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Abstract
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Moving Object Analysis and Trajectory Processing with Applications in
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Diss. Lappeenranta University of Technology

ISBN 978-952-335-314-5, ISBN 978-952-335-315-2 (PDF)
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In order to better understand processes with moving objects using computer vision, it is
important to be able to measure and to analyze how the objects move. The recent ad-
vances in imaging technology and in image-based object tracking techniques have made
it possible to measure the object movement accurately from video without the need for
other sensors. This work focuses on the practical applications of a 3D touch-screen exper-
iment and the moving object analysis of droplets in a chemical mass transfer experiment.

A two-camera framework for tracking finger movements in 3D was developed and evalu-
ated with the study of human-computer interaction. Moreover, trajectory processing and
video synchronization were introduced and a 3D trajectory reconstruction technique was
proposed. The framework was successfully evaluated in an application where stereoscopic
touch-screen usability was studied using stereoscopic stimuli. Finally, a set of hand tra-
jectory features were computed from the trajectory data and it was shown that selected
features differ statistically significantly between the targets displayed at different depths.

The image analysis method was proposed for the analysis of moving droplets in a chemical
mass transfer experiment enabling the quantification of copper mass transfer. Moreover,
the image analysis provided a way to estimate the concentration variation inside the
droplet. Furthermore, the method is not limited to a chemical mass transfer experiment
with extractants, but it can be used for applications where a detectable color change is
present.

This work consisted of: selecting suitable moving object detection and tracking methods
for two applications, the post-processing of the trajectories, 3D trajectory reconstruction,
and characterizing and visualizing the object data. The applicability of readily available
methods for moving object detection and analysis was successfully demonstrated in two
application areas. With modifications, both of the used frameworks can be extended for
use in other similar applications.



Keywords: object tracking, trajectory processing, trajectory analysis, high-speed video,
image analysis, human-computer interaction, 3D reconstruction, liquid-
liquid extraction, mass transfer
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Chapter I

Introduction

Moving object detection and object tracking have been popular topics in the field of
computer vision. For example, a survey of various moving object detection and tracking
methods was carried out in [46], tracking surveys considering various aspects of tracking
have been provided in [66, 75, 11, 121], and the accuracy and robustness of object trackers
have been evaluated in visual object tracking (VOT) challenges, such as, VOT2014 [58]
and VOT2016 [56]. Object detection can be thought as a basic step for the further
analysis of video since all tracking methods require object detection, or manual setting of
the object location at the initialization phase. The basic idea of video tracking is to follow
one or more objects in an image sequence. On a general level, tracking can be divided
into initialization, target representation, motion estimation, localization, model update,
and track management phases. In the initialization phase, the tracker is initialized either
manually or automatically. The target representation phase compiles the representation
model using selected features from an image. The following step is to estimate and
localize the target in an image. As the last step, the object representation is updated if
needed. Finally, as a result of tracking, a trajectory can be formed and high-level features
from the trajectory can be extracted [75].

The applications for object detection and tracking are numerous. Moving object detection
and tracking can be used, for example, in human-computer interaction (HCI) [105],
augmented reality [50, 77], media production [85], biological research [112], chemistry
applications [94, 108], surveillance [46], robotics and unmanned vehicles [75]. In the HCI
field, detection and tracking can be used to track and detect the movement of a person
when they perform different tasks and the produced trajectories can be later used for
movement analysis. For the augmented reality cases, it is possible to detect and track the
movement of a moving person and change a virtual scene based on the movement. In the
media production field, certain elements of videos or image sequences can be appended,
adjusted or discarded based on the results from detection and tracking. For surveillance
purposes, detection and tracking can be used to recognize the abnormal moving patterns
of people. In the robotics field and with unmanned vehicles, the results of detection and
tracking can be used to gather information about the surroundings and the vehicle or

13



14 1. Introduction

robot can act accordingly [75].

This research focuses on moving object analysis and trajectory post-processing with
applications in the field of HCI. The research involves a study of hand movement in a
touch-screen experiment, and a study of droplets in a chemical mass transfer experiment
in the field of chemistry. Moving object analysis was done for both normal-speed and for
high-speed video data. The interest in using high-speed videos derives from the temporal
resolution which is better than the one of the videos with a standard frame rate. A higher
temporal resolution, i.e., a higher frame rate in the camera means that smaller and faster
motions can be captured compared to videos with the common rates of 24 to 60 frames
per second (fps). This results in more accurate measurements. Furthermore, increased
sharpness and reduced motion blur of the images of fast-moving objects can be achieved
with shorter exposure times. The general steps involved in the moving object analysis
of this study, from designing the experimental setup to computing real-world features
i.e., features in physical units, are shown in Figure 1.1. The dashed line in the figure,
from camera calibration to computing real-world features, indicates the usage of camera
calibration results to interpret real-world features.

Camera

Calibration
TrackingImaging Initialization

Trajectory

Processing

Designing
experiment

setup

Computing

Real-World

Features

Figure 1.1: A general flow chart of moving object analysis using an imaging
setup.

The need for trajectory processing arises from the fact that the object trajectory produced
by tracking contains noise. This noise is amplified when certain features are calculated
from the trajectory. Thus, in order to obtain appropriate features from the trajectories,
post-processing of the tracking data is needed. Moreover, image analysis can be used to
find useful information about the tracked objects. For example, the information may con-
sist of color changes or the size of the object. To produce accurate measurements, camera
calibration and 3D reconstruction provide a way to acquire the undistorted real-world
measurements of the moving object trajectories. With the real-world measurements, it is
possible to study the phenomena based on information in physical units such as real ve-
locity and acceleration. Post-processed trajectories can be subjected to further analysis,
for example, the categorization of movements based on trajectory features.

1.1 Objectives

In this work, the problem of moving object analysis in two different applications is con-
sidered. These applications included a 3D touch-screen experiment and a chemical mass
transfer experiment. This work deals primarily with issues of detection, tracking, and
trajectory post-processing and analysis. The work consists of four topics forming four
separate research questions: object motion detection and tracking from high-speed and
normal-speed video material, the post-processing of the tracking data, trajectory un-
derstanding and conversion to real-world measurements, i.e., measurements in physical
units. The objectives of the research are as follows:
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• To evaluate the potential of high-speed and normal-speed imaging to assist in an-
alyzing HCI and monitoring a chemical mass transfer experiment.

• To detect moving objects from high-speed and normal-speed video sequences.

• To devise a way to track moving objects and appearance changes in applications
robustly and accurately.

• To study a way to detect and handle errors in the detection and tracking.

• To review methods to make the tracking data more reliable and accurate in case of
small fluctuations in the trajectories.

• To select and compute reliable trajectory features such as speed, acceleration, di-
rection, and distance.

• To study other possible features and phenomena that emerge during the work
conducted.

Example images of the 3D touch-screen experiment are shown in Figure 1.2. Figure 1.2a
contains images from a normal-speed video with a user’s finger moving from a trigger-box
button towards the screen. Corresponding high-speed video images of a user performing
the pointing action towards the screen are shown in Figure 1.2b.

Example results from the 3D touch-screen experiment are visualized in Figure 1.3. Fig-
ure 1.3a and Figure 1.3b show normal-speed and high-speed video frames with trajecto-
ries. 3D trajectory features, speed and acceleration, are visualized in Figure 1.3c.

Example images of tracking one droplet frame by frame in the chemical mass transfer
experiment are shown in Figure 1.4. The figure shows the low contrast between the
foreground, droplet, and background, constant phase liquid, which makes the droplet
almost invisible in Figure 1.4a. In order to make the droplets visible in Figure 1.4b, the
color channel values were adjusted and the images were made gray-scale. Moreover, the
formation of a new droplet at the tip of the needle is visible in the subsequent frames.

1.2 Contributions and Publications

The main contribution of this work was in designing and implementing two frameworks
for collecting and processing data from a 3D touch-screen experiment and from a chemical
mass transfer experiment. Designing the frameworks included the evaluation of moving
object detection and tracking methods, and the evaluation and selection of optimal tra-
jectory post-processing techniques. Moreover, for the 3D touch-screen experiment, a
video and trajectory synchronization and analysis of trajectory features were carried
out. As a result, hand movements were tracked with a high success rate and real-world
trajectories were constructed. Based on the features calculated from the real-world tra-
jectories, small differences were observed in the trajectories towards targets at different
disparities. In the chemical mass transfer experiment, a reliable way to detect and track
moving droplets was discovered along with the assumption of an oblate spheroid shape.
Moreover, a way to measure chemical changes in the droplets was determined and the
accuracy and reliability of the method was found to be on a millimole scale.
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(a) (b)

Figure 1.2: Example images of the 3D touch-screen experiment: (a) example
images of normal-speed video; (b) corresponding example images of high-speed
video. The contrast of the high-speed video examples was enhanced for visualiza-
tion purposes.
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(a) (b)
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Figure 1.3: Example trajectory and feature visualization of the 3D touch-screen
experiment: (a) example finger trajectory from a normal-speed video; (b) example
finger trajectory from a high-speed video; (c) speed (blue line) and acceleration
(red line) as a function of a distance from the end point of the trajectory.

This dissertation contains five publications: two journal articles which have been pub-
lished in international journals, and three conference papers. The publications can be
divided into two topic areas. Publication I, Publication II, and Publication III are dedi-
cated to the topic of moving object analysis connected with a 3D touch-screen experiment,
while Publication IV and Publication V addressed the problem of moving object analysis
for droplets in a chemical mass transfer experiment.

Publication I introduces a high-speed tracking and finger trajectory filtering evaluation.
The author of this dissertation developed the framework, performed the experiments and
was the principal author of the article.

Publication II introduces additional tracking from normal-speed hand movement videos
and a 3D reconstruction pipeline. Publication II is based on the ideas of all the authors
of the article. The implementation and the experiments were performed by Lyubanenko
with supervision and advice provided by the other authors of the article. The author of
this dissertation composed the article, with the help of the other authors, based on the
experimental results by Lyubanenko.

In Publication III, a large-scale 3D reconstruction from tracked movements was presented
with additional topics covering video synchronization and statistical feature analysis. The
implementation and the experiments were performed by the author of this dissertation.
Moreover, the author of this dissertation was the principal author of the article.

Publication IV addresses the issue of determining single droplet sizes, velocities and
concentration with image analysis. The author of this dissertation designed and prepared
the imaging setup, developed the algorithm for the detection and tracking of the droplets
and implemented the image analysis pipeline and was a co-author of the article.

Publication V addresses the issue of mass transfer during droplet formation and rise.
The publication is based on the work started in Publication IV. The author of this
dissertation selected the imaging equipment, designed and prepared the imaging setup,
developed the algorithm for the detection and tracking of the droplets and implemented
the image analysis pipeline, and was a co-author of the article.
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1.3 Thesis outline

Chapter 2 contains the main motivation behind the moving object detection and analysis
and provides an overview of the methods used. Chapter 3 is the main part of this
dissertation. It discusses moving object analysis in a practical application of a 3D touch-
screen experiment. In Chapter 4, a practical application for the moving object analysis of
droplets in a chemical mass transfer experiment is discussed. Finally, Chapter 5 provides
a short conclusion of the dissertation.
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(a) (b)

Figure 1.4: A droplet detection and tracking example: (a) sequence of RGB
images and (b) gray-scale images based on modified RGB images. The detections
are shown with red ellipses and trajectories are indicated with blue lines.
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Chapter II

Moving Object Detection, Tracking and Movement
Analysis

This chapter covers the main ideas and motivations of the previous work on the moving
object detection, tracking, trajectory processing and 3D reconstruction methods used in
this work.

2.1 Moving Object Detection and Tracking

Many applications benefit from the detection and tracking of various moving objects [75].
However, it is a challenging task because of the varying appearance of the objects, distor-
tions, occlusions and noise. In the simplest form, a moving object can be detected from
a static background by calculating the temporal difference between the video frames.
However, this technique, called frame differencing, only works for static backgrounds
and fixed settings. Moreover, frame differencing can have problems in detecting all the
relevant pixels of a foreground object if the object moves slowly or has a uniform tex-
ture. Furthermore, if the target object stops moving, frame differencing fails to detect
any changes and loses the target [46]. Detection can be also performed using more so-
phisticated background subtraction methods [46] or object detectors [88, 89]. However,
background subtraction methods are easily distracted by challenges such as sudden il-
lumination changes or dynamic background [9]. Moreover, background subtraction and
object detection techniques usually have longer frame processing times than object track-
ing which is another possible method used to follow moving objects. A wide variety of
trackers for different purposes are available. There are methods for tracking rigid ob-
jects and non-rigid objects. There are also trackers that can learn different poses for the
tracked objects and continue tracking them, even after they momentarily lose the target
object [49]. However, trackers need to be initialized with the location of the object and
in these cases manual initialization or automatic detection methods need to be used.

2.1.1 Background

The detection and tracking of moving objects can be divided into steps, including: tar-
get initialization, target representation, motion estimation, target localization, and model
update. The target initialization for tracking is usually given manually, but this stage can

21



22 2. Moving Object Detection, Tracking and Movement Analysis

be performed automatically by using object detectors or background subtraction meth-
ods, for example. The model or representation describes how the features of the object
and the surrounding background are represented. The motion estimation phase attempts
to estimate where the target object will be in the next frame. Motion estimation provides
information for the target localization phase where the target location is determined, for
example, by using normalized cross correlation or maximizing likelihood functions. The
model update phase concerns updating the appearance model of the target when needed.

In general, tracking algorithms can be classified into discriminative and generative ap-
proaches based on the appearance models used [123]. The generative methods learn
the appearance model of the target object and use it to search for the image region
with minimum possible reconstruction error. Discriminative methods treat tracking as
a binary classification problem, where a decision boundary between the target and the
background is sought. The generative approaches can typically deal better with missing
data, which helps in the case of occlusions. Moreover, the generative approaches have
better generalization performance when the size of the training data is small. However,
it has been shown in [61] that the discriminative classifiers outperform the generative
approaches if enough training data is available.

A variety of object trackers use online learning that updates the representation of a target
over time. Online learning is used to handle variations in appearance that are usually
unavoidable especially in long-term tracking. In generative online learning methods, the
appearance model for the target is updated in response to the appearance variations [70].
In discriminative methods, a decision boundary between the foreground and the back-
ground is updated adaptively in an online manner as the appearance of the target and
the background changes [70].

Variations in an object’s appearance are challenging for object trackers. The variations
include occlusions, changes in the object poses, scene changes and possible sensor noise.
Occlusions occur when the view of the tracked object is blocked by another object in the
scene. Changes in the pose of an object arise from object rotation, translation or defor-
mation. Scene changes refer to aspects such as changes in illumination or the weather.
Moreover, similar objects in the background pose challenges for most trackers [75]. Some
of the object appearance challenges are shown in Figure 2.1, which presents the effects of
illumination, occlusion, deformation, noise corruption, out-of-plane rotation, and motion
blurring for the object appearance [66]. High-speed imaging introduces other issues, for
example, the amount of light needed in imaging increases as the exposure time decreases.

2.1.2 Target Initialization

In the evaluation of object tracking, mostly manual initialization is used by annotating
the target object with bounding boxes. Moreover, manual initialization can be utilized
in cases where the initial location of the target is known, for example, a trigger but-
ton in an HCI experiment. In this case, the target can be initialized with a bounding
box over the button since the user has to first press that button to begin the usage of
the equipment. Automatic initialization can be also performed using object detectors
or movement detection. Automatic initialization needs to be used in cases where the
initial location of the target is not known, for example, in gesture recognition. However,
initialization is problematic in cases where bounding boxes are used because typically up



2.1 Moving Object Detection and Tracking 23

Figure 2.1: Object tracking challenges [66].

to 30% of the bounding box region contains pixels that do not belong to the object [24].
The initialization problem can be addressed by selecting the regions of the bounding box
that are highly likely to belong to the object and removing the parts which result in poor
performance. Moreover, segmentation techniques can be used to identify the regions
that do not belong to the object. Furthermore, optical flow estimation and using areas
with good image alignment properties can be used to address the initialization prob-
lem [12, 26, 60, 120]. In [24], the authors found an alpha matting method being effective
for the VOT2016 [56] dataset. The method predicts an alpha value of pixels based on
the pixel belonging to the background or to the foreground, these alpha values are then
thresholded using a dynamically changing threshold value based on the proportion of the
bounding box belonging to the foreground (object).

Background subtraction is an effective way to initialize tracking for moving objects in
relatively static background settings. There are various methods for background sub-
traction, such as, background subtraction with alpha, statistical methods, and temporal
differencing [46]. Heikkilä and Silvén [41] presented a background subtraction with alpha
method, where the background Bt+1 is updated as follows:

Bt+1 = αIt + (1− α)Bt (2.1)

where α is adaption rate, It is the current frame and Bt is the previous background. The
foreground pixels can be determined by using

foreground(x, y) =

{
1, if |It(x, y)−Bt(x, y)| > T

0, otherwise
(2.2)

where T is a pre-defined threshold value.

Temporal differencing has the same way of determining foreground pixels as the back-
ground subtraction with alpha, but the background Bt is replaced with the previous
frame It−1. In the statistical background subtraction methods, such as [84], in each
frame the dynamic statistics of pixels that belong to the background are kept and up-
dated. The foreground pixels are detected by comparing the statistics of each pixel with
the background model [46].
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2.1.3 Target Representation

Many approaches have been used for a target representation in object tracking, among
them intensity, color, template, intensity histogram, histogram of oriented gradients
(HOG) [20], as well as Haar-like [109], and convolutional neural networks (CNN) [14]
features [21, 119]. The intensity model uses intensity values and the color model uses
color values of the target area to represent the target. The intensity and color models
can be extended to use histograms of the values which allows better handling in the case
of small appearance changes. The template model takes an image patch and this is used
to represent the target. The target may be presented as a whole or as parts. Part-based
representation can help to address the problem of occlusions [75, 98].

Representation using HOG features is used in many current trackers, for example, in [4,
21, 23, 22, 34, 43, 65, 67, 73]. The representation in HOG is based on the idea that the
shape of an object can be characterized using edge directions. The idea is to divide the
image into small spatial regions, called cells, and to calculate a 1D histogram of the edge
orientations for each cell. Finally, the combined histogram entries form a representation.
In order to make the method more robust towards intensity changes, it is useful to
contrast-normalize the local responses. This can be achieved by accumulating the values
of local histograms over larger spatial regions, known as blocks, and using the results
to normalize all of the cells in the region [20]. The example results of the HOG feature
extraction for 24×24 images of the digit one and digit eight with cell sizes 1×1, 2×2 and
4×4 are shown in Figure 2.2. Moreover, the length of the feature vectors for each cell
sizes are shown in the figure. With a cell size of 1×1, the feature vector contains 19044
elements whereas a cell size of 4×4 produces a feature vector with 900 elements.

Cell Size = [1 x 1]

Feature Length = 19044

Cell Size = [2 x 2]

Feature Length = 4356

Cell Size = [4 x 4]

Feature Length = 900

(a)

Cell Size = [1 x 1]

Feature Length = 19044

Cell Size = [2 x 2]

Feature Length = 4356

Cell Size = [4 x 4]

Feature Length =900

(b)

Figure 2.2: An HOG feature plot of: (a) the digit one; (b) the digit eight. The
plots include HOG features with cell sizes of 1×1, 2×2 and 4×4.

Haar-like features have been used, for example, in trackers introduced in [1, 37, 123,
124]. The basic idea behind Haar-like features is that the sum of the pixels which lie
in the one side of the rectangles are subtracted from the sum of pixels on the other
side. The value of a two-rectangle feature is the difference between the sum of the pixels
within the two rectangular regions. The rectangular regions have the same size and
shape and are horizontally or vertically adjoined. A three-rectangle feature computes
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the sum within two outside rectangles subtracted from the sum of a center rectangle.
Finally, a four-rectangle feature is computed from the difference between diagonal pairs
of rectangles [109]. A Haar-like feature set was extended in [69] by adding 45◦ rotated
features. The extended feature set is shown inside the rectangular region in Figure 2.3
while the original features introduced in [109] are at the top of the figure. The features
are grouped according to the dotted lines into edge features, line features and center-
surround features.

Extended set

Line FeaturesEdge Features

Center-surround Features

Figure 2.3: Haar-like and center-surround features. The white areas have posi-
tive weights and the black areas are negative.

The latest generation of CNN based on the ideas provided in [62] has achieved good re-
sults in benchmarks on image recognition and object detection, as well as object tracking,
and has significantly raised the interest in these methods [14]. In CNN based methods,
a network learns the features that in conventional algorithms are hand-crafted. Visual-
ization of learned network layers are shown in Figure 2.4. From the figure it is possible
to see that the first layer contains edge features whereas the third layer features are al-
ready recognizable parts of faces, motorbikes, airplanes, and cars. Moreover, the network
needs to be pre-trained in order to be effective and this is done via back-propagation. In
back-propagation the initialized random weights of the layers are adjusted based on the
correctness of the output. However, this process needs a large number of labeled images.
To address the training problem, there are pre-trained networks, such as, ImageNet [25]
which can be utilized. Furthermore, it was shown in [35] that fine-tuning a pre-trained
CNN with target data can further improve the performance of the CNN.

The Hough transform is a voting technique which maps lines from an image to points in
Hough space. The technique can be used, for example, to detect lines, circles and ellipses
from an image. A generalized Hough transform can be used to define a model shape
from boundary points and a reference point. In the procedure, a displacement vector is
computed for each boundary point of the model and stored in a table indexed by the
gradient orientation. The detection can then be performed by using voting to see which
displacement vectors correspond to the stored ones [2].
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(a) (b)

Figure 2.4: A CNN layer visualization plot of: (a) the first and second layer
learned from natural images; (b) the second and third layer learned from a mixture
of faces, cars, airplanes, and motorbikes images [63].

2.1.4 Motion Estimation

Motion estimation tries to estimate the target location in the following frames. Similarly
to different object representation methods, there are also various motion estimation meth-
ods, including gradient descent, particle filters, Markov chain Monte Carlo (MCMC),
local optimum search, and a dense sampling search [75]. Based on the features and a
score function that defines the quality of the next state, the gradient method tries to find
a local maximum of the score. In tracking, a gradient descent is generally used. In the
gradient descent methods, the score function is an error function and the minimum of
the error is sought iteratively [75].

In the Monte Carlo approach, the essential idea is to define a domain of possible points
and generate random points from a probability distribution over the domain. The random
points should be uniformly distributed over the domain. In motion estimation, the
MCMC methods are used to approximate the posterior distribution of possible next
locations by random sampling in a probabilistic space. The particle filter method is a
Monte Carlo technique for the state estimation problem. The idea is to represent the
posterior density function from a set of random samples, particles [90]. The trick in the
MCMC method is that for a pair of input values, it is possible to compute which one is
the better value. This is done by computing how likely the value explains the data, given
the prior information. If this randomly generated value is better than the last one, then
it is added to the chain with a certain probability determined by how much better it is
than the last one.
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In the dense sampling methods, a search grid is formed around the previous location
of the object and a search window is then moved pixel by pixel over the search grid.
Random sampling methods provide a similar approach, but the search grid is formed
from random locations around the previous location of the object and these random
locations are then searched for locating the target object in the current frame [42].

2.1.5 Target Localization

Target localization usually goes hand in hand with motion estimation. Motion estimation
provides samples from which the localization method selects the best possible candidate
for the updated target region. Target localization can be carried out by using the gradient
descent method, for example, where an error function of the appearance differences is
minimized, or cross correlation, maximizing location likelihood function, as well as a
discriminative classifier. For the discriminative classifiers, the classifier is learned in the
initialization phase and the algorithm attempts to separate the target object from the
background. This is achieved by sampling positive samples of the target object and
negative samples of the background.

The cross correlation cc for an image f with a template t shifted to (u, v) is calculated
as

cc(u, v) =
∑
x,y

f(x, y)t(x− u, y − v). (2.3)

The cross correlation is typically evaluated at each point (u, v) for f and the template
t, which is shifted by u steps to x direction and by v steps to y direction. However,
the cross correlation is easily distracted by image intensity changes so normalized cross
correlation is typically used. The effect of image intensity on cross correlation is easily
demonstrated with a case of two images with constant gray values, v and 2v. Regardless
of the template, the image with 2v is selected as a better match because it gives the
higher score.

Normalized cross correlation is a process where the intensities of the template and the
search area are normalized and it can be calculated as

ncc(u, v) =

∑
x,y(f(x, y)− f̄u,v)(t(x− u, y − v)− t̄)√∑

x,y(f(x, y)− f̄u,v)2
∑
x,y(t(x− u, y − v)− t̄)2

(2.4)

where t̄ is the mean of the feature and f̄u,v is the mean of f(x, y) in the region under the
feature. The score values range from the perfect match of 1 to completely anti-correlated
value of -1. However, it should be noted that normalized cross correlation is not invariant
to scale, rotation, and perspective distortions [8]. Moreover, the cross correlation between
functions f(t) and g(t) is equivalent to the convolution of f∗(−t) and g(t), i.e.,

f(t) ? g(t) = f∗(−t) ∗ g(t), (2.5)

where ? is the cross-correlation operation, f∗ denotes the complex conjugate of f , and
∗ is the convolution operation. Furthermore, Henriques et al. [42] showed that by sam-
pling all the sliding windows, the resulting data matrix can be made circulant, i.e., the
first row is a vector u, the second row is u shifted one element to the right, and so
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on. The sums, products and inverses of circulant matrices are also circulant which helps
in their manipulation. Moreover, circulant matrices encode the convolution of vectors.
Since the product C(u)v represents a convolution of vectors u and v, it can be com-
puted in the Fourier domain taking advantage of the convolution theorem which states
that an element-wise product in the Fourier domain representation is equivalent to the
convolution of two image patches. The fast Fourier transform (FFT) method enables
fast tracking with the computational complexity of O(n log n). Since the pioneering
works conducted in [7, 42], correlation filters have been adapted in many recent track-
ers [4, 21, 23, 43, 56, 65, 110, 122].

2.1.6 Model Update

The representation of the target can be updated with the combination of a fixed reference
and the most recent frame, or the whole representation can be updated with the most
recent target. The use of a fixed reference provides a memory for the model and it
can help to address the problem of occlusions. There are different strategies used for
performing the update, for example, after every frame or after a few frames [21, 23, 58,
57, 75, 98, 11, 119]. However, there have been recent works where the possibility of having
no model update at all has been explored with good tracking performance [5, 102].

2.2 Trajectory Processing

This section focuses on the post-processing and analysis of trajectory data obtained
by tracking a moving object. Filtering and smoothing methods such as, the moving
average (MA), Savitzky-Golay (S-G), and Kalman filter (KF) methods are introduced.
Moreover, a short introduction to camera calibration, imaging, multi-view geometry, and
3D reconstruction is provided.

2.2.1 Filtering and Smoothing

The main goal for experiments should be to extract quantifiable information about the
measurements obtained from the experiments, but usually these contain noise. The noise
can be described as random errors that contaminate the information and it should be sup-
pressed as much as possible without weakening the signal or underlying information [92].
Filters can be used, for example, to remove unwanted noise from the measurements, and
remove specific frequencies [82].

2.2.2 Smoothing Trajectory Data

Extracting higher level features for the analysis of a moving object from trajectories,
which are sequences of center location points, can be challenging [Publication I ]. The
center locations of an object over time can be useful as such for checking the location
of the object at a certain time, but when higher level features such as the velocity
or acceleration are calculated from the location data, their values are erroneous. This
happens because most trackers operate at pixel level accuracy, and in videos the object
movement can be smaller than one pixel per frame or the selected tracking method
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may produce small tracking shifts during the tracking process. These issues become
problematic when the accurate measurement of velocities and accelerations is needed.
Single pixel movement after staying in one region for multiple frames results in erratic
acceleration and deceleration values, which are difficult to analyze when evaluated. The
tracked movement locations can be thought of as a set of measures from the actual
movement trajectory containing a measurement error. Moreover, since the movement
itself is typically smooth, sudden movements indicated by the tracking values need to
be smoothed. This is where filtering or data smoothing of the tracking values can help.
To get better results without filtering, there is a need to adopt sub-pixel tracking, for
example, with a marker allowing the tracker to determine the exact tracked location at
the sub-pixel level.

Moving Average

An MA filter method operates by averaging a number of points from the input data to
calculate the output. The data point to be filtered can be from the start of the averaging
sequence, from the end of the sequence, or from the middle of the sequence so that the
group of points to be included in the averaging are chosen symmetrically around the
output point. Selecting the points symmetrically is common since it does not introduce
a relative shift between the input and output signals. Depending on the implementation,
the end point(s) of the output signal cannot be smoothed because the span cannot be
defined for the end point(s) [99].

Let us assume that a signal x is corrupted by noise ε resulting in signal y,

y = x+ ε, y, x, ε ∈ RN . (2.6)

In the MA process, the smoothed value for the ith data point ys(i) is

ys(i) =
1

2N + 1
(y(i+N) + y(i+N − 1) + . . .+ y(i−N)) (2.7)

where N is the number of neighboring data points on both sides of ys(i), and 2N + 1 is
the size of the smoothing window, otherwise known as the span [71]. In general, the MA
approach works by adding values of a fixed number of points together and dividing the
result by the number of points. This approach smooths out peaks from the data. One
solution to preserve the peaks during smoothing would be to use a Savitzky-Golay (S-G)
filter [92].

Kalman Filtering and Smoothing

The KF method is well researched and highly used in the area of autonomous or assisted
navigation. It is an optimal recursive data processing algorithm. The KF method can
be thought as a set of mathematical equations that provide recursive means to estimate
the state of a process, while minimizing the mean of the squared error [116, 117].

Table 2.1 illustrates a KF process. The first step in the time update stage of the process
is to calculate a priori state estimate x̂−t and a priori error covariance P−t using initial
estimates of the state x̂0 and the error covariance P0. In the table, A denotes a state
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Table 2.1: Time and measurement update stages of the Kalman filter.

Time Update Measurement Update
(prediction) (correction)

x̂−t = Ax̂t−1 +But + wt Kt = P−t H
ᵀ(HP−t H

ᵀ +R)−1

P−t = APt−1A
ᵀ +Q x̂t = x̂−t +Kt(zt −Hx̂−t )

Pt = (I −KtH)P−t

transition matrix, B is a control matrix, ut is a control vector, wt is zero-mean Gaussian
white process noise, and Q is an estimated process noise covariance. After the time
update stage, the process moves to the measurement update stage where the calculations
of Kalman gain Kt, posterior state estimate x̂t, and posterior error covariance Pt are
performed. First, the Kalman gain Kt is calculated using the illustrated equation, where
H is an observation matrix, ᵀ denotes transpose, and R is measurement noise covariance.
The measurement zt, which is used in the calculation of the posterior state estimate x̂t,
is calculated as

zt = HXt + vt, (2.8)

where vt is measurement noise. Finally, the posterior error covariance Pt is calculated
with the illustrated equation, where I is an identity matrix [117, 116].

The state transition matrix A, control matrix B, observation matrixH, estimated process
noise covariance matrix Q, and estimated measurement noise covariance matrix R are
the values which are predefined in the KF equation set. The control vector ut and
the measurement vector zt are the inputs to the KF calculations. The process model
represents the current state at time t from the previous state at t− 1. Q is the process
noise covariance which contributes to the overall uncertainty. When theQ is large, the KF
tracks large changes in the data more closely than with a smaller Q. The measurement
noise covariance R determines how much measurement information is used. The KF
considers the measurements to be inaccurate if R is high: if R is smaller, then the
measurements are followed more closely [117, 116].

The time update stage estimates the parameter values based on the current measure-
ments. The KF estimates the parameter values by using the previous and current mea-
surements. The KF smoothing algorithm estimates the parameter values by using the
previous, current, and future measurements, that is, all the available data can be used for
smoothing [117]. The future measurements can be used because the Kalman smoother
proceeds backward in time. This also means that the KF algorithm needs to be run
before running the smoother.

The KF can be used for trajectory filtering by using a constant velocity model, for ex-
ample. For simplicity let us assume a constant velocity model for the trajectory filtering.
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The state Xt for an object is defined as

Xt =


xt
yt
x′t
y′t

 (2.9)

where xt and yt are the x and y locations of the object at time t, x′t−1 and y′t−1 are the
velocities of the object. The dynamics of the location components of the moving object
in 2D can be described as

xt = xk−1 + x′t−1T +
1

2
axT

2

yt = yk−1 + y′t−1T +
1

2
ayT

2
(2.10)

where ax and ay are the accelerations. The dynamics of the velocity components of the
moving object can be described as

x′t = x′t−1T + axT

y′t = y′t−1T + ayT.
(2.11)

From the dynamics equations, the following state transition can be formed
xt
yt
x′t
y′t

 =


1 0 δT 0
0 1 0 δT
0 0 1 0
0 0 0 1

×

xt−1
yt−1
x′t−1
y′t−1

+


1
2δT

2 0
0 1

2δT
2

δT 0
0 δT

× [axay
]

(2.12)

which can be written as
Xt = AXt−1 +But−1, (2.13)

where But−1 can be seen as the noise component. In the case of trajectory filtering, it is
usually an external force causing acceleration for the object. In the case of trajectory fil-
tering, the location of the moving object is the observation. Therefore, the measurement
matrix H can be defined as

H =

[
1 0 0 0
0 1 0 0

]
. (2.14)

If the process to be estimated is non-linear, extended Kalman filter (EKF) can be used
to linearize the process about the current mean and covariance. The EKF method is
considered as the de-facto standard in nonlinear state estimation [78]. The EKF method
uses first-order terms of the Taylor series expansion of nonlinear functions. However, large
errors in filtered values are introduced when the models are highly nonlinear and the local
linearity assumption breaks down when the higher order terms become significant. For
the EKF method, the three first steps of the process are linearization using the Jacobian
matrix then computing the predicted mean, and the predicted covariances. After these
three simplified steps, the rest of the Kalman process calculates the Kalman gain and,
using measurements, updates the state estimate. The time and measurement update
stages of the EKF are illustrated in Table 2.2. Notice that the subscript t is added to the
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Table 2.2: Time and measurement update stages of the extended Kalman filter.

Time Update Measurement Update
(prediction) (correction)

x̂−t = f(x̂t−1, ut, 0) Kt = P−t H
ᵀ
t (HtP

−
t H

ᵀ
t + VtRtV

ᵀ
t )−1

P−t = AtPt−1A
ᵀ
t +WtQt−1W

ᵀ
t x̂t = x̂−t +Kt(zt − h(x̂−t , 0))

Pt = (I −KtHt)P
−
t

Jacobians A, W , H, and V to indicate their recalculation at each time step. A and W
are the Jacobian matrices of partial derivatives of f with respect to x and w, respectively.
H and V are the Jacobian matrices of partial derivatives of h with respect to x and v,
respectively [78, 117].

In the unscented Kalman filter (UKF) method [47], an unscented transformation is used
to calculate the statistics of a random variable which undergoes a nonlinear transforma-
tion. It is built on the principle that it is easier to approximate a probability distribution
than an arbitrary nonlinear function. In the UKF method, the process starts with a sigma
point creation. Sigma points are formed by selecting a minimal set of carefully chosen
samples that represent the state distribution. After the sigma points are selected, they
are run through the process model and, finally, the transformed mean and covariance are
computed. After these steps, the rest of the Kalman process is similar to the last three
steps of the EKF algorithm. The UKF approach is highly efficient, has almost the same
complexity as the EKF method, and slower only by a constant factor in typical practical
applications. The UKF method achieves better linearization than the EKF approach,
and it is accurate in the first two terms of the Taylor expansion while the EKF method
is accurate only in the first term. In the UKF method, there is no need to calculate the
Jacobian matrix, but the state estimation for nonlinear systems in the UKF process is
still not optimal [78, 47, 76].

LOESS, LOWESS and Robust Versions

Local regression (LOESS) and locally weighted scatterplot smoothing (LOWESS) are
methods estimating the regression surface through a smoothing procedure. The estima-
tion is done by fitting a function inside a sliding window into the variables. The weight
function in the LOESS and LOWESS method work in such a way that the points closer to
the curve play a larger role in the determination of the smoothed values of the curve. The
smoothed values are calculated by fitting a polynomial of nth degree by using weighted
least squares with a certain weight wi at point xi. Robust versions of the LOESS and
LOWESS methods give less weight to the points further away from the curve than the
standard versions [16, 17, 45].

As in the MA method, each smoothed value is determined by the neighboring data points
defined within the span, and a regression weight function is applied to the points included
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within the span. A robust weight function, which makes the process more resistant to
outliers, can also be used in addition to the regression weight function [16, 17, 45].

The methods are discriminated by their use of regression model: LOWESS uses a linear,
1st degree polynomial whereas LOESS uses a quadratic, 2nd degree polynomial. This
section considers the implementations of the LOWESS and LOESS methods proposed
in [16, 45]. If there are the same number of neighboring data points available on each side
of the data to be smoothed, the weight function is symmetric, if not, then the function
is asymmetric. Thus, unlike in the case of the MA method, the span is constant when
using LOESS, LOWESS, or their robust versions. This means that there can be phase
changes in the beginning and at the end of the data.

In the LOESS and LOWESS methods, the weight wi is defined as

wi = (1−
∣∣∣∣x− xid(x)

∣∣∣∣3)3, (2.15)

where x is the point of evaluation to be smoothed, xi are the neighbors of x defined by
the span, and d(x) is the distance from x to the most distant neighbor within the span.
Outside the span, the weights are set to zero. After the weight calculation, weighted
linear least-squares regression is performed.

First, the coefficients bk that minimize the following equation

n∑
i=1

wi(x)(yi − [
λ∑
k=0

bkx
k
i ])2, (2.16)

need to be found. The parameter λ controls the degree of the polynomial used. In the
case of LOWESS, λ is 1 and the in the case of LOESS, λ is 2. When the minimizing
coefficients bk are found, the smoothed value at x is obtained by [71, 45]

xs =
λ∑
k=0

bkx
k. (2.17)

Robust versions of the LOESS and LOWESS methods include calculating

ri = yi −
λ∑
k=0

bkx
k
i , (2.18)

where ri is the residual of the ith data point from the preceding local regression. Then,
r∗i is defined as

r∗i =
ri
6µ

(2.19)

where µ is the median absolute deviation of the residuals. The median absolute deviation
measures how spread-out the residuals are. When ri is small in comparison to 6µ, the
robust weight is close to one. The robust weights w∗i are then calculated by a bi-square
function defined as

w∗i =

{
(1− |(r∗i )2|)2 for |r∗i | < 1
0 otherwise. (2.20)
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The robust weights are used to estimate a new set of coefficients b∗k, which minimize the
term

n∑
i=1

w∗iwi(x)(yi − [
λ∑
k=0

b∗kx
k
i ])2. (2.21)

When the minimizing coefficients b∗k are found, the smoothed value x∗s at x is obtained
by

x∗s =
λ∑
k=0

b∗kx
k. (2.22)

The robustness steps are repeated until the values of the estimated coefficients converge
which typically happens quickly [45]. In [71], the robust weight calculation and smoothing
are repeated for a total of five iterations.

Savitzky-Golay

Savitzky-Golay (S-G) smoothing reduces noise while maintaining the shape and height
of the peaks in the signal. In particular, the locations, heights, and widths of the peaks
in the signal waveform are preserved [93].

The S-G filter fits a polynomial to a set of input samples for each input Xn in a least-
squares sense and the value of the polynomial at time n is the filter output. A function
fK(x) describes a polynomial of order K:

fK(i) =
K∑
i=0

bix
i = b0x

0 + b1x
1 + b2x

2 + . . .+ bKx
K , (2.23)

where bis are the coefficients of the polynomial. IfN preceding andM subsequent samples
are used as the neighboring samples, then the S-G filter determines the bi coefficients
that minimize the term

N∑
i=−M

(Xn−i − fK(n− i))2, (2.24)

where the polynomial value at time n is the filter output X̂n = fK(n). Thus, when the
polynomial describes the data accurately, there is minimal distortion in the result. It has
been shown in [92] that the filter can be expressed as a weighted MA filter:

X̂n =

N∑
i=−M

aiXn−i, (2.25)

where the filtering coefficients ai are constants for all Xn. The coefficients ai can be
calculated using the available algorithms or by using the available coefficient tables to
get the values for various ranges and polynomial degrees [92].

The output from the S-G filter is not shifted when the filtering is applied so the signal
has zero phase. The filtering effect of the S-G method is not as destructive as the filtering
effect of the MA method, and the loss of signal information is smaller than with the MA
approach [82, 92]. For the S-G smoothing to work, there needs to be at least as many
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data samples as there are coefficients in the polynomial approximation. The S-G filter
response of order N = 0 and N = 1 is identical to the MA filter response [92]. The
degree of smoothing in the S-G method is regulated by the filtering window size and by
the degree of the fitted polynomial.

Total Variation Denoising

The total variation denoising (TVD) method was developed to preserve sharp edges
in the underlying signal. However, TVD can introduce a staircase effect to the data
with gradually changing values. These regions appear because the total variation (TV)
regularizer promotes piece-wise-constant behavior. For this reason it is not the best
filtering method for piece-wise-smooth signals [95, 19].

The TV for a discrete N-point signal x(n), 1 ≤ n ≤ N is

TV (x) =
N∑
n=2

|x(n)− x(n− 1)|. (2.26)

Let us assume that a signal x is corrupted by additive white Gaussian noise ε resulting
in signal y,

y = x+ ε, y, x, ε ∈ RN . (2.27)

The TVD approach estimates x by finding the signal x, minimizing the objective function

J(x) = ‖y − x‖22 + λ‖TV (x)‖1, (2.28)

where the degree of smoothing is controlled by the parameter λ > 0. Increasing the λ
value gives more weight to the term that measures the fluctuation of the signal. Iteration
count is another parameter in TVD. It controls how many iterations the process will
continue with if the error criterion is not yet met in the algorithm.

2.2.3 3D Trajectory Reconstruction

In many applications it is beneficial to study natural object movement in 3D. However,
imaging transforms a three-dimensional world into a two-dimensional representation of it
and this results in the loss of depth information. Nevertheless, the lost information can
be recovered from images with 3D reconstruction using a multi-view or stereo camera
setup [39]. The task of reconstructing a 3D trajectory from multiple 2D trajectories, with
at least two different viewpoints, is equivalent to the process of 3D scene reconstruction.
The first step, the estimation of image point correspondences, can be interpreted as a
problem of pairwise trajectory point alignment. It means that for each 2D trajectory
point, the matching point of the complementary trajectory, which corresponds to the
same world point, has to be found.

According to [125] and [40], an object point P = [X,Y, Z]T can be used to acquire the
corresponding pinhole camera image point pn via a perspective projection as follows:

pn =

[
xn
yn

]
=

[
X/Z
Y/Z

]
. (2.29)
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In order to make accurate measurements from camera images, the camera parameters
need to be known. The intrinsic (internal) parameters are the focal length, principal point
and the image sensor format the last of which defines the pixel size in the horizontal and
vertical directions. The intrinsic parameters depend only on the camera characteristics.
The extrinsic (external) parameters contain rotation and translation which are used to
define the location and orientation of the camera related to the world reference frame.
The camera calibration parameters can be estimated by known points in the images by
using information on the imaging geometry [39].

The pinhole camera image coordinates [xn, yn]T are transformed into distorted image
coordinates [xd, yd]

T using distortion coefficients ki as follows:

pd =

[
xd
yd

]
= (1 + k1r

2
n + k2r

4
n + k5r

6
n)

[
xn
yn

]
+ dx (2.30)

where r2n is x2n + y2n and dx is the tangential distortion vector defined as

dx =

[
2k3xnyn + k4(r2n + 2x2n)
k3(r2n + ry2n) + 2k4xnyn

]
. (2.31)

The intrinsic camera parameters can be obtained by solving xp
yp
1

 =

 fcx 0 ccx
0 fcy ccy
0 0 1

 xd
yd
1

 (2.32)

where [xp, yp]
T are the pixel coordinates, fcx and fcy represent the focal distance, and

ccx and ccy represent the principal point.

The geometric relationship between two perspective views of the same 3D scene can be
described using epipolar geometry. The main idea in this method is to determine the
epipolar lines. These map the corresponding scene points from two images to particular
image lines. Finding the epipolar lines makes image point matching less complex as there
is then only a line from which the corresponding points need to be found whereas the
alternative would be a 2D region [33, 39].

Figure 2.5 illustrates epipolar geometry. Any 3D pointM and the camera projection cen-
ters CL and CR define an epipolar plane. Image points mL and mR lie on the epipolar
plane since they are located on the lines connecting the corresponding camera projection
center, and point M . The epipolar lines lL and lR are the intersections of the epipolar
plane with the image planes. The line between the camera projection centers, CL and
CR, forms the baseline which intersects both image planes at a point called an epipole.
The epipolar constraint describes an epipolar plane that is fully defined by the camera
projection centers and the image point. Thus, when a point mL is given from the left im-
age, one can determine the epipolar line lR in the right image on which the corresponding
point mR lies [33, 39].

The fundamental matrix F is the algebraic representation of the described epipolar ge-
ometry. It is a unique 3× 3 matrix of rank 2 which satisfies

mT
RFmL = 0. (2.33)
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Figure 2.5: Epipolar geometry and the constraint [39].

For any image point m, the corresponding epipolar line may be determined as lR = Fm.
Since the epipole lies on an epipolar line, the following holds true

eTRlR = eTRFmR = 0. (2.34)

The essential matrix E is the specialization of the fundamental matrix in the case of
normalized image coordinates. If the calibration matrix K is known, then the normalized
coordinates may be obtained as m̂ = K−1m, defining the equation for the essential matrix

m̂TEm̂ = 0. (2.35)

Both fundamental and essential matrices allow the reconstruction of the projection ma-
trices of the cameras and to reconstruct the observed scene. The advantage of utilizing
the essential matrix is that it shrinks the reconstruction ambiguity from projective to
scale. The availability of information about the real-world scene dimensions allows a true
Euclidean reconstruction, which includes the determination of the overall scale [39]. The
3D trajectory reconstruction method modified from the scene reconstruction algorithm
presented in [39] takes four steps. The steps are explained in Algorithm 2.1.

Algorithm 2.1 Algorithm for 3D trajectory reconstruction [39]

1. Find the corresponding trajectory points from multiple-view trajectories.

2. Compute the essential matrix from the point correspondences.

3. Compute the camera projection matrices from the essential matrix.

4. For each point correspondence, compute the 3D location of a trajectory point.

With eight point correspondences, it is possible to solve the system of linear equations
defined by Equation 2.35 directly to obtain an essential matrix. Finding the least-squares
solution requires more than eight points. The normalized 8-point algorithm [39] intro-
duces data normalization before finding a linear solution. However, linear methods are
not stable for noisy data with outliers. More robust methods can be used in the case
of noisy data or when there is a huge number of outliers, such as the MLESAC [104],
LMedS [91] or RANSAC [32] methods.
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Chapter III

Moving Object Analysis in 3D Touch-Screen Experiment

This chapter contains the main findings of the 3D touch-screen experiment case where a
framework for tracking finger movements was constructed for studying HCI. The frame-
work included designing and building the experiment setup, the evaluation of object
trackers for the task of hand and finger tracking, the synchronization of the normal-speed
and the high-speed videos, 3D reconstruction for tracked trajectories and trajectory fea-
ture analysis. The detailed descriptions are provided in Publication I, Publication II
and Publication III. This chapter covers the main ideas and motivations of the results
presented in the papers.

3.1 Background

In order to develop better touch and gesture user interfaces, it is important to be able to
measure how humans move their hands while using a user interface. Earlier research on
hand movements in pointing actions has shown that, in addition to the primary movement
towards the target, there are corrective sub-movements that are observable from the
acceleration or velocity changes during the hand movement [27]. These processing events
in goal-directed movements are visualized in Figure 3.1. The illustration shows that a
corrective sub-movement is needed when the target is not reached or if it is overshot with
the primary sub-movement. The timing and relative locations of these sub-movements
belong to the key features of hand movement analysis. According to earlier research, the
deceleration part of the first sub-movement starts approximately ten centimeters before
the target [27]. Based on this information, the useful features in time and space of the
hand movements consist of the point of the maximum velocity, maximal acceleration and
deceleration. The points where the deceleration starts as measured from the start-point
and/or from the end-point, also provide useful information when defining the smoothness
and stability of the movement.

39
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Figure 3.1: Multiple processing events associated with a single goal-directed
movement [27].

3.2 Related Work

Advances in gesture interfaces, touch-screens, and augmented and virtual reality have
brought new usability concerns that need to be studied in a natural environment and in
an unobtrusive way [105]. Several robust approaches for hand tracking exist that can
measure hand and finger location with high accuracy using, for example, data gloves with
electromechanical, infrared or magnetic sensors [29]. However, such devices affect the
natural hand motion and cannot be considered feasible solutions when pursuing natural
HCI. Consequently, image-based solutions which provide an unobtrusive way to study
and to track human movement and enable natural interaction with the technology have
become a subject of research interest. There are commercially available solutions such as
the Leap Motion and Microsoft KinectTM, but they have several limitations. The Leap
Motion limits the hand movement to a relatively small area, but it is precise for finger
movement measurements [115]. Microsoft KinectTM on the other hand allows a larger
movement area, but it is imprecise for accurate finger movement measurements [52].
However, neither of these devices allows frame rates high enough to capture all the
nuances of rapid hand and finger movements.

High-speed cameras have been used for fingertip tracking, for example, in [30] where a
fingertip was tracked for the purpose of in-air signature verification using the tracking-
learning-detection (TLD) algorithm improved by the authors. They used a 100 fps high-
speed camera and achieved promising results with their proposed system. In [103], the
authors proposed a fast finger tracking system for an in-air typing interface using a
high-speed camera. They used a 120-fps camera also with 60 fps and 30 fps settings
and concluded that only a high frame rate over 100 fps was enough for the reliable
recognition of rapid typing motions. However, high-speed imaging requires more light
than the conventional imaging to allow short exposure times. Gray-scale high-speed
imaging is commonly used to keep illumination requirements at a reasonable level, and
consequently, the use of hand tracking methods relying specifically on color information
becomes impractical.

Recent progress in the domain of HCI has allowed the next generation of user interfaces,
combining touch input with stereoscopic 3D (S3D) content visualization. The S3D pro-
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vides depth information that helps to distinguish depth and structure from the viewed
content as well as enhances the ability to detect camouflaged objects and increases the
recognizability of the surface material [55, 106]. Moreover, the stereoscopic presentation
enhances the accuracy of visually guided touching and grasping movements [96].

3.3 General Framework

The proposed framework for building a system to measure the hand movements of test
subjects in touch-screen experiment tasks is shown in Figure 3.2. The first step of the
framework is to design and to build the measurement setup which comprises cameras,
illumination, a display, and other interacting devices, and the required hardware for trig-
gering the recording and storing the recordings. The main considerations when designing
an HCI measurement setup are that it should not interfere with the usability of the user
interface and that it should offer a natural setting for the test subjects. Moreover, in
order to accurately record fast phenomena such as reaction times and to robustly track
rapid hand movements, high frame rates are needed for the imaging. To produce videos
of good quality, the high-speed imaging requires more light compared to imaging at con-
ventional frame rates. This aspect is particularly important in designing the illumination
because of the shorter exposure times with high-speed imaging and because bright illu-
mination can disturb the test subjects. Moreover, the illumination should not result in
flickering in the recorded videos which can be an issue with common light sources such as
fluorescent or tungsten lights. The available flicker-free light sources include light emit-
ting diode (LED) light panels with reliable and constant power sources and hydrargyrum
medium-arc iodide (HMI) lamps where the flicker can be avoided by using electronic
ballast that operates at high frequencies.

Building the
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Figure 3.2: An overview of the measurement framework.

The second step in the framework is to calibrate the cameras by determining the intrinsic
and extrinsic camera parameters to eventually obtain the mapping to the real-world
coordinates from the image point locations. The camera calibration process used in this
work is explained in Section 2.2.3. To produce accurate measurements, camera calibration
provides a way to acquire the undistorted real-world measurements of the moving object
trajectories. This is indicated in Figure 3.2 with the dashed line.

The imaging step should include a synchronized camera startup or a startup marker to
obtain a visual cue of the starting point of each action to be recorded. Moreover, it would
be beneficial to have an accurate timer visible in all the camera views in order to be able
to synchronize the cameras more easily in later parts of the framework.
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After imaging an experiment, the object needs to be detected before its movement can
be tracked. In a typical controlled HCI study, the hand or finger movement starts from
a static trigger box or another predefined location which can be used to initialize the
tracking. However, if the initial location is unknown, an object detection module based
on computer vision is needed before the tracking module. If the scene background is
static, a simple method such as background subtraction can be utilized for the detection.
However, in the case of a non-stationary background, simple background detection is
insufficient, and the detection can be performed using other detection methods. It should
be noted that the initialization of the object location plays an important role in the
tracking process since a typical tracking method utilizes the initial location to generate
the object model used for tracking.

Tracking is applied in order to follow the location of the detected or otherwise initialized
target object while it is moving. In general, the idea of object trackers is to repeatedly
estimate the transformation of an object from time step t to t + 1, i.e., from one video
frame to the next one. In most cases, the transformation is simply the translation of an
object. However, there are situations where a more advanced motion model is required
that takes into account aspects such as rotation, skew, and scale changes. An extensive
comparison of object tracking algorithms for measuring hand movements in the HCI
study is presented in Publication I. Otherwise, the trackers that perform well in object
tracking competitions, such as, [56, 58] should be considered.

A failure detection system is needed in situations where a highly robust tracking system
is required or massive datasets are processed. A number of different methods detecting
tracking failures can be found in the literature [28, 38, 48, 97, 118]. One approach
is to use backtracking and to check whether the backtracked trajectory matches the
original tracked trajectory [38]. Other methods include gathering samples of the earlier
appearances of the object and comparing them to the currently tracked window using
similarity measures [48, 118].

In typical controlled HCI studies, the start and end points of the trajectory are often
known. In the touch-screen experiment, for example, the point on the screen that the
test subject touches is known, and that can be used to implement a method to detect
failures in tracking. When failures are detected, either the tracking can be repeated
with another tracking method, or the incorrect trajectory can be excluded from further
analysis. For cases where the end location of the trajectory is unknown, a reliable back
tracking or a drifting detection method should be applied. In HCI studies, methods
such as good features to track [97] and metrics for the performance evaluation of video
object segmentation and tracking without the ground-truth [28] that are based on earlier
templates of an object work relatively well because the target object is usually a hand
or a finger. The hand and finger contain well identifiable features that can be used to
detect whether the tracker loses the target. Furthermore, the object detection methods
used for the tracker initialization can be applied to the last frames to test whether the
end point of the tracked trajectory contains the correct object.

Publication I showed that extracting higher level features from the tracking results can be
challenging. Typical object trackers operate at the pixel level and the resulting trajectory
often contains noise. Noise causes problems in the determination of derived quantities
such as velocity and acceleration, especially in the case of high-speed videos, where
movements between frames are very small (often less than a pixel). Consequently, filtering
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the trajectories is required. Testing and evaluation of different filtering algorithms for
the trajectory smoothing are described in detail in Publication I.

Finally, to reconstruct hand trajectories in 3D, tracking results from multiple views ob-
tained from normal and high-speed videos should be synchronized and combined. After
the synchronization and finding the corresponding trajectory points from multiple views,
3D trajectory reconstruction can be performed as discussed in Section 2.2.3. The 3D tra-
jectory reconstruction and results are described in detail in Publication II and Publication
III.

3.4 3D Touch-Screen Experiment

The applicability of the proposed framework is demonstrated in this work with an HCI
experiment using a stereoscopic 3D touch-screen setup. In the stereoscopic presentation,
the left and right eyes see different stimuli and a depth effect is perceived. However,
the depth effect is illusory, which means that the perceived depth is contradicting with
the location of the screen. This experiment was built to investigate if different perceived
depths affect hand movements and the interaction experience. The data collection, test
subject selection, and part of the planning of the experimental setup was carried out at
the Institute of Behavioural Sciences of the University of Helsinki, Finland.

3.4.1 Data

In the experiment, test subjects were advised to perform intentional single finger point-
ing actions from a trigger-box (Cedrus RB-530 response pad) toward a visual stimulus
that was at a different parallax than others on the touch-screen (BenQ XL2420Z Dis-
play with DigiTouch 24" Touch Overlay). Hand movements were recorded with a Mega
Speed MS50K high-speed camera equipped with a Nikon Nikkor AF-S 14-24 mm F2.8G
objective lens fixed at a focal length of 14 mm. In addition, a normal-speed Sony HDR-
SR12 camera was used. The high-speed camera was positioned on the right side of the
test setup, and the distance to the screen was approximately 1.25 meters. The normal-
speed camera was mounted above the touch-screen. The lighting was arranged using
an overhead LED light panel 85 cm above the table surface. The test subject sat at a
distance of approximately 65 cm from the touch-screen and the trigger-box was placed
approximately 40 cm away from the test subject. The setup is illustrated in Figure 3.3.

The data for the full 3D touch-screen experiment was collected by using 20 test subjects.
There were 10 targets of 100×100 pixels (approx. 28×28 mm) arranged in a circle
formation on the screen. The formation of the targets is shown in Figure 3.3. The
selected target to be pointed at on the touchscreen was indicated by parallax disparity
or by color information. The disparity defines the difference in the target object locations
between the images seen by the left and right eyes causing the target object to appear in
front or behind the screen. A disparity of 6 pixels means that the object appears clearly
in front of the screen and a disparity of −2 pixels means that the object appears slightly
behind screen.

Pointing actions were divided into nine blocks. Each of the test subjects did 40 practice
pointing actions in order to become acquainted with the test setup. The practice pointing
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Figure 3.3: 3D touch-screen experiment setup: (a) an image of the pilot stage
setting; (b) a drawing of the finalized settings with distance measurements.

actions, blocks one and two with 20 pointing actions each, made use of targets with
disparities of 6 and −6. After the practice rounds, the test subjects performed four
rounds of 40 pointing actions toward disparities 2,−6, 6,−2. These were blocks three
to six. After the main tests, two rounds of 40 pointing actions, blocks seven and eight,
where the disparity changed during the pointing action were performed, and 40 control
tests (block nine) were also done. These used color information instead of the change in
the disparity to indicate the target to be pointed at. In total, the experiments resulted
in 6400 pointing actions performed by the test subjects.

All the pointing actions were recorded with the normal-speed camera. The high-speed
videos were recorded so that the first ten pointing actions of each block were recorded and
after that every third until the end of the block, resulting in a maximum of 20 recorded
pointing actions per block. This limitation was needed because of the memory capacity
of the high-speed camera.

3.4.2 Comparison of Trackers

There is still lack of consensus about which performance measures should be used in
tracker evaluation [11]. Thus, cross-paper tracker comparison can be hard due to unequal
performance measures and non-standard video test sets. The lack of generalized tracking
evaluation sets has given rise to a number of online object tracking benchmarks [119,
98, 11, 57, 58, 56] for the benefit of tracking algorithm researchers searching for a good
online platform with equal measures and easy-to-use tracking evaluation kits.

Selected Methods

The tracker selection for this research included trackers for which source code was avail-
able, and which had appeared in the latest tracking benchmark articles or had provided
good results in their original papers. Moreover, the novelty value of each particular
tracker influenced the choice between them. It should be noted that tracking algorithms
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have evolved quite rapidly over the last few years. The aim of the tracker selection for
the 3D touch-screen experiments was to find a tracker suitable also for the high-speed
videos in gray-scale and real-time usage, and this ruled out some of the trackers. The
selected trackers with information about the representation model and motion estimation
method used are shown in Table 3.1. The trackers used both in the normal-speed and
high-speed video tests are shown with a white background, the trackers used only in the
high-speed video tests are indicated with a light cyan background and the trackers used
only in the normal-speed video tests are visualized with a light gray background.

The KCF is an improved version of the kernelized correlation filters introduced in [42].
The tracking with KCF [43] is initialized by cropping out a window of a fixed size from
the input image (double the target size) at the target location and updating the object
model. The object model is based either on pixel intensity values or the HOG features.
The original image is weighted by a cosine window so that the pixel values near the
boundaries are weighted to zero. This is done to eliminate discontinuities in the Fourier
domain representation because the Fourier transform is periodic and does not respect the
image boundaries. The new location of the object is calculated by evaluating the classifier
response at all possible sliding window shifts and finding the maximum response, i.e., the
point where the correlation is the highest. When a new location is found, new parameters
for the object model are linearly interpolated with the ones from the previous frame to
provide a short memory for the tracker [43]. The KCF2 method introduced in [110]
is an extended version of the KCF method with a scale estimation and color-names
features [107].

Another improvement to the KCF, sKCF was proposed in [79]. The sKCF method re-
places the cosine window with an adjustable Gaussian windowing function to support
target size changes in order to produce better background-foreground separation. The
new appearance window size is estimated with a forward-backward optical flow strategy.
It extracts relevant key-points of the target area at the successive frames and then esti-
mates the scale change by analyzing the pair-wise difference. The STAPLE method [4]
extends the KCF approach with color histograms as an additional representation which is
robust to deformation, since they do not depend on the spatial structure within the image
patch and for scale estimation. In [56], an improved version of the STAPLE method, the
STAPLE+ method, was proposed. While the original algorithm extracts HOG features
from a gray-scale image, the STAPLE+ method relies on HOG features retrieved from
a color probability map, which are expected to better represent the image patch color
information.

Another tracker based on the correlation filters, SCT [15], decomposes tracking into two
stages: disintegration and integration. In the first stage, multiple cognitive structural
units, attentional feature-based correlation filters (AtCFs), are generated. Each unit
consists of an attentional weight estimator and KCF. Each AtCF utilizes a unique pair
of features, a six-channel average of RGB and LAB color, and a 31-bin HOG, in addition
to a kernel of Gaussian, polynomial, or linear types. In the integration step, the object
appearance is expressed as a representative combination of AtCFs, which is memorized
for future usage. The KCF is extended with a spatial context model between the target
and its surrounding background in the STC [122]. The STC first learns the spatial context
model between the target and its surrounding background from the target location in the
previous frame based on their spatial correlations in a scene by solving a deconvolution
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Table 3.1: The selected tracking methods for the experiments. Representation:
Binary Pattern (BP), Color Histogram (CH), Color Histogram of Oriented Gra-
dients (CHOG), Color Names (CN), Gaussian Kernel (GK), Histogram of Ori-
ented Gradients (HOG), Principal Component Analysis (PCA), Pixel Intensity
(PI), Structured Support Vector Machine (SSVM). Motion estimation: Coarse
Sampling (CS), Dense Sampling (DS), Gradient Descent (GD), Gaussian Model
(GM), Particle Filter (PF), Random Sampling (RS).

Method Representation Motion
Estimation

High-speed tracking with kernelized correlation filters
(KCF) [43]

HOG, PI DS

Fast visual tracking via dense spatio-temporal context
learning (STC) [122]

PI DS

Incremental learning for robust visual tracking (IVT)
[90]

PCA PF

Structured output tracking with kernels (struck) [37] SSVM, Haar, PI RS
Real-time compressive tracking (CT) [123] Haar DS
Fast compressive tracking (FCT) [124] Haar CS, DS
Hough-based tracking of non-rigid objects (HT) [36] Hough GM
Log-Euclidean Riemannian subspace and block-
division appearance model tracking (LRS) [44]

PI PF

Robust object tracking with online multiple instance
learning (MIL) [1]

Haar DS

Robust object tracking via sparse collaborative ap-
pearance model (RSCM) [114]

PI PF

Online object tracking with sparse prototypes (SR-
PCA) [113]

PCA, PI RS

Tracking-learning-detection (TLD) [49] BP RS
High-speed tracking with kernelized correlation filters
v2 (KCF2) [110]

HOG, PI, CN DS

Structuralist cognitive model for visual tracking
(SCT) [15]

HOG, CH DS

Scalable kernel correlation filter with sparse feature
integration (sKCF) [79]

HOG DS

Sum of template and pixel-wise learners (STAPLE)
[4]

HOG, CH DS

Improved STAPLE tracker with multiple feature in-
tegration (STAPLE+) [56]

CHOG DS

Scale adaptive mean shift (ASMS) [111] CH GD
Distractor aware tracker (DAT) [86] CH DS
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problem. In the next step, the spatio-temporal context model is updated by using the
learned spatial context model. Finally, the object location is determined by maximizing
the confidence map. Moreover, for every Nth frame, the scale is updated. The object
location likelihood is defined as the sum of the conditional probability of the spatial
relationship between the object location and its spatial context, and a prior probability
which models the appearance of the local context [122]. The algorithm can be listed
under the hybrid methods because the context includes the target and its neighboring
background making it discriminative. Moreover, the context is also of the target and
background, giving it the means of a generative approach.

The IVT method [90] is a tracking method that incrementally learns a low-dimensional
subspace representation. The appearance model used in the IVT is an eigenbasis which
is formed by computing the eigenvectors of the sample covariance matrix. The IVT
learns the eigenbases during the object tracking process and can adapt online to changes
in pose, view angle, and the illumination of the target. A new incremental principal
component analysis (PCA) algorithm that correctly updates the eigenbasis as well as the
mean with a forgetting factor, given one or more additional training data, is an extension
of the Sequential Karhunen-Loeve algorithm [64]. The IVT uses a particle filter with an
affine image warp as a dynamic model for estimating the target object movement. An
affine image warp considers the translation, rotation, scale, aspect ratio and skew of the
object motion.

Like the IVT approach, the LRS method uses an affine image warp to model the object
movement [44]. During tracking, each image region is warped into a normalized rectan-
gular region by using the estimated affine parameters. In order to obtain the optimal
object state, the LRS uses an observation model and a dynamic model. The observation
model maps the similarity between the learned appearance model and the image region.
A dynamic model updates the particle filter and in order to estimate the optimal state, a
particle filtering approach is used. The appearance model is incrementally updated with
the image region which has the optimal state [44].

The SRPCA online object tracking method, developed by Wang et al. [113], also uses
an affine image warp to model the target motion between two consecutive frames. First
the algorithm samples candidate states and then uses an observation model to evaluate
them. As a result, the algorithm obtains the best candidate and the related occlusion
map. Then the target location is updated. Finally, the algorithm updates the observation
model fully, partially, or not at all based on the occlusion map of the sample.

The HT method is a tracking-by-detection approach to tracking non-rigid objects [36].
The method uses the generalized Hough-transform [2] as the representation model. The
target region is represented as a segmented area instead of a bounding box. This helps
when tracking non-rigid objects and is the main difference from most of the tracking
methods. A Gaussian motion model and a discriminative classifier are used in order to
find the best match for the segmented object region in the consequent frames. Finally,
the classifier is updated based on the new segmented target.

The MIL uses a set of Haar-like features that are computed for each image patch within
a specific search radius of the target location. A feature contains two to four rectangles
and each of them has a real-valued weight. The value of the feature is then a weighted
sum of the pixels in all the rectangles. The motion model is simply an area with a radius



48 3. Moving Object Analysis in 3D Touch-Screen Experiment

s where the object is equally likely to appear in the next frame. The image patches
within the area are then classified based on the features using a discriminative classifier.
The best matching image patch is used to update the tracker location. The positive and
negative sets of image patches are then cropped out around the new tracker location and
they are used to update the appearance model of the tracker [1].

The TLD method consist of tracking, learning and detector parts. The learning part
is used to initialize the detector in the first frame and to update the detector using a
positive-expert and the negative-expert. An explanation of the experts can be found
in [49]. In the initialization phase, 10 bounding boxes within a scanning grid which are
near the initial bounding box are warped by geometric transformations to generate 20
warped versions resulting in 200 synthetic positive patches. The negative patches are
collected outside of the initializing bounding box.

In the detector phase, an image patch is sampled from an image within the object bound-
ing box and then it is resampled to a normalized resolution (15×15 pixels) regardless of
the aspect ratio. The image patches are generated on all possible scales and shifts of an
initial bounding box with scale steps of 1.2, horizontal steps of 10 percent of the width,
and vertical steps of 10 percent of the height. The similarity between two patches is
evaluated using normalized cross correlation. The first part of the cascaded classifier is a
patch variance process where patches are rejected from further classification if the vari-
ance is greater than 50 percent. The second part of the cascaded classifier is an ensemble
classifier where each ensemble consists of n base classifiers. In each base classifier, a
number of pixel comparisons are made on the patch resulting in posterior values. Based
on the posteriors of individual base classifiers, the patch is classified as the object if the
average posterior is greater than 50 percent. The third part is the nearest neighbor clas-
sifier where the patch is classified as positive or negative. The patches that are classified
as positive are the object detector responses [49].

The tracking part of the TLD method is based on the Median-Flow tracker [48] with
added failure detection. The tracker works by selecting a set of points within a bounding
box. The points are then tracked using the Lucas-Kanade tracker [72] which generates
a sparse motion flow. Point predictions are then evaluated using the Forward-Backward
error [48] and normalized cross correlation. Half of the most reliable displacements are
used to estimate the bounding box movement using the median of the displacements. If
the displacement of a point prediction is more than ten pixels away from the median, it
is marked as a failed prediction. If a tracking failure is detected, the bounding box is not
returned by the tracker.

The integrator phase is used to combine the bounding boxes of the tracker and the
detector into a single bounding box output using the candidate window with the highest
similarity to the object model. The newly formed bounding box is then selected as the
new object. If neither the tracker nor the detector find the object, the TLD method
declares that the object is not visible. With this kind of approach TLD can effectively
handle short-term occlusions.

In the struck method, a kernelised structured output support vector machine (SVM) is
learned online to provide adaptive tracking. A budgeting method is used that prevents
the growth of the number of support vectors beyond a set limit that would normally
occur during tracking [37]. The struck method extends the Learning to Localise Objects
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with Structured Output Regression tracking method [6]. The principal idea of the struck
approach is to create positive samples from areas close to the object, still containing
the object, and negative samples further away from the object, only containing the
background. Using these positive and negative samples, the object in the next frame can
be detected by estimating the change in the object location using an SVM classifier to find
the most probable transformation. It finds a statistical correlation between the object of
interest and its local context based on the probabilities. Furthermore, the struck method
uses a confidence map and obtains the best location by maximizing a location likelihood
function of the object. When the new location of the object is found, the classifier is
updated with the current location and budget maintenance is carried out. The budget
maintenance removes support vectors with a minimum impact on the classifier. New
samples of the target object and background are taken. Based on the relevance of the
new samples, the model is updated. After that, the samples are optimized and the
bounding box is returned [37].

The basis for the CT method is a very high-dimensional multi-scale image feature vector
of Haar-like features which is multiplied with a very sparse random measurement matrix.
The random measurement matrix is computed only once at the beginning of the track-
ing. In compressed sensing, using a very sparse random measurement matrix enables an
efficient classification of the compressed projected features. The appearance model of
CT is generative as the object can be represented based on the features extracted in the
compressed domain. CT uses a naive Bayes classifier with online updates in the com-
pressed domain to separate the target from the surrounding background which makes the
tracker also discriminative [123]. The FCT and CT methods share the same algorithm
for most of the parts. The main novelty of FCT is a coarse-to-fine search strategy where
the object is first searched within a large search radius with large shifts of the sliding
window. After the coarse search, approximate object location is determined and the fine
detection is done in a smaller area with small shifts of the sliding window to find the
exact location of the target object [124].

The RSCM approach uses a collaborative model that includes a discriminative classifier,
sparsity-based discriminative classifier (SDC), based on holistic templates and a gener-
ative model, sparsity-based generative model (SGM), using local representations [114].
In the SDC, positive templates within a radius of a few pixels from the initialized tar-
get location are selected and normalized to the same size (32 × 32 pixels). Intensity
values are used as features. Object candidates in the current frame are sampled with a
particle filter, and for each particle, a confidence value for the SDC is calculated. The
confidence value is used in a likelihood function that combines the confidence value based
on the holistic templates, SDC, and the similarity measures based on the local patches,
SGM [114]. In RSCM, positive templates remain the same during the entire sequence, but
negative templates are updated after a few frames. In [114], the update was conducted
every fifth frame.

The DAT method [86] uses a color histogram-based Bayes classifier for differentiating
the object from the background. The DAT uses an additional distractor-aware model
which allows robust detection of distracting objects. The distractor-aware model works
by selecting possible object-distractors from the object surroundings and reduces their
impact on the combined object model. For localization, DAT uses votes based on the
combined object model and distance score based on the Euclidean distance to the previous
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object center to penalize larger inter-frame movements.

The ASMS [111] tracker extends the mean-shift tracking algorithm [18] by targeting the
problem of a fixed size tracking window. The ASMS encompasses a regularized scale
estimation mechanism. The regularization is done with a technique that the authors
named the forward-backward consistency check. This uses reverse tracking to check that
the object size has not changed mistakenly. In the case of scale inconsistency, the object
size is updated as a weighted combination of the previous size, the new estimated size and
the initial size. Another improvement is the introduction of a background ratio weighting
that uses the target background color information computed over its neighborhood in the
first frame.

Data

The dataset used for the tracker performance comparison in Publication I contained a set
of 11 high-speed videos with a spatial resolution of 800×600 recorded at 500 fps consisting
of 11 individual pointing actions. This dataset is referred to as Dataset I in the following
sections of this work. The videos were between 544 and 1407 frames long, and contained
10798 frames in total. The start-point for all the sequences was the same, but there were
ten possible end point areas on the touch-screen where the finger movement should stop.
The ground truth was annotated manually for every fifth frame and then interpolated
using spline interpolation to obtain the ground truth for every frame.

The dataset used for tracker performance comparison in Publication II contained a set
of 17 pointing action videos. This dataset is referred to as Dataset II in the following
sections of this work. Dataset II contains 17 test subjects with a varying appearance
of hands. These normal-speed videos were recorded using interlaced encoding with 50
fields per second and a resolution of 1440×1080 (4:3). A yet another deinterlacing filter
(yadif) [31] was used for deinterlacing with frame-to-frame conversion, producing 25 fps
videos, and a field-to-frame conversion producing double frame rate 50 fps videos. The
ground truth for the evaluation was done manually by annotating each frame in all the
17 videos. The corresponding high-speed videos were manually synchronized with the
normal speed videos.

Experimental Arrangements

The tracking experiments were carried out using the original implementations of the
authors of each method, except in the case of the MIL and KCF2 methods. For MIL,
the implementation by Luo [74], and for KCF2, the implementation by Vojir [110] are
used. The search area parameters of the trackers were tuned for the used datasets if the
implementation allowed this. This was done to see whether the trackers could perform
faster without losing their target. For the other parameters, the default values proposed
by the authors were used. To minimize random factors in tracking, the tracking methods
were run ten times for each video, and the results were averaged. In this research,
both background subtraction and the fixed location were used to initialize the trackers.
The fixed locations were used in the evaluation phase of the tracking algorithms and
background subtraction was used for automated finger location determination in the
large-scale video processing.
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Table 3.2: Tracking results for Dataset I : the percentage of correctly tracked
frames (TR%) and average center location errors (Err.), and the processing speed
(fps). The value ranges of the results are also shown. The best results are shown
in bold.

Method TR% TR% range Err. Err. range fps fps range
CT 79.43% 0-100% 18.43 3.5-76 99.97 63-121
FCT 17.14% 0-73% 58.74 16-92 118.73 72-150
HT 97.12% 36-100% 15.29 3.1-226 4.65 4-4.9
IVT 74.50% 15-100% 86.75 2.0-448 63.38 51-70
KCF 100% - 4.65 1.4-7.4 979.97 728-1236
LRS 20.51% 2-47% 291.32 76-540 8.79 7.8-9.4
MIL 93.82% 24-100% 11.35 2.8-138 0.55 0.4-0.6

RSCM 86.81% 40-100% 18.84 2.2-126 2.50 2.0-2.8
SRPCA 83.64% 24-100% 72.38 1.7-366 10.52 8.3-12.5
STC 100% - 5.13 2.3-6.9 1291.03 1156-1330
struck 100% - 4.72 1.6-6.5 118.62 99-153
TLD 68.48% 16-100% 43.55 4.4-139 16.46 8.8-24

The performances of the selected trackers were compared against the ground-truth. The
accuracy of the trackers is measured as the distance from the ground-truth center point
to the tracker’s center point. This is known as the center location error. The trackers
were evaluated using Dataset I in Publication I. The tracking rate was evaluated as the
percentage of frames where the tracking window center location was within 32 pixels
from the ground truth center location. The value of 32 pixels for the threshold was
experimentally selected - values above this threshold would imply that the tracking had
completely lost the target.

In Publication II, the tracking evaluation moved to normal-speed video tracking where
eleven trackers were evaluated with Dataset II. The trackers were evaluated using both
backward and forward tracking and at the rates of 25 fps and 50 fps. The threshold for
the calculation of the percentage of correctly tracked frames was lowered to 16 pixels.
The new value of 16 pixels for the threshold was also experimentally selected and values
above the threshold would imply that the tracking had drifted half way of the target.

Results

High-speed video tracking was the first stage of the research and 12 trackers were eval-
uated with 11 high-speed videos. In Publication I with Dataset I, the tracking rate of
100% was achieved by three of the trackers: KCF, STC and struck. Table 3.2 shows the
results of this evaluation. The KCF method provided the best overall results with the
smallest average center location error of 4.65 pixels. Also, struck and STC achieved a
high degree of accuracy. The KCF method was also the second fastest to compute, 980
fps, and was selected for the further use during this work.

The fps measure used in the experiments was calculated without including the image
loading times in the calculations to get the raw frame processing speed. The highest
value was measured for the STC method which showed the best average performance
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and for KCF which had the peak performance of over 1200 fps. Both of these achieved
processing speeds which were well over the frame rate of the videos. However, it should
be noted that due to the different programming environments (MATLAB, C, etc.) and
levels of performance optimization, these results should be considered only directive.

Normal-speed video tracking was the second phase of the research and 11 trackers were
evaluated with 17 normal-speed videos. All tracking methods were evaluated for nor-
mal frame rate (NFR) and double frame rate (DFR) videos. Moreover, in addition to
the normal forward tracking (FT), backward tracking (BT) from the end of video to
the beginning was evaluated. Thereby, the following four tracker evaluation cases were
considered: NFR/FT, DFR/FT, NFR/BT and DFR/BT.

The accuracy of tracking was measured with the center location error (Err.) in respect
to the ground truth. The percentage of correctly tracked frames (TR%), i.e. the frames
where the distance between the ground truth and the estimated location was below a
fixed threshold (16 pixels), was used as the measure of robustness. The results for all the
test videos are shown in Table 3.3.

Table 3.3: Tracking results. The best results for Forward and Backward tracking
are given in bold.

Forward tracking Backward tracking
NFR DFR NFR DFR

Method Err. TR% Err. TR% Err. TR% Err. TR%
Staple 141.7 44 102.5 43 129.5 45 14.6 84
Staple+ 146.7 43 102.6 40 113.5 43 14.9 82
DAT 100.3 41 52.2 46 41.8 44 33.9 51
KCF 120.3 42 45.5 50 72.4 62 10.8 83
KCF2 145.0 49 63.1 61 56.3 75 19.4 86
ASMS 146.1 39 109.6 28 52.7 40 53.7 41
SCT 90.6 57 25.7 77 29.7 83 17.6 81
STC 136.4 39 52.1 51 41.2 75 13.6 83
sKCF 146.4 46 71.1 49 136.4 48 29.3 80
STRUCK 117.3 46 43.4 62 294.6 15 112.6 38
IVT 177.4 43 183.7 31 374.4 7 336.2 10

The best forward tracking results with 50 fps were produced by the SCT method, with
77% correctly tracked frames, and the best backward tracking results were achieved with
the KCF2 tracker, with 86% of correctly tracked frames. The KCF2 was selected for the
further use in this work because the backward tracking provided better results overall.

In the experiments, a tracking failure detection method was needed in order to be able
to reliably process a large number of trajectories in the case of all the normal-speed and
high-speed videos collected in the experiments. The implemented failure detection system
was based on the fact that the trajectory had to end in a specific area of the projected
touch-screen point or in an area near the trigger-box start button. If the correct end
point was not reached in the high-speed videos with the default gray-level features used
by the KCF tracker, the tracking was repeated with more computationally demanding
HOG features. If the tracking failed again, it was considered incorrect and was excluded
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Table 3.4: Minimal mean of Location Errors (LE), Velocity Errors (VE), and
Acceleration Errors (AE) with different filtering methods. In the parentheses is
the filtering window size which gave the best result for the filter. The best results
are shown in bold.

Moving Savitzky-
Error Average LOWESS LOESS Golay TVD UKS original
LE 4.6057 (3) 4.6057 (4) 4.6029 (34) 4.6030 (25) 4.6474 4.6033 4.6099
VE 0.0440 (17) 0.0419 (18) 0.0415 (34) 0.0428 (31) 0.2052 0.0421 0.2085
AE 0.0137 (83) 0.0118 (23) 0.0119 (53) 0.0137 (97) 0.3026 0.0125 0.3074

from further analysis. In the normal-speed videos, if the tracking with KCF2 failed to
reach the trigger-box button, it was considered incorrect and was excluded from further
analysis.

3.4.3 Comparison of Filtering Methods

Raw trajectory data usually contain small spatial location fluctuations that can make
the calculation of accurate velocities and accelerations impossible. Consequently, filter-
ing raw trajectory data with an appropriate filtering method is needed. For filtering
the trajectory data, eight filtering methods were considered: MA [99], KF [116, 117],
EKF [78], UKF [47], LOESS [16], LOWESS [16], S-G [82], and TVD [13].

Data

The trajectories produced by the best performing trackers were used to evaluate the
filtering performance of each of the methods. The trajectory data for Publication I was
produced by the KCF tracker, and the trajectory date for Publication II was produced
by the SCT and KCF2 trackers. The derivatives of the location data, velocity and
acceleration, were used in addition to the location data in Publication I. This was done
in order to gain an idea of how much filtering was needed to produce appropriate results
also for the location derivatives.

Results

Table 3.4 summarizes the trajectory filtering results of Publication I. The results were
calculated by averaging the results from all the dataset trajectories tracked with the
KCF tracker. The window size and method parameters were optimized separately for
each filtering method. Filtering with the unscented Kalman smoother (UKS) and TVD
are included for comparison. The UKS method was selected to represent the Kalman
smoother algorithms since the Extended Kalman Smoother and UKS produced similar
results. Velocity and acceleration curves for trajectories obtained using Kalman filtering
based methods were computed using the Kalman filtering motion model. For the trajec-
tories obtained using the other filtering methods, velocity and acceleration curves were
computed based on Euclidean distances between the trajectory points in consecutive
frames.
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It was found that the LOESS filtering method achieved the best results for the purposes
of this work, providing the lowest errors in velocity, acceleration and location results,
with the most constant filtering window sizes, against the ground truth values. Based on
the findings, the LOESS filtering method with the window size of 40 frames was selected
for the further use during this work. Moreover, during the experiments it was noted
that filtering the location data alone was not enough to get appropriate results from the
velocity and acceleration data. Therefore the velocity and acceleration data were filtered
after they were calculated from the location data. Moreover, the LOESS filtering method
was the least sensitive to the window size with optimal filtering results from a window
size range of 34 to 53.

Based on the results in Publication I, the filtering evaluation in Publication II was con-
ducted only for the LOESS method with different window sizes and using the trajectories
retrieved from the double frame rate videos. The forward and back-tracking trajectories
of the best performing trackers (SCT and KCF2) were used for the filtering evaluation.
The efficiency was evaluated against the ground truth using the mean of location error
measure. The results are shown in Table 3.5.

Table 3.5: Mean and variance (in parentheses) of the location error for the
original and smoothed trajectory data with three filtering window sizes. The best
results are shown in bold.

Case Original Filtered (window size)
5 7 9

DFT/FT [SCT] 4.02 (6.08) 3.97 (5.10) 4.40 (6.62) 5.29 (10.78)
DFR/BT [KCF2] 3.27 (4.48) 3.32 (4.36) 3.68 (5.29) 4.30 (8.47)

The filtering with a span size of five frames reduced the variance of the location error
measure. For the DFT/FT tracking case with the SCT tracker, filtering also marginally
improved the location error.

3.4.4 Video Synchronization and 3D Reconstruction

Publication III introduced the automated video synchronization of the normal-speed and
high-speed trajectories to the framework. This was done to successfully reconstruct the
trajectories in 3D for each of the videos.

Data

Publication II provided the initial 3D reconstruction results using seven manually aligned
corresponding videos from Dataset II. In Publication III, tracking, video synchronization
and 3D reconstruction of the framework were considered with all the available normal-
and high-speed videos and trajectories.

Results

Seven manually aligned corresponding normal- and high-speed videos were used to eval-
uate the 3D reconstruction error in Publication II. The average re-projection error of all
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the trajectory points used in the initial 3D reconstruction experiment comprised 3.89
pixels for the high-speed and 5.72 pixels for the normal-speed camera videos.

In Publication III, all the available normal- and high-speed videos were considered, and
therefore manual alignment would have been too laborious and there was a need for
automatic alignment. In order to automatically align the normal-speed videos with
the high-speed videos, the following procedure was performed. First, the normal-speed
videos were divided into blocks, of one to nine, based on the longer breaks in pointing
actions caused by the memory capacity of the high-speed camera. A coarse alignment
was performed using timestamps accompanied by the high-speed videos and the starting
time of the normal-speed videos. The final step of the trajectory synchronization was
to find a point of the finger trajectory which could be detected from both videos. The
trigger box had a white button that was visible in both views, and the point where the
trajectory passed the button was used for the trajectory time event matching. The final
alignment was done by searching for the delay which maximized the correlation between
the timestamp sequences for normal-speed and high-speed videos. As it can be seen in
Figure 3.4, the timestamp correlations for the corresponding events passing the white
button are periodical. Therefore, simply finding the minimal timestamp difference would
not work. The figure presents an example of synchronizing a block of pointing actions.
In Figure 3.4a, all the samples are well correlated within a tight time range. Figure 3.4b
presents a challenging situation and based on the figure it is impossible to say which
time difference gives a good result. This is mainly caused by the low count of sequences
which were tracked correctly in both videos because only correctly tracked videos were
included in the video synchronization process.

The normal-speed videos contained 6400 pointing actions out of which 6125 were detected
as correct pointing actions without interfering objects or another hand in the view. There
were in total 4216 out of 6125, 69%, of good trajectories tracked from the normal-speed
videos. Moreover, 2597 high-speed videos were recorded out of which 1999 in total,
77%, were tracked correctly. In total, 1161 of the pointing actions were correctly tracked
from the both videos and were synchronized correctly. Since there was no ground truth
data for the 3D trajectories, the 3D reconstruction accuracy was assessed by using the
re-projection error measure [39].

The average re-projection error for all the trajectory points used in the initial 3D re-
construction experiment comprised 3.89 pixels for the high-speed and 5.72 pixels for the
normal-speed camera videos. These values correspond to a one to three millimeter de-
gree of accuracy in real-world units. However, the mean re-projection error for all the
trajectory points used from 1161 videos in the 3D reconstruction experiment was 31.2
pixels. This average re-projection error corresponds to approximately ten millimeters
in real-world units. The resulting 3D trajectories are visualized in Figure 3.5. Units
displayed in the figure are centimeters and the high-speed camera is placed at (0,0,0) lo-
cation. Moreover, example trajectories from one block of pointing actions are visualized
in Figure 3.6. Features calculated from the corresponding trajectories are visualized in
Figure 3.7. One line-style in these two figures corresponds to a single pointing action.

It was noticed that the normal-speed videos did not capture the full trajectories of the
hand movement. This was caused by the touch interface in front of the monitor blocking
the view of the fingertip near the monitor surface. As a consequence, the depth informa-
tion from the 3D reconstruction was used only to supplement the trajectories obtained
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Figure 3.4: Example of synchronizing two blocks of pointing actions. (a) High
correlation in one time range (around 3.34 seconds). (b) Low correlations within
the whole time range.

from tracking the high-speed videos. The depth information was interpolated, using a
fourth order polynomial, to match 500 fps and the missing parts at the end of the tra-
jectories were extrapolated with the last known depth information. This resulted in full
3D trajectories where the error in depth information was approximately ten millimeters
and the error in the other two axes was less than five millimeters.

3.4.5 Trajectory Analysis

It is important to develop appropriate metrics for the purpose of analyzing the experi-
ence of intentional hand movements in HCI and to gain more understanding about the
movement control. According to [27], the features of interest in time and space of the
hand movements include the point of the maximum velocity, maximal acceleration and
deceleration. The points where the deceleration starts, as measured from the start-point
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Figure 3.5: Reconstruction results of all the 1172 pointing actions. The different
colors indicate trajectories toward different targets.

and/or from the end-point, also provide useful information when defining the smoothness
and stability of the movement. The features to be used for trajectory analysis in this
work were selected based on this information.

Multiple features of the hand trajectories were measured in the experiments. The features
included the acceleration, velocity as well as the movement time and reaction time. The
reaction time is the time that it took for the test subject to determine the target after a
test image was shown on the screen. The movement time is the time that it took for the
test subject to reach the touch-screen surface from the trigger-box.

The used features were calculated based on the tracking data which can provide location,
velocity, acceleration and accuracy measures. These can be calculated from tracked 2D
trajectories or from reconstructed 3D real-world trajectories. The velocity of a moving
object was calculated as the distance it traveled with respect to time. The velocity is
the movement of the object between two consecutive frames. To calculate the distance,
a Euclidean distance formula is used. The Euclidean distance d between points p and q
in a n-dimensional case is calculated as

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2, (3.1)

where qi and pi are the i-dimension components of the points p and q. The velocity can
be negative or positive. The magnitude of velocity is speed, which can only be positive.
Velocity v can be calculated as

v =
4d
4t

, (3.2)
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Figure 3.6: Trajectories from one block of pointing actions are visualized from
two different viewpoints. The different line-styles indicate different pointing ac-
tions.

where 4d denotes displacement and 4t change in time. The acceleration can be calcu-
lated as the first derivative of velocity.

Data

The data for the trajectory analysis was selected from the main test blocks with disparities
of 2, −2, 6, and −6. There were 705 3D trajectories in total, 82 with disparity of 2, 196
with −2, 252 with 6, and 175 with a disparity of −6.

Results

Eleven extracted trajectory features of the trajectories of high-speed videos supplemented
with depth information were used for the statistical analysis. The analysis was conducted
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Figure 3.7: Visualization of speed and acceleration features calculated from the
trajectories of Figure 3.6. Line-styles correspond to the ones used in Figure 3.6.

using a two-sample t-test, with a 95% confidence interval. The analysis showed that there
were features that had a statistically significant difference in their means. The differenti-
ating features were: the mean velocity, maximum velocity, maximum acceleration, mean
2nd sub-movement acceleration and the point where the 2nd sub-movements accelerated
after deceleration. However, between two pairs of disparity classes, {2, -2} and {2, -6},
none of the features varied by their means in a statistically significant way. Moreover,
the median velocity, maximum 2nd sub-movement velocity, maximum 2nd sub-movement
acceleration, mean 2nd sub-movement velocity, the start point of the deceleration and
the starting point of acceleration in the 2nd sub-movement features did not provide sta-
tistically significant differences between any of the used disparity pairs. The results are
shown in Table 3.6.
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Table 3.6: Rejection of the null hypothesis for the disparity pairs using the
selected features.

Features Disparity pairs Total
2 -2 2 6 2 -6 -2 6 -2 -6 6 -6

Mean velocity 0 0 0 1 0 1 2
Median velocity 0 0 0 0 0 0 0
Maximum velocity 0 1 0 0 0 1 2
Maximum acceleration 0 0 0 0 0 1 1
Maximum 2nd sub-movement
velocity

0 0 0 0 0 0 0

Maximum 2nd sub-movement
acceleration

0 0 0 0 0 0 0

Mean 2nd sub-movement veloc-
ity

0 0 0 0 0 0 0

Mean 2nd sub-movement accel-
eration

0 1 0 1 0 0 2

Deceleration start Point 0 0 0 0 0 0 0
2nd sub-movement start point 1 0 0 0 0 0 0 0
2nd sub-movement start point 2 0 0 0 1 1 0 2
Total 0 2 0 3 1 3 9

3.5 Discussion

A framework for measuring hand movements, in particular pointing actions, in HCI
situations using a multi-camera system consisting of a normal-speed and high-speed
camera was introduced. The framework was evaluated with a large-scale study of HCI.

A tracking accuracy of 4.65 pixels and 100% correctly tracked frames was achieved in
Publication I with a KCF tracker. The KCF2 tracker, with 86% of correctly tracked
frames and an average accuracy of 19.4 pixels, produced the best results in Publication
II. Moreover, the full set of normal-speed videos were tracked with a 69% success rate
and the full set of high-speed videos with a 77% success rate. The rates indicate that
there is still lots of room to improve, but nevertheless the selected methods provided a
good solution to track moving objects robustly and accurately enough for the objectives
of this work.

The accuracy of ten millimeters for the depth information and the accuracy of five mil-
limeters on other two axes achieved in the 3D reconstruction with the complete framework
provides a good starting point for further analysis and improvements, even though the
initial test in Publication II delivered better results. The larger error that was measured
from the full dataset was likely caused by tracking shifts and possible video synchroniza-
tion issues. Moreover, there were times when the trigger-box and the monitor moved
when a user was performing the test. This could have had an impact on the full dataset
results as well.

The backward tracking used in the normal-speed videos and the forward tracking used
in the high-speed videos caused the trajectories to be the most accurate at different ends
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of the movement. This made the inlier search, for the essential matrix calculation, more
difficult for the 3D reconstruction task. The issues raised during the synchronization and
3D reconstruction stages could be avoided with a more thorough planning of the setup
and more careful selection of the equipment used. Moreover, using trackers which are
capable of tracking the target using a rotating bounding box could provide more accurate
center locations [10, 68].

The trajectory features that showed statistically different means in the results could
potentially be used to differentiate the pointing action performed towards different dis-
parities. However, more features or possibly combinations of features should be used to
gain a better understanding of how the movement differs between the different disparity
classes. As expected, the smaller disparity changes of 2 and -2 had a minor impact on
the hand movements according to the computed features whereas the disparity values of
6 and -6 had a bigger impact. The large positive disparity of 6, where the target appears
in front of the screen, seemed to have a more prominent effect on the pointing actions
than the others. Overall, the velocity features were better to distinguish the pointing ac-
tions toward targets at different disparities than the acceleration features. Furthermore,
features that would produce clear difference between the trajectories would be needed to
gain a better understanding of the hand movements towards targets at different dispari-
ties.

It was learned during the 3D touch-screen research that it would be beneficial to use well
fixed test setups to prevent critical parts of the equipment from moving. Moreover, the
late decision to include a normal-speed camera in the framework resulted in issues that
could have been solved in the setup phase of the project. These issues were mainly the
synchronization and positioning of the normal-speed camera in the setup. The issues
could have been corrected with a more thorough planning of the experiments. Never-
theless, the framework used achieved good accuracy and a few statistically meaningful
features describing the difference of trajectories toward targets at different disparities
were found. This would indicate that there were minor differences in the pointing ac-
tions towards the targets at different disparities.

Further tuning of the tracker parameters should be conducted, or a new selection of
trackers should be considered for high-speed or normal-speed video tracking in order to
achieve sub-pixel accuracy and faster operating speeds. Furthermore, specific painted
markers could be an unobtrusive way to find the sub-pixel accurate location of the mov-
ing object, but this approach is limited to piecewise rigid objects. A failure detection
system using, for example, rapid acceleration or velocity changes could be added to the
frameworks of both applications to further assist the failure detection systems.

Video synchronization with multiple known locations, which could be used to synchronize
the system, should improve the accuracy in the case of different imaging rates. However,
these issues could be avoided if the cameras use accurate and synchronized time-stamping
systems. Multi-camera setups and better imaging equipment could provide better results
for the 3D reconstruction.
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Chapter IV

Moving Droplet Analysis in a Chemical Mass Transfer
Experiment

This chapter contains the main findings of the chemical mass transfer experiment. The
experiment focuses on liquid-liquid extraction using droplets in a glass column. An
imaging setup was designed and constructed to view parts of the glass column in order
to follow the droplets moving inside the column. This chapter covers the main ideas and
motivations behind the results presented in the publications. The detailed descriptions
are provided in Publication IV and Publication V.

4.1 Background

Liquid-liquid extraction is used in a variety of industries, such as the petroleum, food,
hydrometallurgy, and chemical industries. It is widely used mainly due to its simplic-
ity and good mass transfer rate [53]. Mass transfer affects the design of liquid-liquid
contactor units utilizing reactive extraction. In order to design the units, it is essential
to comprehend and quantitatively determine the effect of mass transfer in the process.
Mass transfer from one liquid to another involves solute transfer from the bulk to the
interface, interfacial reaction, and transport from the interface to the bulk. The mass
transfer in solvent extraction depends, for example, on droplet sizes, velocities, and con-
centrations [Publication IV ].

In single droplet experiments, a droplet rises or settles in a column filled with liquid.
The droplet is collected from the column outlet and its concentration is analyzed. In
conventional single droplet experiments, the conditions inside the droplet during its rise
and settling phase are not monitored and the mass transfer leads to concentration changes
inside the droplet and at the interface during the rise and settling phases. Due to the
mass transfer occurring during these phases, it is valuable to be able to monitor droplet
velocities and concentration profiles inside the droplet.

The image-based analysis of droplets in chemical mass transfer experiments allows au-
tomated real-time concentration measurement for substances which changes color due
to the concentration changes, whereas a common concentration analysis would require
collecting samples after or during the experiment. By tracking droplets in the column
using computer vision, it is also possible to determine their velocities and accelerations
and other features automatically which would be laborious to do manually.
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The concentration analysis inside a droplet is based on the observations of image intensity
changes inside the droplet. The presence of color changes enables the concentration
analysis to be made via imaging. The color changes can be observed from a video
recording of moving droplets by a digital camera. Concentration analysis by imaging
is based on the Lambert-Beer law. The Lambert-Beer law [100] explains the linear
relationship between concentration and absorbance. It can be defined as

A = εlc (4.1)

where A is the absorbance, ε is the molar absorptivity coefficient, l is the absorption path
length and c is the analyte concentration. Moreover, transmittance T is defined as

T = I/I0 (4.2)

where I is the light intensity after passing through the sample and I0 is the initial intensity
of light before entering the medium. The relation between A and T is then

A = log10 T = log10(I/I0). (4.3)

Furthermore, the Lambert-Beer law can now be formulated as

A = log10(I/I0) = εlc (4.4)

and finally, to get the concentration c, the following formula can be used:

c =
log10(I/I0)

εl
. (4.5)

These equations provide the background for the concentration analysis method used in
this study. More detailed explanations of the equations used are given in Publication IV.

4.2 Related Work

Liquid-liquid extraction is a method of separating compounds. It is used in a variety
of applications in chemical engineering, analytical chemistry and biology. The process
of liquid-liquid extraction can be better observed by minimizing the overall extraction
process to an interaction of single droplets. In this way, the factors that affect the process
can be reduced.

Chemical process evaluation and concentration analysis by using digital cameras and
mobile phones have been conducted, for example, in the following laboratory experiments.
The corrosion rate of iron in simulated seawater was determined in [80] and crystal violet
concentration was analyzed in [54]. In [51], Gatorade instant powder dry mix energy
drink, blue food coloring solution and iron chloride hexahydrate concentrations were
analyzed with multiple devices including camera phone and a digital camera. Moreover,
copper sulfate concentrations were analyzed in [59] using an additional sample box to
prevent stray lighting from interfering with the analysis. However, these experiments
were performed manually using solutions in stationary cuvettes instead of automatically
analyzing moving droplets.
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The relationship between the droplet size and extraction efficiency using microdroplets
was determined in [87] with a mass transfer coefficient calculation. Moreover, the au-
thors determined that the reaction time until saturation is directly proportional to the
droplet radius and that their mass transfer coefficients agreed with the theoretical re-
sults. In [81], a photographic method was used to determine droplet sizes. An imaging
setup to determine the volumes, spacing and velocities of droplets was used in [108]. The
flow pattern and concentration front inside a droplet has been visualized in [94], but the
authors did not determine the concentration of the droplets. The concentration profiles
near the phase boundary were measured indirectly using a laser induced fluorescence to
track tracer concentrations in [3]. However, the direct quantitative determination of the
concentration from droplets using image analysis has not been published before.

4.3 Data

The data collection for the chemical mass transfer experiments was carried out by the
research group of computational fluid dynamics at the school of engineering science at
LUT. The chemical mass transfer experiments were conducted using a glass column
measuring 45 mm×45 mm×375 mm. The droplets formed at the flat tip of a needle at
the bottom of the column. The setup was illuminated with a 35W LED panel which
measured 300 mm×300 mm with a color temperature of 3000 K. The droplets were
collected using a small funnel at the top of the column. Two cameras were positioned
to view approximately the areas shown in Figure 4.1. An AVT Oscar was positioned so
that it captured the top region of the column, while a Canon Legria was positioned to
image the middle part of the column.

An AVT Oscar F-510C FireWire 8-bit camera was used for the size and concentration
analysis, and a Canon Legria HF R47 was used for the velocity and acceleration measure-
ments. Two cameras were needed because the AVT Oscar provided the manual settings
of the camera parameters, but only produces the rate of 7.5 fps, which was not fast
enough for the velocity and acceleration measurements. The Canon Legria on the other
hand provided a rate of 50 fps, but it did not provide the manual settings of the camera
parameters which were needed for the accurate color analysis.

Both cameras were calibrated using a 5 mm checkerboard pattern. During the experi-
ments, a 5 mm grid was in the view of the Canon Legria providing the scale information.
The grid was also placed in the view of the AVT Oscar before the actual experiments to
set the scale. During the actual experiments, the grid was removed to allow the better
visibility of the droplets. Subsequent RGB frames captured by the AVT Oscar are shown
in Figure 4.2a. It can be seen from the figure that the green channel is a bit overexposed
and the droplets are barely visible. However, as it is visualized in Figure 4.2b, when the
RGB values are modified and the images made gray-scale, the droplets are clearly visible
in all of the subsequent frames.

The color versus the concentration calibration was done using droplets with known con-
centrations. Four different concentrations with varying feed rates and two different nee-
dle sizes were used. In total, 61 chemical mass transfer experiments were performed and
recorded with both cameras resulting in 122 videos analyzed. The proposed setup was
used to collect data for Publication IV and Publication V.
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Led Panel

Figure 4.1: The experimental setup for chemical mass transfer experiments.
Approximate camera views are marked with rectangles (1. AVT Oscar, 2. Canon
Legria).

4.4 Proposed Method

Object trackers for the task of droplet tracking were evaluated with a small set of videos
and a selection of trackers. The tested trackers included CT, IVT, LRS, MIL, SRPCA,
KCF and RSCM. The trackers were tested with a dataset containing eight droplet videos
recorded with the AVT Oscar camera. All the videos contained four frames of a moving
droplet. Two of the videos had the most visible droplets used in the experiments and six
of the videos had the least visible droplets used in the experiments. These were selected in
order to provide the highest available contrast and the lowest available contrast between
the droplet and the background. However, it was found that the performance of the
trackers was not sufficient. All the tested trackers lost the target after the first frame in
all the videos. Consequently, the processing pipeline visualized in Figure 4.3 was adopted.
Compared to the general flowchart in Figure 1.1 on page 14, the tracking is done in four
steps using tracking by detection. Moreover, the trajectory processing block is only used
to calculate the average velocities of droplets after calculating the real-world features.

The resulting images of each step in the pipeline are visualized in Figure 4.4. The pipeline
starts with a frame differencing method where the previous frame was subtracted from the
current frame. This method provided good initial detection results. It was complemented
by using Otsu’s method for thresholding [83] and small area removal to remove noise.
A morphological closing method was used to fill in the missing parts inside the droplet
region. Furthermore, the ellipse fitting method introduced in [101] was used to represent
the shape of the droplet. This provided the estimated contours of the droplet in the
cases where only half of the droplet or even less was visible in the binary image that was
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(a) (b)

Figure 4.2: The example images of one droplet experiment produced by AVT
Oscar: (a) subsequent RGB images; (b) corresponding gray-scale images based
on modified RGB images.

formed after the frame differencing and the binary operations used. The ellipse fitting
method was used based on the assumption that the droplets would assume an oblate
spheroid form when moving in the column.

The simplified process flow of the concentration analysis is shown in Figure 4.5. In
the figure, the factors that contribute the most to the concentration, absorbance and
volume, are visualized. The volume is calculated with the assumption of an oblate
spheroid shape using the minor and major axis measurements produced by the ellipse
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Figure 4.3: Image analysis steps for determining the droplet movement, size,
and concentration.
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Figure 4.4: Image analysis steps visualized with real images from the process.
The contrast of the images in the figure has been enhanced for visualization pur-
poses [Publication IV ].

fitting procedure. The absorbance A is calculated with Equation 4.3, where I is the light
intensity transmitted through the sample and I0 is the incoming light intensity. The light
intensity in the case of an image is the pixel value in the range of 0-255 when the 8-bit
camera is used. The concentration analysis is described in more detail in Publication IV.

Pixel VolumeAbsorbance Concentration 

Figure 4.5: The simplified process of the concentration analysis is presented.
The figure represents the major contributing factors, absorbance and volume,
relevant to the concentration determination [Publication IV ].

4.5 Results

Based on the comparison with the manual evaluation of the videos used, the processing
pipeline managed to detect all the droplets in the chemical mass transfer experiment
but not the ones with the smallest concentration, i.e. the droplets with the lowest
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contrast. The accuracy of the ellipse fitting method was not directly evaluated, but
the minor and major axis values had some fluctuation indicating small errors in the
correctness of the fits. However, the accuracy of the ellipse fit was not critical to the
concentration calculation because 15% of the outer edge region was cropped out before
the concentration analysis. This was done in order to exclude the areas affected mostly
by the light scattering.

The results of the concentration analysis were verified against reference samples analyzed
using spectrophotometry. Theoretically the smallest detectable concentration change,
based on the change of one unit in the red channel value, was approximately 0.15 mmol/L.
However, the measured reliability of the method, the width of the measured data dis-
tribution at each standard solution concentration, was approximately 2 mmol/L. This
translates to approximately 13 unit change in the pixel values.

In Publication IV, the velocities calculated for the droplets varied between 112 and
115 mm/s which were within the limits of terminal velocities, 117 and 118 mm/s. The
terminal velocity measurements corresponded well with the correlations of contaminated
systems. The ratios of the droplet minor axis to the major axis were also measured. The
measured values between 0.8 and 0.83 corresponded well with the estimated aspect ratio
of 0.83 provided in Publication IV. Moreover, this confirms the assumption of the oblate
spheroid shape.

In Publication V, computational fluid dynamics with a stagnant cap model for a rising
droplet simulation was used. The model is based on a concept of two zones, where one
is stagnant and the other is circulatory. The obtained experimental average droplet vol-
umes were 26 mm3 for the 0.8 mm needle and 9.5 mm3 for the 0.4 mm needle. The
corresponding average diameters of the droplets were 3.8 and 2.8 mm. These values
obtained from the experiments were slightly larger than the one obtained from the simu-
lation results, which were 22 and 8.3 mm3 respectively. A computational fluid dynamics
model of a non-deforming rising droplet with a rigid interface was used to fit an in-
terfacial reaction kinetic constant. However, the fitted value was much lower than the
experimentally determined one. Nevertheless, the mass transfer coefficients calculated
from the computational fluid dynamics model and the estimated coefficients based on
literature correlations agreed well.

4.6 Discussion

The proposed video-based analysis method was developed for monitoring of single droplets
and their reactions in a glass column. The method is based on the observed change of
color in the droplets when they react inside the column. The accuracy of the method
was evaluated with reference samples which were analyzed using spectrophotometry. The
method can be used to measure the concentration of a droplet which is inside the col-
umn. This enables direct monitoring of the reactions of individual droplets. The smallest
detectable concentration change corresponding to the pixel values of the 8-bit imaging
used, was approximately 0.15 mmol/L. The reliability of the method was approximately
2 mmol/L. The results provided promising results for reactions where color changes take
place during a reaction. Based on the results, the reactions would be quantifiable us-
ing the proposed method. Moreover, the method could be extended to analyze multiple
droplets at once.
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This method is not specific to the selected setup, but it can be applied to other reactions
and different setups where a detectable color change is present. Moreover, the spectral
responsiveness of the used sensor can be changed by using filters. Only the red channel of
the camera was used in this work, but the method is not limited to a specific color channel.
It is possible to use different color channels in the detection of other reactions. Moreover,
it is possible to change the illumination. Furthermore, the method is not limited to the
visible range, but to the range of the camera optics and sensors available. However, the
fluorescence or phosphorescence of the sample changes in the refractive index at high
analyte concentrations and light scattering in the sample can cause nonlinearity in the
calculations.

The reliability and accuracy of the method could be improved with better hardware. One
of these improvements could be, for example, using 10-bit or better imaging equipment.
Better sensors, 10- to 16-bit, and specific spectral sensitivity ranges in the imaging sen-
sor would benefit the color-based chemical reaction analysis with the help of properly
selected illumination. Moreover, modeling the light refraction and scattering at the edge
regions of the droplets would allow the inclusion of the edge region in the concentration
analysis. One possibility would be to have an additional camera at a different angle
to determine the light scattering and to calculate the optical paths of the edge region.
Moreover, a multi-camera setup would allow 3D reconstruction of the droplets. A high-
speed camera setup could be used in the concentration analysis in order to get better
understanding about the vortices formed inside the droplet. Moreover, formations, coa-
lescence, and breaking of droplets could be analyzed in depth with the high-speed video
material. Furthermore, different light sources could be considered for determining the
effects of light scattering at the outer edge region of the droplet. Finally, the spectral
sensitivities of the camera sensors should be considered, and possibly filters could be
added to filter out specific ranges depending on the use case and optical characteristics
of the materials used. Moreover, the spectral sensitivities of the sensor and optics define
what kind of reactions can be observed. Lastly, the illumination in specific bands of the
electromagnetic spectrum could also be used to further improve the system.
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Conclusion

In this work, a multi-camera framework for tracking finger movements was proposed
for studying HCI. Moreover, a video analysis based framework to analyze droplets in
a chemical mass transfer experiment was proposed for chemical reaction studies where
suitable color changes are present.

Considering the general framework for moving object analysis introduced in Figure 1.1
on page 14, it can be seen that most of the steps are common for both applications. The
experiment setup needed to be designed and built, and camera calibration for appro-
priate imaging was needed in both applications. The initialization phase used partially
approaches of the same kind in both applications. Mainly, this phase was performed
by using background subtraction which was used to initialize the tracking of the nor-
mal speed videos in the case of 3D touch-screen experiment, and to initialize and to
follow the moving droplets in the chemical mass transfer experiment. However, manual
initialization was used for the high-speed videos in the case of 3D touch-screen exper-
iment. The tracking was performed using specialized tracking algorithms in the case
of 3D touch-screen experiment, but a tracking by detection approach was used for the
droplet tracking in the chemical mass transfer experiment. Trajectory processing was
carried out in both cases. The trajectories were smoothed in the 3D touch-screen exper-
iment before calculating the real-world features. However, in the chemical mass transfer
experiment, the trajectories itself were not filtered or smoothed because it was only nec-
essary to determine the average values of velocities. Computing the real-world features
included forming 3D reconstruction in the 3D touch-screen experiment and determining
the sizes and the average velocities in the chemical mass transfer experiment. Further-
more, an analysis part could be added to both cases as the gathered real-world features
were analyzed in both cases.

The multi-camera framework was evaluated in the application of a 3D touch-screen ex-
periment. In order to select the best tracking methods for the task, a comprehensive
evaluation was performed. Even though the tracking rate of 100% was achieved with
the KCF tracker for the limited dataset of eleven high-speed videos, the KCF did not
manage to track all of the high-speed videos correctly. Moreover, none of the evalu-
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ated tracking methods managed to achieve a 100% tracking rate in the evaluation of
the dataset of 17 normal-speed videos. Trajectory post-processing and 3D trajectory re-
construction methods were proposed. The trajectory data post-processing enabled more
appropriate results for the calculations of the derivatives of the target location, velocity
and acceleration. The proposed framework evaluation produced promising results on the
applicability of general object trackers for the task of finger tracking in the application
of 3D touch-screen experiment. Moreover, the trajectory post-processing methods used
provided a way to extract appropriate features that could be used to explain some of the
differences in the hand movements toward targets at different disparities.

A droplet analysis framework was evaluated in the application of a concentration analysis
of droplets in a chemical mass transfer experiment. Various tracking methods were eval-
uated, but none of the methods produced good enough results, and a simple background
subtraction method was selected to be used. The background subtraction method pro-
vided good results for detecting the droplets. The concentration analysis of the droplets
is based on the color changes of the droplets. In the experiments, the concentration anal-
ysis results were verified against reference samples analyzed with spectrophotometry.
Moreover, the estimated droplet velocities were in a good agreement with the measured
values.

The 3D touch-screen experiment and concentration analysis of droplets in a chemical mass
transfer experiment provided different challenges for movement tracking and analysis.
However, the achieved results were insightful and with a few future improvements, such
as using better equipment, and more careful experiment planning and execution they
could be made to form reliable and accurate systems for the purposes of both application
fields.

Both application areas provided different challenges and different approaches were needed
in order to obtain useful results for analysis. In the 3D touch-screen experiment, the
tracking approach worked relatively well, but in the moving droplets analysis in the chem-
ical mass transfer experiment the tracking methods were not able to track the droplets.
However, a simple background subtraction method, frame differencing, provided good
results. The failure detection systems implemented for this research provided enough
information for the purposes of the applications.

The systems introduced in this work could be extended for other HCI research areas
where hand movements are the area of interest and other reaction analysis experiments
where the color of reagent changes during a reaction.
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Abstract. Understanding how a human behaves while performing
human-computer interaction tasks is essential in order to develop better
user interfaces. In the case of touch and gesture based interfaces, the
main interest is in the characterization of hand movements. The recent
developments in imaging technology and computing hardware have made
it attractive to exploit high-speed imaging for tracking the hand more
accurately both in space and time. However, the tracking algorithm
development has been focused on optimizing the robustness and com-
putation speed instead of spatial accuracy, making most of them, as
such, insufficient for the accurate measurements of hand movements.
In this paper, state-of-the-art tracking algorithms are compared based
on their suitability for the finger tracking during human-computer inter-
action task. Furthermore, various trajectory filtering techniques are eval-
uated to improve the accuracy and to obtain appropriate hand movement
measurements. The experimental results showed that Kernelized Corre-
lation Filters and Spatio-Temporal Context Learning tracking were the
best tracking methods obtaining reasonable accuracy and high processing
speed while Local Regression filtering and Unscented Kalman Smoother
were the most suitable filtering techniques.

Keywords: Hand tracking · High-speed video · Hand trajectories ·
Filtering · Human-computer interaction

1 Introduction

The motivation for this work comes from the human-computer interaction (HCI)
research, and the need to accurately record hand and finger movements of test
subjects in various HCI tasks. During the recent years, this has become par-
ticularly important due to the rapid development of touch display technology
c© Springer International Publishing Switzerland 2015
R.R. Paulsen and K.S. Pedersen (Eds.): SCIA 2015, LNCS 9127, pp. 130–141, 2015.
DOI: 10.1007/978-3-319-19665-7 11
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and amount of commercially available touchscreens in smartphones, tablets and
other table-top and hand-held devices, as well as, the emergence of different ges-
ture based interfaces. Recording the hand movements can be performed by using
hand tracking or general object tracking which has been studied since the 1990s
and is an active research area also today [4], [13], [15], [24], [25]. Despite the
significant effort, however, the problem of hand tracking cannot be considered
solved [9]. From a technical perspective, different robust approaches for hand
tracking exist, such as data gloves with electro-mechanical or magnetic sensors
that can measure the hand and finger location with high accuracy. However,
such devices affect the natural hand motion, are expensive, and hence, cannot
be considered a good solution when pursuing natural HCI. As a consequence,
there is a need for image-based solutions that provide unobtrusive way to study
and track human movement and enable natural interaction between technology.

To accurately record fast phenomena such as reaction times and to robustly
track rapid hand movements, high frame rates are needed in imaging. To pro-
duce videos with good quality, the high-speed imaging requires more light when
compared to imaging with conventional frame rates. Therefore, gray-scale high-
speed imaging is in common use making the use of hand tracking methods rely-
ing specifically on color information unsuitable. This motivates to apply general
object trackers for the problem. In [9], various general object trackers were com-
pared for hand tracking with a primary focus on gray-scale high-speed videos.
It was found out that by avoiding the most difficult environments and posture
changes, the state-of-the-art trackers are capable of reliable hand and finger
tracking.

The main problem in using the existing object tracking methods in accurate
measurement of hand and finger movements is that they are developed for appli-
cations where high (sub-pixel) accuracy is unnecessary. Instead, the research has
focused on developing more computationally efficient and robust methods, i.e.,
losing the target is considered a much more severe problem than a spatial shift
of the tracking window. While these are justified choices in most tracking appli-
cations, this is not the case in the hand trajectory measurement in high speed
videos where small hand movement between the frames and a controlled envi-
ronment help to maintain higher robustness, but high accuracy is needed. Even
small errors in spatial locations can cause high errors when computing the speed
and acceleration. Therefore, the existing tracking algorithms are as such insuffi-
cient for the accurate measurements of hand movements and further processing
of hand trajectories is required.

In this paper, the work started in [9] is continued by further evaluating an
extended set of tracking algorithms to find the best methods for accurate hand
movement measurements. Moreover, the earlier work is extended by processing
tracked hand trajectories with various filtering techniques. The different methods
are evaluated using novel annotated data consisting of high-speed gray-scale
videos of a human performing HCI tasks using a touch user interface.

Since the trackers specific for hand tracking rely on color information, the
focus of this study is on the state-of-the-art general object trackers. Based on
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a literature review and preliminary tracking tests, 12 trackers were selected for
further study [14]. These methods are summarized in Table 1.

Table 1. Trackers selected for the experiments

Method Abbreviation Implementation

Real-time Compressive Tracking [27] CT MATLAB+MEX1

Fast Compressive Tracking [28] FCT MATLAB+MEX2

High-Speed Tracking with Kernelized Correlation
Filters [8]

KCF MATLAB+MEX3

Hough-based Tracking of Non-Rigid Objects [5] HT C++4

Incremental Learning for Robust Visual Track-
ing [19]

IVT MATLAB+MEX5

Robust Object Tracking with Online Multiple
Instance Learning [1]

MIL MATLAB6

Tracking Learning Detection [12] TLD MATLAB+MEX7

Robust Object Tracking via Sparsity-based Col-
laborative Model [29]

RSCM MATLAB+MEX8

Fast Tracking via Spatio-Temporal Context
Learning [26]

STC MATLAB9

Structured Output Tracking with Kernels [6] struck C++10

Single and Multiple Object Tracking Using
Log-Euclidean Riemannian Subspace and Block-
Division Appearance Model [10]

LRS MATLAB+MEX11

Online Object Tracking with Sparse Proto-
types [21]

SRPCA MATLAB12

Real-time Compressive Tracking (CT) [27] is a tracking-by-detection method
that uses a sparse random matrix to project high-dimensional image features
to low-dimensional (compressed) features. The basic idea is to acquire positive
samples near the current target location and negative samples far away from the
target object at each frame, and use these samples to update the classifier. Then,
the location for the next frame is predicted by getting samples from around the
last known location and choosing the sample that gets the best classification

1 http://www4.comp.polyu.edu.hk/∼cslzhang/CT/CT.htm
2 http://www4.comp.polyu.edu.hk/∼cslzhang/FCT/FCT.htm
3 http://www.isr.uc.pt/∼henriques/circulant/
4 http://lrs.icg.tugraz.at/research/houghtrack/
5 http://www.cs.toronto.edu/∼dross/ivt/
6 http://whluo.net/matlab-code-for-mil-tracker/
7 http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
8 https://github.com/gnebehay/SCM
9 http://www4.comp.polyu.edu.hk/∼cslzhang/STC/STC.htm

10 http://www.samhare.net/research/struck/code
11 http://www.iis.ee.ic.ac.uk/∼whluo/code.html
12 http://faculty.ucmerced.edu/mhyang/project/tip13 prototype/TIP12-SP.htm
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score. Fast Compressive Tracker (FCT) [28] is an improvement of CT. The speed
of the tracker is improved by using a sparse-to-dense search method. First, the
object search is done by using a sparse sliding window followed by detection
using a dense sliding window for better accuracy.

HoughTrack (HT)[5] is a tracking-by-detection method which is based on
the generalized Hough transform. In the method, a Hough-based detector is
constantly trained with the current object appearance. Unlike the other selected
algorithms, in addition to bounding box tracking, HT outputs also segmented
tracking results which is used to limit the amount of background noise supplied to
the online learning module.

Incremental learning for robust visual tracking (IVT) [19] learns a low-
dimensional subspace representation of the target object and tracks it using
a particle filter. Online object tracking with sparse prototypes (SRPCA)[21] is
a particle filter based tracking method that utilizes sparse prototypes consisting
of PCA basis vectors modeling the object appearance. The main difference to
IVT is trivial templates that are applied to handle partial occlusions.

High-Speed Tracking with Kernelized Correlation Filters (KCF) [8] is an
improved version of the kernelized correlation filters introduced in [7]. By over-
sampling sliding windows, the resulting data matrix can be simplified, the size
of the data reduced, and the computation made faster. This can be achieved by
taking advantage of Fast Fourier Transform (FFT).

Tracking with online multiple instance learning (MIL) [1] is a tracking-by-
detection method that applies the multiple instance learning approach to track-
ing to account ambiguities in the training data. In the multiple instance learning,
positive and negative training examples are presented as sets, and labels are pro-
vided for the sets instead of individual instances. By using this approach, updates
of the classifier with incorrectly labeled training examples may be avoided and
thus, more robust tracking achieved.

Tracking-learning-detection (TLD) [12] is a framework aiming to long-term
target tracking by decomposing the task into tracking, learning, and detection
sub-tasks. The tracker is tracking the object during the frames whereas the
detector localizes all the appearances observed earlier and reinitializes the tracker
if required. The final tracker estimate is a combination of the tracker and detector
bounding boxes. The third sub-task, learning, tries to estimate the errors of the
detector and update it to avoid those in the following frames.

Robust Object Tracking via Sparsity-based Collaborative Model (RSCM) by
Zhong et al. [29] contains a sparsity-based discriminative classifier (SDC) and a
sparsity-based generative model (SGM). SDC introduces an effective method to
compute the confidence value that assigns more weight to the foreground by
extracting sparse and determinative features that distinguish the foreground
and background better. SGM is a histogram-based method that takes the spatial
information of each patch into consideration with an occlusion handling scheme.

Fast Tracking via Spatio-Temporal Context Learning (STC) [26] algorithm
works by learning a spatial context model between the target and its surrounding
background. The learned model is used to update the spatio-temporal context
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model for the following frame. The tracking task is formulated by convolution
as a computing task of a confidence map, and the best object location can be
estimated by maximizing the confidence map.

The main idea of Structured Output Tracking with Kernels (struck) [6] is to
create positive samples from areas containing the object, and negative samples of
the background further away from the object. It uses a confidence map and
obtains the best location by maximizing a location likelihood function of an
object.

Tracker based on Riemannian subspace learning (LRS)[10] is an incremen-
tally learning tracking algorithm that focuses on appearance modeling using a
subspace-based approach. The key component in LRS is the log-Euclidean block-
division appearance model that aims to adapt to the changes in the objects
appearance. In the incremental log-Euclidean Riemannian subspace learning
algorithm, covariance matrices of image features are mapped into a vector space
with the log-Euclidean Riemannian metric. The log-Euclidean block-division
appearance model captures both local and global spatial layout information
about the object’s appearances. Particle filtering based Bayesian state inference
is utilized as the core tracking technique.

2 Trajectory Filtering

In an ideal case, the motion between the frames should be at least one pixel in
order to be quantifiable for the trackers. That is not always the case with high-
speed videos and can create challenges for the trackers and trajectory analysis.
Therefore, filtering of the trajectory data is necessary to obtain accurate velocity
and acceleration measurements. Fig. 1 shows an example result of filtering the
tracking data.

Fig. 1. Raw tracking data (black), the ground truth (dotted white) and filtered tracking
data (white)

The following 8 filtering methods were considered in this work: Moving
Average (MA) [20], Kalman Filter (KF) [22,23], Extended KF (EKF) [17],
Unscented KF (UKF) [11], Local Regression (LOESS) [3], Locally Weighted
Scatterplot Smoothing (LOWESS) [3], Savitzky-Golay (S-G) [18], and Total
Variation Denoising (TVD) [2] .



High-Speed Hand Tracking for Studying Human-Computer Interaction 135

MA filter operates by averaging subsets of input data points to produce a
sequence of averages. A Kalman filter is an optimal recursive data processing
algorithm. EKF is the nonlinear version of the Kalman filter and has been consid-
ered as the de-facto standard in nonlinear state estimation. In UKF, unscented
transformation is used to calculate the statistics of a random variable which
undergoes a nonlinear transformation. It is designed on the principle that it
is easier to approximate a probability distribution than an arbitrary nonlinear
function. In KF, the predictor predicts parameter values based on the current
measurements. The filter estimates parameter values by using the previous and
current measurements. The smoothing algorithm estimates the parameter values
by using the previous, current, and future measurements: that is, all available
data can be used for filtering [23]. Future measurements can be used because the
Kalman smoother proceeds backward in time. This also means that the Kalman
filter needs to be run before running the smoother.

LOESS and LOWESS were originally developed to enhance visual informa-
tion on scatterplots by computing and plotting smoothed points by using locally
weighted regression. LOESS and LOWESS are methods to estimate the regres-
sion surface through a smoothing procedure. S-G is a smoothing filter, also
called the polynomial smoothing or least-squares smoothing filter. S-G smooth-
ing reduces noise while maintaining the shape and height of peaks. Total varia-
tion (TV) of a signal measures the changes in the signal between signal values.
TVD output is obtained by minimizing a TV-based cost function. It was devel-
oped to preserve sharp edges in the underlying signal.

3 Experiments

3.1 Data

Data was collected during a HCI experiment where test subjects were advised
to perform intentional single finger pointing actions from trigger-box toward a
colored target on a touchscreen. The target on the touchscreen was one of 13
objects which formed a circle on the screen, were of different sizes, and lay on
different parallaxes. Hand movements were recorded with a Mega Speed MS50K
high-speed camera equipped with Nikon Nikkor AF-S 14-24mm F2.8G objective
fixed to a 14mm focal length. The camera was positioned on the right side of
the test setup, and the distance to the screen was approximately 1.5 meters.
The lighting was arranged using an overhead light panel 85 cm above the table
surface and 58 cm in depth. The test subject was sitting at the distance of 65 cm
from the touch screen and a trigger-box was placed 40 cm away from it.

Dataset contained 11 high-speed videos with 800×600 resolution recorded at
500 fps. Sample frames from the dataset can be seen in Fig. 2. These images
illustrate the different end-points of the trajectories. The start-point for all the
sequences was the same. The ground truth was annotated manually. Annotations
were done for every 5th frame and then interpolated using spline interpolation
to get the ground truths for every frame.
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Fig. 2. The sample images are from the dataset used in the experiments. Those were
all taken from the end point of respective videos. The ground-truth bounding-box can
be seen as a white rectangle in the images.

3.2 Results

The tracking experiments were carried out using the original implementations of
the authors except in the case of MIL; for that, the implementation by Luo [16]
was used. Search area parameters of the trackers were tuned for the video data
used, if it was possible with the implementation. For the other parameters, the
default values proposed by the original authors were used. The tracking methods
were run 10 times for each video and the results were averaged to minimize
random factors in tracking. Table 2 shows the results of the trackers for the
dataset. The tracking rate of 100% with threshold of 32 pixels center location
error was achieved by three of the trackers, KCF being the best one in overall
results with the smallest average center location error of 4.65. Also, struck, and
STC achieved high accuracy. Length of the videos in total was 10798 frames and
individual videos were between 544 and 1407 frames long.

Table 2. Tracking results for Dataset: percentage of correctly tracked frames (TR%)
and average center location errors (Err.), and the processing speed (fps). Also, the
range of the values from the results are shown. The best results are shown in bold.

Method TR% TR% range Err. Err. range fps fps range

CT 79.43% 0-100% 18.43 3.5-76 99.97 63-121

FCT 17.14% 0-73% 58.74 16-92 118.73 72-150

HT 97.12% 36-100% 15.29 3.1-226 4.65 4-4.9

IVT 74.50% 15-100% 86.75 2.0-448 63.38 51-70

KCF 100% - 4.65 1.4-7.4 979.97 728-1236

LRS 20.51% 2-47% 291.32 76-540 8.79 7.8-9.4

MIL 93.82% 24-100% 11.35 2.8-138 0.55 0.4-0.6

RSCM 86.81% 40-100% 18.84 2.2-126 2.50 2.0-2.8

SRPCA 83.64% 24-100% 72.38 1.7-366 10.52 8.3-12.5

STC 100% - 5.13 2.3-6.9 1291.03 1156-1330

struck 100% - 4.72 1.6-6.5 118.62 99-153

TLD 68.48% 16-100% 43.55 4.4-139 16.46 8.8-24
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When working with high-speed videos, the importance of processing speed is
emphasized. The experiments were carried out using a desktop computer with an
Intel i5-4570 CPU and 8 GB of memory. The fps measure used in the experiments
was calculated without including the image loading times in the calculations to
get the raw frame processing speed. The highest fps was measured for STC which
showed the best average performance and for KCF which had the peak perfor-
mance of over 1200 fps. Both achieved processing speeds well over the frame rate
of the videos. However, it should be noted that due to the different programming
environments (MATLAB, C, etc.) and levels of performance optimization, these
results should be considered merely suggestive.

KCF was selected for the further study since it correctly tracked all the
frames, had one of the smallest average center location error, was able to process
the high-speed videos in real-time. Moreover, earlier tracking experiments [14]
have shown that KCF is more robust than STC on diverse video content.

Table 3 summarizes the trajectory filtering results. The results were calcu-
lated by averaging the results from all dataset trajectories tracked with KCF
tracker. The window size and method parameters were optimized separately
for each filtering method. Filtering with Unscented Kalman Smoother (UKS)
and TVD are included for comparison. UKS was selected to represent Kalman
smoother algorithms since Extended Kalman Smoother and UKS produced sim-
ilar results. Velocity and acceleration curves for trajectories obtained using
Kalman filtering were computed using the Kalman filtering motion model. For
the trajectories obtained using other filtering methods, velocity and acceleration
curves were computed based on Euclidean distances between trajectory points
in consecutive frames.

Table 3. Minimal mean and standard deviations of Position Errors (PE), Velocity
Errors (VE), and Acceleration Errors (AE) with different filtering methods. In paren-
theses is the filtering window size which gave the best result for the filter. The best
results are shown in bold.

Moving Savitzky-
Error Average LOWESS LOESS Golay TVD UKS unfiltered

Mean PE 4.6057 (3) 4.6057 (4) 4.6029 (34) 4.6030 (25) 4.6474 4.6033 4.6099

Mean VE 0.0440 (17) 0.0419 (18) 0.0415 (34) 0.0428 (31) 0.2052 0.0421 0.2085

Mean AE 0.0137 (83) 0.0118 (23) 0.0119 (53) 0.0137 (97) 0.3026 0.0125 0.3074

std PE 1.3496 (5) 1.3495 (8) 1.3459 (38) 1.3461 (29) 1.3860 1.3468 1.3917

std VE 0.0544 (15) 0.0522 (18) 0.517 (34) 0.0532 (27) 0.2599 0.0526 0.2641

std AE 0.0210 (95) 0.0185 (23) 0.0185 (39) 0.0206 (85) 0.4599 0.0190 0.4652

From the results shown in Fig. 3, it is obvious that different window sizes
were optimal for each derivative of the position. The velocity and acceleration
curves needed larger window sizes to get better results than the position. LOESS
filtering was the least sensitive to window size with optimal filtering results from
the window size range of 34 to 53. The problem with a large window size is that
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the estimated position starts to drift off from the true position which is very
clear in case of moving average and LOWESS filtering.

(a) (b) (c)

Fig. 3. Filtering the effect of the window size on the means of (a) point error; (b)
velocity error and (c) acceleration errors. The location of minimum error for each
of the methods is indicated with the vertical line. Moving average is shown in grey,
LOWESS in dotted grey, LOESS in dotted black, and Savitzky-Golay in black.

An example of how filtering affects the tracking data is shown in Fig. 4. In
Fig. 4(a) no filtering is applied to tracking data before calculating velocity and
acceleration values. Fig. 4(b) shows the result when position data after tracking
is filtered with LOESS filtering with a span of 40 frames, and the velocity and
acceleration values are calculated from that filtered data. In Fig. 4(c), also the
velocity data is filtered after position data filtering with the same LOESS filtering
method. From these results, it is clearly visible that filtering is needed to achieve
appropriate velocity and acceleration curves from the tracked hand movement
data.

(a) (b) (c)

Fig. 4. Tracking data and velocity and acceleration curves computed from it using:
(a) Raw data; (b) Position data filtered with LOESS (span of 40); (c) Position and
velocity data filtered with LOESS (span of 40). Trajectory is shown in dashed, velocity
in dotted, and acceleration in continuous.
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4 Conclusion

In this paper, hand tracking in high-speed videos during HCI tasks, and post-
processing of the tracked hand trajectories were studied. The results showed that
objects in high-speed video feeds with almost black background can be tracked
in real-time with two of the tested trackers. For this research, this meant reach-
ing speeds of over 970 (KCF) and over 1290 (STC) fps on average for the test
video sequences which were recorded at 500 frames per second. Thus, the track-
ers satisfied real-time needs. Even though the performance evaluation for the
trackers in this setup did not include the image-loading times, 2.3 milliseconds
on average per image with MATLAB, the results are still impressive.

Filtering helps to find smooth acceleration curves to allow us see clearly
where the moments of maximum and minimal acceleration are. With appropriate
filtering, the velocity and acceleration features of the trajectories got closer to
the ground truth. Two filtering methods, LOESS and UKS, produced the most
consistent results for all the tests. Selecting one method as the winner raised
the question, which one is simpler to use, and that happened to be LOESS. To
conclude, with filtering and smoothing the hand-tracking data, it is possible to
get to the underlying characteristics of the real movement sequence.

Smoothing the trajectories produced by the trackers gave good results for
the derivatives of the position, but sub-pixel accuracy for video sequences which
require high precision could be alternative way. By having more accurate posi-
tions of the object, one would not need to smooth the trajectories and more accu-
rate results also for the velocities and accelerations of the moving object would
be generated. The videos used in this work did not have large scale changes, but
adapting to the scale changes on sub-pixel level could help to make the tracking
process even more accurate. Also, ground-truth annotation process proved to be
a hard undertaking. Clearly visible and accurate marker in test subject’s finger
would have helped the ground-truth annotation process.

The results provide observations about the suitability of tracking methods
for high-speed hand tracking and about how filtering can be applied to produce
more appropriate velocity and acceleration curves calculated from the tracking
data.
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Abstract. Three-dimensional human-computer interaction has the
potential to form the next generation of user interfaces and to replace the
current 2D touch displays. To study and to develop such user interfaces,
it is essential to be able to measure how a human behaves while interact-
ing with them. In practice, this can be achieved by accurately measuring
hand movements in 3D by using a camera-based system and computer
vision. In this work, a framework for multi-camera finger movement mea-
surements in 3D is proposed. This includes comprehensive evaluation of
state-of-the-art object trackers to select the most appropriate one to
track fast gestures such as pointing actions. Moreover, the needed tra-
jectory post-processing and 3D trajectory reconstruction methods are
proposed. The developed framework was successfully evaluated in the
application where 3D touch screen usability is studied with 3D stimuli.
The most sustainable performance was achieved by the Structuralist Cog-
nitive model for visual Tracking tracker complemented with the LOESS
smoothing.

Keywords: Human-computer interaction · Object tracking · Finger
tracking · Multi-view tracking · 3D reconstruction

1 Introduction

The motivation for this work comes from the human-computer interaction (HCI)
research, and the need to accurately record hand and finger movements of test
subjects in various HCI tasks. Recent progress in the domain of HCI has allowed
to form the next generation of user interfaces, combining touch input with stereo-
scopic 3D (S3D) content visualization.
c© Springer International Publishing AG 2017
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Stereoscopically rendered views provide additional depth information that
makes depth and structure judgements easier, enhances the ability to detect
camouflaged objects as well as increases the ability to recognize the surface
material [3,17]. Furhermore, stereoscopic presentation enhances the accuracy of
visually guided touching and grasping movements [26]. Although touch input
has already proved its utility and indispensability for various HCI applications,
interacting with stereoscopically rendered content is still a challenging task. Usu-
ally the touch recognition surface is placed onto another plane than the displayed
content, which being stereoscopically rendered floats freely in front of or behind
the monitor. It has been shown that touching an intangible surface (i.e., touching
the void) leads to confusion and a significant number of overshooting errors [4].

Advances in gesture interfaces, touch screens, and augmented and virtual
realities have brought new usability concerns that need to be studied in a nat-
ural environment and in an unobtrusive way [28]. Several robust approaches for
hand tracking exist that can measure the hand and finger location with high
accuracy, for example, data gloves with electromechanical, infrared or magnetic
sensors [10]. However, such devices affect the natural hand motion and cannot
be considered feasible solutions when pursuing natural HCI.

Image-based solutions provide an unobtrusive way to study and to track
human movement and enable natural interaction with the technology. Commer-
cially available solutions such as Leap Motion1 and Microsoft Kinect2 limit the
hand movement to a relatively small area, do not allow frame rates high enough
to capture all the nuances of rapid hand movements, and are imprecise for accu-
rate finger movement measurements.

State-of-the art object tracking techniques allow automatic estimation of
motion trajectories from videos. The main problem with using existing object
tracking methods for accurate measurement of hand and finger movements is that
they are developed for applications where high (sub-pixel) accuracy is unneces-
sary. While this is a justified choice for most tracking scenarios, this is not the
case in hand trajectory measurement where high spatial accuracy is the main
concern. Even small errors in spatial locations can lead to large fluctuations in
the speed and acceleration calculated from the location data. Smoothing raw
trajectory data with an appropriate filtering method provides a solution for
small irregularities in the trajectory data without compromising the tracking
results [20].

Another challenge for the finger tracking in HCI studies is the fact that
the pointing actions are typically fast which causes large shifts in object loca-
tions between frames. While this problem can be solved by using high-speed
cameras [15,20], a setup consisting multiple high-speed cameras required for
recording 3D trajectories is both expensive and difficult to build. Therefore, it
is important to invest on selecting of the suitable tracker that can handle this
issue also on normal speed videos.

1 Leap motion: https://www.leapmotion.com/product.
2 Microsoft Kinect: http://www.xbox.com/en-US/kinect.
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In this paper, a multi-camera framework for measuring hand movements
in HCI studies is presented. The framework is developed for the measurement
setup consisting of a high-speed camera and normal-speed camera with different
viewing angles. The comparison of object trackers for high-speed videos has been
provided in an earlier study [20]. In this paper, this is complemented with a
tracker comparison on normal-speed videos to find methods that can handle the
large shifts in object locations between frames. Moreover, necessary trajectory
post-processing, failure detection, and 3D trajectory reconstruction methods are
proposed to produce accurate 3D measurements. The framework is generic in
nature, and here its functionality is demonstrated in an application where 3D
touch screen usability is studied with 3D stimuli.

2 Experiment Setup

The framework was developed for a HCI experiment that uses a S3D touch screen
setup. During the trials, test subjects were asked to perform a clear pointing
action towards the observed 3D stimuli. Stereoscopic presentation of stimuli was
done with the NVIDIA 3D Vision kit. The touch screen was placed at a distance
of 0.65 m in front of the person. The trigger-box, which button pressing denoted
the beginning of a single pointing action, was set up 0.25 m away from the screen.
The process was recorded with two cameras: a Mega Speed MS50K high-speed
camera equipped with the Nikon 50 mm F1.4D objective, and a normal-speed
Sony HDR-SR12 camera. The high-speed camera was installed on the right side
of the touch screen with an approximately 1.25 m gap in-between, while the
normal-speed camera was mounted on the top (see Fig. 1). Example frames from
both cameras are presented in Fig. 2.

Fig. 1. 3-D touch display experiment.

Similar to earlier pointing action research, e.g., [8], the experiment focused on
studying intentional pointing actions. The stimuli were generated by a stereo-
scopic display with the touch screen to evaluate the effect of different paral-
laxes, i.e., perceived depth. This arrangement enables study of (potential) con-
flict between visually perceived and touch-based sensations of depth.
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(a) (b)

Fig. 2. Example video frames of volunteer interaction with the 3D touch screen display
captured with the high-speed camera (a) and normal-speed camera (b).

3 Finger Tracking

The object trackers were selected to the evaluation based on the following crite-
ria: (1) a high ranking in the Visual Object Tracking (VOT2016) challenge [18],
(2) real-time performance on 25 fps videos, and (3) publicly available implemen-
tation. The selected trackers are listed in Table 1.

Table 1. Trackers selected for the experiments.

Method Abbrev. Year

Sum of template and pixel-wise LEarners [2] Staple 2016

An improved staple tracker with multiple
feature integration [18]

Staple+ 2016

Distractor aware tracker [24] DAT 2015

Scale adaptive mean shift [31] ASMS 2014

Kernelized correlation filter tracker [14] KCF 2014

Structuralist cognitive model for visual
tracking [5]

SCT 2016

Scalable kernel correlation filter with sparse
feature integration [21]

sKCF 2015

Structured output tracking with kernels [11] STRUCK 2016

Incremental learning for robust visual tracking
[25]

IVT 2008

Spatio-temporal context tracker [33] STC 2014

Correlation filters have shown excellent performance for visual object track-
ing [14]. Trackers based on these filters are highly sensitive to target appearance
deformation because of using a rigid template, but they can be complemented
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with a target representation that is insensitive to shape variation. Sum of Tem-
plate and Pixel-wise LEarners (Staple) [2] utilizes color histograms as an addi-
tional representation robust to deformation, since they do not depend on the
spatial structure within the image patch. In [18], an improved version of the Sta-
ple tracker (Staple+) was proposed. While the original algorithm extracts HOG
features from a gray-scale image, Staple+ relies on HOG features retrieved from
color probability map, which are expected to better represent the image patch
color information.

Distractor Aware Tracker (DAT) [24] relies on a discriminative object sur-
rounding model employing a color histogram for differentiating the object from
the background. To suppress the risk of drifting DAT proposes an additional
distractor-aware model which allows to robustly detect possible distracting
objects whenever they appear within the field-of-view.

The Scale Adaptive Mean Shift (ASMS) [31] tracker enhances the mean-shift
tracking algorithm [7] by targeting the problem of a fixed size tracking window.
ASMS encompasses a novel scale estimation mechanism based on the mean-shift
procedure for the Hellinger distance [23]. Moreover, the authors present a tech-
nique to validate the estimated output, called the Backward scale consistency
check. It uses reverse tracking to check that the object size has not changed mis-
takenly. Another improvement is the introduction of a background ratio weight-
ing (BRW), which uses the target background color information computed over
its neighborhood in the first frame.

High-Speed Tracking with Kernelized Correlation Filters (KCF) [14] is an
improved version of the kernelized correlation filters introduced in [13]. The
correlation filters produce a correlation peak for a target object in a scene and
low response for background. In [30] the original algorithm is extended by a scale
estimation (7 different scale steps) and by color-names features [29] (denoted as
KCF2). As an improvement to KCF, Scalable Kernel Correlation Filter with
Sparse Feature Integration (sKCF) was proposed in [21]. sKCF replaces the
cosine window with an adjustable Gaussian windowing function to support target
size changes and, hence, produce better back- and foreground separation. The
new appearance window size is estimated with a forwards-backwards optical flow
strategy. It extracts relevant keypoints of the target area on the successive frames
and then estimates the scale change by analyzing the pair-wise difference.

The Structuralist Cognitive model for visual Tracking (SCT) [5] tracker
decomposes tracking into two stages: disintegration and integration. In the first
stage, multiple cognitive structural units, attentional feature-based correlation
filters (AtCFs), are generated. Each unit consists of an attentional weight estima-
tor and KCF. Each AtCF utilizes a unique pair of a feature (color, HOG, etc.)
and a kernel (linear, Gaussian, etc.) type. In the integration step, the object
appearance is expressed as a representative combination of AtCFs, which is
memorized for future usage.

The main idea of Structured Output Tracking with Kernels (struck) [11] is to
create positive samples from areas containing the object and negative samples
from the background further away from the object. It uses a confidence map
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and obtains the best position by maximizing a location likelihood function of an
object.

Incremental Learning for Robust Visual Tracking (IVT) [25] learns a low-
dimensional subspace representation of the target object and tracks it using a
particle filter.

The Fast Tracking via Spatio-Temporal Context Learning (STC) [33] algo-
rithm is also based on correlation filters, but it adds a spatial context model
between the target and its surrounding background. The learned model is used
to update the spatio-temporal context model for the following frame.

4 Post-processing and 3D Trajectory Reconstruction

The trajectory data retrieved as the result of tracking usually presents an ordered
list of object location coordinate points in an image plane. These measures
may contain movement noise or completely incorrect position estimation (if
the tracker lost the target) since none of the currently available visual track-
ers achieve an irreproachable accuracy. Moreover, most visual trackers estimate
the object location only with a pixel precision, and therefore the obtained trajec-
tory presents a broken line instead of a desired smooth curve. As noted in [19],
the rough-edged transforms between the trajectory points noticeably affect the
precision of succeeding calculations. These negative effects can be eliminated by
an introduction of trajectory smoothing and tracking failure detection methods
into the processing flow.

For the trajectory smoothing Local Regression (LOESS) [6] was selected
based on the comparison performed in [20]. A commonly used approach to detect
failures is to calculate sum-of-square differences (SSD) [22] or utilize other similar
measures [9] between the consequent object area patches. This measure allows
to detect various occlusions or target rapid leaps, but it does not recognize
gradual trajectory drifting. Comparison between the current object appearance
and affine warps of the initial patch can be utilized for drift detection [27], but
this method is only applicable for rigid objects and uniform environment. In [32]
and [16] the strategy of forward and backward in time analysis of the video
sequence was proposed. First the backtracking is used for an estimation of the
reverse trajectory from the current timestamp to an earlier moment. Then the
divergences between these two trajectories are measured.

To obtain 3D trajectory the 2D trajectories estimated using different-view
calibrated cameras need to be combined. The task of computing a 3D trajectory
from multiple 2D trajectories is essentially equivalent to the process of 3D scene
reconstruction. For this purpose, we utilize the well-known method [12] described
in Algorithm 1.

5 Experiments

The experiments were performed on the laptop running Windows 10 x 64
equipped with Intel Core i5-6200U processor and 6 GB memory.
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Algorithm 1. The algorithm for three-dimensional scene reconstruction [12]
1. Find point correspondences from the two trajectories.
2. Compute the essential matrix from point correspondences.
3. Compute camera projection matrices from the essential matrix.
4. For each point correspondence, compute the position of a scene point using

triangulation.

5.1 Dataset

17 pointing action videos were selected to study the performance of the trackers.
The set contains multiple test subjects with a varying appearance of fingers (e.g.
with and without glossy nail polish). The videos were recorded using interlaced
encoding with 50 field rate and 1440 × 1080 (4:3) resolution. For deinterlacing
Yet another deinterlacing filter (yadif) [1] was utilized with both frame-to-frame
conversion producing 25 fps videos and field-to-frame conversion producing dou-
ble frame rate (50 fps) videos. To obtain the ground truth for the evaluation,
the finger was manually annotated to each frame in all 17 videos.

The corresponding high-speed videos were recorded at 500 fps and 800 × 600
resolution. The finger tracking and trajectory smoothing for high-speed videos
were performed as proposed in [20]. High-speed videos were manually aligned
with the normal speed videos using timestamp information.

5.2 Tracking

Each tracking method was evaluated with both normal and double frame rate
videos. Moreover, in addition to the forward tracking also backward tracking
from the end of video was considered. Finger tracking in high-speed videos was
not considered in this work. Thereby, the following tracker evaluation cases were
considered: (1) normal frame rate (25 fps), forward tracking (NFR/FT), (2)
double frame rate (50 fps), forward tracking (DFR/FT), (3) normal frame rate,
backward tracking (NFR/BT), and (4) double frame rate, backward tracking
(DFR/BT).

The accuracy of tracking was measured with the center location error (CLE)
with respect the ground truth. The percentage of correctly tracked frames (PCF),
i.e., the frames where the distance between the ground truth and the estimated
position was below a fixed threshold (τ = 16 pixels) was used as a measure of
robustness. The results over all test videos are shown in Table 2. The performance
visualization was done via precision plots (Fig. 3).

The best result in forward tracking across the both frame rate cases was
achieved with the SCT tracker, which was able to track the target through
77% of frames with CLE of 25.7 pixels. STRUCK was the second with 62% of
successfully tracked frames, followed by KCF2 with 61%. None of the trackers
handled all the 17 sequences in the dataset. In DFR/FT, SCT tracked the target
till the end only in 11 sequences, KCF2 in 7, while the others successfully tracked
3 sequences or less. In backward tracking, KCF2 achieved the first place with
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Table 2. Tracking results. The best results for Forward and Backward tracking are
given in bold.

Forward tracking Backward tracking

NFR DFR NFR DFR

Method CLE PCF CLE PCF CLE PCF CLE PCF

Staple 141.7 44 102.5 43 129.5 45 14.6 84

Staple+ 146.7 43 102.6 40 113.5 43 14.9 82

DAT 100.3 41 52.2 46 41.8 44 33.9 51

KCF 120.3 42 45.5 50 72.4 62 10.8 83

KCF2 145.0 49 63.1 61 56.3 75 19.4 86

ASMS 146.1 39 109.6 28 52.7 40 53.7 41

SCT 90.6 57 25.7 77 29.7 83 17.6 81

STC 136.4 39 52.1 51 41.2 75 13.6 83

sKCF 146.4 46 71.1 49 136.4 48 29.3 80

STRUCK 117.3 46 43.4 62 294.6 15 112.6 38

IVT 177.4 43 183.7 31 374.4 7 336.2 10

86% and CLE of 19.4, while KCF took the first place in CLE measure with
10.8 and shared the third place in PCF with 83%. In DFR/BT, KCF2 tracked
the target till the end in 13 videos, Staple and sKCF - 12, while Staple+, SCT,
and STC tracked 11 records each. In some of the videos, the target appearance
was altered due to light reflection, and only STRUCK successfully adapted to
these changes. Some videos were distorted with motion blur, while in few videos
the test subject bent his/her forefingers during the experiment making them
partially occluded with respect to the camera view.

5.3 Smoothing

The efficiency of the trajectory smoothing with the LOESS algorithm was eval-
uated using the trajectories retrieved from the double frame rate videos. The
SCT and KCF2 tracker outputs were selected for forward and back-tracking,
respectively. The efficiency was evaluated against the ground truth using the
CLE measure. The results are shown in Table 3.

Table 3. Mean and variance (in parentheses) of center location error (CLE) for raw
and smoothed (with various span size in frames) trajectory data. The best results are
shown in bold.

Case Raw Smoothed (with various span size)

5 7 9

DFT/FT [SCT] 4.02 (6.08) 3.97 (5.10) 4.40 (6.62) 5.29 (10.78)

DFR/BT [KCF2] 3.27 (4.48) 3.32 (4.36) 3.68 (5.29) 4.30 (8.47)
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Fig. 3. Forward tracking (a) and backward tracking (b) precision plots. NFR is shown
on the left side and DFR on the right side.

The LOESS smoothing with the span size of 5 frames systematically
decreased the variance of the CLE measure. For the DFT/FT tracking case,
smoothing also fractionally shrank the deviation between the estimated and the
ground truth position.

5.4 Reconstructing 3D Trajectories

To demonstrate the 3D reconstruction of trajectories, seven videos were used.
Camera calibration was done with a standard checkerboard calibration target
with a pattern consisting of 26.5 mm patches. A set of captured calibration
images was used to compute the intrinsic camera parameters and distortion
coefficients. As a result, seven finger trajectory points corrected for lens dis-
tortion from both normal and high-speed videos were used to form the basis
of 3D-reconstruction. The reconstruction scale ambiguity was eliminated by a
fixed setup with known distances between the high-speed camera (HS), normal
speed camera (NL), and the monitor. The reconstruction results are visualized
in Fig. 4.
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(a) (b)

(c) (d)

Fig. 4. (a) Experiment setup, (b) 3D reconstruction result from one viewpoint, and
3D point reprojection to (c) the high-speed camera image plane and (d) the normal
camera image plane. The trajectories include seven captured pointing actions displayed
as blue dotted curves.

With the absence of ground truth for the 3D trajectories, the 3D recon-
struction accuracy was assessed with the calculation of the reprojection error
measure [12]. The average reprojection error over all the trajectory points used
in the 3D reconstruction experiment comprised 3.89 pixels for the high-speed
and 5.72 pixels for the normal camera videos respectively (see Fig. 4), which
corresponds to a 1–3 mm accuracy in real world units.

6 Conclusion

In this work, a multi-camera framework to track finger movements in 3D was
proposed for studying human-computer interaction. To select the best track-
ing method for the task, a comprehensive method evaluation was performed.
SCT outperformed the other methods. However, none of the studied algorithms
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achieved the ideal performance since they failed under various conditions. More-
over, trajectory post-processing and 3D trajectory reconstruction methods were
proposed. Trajectory data processing was shown to smoothen the produced tra-
jectories, enabling more accurate calculations of the derivatives of the target
position. The proposed framework was successfully evaluated in the application
where stereoscopic touch screen usability was studied with stereoscopic stimuli.
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Abstract. This paper considers the usability of stereoscopic 3D touch
displays. For this purpose extensive subjective experiments were car-
ried out and the hand movements of test subjects were recorded using
a two-camera setup consisting of a high-speed camera and a standard
RGB video camera with different viewing angles. This produced a large
amount of video data that is very laborious to analyze manually which
motivates the development of automated methods. In this paper, we
propose a method for automatic video synchronization for the two cam-
eras to enable 3D trajectory reconstruction. This together with proper
finger tracking and trajectory processing techniques form a fully auto-
mated measurement framework for hand movements. We evaluated the
proposed method with a large amount of hand movement videos and
demonstrated its accuracy on 3D trajectory reconstruction. Finally, we
computed a set of hand trajectory features from the data and show that
certain features, such as the mean and maximum velocity differ statis-
tically significantly between different target object disparity categories.
With small modifications, the framework can be utilized in other similar
HCI studies.

Keywords: Human-computer interaction · Multi-view tracking
3D reconstruction · Stereoscopic touch screen · Image processing
Image analysis

1 Introduction

Advances in gesture interfaces, touch screens, and augmented and virtual real-
ities have brought new usability concerns that need to be studied in a natural
environment and in an unobtrusive way [15]. In this work we focus on the next
generation of user interfaces, combining touch input with stereoscopic 3D (S3D)
content visualization. Stereoscopically rendered views provide additional depth
information that makes depth and structure judgments easier, enhances the abil-
ity to detect camouflaged objects as well as increases the ability to recognize
c© Springer Nature Switzerland AG 2018
J. Blanc-Talon et al. (Eds.): ACIVS 2018, LNCS 11182, pp. 125–136, 2018.
https://doi.org/10.1007/978-3-030-01449-0_11
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the surface material [2,9]. Furthermore, the stereoscopic presentation enhances
the accuracy of visually guided touching and grasping movements [14]. Although
touch input has already proved its utility and indispensability for various human-
computer interaction (HCI) applications interacting with stereoscopically ren-
dered contents is still a challenging task. Usually the touch recognition surface is
placed on another plane than the displayed content which being stereoscopically
rendered floats freely in front of or behind the monitor. It has been shown that
touching an intangible surface, i.e., touching the void leads to confusion and a
significant number of overshooting errors [3].

In order to study the usability of the stereoscopic 3D touch screen, it is impor-
tant to be able to accurately record hand and finger movements of test subjects
in 3D. Several robust approaches to hand tracking exist that can measure the
hand and finger location with high accuracy, for example, data gloves with elec-
tromechanical, infrared, or magnetic sensors [6]. However, such devices affect the
natural hand motion and cannot be considered feasible solutions when pursuing
natural HCI. Image-based solutions provide an unobtrusive way to study and
to track human movement and enable natural interaction with the technology.
Commercially available solutions such as Leap Motion1 and Microsoft Kinect2

limit the hand movement to a relatively small area, do not allow frame rates high
enough to capture all the nuances of rapid hand movements, and are imprecise
for accurate finger movement measurements.

This study continues the work done in [11] and [12] where a camera-based
hand movement measurement framework for HCI studies was proposed. In order
to analyze automatically a large amount of video data, we complement the frame-
work by proposing a video synchronization procedure for a setup consisting of
a high-speed camera and a normal-speed camera with different viewing angles.
The high-speed camera produces accurate information on hand movements in
2D while the additional normal-speed camera provides the possibility to measure
the movements in 3D. The framework is further evaluated with a large scale HCI
experiment where the usability of a 3D touch screen is studied with 3D stimuli.
Finally, a set of hand trajectory features is computed from the data and they are
compared with the different 3D stimuli, i.e., with target objects with different
parallaxes.

2 Experiment Setup

The framework was developed for a HCI experiment that uses a S3D touch
screen setup. During the trials, test subjects were asked to perform an inten-
tional pointing action towards the observed 3D stimulus. The stereoscopic pre-
sentation of the stimuli were done with the NVIDIA 3D Vision kit. The touch
screen was placed at a distance of 0.65 m in front of the person. The trigger box
contained a button to be pressed to denote the beginning of a single pointing
action and was set up 0.25 m away from the screen. The process was recorded
1 Leap motion: https://www.leapmotion.com/product.
2 Microsoft Kinect: http://www.xbox.com/en-US/kinect.
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with two cameras: (i) a Mega Speed MS50K high-speed camera equipped with
the Nikon 50 mm F1.4D objective and (ii) a normal-speed Sony HDR-SR12 cam-
era. The high-speed camera was installed on the right side of the touch screen
with an approximately 1.25 m gap in-between, while the normal-speed camera
was mounted on the top (see Fig. 1). Example frames from both cameras are
presented in Fig. 2. The high-speed camera was operated by the trigger resulting
a separate video file for each pointing action. The normal-speed recorded the
whole session for each test subject into one video file. This resulted in the need
of camera synchronization and re-calibration.

Fig. 1. 3-D touch display experiment.

Similar to earlier pointing action research, e.g., [5], the experiment focused on
studying intentional pointing actions. The stimuli were generated by a stereo-
scopic display with the touch screen to evaluate the effect of different paral-
laxes, i.e., perceived depth. This arrangement enables study of (potential) con-
flict between visually perceived and touch-based sensations of depth.

(a) (b)

Fig. 2. Example video frames of volunteer interaction with the 3D touch screen display
captured with the high-speed camera (a) and normal-speed camera (b).
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2.1 Dataset

For the data collection, the pointing action tests were performed by 20 subjects.
The pointing actions were divided into nine test blocks based on the interruptions
in the high-speed imaging due to limited camera memory. The main test block
contained 40 pointing actions per each parallax disparity. Disparity defines the
difference in the target object locations between the images seen by the left and
right eyes causing the target object to appear in front or behind the screen. Four
disparities were considered: (1) 6 pixels causing the object to appear clearly in
front of the screen, (2) 2 pixels causing the object to appear slightly in front of
the screen, (3) −6 pixels causing the object to appear clearly behind screen, and
(4) −2 pixels causing the object to appear slightly behind screen. Blocks 1 and
2 with disparities 6 and −6 were meant for the user to get acquainted with the
setup. Blocks 3–6 were the main testing blocks with disparities 6, −6, 2, and −2.
In blocks 7 and 8, the disparity was changed in the middle of the pointing action.
Finally, block 9 was a control test with color information used as a target for the
pointing actions.

The high-speed videos were recorded at 500 fps and 800 × 600 resolution.
The normal-speed videos were recorded using interlaced encoding with 50 field
rate and 1440× 1080 (4:3) resolution. For deinterlacing the normal-speed videos
the yet another deinterlacing filter (yadif) [1] was utilized with field-to-frame
conversion producing double frame rate (50 fps) videos. In total, 2597 pointing
actions were recorded with the both cameras.

3 Hand Tracking and Video Synchronization

The hand movements in the high-speed videos were tracked using [8] as pro-
posed in [11]. The tracking window was initialized by a manually placed initial
bounding box on the trigger box button image. The normal-speed videos were
processed with motion detection near the monitor area. The motion detection
was performed using background subtraction (frame differencing). There were
few incorrect detections which were filtered out based on the known location of
each touch. The detected motions were used to obtain the location of the finger
tip which was further used to initialize the tracking window for the normal-speed
videos. The tracking was performed using [16] as introduced in [12].

In order to automatically align the normal-speed videos with the high-speed
videos, the ratio of framerates and delay are needed. The ratio of framerates of
the cameras is known, so only the delay needs to be estimated from data. To
do this, first, a coarse alignment was performed using timestamps accompanied
with the high-speed videos and the starting time of the normal-speed videos.
This made it possible to identify the blocks, i.e. the video sequence containing
one block could be cut from the normal-speed videos and the high-speed videos
corresponding the same pointing actions can be recognized. Nine blocks were
identified based on the longer breaks in pointing actions caused by the limited
high-speed camera memory, transfer of the memory contents to the computer
and clearing the camera memory. The accurate alignment, i.e. the estimation
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of the delay was done separately for each block. To do this points of the finger
trajectories which can be detected from both videos need to be found. The trigger
box had a white button that was visible on the both views, and the point where
the trajectory passed the button was used to find a timestamp from both videos.
Each block contains several point actions and therefore several timestamps were
obtained.

The final alignment was done by searching the delay which maximizes corre-
lation between the timestamp sequences for normal-speed and high-speed videos.
As it can be seen from Fig. 3, the timestamp correlations of the corresponding
events of passing the white button are periodical so that simply finding the min-
imal timestamp difference would not work in this case. The event matching was
done by binning the trajectory event matches of the timestamp differences. One
bin was the length of a single frame (0.02 s) and the maximum for the times-
tamp correlation was found by summing up 12 frames and finding the largest
bin. 12 frames bin size were used because it was the minimal bin size that pro-
duced full bin of 20 corresponding time differences of the events for some of the
blocks. Figure 3 presents examples of synchronizing blocks of pointing actions.
In Fig. 3a all the samples are well correlated within a tight time range (around
3.34 s timestamp difference), but in Fig. 3b it is impossible to say which time
difference gives a good result. This is mainly due to the low count of sequences
which were tracked correctly in the both videos.

4 Post-processing and 3D Trajectory Reconstruction

The trajectory data retrieved as the result of tracking usually presents an ordered
list of object location coordinate points in an image plane. None of the currently
available visual trackers achieve immaculate accuracy, and thus, the measures
may contain movement noise or completely incorrect position estimation if the
tracker lost the target. Moreover, most visual trackers estimate the object loca-
tion only with a pixel precision and, therefore, the obtained trajectory presents a
broken line instead of a desired smooth curve. As noted in [10], the rough-edged
transforms between the trajectory points noticeably affect the precision of sub-
sequent calculations. These negative effects can be eliminated by introducing
trajectory smoothing and tracking failure detection methods into the process-
ing flow. For the trajectory smoothing, Local Regression (LOESS) [4] was used
based on the comparison performed in [11].

To obtain a 3D trajectory, the 2D trajectories estimated using calibrated
cameras with a different viewpoint need to be combined. The task of comput-
ing a 3D trajectory from multiple 2D trajectories is essentially equivalent to
the process of 3D scene reconstruction. For this purpose, we utilized the well-
known method [7] sketched in Algorithm 1. The essential matrix is computed
with the M-estimator sample consensus (MSAC) algorithm. Finding the best
suitable essential matrix was done by minimizing the back-projection errors.
The evaluation was performed with confidence levels varying from 90% to 99%,
and different Sampson distance [13] thresholds from 5 to 35 pixels.
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Fig. 3. Example of synchronizing one block of pointing actions from high correlation
in one time range (a) and from low correlations within the whole time range (b).

Algorithm 1. The algorithm for three-dimensional scene reconstruction [7]
1. Find point correspondences from the two trajectories.
2. Compute the essential matrix from point correspondences.
3. Compute camera projection matrices from the essential matrix.
4. For each point correspondence, compute the position of a scene point using trian-

gulation.

It was observed that the normal-speed camera did not capture the full trajec-
tories of the hand movement because the touch interface in front of the monitor
blocked the view of the finger tip near the monitor. Since the full trajectory was
not captured the depth information of the reconstructed 3D trajectories was
used to generate the 3D trajectories out of the high-speed video trajectories.
The depth information was interpolated by fitting a fourth degree polynomial
to all the available sample points, i.e., 3D reconstructed trajectory points which
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were available from the normal-speed trajectory. The fourth degree polynomial
was selected experimentally by examining the fit error and the behavior of the
trajectory past its end. The missing parts of the full trajectory depth informa-
tion at the end of the trajectories were extrapolated by using the last known
depth information.

5 Results

5.1 Measuring 3D Trajectories

The success rate of the finger tracking was measured by the proportion of tra-
jectories which reached the predefined end points. For the high-speed videos, the
end points were the touch target areas reprojected onto the image plane, and
for the normal-speed videos, the defined end point was the triggerbox button.
77% of point actions were tracked correctly from the high-speed videos and 69%
from the normal-speed videos. In total, 1161 (58%) of the pointing actions were
correctly tracked from the both videos and were synchronized correctly.

To demonstrate the 3D reconstruction of trajectories, 19 pointing actions
with 1127 corresponding tracked points were used. Trajectories used for the 3D
reconstruction needed to be limited. Otherwise the inlier point selection for the
reconstruction task would have been biased to the triggerbox location due to the
slow movement speed in the start of the trajectory. This would have resulted in
inaccurate reconstruction, and thus the limited set of pointing actions was used
for the reconstruction.

The camera calibration was done with a standard checkerboard calibration
target with a pattern consisting of 26.5 mm patches. A set of captured calibra-
tion images was used to compute the intrinsic camera parameters and distor-
tion coefficients. 1127 finger trajectory points corrected for the lens distortion
from the both normal and high-speed videos were used to form the basis of
3D-reconstruction (302 inlier points in the reconstruction). The reconstruction
scale ambiguity was eliminated by a fixed setup with known distances between
the high-speed camera (HS), normal speed camera (NL), and the monitor. The
reconstruction results of all of the 1161 pointing actions are visualized in Fig. 4.
The colors in the figure are just for the visualization purpose.

Since there was no ground truth for the 3D trajectories, the 3D reconstruction
accuracy was assessed by using the re-projection error measure [7]. The mean
re-projection error over all the trajectory points used from 1161 videos in the
3D reconstruction experiment was 31.2 pixels This corresponds to approximately
10 mm in the real world units. The 3D reconstruction results of all of the 1161
pointing actions are visualized in Fig. 4 with the X- (Fig. 4b), Y- (Fig. 4c) and
Z-views (Fig. 4d). The test setup is visible in Fig. 4a.

5.2 3D Trajectory Analysis

Pointing actions from the initial 3D reconstruction results with velocity and
acceleration curves from one block are visualized in Fig. 5. From the figure it can
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(a) (b)

(c) (d)

Fig. 4. Visualization of reconstruction results: (a) Setup of the experiments; (b) 3D
reconstruction from x-view, and (c) from y-view and (d) from z-view. The trajectories
include 1161 captured pointing actions displayed as colored dotted curves. (Color figure
online)

be observed that the normal-speed camera did not capture the full trajectories of
the hand movement. For the trajectory feature analysis, 3D trajectories recon-
structed from the high-speed videos with the extrapolated depth-information
were used as described in Sect. 4.

Eleven features were computed from the obtained trajectories: mean velocity,
median velocity, maximum velocity, maximum 2nd submovement velocity, max-
imum 2nd submovement acceleration, mean 2nd submovement velocity, mean
2nd submovement acceleration, the point of the deceleration start, the point
where the 2nd submovement acceleration starts for the first time, and the point
where the 2nd submovement acceleration starts for the second time. Submove-
ment intervals of the trajectories were detected similarly to [5]. The primary
submovement started with the initial acceleration and ended when the accelera-
tion went from negative values to positive values. This was the starting point of
the secondary (2nd) submovement of intentional pointing actions where minor
adjustments to the trajectory were made and the movement was fixed to the
final target position.
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Fig. 5. Trajectory side and top views with velocity and acceleration features extracted
from one block of pointing actions. One line style represents one pointing action.

A two sample T-test level was used to analyze the trajectory features. The
result h from the test is 1 if the test rejects the null hypothesis at the 5% signifi-
cance level, and 0 otherwise. It returns a test decision for the null hypothesis that
the data in disparity pairs comes from independent random samples from normal
distributions with equal means and unequal and unknown variances. Another two
sample T-test was used to test the effect of equal, but unknown variances which
it did not change the results. These results are visible in Table 1. Using the mean
velocities over the whole trajectory in case of the disparity categories −2 and 6,
and as well as with 6 and −6 shows that the mean velocities of the disparity cat-
egories −2 and 6, and 6 and −6 have unequal means. The null hypothesis is also
rejected when using the maximum velocity over the whole trajectory with the dis-
parity categories 2 and 6, as well as with 6 and−6, and with the maximum acceler-
ation over the whole trajectory with the disparity categories 6 and −6. Moreover,
using the mean acceleration of the 2nd submovement with the disparity categories
2 and 6, and as well as with −2 and 6 also rejects the null hypothesis.

The 2nd acceleration point of the 2nd submovement showed that the means
of the feature in the disparity pairs −2 and 6, and as well as with −2 and −6
are statistically different. Moreover, after the tests with the disparity categories
2 and −2 or 2 and −6, neither could reject the null hypotheses with any of
the used features. In Fig. 6 four example cases are shown where statistically
significant differences were found in the means of the calculated features with
different disparity pairs are shown. It can be observed that the differences are
small, but still statistically meaningful.
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6 Discussion

Because of the backtracking used for the normal-speed videos, the trajectories
are most accurate near the monitor and least accurate near the trigger button.
Moreover, it is the opposite situation for the high-speed trajectories which are
initialized at the trigger button, meaning that they are most accurate at the
trigger button and least accurate near the monitor. Moreover, the fact that the
normal-speed videos are most accurate near the monitor and the high-speed
videos are most accurate near the trigger button makes the inlier search more
difficult for the 3D reconstruction task. The accuracy could be further improved
with better tracking results and more careful planning of the test setup.

As expected, the smaller disparity changes 2 and −2 had only minor impact
to the hand movements according to the computed features whereas the disparity
values 6 and −6 had more significant impact to the movements. Moreover, the
large positive disparity 6 (the target object in front of the screen) seemed to
have a more prominent effect on the pointing actions than the others. It is
shown in Table 1 that there are more features showing the trajectories to be
statistically different when using the disparity 6 as one member of the disparity
pair than any other disparity category. Furthermore, the velocity features seem
to be better than the acceleration features to distinguish the pointing actions
towards different disparity values.

Table 1. Rejection of the null hypothesis for the disparity pairs using the selected
features.

Features Disparity pairs Total

2 −2 2 6 2 −6 −2 6 −2 −6 6 −6

Mean velocity 0 0 0 1 0 1 2

Median velocity 0 0 0 0 0 0 0

Maximum velocity 0 1 0 0 0 1 2

Maximum acceleration 0 0 0 0 0 1 1

Maximum 2nd submovement velocity 0 0 0 0 0 0 0

Maximum 2nd submovement acceleration 0 0 0 0 0 0 0

Mean 2nd submovement velocity 0 0 0 0 0 0 0

Mean 2nd submovement acceleration 0 1 0 1 0 0 2

Deceleration start point 0 0 0 0 0 0 0

2nd submovement start 1st 0 0 0 0 0 0 0

2nd submovement start 2nd 0 0 0 1 1 0 2

Total 0 2 0 3 1 3 9
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(a) (b)

(c) (d)

Fig. 6. Normal distribution plot examples where there was statistically significant dif-
ferences in means of the data. (a) Mean velocity with disparities −2 and 6, (b) Mean
velocity with disparities 6 and −6, (c) Maximum velocity with disparities 6 and −6,
and (d) Maximum velocity with disparities 2 and 6.

7 Conclusion

In this work, a two-camera framework for tracking finger movements in 3D was
evaluated with a large-scale study of human-computer interaction. Moreover,
trajectory and video synchronizing processes were introduced and 3D trajectory
reconstruction was proposed. The proposed framework was successfully evalu-
ated in the application where stereoscopic touch screen usability was studied
with the stereoscopic stimuli.

Overall, the depth information gathered from 3D reconstruction task resulted
in full high-speed trajectories with good depth estimation data from the inter-
polated results of the 3D reconstruction task. Some feature correlation with
different parallaxes were already detected, but deeper analysis of the effects of
different parallaxes on the trajectories is planned for the future research.
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a b s t r a c t

The proposed image analysis method allows the measurement of organic phase droplet sizes, velocities,
and copper concentrations in single droplet column copper extraction using hydroxyoxime complexa-
tion. The method uses image acquisition sequences from video, detection of moving droplets, binariza-
tion of background subtracted images, and noise reduction from images. The image analysis method
enabled characterizing the shape of droplets, by determining the droplet minor and major axis lengths.
The method can detect droplet concentration directly inside the column wherever the droplet is visible.
Image based method was validated against reference samples which were analyzed using spectropho-
tometry. The traditional concentration measurement using the spectrophotometric analysis of column
outlet sample collection was performed for comparison purposes. The direct image analysis showed
smaller variation in mass transfer results because of longer and non-uniform residence times when using
sample collection. However, separately collected sample analysis together with the image analysis
enables determination of the copper mass transfer during all the three steps of column experiment.
Image analysis can also be used to reveal concentration profiles inside the droplet. This method is not
limited to extractants, but it can be applied to systems where a suitable color change is present depend-
ing on camera sensor technology.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Mass transfer is an important phenomenon affecting the design
of liquid-liquid contactor units utilizing reactive extraction. To
properly design the units, it is important to understand and quan-
titatively evaluate the effect of different mass-transfer phenomena
in the whole process. These phenomena are solute transfer from
bulk to the interface, interfacial reaction, and transport from inter-
face to bulk. The mass transfer in solvent extraction depends on,
among other variables, droplet sizes, velocities, and concentrations.

When the size, velocity, and inner concentration of a single droplet
are determined, mass transfer into the droplet is defined.

The presence of suitable reagents enhances mass transfer
between the continuous and droplet phases in the reactive extrac-
tion. Especially in industrial hydrometallurgical processes, metal
extraction with complex forming extractants is in common use.
Also substantial application areas of reactive extraction can be
found among environmental, petrochemical, chemical, and bio-
chemical applications (Bart and Stevens, 2004).

To experimentally investigate combined interfacial kinetics and
mass transfer, different experimental methods are available
(Hanna and Noble, 1985). Among these methods, single droplet
measurements are widely applied in mass transfer experiments

http://dx.doi.org/10.1016/j.ces.2017.03.048
0009-2509/� 2017 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: Jussi.V.Tamminen@lut.fi (J. Tamminen).

Chemical Engineering Science 167 (2017) 54–65

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier .com/ locate /ces



of liquid-liquid systems to determine the mass transfer coeffi-
cients, interfacial kinetics and extraction efficiencies (for example,
Whewell et al., 1975; Henschke and Pfennig, 1999; Kumar and
Hartland, 1999; Biswas et al., 1996, 1997; Wegener et al., 2009).

In single droplet systems, a droplet is rising or settling in an
ambient continuous liquid. Droplets are collected from a funnel
at the column outlet and concentrations are analyzed. Reaction
kinetics and mass transfer rates can be determined from this data.

Already in the 1950s, Licht and Conway (1950) and Licht and
Pansing (1953) verified that the mass transfer in single droplet
extraction is divided into three stages: mass transfer during dro-
plet formation, mass transfer in free rising/settling, and mass
transfer during droplet coalescence. Experimental arrangements
should be made so that contribution of each phenomena to the
extraction process can be determined. It is commonly agreed, that
the contribution of droplet formation time to the mass transfer can
be substantial, and the related error should be taken into account
in the formation of mass transfer correlations (Wegener et al.,
2014; Liang and Slater, 1990; Licht and Conway, 1950; Licht and
Pansing, 1953). By contrast, the effect of droplet coalescence in
the column outlet collector is assumed to be negligible, which
has not been clearly shown.

Traditional single droplet experiments do not provide any infor-
mation on the conditions inside the droplet during its rise. For
example, mass transfer leads to concentration changes inside the
droplet and at the interface. These changes can generate interfacial
tension gradients which in turn lead to the Marangoni convection
(Wegener et al., 2009, 2014). The effect of Marangoni convection
cannot be directly observed in pure concentration measurements.
Because of this, it would be beneficial also to be able to follow dro-
plet velocities and concentration profiles within the droplet, at the
interface and in the near vicinity of the droplet in the ambient
phase. Flow pattern and concentration front visualization inside a
droplet using decolorization with pH indicator have been made
by Schulze (2007) and Pawelski et al. (2005) but the concentration
profiles have not been measured. Decolorization, however, has

been used to reveal Marangoni convection. Mörters and Bart
(2000) and Baumann and Mühlfriedel (2002) have determined
indirectly concentration profiles near the phase boundary using a
laser induced fluorescence to track tracer concentrations. Baumann
and Mühlfriedel measured time-dependent average tracer concen-
tration profiles on the flat interface between two immiscible liq-
uids. Mörters and Bart (2000), using D2EHPA system, determined
time-dependent tracer concentration profiles inside a droplet to
investigate diffusion inside and outside droplets in reactive extrac-
tion. Measured tracer concentration profiles were used as a basis to
determine organic complex diffusion coefficient. The determina-
tion the effect of continuous phase flow on the droplet internal cir-
culation was not successful due to experimental arrangements. In
further studies by Mörters and Bart (2003), the measured concen-
tration profiles were a basis for a Stefan-Maxwell based diffusion
model for the mass transfer. Diffusion model was applied to
zinc-D2EHPA single droplet experiments but the model was not
able to describe experimental results satisfactorily and this is prob-
ably due to convective effect not included in the model.

In this work, the problems in single droplet extraction experi-
ments are approached with a direct nonintrusive measurement
system where the droplet velocity, droplet diameter, and concen-
tration inside the droplet are determined by using digital imaging
and subsequent image analysis. In this research, copper extraction
from the aqueous solution to the organic solvent using Acorga
M5640 extractant is analyzed. The interfacial reaction,

Cu2þðaqÞ þ 2HAðorgÞ¢CuA2ðorgÞ þHþðaqÞ; ð1Þ
where the reactant HA (Acorga M5640) exchanges Cu-ions from the
aqueous phase and the Cu-complex CuA2 can be followed directly
and visually due to color change.

In experiments, concentrations, droplet velocities, and diame-
ters are determined as averages from several droplets to minimize
the effect of experimental variability. This direct droplet concen-
tration analysis allows exact determination of mass transfer rates
during the three stages in the single droplet experiment. In tradi-

Nomenclature

A absorbance, [–]
A;B;C;D; E; F parameters of quadratic formula
c concentration, [mol/L, mmol/L]
d diameter [mm]
E droplet aspect ratio [–]
g earth gravitational acceleration [9.81 ms�2]
I light intensity, [–]
L optical path length, [mm]
l length or distance, [mm]
n amount of copper, [mol, mmol]
p pixel value, [–]
u droplet velocity, [mm/s]
V volume, [mL]
_V droplet phase feed flow rate, [mL/min]
X conversion (X ¼ 1� c=c0), [–]

Greek alphabet
Dq density difference (qc � qd), [kg/m

3]
Dc concentration difference, [mmol/L]
q density, [kg/m3]
c interfacial tension, [mN/m]
e molar absorptivity, [L/(mmol mm)]
l dynamic viscosity [Pa s]

Subscripts, indices
0 initial value
aq aqueous phase
bg background
BOT column bottom part
c continuous phase
ch chord length
cr critical value
d droplet or droplet phase
e equivalent
i; j pixel location indices
major, minor major and minor axis of a droplet image
org organic phase
p value for pixel
Rise rise
Sample analysis from sample
t terminal velocity
TOP column top part

Dimensionless numbers
Eo Eötvös number, Eo ¼ gDqd2=c
Mo Morton number, Mo ¼ gl4

cDq=ðq2
cc3Þ
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tional single droplet experiments, droplet rise time have to be con-
trolled by adjusting the difference between the droplet feed and
collection locations in order to determine, for example, the mass
transfer during the droplet formation period by extrapolation. Also
the assumption of the negligible effect of a coalesced droplet phase
residence time in the funnel on the total mass transfer can be
tested. The method provides also droplets inner concentration pro-
files and this reveals the inside circulation. The direct concentra-
tion analysis can be combined with numerical models and this
leads to deeper understanding of mass transfer in reactive extrac-
tion and provides a basis of better equipment design. Other geome-
tries than droplets, such as planar interfaces, can be measured if
optical path length is determined. Other applications than extrac-
tion where suitable color changes exist, can be tracked with this
method. The details of experimental procedure are presented in
Section 2, where the experimental set-up, experiments in the col-
umn, and the analysis methods are shown in Sections 2.1–2.5.
Results from experiments and discussion are combined as Sec-
tion 3. The calibration, droplet size, concentration and velocity
results are discussed in Sections 3.1–3.3. To our knowledge the
direct spatial quantitative concentration measurement from dro-
plets has not been published previously.

2. Experiments

2.1. Preparation of feed solutions

The extractant (Acorga M5640 by Cytec Solvay Group, Lot n:o
P3GBA524A) was contacted twice with 0.1 mol/L sulfuric acid
and once with 0.1 mol/L ammonium sulfate solution prior its use.
Equal volumes of organic and aqueous solutions were used. This
was made in order to pre-equilibrate extractant and remove
remaining soluble impurities from extractant. Finally, extractant
was diluted with Exxsol D80 (by Exxon) to 10 vol% and 20 vol%
solutions. The extractant active component concentration was
measured by titration (Mettler Toledo T50 automatic titrator).

The equilibrated organic copper complex standard solutions
were prepared by mixing 30 min the feed solutions with different
copper concentrations, and 10 or 20 vol% Acorga solutions
(Vaq=Vorg ¼ 1 : 1). The copper content of the aqueous phase was
analyzed with a spectrophotometer (Agilent 8543), and organic
copper concentrations were calculated from mass balance. Organic
solutions were used as standards for both the spectrophotometric
analysis and the image analysis.

The copper sulfate solutions were prepared by dissolving cop-
per sulfate (CuSO4�5H2O, Merck, Pro analysis) into water. The pH
of solution was adjusted to 3.1 with concentrated sulfuric acid.

2.2. Experimental set-up

The single organic droplet extraction experiments were made in
a glass column (45 mm� 45 mm � 375 mm) filled with continu-
ous aqueous phase. The droplets were formed at the flat tip of a
0.8 mm steel needle (nominal inner diameter 0.51 mm) at the bot-
tom of the column using a high precision syringe pump. The dro-
plet and column were back-illuminated with a led panel
(300 mm � 300 mm, 35 W, color temperature 3000 K). The mea-
sured droplet sizes are introduced in Fig. 10. The droplets were col-
lected at the other end of the column using a small funnel as
shown in Fig. 1.

Two milliliter samples from the rising droplets were collected.
Copper concentrations of the organic phase samples were directly
analyzed with the spectrophotometer (Agilent 8543). The analysis
was made using the absorption at 600 nm for the organic solution
and at 811 nm for the aqueous solution samples. The wavelengths

were selected based on the sample measurements with a
spectrophotometer.

The droplet velocities and sizes were determined by analyzing
the videos recorded with a Canon Legria HF R47 camera using a
framerate of 50 frames per second. The concentrations inside the
droplets and droplet sizes were determined from videos recorded
with a AVT Oscar F-510C camera using a framerate of 7.5 frames
per second. This second camera with a smaller field-of-view was
used to capture more detailed images of the droplets and for more
accurate representation of color information.

2.3. Column experiments

The column was filled with the continuous phase. The droplet
phase was continuously pumped through the needle into the col-
umn. Flow rates of 0.1–1.0 mL/min were used in experiments.
The average droplet detachment rate increased from about 4 dro-
plet/min, to 35 droplet/min as a function of the feed flow rate. At
first, the droplet phase flow rate was set to be at the minimum
(0.1 mL/min) so that the droplet formation was slow enough for
having a single droplet in the column. Droplets were formed until
enough droplets were collected for the analysis (approximately
2 mL). Samples were collected manually using syringe in two or
three batches in order to minimize sample residence time in the
funnel. The average sample residence times decreased from 420 s
to 60 s when flow rate increased from 0.1 to 1.0 mL/min. The fun-
nel samples contained both phases and the phases were separated
just after sampling. The samples were later analyzed with the spec-
trophotometer. Experiments were then repeated using higher feed
rates. It is acknowledged here, that it is possible to optimize sam-
pling procedure. However, sample residence time in the funnel
cannot be removed completely as droplet coalescence is not an
instantaneous process. Samples include also mass transfer over
the phase interface at column outlet.

The concentrations of droplets were separately recorded at the
bottom of the column (just after the droplet was detached from the
tip of the needle), and at the top of column (just before the droplet
entered the column outlet funnel). The results from the bottom of
the column revealed the mass transfer into the droplet during its
formation, whereas the results from the top of the column included
the mass transfer into the droplet during its formation and rise.

Fig. 1. The experimental set-up for column experiments with rising single organic
droplets. Approximate field-of-view positions of the cameras for column top
measurements are marked with rectangles.
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The effect of rise on the mass transfer into the droplet could be
determined by comparing the measured concentrations in the col-
umn bottom and top.

2.4. Image analysis

The first step in the image-based droplet analysis was to acquire
image sequences using the setup described in Section 2.2. The AVT
Oscar F-510C FireWire camera was used to obtain the image
sequences (stored as uncompressed image files) for the concentra-
tion analysis and droplet size measurements. The Canon Legria HF
R47 camera was used to obtain videos for the droplet size, velocity,
and acceleration measurements. The second step was to detect
moving droplets in the videos. Since the background (the column
with the continuous phase) was static except for the moving dro-
plets, the detection problem was solved using a background sub-
traction method. The background subtraction was performed by
subtracting the previous frame in the image sequence from the
input frame. This way the regions, where the subsequent frames
differ due to the movement of droplets, were separated from the
background (Cheung and Kamath, 2005).

The background subtracted image was then binarized by select-
ing an appropriate threshold value for the red color channel. The
red channel was selected based on preliminary experiments where
it was found to provide the most robust information for the task.
The threshold value was automatically selected by using Otsu’s
method (Otsu, 1979) that assumes that the image contains fore-
ground (object) and background pixels, and calculates an optimal
threshold so that the intra-class variance is minimal.

The resulting binary image typically contains noise. To elimi-
nate the noise, connected components (connected regions of the
foreground pixels) were determined and the components smaller
than 10% of the predefined minimum droplet area were removed.
The resulting binary images were further processed with morpho-
logical erosion using a small structuring element to remove small
irregularities in the droplet edge regions. The structuring element
is a binary area where black pixels (0 pixels) are excluded, and
white pixels (1 pixels) are included in the morphological computa-
tion. After this step, the binary images contained at least fragments
of the droplet edges.

Depending on the concentration, some of the detected regions
contained holes. Moreover, with some concentrations the droplet
edges were only partly visible.

To obtain full contours of the droplets, fitting an ellipse to the
binary image data was used. The ellipse fitting was selected based
on an assumption that the shape of droplets is oblate spheroid
which causes the droplets to have an elliptical shape in the images.
The ellipse fitting provides a good estimate for the true contours of
the droplets and produces more reliable droplet shape parameters
than using only binary descriptors of the droplet region (Szpak
et al., 2012). The limits for the ellipse parameters were used to con-
trol the droplets, which were processed further and the ones which
were discarded if they did not meet the limits. The full image anal-
ysis pipeline is presented in Fig. 2. The image at the top left corner
shows the region of interest (ROI) (the blue rectangle) used for pro-
cessing. ROI was manually selected after visual inspection of the
videos to contain all the droplets moving with minimum process-
ing area.

The basic image processing pipeline from the beginning to the
ellipse fitting step was the same for the both imaging sources. After
this, different feature extraction operations were performed for the
Canon Legria HF R47 videos (size, velocity, and acceleration mea-
surements) and the AVT Oscar videos (size and concentration anal-
ysis). Velocity and acceleration of the droplets were not
determined from AVT Oscar videos since the lower frame rate, only
3 or 4 captured images from one moving droplet, did not allow

accurate measurements. Features extracted from the Canon Legria
HF R47 videos included the minor and major axis lengths, orienta-
tion, velocity, and acceleration of the droplet. The ellipse minor and
major axis lengths are

dminorjdmajor ¼ 2ðAE2 � BDEþ CD2Þ � 4ACF þ FB2

ð4AC � B2ÞðAþ CÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� CÞ2 þ B2

q

2
64

3
75

1
2

: ð2Þ

where j denotes the logical or (disjunction) operator (the greater of
the two values given by the equation is the major axis) and A, B, C, D,
E, and F are the parameters of the general quadratic curve,

Ax2 þ Bxyþ Cy2 þ Dxþ Eyþ F ¼ 0; ð3Þ
(Weisstein, 2016). These parameters were obtained using the
ellipse fitting. The velocity was calculated from the movement of
the droplet center point between the consecutive frames and the
acceleration as the difference in velocities between the consecutive
frames.

In order to convert the pixel values of the features into the real
world values (millimeters), the cameras were geometrically cali-
brated. To calibrate the camera, a sequence of images with a
5 mm grid was captured to provide the points of reference. The cal-
ibration was performed using the methods presented in (Heikkila
and Silvén, 1997; Zhang, 2000). The process included detecting
the grid from the image sequence and calculating the pairwise dis-
tances of grid lines. The collected information was used to form
corrected, distortion free images. The pixel size in mm was
obtained by dividing the real world grid size (5 mm) with the aver-
age distance for adjacent grid lines in images.

The concentration calculations were performed using the absor-
bance in the red color channel as explained in Section 2.5. The dro-
plet geometry was taken into account by making chord length
calculations assuming that the shape of droplets was oblate spher-
oid. This geometry was calculated from the parameters of the fitted
ellipse. 15% of the droplet image area, the outer edge region of the
droplet, was excluded from the concentration analysis since the
light scattering at the droplet phase boundary caused problems
when calculating the concentrations. Simplified process flow of
the concentration analysis is shown in Fig. 3. Image analysis steps
were implemented using MATLAB (2016a). The concentration
analysis is described in more detail in Section 2.5.

2.5. Concentration analysis

The concentration analysis inside a droplet is based on the
observation of image intensity change inside the sample. The con-
centration analysis is possible with imaging because of color
change, which takes place when copper is complexed with hydrox-
yoxime. This color change is observed from the video recording of
moving droplets by a digital camera.

The spectra recorded with the spectrophotometer revealed that
free hydroxyoxime and its copper complex absorb light at different
wavelengths (Fig. 4). The highest wavelength at which the free
extractant absorbs light is approximately 400 nmwhereas the cop-
per complex absorbs also at longer wavelengths. The complex has
a wide absorption peak with the absorption maximum at approx-
imately 680 nm. The concentration analysis of organic phase sam-
ples with the UV/VIS-spectrophotometer (Agilent 8543) was made
at the wavelength of 600 nm. The wavelength of 811 nm was used
for the aqueous copper sulfate solution concentration analysis.

The concentration analysis with both the spectrophotometer
and the cameras are based on the Lambert-Beer law. The
Lambert-Beer or Bouguer-Beer law describes how, in a transmis-
sion measurement, the light intensity decreases as a function of
the sample concentration and light path length. Each recorded
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Fig. 4. The basis for detecting the copper complex. The red channel of camera is most sensitive for wavelengths from 550 nm to 700 nm. The visible-range spectra of organic
Acorga M5640 solutions dissolved into Exxsol D80 and aqueous copper sulfate solution.

Fig. 2. Image analysis steps for determining the droplet movement, size and concentration. Contrast of the color images on the top row and the difference image has been
enhanced for visualization purposes.

Fig. 3. Simplified process flow of the concentration analysis. The ‘logical and’-symbol is used to represent the major contributing factors (absorbance and volume) to the
concentration determination in simplified form.
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pixel of the droplet image represents a part of droplet. These dro-
plet parts have a volume, here called as the pixel volume. The con-
centration in the pixel volume may not be uniform along the
droplet chord (perpendicular to the image plane) as droplets were
imaged only from a single direction. Uniform concentration was
assumed for each pixel volume. The Lambert-Beer law and its
derivation are presented and discussed by Berberan-Santos
(1990), Goldstein and Day (1954) and Liebhafsky and Pfeiffer
(1953) and Denney and Sinclair (1987). The Lambert-Beer equation
is presented as

A ¼ eLc ð4Þ
where e is molar absorptivity, L the optical path length, c is concen-
tration and A is the absorbance:

A ¼ log10ðI0=IÞ ð5Þ
that is, the logarithmic ratio of light intensity transmitted through
the sample (I) and incoming light intensity ðI0Þ.

The camera used for the concentration analysis (AVT
Oscar F-510C) is a RGB camera with 8-bit channels. The approxi-
mate range, where red channel of the camera detects light, is
550–700 nm (Fig. 4). The red channel was found to be specific only
for the copper complex of extractant, and not for the uncomplexed
extractant. It is also noted that copper sulfate absorbs light at the
wavelength range of the red channel. The red channel background
is assumed to be constant, as the continuous phase volume is much
higher compared to the droplet volume and thus the amount of
copper and the copper concentration in the continuous phase
remains practically constant during an experiment.

The camera records incoming light intensity and encodes the
intensities as pixel values in the range of 0–255 (8 bits). The pixel
values are assumed to be linearly dependent on the incoming
light intensity within the usable dynamic range of the camera.
Analogous to Eq. (5), absorbance is determined by:

A ¼ log10ðp0=pÞ; ð6Þ
where the incoming light intensity is represented by the pixel value
p0 and the light transmitted through the sample with the pixel
value p (compare to Eq. (5)).

The camera records a droplet as it moves through the column.
The spatial uniformity of the light source is even, and the pixels
of the camera are assumed to be identical. Both droplet and back-
ground are visible simultaneously in recorded images, and thus the
situation is similar to the double-beam spectrophotometer where
the light beam is divided into two beams, and one travels through
the sample and another through the solvent (i.e., background)
(Mann et al., 1974). As the background of the image, i.e., the con-
tinuous phase, absorbs light also in the red channel used for the
concentration analysis, the background is corrected by subtracting
the background absorbance (Abg) from the absorbance of the dro-
plet image (Ad):

A ¼ Ad � Abg : ð7Þ
The droplet concentration can be calculated from absorbances,

when droplet geometry is taken into account. The optical path
length, i.e., the distance which light travels in a sample effects
absorbance as it can be seen from the Lambert-Beer law (Eq. (4)).
The chord lengths of the droplet at each pixel position were calcu-
lated by assuming that the droplet was oblate spheroid and that
the axis normal to the image plane is equal to the measured major
axis length.

The effect of light scattering was determined by calculating
molar absorptivities (e) for each pixel of single droplet image using
the Lambert-Beer law (Eq. (4)). The absorptivities are shown as a
function of calculated chord lengths in Fig. 5b. The edge of a dro-
plet is darker than the rest of the droplet, which is due to light

refraction and scattering. The apparent absorptivity increases
towards the droplet edge and it includes both the effect of light
absorption due to the copper complex and the effect of scattering.
While there are correlations for the light intensity changes due to
scattering (Gumprecht and Sliepcevich, 1953), the use of apparent
absorptivity was chosen for this work, as the present camera
detects a wide range of wavelengths. The applied interpolation
function for the apparent absorptivity was

e ¼ 3:786� 10�3=lnðlch þ 1Þ þ 0:8977� 10�3; ð8Þ
where lch is the chord length. The function parameters were fitted to
the droplet data and the function was used in the calculation of con-
centration profiles and the average concentrations of the droplets.

When the optical path length of the Lambert-Beer law (L in Eq.
(4)) is set equal to the calculated chord length and the absorptivi-
ties are calculated with Eq. (8), the concentrations at the positions
of the pixels (cp) can be calculated from the image data based
absorbances and the Lambert-Beer law (Eq. (4)):

cp ¼ A=elch ð9Þ
The calculated chord lengths (lch) together with the image scale,

i.e., the distance per pixel (lp), are used when the representative
volume of each pixel is calculated:

Vp ¼ l2plch; ð10Þ
where lp is the distance per pixel. The amount of copper ðnpÞ at the
position of each pixel, can be calculated from the volume and the
measured concentration of the pixel:

np ¼ cpVp ð11Þ
When the sum of the values of np of the whole droplet image is
determined, the amount of copper transferred into the droplet can
be calculated with

n ¼
Xdmajor

i¼0

Xdminor

j¼0

npði; jÞ ð12Þ

where i and j are indices of pixel location along the droplet image
axes.

The average concentration of copper transferred into the dro-
plet is

c ¼ n=Vd; ð13Þ
where Vd is the droplet volume. The organic phase copper concen-
tration is presented as a conversion of extractant, as organic feed
solution includes the extractant and no copper.

The conversion (X) of extractant (HA) is calculated (Levenspiel,
1999) by:

XHA ¼ 1� cHA=cHA;0 ð14Þ
The extractant concentration is calculated using the extractant

mass balance:

cHA ¼ cHA;0 � 2c ð15Þ
Copper reacts with two extractant molecules to form the com-

plex, as also it can be seen from the reaction (Eq. (1)).
The calibration standards (see Fig. 5a) for the single droplet

experiments were imaged as droplets in the column. The apparent
molar absorptivity was calculated for each pixel of a one droplet
image (cCuorg = 25.4 mmol/L). The interpolation function (continu-
ous line) and e obtained from droplet center data (dotted line) in
Fig. 5b are also shown. The continuous line represents the interpo-
lation function of apparent molar absorptivity and the dotted line
denotes the value of e obtained from the fit. The scattering is at
minimum at droplet center, as can be seen from Fig. 5b.
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The calibration standard solutions of 20 vol% Acorga M5640
containing different copper concentrations were measured from
the 0.8 mm needle tip using the aqueous copper sulfate solution
(0.16 mol/L) as the continuous phase. The calibration line (Fig. 5a)
was computed based on the center region of the droplets where
the effect of light scattering is minimized. The copper complex
standard solutions of 10 vol% Acorga M5640 in 0.06 M CuSO4 con-
tinuous phase were measured for the comparison and verification
purposes. The organic standard solutions were pumped
( _V ¼ 1:5 mL=min) through the needle into the column filled with
the copper sulfate solution. The copper concentration in organic
standard solution was varied between 0 and 30 mmol/L. The stan-
dard solution analysis with the spectrophotometer revealed that
calibration lines of the both extractant concentrations were essen-
tially the same.

The similar observations can be seen in Fig. 6, where samples
with known copper concentrations were analyzed. The concentra-
tion in the droplets was analyzed using the same method and the
calibration line as in the actual column experiments. The results at
two different extractant concentrations are overlapping, indicating
that also in the image analysis the calibration lines are practically
the same.

Each droplet was detected several times from the subsequent
video frames. The median value of these separate detections was
used as the representative value for the droplet. The subsequent
droplets are here considered as repetitive measurements. The v2

goodness of fit test for the normality was performed. The v2 test
was passed in the case of elliptical droplet major and minor axis
lengths, velocity, and concentration, that is, the data is normally
distributed. Standard deviation of each dataset was chosen as the
basis for quantifying variation in the measurement data. The mea-
sure for the error in this work is three times dataset standard devi-
ation. The errors are approximately 1% for the droplet minor and
major axis lengths, approximately 3% for the droplet velocity and
approximately 22% for the droplet concentration in mmol/L
(Fig. 7). The measured data is shown as frequency histograms
and the calculated normal distributions as lines. The parameters

of the normal distribution were estimated based on the data. The
data analysis was performed using MATLAB (2016a).

The theoretical detection limit for the proposed method is esti-
mated by assuming that copper complex concentration in the dro-
plet is uniform. The smallest possible detectable concentration
change corresponds to pixel value p change from 255 to 254. Then
the absorbance is 1:7� 10�3. The concentration can be calculated
from this using the calibration line (Fig. 5). Thus, the smallest
detectable concentration is approximately 0.15 mmol/L. The
method accuracy and reproducibility are presented in Fig. 6. The
method reproducibility (i.e., the distribution width of the mea-
sured data at each standard solution concentration) is approxi-
mately 2 mmol/L. The accuracy of method is defined as the
difference between the average of the measured data and the nom-
inal standard solution value. The accuracy of method may be pos-
sible to improve since there are some differences between the
measured and nominal concentrations (the line in Fig. 6). The
method standard line is linear in the concentration range 0–
30 mmol/L (Fig. 5a).

The instrument bandwidth affects recorded absorbance values
(Denney and Sinclair, 1987). In case of the spectrophotometer,
the spectra was recorded with interval of 1 nm. The absorbance
peak of complex is at least 150 nm wide (see Fig. 4) and the ratio
of instrument and sample spectral bandwidths are below 0.01 in
case of the spectrophotometer. The bandwidth of the red channel
of the camera is close to 150 nm. The ratio of the instrument and
sample spectral bandwidths is thus approximately 1.

3. Results and discussion

3.1. Analysis method

The camera calibration line forms a straight line (see Fig. 5a).
Thus the Lambert-Beer law is obeyed also in determining the con-
centration from the droplet image data. The molar absorptivity
coefficients obtained for the 10 vol% and 20 vol% Acorga standard

Fig. 5. The calibration of copper complex concentration for organic phase droplet image analysis with the AVT Oscar F-510C camera. (a) The fitted calibration line for droplet
center data and (b) the effect of light scattering due to droplet interface curvature on molar absorptivity.
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solutions using the spectrophotometer at the wavelength of
677 nm, are 9:62� 10�3 and 9:43� 10�3 L/(mmol mm), respec-
tively (L = 10 mm). The coefficients are nearly identical. For that
reason, the only species present, which absorbs light at 677 nm,
is the copper complex. The corresponding estimated absorptivities

at the droplet center for the camera (AVT Oscar F-510C) were
3.4 � 10�3 ± 0.2 � 10�3 L/(mmol mm) for the 10 vol% Acorga solu-
tions and 3.2 � 10�3 ± 0.2 � 10�3 L/(mmol mm) for the 20 vol%
Acorga solutions. The optical path length (L) was taken to be equal
to the droplet major axis length in the calculations. The measured

Fig. 6. Comparison of known standard solution concentrations and concentrations from image analysis. Mean of measured data (symbols) and variation of data (error bars)
are shown. Nominal values (line) are shown for comparison purposes.

Fig. 7. The example distributions of measured droplet sizes, velocities, and concentrations. The histograms represent the measured data distributions and the lines denote
normal distributions whose parameters are estimated from the data. The width of normal distribution is ±3 standard deviations. The average and standard deviation were
estimated from data.
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major axis lengths were 4.2 ± 0.1 mm in the case of 10 vol% Acorga
standards and 4.1 ± 0.2 mm in the case of 20 vol% Acorga standard
solutions (see also Fig. 10).

The observed absorptivities of the 10 and 20 vol% standard solu-
tions are almost identical also in the case of droplet image analysis.
The complex absorbs light at the wavelength range of the red chan-
nel. The background was constant in each case and was subtracted
from the images. The observed absorptivities were lower for the
camera due to the wider spectral bandwidth. The similarity of
absorptivities implies that the mass transfer during droplet forma-
tion was indeed minimal.

The effect of scattering due to droplet interface curvature was
taken into account by calculating molar absorptivities for each
pixel of standard solution droplet (Fig. 5b). The apparent molar
absorptivity includes both the effect of copper complex light
absorption and the effect of light scattering. The apparent absorp-
tivity was assumed to depend only on the chord length, but the
variation in the droplet data is notable. The interpolation function
was fitted to the droplet data and it was used in the calculation of
droplet copper concentrations. The interpolation function gives
apparent absorptivity of 3.2 � 10�3 L/(mmol mm) at the droplet
center (L = 4.1 mm), which is identical to the absorptivity obtained
by fitting to all different concentrations. The difference between
the continuous and dotted line in Fig. 5b indicates the effect of
scattering. Scattering is minimal at the droplet center and
increases towards the droplet edge.

It is acknowledged that copper can be transferred into the stan-
dard solution during droplet formation in the calibration experi-
ment. The average formation time of droplets was estimated to
be approximately 1.3 s. Due to the short formation time, the effect
of mass transfer during the droplet formation with the standard
solution is estimated to be approximately 0.3 mmol/L. This is
within the variation in the analyzed concentrations of standard
solutions. The estimation was made by extrapolating measured
data from column bottom experiments, which contain mass trans-
fer from droplet formation (see Fig. 8 and Table 1). The fitted
extrapolation power function was used to calculate concentration
at flow rate of 1.5 mL/min.

3.2. Concentration analysis

The present method determines organic phase copper complex
concentration in the droplet. The results are presented as an
extractant conversion and they are shown in Fig. 8. The conversion
based on sample analysis (cSample) taken from the column outlet
funnel are clearly higher than based on the droplets imaged at
the top (cTOP) and bottom of the column (cBOT) (see Table 1). Results
from bottom of column show mass transfer during droplet forma-
tion, while results from column top include also mass transfer dur-
ing droplet rise. The difference between column top and bottom
analyses, reveal mass transfer during droplet rise (see also Fig. 8b).
Samples include mass transfer during droplet formation, rise and
column outlet funnel.

The high concentrations in the analyzed samples are due to long
residence times at the column outlet. The average sample resi-
dence times at column outlet varied from 60 s to 420 s. It is
acknowledged, that the sample concentrations are high and that
sampling can be optimized. However, the purpose of this work is
to present direct method for determining droplet inner concentra-
tions and sample concentrations were determined for comparison
purposes. Also noteworthy is the variation between the samples at
high feed flow rates (over 0.3 mL/min) compared to the variation
from direct droplet analysis.

The imaging of a droplet at the column top was made just prior
it enters the column outlet funnel and imaging at the column bot-

Fig. 8. Copper complex concentration change in column experiments. (a) Conversion of extractant to copper complex. (b) Copper complex concentration change during
droplet rise.

Table 1
Measured average droplet concentrations at column top and bottom (cTOP and cBOT ),
concentration change during rise (DcRiseÞ and collected sample direct analysis (cSampleÞ.

_V cTOP cBOT DcRise cSample

mL/min mmol/L mmol/L mmol/L mmol/L

0.1 5.3 5.3 0.0 29.9
0.3 2.4 1.7 0.6 21.5
0.5 2.1 1.0 1.1 24.5
0.7 2.1 0.7 1.4 28.5
1 2.3 n.d. 2.3 24.9
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tom was made just after a droplet detached from the needle tip.
These two positions were measured in separate experiments. Com-
parison of the column bottom and column top measurements
reveals that the majority of copper is transferred during the droplet
formation. When the flow rate increases, copper transfer during
the droplet formation decreases rapidly as the droplet formation
time decreases. The droplet formation time is approximately 17 s
at 0.1 mL/min and it decreases below 2 s when the flow rate is
1.0 mL/min.

The copper mass transfer during the rise increases as the dro-
plet feed flow rate increases (see Fig. 8b). The droplet sizes and
the measured velocities of droplets are approximately constant
(see Figs. 9 and 10) and the rise time does not vary significantly

and cannot explain the difference because the rise length remains
constant. Possible explanation is that, the concentration difference
between droplet and continuous phase increases as a function of
flow rate, due to decreasing mass transfer during droplet formation
(see Fig. 8 and Table 1). This leads to observed increased mass
transfer during droplet rise.

For determining droplet concentration profiles, droplets were
imaged at the bottom and the top of the column, and the concen-
trations were calculated from the recorded video images (see
Fig. 9). The shown droplet images represent examples of droplets
at the top and bottom positions of the camera. The highest copper
concentrations are found near the droplet interface, which is due to
interfacial complexation of copper and limited interaction time for

Fig. 9. Examples of determined copper organic phase concentration profiles inside droplets. Separate measurements were made for moving droplets at the column top (top
row) and column bottom (bottom row). The arrow indicates the direction of droplet movement. Axis units are pixels.

Fig. 10. The droplet sizes and velocities measured at the top of the column with organic feed flow rates 0.1–1.0 mL/min. Data is from Canon Legria HF R47. (a) The measured
droplet minor and major axis lengths, (b) The measured and estimated terminal velocities of droplets.
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mass transfer. The concentrations at the droplet bottom tend to be
higher than at the top. The explanation for this is not clear, but a
possible reason is the density difference between the extractant
and copper complex because the loaded extractant is heavier.
Another possible reason is the circulatory flows at both sides of
the droplet phase boundary. One possible explanation for the
observed concentration distribution inside the droplets is the
uneven distribution of surfactants. According to Slater (1995), sur-
factants have a tendency to concentrate in the droplet lower part
and to stop internal circulation. In this stagnant cap model the dro-
plet upper part, having lower surfactant concentration, has a
mobile interface leading to circulation and reducing concentration
differences.

The effect of decreasing the formation time can be observed in
Fig. 9 as the concentrations decrease from left to right. The effect is
especially clear in the case of observations from the column bot-
tom. The effect of mass transfer during the droplet rise can be seen
by comparing images taken at the top and the bottom of the col-
umn with the same flow rate. The images recorded at the top of
the column show higher concentrations. Comparison of the images
is straightforward, as the droplet sizes are approximately equal.

3.3. Droplet sizes and velocities

Fig. 10 shows measured droplet sizes and measured and esti-
mated droplet velocities. Terminal velocities were calculated by
using Eq. (16). Data was obtained by image analysis of videos
recorded by Canon Legria HF R47.

The droplet sizes are similar in all experiments (Figs. 9 and 10),
which is due to identical solution properties and the same needle
gauge used in the droplet formation. The increase in feed flow rate
of the droplet phase from 0.1 to 1.0 mL/min had no significant
effect in the drop sizes.

Droplet velocities were determined at the top of the column and
like droplet sizes, velocities are also close to each other. They var-
ied between 112 and 115 mm/s (Fig. 10b). To validate the velocity
measurement, correlation by Grace et al. (1976) was used. This cor-
relation is for systems where, for example, surfactants are present
as contaminants and correlations for pure systems are not usable.
Their correlation for droplet terminal velocity is

ut ¼ lc=ðqcdeÞMo�0:149ðJ � 0:857Þ ð16Þ
with

J ¼ 0:94H0:757; 2 < H 6 59:3 ð17Þ
and

J ¼ 3:42H0:441; H > 59:3 ð18Þ
and H defined as

H ¼ 4=3EoMo�0:149ðlc=lwÞ�0:14
; lw ¼ 0:9 mPa s ð19Þ

where lc and qc are continuous phase viscosity and density, de vol-
ume equivalent sphere diameter, Mo is Morton number and Eo is
Eötvös number. The property values for the 20 vol% Acorga and
0.16 mol/L CuSO4-solution pair at room temperature were
qc = 1025 kg/m3, qd = 834 kg/m3 and c = 22 mN/m. Copper sulfate
solution density was interpolated from literature values (Lobo,
1981) and interfacial tension was measured using the drop
weight method (Adamson, 1990). Using average droplet
major and minor axis lengths �dmajor ¼ 4:0 mm or 4.1 mm and
�dminor ¼ 3:3 mm (see Fig 10a), volume equivalent sphere diameters
de are 3.76 and 3.81 mm. With given physical property values Mo
and Eo numbers are 0.242 � 10�9 and 1.36 and terminal velocities
ut using Eqs. (16)–(19) are 117 and 118 mm/s, which agree well
with the measured droplet velocities.

Based on the measurements, the droplet aspect ratio
E ¼ dminor=dmajor is between 0.80 and 0.83. Grace et al. (1976) have
presented a correlation for the droplet aspect ratio

E ¼ 1=ð1þ 0:163Eo0:757Þ; Mo < 10�6; Eo < 40 ð20Þ
Using Eo ¼ 1:36, the estimated aspect ratio is 0.83 which corre-
sponds well with the observed aspect ratios. To determine the dro-
plet shape region, diagram presented by Grace et al. (1976) is used.
With droplet Eötvös number 1.34 and Morton number 0.242 � 10�9

the shape region is ellipsoidal which is confirmed from droplet
observations.

In addition to surfactants, the droplet size and form have an
effect on the terminal velocities. The droplet size defines the mass
transfer area, and the droplet velocity affects internal circulation in
the droplet and the diffusion layer thickness. The changes in veloc-
ity lead to differences in the diffusion layer thickness and wake
outside the droplet. The properties of the diffusion layer and circu-
lation both inside and outside the droplet, have an effect on the
mass transfer during extraction. The velocity of the droplet affects
the rise time of the droplet. Both the droplet size and velocity are
measured in order to differentiate between the mass transfer dur-
ing droplet formation and rise.

4. Conclusions

The presented method was developed for direct monitoring of
single organic phase droplets and their reactive copper extraction
in a glass column. The developed method is based on the observa-
tion of droplet color change, which is due to the formation of
strongly light absorbing copper–hydroxyoxime complex. It was
verified against reference samples which were analyzed using
spectrophotometry. The method can be used to detect droplet con-
centration directly inside the column from any position where the
droplet is visible. This enables monitoring of mass transfer into a
single rising droplet in the column, which can be done in separate
experiments or in a single one using several cameras.

In this paper the problematic concentration analysis using the
traditional sample collection has been performed for comparison
purposes, and the advantages of the direct image analysis based
method has been presented. The method enabled the determina-
tion of individual effect of droplet formation, droplet rise and sam-
ple collection on copper mass transfer. The effect of sample
collection is most notable due to the long residence time of the
droplet phase at the column outlet. The droplet formation has a
notable effect on copper mass transfer at low feed flow rates, due
to long droplet formation times. The image analysis method also
enabled characterizing the shape of droplets, by determining the
droplet minor and major axis lengths. There was a good agreement
with measured and estimated droplet velocities.

The developed method can be improved in several ways. For
example, when a more sensitive camera with a wide dynamic
range and improved conversion to digital intensity values is used,
a wider range of concentrations can be measured and with better
signal-to-noise ratio. Calculation of optical paths and modeling
the light scattering at the outer edge region of the droplet would
possibly allow inclusion of the edge region into the concentration
analysis. One possible way could be to add additional camera(s)
at different angle(s) to determine the light scattering and optical
properties of the edge region. Different light sources could also
be considered, when determining the effects of the light scattering
at the outer edge region of the droplet. While the present work is
designed for copper solvent extraction, the same method can be
used in any metal-extractant pair, where the color change in
extraction is large enough for the imaging. This method is by no
means limited to metal extraction substances, but it can be applied
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also to other systems, where a suitable color change is present. It is
also possible to limit the observation bandwidth by installing spe-
cial filters onto the camera optics. The camera red channel was
used here, but present method is not limited to specific color chan-
nel. Depending on application, it may be possible to use different
channels in detection of different reactive species. On the other
hand, it is also possible to change the spectral characteristics of
the illumination used and even use laser illumination. The method
is not limited to the visible light, assuming that the camera sensor
is sensitive to and the optics is suitable for other wavelengths, such
as ultraviolet light or infra-red.
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Abstract
Copper reactive extraction from ambient aqueous solution to organic droplets using single droplet experiments 

was performed. Extractant was Agorca M5640 hydroxyoxime in Exxsol D80. An image analysis based method was 
used to determine droplet concentration directly after droplet formation and rise. Mass transfer during formation is 
correlated using literature. Level Set interface tracking method was used to find formation hydrodynamics and as 
a result the assumption of non-circular velocity field could be validated. This was also supported by the circulation 
criteria based on needle Reynolds number. A model to estimate extraction rate as function of droplet Fourier number 
was based on a literature correlation and it was found that a model where the interface effect was described using 
interface mobility parameter was able to predict satisfactorily mass transfer. For a rising droplet stagnant cap model 
was used. Stagnant cap volumes were estimated from droplet images. A CFD model of a non-deforming rising 
droplet with rigid interface was used to fit interfacial reaction kinetic constant. Fitted value was much lower than 
experimentally determined by high a shear reactor. Mass transfer coefficients calculated from CFD model and 
estimated using literature correlations agreed well. By applying a two-film model it was shown that major part of the 
resistance is located at the interface between the phases.

Keywords: Mass transfer; Copper extraction; Liquid-liquid 
extraction; Mathematical model; CFD

Introduction
Single droplet experiment is a common method to determine 

mass transfer rates between the feeds in liquid-liquid extraction (LLE). 
During a single droplet experiment three stages are identified: (1) 
droplet formation, detachment and acceleration, (2) droplet rise/fall 
and (3) droplet coalescence [1]. In traditional experiments a droplet 
concentration are measured before formation and after coalescence 
and this provides an overall mass transfer rates for all stages. By using 
suitable experimental arrangements the effect of coalescence can be 
minimized but the droplet formation stage is often substantial [2-5] and 
by using several different droplet rise times the effect of formation is 
found by extrapolation of results into zero rise time.

This indirect method to determine the amount mass transfer during 
formation has some drawbacks. Application of the method requires 
several experimental points in order to get statistically relevant results. 
In this work this problem is avoided by using an image analysis based 
direct measurement method developed by Tamminen et al. [6] to 
measure concentrations directly from the column. This also simplifies 
experimental setup as there are no strict limitations for the coalescence 
stage arrangements.

Mass transfer correlations during droplet formation correlate the 
amount of extracted ∆n or the extraction ratio E as a function of Fourier 
number FOd=4DmtF/d

2
e [7-10]. Diameter de is volume equivalent sphere 

diameter after droplet formation. Those correlations assume that 
mass transfer inside the droplet is purely diffusion based. To take into 
account the intensifying effect of internal circulation and the hindering 
effect of surfactants, Liang and Slater [4] formulated overall effective 
diffusivity DF,eff=kH,F(Dm+DE,F) where DF,E is time dependent diffusivity 
due to circulation. The empirical parameter kH,F takes into account the 
effect of surfactants. Depending on the interface properties, kH,F varies 
between 0 and 1. Liang and Slater [4] also propose a criterion based 
on the needle Reynolds number, whether there is circulation during 
droplet formation.

Kumar and Hartland [11] have published a collection of mass 
transfer correlations for a rising droplet. For the continuous phase 
correlations are expressed in form ShC=f (Re, Scc, K) where K is viscosity 
ratio between dispersed and continuous phase. Droplet side correlations 
are based on Newman [12] model, which assumes no circulation. 
The intensifying effect of droplet internal circulation is taken into 
account by (1) using the effective diffusion coefficient Deff which is Dm 
multiplied with a constant [12,13], (2) using eddy diffusivity DE [14] 
or (3) combining eddy and molecular diffusivities into an effective 
diffusivity Deff [15-17]. To take into account the effect of surfactants, 
Slater [18] applied the stagnant cap model where a droplet is divided 
into a circulating and stagnant regions. Effect of surfactants on interface 
mobility is implemented by using a similar experimental parameter kH,R 
as was used in droplet formation.

DNS (=Direct Numerical Simulation) method to solve transport 
equations can, in principle, provide parameters for the constitutive 
equations, like mass transfer coefficients. During droplet rise, if a 
droplet is smaller than the critical diameter then it maintains sphericity 
and it can be modelled as a sphere with constant shape and diameter. 
This approach has been used by Piarah et al. [19], Wegener et al. [20], 
Jeon et al. [21] and Pawelski et al. [22]. When a droplet is deformed 
due to diameter being larger than critical diameter, interface tracking 
offers a method to model the combined effect of hydrodynamics and 
interface evolution on mass transfer. A rising droplet interface tracking 
has been applied by, for example, Deshpande and Zimmerman [23], 
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Yang and Mao [24], Kenig et al. [25] and Wang et al. [26] who all have 
used Level Set (LS) method. For the droplet formation, LS method is 
used by Lu et al. and Soleymani et al. [27,28]. Soleymani et al. however, 
model only droplet hydrodynamics during formation and rise and they 
do not calculate mass transfer.

When the classical two-film theory is used to describe mass 
transfer between two feeds LLE, it is assumed that two films having 
finite thickness is formed between the phases. The interface itself is 
assumed to have infinitely small width thus providing negligible mass 
transfer resistance [29]. However, the assumption of negligible interface 
thickness and resistance is questionable [30]. Hu et al. [31] modelled 
mass transfer in LLE using molecular simulation and according to their 
result, as a contrary to assumption used in two-film theory, the effect 
of the interface on the mass transfer cannot be neglected. Hu et al. also 
claim that the surfactants restructure the interface and the mass transfer 
mechanism is modified. An additional component to be considered is 
an interface reaction which in two-film theory is assumed to be a surface 
phenomenon and proceeding with the kinetics of its own. But according 
to Hu et al. the interface structure is complex and it can be assumed 
that the empirical parameters for reaction kinetic models determined, 
for example, in high shear mixers, are not usable because of missing 
interface effects.

In this study the focus is on mass transfer from continuous phase 
to organic droplet. Models of copper reactive extraction from aqueous 
phase into an organic droplet during droplet formation and droplet rise 
were formulated. Droplets were formed using 0.4 and 0.8 mm needles 
with several different feed rates. Droplet concentrations, diameters and 
velocities after the formation and in the end of the rise were measured with 
an image analysis method. The method is documented in the previous 
work by Tamminen et al. [6]. An empirical model of mass transfer in 
droplet formation is based on a methodology proposed by Walia and 
Vir [9] enhanced by Liang and Slater [4]. Results are compared with 
Popovich [7] model. The droplet formation hydrodynamics is simulated 
with CFD using LS method to provide support for the selected velocity 
profile during droplet formation.

Copper transport from aqueous continuous phase to the organic 
droplet during droplet rise was modelled with CFD using a stationary 
spherical droplet with non-deforming interface. The ambient aqueous 
phase is moving with the measured droplet terminal velocity. Stagnant 
cap model was implemented by dividing the droplet interface into two 
domains. Velocity boundary condition was used to adapt corresponding 
interface mobility to reflect stagnant cap properties. By assuming a fully 
rigid interface (kHR=0) the reaction kinetic coefficient and extraction 
rate were estimated. Fractional mass transfer resistances were calculated 
from the film model.

Materials and Methods
Experiments

Experiments were made using same feeds, setup and method as in 
previous work by Tamminen et al. [6]. Results of previous work were 
extended here by using a smaller diameter needle (0.4 mm) in drop 
formation.

The droplet formation flow rates were 0.041, 0.21, and 0.29 mL/
min in case of 0.4 mm needle and 0.10, 0.30, 0.50, 0.70 mL/min, when 
0.8 mm needle was used. Needle Reynolds number ReN was between 
1-10. Droplet formation times were not explicitly measured. They were 
calculated based on feed rate and measured droplet volume.

Contact angles were measured from sessile droplets with 20 vol-
% Acorga M5640 in Exxsol D80 (by Exxon). The aqueous phase was 
0.16 M copper sulfate solution. The size of droplet and the height (h) 
of a sessile droplet from needle tip to droplet apex were measured. 
Contact angle is calculated from tan( / 2) / dh rθ =  [32]. Droplet 
image axes measured in x- and y-directions confirmed spherical droplet 
assumption. Estimated contact angle θ is 120° Measured physical 
properties of 20 vol-% Agorca solution are shown in Tables 1 and 2.

Details of feed solution preparation, experimental arrangement, 
droplet imaging and analysis method are documented [6]. Local droplet 
concentrations were measured at the end of the droplet rise and just 
after the droplet detachment.

Mass transfer in droplet formation

Popovich [7] has presented a model to describe the total mass 
transfer during droplet formation:

2 2
1 d d,o 1 d d

de(c c ) (c c )
2m F e d en a D t d a Fo dπ π∗ ∗∆ = − = −   (1)

Where c*
d is equilibrium concentration, cd,O is initial concentration 

and tF is the formation time of a spherical droplet having volume 
equivalent diameter de. The model is based on assumption that the mass 
transfer process is diffusion controlled so interfacial instabilities and 
internal circulation is not taken into account. The constant a1 varies 
between 0.857 and 3.43 [5].

In the model by Liang and Slater [4] the extraction ratio E is 
calculated with the model developed by Walia and Vir [8,9]

2 3 4
d(7 / 8) E (49 / 72) E 0.476Ed d dE E= − + −         (2)

Liang and Slater [4] define the term Ed as a function of modified 
Fourier number Fo'd

36 1 1(1 )
22

'
2

'
1d d dE Fo Foπ
π

+ 		                (3)

Modified Fourier number Fo'd uses overall effective diffusivity DF,eff 
instead of molecular diffusivity Dm The overall effective diffusivity is 
defined as:

, , m F,E( D )F eff H FD k D= + 			                  (4)

Where kH,F describes the effect of surfactant and has values between 
0 to 1, and DF,E is pseudo-eddy diffusivity to take into account the effect 
of droplet internal circulation. Liang and Slater [4] propose a method 
to judge if system is (1) diffusion controlled ReN<10, or (2) circulation 
enhanced diffusion: 10<ReN<34, or (3) circulation controlled: 10<ReN 
>34. In a system with pure diffusion control, the diffusivity Dm is to be 
used. In cases 2 and 3 the enhancing effect of circulation on the mass 
transfer is taken into account using DF,E.

Liang and Slater [4] considered only interfacial effects to be included 
in the constant kH,F but also other effects like the resistance generated by 
interfacial reaction can also taken into account [33,34].

Mass transfer during droplet rise

When a droplet is rising the mass transfer is affected by diffusion and 
internal circulation and also the outside convection as well. Depending 
on the interface mobility, the interface can be rigid or mobile and this 
has an effect on droplet internal circulation strength.

Correlations provided by the literature are mostly for systems 
without contaminations and surfactants [11]. Slater [18] has formulated 
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Figure 1: Description of the stagnant cap model of a rising droplet. Arrows 
describe the flow relative to a droplet.

Figure 2: An example of measured concentration profiles of a rising droplet 
with different feed rates. Droplets are moving upwards (compare with Figure 
1). The complex CuA2 concentrations are higher in the droplet lower part thus 
supporting the stagnant cap assumption.

Figure 3: Droplet formation and CFD boundary conditions. Units on the 
geometry axis are in mm. Calculation domain meshed using triangular 
elements and the domain divided into: initial droplet, around the initial droplet 
and remaining part outside these two zones. Inside the initial droplet mesh 
element limits (max/min) are 25.6 and 0.0765 µm. In the mesh control domain 
and remaining area outside the limits are 0.574 and 49.7 µm. Total amount of 
mesh elements: 7800. a) Geometry and certain boundary conditions b) Close 
up figure containing details near the needle.

a model to take into account decrease of mass transfer rates due to 
surface effects and defines a correction factor KH,R:

, /iH R tk U U= 				                  (5)

Where iU  is the average interfacial velocity and is Ut droplet 
terminal velocity.

The stagnant cap model for a rising droplet by Slater [18] is applied. 
The model is based on the concept of two zones, where one zone is 
stagnant and another zone is circulatory (Figure 1). Surfactants and 
other contaminants act against circulation and as a result the interface 
becomes more rigid [18].

A droplet is divided into two zones having relative sizes fv and 1-fv, 
where fv is size of the stagnant zone. An overall effective diffusivity is 
calculated based on fv, molecular diffusivity Dm and eddy diffusivity 
DR,E.

DR,eff = fvDm+ (1-fv) (Dm+DF,E)	                                                   (6)

Eddy diffusivity describes the effect of internal circulation on mass 
transfer and is calculated using Handlos and Baron Method [14]:

,
,

d c2048(1 / )
H R t e

R E

k U d
D

µ µ
=

+
			            	               (7)

It can be assumed that in this system the interface is rigid so kH,R=0. 
Droplet phase mass transfer coefficient is calculated using the model 
by Newman [12]. The overall effective diffusivity defined in eq. (7) is 
used here:

2

2 2
,

CuA2 2 2
1

46 1In exp
6

R eff Re

zR e

z D tdk
t Z d

π

π

∞

=

  
= − −       

∑ 	            (8)

This equation is valid for a case where the main mass transfer 
resistance is on the droplet side [18].

Stagnant zone size was estimated from droplet concentration 
distribution images. An example of concentration profiles in a rising 
droplet is shown in Figure 2. The average overall mass transfer 
coefficient Kd during droplet rise is:

*

*
,0

ln
6

d d e
d

d d R

c c dK
c c t

 −
= −   − 

			                    (9)

Where tR is droplet rise time and cd,O is droplet concentration after 
formation. This equation can be used as well to calculate mass transfer 
coefficient during formation. The time to use, then, is the droplet 
formation time tF and cd,o is feed concentration which in most cases is 
zero [35].

CFD model for droplet formation

Droplet coalescence simulations were performed with Comsol 
Multiphysics v.5.2 [36] using LS method for two-phase laminar flows. 
A 2-d axisymmetric geometry was used. Geometry and boundary 
conditions are shown in Figures 3a and 3b. Two needle diameters were 
used: 0.8 mm o.d/0.51 mm i.d and 0.41 mm o.d and inner diameter 
0.21 mm. Calculation domain dimensions were 3.8 mm width and 
height 10.2 mm. Same domain size was used for both needles.

A hemisphere having diameter of needle inlet was formed before 
calculations (Figure 3b). Initially both phase velocities and pressures 
were set to 0. The Comsol LS solver performs a steady state calculation 
at time t=0 to get consistent initial state for the transient calculation.

The default LS solver was used. Two user controllable LS parameters, 
reinitialization parameter and interface thickness parameter were 
adjusted to reach convergence. Reinitialization parameter was set to 
0.1 ms-1 and interface thickness was half of the maximum element size.
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2[CuA ( )]i and 2[Cu ( )]i+  are average concentrations at the phase 
interface.

Results and Discussion
The estimation and application of mass transfer models are 

described in Figure 4.

Droplet formation

In Table 3 is shown droplet experiment results. Droplet volumes 
were calculated using formula:

Vd=(π/6)d2
MajdMin				                       (13)

Average droplet volumes were 29 mm3 for the 0.8 mm needle and 
10 mm3 for the 0.4 mm needle and corresponding average volume 
equivalent diameters de were 3.8 and 2.7 mm. Droplet average formation 
times tF were estimated by dividing the average droplet volume with a 
feed rate: for the 0.8 mm needle 16, 5, 3 and 2 seconds and for the 0.4 
mm needle 21, 4 and 3 seconds.

In Figure 5 is plotted the cumulative mass transfer ∆n against 
the Fourier number and the and the cumulative transfer model by 
Popovich (eq. 1). The estimated value of the coefficient a1 is 0.35. This 
is smaller than the minimum 0.857 noted by Wegener et al. [5] which 
confirms that in addition to diffusion there are other phenomena 

CFD model for droplet rise

Mass transfer between the continuous phase and droplet was 
calculated with a CFD-model using Comsol Multiphysics v.5.2 [36]. 
The surface velocity correction factor kH,R was determined with this 
model to take into account the drag increasing effect of surface active 
agents, local mass transfer coefficients Kcu and kCuA2 of Cu transfer in 
continuous phase and in droplet (eqs. 12b, 12c) and the overall mass 
transfer coefficient KD (eq. 12a).

The system is modeled as a stationary spherical droplet and 
the continuous aqueous phase is moving with a measured terminal 
velocity. Both phases are separate calculation domains. The following 
assumptions are used: 2-d axisymmetric geometry, the spherical 
droplet, laminar velocity fields, steady and constant droplet volume.

Droplet was divided into two domains: stagnant cap zone having 
volume fraction of fv and circu lating zone with 1-fv volume fraction.

The rectangular continuous phase domain width and height were 
set to 3 and 10 times the droplet diameter, respectively. Unstructured 
triangular mesh was used for the droplet and continuous phase 
domains. The fine grid resolution along the interface was created by 
specifying the amount of cells at the interface. Mesh sensitivity was 
tested by refining the grid near the interface. Variation of mass transfer 
coefficient was used as criteria for grid independence. Calculation 
was performed in two stages. In the first stage, laminar Navier-Stokes 
equation was solved to provide flow field. Boundary conditions for 
the continuous phase were: uniform velocity Ut at inlet, which is the 
experimentally determined droplet terminal velocity; sliding wall at 
calculation domain vertical sides; uniform velocity Ut at outlet. At 
droplet side p=0 as a pressure constraint; sliding wall with tangential 
velocity set to average interface velocity i H,R tU = k U  at droplet interphase; 
full rigid interface is simulated by setting KH,R to 0.

Boundary conditions for the droplet phase were: moving wall with 
radial velocity ud=uc and axial velocity wd=wc at droplet and continuous 
phase interface pressure is equal to pressure on the continuous side as 
pressure constraint. Species diffusivities presented in Table 2.

Boundary condition between organic and droplet phases is 
set by the interfacial reaction rate. The extraction of copper with a 
hydroxyoxime HA at the phase interface [37-39] is:

Cu2+(aq)+2HA(org) ⇌ 2H+(aq)+CuA2(org)	 (10)

and the reaction rate equation is:

2 2
,

, 2
[Cu ( )][HA( )]( ) [CuA ( )][H ( )]

[H ( )]
R A

A R A
E

ki iR t k i i
i K

+
+

+= +         (11)

Where RA is area based reaction rate, kR,A kinetic constant, KE 
equilibrium constant and [Cu2+(i)], [HA(i)], [H+(i)] and [CuA2(i)] 
are concentrations at the interface. Tamminen et al. [38] determined 
kinetic constant in a high shear reactor: k0

R,A=1.4 × 10-3 dm4 /(mol s). 
Equilibrium constant kE is 8 at hydroxyoxime concentration 20vol-
%=0.38 M [39]. In this work due to very mild hydrodynamic conditions, 
the expected kinetic constant will be lower than determined in the high 
shear experiments.

Overall mass transfer coefficient, Kd and local mass transfer 
coefficients on droplet and continuous phase side kcuA2 and kcu are 
determined from:

2 2

2 20

([ ]( ) [ ] )

{[ ] [ ]( )}dtR

d R F
d t

d

V CuA t CuAK
A CuA CuA t∗

−
=

−∫
			            (12a)

XHA CHA ρ μ γ Θ

vol-% M kg/m3 mPas mN/m degrees

20 0.38 834 3 21.6 120

Table 1: The measured physical properties of Acorga M5640 solutions dissolved 
in Exxsol D80. Measurements at room temperature (22-24°C). Interfacial tension 
measured in 0.16 M CuSO4 solution. pH of copper sulphate solution was adjusted 
to 3.1 with concentrated sulphuric acid.

Species Cu2+ H+ HA CuA2

Dm/10-9 m2/s 0.72 9.4 0.46 0.3

Table 2: Species molecular diffusivities in 25°C, Cu2+ and H+ diffusivities are from 
Haynes [33], CuA2 diffusivity and hydroxyoxime HA were estimated by Wilke-
Chang method [34,35].

dN Q dMaj DMin Vd cF,m ReN

mm mL/min mm mm mm3 Mmol-1  
0.8a 0.1 3.9 3.3 26 5.3 1.2

  0.3 3.9 3.4 27 1.7 3.4
  0.5 3.9 3.3 26 1 5.7
  0.7 3.8 3.2 24 0.8 8

0.4b 0.04 3.1 2.7 14 6.1 1.1
  0.21 3 2.6 12 1.8 5.7
  0.29 3.3 20.8 16 1.3 8.0

Table 3: Measured droplet dimensions and concentrations with different feed rates 
Q after droplet formation. Symbols: dN, needle diameter, dMaj, dMin, droplet major 
and minor axes lengths, Vd, droplet volume cF,m, measured droplet concentration, 
ReN, Reynolds number in needle outlet.



Page 5 of 9

Citation: Lahdenperä E, Tamminen J, Koiranen T, Kuronen T, Eerola T, et al.  (2018) Modeling Mass Transfer During Single Organic Droplet 
Formation and Rise. J Chem Eng Process Technol 9: 378. doi: 10.4172/2157-7048.1000378

Volume 9 • Issue 2 • 1000378
J Chem Eng Process Technol, an open access journal
ISSN: 2157-7048 

(interfacial reaction combined with effect of surfactants) and Popovich 
model does not follow experimental points.

In Figure 6 is plotted extraction ratio E versus square root of 
droplet modified Fourier number Fo'd using Walia and Vir model (eq. 
2) with the overall effective diffusivity DF,eff using eq. (4). The fitted 
values of the surface mobility correction factor kH,F are 0.070 (R2=0.76) 
for the 3.8 mm and 0.071 (R2=0.90) for the 2.7 mm droplets and they 
are practically equal. The needle Reynolds numbers (Table 3) are less 
than 10 and according to the criteria proposed by Liang and Slater [4], 
droplet internal mass transfer is diffusion controlled. Therefore the 
eddy diffusivity was set to zero and the molecular diffusivity was used 
in calculation of the overall effective diffusivity. Compared to Popovich 
model Walia-Vir model combined with effective diffusivity model 
by Liang and Slater [4] is able to better describe mass transfer during 
droplet formation.

LS simulation and non-circular assumption

The non-circulatory assumption and the effect of contact angle on 
the formation hydrodynamics was examined by simulation of droplet 
formation with three different contact angles using LS method for the 
studied chemical system. Angles in simulations were 1, 120 and 179 
degrees. Based on the simulation results shown in Figure 7 the velocity 
streamline profile is non-circulatory with the measured θ=120°. 
When the contact angle approaches 0°, the velocity profile becomes 
circulatory. Similar non-circulatory droplet formation hydrodynamics 
was recognized by Lu et al. [27]. Simulated and experimental formation 
times are shown in Table 4. For both needles experimental formation 
times tF,m mare somewhat larger compared to the simulated times TF,LS. 
Experimental formation time was determined by dividing droplet feed 
rate with average droplet volume. The experimental error in formation 
time determination is 10%, for the 0.8 mm needle formation time is 
between 1.5 to 1.7 seconds and for the 0.4 mm needle between 1.2 to 
1.6 seconds. Interfacial tension is affected by copper extraction [40,41]. 
When the interfacial tension is 25.5 mNm−1 the simulated formation 
times equals the experimental value for the 0.8 mm needle.

Droplet rise

Based on concentration measurements during a droplet rise (Figure 
2) it was recognized that reacted copper complex has a tendency stay 
at the droplet bottom zone. This supports the assumption of stagnant 
cap model. Terminal velocity measurements Tamminen et al. [6] gave 
substantially smaller values than determined from correlations for 
pure systems which is due to the presence of surfactants i.e., extractant, 
reducing the interface mobility. Low value of the measured terminal 
velocity (113 mm/s) corresponds well with the correlation given by 
Grace et al. [40] for contaminated systems. Based on this it is assumed 
that the interface is rigid thus signaling a very low value of interface 
mobility parameter kH,R.

Two coefficients are to be determined experimentally when 
stagnant cap model is combined with effective diffusivity: stagnant 
volume fraction fv and contamination coefficient kH,R. In this work fv is 
determined with image analysis. kH,R was set to zero based on the rigid 
interface assumption.

Volume fractions of stagnant cap were estimated by measuring 
droplet major and minor axis lengths and height of stagnant cap from 
the droplet image. Cap boundary was visually recognized and can 
also be seen in concentration profiles (Figure 2). Determination was 
repeated at least 15 times in order to estimate the variation. Fractions 
are shown in Table 5.

Figure 4: Flow diagram describing the calculation and application mass 
transfer models.

Figure 5: Measured and estimated cumulative mass transfer ∆n against 
the Fourier number and the cumulative transfer model by Popovich (eq. 1): 
3.8 mm, 2.7 mm. Symbols refer to experimental values. The fitted value of 
coefficient a1=0.35.

Mass transfer simulation using CFD was performed for 0.8 mm 
needle. It was assumed that kH,R does not depend on the feed rate Q. 
Droplet concentration CF.e  after formation was estimated using the 
model presented in the section Mass transfer in droplet formation. 
Droplet terminal velocity Ut was set to experimental value 113 mm/s. 
Droplet diameter was 3.8 mm and rise time 2.3 s. Droplet acceleration 
to terminal speed was neglected because of a very short acceleration 
time.

Value for the kinetic constant kR,A was found by fitting with the 
CFD model. The sum of squared difference between the estimated and 
measured concentrations was minimized:
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CR,m,j is measured concentration in j:th feed flow and CR,e,j is the 
estimated concentration calculated with the CFD model.

Fitted value of kR,A  is 0.13 × 10-6 dm4/(mol s). This is substantially 
smaller than reported by Tamminen et al. [38]. It is obviously due to 
different hydrodynamic conditions and smaller droplet size compared 
to this work. Estimated concentration after formation, and measured 
and estimated droplet concentrations after rise are shown in Table 5.

CFD model was used to calculate mass transfer coefficients using 
eqs. 12a-c. the most dense mesh (Table 6) was used. Mass transfer 
coefficients are Kd=0.7 × 10-6 m/s, kCuA2=13 × 10-6 m/s and kCu=34 × 
10-6 m/s. Average Kd estimated from experiments is 2 × 10-6 m/s. kCuA2 
calculated from Newman model (eq. 8) with eddy diffusivity DR,E=0 
(rigid interface) is 13 × 10-6 m/s which is same magnitude compared 
to value provided by the CFD model. Cu mass transfer coefficient kCu 
in continuous phase is estimated with a correlation proposed by Clift 
et al. [1].

Shc=1+Re0.48Scc
1/3 				                          (15)

With Ut=113 mm/s, de=3.8 mm, ρc=1020 kg/m3, μc=1.1 mPas and 
Dcu=0.72 × 10-9 m2/s, Re is 388, Scc=1498, Shc=146 and kCu=ShcDCu/de=28 
× 10-6 m/s. This is slightly smaller than the value 34 × 10-6 calculated from 
CFD model.

Fractional mass transfer resistances for continuous phase (m/
kCu)/(1/Kd) is 2% and for droplet (1/kCuA2) / (1/Kd) is 5%. Copper 
distribution ratio m between aqueous and droplet phase is 1.2. The 
reaction fractional resistance is 100%-7%=93% which is a substantial 
proportion of the total resistance. Similar results were also reported by 
Ferreira et al. [34].

Solution sensitivity for the selected mesh was tested by simulating 
using six meshes and calculating mass transfer coefficients (Table 6). 
Mass transfer coefficients are nearly constant when more than 1 × 106 
mesh elements were used. Newman model assumes that mass transfer 
resistance is totally on the droplet side. Continuous side resistance is 
2.5 times smaller than the droplet side but the reaction provides the 

Figure 6: Measured and estimated extraction ratio E vs. square root of 
droplet modified Fourier number Fo'd (eqs 2 and 4): 3.8 mm, 2.7 mm. Symbols 
refer to experimental values. Correction factor kH,F due to surface mobility is 
approximately 0.07 for both droplet sizes.

 
Figure 7: Simulated velocity profiles during droplet formation with different 
contact angles θ and different times. Feed rate Q is 1 ml/min and needle 
diameter 0.8 mm.

dn Q tF, LS tF,m Vm V (tF,LS) VF,LS

mm mL/min S s mm3 mm3 mm3

0.8 1 1.3 1.7 26 22 19.4

0.4 0.41 1.1 1.4 9.5 8.3 7.8

Table 4: Comparison of calculated and experimental formation times and 
volumes for both needles with maximum feed rate Q. tF,LS, droplet formation time 
in simulation tF,m experimental droplet formation time, Vm, experimental droplet 
volume, V(tF,LS)=tF,LS × Q droplet volume at simulated formation time, VF,LS LS-
method based droplet volume at the simulated droplet formation time tF,LS.

Q fv cF,e cR,m cR,e

mL/min   mmol/dm3 mmol/dm3 mmol/dm3

0.1 0.39 4.1 5.1 4.6
0.3 0.25 2.3 2.5 2.8
0.5 0.23 1.8 2.1 2.3
0.7 0.25 1.5 2.1 2

Table 5: Stagnant cap fractions and estimated initial and measured and estimated 
final droplet copper complex concentrations. KH,R=0 (=Rigid interface), estimated 
kR,A=0.13 × 10-6 dm4/(mol s). Symbols: Q feed rate, fv, stagnant cap fraction, cF,e 
estimated concentration after formation, eqs. (2 and 3), cR,m, measured average 
concentration after the rise, cR,e, estimated average droplet concentration after the 
rise.
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most of the resistance so validity to use only Newman model is not 
justified.

Conclusion
Based on simulation of a rising droplet using stagnant cap 

assumption and estimating an interfacial reaction kinetic constant 
it was found that value of measured kinetic constant with high shear 
reactors is much larger than estimated by simulation. This supports the 
hypothesis that in this case the interface provides a substantial mass 
transfer resistance which decreases the overall mass transfer coefficient. 
The effect is assumed to be due to the structure of the interface which 
is affected by the hydrodynamic conditions and in this case due to 
surfactants which probably is been adsorbed into the interface thus 
making it rigid and on the other hand slowing the reaction reactant’s 
and product’s mobility to and away the interface. For the formation 
stage as well it was found that an empirical model combined with 
effective diffusivity using interface mobility parameter to describe 
effect of surfactants is able to predict mass transfer in droplet formation 
better than a model assuming no explicit interfacial effects.
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Notations

a1 Coefficient in eq (1) 

c Concentration, M 

D Diffusion coefficient, m2/s

d Diameter, m

de Volume equivalent sphere diameter, 

E Extraction ratio

Ed Extraction ratio assuming constant concentration, 

fv Fraction of droplet stagnant zone 

g Gravitational acceleration, m/s2 

h Height of droplet, mm

i Species label

K Overall mass transfer coefficient, m/s

KE Equilibrium constant in extraction reaction rate equation

k Local mass transfer coefficient, m/s

kE Empirical coefficient in pseudo-eddy diffusivity equation 

kH Interface mobility parameter

kR,A Reaction kinetic constant, dm4/(mol s)

Ko
R,A Experimental kinetic constant determined in high shear reactor, dm4/(mol s)

m Partition coefficient, distribution ratio between the phases

n Molar amount, mol

Nelem 
Number of elements in CFD mesh

 p Pressure, pa

Q Feed rate, ml/min

RA Reaction rate, mol/(dm2 s)

R2 Coefficient of the determination for a fitted model

r
Radius, mm 

t Time, s

u Radial velocity in cfd model, m/s 

U Velocity, m/s

V Droplet volume, ml, mm3 

w Axial velocity in cfd model, m/s

x Volume fraction 

z Summing index

SSQ Sum of squared differences

Greek alphabet

a Species stoichiometric coefficient

∆ Difference

γ Interfacial tension, n/m

k Viscosity ratio, μd/μc

μ Viscosity, pa s

ρ density, kg/m3

Θ Contact angle, degrees

Subscripts

- Average

c
Continuous phase 

d
 Droplet

e 
 Estimated

E 
Eddy diffusivity

Eff 
Effective diffusivity

* 
 Equilibrium

F,c 
 Formation in cfd model

F 
Formation

i 
 Interface, species index

LS 
 Levelset

Maj
 Droplet major axis 

Min 
Droplet minor axis

m 
Molecular, measured

N Needle

R Rise

0 Initial time, maximum value of reaction kinetic constant

t Terminal velocity

Nelem Kd kCuA2 kcu

10-6 m/s 10-6 m/s 10-6 m/s
475000 0.6 15 50
670000 0.71 15 45

1060000 0.71 14 41
1300000 0.71 14 39
1580000 0.71 14 36
2240000 0.7 13 34

Table 6: Mass transfer coefficients using the CFD model with six meshes. Feed 
rate is 0.1 ml/min.
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Abbreviations

(aq) Aqueous phase

CFD Computational fluid dynamics

Cu2+ Copper ion

CuA2 Copper complex

DNS Direct numerical simulation

H+ Proton

HA Hydroxyoxime

(i) Interface

i.d, o.d Needle inner and outer diameters

LS Levelset

LLE Liquid-liquid extraction

(org) Organic phase

SDS Sodium dodecyl sulphate

VOF Volume-of-fluid

Dimensionless numbers

Fod  Droplet fourier number, 4DmtF/d
2e  

Fo'd  Modified droplet fourier number, 4DF,efftF/d
2

e    
Maj          

Droplet major axis  
Re 

Droplet reynolds number, Udeρc/μc
ReN Needle Reynolds number, /n d n dU dρ µ
ShC 

Continuous phase sherwood number, kcde/Dm   
SCc Continuous phase schmidt number, μc/(Dmρc)
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