sure that the CapEx level is not higher than 120% of the limit. Figure 

3 shows histograms of each sub-distribution separately with Expected NPV and ROV values. 
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Figure 3. Histograms of each sub-distribution with expected net present values E(NPV) and real option values 

(ROV) 

 

We also ran a two-sample Kolmogorov-Smirnov test of the resulting sub-distributions. This was done to make sure 
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that our managerial decisions for different states and relevant scenarios was done in a way that was meaningful for 

the decision making process. This test confirmed that the samples are not drawn from same distribution when 

comparing the scenarios and further confirming our scenario selection (see Appendix I for details). 

 

The decision-making implications for this case can be shortly summarized by saying that even if the investment does 

not look very promising, when the whole distribution is looked at, the management can draw the further conclusion 

that if it is possible to fulfill the localization requirement, keep high average capacity factor, and make sure that the 

CapEx level is not higher than 120% of the limit, then the investment is likely to be profitable. This information gives 

actionable management information that the management can start analyzing – the question “are the circumstances 

that lead to profitability that have thus been uncovered within the reach of the organization or not and if they are, 

then what are the operational steps to reach them?”.  

 

4. DISCUSSION AND CONCLUSIONS 

 

Simulation-based techniques are commonly used in many fields for the analysis of the joint effects of uncertain 

variables. One of the fields where simulation techniques have been found useful is investment analysis, where 

simulations are run based on profitability models built for the studied investments. Typically simulation is used as a 

tool to create distributions of possible outcomes that are presented in the form of histograms - in this paper we posit 

that when complex problems, with multiple uncertain and simulated variables, are analyzed it makes sense to 

decompose the resulting distributions to find out more about the results. For this purpose we present a new method 

that we have called “simulation decomposition”.  

 

This idea of the method is shortly to create sub-distributions of the overall simulation, by categorizing states of the 

uncertain variables simulated and by way of forming combinations of different variables´ states and collecting the 

simulated outputs from each scenario. This way the simulated information is not only used to create a single “overall” 

distribution from results, but also a number of sub-distributions for the scenarios that the state combinations of the 

uncertain variables represent. The information that is revealed increases the value of the simulation, because by 

better understanding the connection between the circumstances (variable states) and the results to which they have 

lead (simulation results) decision-makers can make better use of the analysis results.  
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In fact, if the thresholds separating the states of the uncertain variables are such that they represent different levels 

of effort, or actions such as investments, the information can be formed into actionable “march orders”, for example, 

in the context of the numerical illustration presented in the paper. The ability to trace the influence of different states 

of the uncertain factors on the results (project profitability), and the possibility to compare the outcomes of different 

scenarios and probabilities of different scenarios offer, in our view, enhances decision-support that can be given to 

managers with simulation.  

 

Using smart graphical presentation and the types of tables and separate scenario distributions will enhance the 

intuitive understandability of the obtained results. On top of the described benefits the proposed method is rather 

easy to implement and does not necessarily require any changes to the models that underlie the simulation 

procedure. The method is also generally usable and is not context dependent.  

 

The numerical case illustration based on a solar PV power plant investment analysis reveals the added analytical 

insights brought about by the simulation decomposition that can be used to create action points for management of 

such investments. The method can be used in similar investment analyses, even without such natural thresholds 

between states of variables that were found in the example used, in such cases the thresholds need to be 

managerially estimated and decided. Furthermore, the insights uncovered in the numerical case illustration also 

contribute to the study of the Russian renewable energy policy.  

 

In a broader management decision-support context, the simulation decomposition approach outperforms classical 

techniques to analyzing sensitivity of the results. It possesses all the features of the traditional simulation and 

provides more insights on top of the classical simulation practice. The proposed approach reflects some features of 

sensitivity and scenario analysis that are typically used to complement investment analyses and can also be 

understood as a more developed approach in the same vein with these methods. 

 

Further research into the topic of distribution decomposition will include studying the real world situation, where 

managers are asked to identify the thresholds between the different states of the required variables and extending 

this thinking into investment analysis within the possibilistic framework. 
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APPENDIX 1. Two-sample Kolmogorov-Smirnov test 

Kolmogorov-Smirnov statistics represents the test decision for the null hypothesis that the data in vectors are from the same continuous distribution. The alternative 

hypothesis is that data vectors are from different continuous distributions. The result is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 

otherwise. 

Table 1.1. Kolmogorov-Smirnov statistics 

 
Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Sc. 9 Sc. 10 Sc. 11 Sc. 12 Total 

Sc. 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

Sc. 2   0 1 1 1 1 1 1 1 1 1 1 1 

Sc. 3     0 1 1 1 1 1 1 1 1 1 1 

Sc. 4       0 1 1 1 1 1 1 1 1 1 

Sc. 5         0 1 1 1 1 1 1 1 1 

Sc. 6           0 1 1 1 1 1 1 1 

Sc. 7             0 1 1 1 1 1 1 

Sc. 8               0 1 1 1 1 1 

Sc. 9                 0 1 1 1 1 

Sc. 10                   0 1 1 1 

Sc. 11                     0 1 1 

Sc. 12                       0 1 

Total                         0 
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Table 2.2. P-values 

 
Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Sc. 9 Sc. 10 Sc. 11 Sc. 12 Total 

Sc. 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Sc. 2   1 0 0 0 0 0 0 0 0 0 0 0 

Sc. 3     1 0 0 0 0 0 0 0 0 0 0 

Sc. 4       1 0 0 0 0 0 0 0 0 0 

Sc. 5         1 0 0 0 0 0 0 0 0 

Sc. 6           1 0 0 0 0 0 0 0 

Sc. 7             1 0 0 0 0 0 0 

Sc. 8               1 3,6E-154 0 0 0 0 

Sc. 9                 1 0 4,2E-296 0 0 

Sc. 10                   1 0 7,3E-128 0 

Sc. 11                     1 0 0 

Sc. 12                       1 0 

Total                         1 
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