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ABSTRACT 

As computing power increases, more complex computational models are utilized for biomass 

supply system studies. The paper describes three commonly used modeling methods in this 

context, geographic information systems, life-cycle assessment, and discrete-time simulation 

and presents bibliometric analysis of work using these three study methods. Of the 498 

publications identified in searches of the Scopus and Web of Science databases, 17 reported 

on combinations of methods: 10 on life-cycle assessment and geographic information systems, 

six on joint use of life-cycle assessment and discrete-time simulation, and one on use of 

geographic information systems jointly with discrete-time simulation. While no articles dealt 

directly with simultaneous use of all three methods, several acknowledged the potential of 

this. The authors discuss numerous challenges identified in the review that arise in combining 

methods, among them computational load, the increasing number of assumptions, 

guaranteeing coherence between the models used, and the large quantities of data required. 

Discussion of issues such as the complexity of reporting and the need for standard procedures 

and terms becomes more critical as repositories bring together research materials, including 

entire models, from various sources. Efforts to mitigate many of modeling’s challenges have 

involved phase-specific modeling and use of such methods as expressions or uncertainty 

analysis in place of a complex secondary model. The authors conclude that combining 

modeling methods offer considerable potential for taking more variables into account; 

improving the results; and benefiting researchers, decision-makers, and operation managers by 

producing more reliable information. 

Keywords: Biomass, Supply chain, Life cycle assessment, Geographical information system, 

Agent-based modeling and simulation, Discrete-event simulation 
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1. INTRODUCTION 

Continuing advances in computing power have made it possible to develop larger-scale and more 

complex computational models that may be utilized in biomass supply chain analyses. These 

models enable studies that expenses or practical constraints to operations might render impossible 

to conduct in the real world [1]. Thanks to greater computing power, multiple modeling methods 

can be applied in combination to study biomass supply systems. Which of the many available 

modeling methods are employed in a given case depends on the study subject, the tools at hand, and 

the researchers’ expertise. To examine the landscape, bibliometric analysis was conducted to reveal 

the latest developments in modeling methods’ usage. This involved a review of articles reporting on 

joint use of two or more modeling methods in biomass supply chain analysis. 

Researcher interest in modeling as an approach to studying bioenergy systems is evident 

from the rising number of papers presenting reviews in this field [2–6]. The categorization of 

modeling methods, which are typically referred to as mathematical models in this domain, varies 

from one review to the next. These models, described as sets of equations that characterize real-

world phenomena [7], were divided into three classes by De Meyer et al. (2014) [2] and by Ghaderi 

et al. (2016) [6]: the mathematical programming, multi-criteria decision-making, and heuristic 

approaches. Meanwhile, Sharma et al. (2013) [4] considered four classes of mathematical model: 

deterministic, stochastic, hybrid, and IT-driven, where they clarified the last of these consists of 

models that use application software to coordinate and integrate phases in the supply chain on a 

real-time basis. Wang et al. (2015) [5], in turn, did not enumerate a typology of mathematical 

models, only distinguishing among models based on geographic information systems (GIS), life-

cycle assessment (LCA), crop-growth models, joint use of process models and reaction kinetics, and 

mathematical models that have been developed specifically to analyze and optimize complex 

biomass supply systems. Finally, Awudu and Zhang (2012) [3] took a simpler approach by splitting 

models into only two classes: analytical methods and simulation methods. 
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In Awudu and Zhang’s terms, analytical methods include linear programming, mixed 

integer linear programming, integer stochastic programming, and other methods that involve 

“mathematical programming.” Mathematical programming optimizes the given system by 

minimizing or maximizing the values resulting from certain decisions in line with set constraints 

and objective functions [8]. Since these methods, which many scholars have concluded are popular 

[2–6], are employed for optimization purposes, they can be seen as a suitable for extended use 

involving other methods, such as GIS-based methods [2]. Since mathematical programming and 

combined uses involving it have been extensively reviewed already, these are excluded from 

consideration here. This paper focuses instead on three methods that are used particularly often in 

biomass supply system studies – the GIS, LCA, and discrete-time simulation (DTS) approaches, 

where the last of these encompasses such tools as discrete-event simulation (DES) and agent-based 

modeling and simulation (ABM). Together, these can cover the spatial, temporal, and 

environmental aspects of the system under study.  

Biomass supply chains display spatial variation with regard to, for instance, the distribution 

of feedstock-generation locations, the location of the various operations, and long transport 

distances. Through GIS tools, researchers can assess the effects of these variables on the system. 

Environmental factors too are important, since, while biomass is generally considered carbon-neutral 

and its use is often promoted for environmental reasons, the reality may be more complicated. This can 

be addressed by LCA. Finally, DTS can cover temporal challenges in the system, such as hot-chain 

issues, supply-and-demand problems, and changes in feedstock availability. Each of the three 

approaches addresses particular important facets of the system. Since these overlap little, applying 

multiple methods can yield more comprehensive results, giving practitioners and academics more 

information and, thereby, greater opportunities to understand system mechanics and the 

consequences of change in the system. 
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While particular modeling methods have been presented and reviewed in numerous 

publications, reviews that consider combinations of methods are far scarcer. Combining different 

models brings both challenges and advantages, which we attempt to highlight through a systematic 

review of work that has involved this combined use. We thereby point to possible solutions that 

address the challenges and confer the benefits, offering orientation for future research. With 

constantly evolving and increasingly critical bioenergy systems, this study of combining the three 

modeling methods could be of timely assistance in identifying the potential pitfalls of existing 

energy systems. Furthermore, a marriage of these approaches may aid in further optimizing the 

systems from the technical, economic, and environmental perspective alike.  

With this strong motivation to investigate past and current trends in combined-method 

modeling in the context of bioenergy and to present meaningful conclusion to inform future 

research, we set out to understand the issues of the biomass supply chain and the three modeling 

methods and conduct bibliometric analysis accordingly, by using headwords to find publications in 

the Scopus and Web of Science (WoS) databases, these being the largest and best-known scientific 

databases. We introduce the biomass context and our research methods below. After this, we 

analyze the findings and review the publications discussing use of two or more modeling methods 

to study the biomass supply chain. Discussion of bibliometric results and reviews is followed by 

suggestions for future actions. 

1.1. The biomass supply chain 

The typical supply chain system is a complicated logistics system composed of multiple 

activities [9, 10]. The activities in the supply system are discrete processes that are distributed in 

space. A biomass supply system differs from traditional supply systems in that biomass is collected 

over vast territories, supply and demand both fluctuate, and the feedstock has to be treated before 

use [11]. The complexity of the supply chain is evident in nonlinearity and multi-scale behavior, the 
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structure of the system spans several levels, and the system evolves and organizes itself through its 

functions and structures [12].  

Biomass supply system may be divided into specific activities that are needed if biomass is to reach 

the end-use point from the point of origin. These activities, conceptualized in terms of the main 

groups shown in Figure 1 [10, 13], are highly interconnected, and decision upstream in the chain 

affect various activities downstream [10]. Since the various activities change in accordance with the 

end product required, the raw material available, and the structure of the chain, it can be challenging 

or even impossible to find the optimal solution.  

 

FIGURE 1: A graphical depiction of the main activities in the biomass supply chain. 

Because the biomass supply chain is a wide web, such tools as GIS are utilized to study the 

spatial distribution of the biomass supply. This is important since logistics costs in biomass supply 

tend to be high [14–16]. With several sources of material and numerous applications being available 

for biomass processing, the supply system is even more spatially dispersed, creating greater reason 

to use GIS in studying biomass supply systems [17–19]. In contrast, DTS models focus on the 

temporal aspect of a biomass supply system. This is important for examining the effect of 
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interconnections and the timeliness of the various logistics elements. Finally, LCA has found 

popularity as interest has grown in the environmental impact associated with biomass supply, since, 

for example, biomass used to substitute fossil fuels can have a negative impact. Though biomass is 

less harmful, on account of its sustainability and the fact that is use reduces gaseous emissions of 

pollutants [10], dedicating land to biomass may be ecologically harmful and in some scenarios 

might even compromise food security [20]. Also, transporting biomass feedstock to processing 

facilities could lead, in some cases, to higher total greenhouse-gas (GHG) emissions than produced 

by conventional use of fossil fuels [21]. 

1.2. Geographic information systems 

A GIS is a system for the production, management, analysis, and presentation of information 

that can be localized in a spatial environment. These systems are able to synthesize data from many 

geospatial information sources for visualization or analysis, as needed (Visual representation by 

GAO (2012) [22] as Figure 2). The first computer-driven systems of this nature were implemented 

in the 1960s [23], and since then GIS infrastructure development has been closely connected with 

the development of computing hardware and software [24]. The 1990s saw the introduction of GIS 

in research into biomass supply and transportation, where the methods were brought to bear 

primarily for ascertaining the economic costs of biomass supply logistics [19, 25, 26]. Later, the 

scope of such studies was extended such that aspects additional to monetary economy – e.g., land-

use changes and environmental impacts of biomass-handling – were taken into account [27].  
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FIGURE 2: A visual representation of incorporating data with GIS approach [22]. 

One key technological advance in the GIS sphere has been the development of route 

calculation features, which are important in a logistics context. It was clearly impossible for such 

algorithms as Dijkstra’s shortest path [28] and other work on the vehicle routing problem (VRP) 

[29], presented in the 1950s, to be widely applied before the processing capacity of standard 

computers reached a level satisfactory for this. Also, development from command-line programs to 

applications based on a graphical user interface (GUI) and, later, enhanced cartography obviously 

increased the attractiveness of GIS in biomass supply studies. Modern GIS applications support 

several standards for data transfer between external systems, and this compatibility has increased 

the opportunities for them to be used in parallel or together with other computer-driven study 

frameworks [21]. 

1.3. Discrete-time simulation 

Dynamic simulations take into account temporal variation, in various ways. System 

dynamics and ordinary differential equations (ODE) are examples of modeling methods that operate 

in continuous time, whereas discrete-time simulation uses time steps, with a change in the system 

represented as occurring only set points in time. The DES and ABM approaches are widely used 
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DTS methods in logistics studies [30, 31]. It is worth noting that simulation methods, DTS among 

them, do not by nature include optimization; rather, results from simulation scenarios are compared 

in pursuit of near-optimal results [30]. Optimization may be part of a comparison phase that 

involves mathematical programming or heuristic methods. 

DES describe the behavior of the complex system under study by considering events in 

sequential order. In this, the entities are passive objects that travel through blocks in a flowchart 

[32]. In DES, the system can be thought of as a network of queues and servers [33]. Researchers 

have improved on DES methods ever since the 1960s, when it was first presented for general-

purpose system simulation [34]. ABM is more novel discrete-time simulation method then DES. 

The novelty of ABM has led to problems with terminology: the literature lacks universally accepted 

definitions that identify the fundamental concept of ABM and its assumptions [35]. While the first 

publications referring to a study method that could be classified as ABM were published relatively 

early, in 1971 [36], the method has developed vastly since then and can still be considered young.  

ABM is suited well to describing activities of individuals and how they interact with each 

other. With regard to biomass, a supply-system agent might be a truck, harvester, biomass processor, 

or user of biomass. Some have suggested that ABM method is a suitable replacement for DES, even 

though DES has a large user base and may be better for some study settings [37]. For instance, 

because individuals make decisions both independently and in interaction with each other, ABM 

demands more computing power than DES does. In addition, the models tend to take longer to 

develop in ABM, rendering it a less attractive choice of study method in certain quarters [33]. 

In both methods of DTS, a modeling expert must create the model, and the modeler should 

be an expert in the subject under study too, so that the model logic is guaranteed to be valid [38]. 

This cannot always be achieved, so the model may have to be validated by a separate individual 

who is an expert in the field being modeled. The two main methods, DES and ABM, possess 
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similarities, with it having been said that all ABM models are a combination of DES and ABM in 

operations research [37]. 

1.4. Life-cycle assessment 

Life-cycle assessment is a technique developed to assess and address the possible impacts of 

products or services on the environment. It can be used to identify any opportunities to improve the 

environmental performance of a product or service at any phase in its life cycle, and it can be used 

also as a tool for decision-makers’ use in strategic planning, decision-making, and product design 

aimed at improving the environmental performance of said product or service. One way of 

employing LCA is as a marketing tool, for any product or services, such that consumers can make 

an informed decision about their choice of product.  

LCA is a systematic process that begins with defining the system’s boundaries in accordance 

with the goal of the project. In the second phase an inventory is taken of the process input and 

outputs that fall within the boundaries delineated. During the impact-assessment phase, the data 

collected in the inventory phase are correlated with the respective environmental implications that 

may exist. Finally, in the interpretation phase, the results from assessment of impact are interpreted 

and discussed, conclusions are formed, and recommendations are made on the basis of the goal set 

in the first phase. The four major phases of LCA and the steps defined for it are presented 

graphically in Figure 3 [39]. 
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FIGURE 3: The phases of LCA, including the individual steps and outputs. 

LCA has been used for estimating consumer products’ environmental impact ever since the 

1960s, and the International Organization for Standardization (ISO) has been involved in LCA since 

1994 [40, 41]. In the context of energy-system analyses, LCA is considered to be among the best 

methods for identifying environment impacts and opportunities for improvement, although several 

issues have been acknowledged as strongly influencing the results [42, 43]. Recently, bioenergy has 

come under scrutiny for its environmental performance in comparison to other green energy sources 

even though bioenergy does offer clear benefits over traditional fossil fuels such as coal. 

Accordingly, governments around the world apply various environmental policies that have 

motivated bioenergy organizations to assess the environmental benefit of their products on 

dimensions such as reduction of GHG emissions [42]. 

2. MATERIALS AND METHODS 

In our survey of publications that refer to using computation-based methods for biomass supply 
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chain analysis, we queried the Thomson Reuters bibliographic database WoS and Elsevier’s Scopus 

database because the two differ substantially in coverage while both being commonly used for 

bibliometric analysis [44]. To obtain the most useful result sets, we constructed queries specific to 

each database and for each of the three modeling methods in turn. Hence, the queries yielded six 

distinct sets of publications for analysis, with hits from the publication title, keywords, and/or 

abstract. Sometimes authors use different terms for a given concept or refer to a keyword subclass 

alone, with the result that their paper might not be found by a query for only the more commonplace 

term or one relying on main classes alone, such as “biomass.” To mitigate this effect, the queries 

were constructed to include several known general terms for the main class and also subclasses.  

To find as many publications as possible addressing biomass supply chain analysis with 

computational methods, the queries featured three parts, referring to biomass, referring to the supply 

chain, and referring to the method. For each of these three elements, we used a list of headwords 

(see Table 1) that were composited with the Boolean operator OR. These three parts were combined 

with the Boolean operator AND. The headwords feature some use of parentheses, asterisks for 

wildcard matches, and quotation marks. Quotation marks were used to limit the results to matches 

for the exact multi-word search phrase rather than permit inclusion of spurious matches based on a 

single word. The use of asterisks was confined to the end of a word, to allow for several suffixes to 

be included in the search. 
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TABLE 1: Headwords of the queries 

              

  Description of biomass   Description of Supply chain   Description of method   

  Biomass    "Supply chain"   GIS   

  Bioenergy    "Supply system"   "Geographical information system"   

  Biofuel    "supply network"   GIS   

  Bioethanol 
   

"Spatial analysis"   

  Biodiesel 
   

"spatial statistic"    

  biogas 
    

  

  "Energy wood*" 
   

LCA   

  "Forest fuel"  
   

"Life cycle assessment"   

  "wood chip*" 
   

LCA   

  woodchip* 
   

"Life cycle analysis"   

  "Wood waste" 
   

"Lifecycle assessment"   

  "Pellet*" 
    

  

   "Energy Crop*" 
   

DTS   

  "sugarcane" 
   

"Agent-based"   

  "Agricultural waste" 
   

"Discrete-event"   

  "Municipal solid waste" 
   

"multi-agent simulation"   

              

 

WoS and Scopus differ in their syntax for search queries; hence, we needed to build two 

versions of the query for each of the lists (the full set of queries is presented in the supplementary 

materials). The queries have brackets so that the search sequence works as intended: it is important 

for the OR operator to be processed before the AND operator. While the queries do not include 

document-type restrictions, we included only articles in the results considered, and, to have a better 

basis for comparison, only those articles published in 2018 or earlier were selected for analysis. The 

analysis included all the results listed from the queries. Articles addressing use of multiple methods 

together were found by comparing titles and authors in the list.  

3. RESULTS 

Of the 498 publications returned via the search queries, Scopus included 312 and WoS included 364 

(160 publications were found in both databases). The modeling method for which the most 
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publications were found was LCA, with 335 records. Modeling based on GIS had the second-highest 

number of hits, with 98 records, of which 10 publications were also on the LCA list and one was on 

the DTS list. The modeling method for which the fewest publications were found was DTS, with 44 

publications, one of which dealt with GIS also and 6 dealt with LCA. No publications on using all 

three modeling methods were found. The publication counts and their breakdown by modeling 

method and between the databases are shown in the Venn diagram provided as Figure 4. 

 

FIGURE 4: A Venn diagram of the publications found. 

The oldest publications found [45], from 2000, was unique to the Scopus GIS list. The 

oldest publications for LCA [46] dated from 2004, and by the next year three further articles dealing 

with LCA were published. The earliest DTS article found [47] was published in 2006. As for 

articles on use of modeling methods in combination, the earliest one found [48] was from 2009 and 

addressed joint use of DTS and LCA. The distribution of articles reflects the recent increase in 

popularity of computational modeling methods, with LCA proving to be the most frequently used 

modeling method in studies of biomass supply chains as of 2018 (see Figure 5). The breakdown of 

the publications found features only one article, if any, per year on a combination of methods, apart 

from 2017 and 2018. For 2017 there were four distinct publications in which a combination of 

methods was reported upon, and there were six in 2018. Later, upon closer examination, it was 
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noted that three of the publications from 2017 and five from 2018 had been added to the results on 

the basis of automatically generated keywords.   

 

FIGURE 5: The articles found, by year of publication. 

The papers found were scattered over 140 journals, although Journal of Cleaner Production 

articles accounted for the largest number of them, 68 publications in all, with LCA publications 

accounting for the vast majority of these, 54 articles. This journal also ran two of the modeling-

method-combining publications [25, 49]. Most publications on GIS modeling came from the journal 

Biomass and Bioenergy, with 15 of the 98 GIS publications found. Finally, the largest number of 

DTS-based publications came from Applied Energy, at six publications. That said, there were 24 

LCA articles and 10 GIS publications in that journal, making DTS the least commonly used 

modeling method in work presented in Applied Energy.  

As noted above, some of the results were yielded via a set of keywords that the Scopus and 

WoS service generated themselves rather than author-supplied keywords. As was visible upon later 

inspection, the auto-generated keywords did not always accurately describe the paper. Also, it is 

possible that some publications on modeling-based methods or even on combinations thereof were 

not found, on account of the terms used diverging from the headwords we specified.   
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4. DISCUSSION 

4.1. Approaches combining LCA and GIS  

The searches yielded 10 publications with headwords for LCA and GIS in the abstract, title, and/or 

keyword list. Six of these pieces were found on account of WoS and Scopus adding auto-generated 

keywords for the papers in question. Some of articles did reported upon a combination of GIS and 

DTS, rendering these added keywords justified but some cases did not. 

That said, Marzullo et al. (2018) [50] studied water ecotoxicity footprints via LCA and GIS. 

While this 2018 work did involve a combination of the two methods, a keyword denoting biomass 

was automatically added and supply chains were not considered in this work. 

One publication not to refer to GIS was a paper by Chaplin-Kramer et al. (2017) [51], who 

referred instead to spatial modeling. For this article, they applied it to account for the heterogeneous 

usage of land and thereby manage the problem that using average values for a region in LCA leads 

to inaccuracies in determination of the environment effects of the land-use change arising from 

increased demand. The authors’ method supplements certain values from the life-cycle inventory 

and replaces others, to get the LCA to encompass spatial analysis. They called this method “Land 

Use Change Improved” LCA, or LUCI -LCA. The results from their case study illustrate 

considerable differences between conventional LCA and LUCI-LCA, thereby demonstrating the 

importance of taking into account spatial variation. Their conclusions stress the import of 

considering spatial elements when conducting land-use change studies and that the results for 

ecosystem impact must be translated into decision-ready information through predictive, 

system-scale, robust modeling.  

Mirkouei et al. (2017) [52] too did not use any headwords for GIS section in their title, 

abstract, or keywords, even though GIS was used to analyze transport distances and the spatial 

distribution of forest biomass. They focused largely on multi-criteria decision-making, using the 
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results as input to LCA involving mobile and stationary refineries in the bio-refinery supply chain. 

In the background to their work, these authors referred to various quantitative assessment methods, 

among them GIS, simulation with cost calculations, and operative research. The paper concludes 

with benefits for decision-makers, a proposed framework, and ideas for further research (including 

multiyear analysis) along with benefits to society from such work. 

Three publications from 2018 did have the LCA keyword added. Furubayashi and Nakata 

(2018) [53] used GIS to determine transportation paths for estimating emissions from biomass co-

firing, but the estimations were from an energy-consumption expressions and no LCA was 

described in the publication. Santibañez-Aguilar et al. (2018) [54] employed GIS methods to 

determine viable facility locations for use in the relevant supply chain on the basis of residual 

biomass. Again, LCA was not used. Finally, Kesharwani et al.’s study (2018) [55], for which 

keywords for LCA and GIS were generated automatically at database level, did involve employing 

LCA to study total emissions of the supply chain, but the method as presented does not actually use 

it (GIS is not mentioned, though the locations of the facilities are in latitude and longitude).  

Singlitico et al.’s (2018) paper [56] featured GIS- and LCA-related headwords, but LCA 

was mentioned only as the next stage in the research. The authors conducted GIS analysis to 

estimate waste and residue potential in Ireland, but LCA had not yet been implemented.  

The oldest paper to be found with regard to LCA and GIS method was by Jäppinen et al. 

[57]. They analyzed the small-diameter energy wood supply chain in Finland, comparing three 

distinct supply methods. The authors used GIS material to examine the feedstock availability and 

transportation network, and LCA was conducted on the basis of the results from GIS analysis – 

transportation distances and road types were taken as input values for estimation of the GHG 

emissions of the scenarios studied. Using GIS solves the problem of using average values in small-

scale analysis. The authors found that significant GHG reductions in biomass supply could be 

achieved in regions with poor road networks could be achieved by serving outlying parts of the 
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supply area around a given demand point with transportation by rail from areas near a train loading 

station in another supply area. This shows the importance of spatial analyses when LCA is being 

carried out for a biomass supply chain at local scale.  

Jäppinen et al. performed another study combining LCA and GIS methods [58]. As with the 

one described above, GIS was used to analyze feedstock availability and transport networks. This 

study examined three possible locations for a bio-refinery, with two separate scenarios. This led to 

larger numbers of results, which were reported via diagrams and vast swaths of numbers 

accompanied by copious explanation in the body text and in the figure caption and axis labels. The 

concluding section of the paper emphasizes the need to take into account feedstock combinations 

that allow for train or marine transportation options. 

The newest paper found for which LCA and GIS headwords were supplied by the authors 

was published in 2017 by Sánchez-García et al. [25], who used GIS analysis to find the optimal 

location for a hypothetical power plant and applied LCA to estimate GHG emissions. The case 

study, set in Spain, involved wood chips produced from eucalyptus stems as the fuel. Three levels 

of feedstock availability were defined via GIS analysis, which was used also to determine 

transportation distances. The output values were fed in to LCA to ascertain the GHG emissions of 

the hypothetical power plant for each of several supply-chain operations. The paper concludes with 

description of a method that may be used on a smaller scale with more specific data and that 

demonstrates additional advantages in informing relative spatial and temporal decisions on scale of 

local demand. The paper also notes a need to consider competing demand points in this kind of 

study.  

It was evident that most studies that combined GIS and LCA have used GIS data in 

feedstock availability and transportation network analysis and taken these results as input to LCA. 

An exception to this is the study conducted by Chaplin-Kramer et al. (2017) [51] that improved on 

joint use of LCA with GIS, to estimate land-use-change-related emissions with higher spatial 
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resolution. This method integrates the two models more than do the others, which only chain 

methods and translate results between them. Either way, when complicated methods are used and 

multiple scenarios are analyzed, reporting the results in an easily understandable way grows more 

challenging. 

The authors often note that the information produced by these study methods aids decisions-

makers by providing them with new information (e.g., Chaplin-Kramer et al. [51] and Mirkouei et 

al. [52]).The value of simulation and the need for taking into account temporal variation were 

mentioned too. The requirements cited for future research includes taking into account multiple 

demand points, performing multiyear analysis, and accounting for the possibility of other supply 

sources – such as transportation by railway or waterway. All of these can be incorporated into the 

study by means of DTS. 

Since GIS is a powerful spatial optimization tool that provides the opportunity to include the 

transportation network in analysis in terms of actual driving distances and real-world locations of 

the entities under study, it has much to add to LCA studies that are location-specific. Especially in 

small regional studies, in which spatial variation has a greater impact, GIS improve the results and 

makes them specific to the region. While tying the result to the given region limits applicability, 

such specificity is important in decision-making. Articles bring up concern about static results, 

since the biomass supply chain is highly dynamic, so sensitivity analysis should be conducted to 

mitigate this. A range of results, with different initial values, can imitate dynamic changes in the 

system. 

4.2. Approaches combining LCA and DTS 

Our search queries found six publications with an LCA and a DTS headword in the abstract, title, 

and/or keyword list. For three of these articles, the LCA keyword was added by WoS or Scopus. 

One of the publications was by Zhang et al. (2016) [59], study in which a multi-agent simulation 
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was used to study various scenarios for the biomass supply chain. The study did not use LCA, so it 

is unclear to us why WoS added the corresponding automatically generated keyword. Yazan et al. 

(2017) [60] used ABM to study production of biogas from manure. While these authors noted the 

importance of GHG emissions, their description of results refers to neither emissions nor LCA. The 

last article with an added keyword was piece by Kishita et al. (2017) [49] on using DES to study the 

effect of the feed-in tariff applied to Japan for the adoption of woody biomass. Since the paper 

explicitly mentions life-cycle simulation (LCS) and the study did involve LCA, adding the keyword 

was justified.  

Kishita et al. (2017) [49] study used DES for analyzing long-term (20-year) effects, with 

temporal uncertainties included, for a woody-biomass-fueled power generation plant. They used 

LCA to study CO2 emissions, and the ISO 14044 standard was used to specify as the analysis unit 

the amount of wood consumed per year. The authors listed the advantages and disadvantages of the 

method. They cited the advantages of providing a narrative storyline via quantitative analysis, aiding 

in decision-making, and being able to be developed for all ways of converting biomass for energy 

use. Disadvantages cited were the use of annual averages in the model, omission of the ripple effect 

of the actions, and utilization of CO2 emissions alone as indicative of environment aspect. The 

author noted the importance of the scenario selection also. Since the storyline is created on the basis 

of the set of scenarios chosen and they are compared only with each other, well-justified selection 

of scenarios is important.  

Although these authors of Kishita et al (2017) [49] did not include an LCA-linked headword 

in their abstract, title, or keyword list, their work did combine DTS and LCA study methods. The 

case studied was clearly explained, but that was less true of the combination of methods. For LCS, 

the authors referenced another study, done by Umeda et al. (2000) [61], and the source of LCA data 

was identified as one database providing initial values for the simulation. Still, the study shows that 



20 

 

DES and LCA can be applied jointly in scenario-based analysis of the biomass supply chain 

wherein economic and environmental sustainability are determined. 

The earliest article returned from the queries for DTS and LCA combined was published in 

2009, on a study conducted by Davis et al. (2009) [48]. They took advantage of similarities between 

LCA and ABM to integrate LCA into ABM. The paper presents, as proof of principle, a study case 

investigating bioelectricity production in the Netherlands. Before presenting their proof of principle, 

the authors go through advantages of integrating LCA into the approach and address the limitations 

to such integration. The method expands the LCA matrix to provide corresponding values for input 

that agents use from a database or other agents in the model. Because this expansion makes the 

matrix larger, inversion of the matrix is computationally expensive. To circumvent this problem, 

Davis et al. (2009) [48] used an algorithm to perform the inversion and applied simplified LCA to 

evaluate climate change on the basic emissions.  

The model used in the study case dealt with only two scenarios, and the case study was 

presented superficially. Sensitivity analysis involved running 100 simulations, leading to 100 

results, which were examined via bar charts. These results were only a subset of the data gathered 

from the simulations, and it is noted in the paper that even this subset may be interpreted 

differently. The authors pointed out, as we do, that current LCA models are linear and ABM could 

provide spatial differentiation and dynamic aspects. Furthermore, the combination of ABM and 

LCA could have important implications for uncertainty analysis. Although uncertainty analysis is 

vital for balanced interpretation of a study, the linear and static nature of LCA creates problems in 

this regard; however, ABM could provide a solution to this problem, since it is a dynamic tool. 

In a paper published by Halog and Manik (2011) [62] proposed a framework to integrate 

LCA, multi-criteria decision-making, ABM, and system dynamics into a hybrid model. Their report 

goes through all of this method’s advantages and disadvantages, including the benefits conferred by 

hybrid thinking. Although the framework is described in detail, the authors did not utilize, for 
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example, a case study, so the work is only theoretical in nature. The paper concludes by presenting 

multiple endeavors (e.g., research at the energy–environment–society nexus, novel energy-productions 

adaptations, and engaging the public in efforts to understand issues of sustainability and energy) 

that could be explored via the hybrid model described as the framework.  

A 2015 publication featuring headwords related to LCA and DTS was authored by Bichraoui-

Draper et al. (2015) [63]. The authors referred to agent-based life-cycle analysis (AB-LCA) for their 

method that uses ABM to complement LCA. Their method and case study are focused more on 

LCA. The model was developed as a modular structure, so that it would be easy to expand later. 

The paper examines the effect of economic, environmental, and social factors for the adoption of 

switchgrass as a biomass-based fuel. A case study of switchgrass-based ethanol production was 

used alongside reference values of 1,800 GJ electricity generation from coal or natural gas with use 

of 10,000 liters of fuel. The model was described in line with the ODD protocol [64], developed 

specifically for describing agent-based models. 

The study presents vast quantities of LCA data via two matrices of figures. This method 

makes it easy to see how particular attributes affect environment impacts. While the study 

addressed only CO2 emissions and did not consider emissions from land use, the authors conclude 

their paper by presenting extension possibilities – for instance, using GIS methods to consider real-

world spatial information, such as yields and transportation distance from farm to refinery. 

From the studies introduced above, it can be noted that there is strong motivation for using 

an LCA– DTS combination to support decision-making. With DTS, researchers gain the ability to 

compare effects between specific decisions, and LCA indicates the emissions connected with each 

respective decision. By accounting for temporal variation, DTS gives LCA a more dynamic nature.  

Studies of the integration of bioenergy-related LCA and DTS have turned out to be rare. 

This might be because dynamic simulation is typically employed for decision-making on a certain 

process or well-bounded system while LCA is popular for considering consequences of life-cycle of 



22 

 

product. At the same time, it might be that, since today’s LCA modeling is relatively simple and 

linear in structure, it would be challenging to integrate ABM into LCA. 

4.3. Approaches combining GIS and DTS 

Kim et al. (2018) [65] wrote the only publication we found on combining GIS and DTS. In 

2018, they presented a two-phase simulation method to allocate optimal locations for biomass 

storage facilities. The first phase used a process-based model, the Agricultural Land Management 

Alternative with Numerical Assessment Criteria (ALMANAC), to estimate switchgrass yields on 

the basis of weather and location data, with GIS utilized to achieve this. In the second phase, ABM 

was applied to take into account dynamic activities in the supply chain. This phase too involved 

GIS, for estimation of transportation times. 

The authors noted that challenges arose during optimization: the computation burden 

increased, and assumptions were applied in order to reduce it (e.g., considering only three actors in 

the transportation-cost optimization and decreasing the required optimization performance when a 

larger number of zones was considered).  

The authors concluded that their model achieved realistic locations for biomass storage 

facilities that accounts for the details of crop growth and supply-chain activities. For finding better 

locations for storage of biomass, the authors proposed modeling supply-chain activities in more 

detail and pointed to a need for concrete performance data, for validation of the model.      

4.4. Combinations of LCA, GIS, and DTS 

Although many combination-related publications conclude that the third method can be used to 

improving modeling, no work using all three modeling methods could be found. There are many 

challenges to be overcome for including all three methods. One is that experts in all three methods 

are needed for developing the model. Co-operation becomes more challenging whenever further 
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participants are added, and costs rise also. Combining methods also creates a need for more 

assumptions, and increased uncertainties in the model may compromise the validity of the 

modeling. This challenge is emphasized in that the assumptions have to be compatible across all the 

methods, and those applied for each method have to be factored in before that method’s results are 

taken as input to another method. To overcome this challenge, much work is needed: interest in 

developing LCA, GIS, and DTS combination models must increase, and there has to be demand for 

such integrated models in research and industry alike. 

4.5. Combinations of methods in general 

It can be noted, from publications on combined modeling methods, that there are numerous 

challenges in getting two or more modeling methods to work together. Among these are increased 

computational load, complicated validation of the models, and a need for huge quantities of data. 

All modeling methods use different initial data, and combining methods demands large 

datasets. At the moment, various databases are available that could be used to develop a model that 

combines the three general modeling methods. Further development of these databases is valuable 

for the individual methods and for combination methods but also to improve validation of the 

models. There is a possibility of using assumptions and estimates to reduce the quantities of initial 

data necessary, but this lowers the accuracy of the model and both increases the importance of 

validation and complicates conducting it.  

Computing power is available in abundance, but optimization of the computing operations 

still is needed if we are to overcome inordinate requirements when combining the models. This is 

achievable by improving each of the modeling methods separately and developing different 

methods to combine methods, finding advantages in particular ways of combining them. 

Opportunities can be found for using algorithms and well-founded assumptions to lower the 

computational load. 
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With all the challenges mentioned above, sometimes combining methods would be ill-

advised. In these cases, other ways to add the benefits of the other methods may be examined, such 

as using stochastic distributions to include uncertainty in the model as Santibañez-Aguilar et al. 

(2018) [54] did in their study. One example of including emission estimation was supplied by 

Furubayashi and Nakata (2018) [53], who used mathematical expressions for energy consumption. 

Expressions of this kind are less demanding of computation power and are easier to use than a 

complicated model would be. 

There are cases wherein combining methods improves a study to such an extent that it is 

highly advisable, and some integrated methods are not as challenging as others. For example, 

transportation distances yielded by GIS methods can be produced with ease and then added to DTS 

or LCA models along with the other initial values. This improves the models by giving them more 

localized and detailed variables. Adding DTS to a study, in turn, enables including temporal aspects 

that are important in a dynamic supply system. When combining models, one should consider how 

detailed all the constituent models have to be. At least the main one should be detailed enough to 

display proper accuracy, but a supporting model that works in less detail can be reasonable in some 

circumstances.  

Applying one method and chaining it to other modeling methods for the next stage is, as 

Singlitico et al. (2018) [56] declared in their publication, one way to combine modeling methods. 

This permits the computation load to be divided, and reporting on the stages’ results separately, in 

two publications, prevents excessively long reports. Thereby, the research might more readily 

remain coherent.  

4.6. Results of the bibliometric analysis 

It is easy to see that interest in computational methods is increasing: use of all three methods has 

risen lately. This development is clearest for LCA, on which we found nine articles published in 



25 

 

2010 and a full 64 in 2018. There are several factors in why more studies are now utilizing 

computational methods. One reason is the lower-cost and more powerful computing resources now 

available to researchers. Also, the software that is used in carrying out these studies has advanced 

and become more user-friendly. While computation-based methods hold great promise, it is 

particularly important, as their use increases, for the researcher to keep the validation and 

verification of the method transparent. In this regard, LCA has paved the way: standardized 

reporting is used in LCA, eliminating black boxes in the studies and rendering reports more 

comparable throughout the field.  

It is worth highlighting that our queries did not find all publications in the field that dealt 

with combinations of methods. For example, Viana et al. (2010) [66], Karttunen et al. (2013) [67], 

and Jäppinen et al. [68] made joint use of GIS and DTS methods, but either these publications were 

not in the databases or the search terms did not match their details. This may well be true of work 

combining all three methods also. However, because we worked with two large peer-reviewed 

publication databases and a good-coverage headword list, conclusions can be drawn reliably from 

the results. 

As the most commonly used of the three approaches, LCA has generated solid terminology 

and reporting practices, for which those using all other methods should strive. Terminology varies 

greatly with all those methods. Hence, complicated search queries were required for finding most of 

the publications on them, and any researcher wishing to find publications on a particular method 

would face the same problem. With novel methods such as computational modeling, some of the 

terms used are unknown even to experts in the field. While automatic generation of keywords helps 

to some extent, sometimes a keyword picked out was, as we indeed saw in our work, unjustified. It 

is authors’ responsibility to make sure their keywords represent the paper correctly. If two modeling 

methods are used, it is recommendable to mention both in the abstract and include terms referring to 

both in the keyword list.  
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This brings us back to the importance of consistent terminology. It would make specifying 

keywords easier for authors and searchers alike. Kishita et al. (2017) [49] used the term “life cycle 

simulation,” or “LCS,” to denote all simulation methods. A more precise notion, agent-based 

life-cycle analyses (AB-LCA), was used by Bichraoui-Draper et al. (2015) [63]. This choice of term 

focuses on ABM in particular, although LCA is generally associated with life-cycle assessments 

rather than analyses. Self-explanatory terms such as these two should enter standard public use for 

all the methods and combinations thereof. When GIS is brought in, the word “spatial” can be added 

readily to that for the other methods, as Hauscild and Potting (2006) [69] did with the term “Spatial 

Differentiation in Life Cycle Impact Assessment.” Umbrella terms may also be useful, so long as 

they are well-established. In this paper, DES and ABM both were referred to as DTS methods to 

distinguish these from other dynamic simulation methods, such as system dynamics or ODE 

simulations. Though uniform terminology in the field would be ideal, we recognize that establishing 

this may take a long time. Hence, alternative approaches to improve communications between 

modelers and researchers should be considered and developed. 

While we did not find publications reporting on use of all three methods in combination, 

incorporating an additional method into studies was often mentioned in the proposed future research 

directions. Another common conclusion was that modeling can support decision-makers. This is 

understandable, since modeling-based methods enable examination of planned and hypothetical 

entities, thereby giving unique insight into the effects of decisions not yet made. Because all of the 

methods rely heavily on scenarios and comparative analyses, there are many aspects of the results to 

report. This may lead to hard-to-follow reporting, which draws attention to the need for devoting 

greater effort to establishing uniform and systematic reporting for all the individual modeling 

methods and combination of them. The same thing could be said on reporting on the models 

themselves, but this has been recognized, and standards and protocols have been developed 

accordingly. Alongside the ISO standards for LCA [70, 71] that guide authors in reporting on the 
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models and results, ABM has the aforementioned ODD protocol [64] for reporting on the model, 

although the protocol does not address how the results should be reported. While researchers are 

waiting for more sophisticated and appropriate instructions for this reporting, it should remain as 

transparent and precise as possible. Describing the model by referencing previous publications 

should be avoided, since access to earlier articles describing it may be limited. One option is to 

describe the model in supplementary material, to keep the paper more concise and focused on the 

subject of study.  

5. CONCLUSIONS 

Interest in the use of mathematical computational methods has increased, and this trend only seems 

to be continuing. A corresponding upsurge can be seen specifically in the use of geographic 

information systems, life-cycle assessment, and discrete-time simulation for modeling and in 

applying combination of the associated models. With growing computing power and the need to 

include more detail and address more extensive subjects of study, the models have gained 

complexity. These wider study cases and the complex models employed for them must be explained 

clearly when the results are published. To achieve this, a consistent manner of reporting needs to be 

established. Also, for greater visibility of the relevant publications, it should be ensured that 

searches find them via self-evident, uniform methods. It would both facilitate searches and be to the 

authors’ benefit to have coherent terminology in place that is suitable for the various modeling 

methods. Finally, our work enabled us to conclude that combining the classes of method offers the 

ability to take more variables into account, thereby improving the results of modeling-based studies. 

Better results benefit researchers, decision-makers, and operation managers alike, by putting more 

reliable information at their disposal. 
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