

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

LUT School of Energy Systems

LUT Mechanical Engineering

Ilya Kurinov

DEVELOPMENT OF VIRTUAL REALITY USER INTERFACE FOR HEAVY

MACHINERY REAL-TIME SIMULATIONS

17.09.2018

Examiner(s): Professor Aki Mikkola

D. Sc. (Tech.) Kimmo Kerkkänen

ABSTRACT

Lappeenranta University of Technology

LUT School of Energy Systems

LUT Mechanical Engineering

Ilya Kurinov

Development of virtual reality user interface for heavy machinery real-time simulation

Master’s thesis

2018

68 pages, 29 figures and 9 tables

Examiner(s): Professor Aki Mikkola

D. Sc. (Tech.) Kimmo Kerkkänen

Keywords: Multibody System Dynamics, Real-Time Simulation, User Interface, Virtual

Reality.

The traditional product development process is time consuming and requires a high amount

of investments. The reasons for this are high amount of iterations during the design stage

and need in building multiple prototypes before launching a production. Nevertheless, the

resulting product might not fulfill all customer’s needs during exploitation. Therefore, this

thesis was concentrating on defining of a method, which allows to effectively collect the

user preferences and use them in the development process.

The method reviewed in this thesis applies a Mevea real-time simulation software and

UE4(Unreal Engine 4) game engine, which allow the user to test a machine model and

change its physical parameters via VR(Virtual Reality) interface. For the development of

the physical model of the machine was developed in Mevea software, and for development

of the visualization and the user interface of the software was used UE4. The physical

parametrization of the model was achieved by application of the Mevea XML file with

initial parameters of the model and XML modification library in UE4. The obtained model

parameters are filtered inside of the user interface according to the customers group.

The resulting software provides an opportunity to collect the user preferences

automatically and use them in the product development process. This kind of software

might reduce the amount of time and money invested into the development process without

losing the performance, reliability and usability.

ACKNOWLEDGEMENTS

I want to say words of appreciation for family and friends, who have been supported and

inspired me during my studies. Without their help and guidance, I would not succeed in this

kind of challenging project.

The special thanks addressed to professor Aki Mikkola for providing an opportunity to work

on this project and Dr. Kimmo Kerkkänen for thorough supervision of my work.

4

TABLE OF CONTENTS

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 2

TABLE OF CONTENTS .. 4

LIST OF SYMBOLS AND ABBREVIATIONS ... 6

1 INTRODUCTION ... 7

1.1 Research objective and questions .. 7

2 THEORY .. 10

2.1 Theory of crowdsourcing ... 10

2.2 The development process of user interface .. 11

2.3 XML overview ... 11

2.3.1 Structure of the simulation input XML document 13

2.3.2 Parsing and connection to the interface ... 18

2.4 Requirements for User interface .. 18

2.4.1 Communicating with the user through crafting menu 18

2.4.2 Comfort level of the view .. 19

2.4.3 Visualization .. 21

2.4.4 Interaction .. 21

2.4.5 Security requirements .. 22

2.4.6 Loading and running the simulation .. 23

2.4.7 Saving user-specified data ... 24

2.4.8 Providing tutorials and additional information .. 25

2.4.9 Control of other parameters: graphics, controls and appearance 26

2.4.10 Hardware, software and system requirements ... 26

3 RESULTS ... 31

3.1 Operation of the user interface ... 31

3.1.1 Application performance ... 31

3.1.2 Data input method .. 32

3.1.3 Main menu operation ... 35

3.1.4 Simulation operation .. 38

3.2 Building hardware for the user interface ... 51

5

3.3 Management data obtained .. 52

3.4 The main menu obtained data .. 53

3.4.1 User information data .. 53

3.4.2 Machine initial parameters ... 54

3.5 Data obtained during the simulation .. 54

3.6 Data obtained after the simulation ... 55

3.7 Output files structure ... 56

3.8 Data sending .. 58

3.9 Data filtering .. 60

4 ANALYSIS ... 63

4.1 Practical application example .. 64

4.2 Test group results ... 64

4.3 Achievement of research results .. 64

5 CONCLUSION .. 65

LIST OF REFERENCES .. 67

APPENDIX

Appendix I: Main output CSV file

6

LIST OF SYMBOLS AND ABBREVIATIONS

VALp1 – Value of parameter 1

Xa – Position of actor along X-axis [m]

Xm – Position of mesh along X-axis [m]

AR – Augmented Reality

HMD - Head Mounted Display

RAM - Random Access Memory

SGML - Standard Generalized Markup Language

UDP - User Datagram Protocol

UE4 - Unreal Engine 4

VR – Virtual Reality

XML- Extensible Markup Language

7

1 INTRODUCTION

The customer’s product with the product correlates to the fulfillment of the requirements of

the customer’s needs [1]. The common practice in the industry is to involve the customer in

the product development process in order to increase the customer’s satisfaction rate.

Accordingly, it is crucial to effectively share information between all parties such as

customers, company and other internal groups involved in the development process.

The early stages of the product development are challenging due to a large number of

professionals and customers from different backgrounds involved. Customers and industry

oriented technical staff are normally not profoundly familiar with highly specific data

provided by product development researchers. This data is typically obtained using

mathematical model based simulations. This may lead to problems in communication and

knowledge sharing between different individuals and teams involved in the product

development process.

Recent studies related to the product development are showing the interest in the information

sharing among the community. The researches in this field state that knowledge and

information sharing is highly contributing to the speed and quality of the development of

product innovations [2]. Most of the papers in this field are stating that there is a need for

the development of the highly effective information transfer method inside the community

[1], which will support to increase the effectiveness of a product development procedure.

1.1 Research objective and questions

The primary objective of this thesis is to create an efficient method for gathering user

feedback from a customer and transforming it into the data, which is valuable for research

and development groups in a company. This method should cover the high amount of

respondent for gathering a reliable statistical sample. According to these assumptions, the

method should be based on the digital solution, which applies real-time simulation with the

game-like environment.

8

Figure 1: Objective for interaction between customer and development team

This thesis is concentrating on the improvement of interaction between user and company.

The improvement can be achieved by the introduction of the interface shown in figure 1.

The interface is collecting user feedback about desired physical parameters and experience,

which are collected and sent to the development team. As an outcome of this data analysis,

the development team creates new concepts and products. For achieving the goal of the study

following research question must be studied:

• How can be made a simulation model parametrization? What kind of tools are

required?

• How can be performed the simulation model visualization?

• How should be collected and analyzed a user-specified data? What is a method of

converting user specified data into the concepts?

9

Figure 2: VR based interface

For the research was chosen a VR based interface based on the Oculus Rift virtual reality

headset and Leap Motion controller hardware in Unreal Engine 4, which is shown in figure

2. This setup will give an opportunity to choose parameters based on the visual and simple

technical aspects of the model without applying special software or modifying XML files by

users.

10

2 THEORY

The task of the development of such interface includes aspects of several areas. For proper

design of the application must be considered software engineering, crowdsourcing and a

physical model of the machine issues. In the particular case, goals of the software

development and physical modeling process are dependent on a crowdsourcing task. The

crowdsourcing task specifies what kind of actions needed from the crowd. This task is

created by the company, which needs to gather information from the crowd.

2.1 Theory of crowdsourcing

According to Daren, crowdsourcing is a type of participative online activity in which an

individual, an institution, a non-profit organization, or company proposes to a group of

individuals of varying knowledge, heterogeneity, and number, via a flexible open call, the

voluntary undertaking of a task. There are four main types of crowdsourcing: knowledge

discovery and management, broadcast search, peer-vetted creative production and

distributed human intelligence tasking. In the knowledge discovery and management, the

crowd got an assignment to collect information for a company. The second type of

crowdsourcing is broadcast search, which implies giving to a crowd task to solve empirical

problems, for example, scientific problems. The third type, peer-vetted creative production,

concentrates on creating and selecting creative ideas. The fourth type of crowdsourcing is

distributed human intelligence tasking, which implies giving to a crowd task to analyze a

large amount of data. The tasks for a crowd can be ranging in complexity and needed

resources. Depending on the case, the crowd is using work, money, knowledge and

experience for completing the task. The key parts of crowdsourcing are an interested

organization, a community that is completing a task, an online environment and mutual

benefit for both parties. [3]

In the current setting, the interested organizations are companies, which are designing and

producing heavy machinery. The community, which performs a design task voluntarily must

be companies and operators of target machines. There are clear benefits for both parties

involved in crowdsourcing. For interested companies, crowdsourcing will help to reduce the

design budget and create more targeted products. The community has benefits of testing new

11

products, affecting the design process so, that end product fulfills their needs and reduction

of a price without losing the quality. Therefore, there is a need for designing an online

environment, which allows involved parties to interact with each other. [3]

2.2 The development process of user interface

A starting point of the development process is consideration of crowdsourcing type. In the

case of this study is applied peer-vetted creative production. At the peer-vetted creative

production organization tasks community with creating and selecting ideas. Therefore, the

community must define the most suitable configuration according to their experience with

the application. From this statement is derived a requirement for the application: the user

interface must collect data via the visual interface, store and send configurations defined by

community. [4]

The next stage is to define basic features of the application, called the high-level design of

the application. High-level design includes decisions about the target platform, user interface

and external interfaces used by the application. After defining the requirements for

application, a top-down approach can be applied. This method implies dividing of the

application functionalities into parts. These parts are divided into more detailed parts. Then,

these parts are used to create needed classes and methods, which are needed for the program

functioning. In the application created during this research, the target platform is Windows

10. The real-time simulation is performed by Mevea software package. For the creating main

functionality of the model configuration used simulation XML files, which allows modifying

initial parameters of the model.

2.3 XML overview

According to Joshi, XML stands for Extensible Markup Language and is a markup language

used to describe data. It was developed by World Wide Web Consortium’s (W3C) XML

Special Interest Group in 1996 and was based on the SGML. Initially, it was developed for

the application on the Internet, had design goals which are stated at the W3C

Recommendations of XML 1.0 and associated standards. The design goals were

concentrating on the efficiency and ergonomics with the minimal importance of the terseness

of the language. According to that specification was created an extendable form of the

12

SGML, Standard Generalized Markup Language, which gives the user a possibility to define

own structure of the document based on the XML production rules. [5]

The production rules of an XML document are concentrating on the logical and physical

structure of the document. The logical structure is related to the formal grammar of a

document. A document, which is meeting these rules called well-formed. [5] Comparison

between well-formed and not well-formed document structure shown in figure 3.

Figure 3: Example of a well-formed and not a well-formed XML document

Typical XML document consists of two parts: processing instructions and body of the

document. The first line is the processing instruction for an XML parser, which specifies

that this document applies XML version 1.0 and 8-bit Unicode encoding. [6] The second

part is a body of the document which consisting of the root element – outermost element of

the documents structure and child elements containing the data of an XML file. Between

tags of is situated the content of an element. There are no restrictions for the naming of an

element, except the rule, that white spaces are forbidden. [7] As it is shown in the example,

in a well-formed document should be only one root element, each element should have

closing tag or it can be self-closing if it is empty as it is shown on the Element3 of the

example and should be properly nested (wrong version - <Element1><Element2>This

document is not well-formed</Element1></Element2>). Elements can include attributes,

13

which containing metadata as shown in the example. [5] In a well-formed document two

attributes must have different values, for example, if a document contains such attributes

<Element2 Attribute1=“1.0” Attribute1=“Data”> parser will end up with a fatal error. [8]

The physical structure of an XML document is concentrating on the entities, and it is not

covered in this thesis.

These rules are creating the key advantages of the language. XML is the standardized

industrial language which is vendor-independent, which made it popular in the industry. It

is self-describing and easily can be read by humans and machines. The most important

benefit of the language is extensiveness, in other words, the possibility of creating own

markup tag for structuring a data. The combination of the previous benefits creating the new

benefit: efficiency of the processing and transfer of the data. This benefits made XML

popular in the software development industry, and a high number of the software are able to

read the documents to some degree. [6]

Large popularity of the language made it applicable to different fields of applications, such

as military, business and communication protocols fields. [7] In the multibody simulations

it is used as an application independent data asset for storing and transfer of the simulation

parameters and results for the further development. It is used in the Mevea real-time

simulation software, which is used partially used in this thesis.

2.3.1 Structure of the simulation input XML document

Mevea is real-time simulation software developed by Mevea Simulation Solutions Ltd.,

which headquarters is located in Lappeenranta, Finland. This software package is

specializing in the multibody dynamics and hydraulics real-time simulation. Software

package consists of four programs, but this thesis used only Solver and Modeler. The solver

is software, which loads and running a simulation. The modeler is software, which is used

for development of the model, environment and other features of a simulation. [9]

During the modeling stage in the Mevea Modeler software are generated XML files, which

are used for the input of the initial parameters for the Solver. There is the main simulation

file with mvs extension, which contains model and world files. Structure of mvs file shown

in figure 4.

14

An MVS file is the file format, which is based on the XML and used as a starting directive

for the Solver software. It is automatically generated after saving a model in the Modeller

software and contain data about the environment, world and model.

Figure 4: Structure of Mevea MVS file

Environment element contains attributes, which are specifying the main parameters related

to the environment. World element consisting of the reference to the world XML file. The

model file is creating high interest for this thesis topic because it contains data about the

structure of the model and its parameters.

The model file consists of a root element called DMInputFile and seventeen child elements.

Each of the elements in the file is representing the model feature. After addition of the model

feature in the Mevea Modeler program generates a new child element of the type of asset,

for example, if the body was added, it would create child element of the bodies element. The

elements of the file are: Model, MeVPacker, ExternalInterface, Splines, Bodies, Dummies,

Constraints, Forces, Electrics, Graphics, Collisions, DataSources, ObjectMovers, Inputs,

15

Outputs, MotionPlatformControl and SoundComponents. In this thesis will be discussed

commonly used elements, which are model, bodies and forces.

The model element consists of one child element and twelve attributes. Structure of the

element shown in figure 5.

Figure 5: Model element structure of DMInputFile

It contains data about the vector of the gravity in the gravitation element. The attributes of

the element are describing the parameters of the simulation, such as the name of the

simulation, solution method, numeric solver type, using of the sparse solver, time step,

overall simulation time, hydraulic integrator type, hydraulic integration steps, the maximum

number of iterations and logo of the file.

Bodies element consists of child elements, which representing each body in the simulation.

A typical representation of the element is shown in figure 6.

16

Figure 6: Structure of Bodies element in DMInputFile

On figure 4 shown the simplified example of the element, containing only one body, which

representing ground. It consists of three elements and five attributes. Elements are describing

position, orientation and inertia properties of the body, such as moments of inertia, the center

of mass and inertia frame definition.

The forces element consisting of five elements and one self-closing element, representing

the hydraulic bulk modulus. The element structure is shown in figure 7.

17

Figure 7: Structure of Forces element in DMInputFile

Each element representing different types of forces, which are tyre models, body-to-body

torque, body-to-body force, motor and powertrain (gearboxes, differentials, planet gears).

The tyre model is responsible for creating tyre contacts, which are taking place between tyre

and other bodies in the space. The body-to body force and torque are representing forces and

torques, which are acting between two bodies in the space. The motor element defines

parameters of the motor such as torque, idle speed and state of the motor. The powertrain

element defines initial parameters of gearboxes, differentials and planet gears of a machine.

As it can be observed, these files are including initial data of the simulation, which is static

and is not changing during the simulation runtime. This is the main factor, which will be

used in this thesis for the controlling parameters of the machine.

18

2.3.2 Parsing and connection to the interface

The XML file should be analyzed with special software called parser. The parser analyzes

the structure of an XML file and extract needed variables. In this thesis will be parsed.mvs

file and model XML files. For the parsing targets in the model XML file were chosen model,

bodies and forces elements, because they have the highest effect on the model behavior. The

simulation parameters are essential to change, for increasing of the responsiveness,

adaptivity and creating a possibility for future debugging. The bodies and forces parameters

are the core of the user interface because it will provide the flexibility of the simulation and

create a possibility to modify the mathematical model by a user visually, for example, by

increasing of the body size. The parameters, which could be changed are: integrator

parameter, time step, update frequency, bodies mass/inertia properties, motor and

transmission parameters.

2.4 Requirements for User interface

The user interface of the real-time simulation is a complex problem, which needs to consider

multiple aspects of the program. In this chapter will be discussed requirements for the

operation of the simulation, design requirements and aspects related to the comfortable using

of the application with head mounted display. During the work, the author defined following

aspects: user communication, reading/writing data from XML files, saving user-specified

data for the subsequent analysis, protecting the simulation device from abuse, starting Mevea

Solver process/launching/pausing/stopping the simulation.

2.4.1 Communicating with the user through crafting menu

The main functionality of the user interface is gathering, storing and transfer of the data from

a user in a simple and ergonomic form and displaying simulation parameters. For controlling

of the simulation were created two user interfaces: the main menu and the in-game menu.

The main menu is responsible for data inputs for XML files. The machine model from model

XML files must be taken through a series of sliders and buttons. Users will have the

possibility to create their version of a machine with unique parameters of transmission,

engine and hydraulic forces. In the main menu, it is possible to use presets of machine

parameters which will be provided by a separate set of XML files configured by the author.

In these presets will be different parameters of meshes and bucket sizes, which can’t be

modified by XML files. Corresponding mass and inertia parameters of bodies will be

19

specified in XML files related to the meshes preset. In the main menu will be asked

demographical information about the user, which will be explained in the next chapters. The

in-game menu will give access to pausing, stopping, restarting the simulation, and returning

to the main menu. The controls of the menus must be intuitive and comfortable to the user,

and they need consideration of multiple design aspects.

2.4.2 Comfort level of the view

The design of the user interface is constrained by human physiology and technical

requirements of the used hardware. The first aspect, which needs to be considered is a

comfortable position of the head and body of a user. At figure 8 shown comfortable and

maximum angles of the user’s head rotation angles. The comfort zone in the horizontal plane

is 30° from the head center, in the vertical direction this angle is equal to 20° upwards and

12° downwards from the center [10]. At the maximum angles of rotation, the user starts

feeling slight discomfort [10]. On the right side of figure 8 shown an angle, when user intent

to rotate the body to see objects located at the marked area. In summary, the most

comfortable area to place objects inside the scene is in 60° zone in the horizontal plane and

32° in the vertical plane.

Figure 8: Comfortable and maximum areas of view [10].

20

Another important matter related to the field of view of hardware is the perception of depth,

which shows human eye focus distance. The graph of the perception of depth for Oculus Rift

is shown on figure 9. From the figure can be observed that at a distance lower than 0.5 meters

starts eye strain and cross-eye zone [10]. After 20 meters 3D objects are losing their depth

and look like flat objects. These zones must be avoided while designing the user interface.

The desirable area for placing the user interface inside virtual space is the area between 1 to

10 meters. For the further design must be considered application of Leap Motion controller,

which is tracking hands movement and create arms meshes inside the virtual reality. For the

comfortable using of the Leap Motion controller, distance to the user interface’s intractable

objects must be no longer than the length of the arm. It is approximately 60-65 centimeters.

According to the previously listed information, the user interface must be divided into two

parts: controls such as buttons and sliders must be closer than 60 centimeters and meshes/text

must be placed in the area between 1 to 10 meters. These requirements must be applied to

the real-time visualization during the simulation.

Figure 9: Perception of depth for Oculus Rift HMD [10].

21

2.4.3 Visualization

Visualization functionality is added to the application for convenience of using and due to

Mevea software limited visualization capabilities. Mevea Solver is not supporting Oculus

Rift virtual reality headset, advanced lighting techniques and post-processing functionalities,

which is applied in this thesis. Without virtual reality visualization of the simulation, the user

must take off the headset and continue to work with light emitting diode (LED) display, what

is unreasonable. The visualization is performed by transferring model’s bodies positions to

the application via User Datagram Protocol (UDP) IP socket. These positions will be

assigned to the actors inside the application, which will create a visualization of the bodies.

For each body representing graphics object will be created graphical materials assets and

custom shaders. For the visualization of the environment will be applied graphical materials

as well, with subsequent post-processing such as aliasing, lens flare, precipitation and

particles. These features will create the realistic view of the simulation and provide full

immersion with subsequent improvement of the interactivity.

2.4.4 Interaction

The game engine is providing wide opportunities for development of reach interaction

between user and application. By applying of the game engine is possible to create a highly

interactive main menu/in-game menu, a machine cabin and tasks for an operator.

For the simulation can be created complex tasks with a higher level of the user performance

control. During the tasks, a user can get guidelines, advice and achievements. In this thesis

will be used the task of loading a truck with construction debris. The user should clean a

parking slot and yard area without hitting objects around, such as cars, houses and other

environment parts. Debris must be placed in the specific area in the yard. After finishing the

first task, the user must take debris from the created pile and load a truck. User performance

will be evaluated by the scale from zero to five, which will be calculated from the cleaned

area, amount of debris loaded in a truck and number of hits. There will be a possibility to

skip one of the tasks at the main menu with the addition of penalty points.

The main menu can be improved by animations and customizing tasks, such as assembling

parts of the machine, guidelines for driving and maintenance in the form of the document

22

and video. The machine cabin can add immersion effect by applying tasks for of the cabin

parts such as buttons, levers, radio and windows with an actual response (turning on blinkers,

headlights, radio/switching station and other tasks). The in-game menu can improve

interactivity by the modifying some parameters during the simulation, task selection

possibility, environment changing and other features. This kind of interaction provides a

compromise between the responsiveness of the simulation to the user actions and controlling

his/her behavior.

2.4.5 Security requirements

The simulation studio is consisting of two Mevea motion platforms. These motion platforms

are consisting of personal computer hidden inside of the platform, an adjustable chair,

control hardware, LCD and motion platform with hydraulic actuators. Motion studio

hardware can be observed in figure 10. Control hardware includes two joysticks, buttons

simulating some functionalities of a keyboard, steering and pedals. The platform is equipped

with Mevea Launcher software, which is working during the operation of the platform and

turned on automatically by a particular process.

The security requirements are created based on the previous experience and problems, which

were faced during the operation of the simulation studio in Lappeenranta University of

Technology. Due to the software and hardware configuration were faced multiple problems

with security, malfunctions and abuse. Commonly, users of the platform were able to close

or hide the Mevea Launcher with tab, directions and enter buttons. For that reason, were

created a process, which is described previously, but it was stopped by some users as well.

Commonly, users are opening a browser and accessing websites. This is the dangerous

situation because the user has access to the system and programs inside the machine.

23

Figure 10: Structure of motion platform: 1-LED display, 2-steering wheel, 3-joysticks, 4-

pedals, 5-control buttons, 6-seat.

One of the significant risks, which must be fixed in the user interface is lack of the security

and restricting the user from controls of the simulation studio. That is the reason to refuse

the application of the installed input devices on the simulation studio and use alternative

inputs, which are connected to the user interface application. Instead of the default buttons

must be used for ergonomic and straightforward devices. For the current version of the user

interface is used a combination of Leap Motion, default steering wheel and joysticks. This

input setup will provide a controlled environment, which will not give the possibility to

access excessive features of the system. At the same time, this kind of setup creating a

problem with loading simulation, because application of Mevea Loader was rejected. There

will be no possibility to load the simulation independently by the user.

2.4.6 Loading and running the simulation

As it was discussed previously, the user interface has two main functionalities. They are

communicating with the user through a crafting interface and visualization of the real-time

simulation. At first, the user is asked to configure the machine for the real-time simulation

inside VR and then the simulation should be visualized with Unreal Engine. For the

visualization of the simulation were used sockets, which requires the following conditions:

24

1. Mevea and Unreal Engine 4 are running at the same time

2. Server and Client have a connection

3. The simulation should be started.

These conditions create a problem with starting of simulation. A user cannot start simulation

manually because the user does not have access to computer inputs. For solving of the

problem, the application should be able to load the file, start, stop, reset, pause the simulation

and close simulation. At the end of the crafting user will push the button “Start simulation”,

which will save all changes and start the simulation. On the next step, the application is

creating Mevea process in the system. Then, it will open the .mvs simulation file. For

controlling the simulation will be used tasks features of Mevea software, which should be

controlled by Python script.

The application must recognize the situation when Mevea Solver is not able to open the file

and notify technical staff about malfunction via e-mail. The user activity must be tracked for

preventing using the same session by multiple users. This can happen when the next user is

coming to the simulator and the previous user forget or intentionally didn’t stopped the

simulation. The application should stop the simulation after a specific time, for example, two

minutes without the activity of the Oculus sensor and other inputs such as joysticks. When

the simulation is stopped, all the data about the session will be saved.

2.4.7 Saving user-specified data

Saving and storing user-specified data for its further analysis is one of the essential

functionalities of an application. The user interface must collect anonymous data for a

business and development departments about modification and performance of the model

during simulation. The data will be collected from the main menu, where the user will

specify demographic data such as sex, age and occupation. The data about the configuration

of the model from the main menu, such as the parameters of the model and simulation, will

be collected and saved automatically. The data about model performance will be transferred

from the Mevea Solver software via UDP IP socket and stored at the other file. Also, it is

possible to define users, who were using the simulator before by tracking if the tutorial was

skipped.

25

2.4.8 Providing tutorials and additional information

It is essential to provide a tutorial for users, which are using the application for the first time.

The author assumes, that most of the target audience of the machine is not familiar with the

concept of the virtual reality and using of the related devices, such as Leap Motion. The

tutorials must be divided into two parts, which are explaining how to start the simulation and

how to operate the simulation inside the virtual reality. All the tutorials must support two

languages, Finnish and English. Tutorials must explain the control and meaning of some

actions or parameters in the straightforward language. The most preferred type of the

tutorials is a visual representation of the needed actions to perform.

The first part, further in the text preliminary, will explain to the user how to start the

simulation, check an environment/machine before the simulation start and advise about

comfortable using of the machine. It must be made in the form of the video, which will be

played on the LCD screen near the loading station. In this video will be shown a person,

which sets up the environment for using text instructions below. At first, should be presented

the information about setting up the motion platform: how to set up chair height, distance to

the wheel and precaution about save zone area around the machine. After must be explained

the procedure of the Oculus Rift wearing and setting up of the lenses distance. At the end of

the video, the user will be guided to wear the VR headset and follow the procedures in the

next part of the tutorial.

In the second part of the tutorial will be explained controls of the user interface and in-game

controls. For the user will be presented Leap Motion controller and how it is interacting with

the application. After explaining the operation of the Leap Motion controller, the user will

get guidance about options, which can be changed in the machine parameters and how they

are affecting the machine behavior.

Also, the user will be provided with optional tutorials about machine structure. It will include

a description of machine parts, such as the configuration of transmission, engine and

additional parts, for example, buckets. For the user will be provided a 3D model of the

internal machine structure and explained the basic operation of each part. Optionally, the

user can familiarize with documentation and promotional materials in the specific sections

of the interface.

26

2.4.9 Control of other parameters: graphics, controls and appearance

 To the interface will be added the possibility to adjust other parameters, which are related

to the graphics, controls and appearance. In this section, the user can define the type of the

output: Oculus Rift or LED display. If the user chooses LCD output, the application will

request to connect a mobile device for input of starting parameters and control of the

simulation during runtime. If the display option is chosen, the user will have the possibility

to adjust graphics parameters, such as quality, post-processing parameters and resolution.

2.4.10 Hardware, software and system requirements

For the most comfortable experience frame rate must not be least than 60 frames per second.

This requirement can be met by using the right components on a used computer. The

computer, which will run the application should meet the recommended specification to used

hardware and software. The application uses the Leap Motion controller and Oculus Rift

headset.

Oculus Rift headset minimum and recommended specifications are listed at table 1. This

hardware requires middle range gaming graphics adapters, which have more than 1.3 GHz

clock speed and more than 4GB memory size. The processor should be able to load the

graphics adapter for the best performance of the graphics card, that is why should be used

processors with a clock speed higher than 3.4 GHz, more than two cores, four threads and

last level cache size more than 3MB. In summary, the graphics adapter is playing the leading

role in the Oculus Rift performance.

Table 1. Oculus Rift hardware and OS requirements.[11]

Hardware Recommended Spec Minimum Spec

Graphics

Processing Unit

(GPU)

NVIDIA GTX 1060 / AMD

Radeon RX 480 or greater

NVIDIA GTX 1050Ti / AMD

Radeon RX 470 or greater

Alternative

graphics card

NVIDIA GTX 970 / AMD Radeon

R9 290 or greater

NVIDIA GTX 960 / AMD Radeon

R9 290 or greater

27

Table 1 continues. Oculus Rift hardware and OS requirements. [11]

Hardware Recommended Spec Minimum Spec

Central

Processing Unit

(CPU)

Intel i5-4590 / AMD Ryzen 5

1500X or greater

Intel i3-6100 / AMD Ryzen 3

1200, FX4350 or greater

Random Access

Memory (RAM)

8GB+ 8GB+

Video output Compatible HDMI 1.3 video

output

Compatible HDMI 1.3 video

output

USB ports 3x USB 3.0 ports plus 1x USB 2.0

port

1x USB 3.0 port, plus 2x USB 2.0

ports

OS Windows 8.1 or newer Windows 7 SP1 64 bit or newer

Recommended requirements for Leap Motion controller are shown at table 2. From the table,

we can observe that the most critical parameters are related to the processor, random access

memory and type of USB port.

Table 2. Leap Motion hardware requirements. [12]

 Recommended Spec

CPU AMD Phenom™ II or Intel® Core™ i3

Hardware USB 2.0 port

RAM 2 GB

OS Windows® 7/8 or Mac® OS X 10.7

Hardware and operation system requirements for Unreal Engine are specified at table 3.

These requirements are applied to the Unreal Editor 4.18.3. As long as the application will

be packaged and build as an independent executable file, it needs further benchmarking,

because graphics assets and interactions can load the system higher.

28

Table 3. Hardware and OS requirements for Unreal Engine 4.[13]

 Recommended Spec

CPU Windows 7/8 64-bit

GPU DirectX 11 compatible graphics card

RAM 8 GB

OS Windows 7 SP1 64 bit or newer

According to the previous information, can be created a preliminary minimum and the

recommended specification for the simulation computer. It can be observed at table 4.

Table 4: System requirements for user interface.

Hardware Recommended Spec Minimum Spec

GPU NVIDIA GTX 1060 / AMD

Radeon RX 480 or greater

NVIDIA GTX 1050Ti / AMD

Radeon RX 470 or greater

CPU Intel i5-4590 / AMD Ryzen

5 1500X or greater

Intel i3-6100 / AMD Ryzen 3

1200, FX4350 or greater

RAM 8GB+ 8GB+

Video output Compatible HDMI 1.3 video

output

Compatible HDMI 1.3 video

output

USB ports 3 USB 3.0 ports and 2 USB

2.0 port

1 USB 3.0 port and 3 USB 2.0

ports

Summary of the requirements to the user interface is shown at table 5.

Table 5: The overview of the user interface requirements.

Functional requirements

Communication with user
• Must collect user-specified parameters of the

machine via parametrization menu

Comfort level of view
• The interface must be located not more than

60º from normal in the vertical plane

29

Table 5 continues. The overview of the user interface requirements.

Functional requirements

Comfort level of view

• The interface must be located not more than

55º from normal in the horizontal plane

• All valuable meshes related to controls must

be located in the range from 1 to 0.5 m from

the user location

Visualization

• Must provide visualization of the machine

movement

• Must provide machine status during the

simulation

• Must provide visualization of environment

Interaction
• Must contain task inside of the simulation

related to moving objects/substances

Security requirements • Must restrict access to the system

Loading and running the simulation

• Automatic simulation start/pause from the

interface

• Automatic closing of Mevea Solver from the

interface

Saving user-specified data

• Obtain and save demographical data

• Obtain and save machine parameters

• Obtain and save applications log data (error

handling)

Type of user interface • Graphical interface with Leap Motion input

Hardware, software and system

requirements

• Software: Oculus application, DirectX 11,

Windows 8 OS

30

Table 5 continues. The overview of the user interface requirements.

Hardware: Intel i3-6100 or greater, NVIDIA GTX

1050Ti or greater, 8GB RAM, 1 HDMI 1.3 port, 4

USB 3.0 ports

Non-functional requirements

Providing tutorials and information

• Video tutorial on starting the simulation and

structure of hardware used

• In-game tutorial about using the interface

Communication with user

• Should contain two menus: main and in-game

• The menu must consist of sliders and buttons

• The in-game menu must contain controls of

the simulation (start, stop, restart, return the

main menu)

Visualization

• Realistic environment

• Realistic meshes for representation of machine

bodies

• Apply post-processing effects

Security requirements

• Restrict user controls

• Control user behavior and prevent abusing or

dangerous behavior

Control of the other parameters
• Add control of the output type: LCD or Oculus

Rift

These specifications are mostly affecting graphics performance of the simulation and user

interface application. Nevertheless, this hardware can affect the overall performance of the

simulation, because of the simulation working principle, which is discussed in the next

chapter.

31

3 RESULTS

3.1 Operation of the user interface

The main purpose of the interface is gathering of the user preferences for subsequent

application of them in the development process of a product. For a correct gathering of the

data, a customer must finish the simulation from the start to the end. If the data collection

process is interrupted, it is corrupting the sample and makes it not applicable to the

development of the new product. The effect of the simulation interruption is shown in figure

11. The interruption of simulation after different stages of the simulation may result in data

loss. If the configuration menu stage was completed but stopped in the middle of the

simulation stage, machine behavior and feedback data will be lost. If the simulation was

completed but stopped before entering feedback, customer feedback will be lost.

Figure 11: Data loss due to simulation interruption

3.1.1 Application performance

 The user can interrupt the simulation by the multiple reasons, but the most probable reason

is virtual reality sickness due to the low performance of the simulation. By the low

performance of the simulation is implied visualization performance, which can lead to the

immersion disruption and virtual reality thickness. The user interface, described in this thesis

32

work, is a complicated application, which includes multiple processes and components. The

majority of the processes inside of the application require high update rate. The most crucial

part, which requires high performance is real-time simulation and visualization of the

machine. When the machine is simulated, two programs are involved: Mevea and Unreal

Engine. Data transfer between these two applications is bound to the so-called tick function,

which is called at each frame change and strongly affected by the graphical performance of

a machine, graphics complexity and delta time of the application. Mevea Solver and

UE4(Unreal Engine 4) have a different load to the GPU of a computer because they have the

different architecture of the visualization, for example, shaders and post-processing effects.

For meeting requirements for most comfortable using, their work must be synchronized

regarding frame rate. The issue is solved by the application of the computer with higher

specifications. This computer has Intel i7 processor, HyperX 16 GB RAM, Nvidia GTX1080

GPU and located at Lappeenranta University of Technology laboratory.

The same matters are applied to the main menu part of the program. As long as the main

menu is made in virtual reality, it must be able to work with a constant frame rate not less

than 60 frames per second. The main menu of the application is an important part of the

simulation because at this stage obtained more than a half of the information, namely user

demographical data and user-specified parameters of the machine. Nevertheless, during this

stage considerably small XML file is parsed, that is why most of the problems were created

due to graphics complexity. The load to the system is less compared to the simulation real-

time simulation process because modification of an XML file does not require work of

Mevea Solver at the same time with the UE4 application. Problems with graphical

performance were fixed in the same manner as in simulation part, by application of more

powerful computer and graphics assets optimization. The other matter from which graphical

performance depends is the overall architecture of the application.

3.1.2 Data input method

At the start of the program user required to input data to the simulation. It is performed by

application of Leap Motion controller shown at figure 12. The sensor tracks position and

rotation of the user’s hands for interacting with an application. It is connected to the head

mounted display. This layout makes an illusion of presence inside a virtual scene.

33

Figure 12: Leap Motion controller on the head mounted display

The specially designed blueprint tracks the position of the actor and physics-based mesh for

further calculation of the parameter value. Mesh is constrained along the y-axis and z-axis.

The application is calculating parameter value by the following formula:

𝑉𝐴𝐿𝑝1 = |𝑋𝑎 − 𝑋𝑚| (1)

This layout of the user input has minor drawbacks. The first drawback is related to the

operation of the interface. It is possible, that after placing the actor at the origin, an incorrect

value is obtained. This situation happens, because in this layout the initial position of the

mesh is in the minus zone, but the final value may be in the positive zone. This situation was

solved by simply placing the actor aside from the origin. Another drawback is related to the

operation of the physics inside the game engine. If the box mesh, shown on figure 13, pushed

from the side, it behaves correctly. If user tries to grab the mesh, it starts to wobble. This

drawback was fixed by applying event-driven code, which is activated after grabbing of the

mesh. The final prototype version is shown in figure 13.

34

Figure 13: Prototype of the parameter changing menu

35

3.1.3 Main menu operation

Figure 14: Behavior tree of the main menu

At the start of the application for the user has three options for starting of the simulation. In

figure 14 can be observed a tree diagram, which shows possible interactions with the menu.

In general, there are three options, namely, change parameters, use presets and keeps default

parameters. At the modification root, user will be asked to change the parameters of the

model or leave them as default. The user can change the parameters of bodies, motor and

drivetrain parameters of the machine. The user has an option to change parameters, which

36

are shown at table 5. All parameters have own range, which restricts the user from choosing

insufficiently low or high value causing improper model behavior.

Table 6. User defined parameters options.

Parameter Range Units

Motor

1 Torque curve (each point) 100-750 Nm

2 Idle speed 60-80 rad/s

Transmission

3 Gear ratio, gear 1 3.85-4.15 -

4 Gear ratio, gear 2 1.9-2.20 -

5 Gear ratio, gear 3 0.95-1.25 -

6 Gear ratio, gear 4 0.45-0.75 -

Mass properties

9 Front body mass 1800-2400 kg

10 Rear body mass 5000-7000 kg

11 Tyres mass 250-350 kg

Figure 15: Changing parameters menu operation

After defining these parameters, they are assigned to the corresponding attribute in the XML

file, which is containing the model parameters. Assigning of parameters is made by special

C++ class, which is based on the TinyXML parser. Working principle of the class is shown

in figure 15. Unreal Engine application is receiving input from Leap Motion controller and

assigning user’s hands position to a pawn. The event-driven code defines the moment, when

37

the pawn is touching a button on the user interface and defining parameter’s value. The next

part of the code assigns obtained variables to local parameters inside the class, open the

XML file and overwrite it with new parameters. Then, when the simulation file is opened,

new values of the model parameters are applied. If the user, during modification root,

choosing to leave all parameters as default, the application will ask if this is a right input. If

the user specifies, that he/she wants to change the parameters of the machine, the application

is asking which part should be modified.

In certain cases, it is possible, that user is not intended to change model parameters, but not

he/she is not satisfied with default settings. Then, the application gives an option of the

parameters presets. Figure 16 showing the procedure of the presets handling. The user is

specifying in the menu, which kind of parameters preset should be used. According to the

user’s choice, the application finds appropriate XML parameters file and set it as main in the

.mvs file.

Figure 16: Presets choosing behavior tree

After filling up form of the machine parameters or choosing a preset, application asks user

to input demographical data, which will be explained later. When the initial data is obtained,

the simulation process starts.

38

3.1.4 Simulation operation

For a better understanding of the simulation operation, it is important to define the topology

of the machine model. The model consists of 9 bodies, 11 joints, has 54 generalized

coordinates, 50 constraint equations and 4 degrees of freedom. The model structure is shown

in figure 17. As long as Mevea model is responsible for all physics and collision, it must

contain all bodies and dummies for the correct representation of the real machine. At the

same time, the other reason for a detailed representation is a possibility of changing machine

parts’ parameters, which can be used in the subsequent studies.

Figure 17: Mevea model topology

39

The model in Unreal Engine 4 is made only for the visualization purposes, that is why it

should be simplified. The model will contain only four bodies, which will be used for

visualization of the model movement. They are a front body, a rear body, an axle and a

bucket. The rest of the bodies and dummies (meshes, which represents actuators and force

components) are connected to these bodies. Wheel dummies are connected to the front and

rear bodies, from which they are taking rotation and position in the world. For creating of a

wheel, the rotation was used rotational velocity of each wheel. Parts, which are connected to

the bucket and front body was made by rigged animation. The other reason for the model

simplification is effective data transfer between two application for excluding possible

troubles during the simulation.

The first thing, which is performed by the application is starting of the Mevea simulation

file. The simulation file is opened while a user is transferred from the main menu map to the

simulation map. When a user clicks the start button, simple code initiates the Mevea Solver

process and opens the needed simulation file by its relative path. After opening the file, the

data transfer begins.

During the simulation, Mevea solver sending the information about the machine to the UE4

for setting inputs, actor position/rotation or displaying the current state of the machine.

Mevea and Unreal Engine are exchanging the information in order to create a visualization

of the simulation. Figure 18 represents the data exchange between applications.

40

Figure 18: Data exchange between applications

During the simulation, the user is communicating with UE4 and don’t have any access to

Mevea Solver. Inputs signals, which are obtained from the steering wheel, are processed by

UE4 and stored as local parameters inside of the specially designed C++ class. Then, these

local parameters are packed and sent by the socket to Mevea Solver, where they are unpacked

and assigned to the inputs of the model. On the next step, Mevea Solver calculates the

machine movement according to specific inputs and sending the data about the model

statement back to UE4. The data is sent in the real-time with the application of the UDP IP

protocol, which is sending datagrams from one application to another.

For a better understanding of the protocol and transport layer choice, we must define the

requirements, which are applied in this work for data transfer. The data must be sent in the

real-time. Therefore data must be sent as fast as it is possible. This requirement is created

41

mostly by the application of the head mounted display, where small lags during visualization

are causing virtual reality thickness. Of course, it is more preferably to have reliable data

transfer, which can handle possible packets loss during transmission. At the start of the work,

it was decided to use the TCP transport layer, because it is guarantee packet receiving and

Mevea has an interface for handling TCP protocol. The TCP layer has numerous advantages

such as connection based approach, the data is automatically breaking up into packets, flow

control and easy in implementation [14]. Nevertheless, considering this advantages, the TCP

layer is not applicable to this work. The reason for this is the socket’s waiting functionality,

which waits till enough data is buffered up before sending and resends the lost packets [14].

All these actions take much time and make the data sending process slower. The other

transport layer, which is used by TCP IP is UDP. UDP stands for User Datagram Protocol,

which sending packets without error checking or flow control. This type of communication

allows to send the information as soon as possible, but it not guarantee that packets will be

delivered. Packets can be lost due to multiple reasons, for example during sending through

the internet (it is possible that 1-5% of the packet will be lost during transmission) or while

the receiving side is not listening to socket. However, despite the unreliability of the UDP

layer, it is preferable for the current application. The reason for this decision is the fact, that

insignificant packet loss is preferable for real-time application than constant delays in the

data transmission.

As it was mentioned before, a UDP socket interface requires sending and receiving clients

for data transfer. According to the previously mentioned reasons, the application is sending

a limited amount of the data via socket. This is the reason for creating multiple sockets,

which are transferring certain data. At the Mevea Solver side, there are four sending clients.

They are handling data, which is shown at figure 19. Namely, parameters are related to

bodies and their corresponding parameters, which are sent by socket interface.

For each of the bodies, which are listed on figure 19, assigned Python scripts. These scripts

are including socket and struct modules. Inside of the scripts, by default are two functions:

initScript and callScript. The initScript function executes code when simulation started. The

callScript function is similar to the tick function in UE4, which executes code every change

of the frame.

42

The initScript function executes code, which is related to the start of the UDP socket. At this

stage, the program defines valuable information about socket. It is defining the address

which should be taken. The address includes the IP address and port number. For the sockets,

which are used in this work were used 127.0.0.1 IP address and ports from 10000 to 10005.

After defining the address, buffer size is defined. For the work of sockets, which are

transferring data about bodies and dummies chosen the buffer size is 28 bytes. For the socket,

which sending model parameters used the buffer size of 20 bytes. The reason for this decision

will be explained below. After defining socket parameters, a socket is initialized. On the next

step, code call GSolver.getParameter() function for further reference in the code. The

getParameter function is searching for a parameter through all existing parameters of the

model and getting its value.

Figure 19: Parameters, sent by Mevea Solver application

The callScript function is sending seven parameters and receiving one parameter. At first

step, function receiving delta time, which was obtained from UE4 and assign this value for

Mevea Solver delta time parameter. This step was made for synchronizing two applications

and was discussed previously. On the next step, function obtaining values of the body and

dummies. Function obtaining global positions of a body in three axes and four Euler

parameters. All parameters are floating point number. Therefore they are taking four bytes

43

of the memory. On the next step, these values are packed into the struct, which takes 28

bytes of memory. After packing of the data, a struct is sent.

In the UE4 is used only one sending socket, which is handling user-specified input

parameters. For the particular work are used Logitec G29 Driving Force steering wheel for

controlling machine movement and two Logitec Extreme 3D Pro joysticks for controlling

hydraulic components. The steering wheel is shown in figure 20.

Figure 20: Logitec G29 steering wheel

The signal from the steering wheel and joysticks are gathered by UE4 and stored as local

parameters in C++ class. Steering wheel consists of a wheel and pedals block. The steering

wheel has steering input, paddle shifters and numerous buttons. The pedal block has clutch,

brake and accelerator pedals. From all of the inputs equipped in this work are used steering

for controlling position, paddle shifters for choosing gear, clutch, brake and accelerator

pedals. Steering, clutch and brake inputs are represented by floating point value ranging from

-1.0 to 1.0 and taking 12 bytes of the computer memory. Paddle shifters are represented by

Boolean variable type and taking 2 bytes of memory for gear up and gear down signals. In

overall, this socket sending 14 bytes of data via a socket interface. The socket working in

the same manner as described before, packing variable into a struct and sending it to Mevea.

44

In this work were used five receiving sockets. Four sockets are created in the UE4 application

and one in the Mevea application. They have relatively the same working principle regarding

initializing of the socket. Each receiving clients are listening to the corresponding port and

receiving datagrams. The struct from Python 2.7 has the same structure as a C++ struct.

Therefore it does not require any additional steps to unpack it. After receiving translation

and rotation of bodies, they are assigned to the corresponding actor. The SetActorLocation

function is assigning a global position in three axes, which are similar to Mevea. The rotation

of a body was challenging because global orientation value was limited to 90 degrees in the

Mevea Solver. Therefore, were used Euler parameters, which can be used as quaternions

(Shabana, 2001). The working principle of the receiving clients is shown in figure 21.

Figure 21: UE4 receiving clients operation principle

Another receiving client in UE4 is obtaining the parameters of the model. These parameters

are used in the user interface, which shows the current state of the model during the real-

time simulation. The socket is initialized, receiving the same struct as in other clients,

unpacking it and storing parameters as local parameters. On the next step, these parameters

are appearing as graphics instances inside the simulation. For user are displayed parameters

related to motor, hydraulic system, gearbox and load. Parameters are listed in table 7 at the

socket received parameters section.

45

The in-game user interface has three major functions. The first function is to show the current

state of the machine for a user. The parameters, which are listed at table 7 under socket

received parameters row, are going to be displayed in two different ways. The rotational

speed of the motor and machine speed parameters, which are usually displayed on the

dashboard of the machine, will be assigned to the dashboard actor. They are made as

interface widgets, which showing only values and located above the dashboard mesh. The

other parameters, listed below the socket received parameters row will be displayed on the

dashboard as well. These parameters’ indication differs in the displaying method. On the

original machine’s dashboard, gear number and reverse gear indication are made by

indication lamps. That is why, these parameters are made by dynamic emissive material,

which is emitting light under certain conditions. The motor torque and the pressure in a

hydraulic system are displayed on the special monitor mesh in the same manner as machine

speed and the rotational speed of the motor on the dashboard.

The second function is to show parameters, which are related to the visualization and

interaction. These parameters are showing user’s performance during the simulation and

giving assistance features. User’s performance information is represented by the number of

collisions during the task, task completion state and points, which user has gained. These

parameters are displayed in front of the user because they are connected with the HMD

position. The headlights and fog lights control are performed by dynamic materials and are

activated when the button mesh in the cabin has been pressed.

Table 7. Parameters used in the in-game user interface.

Name Machine

Part

Range Units

Socket received parameters

1 Rotational speed Motor Idle speed

…628

Rad/s

2 Motor torque Motor 0…750 Nm

46

Table 7 continues. Parameters used in the in-game user interface.

Name Machine

Part

Range Units

3 Gear number Gearbox -6…6 -

4 Reverse gear indication Gearbox 0…1 -

5 Machine speed General 0-90 Km/h

Parameters inside UE4

6 Headlights on/off Lighting 0…1 -

7 Fog lights on/off Lighting 0…1 -

8 Collisions number during

task

Gameplay 0…100 -

9 Task completion state Gameplay 0…100 %

10 Points Gameplay 0…100 -

The third function is control of the simulation state. This feature is controlling game base

inside of the UE4. It is performed in the form of the menu interface. The menu actor is

spawned in the world when the user hits the button, which is connected with the left mesh

of the Leap Motion Hands pawn. The menu widget has three buttons. The first button is

restarting the simulation by activating the code, which is closing the simulation file and

opening it again. The second button stops the simulation and returns the user to the main

menu.

One of the most important parts of the simulation is graphics. In general, it consists of 3D

meshes, shader materials, lighting and post-process effects. Meshes are 3D models, made by

special modeling software such as Maya, Blender or 3ds Max. They are representing only

the geometry of an object. To these meshes are applied shader materials, which control the

visual look of the surface, light reflection and casting of the shadows. In the world placed

lighting sources, which are imitating real life light sources.

All 3D meshes can be classified as machine and world meshes. For this work was purchased

3D mesh of Volvo L220H wheel loader, which is shown in figure 22. The mesh consists of

805 000 polygons and 810 000 vertices. This fact shows that this mesh is applicable in the

close-up rendering. Initially, this mesh has the max2009 format, but in the pack were

47

included six more files with different extensions. The pack also included textures, namely,

base color, bump, gloss and opacity maps.

Figure 22: 3ds Max render the result

The model includes sixteen materials, which are shown in figure 22. Each of the material is

assigned to the corresponding mesh. Materials under number 1, 11, 13 and 14 create a

visualization of the plastic material, which is used on the outer parts of the machine. The

material number two creates the base color of the machine clear coat. The material, which is

specified by number four, creates the visual representation of the clear coat of cylinders,

jointing bars and bucket. These materials are basic, which were made by applying a base

color and roughness parameters. In other words, they have parameters showing their color

in RGB and gloss of the surface. Materials under numbers 3, 6, 10, 15, are creating

headlights’ glass. They include a base color, bump, roughness and can pass outgoing light.

Materials under numbers 5 and 16 have the base color, normal maps and roughness. Number

14 and 7 materials are creating glass and mirrors, that is why they have the base color,

metallic and roughness parameters. The material number 12 is applied to the fire

extinguisher mesh, which has a texture for the base color and roughness. Materials also

depend on the UV mapping of the mesh, which is used for assigning textures to the 3D mesh.

Despite the fact, that model has good render results in the 3ds Max, the application of it in

the UE4 was problematic and caused multiple errors during baking of the lighting. In figure

48

23 can be observed that the model has multiple shading artifacts, in other words, the problem

with shadow casting. Also, on the glass of the windshield is displayed sign “invalid lightmap

settings”, which indicating missing second set of the UV map.

Figure 23: Shading artifacts on the original mesh, the front plane

49

This problem was caused by the wrong layout of the UV map. The UV maps of the meshes

were intersecting from 25-80 %. The example of the wrong UV layout is shown in figure 25

on the left side of the picture. The intersection of the UV maps is causing these artifacts

because the shade is applied to multiple sides of the mesh. The correct example of the UV

mapping is shown on the right of figure 24.

Figure 24: The wrong and correct UV layout example.

For fixing of this issue, the model was imported to Blender 3D modeling software. For each

part of the 3D model were created new UV layouts, which has no intersection between their

parts. The model was exported as fbx file and imported to the UE4. As a result, all the

artifacts, which were present in the previous model version were eliminated. The model was

placed in the created world map, which is shown in the figures 25 and 26.

The second part, which is related to the graphics of the application is world visualization. It

consists of meshes, lighting and post-processing effects. This map includes eleven meshes,

which are representing mountains, foliage and sky. The mountains meshes are divided into

two groups: close and long-range meshes. This grouping is made for the reduction of needed

GPU power. At the close range, objects have materials with high resolution, because it is

closer to a user’s viewpoint. As long, as small details cannot be observed at far distances,

50

for the long range objects meshes are applied lower graphics settings. The same rule is

applied to the foliage application because the foliage is expensive regarding the load to GPU.

Figure 25: Main menu render the result, back view

The applied lighting techniques are also crucial regarding GPU load. For the reduction of

the load to the system was used lightmass importance volume feature. This feature controls

emitted photons from the lightmass and mostly concentrate them on the chosen area. This

feature reduces the time needed to lighten the scene when the game is started and reduces

the load to the GPU by reducing the number of photon bounces. The light source of the

scene is a static directional light, which precomputes shadows in the scene and reduces the

load to the system as well.

51

Figure 26: Main menu render result, front view

3.2 Building hardware for the user interface

During the simulation process, two applications are running simultaneously. These

applications use different types of hardware and produce a higher load to the system. Mevea

software is calculating dynamics of the machine, which including all the parts related to the

hydraulics, collisions, parts like the motor and the transmission. This kind of computations

are performed at the real-time, that is why load to the processor and RAM is high. At the

same time, UE4 is calculating the graphical part of the model and displays it on the HMD in

real-time, which requires high resolution of the scene and parts of the machine. That is why

UE4 is creating a high load to the GPU of the computer. Generally speaking, during the

operation of the simulation all the systems of the computer are highly loaded. For meeting

the requirement of the efficient and correct work of the simulation, there is a strong need in

high-performance hardware, which can withstand such kind of load.

The target computer, which is used for performing the simulation is mounted inside the

simulation studio. The simulation studio was described in chapter 3. The computer

specification is shown in table 7. In front of the corresponding part of the computer is

specified applicability of it for the particular case. According to the specification, computer

meeting requirements for the CPU, RAM and output devices, such as HDMI and USB ports.

52

Nevertheless, the computer is not meeting the requirement for the GPU, because of the

increased load regarding graphics.

Table 8: Simulation studio specification.

Hardware Specification State

GPU NVIDIA GTX 980 Not applicable

CPU Intel i7-8650 Applicable

RAM 16GB Applicable

Video output Compatible HDMI 1.3 video

output

Applicable

USB ports 3x USB 3.0 ports plus 1x

USB 2.0 port

Applicable

OS Windows 7 Not Applicable

For ensuring that the computer will be able to withstand the load created by applications, it

must have a higher specification. According to the table 7, there is a need to the upgrade of

the computer. The GPU of the target computer must be changed to the newer version. The

researcher proposes to replace the GPU to one of the following options: Nvidia Geforce

GTX 1060, GTX 1070 or GTX 1070 Ti.

3.3 Management data obtained

During stages of application work, a massive amount of the information is collected, which

will be used in the subsequent development process. In order to make this data applicable to

the analysis, it must be stored, grouped and reported. The following requirements were set

to the data collection:

• Automate the process – the data must be handled automatically;

• Easy to handle – the data must be stored in the easy to read format, for example, an

Excel file or as txt extension file;

During the single simulation sequence, the application collects different data in three steps.

The first step is performed at the start of the simulation when a user started the application

53

and is in the main menu. This is the most important part of the application because a user

states himself/herself and choose the initial parameters of the machine. The next step of the

data collection procedure does not involve a user, because at this stage is collected data about

machine behavior. The third step is related to the user feedback, which defines the user

satisfaction rate about model behavior under chosen parameters or presets.

There is a clear need in the grouping of the data obtained during the application operation.

The overall data must be divided into two groups in order to make clear reporting of the

results. The first group is related to the user and the machine parameters information, which

will be collected into a single csv file. The other group of information is related to the

application performance, which is needed for the maintenance and debugging of the

application in future. This information is stored in a simple txt file, which writing all errors

and warning during the application operation. This kind of grouping of the data is made for

separating the information from different team members and will be described in chapter

3.7.

3.4 The main menu obtained data

This part of the data is collected by Leap Motion user interface in the main menu. The first

part of it is related to the user demographical data. The second part of the information

obtained is user-defined parameters settings of the machine. This part of the information is

crucial because it is used as initial parameters to the simulation.

3.4.1 User information data

The user information data includes basic information about the user. It is asked for every

new sequence of the simulation, therefore for every time simulation was started again, the

user profile is defined. The user profile includes information about age, sex, occupation and

preferred language of the interface.

The application asks for the user information when the start simulation button is pressed.

The questioning form is made as the widget with combo boxes, radio buttons and buttons,

which are used for choosing needed options. The combo box is used for obtaining the age of

a user because it includes large amount of options. The age options have ranged from ten to

one hundred years. Language, age, sex and occupation questioning is made by combo boxes,

54

as long as there is a small amount of possible options. The possible options for occupation

are management, engineering, educational, IT, student and other. The user information is

important and closely related to the machine initial parameters data because it is crucial for

the filtering of the parameters sample.

3.4.2 Machine initial parameters

As it was described previously, initial parameters obtained at the main menu are used for

filling up the machine parameters XML file. These parameters include information about

bodies mass, motor and transmission of the machine. They are part of the first CSV file and

located on the same sheet as user-defined data.

3.5 Data obtained during the simulation

The next part of the data sample is obtained during the real-time simulation of the machine.

These parameters are displaying the state of the machine during the simulation procedure

under chosen initial parameters. The storing of the parameters values are bonded to the tick

function, in other words, on each change of the frame. Therefore, the amount of values,

which must be stored in each simulation is massive. That is the reason for saving this data

on the separate CSV file. This data sample includes the general state of the machine, forces

values, motor and power transmission parameters. The list of the stored parameters is shown

at table 7.

Table 9: Machine statement stored parameters.

Name of the parameter Type

1 Machine speed General

2 Left Cylinder Lift, a translational force Forces

3 Right Cylinder Lift, a translational force Forces

4 Left Cylinder Tilt, a translational force Forces

5 Right Cylinder Tilt, a translational force Forces

6 Rotational speed Motor

7 Motor torque Motor

8 Torque converter output torque Power transmission

9 Torque converter output angular velocity Power transmission

55

Table 9 continues. Machine statement stored parameters.

Name of the parameter Type

10 Gearbox output torque Power transmission

11 Gearbox output angular velocity Power transmission

3.6 Data obtained after the simulation

After finishing the simulation and storing all the previous parameters, there is a need for the

next stage of the data collection procedure. During this stage is collected information about

the user satisfaction rate. The satisfaction rate information includes an opinion about the

current configuration of the machine and opinion about the application. This data is made

in the form of the simple answers to the set of questions. During this stage asked the

following questions:

• Do the motor have enough power? Answer options: yes/no.

• Is the idle motor speed enough to start a movement of the machine? Answer

options: yes/no.

• Should the idle speed be increased or decreased? Answer options: increased,

decreased, keep these settings.

• Should the gear ratio be increased or decreased? (for each gear) Answer options:

increased, decreased, keep this setting.

• Which gear is the most suitable for handling the load on the short distance? Answer

options: gear 1, gear 2.

• Which gear is the most suitable for handling the load on the long distance? Answer

options: gear 3, gear 4.

• Describe the application operation. Was the picture freezing or displayed

precipitously? Answer options: yes, the picture was freezing all the time; yes, the

picture was sometimes freezing; no, the picture was displayed correctly.

• Describe your comfort level. Did you feel sick during the simulation? Answer

options: yes, heavy dizziness; yes, slight dizziness; no, the experience was

comfortable.

• Please, rate the application in scale from 1 to 5. Answer options: options from 1to

5 stars.

56

3.7 Output files structure

As it was discussed earlier, the results of data collection will be divided into three main files

categories: two CSV and two TXT file. The first csv file type is containing data about the

user, his/her defined machine parameters, opinion about the current configuration of the

machine and application performance data. The second csv file type containing the

information about machine statement during the simulation sequence. The TXT file contains

the information regarding exceptions and errors during work of the application.

Storing the information about each simulation sequence is important. This is the reason a for

binding files to simulation sequences. The data is stored in CSV files by the number of the

corresponding simulation sequence. The application is assigning the unique number to each

sequence. The data obtained at the particular sequence is displayed under the unique

sequence number. By searching the needed number of the sequence in the output files, can

be accessed any data, which is needed for a development team.

Structure of the first CSV file is shown in the Appendix I. This is the representation of the

structure of the file and does not have the same structure. The first row is specifying the

number of the simulation sequence. After simulation n sequence number follows the user

data block, which consists of age, sex, language and occupation. Most of the rows in the user

data block are using abbreviations and short words with length less than six digits. This

designation helps to avoid confusion during subsequent data analysis. The next block

contains the information of the machine parameters, such as a motor, transmission, mass

properties of parts and presets options. The preset option rows display the state option as

Boolean. This option is showing if a user chose to apply presets. If a user specified using of

preset, it is marked as one, otherwise, zero. The second row displays some chosen preset by

their order in the application. The next block displays the data about the user satisfaction

rate. The row name is showing a number of the question as they are ordered in the

application. Questions, which has two types of answer, the output displayed by zero and one.

These digits display the number of an answer. In a question with two types of answer zero

stands for yes and one for no. In the questions, which has three types of answer, options are

displayed from zero to three. In the same manner, in the question with five types of answer,

which specifying customer satisfaction rate about application options are displayed from

57

zero to four. For avoiding confusion with designations, the file contains legends for all types

of data listed.

This kind of structure gives the advantage to further data analysis. This file contains all the

needed information regarding the user and chosen configuration. The data structured in one

table. This fact creates an advantage for the filtering of the data according to the user’s group

and specified option.

The second type of the files is the generated file during the simulation. As long as CSV file

does not support the format with multiple sheets, each simulation sequence creates its CSV

file. The simulation output file has the name, which corresponding to the number of the

simulation sequence. It contains information about the machine state during the simulation.

The information is displaying parameters of the motor and the transmission, namely motor

rotational speed, motor torque, gear number used and the reverser statement.

The simulation sequence lasts for three hundred seconds. During the simulation, the

application is collecting data at each second. As the output, produced three hundred values

for each parameter. This kind of data gives the opportunity to define how the machine was

used during the simulation sequence.

The next type of files, which is generated during work of the application is TXT file. These

files contain log messages of Mevea and Unreal Engine 4 (UE4). Messages are displaying

the state of the application, including warnings, exceptions and errors during work of the

application. Mevea log text file is shown in figure 27. It is automatically generated file by

Mevea Solver application. This TXT file is updated after each simulation sequence. That is

the reason to save it in the separate directory. At each simulation sequence, this file is

processed by UE4 and saved by the unique number of the sequence. The file contains time

when some event occurs and a short description of the event. As it is shown in the example

file, after loading of the simulation multiple exceptions related to the numeric solver are

occurred. These files create an advantage in the long term application using. They give the

possibility to track application and model performance during each simulation sequence.

58

Figure 27: Mevea LOG file example

The second type of the TXT generated file is related to UE4. These files are containing

information about the work of the UE4 application during each simulation sequence. They

are reporting about warnings, exceptions and error in UE4 application. As long as UE4 is

not closed after each simulation sequence and remaining in standby mode, files are generated

at the end of the simulation. A file has the same naming system as Mevea simulation txt

files, which are bound to the unique number of the sequence.

All files, generated during the application operation, are located in a system at the same

directory, where the main simulation files are. This kind of layout is created due to the

application of the relative path to the file when files are generated and saved. It creates an

advantage in handling the information, especially, for sending and maintenance of the

system.

3.8 Data sending

The next stage of data handling is sending files to the development and maintenance team

for further processing of it. Generated files, which were described before, can be sent by two

ways: by uploading them to cloud service or sending files via e-mail to a server. Depending

on the case and type of file should be used different ways of data sending.

59

The cloud services are relatively easy to use for storing and transferring information between

machines. For these purposes can be used for cloud services such as One Drive from

Microsoft Corp. or Google Drive form Google Corp. In order to obtain data from the cloud

service, two preparation operations must be performed. At first, should be created an account

in the cloud service, which only handles the storage of the obtained data. At the second step,

on the computer must be installed cloud service software, which allows saving files without

accessing a browser. After finishing these steps, it is possible to save files into the cloud

service. Files are stored at the computer directory first and after saved to the drive by UE4

application. Saving files to the cloud services have advantages to the case. It is simplifying

finding and accessing the process for the particular file. Also, cloud service can be used as

backup storage for the case of data loss. On the other hand, cloud services have a limit to the

storage of the data. For Google Drive storage space is limited to 17 GB of the information

and One Drive is limited to 5 GB.

As an alternative to the cloud service can be used e-mail notifications with attached

generated files to it. At the first stage, the UE4 application is saving the file to the computer

in the project folder. Then, the code in UE4 application sends files to the particular e-mail

address via TCP socket. The advantage of this kind of data transfer procedure is a constant

notification of teams about the statement of the machine and report about collected data. As

the drawback of this sending procedure is the relatively small amount of data, which can be

sent. It is not efficient to send all the generated files by e-mail.

According to the advantages and disadvantages listed above must be concluded as a way of

the most efficient data transfer type. As long as cloud services can store big amount of data,

it is preferable to save large files to the drive. To the cloud service stored files generated

during the simulation sequence. They are machine parameters during the simulation, Mevea

and UE4 log files. On the other hand, it will be effective to send the initial parameters file

via e-mail for the effective observation of the study results.

After the finish of the application work, received study results in the generated files can be

used in the development process. This data is describing the user behavior regarding

configuration and user satisfaction rate about it. This kind of data gives an opportunity to

create a weighted decision about future machine design according to the user preferences,

60

legislation and standards applied. Nevertheless, the information in the generated files is raw

data, which requires proper filtering and sampling.

3.9 Data filtering

Depending on the environment, where the simulation studio is installed, the resulting data

sample can be different. In some cases, for example, conferences or trade fair related to the

heavy machinery equipment may produce more valuable data set in comparison with other

random locations, such as shopping malls, because there is a higher concentration of the

potential customers. That is the reason for data filtering before the actual application of the

results.

The main objective of the data filtering is to define the preferred group, which can make

weighted decisions about the parametrization of the machine. The overall sample can be

divided into three main groups. The first group is representing the sample, which including

the most valuable users. As the most valuable users are an implied person, which are working

with that type of machines or has been working with them before. The second group

represents intermediate importance users, which are in the management positions related to

the heavy machinery industry or industries, where this kind of machines is involved. The

third group is representing insignificant users, which do not have any experience or

relationship to the heavy machinery or adjacent industries.

Generally, the filtering procedure requires two major steps, which are shown in figure 28.

The first step is made by VBA code in MS Excel. Whole data is filtered by code, which sorts

information according to the certain criteria. At this step, data is filtered according to the age

and occupation criteria. As it was mentioned before, there are three major classification

groups. The age group under eighteen years is classified as insignificant for the development

purposes. The age group including users from eighteen to twenty-five is classified as

intermediate importance group and can be partially used in the decision-making process. The

most important group is including users from twenty-five to one hundred. As it was

discussed before, occupation classification also consists of the same three groups. After

finishing the first step of filtering data is ready for further processing.

61

Figure 28: Data filtering major steps

At the next step, data is filtered according to the justification of the user. In this step is

involved the file, which containing the information obtained during the simulation sequence.

This step is performed by a development team. The main objective is to define the behavior

of the user during the simulation. The sample, which was developed during the first step of

the filtering is used for analyzing. From this sample are collected numbers of the sequence,

where the user evaluated machine behavior as good. Machine behavior assessed as good

when the average satisfaction rate is higher than three points out of five. These simulation

sequence numbers are extracted from the overall sample. According to the initial parameters

file, each sequence is analyzed by the level of configuration credibility. In other words, the

development team justifies if the configuration created by a user is plausible and adequate

in the real world application. During the second stage of the data, filtering is used parameters

obtained during simulation as well. By the file, which tracks the state of the machine during

the simulation, can be analyzed how the machine was used. According to the rotational speed

of the motor, torque, gear number and reverser status can be analyzed the behavior of the

user. For example, it is possible to define if the user has collided with the object, or made

some other mistakes during the simulation. The data is accepted for further development

62

after checking on state of machine. If no abuse or incorrect using detected, data is accepted

for the concept creation stage.

63

4 ANALYSIS

After the filtering and accepting the simulation results, they are used in the development of

the main concept of the machine. The procedure of the development process is shown in

figure 29. Created concepts are evaluated regarding reliability and meeting standards applied

to the machine, such as ecological and safety standards. The research team approximately

evaluate the lifetime of the machine components, possible emissions, environmental and

safety risks. The most optimal solutions, which are meeting the requirements regarding

reliability and meeting standards are passed to the next stage, where estimated manufacturing

costs for each concept are defined.

Figure 29: Application of the data in the development process

The approximation of the manufacturing costs starts with creating a preliminary list of the

components needed for creating a machine with needed characteristics. After this step, the

concept, which is the best regarding the manufacturing cost is defined as a final concept. The

final concept is proceeding further for the detailed development and subsequent

manufacturing.

64

4.1 Practical application example

The practical application of the data can be observed in the example of motor parameters. In

this work were collected user-specified parameters of the motor such as the torque curve and

idle speed of the motor. The collected data is sorted according to the user data, such as age

and occupation. After filtering of data, will be collected the most popular setup of the motor

among users. These setups are new concepts of the motor. The next step is involving the

development team to analyze results and define the most efficient concept of the motor.

During this stage, concepts are checked if they are satisfying standards and the approximate

manufacturing cost is calculated. The concept, which passed all stages of the process is

evaluated as a final concept.

4.2 Test group results

For the test of performance and functionality of the interface was used test group of four

people. The test group was evaluating the performance and usability of the user interface.

The respondent stated that application works with good performance. The respondent stated

that during and after using application there was no sickness. Therefore, the comfort level of

the VR experience is evaluated as good. There was following advice for application

improvement:

• The in-game user interface must be connected to head mounted display rotation;

• The application must have the ability to reset the position of the headset at the start

of simulation;

4.3 Achievement of research results

During the thesis work, the following result were achieved:

• Was created the application, which allows changing physical parameters of the real-

time simulation model;

• The application can filter data and send it to the development team;

• The concept evaluation procedure was created, which applies simulation obtained

data.

65

5 CONCLUSION

The main research objective was defining a method of efficient gathering of user feedback

and converting it into the valuable data for the research team. As an outcome of the research

was developed a VR application which collecting the user-defined simulation model’s

physical parameters. The software gives the possibility to collect data from users

automatically and use it in the product development process.

From the research, problem was produced three research questions. The first question was

related to the method and tools of the simulation model parametrization. The parametrization

of the simulation model was performed by modification of the simulation parameters XML

file with XML parser. The second question was focusing on the method of visualization. The

visualization of model and interface was created by applying UE4 and custom UDP sockets

for transferring model parameters. The third question was related to the collection and

analysis of the obtained data. The data handling is divided into three parts. At the first part,

data is filtered by the software according to the user information. At the second step, the

filtered data is written into a CSV file, which is sent to the development team. At the third

step, the research team evaluating the results and creating concepts by this information.

The application, which was created during this thesis, provide vast opportunities for the

industrial companies and average users. Industrial companies are obtaining the technology,

which gives the opportunity to develop a customer-oriented products with higher efficiency.

The products, which may be more appealing to the customers, will be produced faster and

with fewer costs on the development. At the same time, applications this kind may result in

a better brand image, because it shows the customer, that their opinion is important for the

manufacturer.

The customer receives a more appealing product. This reasoning supports factors of the price

and customer oriented development. In the industry, the cost is one of the most important

factors in the decision making about purchasing the machine. This is the reason, that

customer may choose a cheaper product with good quality. Under the quality are applied

66

important merits, such as reliability, performance, usability, user-friendliness and

ergonomics of the product.

This work creates a room for the further development of this topic. For the further studies

are suggested application of the artificial intelligence for the analyzing of the results of the

studies and development of the machine concepts.

67

LIST OF REFERENCES

[1] R. Schmitt, B. Falk, S. Stiller and V. Heinrichs, "Human Factors in Product Development

and Design", Lecture Notes in Production Engineering, pp. 201-211, 2014.

[2]J. Gao and A. Bernard, "An overview of knowledge sharing in new product

development", The International Journal of Advanced Manufacturing Technology, vol. 94,

no. 5-8, pp. 1545-1550, 2017.

[3]D. Brabham, “Crowdsourcing”, MIT Press, pp. 2-59, 2013.

[4]R. Stephens, “Beginning software engineering”, Wrox, a Wiley brand, 2015.

[5] "Extensible Markup Language (XML) 1.0 (Fifth Edition)", W3.org, 2018. [Online].

Available: https://www.w3.org/TR/REC-xml/#dt-docent. [Accessed: 22- Feb- 2018].

[6] B. Joshi, “Beginning XML with C#”. [S.l.]: APRESS, pp. 1-7, 2018.

[7]A. Salminen and F. Tompa, Communicating with XML. Boston, MA: Springer

Science+Business Media, pp. 1-119, LLC, 2011.

[8] "Well Formed XML - w3resource", w3resource, 2018. [Online]. Available:

https://www.w3resource.com/xml/well-formed.php. [Accessed: 22- Feb- 2018].

[9]M. Ltd., "Mevea | Software and services to build your own digital twins", Mevea, 2018.

[Online]. Available: https://mevea.com/. [Accessed: 06- Sep- 2018].

[10] M.Alger, “Visual Design Methods for Virtual Reality”, 2015. [Online]. Available:

https://drive.google.com/file/d/0B19l7cJ7tVJyRkpUM0hVYmxJQ0k/view. [Accessed: 27-

Feb- 2018]

[11]"Oculus Rift | Oculus", Oculus.com, 2018. [Online]. Available:

https://www.oculus.com/rift/. [Accessed: 11- Aug- 2018].

https://drive.google.com/file/d/0B19l7cJ7tVJyRkpUM0hVYmxJQ0k/view

68

[12]"Technology - Leap Motion", Leap Motion, 2018. [Online]. Available:

https://www.leapmotion.com/technology/. [Accessed: 14- Aug- 2018].

[13] "Hardware and Software Specifications", Docs.unrealengine.com, 2018. [Online].

Available:https://docs.unrealengine.com/en-

us/GettingStarted/RecommendedSpecifications. [Accessed: 15- Aug- 2018].

[14]"UDP vs. TCP | Gaffer On Games", Gafferongames.com, 2018. [Online]. Available:

https://gafferongames.com/post/udp_vs_tcp/. [Accessed: 24- Jun- 2018].

APPENDIX I

Main output CSV file

