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This thesis presents concepts of microservices and serverless computing. Subsequently,
a video on demand service is used as a case study and various examples of serverless
microservices are presented and experiences of building them are discussed. First
goal is to study the literature and then discuss real life experiences of building
serverless microservices and see if it frees time from infrastructure management to
building business logic while saving money on hosting costs. Second goal is to gather
information on suitable use cases for serverless approach as of today. Microservices
are small, autonomous and independently deployable services that work together
using message-based communication in a highly automated infrastructure. Serverless
computing refers to concept of developing applications built with functions and backend
as a service components whose usage is invoiced based on actual execution times.
These applications are deployed to infrastructure fully managed by a cloud vendor and
thus there’s no need to manage servers by a cloud user. While considerable amount of
effort is still needed for defining cloud resources with infrastructure as code process,
serverless approach was found to be beneficial as it allowed teams to focus on business
logic instead of challenges like capacity planning, auto-scaling and high-availability.
Cost savings were discovered, but mostly because of more efficient development time
was possible. Serverless is a good option for services where really low latency isn’t
required and things like high-throughput and time-to-market are important.
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Tässä diplomityössä käsitellään mikropalveluiden ja serverless-arkkitehtuurin käsitteitä
ja hyödynnetään videopalvelua käytännön esimerkkinä. Työssä esitellään esimerkkejä
ja kokemuksia serverless-mikropalveluiden kehittämisestä. Tavoitteena on tutkia
kirjallisuutta ja verrata sitä kokemuksiin serverless-mikropalveluiden kehittämisestä,
jotta nähdään vapautuuko aikaa infrastruktuurin hallinnoinnista liiketoimintalogiikan
kehittämiseen halvempien ylläpitokustannusten lisäksi. Toisena tavoitteena on selvittää
serverless-arkkitehtuuriin soveltuvia käyttökohteita nykytiedon valossa. Mikropalvelut
ovat pieniä, autonomisia ja itsenäisesti julkaistavia palveluita, jotka kommunikoivat
keskenään automatisoidussa infrastruktuurissa. Serverless tarkoittaa palveluita,
jotka koostuvat käytön mukaan laskutettavista funktioista ja backend as a service
-palveluista. Palvelut julkaistaan palveluntarjoajan infrastruktuurissa, jossa asiakkaan
ei tarvitse hallinnoida palvelimia. Vaikka edelleen tarvitaan työtä pilvipalveluiden
resurssien ja infrastruktuurin konfiguroinnissa, serverless on hyödyllinen, sillä se
mahdollistaa keskittymisen liiketoimintalogiikkaan kapasiteetin tarpeen ennakoimisen,
automaattisen skaalautuvuuden ja korkean saatavuuden sijaan. Työssä havaittiin
kustannussäästöjä, mutta lähinnä tehokkaamman ajankäytön vuoksi. Serverless on
hyvä vaihtoehto palveluille, joissa huomattavan alhainen vasteaika ei ole vaatimus ja
korkea läpisyöttö sekä nopea markkinoille pääsy ovat tärkeitä.
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Abbreviations

API Application Programming Interface
AWS Amazon Web Services
BaaS Backend as a Service
CaaS Containers as a Service
CD Continuous Delivery
CDN Content Delivery Network
CI Continuous Integration
DDD Domain Driven Design
EDA Event Driven architecture
ENI Elastic Network Interface
ERP Enterprise Resource Planning
ESB Enterprise Service Bus
FaaS Function as a Service
I/O Input/output
IaC Infrastructure as Code
JSON JavaScript Object Notation
JWT JSON Web Token
MVP Minimum Viable Product
PaaS Platform as a Service
REST REpresentational State Transfer
RPS Requests per second
SOA Service-oriented architecture
SOAP Simple Object Access Protocol
SOC Service-oriented communications
SSO Single sign-on
SVOD Subscription Video On Demand
TCP Transmission Control Protocol
UI User Interface
VM Virtual Machine
VOD Video On Demand
VPC Virtual Private Cloud
XML Extensible Markup Language
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1. Introduction

The trend of batch-size reduction can be seen in various aspects in software industry.
Things need to be smaller and faster. Answers for these needs have been the attempts
to reduce the size and scope of the problems, smaller deployable units in form of
microservices, smaller development cycles in form of agile methologies and faster
deployments with continuous delivery, to mention but a few (Nadareishvili et al. 2016,
pp. 65–66).

There has been also progress towards cloud native applications, that are applications
specifically built to be run in elastic cloud environments and enable building loosely
coupled systems typically made with microservices and containers, and that are resilient,
observable and manageable. With high level of automation and continuous delivery
workflows, making changes is less risky and can be done more frequently (CNCF
2019; Toffetti et al. 2017; Patrizio 2018). During this progress towards cloud native
applications, evolution of shrinking business logic from monoliths to microservices all
the way to bare functions on FaaS (Function as a Service) platforms has been ongoing.

When AWS (AmazonWeb Services) launched their FaaS service called Lambda in 2014,
it quickly drew a lot of attention to concept of serverless computing. Developers would
be able to focus on business logic and let cloud provider fully handle server provisioning
and other infrastructure management tasks, and in addition save money on hosting costs
as well (AWS 2014; Jonas et al. 2019). While PaaS (Platform as a Service) services
like Heroku and BaaS (Backend as a Service) services like S3 object storage already
abstracted server management away from the cloud user, it was the Lambda functions,
that would autoscale and that were to be billed based on execution time in a fine-grained
increments, that popularized the serverless paradigm (Jonas et al. 2019). Serverless can
be said to be one of the three main cloud native development and deployment models,
as seen in figure 1.
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Figure 1: Cloud native development and deployment models, adapted from CNCF (2018).

In figure 1, three main cloud native development and deployment models with examples
of such services are presented. These are container orchestration, or CaaS (Containers
as a Service), PaaS and finally serverless. With CaaS, cloud user has maximum control
over infrastructure which in turnmeans that effort is needed tomanage this responsibility
(CNCF 2018). PaaS ease operational work by adding abstraction layer on top of cloud
services while some architectural flexibility is lost (Adzic &Chatley 2017; CNCF 2018).
Serverless approach has the lowest requirement for infrastructure management and it’s
also the most comprehensive option in regards of automatic scaling, load balancing and
the most granular billing model (CNCF 2018).

During my career, I’ve witnessed in many projects how challenging infrastructure
management and things like scaling it for high performance needs might be. I have
also worked with monolithic applications and experienced first hand the complexity
on multiple developers working on a same large codebase in parallel – coordination of
even smallest changes would require a lot of time that could have been used building
functionality directly beneficial to business. This is why I’ve been really interested in
the idea of building smaller services and the promise of serverless approach that would
allow developers to focus on business logic instead of maintaining servers.
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1.1 Goals and delimitations

In this thesis, ideas of microservices and serverless computing are examined. A Finnish
VOD (Video On Demand) service is used as a case-study and its transition from
monolithic applications towards microservices and later usage of serverless computing
within AWS cloud services are examined - from both technical and operational point of
view. This thesis aims to study the literature and then compare real life experiences of
building serverless microservices and see if it already lives up to its promise of freeing
time from infrastructure management to building actual business logic while saving
money on hosting costs. The main goal of this thesis is to examine the experiences
of using microservices and serverless in a video on demand service. Second goal is
to gather information on what are the suitable use cases for serverless approach as of
today. Definition of microservices and their main characteristics are presented. Term
serverless is also defined and current status of serverless computing with benefits and
limitations are examined.

1.2 Structure of the thesis

In the following two chapters theoretical background for this thesis is presented. First,
definition of microservices is examined in chapter 2 and its impacts on software
development and operations are discussed. Second, definition of term ‘serverless’
is presented in chapter 3 and its current benefits and limitations are examined. In
chapter 4, a Finnish video on demand service is used as a case-study, various serverless
implementations are presented and experiences of microservices and serverless
approach are discussed. Finally, in chapter 5 are conclusions.
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2. Microservices

The term “microservice” is said to originate from 2011 when group of software
architects discussed about common architectural style they had practiced lately.
Dragoni et al. (2017), citing Lewis & Fowler (2014) and Wang & Tonse (2013),
mentions that same kind of principles were used in Netflix under the term of “fine
grained SOA” (Service-oriented architecture). Others might have practiced these
principles simply under label of SOA (Lewis & Fowler 2014). Nadareishvili et al.
(2016) writes that these principal themes were that microservices are meant for big
systems, they are goal-oriented rather than focused on solution and they are replaceable.

Newman (2015, pp. 2–3) defines microservices as “small, autonomous services that
work together”. Nadareishvili et al. (2016) also includes architectural element, ending
up with the following definition:

“A microservice is an independently deployable component of
bounded scope that supports interoperability through message-based
communication. Microservice architecture is a style of engineering highly
automated, evolvable software systems made up of capability-aligned
microservices.”

– Nadareishvili et al. (2016)

Yermakov (2018a; 2018b) argues that concept of microservices should not be considered
as self-sufficient architecture but an implementation approach for distributed systems
that are designed based on wider concepts such as SOA, Event Driven architecture
(EDA) and Domain Driven Design (DDD). Cockcroft (2017) talks about things that
made microservices possible. Greatly faster networks have enabled low latency
messaging and thus it’s now possible to send orders of magnitude more messages in the
same time than before and this has been one of the main developments that have made
it possible to move from monoliths to microservices that require a lot of messaging.
Another important enabler has been the rise of NoSQL databases as they are scalable
and cost effective.

2.1 Microservices and SOA

Lewis & Fowler (2014) argue that SOA has always been a bit vague concept and
can mean many different things. One of the biggest differences between SOA and
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microservices is that in SOA implementations it’s common to have a lot of logic in the
communication mechanism itself, one example being Enterprise Service Bus (ESB).
Newman (2015, pp. 8–9) is along the same lines, claiming that there has been a lack
of consensus on how to do SOA well and microservice approach has emerged from
real-world learnings on how to do SOA right. Thus, one could think microservices
as one way to implement SOA in the same sense that Scrum is a specific way to
approach agile software development. Also Dragoni et al. (2017) defines microservices
as evolution of SOA and argue that microservices are the second iteration of the
idea of SOA and service-oriented communications (SOC). One important difference
between SOA and microservices is that SOA uses centralised governance where as
with microservices governance is decentralized (Xiao et al. 2016).

2.2 Monoliths

Before explaining the main characteristics of microservices, it helps to define the
opposite of microservices that is a monolithic application, defined by Dragoni et al.
(2017) as “a software application composed of modules that are not independent from
the application to which they belong”. Using languages like Java and Python it’s
possible to split server-side applications into components but they will rely on shared
resources like memory, files and database. Because these components are part of the
same single logical executable, there’s a technology lock-in as same programming
language and framework need to be used in all of them (Dragoni et al. 2017). This also
means that it’s challenging to try new languages, databases or frameworks (Newman
2015, pp. 4–5). Communication between components happen via function calls or
method invocations (Lewis & Fowler 2014).

A single monolithic application may offer tens or hundreds of different services via
various interfaces like HTML pages, Web services or REST APIs (Villamizar et al.
2016). As new features are added, codebases of monolithic applications tend to grow big
and difficult to maintain (Newman 2015, pp. 2–3). With large codebase it also becomes
more difficult to keep good modular structure and thus make changes that only affect
a single component (Lewis & Fowler 2014). Large codebases also make deployments
more challenging because the whole monolith needs to be deployed even for the smallest
changes. In practice this tends to lead more infrequent deployments (Newman 2015, p.
6; Lewis & Fowler 2014).

As Lewis & Fowler (2014) explain, monolithic application can be scaled horizontally by
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having multiple instances behind a load balancer. Scaling a monolith means scaling the
whole application, not just the component needing more resources, as shown in figure
2.

Figure 2: Scaling monoliths vs scaling microservices, adapted from Lewis & Fowler (2014).

As seen in figure 2, monolithic application has all its functionality in one process and it
scales by replicating the whole monolith on multiple servers. Microservices instead put
each element of functionality into a separate service and scales by distributing services
across servers (Lewis & Fowler 2014). The way how microservices allow more
flexibile scaling and thus might generate direct cost savings, is important reason for
choosing microservice model (Newman 2015, pp. 5–6). With monoliths, implementing
auto-scaling is more difficult due to how long it takes to start new server instances – this
makes it difficult to auto-scale monoliths for spikey traffic as spike might be already
over when new instance has booted (Roberts 2016). If one component breaks it will
most likely affect the whole monolithic application, taking the whole application down
in the worst case (Newman 2015).
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2.3 Characteristics of microservices

Based on various sources (Newman 2015; Lewis & Fowler 2014; Nadareishvili et al.
2016; Dragoni et al. 2017), the characteristics presented in figure 3 can be said to be
common for microservices.

Figure 3: Main characteristics of microservices.

In figure 3 the main characteristics of microservices are presented and they are the
following:

• autonomous
• hides internal implementation details
• independently deployable
• organized around business concepts
• infrastructure automation
• small size

Next, each of these characteristics are explained broadly in order to give an overview of
microservices approach and its benefits for software development.
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2.3.1 Autonomous

Microservice is an independent entity that can be deployed as an isolated service
(Newman 2015, p. 3) and that is developed by autonomous team (Nadareishvili et al.
2016, p. 5). Decentralization means that there’s no central component that manages
and controls the work. Embracing autonomous teams means that development teams
need to be trusted more to make their own decisions about implementation. Key
benefit here is the increased speed of making changes. Control and decentralization
aren’t opposing forces. With microservices approach, services itself get simpler but
the overall architecture usually gets more complex – a problem that is tacled with
automated processes and tooling (Nadareishvili et al. 2016, p. 8). Nadareishvili et al.
(2016) also claims that microservices style is more expensive and organizations must
evaluate whether increased system changeability is worth the cost.

2.3.2 Hides internal implementation details

Microservices hide their internal implementation details so they can be implemented in
any programming language or framework that best fit the task (Dragoni et al. 2017).
This also means that each microservice can be developed and managed by a different
team (Lewis & Fowler 2014). Communication between different microservices usually
happens using network calls, meaning that they need to expose an API (Newman 2015, p.
3; Dragoni et al. 2017). Different technologies can be used for communication between
services, for example REST, XML-RPC and SOAP (Newman 2015, pp. 39–55).

2.3.3 Independently deployable

Independent deployments are considered one of the most important aspects of
microservices as it enables the most important benefits microservices has to offer
(Nadareishvili et al. 2016, p. 89). Microservices can be deployed independently from
the rest of the system and it allows code to get deployed faster. Also if a problem occurs,
it can be isolated and thus makes fast rollbacks easier. Getting new functionality for
the customers faster is said to be one of the main reasons for companies like Netflix
and Amazon to use microservices (Newman 2015, p. 6). Smaller services are faster to
deploy and this fact also makes developers deploy more often (Chen 2018).

Independent deployability allows performing selective or on-demand scaling as only
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the component needing more resources can be scaled, for example by re-deploying
it to an environment with more resources. Independent deployability doesn’t only
offer this kind of operational flexibility but also organizational benefits as it eliminates
many cross-team coordination challenges that coupled deployments would cause
(Nadareishvili et al. 2016, pp. 89–90).

Microservices offer an interface and sometimes these interfaces may change, enforcing
a need to coordinate deployment of multiple services at once. But the aim is to avoid
these kinds of dependencies by solid service boundaries and evolutionmechanisms in the
service contracts that are usually API specifications (Lewis & Fowler 2014). Software
architecture can be one of the biggest impediments for enabling Continuous Delivery
(CD) approach. Microservices architectural style has enabled increased deployability
(Chen 2018).

2.3.4 Organized around business concepts

When talking about microservices, Conway’s law is often mentioned, for example by
Newman (2015) and Lewis & Fowler (2014). This law is quoted in various forms,
Conway himself defining this in 2010 as:

“Any organization that designs a system (defined more broadly here than
just information systems) will inevitably produce a design whose structure
is a copy of the organization’s communication structure.”

– Melvin Conway (Conway 2010; original paper: Conway 1968)

So structure of the organization has a strong impact on systems they create. This
statement is supported for example by MacCormack et al. (2012), presenting evidence
that organization structure tends to get mirrored in the product’s architecture and that
loosely-coupled, distributed teams end up building more modular and less coupled
systems.

If organization has teams built based on technical layers, for example UI (user interface)
teams and backend teams, these kind of siloed teams tend to lead into siloed application
architecture. In microservices approach the goal is to organize services around business
capabilities and have cross-functional teams that include all roles - UI, backend, project
management, and so on - needed for development (Lewis & Fowler 2014). Closely
related is also the idea of “you build it, you run it”, meaning that team is responsible
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for the service throughout its full lifecycle. Giving developers this kind of operational
responsibility and closer contact with the customer has been seen to increase quality of
services (Gray 2006).

In his book, Domain-Driven Design, Evans (2004) introduces the term bounded
context that defines the range of applicability of each model. As an example of a model
he uses Charge that might have a different definition in context of billing customers
versus paying vendors. Nadareishvili et al. (2016) reminds that the model is just a
representation of reality and there might be multiple models, for example a presentation
of a bank account is different for a customer and a bank teller. Mogosanu (2012) defines
context as a responsibility and bounded context as a responsibility that is enforced
within explicit boundaries.

The model needs to be consistent in its context. Evans argues that even if in an ideal
world one would have a single model to be used on the whole enterprise, this kind of total
unification of the model is neither feasible nor cost-effective. This is where bounded
context comes in place as it defines boundaries and relationships between different
models (Evans 2004, pp. 332–333). Domain-Driven Design divides a large system into
bounded contexts that use unified model. Different contexts may have different models
of common concepts (Fowler 2014). This can be seen in figure 4 where two contexts
use the same shared model of a stock item but bounded context of Warehouse also has
its own internal, more detailed model of it (Newman 2015).

Figure 4: Shared model between bounded contexts (Newman 2015, p. 34).
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Defining bounded contexts and relationships between them is useful also for monolithic
applications but microservices correlate naturally with bounded contexts and thus help
clarify and reinforce the separation of components (Fowler 2014). Newman (2015, p.
34) argues that when definining bounded contexts, one should not think of terms of data
that is shared but the capabilities these contexts provide for the rest of the domain. One
should first ask “what does this context do?” and only then “what data does it need to
do that?”. When these concepts are modeled as microservices, these capabilities will be
the main operations that are exposed to the rest of the system.

2.3.5 Infrastructure automation

Managing a lot of different microservices will get complex without automation.
Managing multiple servers automatically reduces the workload and makes it possible to
increase the number of servers without linearly increasing the amount of work needed.
Automation also increases productivity of developers (Newman 2015). Dragoni et al.
(2017) argues that microservices are meant to be used with continuous delivery and
continuous integration and each step in delivery pipeline should be automatic. This will
enable fast deployments into production, even in matter of seconds. Newman (2015,
pp. 107–108) gives an example of common steps in delivery pipeline that is presented
in figure 5.

Figure 5: Release process modeled as a build pipeline (Newman 2015, p. 108).

In figure 5, common verification steps in release process modeled as a build pipeline
are presented. Code is first compiled and fast tests (usually unit tests) are executed. As
code moves through the steps, more time-consuming verifications like integration and
performance tests are done. While every step is preferably fully automated, some steps
might require manual acceptance, for example user acceptance tests. In final step, new
version of the code is deployed to desired environment, in this particular example it is
production environment (Newman 2015, pp. 107–108).
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2.3.6 Small size

What is considered small? Newman (2015, pp. 2–3) argues a team should be able to
rewrite the service in two weeks. He also says that if the codebase is too big to be
maintained by one team, it should be considered to break into smaller services. Lewis
& Fowler (2014) mentions Two-pizza Team, meaning that no more than dozen people
should be in the team responsible for the service.

Nadareishvili et al. (2016) found out that many people use the word “small” as a quality
like “reliable” and “coherent” when describing the size of the microservices. They write
howmost companies focus on quality of eachmicroservice instead of trying to quantify it
somehow. Nadareishvili et al. (2016) also identifies the trend of “batch-size reduction”,
noticing how methologies like agile, lean and continuous delivery all have principle of
size reduction at its core: reducing the size of the problem, reducing the time to finish
a task or reducing the size of the deployment unit. Moving from waterfall to agile can
be seen as reducing the batch size of development cycles, meaning faster cycles. Term
“limited batch size” can be said to be the “micro” part of the microservice (Nadareishvili
et al. 2016, pp. 65–66).

2.4 Microservices and managing development work

Microservices approach introduces a new kind of flexibility to arrange work and bemore
efficient. As Adzic & Chatley (2017) writes, breaking the monolith into more granular
units allows the team to work more in parallel and to deploy things independently in
comparison to working on the same codebase of the monolith that adds additional work
for coordinating deployments and resolving conflicts. Nadareishvili et al. (2016, p. 108)
writes that microservices might not be a good approach for project-centric culture where
team moves to work on something else when the initial version is built. This is because
it’s against the idea of the team being responsible for the service throughout its full
lifecycle. Microservices are more suitable for what Narayan (2018) calls product-mode,
where instead of projects there are near-permanent teams that own the product over its
full lifetime. While there’s no reason that amonolithic application couldn’t be developed
in product-mode, both Lewis & Fowler (2014) and Narayan (2018) argue that smaller
services make it easier, for example because monolith might be collectively owned.
Nadareishvili et al. (2016, pp. 108–109) also mentions outsourced workers and argues
that there’s no reason that microservices couldn’t be built by outsourced teams but
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special care needs to be paid for selecting the correct partners that are amenable for
the culture of microservices.

2.5 Summary

In this chapter, overview of microservices was given and main characteristics of these
small and autonomous services were examined. There are various ways to deploy
microservices as the concept of microservices isn’t defined based on how these small
services are hosted. They can be hosted in containers, PaaS platform or they can be
a part of serverless architecture. In the next chapter, the idea of serverless computing
and how it allows to split functionality into even smaller components is introduced.
Furthermore, the ways how serverless makes it possible to deploy microservices and
how it promises to reduce the amount of work needed for managing infrastructure are
presented.

16



3. Serverless

“Serverless” is a marketing term that refers to the concept of developing and running
applications that don’t require server management. In serverless approach applications
are built as a group of functions that are deployed into platform that handles their
execution and scaling. Pricing is based on the actual execution times, meaning that
consumer of serverless computing does not pay for idle capacity. It doesn’t mean that
servers aren’t needed for executing services. Also it doesn’t mean that operational
people like those usually responsible for server management and monitoring aren’t
needed anymore. But it does mean that in a serverless approach we don’t need to think
about servers that much anymore as things like server provisioning, updates and scaling
are abstracted away from engineers as all these things are handled by the cloud provider
(CNCF 2018).

Concept of serverless computing embodies two different areas: BaaS (Backend as
a Service) and FaaS (Function as a Service). BaaS refers to third-party API-based
cloud services that can be used as a part of the application. Examples of such services
are authentication services like Auth0, object storage services like S3 and NoSQL
databases like DynamoDB. Usage of BaaS is popular among mobile applications and
single-page web apps. Another area of serverless computing is FaaS where server-side
logic is implemented as event-triggered, stateless functions that are fully managed by
a third-party provider. Serverless BaaS and FaaS components are commonly used
together (CNCF 2018; Roberts 2016; Roberts & Chapin 2017). Quickly looking, BaaS
and FaaS are quite different as the first one is about outsourcing whole applications and
second is a new way to host and run application code, but what they have in common
is that neither of them require engineers themself to manage server hosts or server
processes (Roberts & Chapin 2017).

Serverless computing has a significant impact on architectural design of applications and
as Roberts &Chapin (2017) write, it requires “new design patterns, new tooling, and new
approaches to operational management”. Especially serverless FaaS, that is ultimately
an event-drivenmodel where form of deployments are truly granular and state is handled
outside of FaaS components, requires considerably different architecture in comparison
to traditional cloud computing with virtual servers (Roberts & Chapin 2017, p. 11).
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3.1 From physical servers to containers

Historically applications were hosted on dedicated machines which in turn were hosted
in datacenters and these machines would be either purchased or leased for operating
systems. Increasing capacity was slow and planning for traffic peaks was challenging
and required paying for machines that were under utilised during the time when
traffic was normal. Cloud computing and virtual machines allowed to scale resources
on-demand much faster and even automatically. Pricing also changed to per-hour
resolution. Even if operational costs were reduced, managing virtual servers still
require development and operational staff. Various PaaS services like Heroku emerged
to ease operational work by adding abstraction layer on top of cloud services, although
some flexibility and control is lost while doing this. In serverless model infrastructure
provider takes over all the responsibility for receiving and responding to client requests,
capacity planning and operational monitoring – meaning that developer only needs to
focus on implementation of the function itself. Invoicing is based on CPU time spent
on function execution (Adzic & Chatley 2017).

The way virtualization and the pooling of resources is handled has evolved a lot in recent
years, as shown in the figure 6.

Figure 6: Evolution of sharing (Lynn et al. (2017) who adapted it from Hendrickson et al.
(2016)).

Figure 6 shows how sharing has evolvedwhenwe havemoved from physical servers into
containers and now functions. Gray layers in the figure are shared. First, virtualization
allowed sharing common hardware, meaning that many virtual machines (VM) could
run on the same machine, although each copy of a virtual machine would still run a full
copy of an operating system. Later containerization allowed sharing resources through
operating system level virtualizationwhere containers would include a small subset of an
OS and all the components required to run the specific software. Containers are faster to
provision than virtual machines because they have limited access to physical resources
and are less resource-intensive. Finally, in FaaS model even the runtime environment is
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shared (Lynn et al. 2017; Hendrickson et al. 2016).

Figure 7 shows roughly how hosting costs decrease while the amount of control is
reduced.

Figure 7: Trend of costs in relation to control with different hosting methods, adapted from
Langit (2017).

In figure 7 it can be seen broadly how with physical servers you have the most control
but also the costs are the highest. When moving to VMs, containers and finally Lambda
(or any other FaaS), the hosting costs are reduced while user also has less control. With
FaaS the containers are abstracted away, so in that sense Lambdas are containerless, as
Langit (2017) says.

3.2 Functions as a service

In late 2014, Amazon launched AWS Lambda as their FaaS service (AWS 2014). In
2016, other providers followed: IBM with their IBM Cloud Functions, Google with
Google Cloud Functions and Microsoft with Azure Functions. Various open-source
frameworks that can be run on public cloud or on your own hardware exist as well.
Examples of such frameworks are Galactic Fog, IronFunctions and Fission (Roberts &
Chapin 2017; CNCF 2018).

A serverless function is a piece of code that gets executed on-demand by an event such
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as API call, and doesn’t consume runtime resources like CPU and memory after that.
These stateless functions are run in containers that may last only for one invocation and
are scaled automatically without a need for managing servers by the consumer as they
are fullymanaged by cloud provider. Billing is based on actual execution times, meaning
that one never pays for idle (CNCF 2018; Roberts 2016; Roberts & Chapin 2017; Eivy
2017).

HTTP API endpoint request is a common event for triggering a function, but the
power of serverless lies in the fact that there are various other types of events to act
on. For example, a function could react to new file being uploaded to S3 or new object
being added to DynamoDB (Eivy 2017). Event sources can be either synchronous or
asynchronous. As an example, request via API gateway is a synchronous event whereas
object store event or scheduled job similar to cron task are examples of asynchronous
events (Roberts & Chapin 2017).

Traditional web application hosting can be shown in figure 8.

Figure 8: Traditional web application hosting (Roberts & Chapin 2017, p. 8).

Figure 8 shows how in traditional hosting model there’s a host instance, usually a virtual
machine or a container. Application is deployed within the host and in the case of virtual
machine or container, application will be an operating system process. Application code
contains functions for several operations that are related (Roberts & Chapin 2017, p. 8).
For comparison, hosting model for FaaS is shown in figure 9.
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Figure 9: FaaS hosting (Roberts & Chapin 2017, p. 8).

In figure 9 it can seen how in FaaS model both host instance and application process
has been stripped away. Functions that were part of application are now deployed
individually to cloud-vendor platform and they are not always active in server process
(Roberts & Chapin 2017, pp. 8–9).

3.3 Impacts on architecture

Taking a traditional web application for an example, there’s a server component
responsible for most of the business logic and client application is relatively thin. This
server will also act as a gateway between client and other backend resources that
require access control, for example a relational database. Simplified illustration of this
architecture can be seen in figure 10 by Roberts (2016).

Figure 10: Tradional web application architecture (Roberts 2016).
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In traditional client-server architecture server hasmost of the business logic and as Adzic
&Chatley (2017) explain it’s important to notice that there’s usually also a server process
that’s typically listening for TCP (Transmission Control Protocol) socket, waiting for
client connections and sending responses back. In serverless model developers are no
longer responsible for this server process that listens to TCP socket as the serverless
platform is responsible for client requests and responding to them (Adzic & Chatley
2017). While this traditional client-server architecture is perfectly functional, Roberts &
Chapin (2017) remind that there are many additional responsibilities not directly related
to the business logic of the application: server and database need to be configured
and maintained, along with taking care of things like security, scalability and high
availability. Roberts (2016) argues that in serverless world this same application could
have architecture looking something like in figure 11.

Figure 11: Web app with serverless architecture, adapted from Roberts (2016).

Compared to traditional architecture, it can be seen in figure 11 that client is now allowed
to connect directly to backend services like authentication and product database. This
also means that client now has some of the business logic that was previously in server
component. It’s also good to notice that client doesn’t have full access to product dataset
but limited permissions. Not all functionality is in client, though, but some of them are
implemented as FaaS functions that are fronted by API gateway. Good candidates for
functions are compute intensive functionality like search or actions that require higher
level of security, like purchasing products (Roberts 2016). Both Roberts (2016) and
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Adzic & Chatley (2017) make the case that in serverless application client would have
more business logic in it when compared to traditional web application. Roberts (2016)
reminds that repetition of logic across clients is something that can be considered as
a drawback and needs to be taken into consideration when doing technical design on
how clients talk with backend services. Roberts & Chapin (2017, p. 17) argue that in
comparison to traditional clien-server architecture, serverless version of the application
can focus more on the unique business logic instead of infrastructure management and
there’s less friction of changing functionality as components are decoupled. Security,
scalability and high availability are now baked into components, meaning that there’s
no need to worry about investing into infrastructure if application gains more popularity.

As Adzic &Chatley (2017) explain, in traditional client-server model backend resources
implicitly trust the server that acts as a gatekeeper and thus direct access from client
to resources like database is considered as a security risk. Without a gatekeeper and
due to the fact that two sequentical requests from the same client might end up into
separate instances, a distributed request-level authorizations are needed for connections
to backend resources. AWS offers services like AWS IAM and AWS Cognito for
fine-grained control on what kind of permissions client have on resources (Adzic &
Chatley 2017).

Even if serverless computing abstracts away things like load balancing, scaling,
availability and security maintenance of infrastructure, there are many operational
concerns left to look after, for example making sure that applications are testable,
secure and resilient. Versioning and deployment strategy are also needed (Eivy 2017).
Roberts (2016) warns about false sense of security and argues that technical education
is needed for operating serverless applications as developers have more responsibilities
that system administrators used to handle with serverful applications.

3.4 Serverless costs

In traditional cloud computing, billing is based on allocation, not on actual use. Take
virtual servers as an example, users are billed for them even if they don’t use them at
all. This can be compared to the difference between using rental cars and taxi: you are
paying for the rental even if you don’t use it for a week, unlike a taxi (Eivy 2017). With
serverless computing, significant reductions in hosting costs are possible. Villamizar et
al. (2016) prove this in laboratory experiment, where as Adzic & Chatley (2017) present
real-life case studies where cost savings were achieved.
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With serverless computing costs it’s important to understand what kind of traffic to
expect. For an public API, traffic might be really bursty and thus weekly or monthly
average doesn’t give enough information for capacity planning. One important measure
here is RPS (requests per second). For example an API that receives 60 thousand
requests per minute might get 90% of requests during a single 10s period, conducting
a burst of 5400 RPS compared to 1000 RPS that flat traffic would account for. Figure
12 illustrates this, showing how differently 60 thousand requests might distribute in one
minute time period. Big difference like this is something that engineers need to consider
when designing API scaling and capacity needs (Eivy 2017).

Figure 12: Two different patterns for 60 thousand requests (Eivy 2017).

With public APIs backed by serverless function, one should always use some kind of
rate limiting in API gateway as otherwise simple denial-of-service attack may lead into
large costs because of auto-scaling (Eivy 2017). These kinds of attacks that aim to
create financial costs by taking an advantage of auto-scaling nature of serverless are
sometimes referred as denial-of-wallet attacks (Dooley et al. 2019). For example AWS
Lambda won’t scale infinitely though, as there’s a default limit of 1000 concurrent
Lambda containers across user’s AWS account (Roberts & Chapin 2017, p. 24). Even
if serverless providers offer cheap-looking cost per-hit, with large amount of traffic
functions might get more expensive than traditional solutions. Eivy (2017) presents
an example where API endpoint with 150 RPS was a bit cheaper in Lambda platform
in comparison to using classic on-demand instances, but service was expected to reach
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30 thousand RPS next year and with such traffic serverless solution would get three
times more expensive when average execution time of 50 ms with 128 MB memory
allocation were assumed. Eivy (2017) recommends modeling the economic impact
of architecture and operational choices beforehand – and while doing it, calculations
should also be done for the potential future scale in addition to current traffic levels.
With serverless functions modeling should be done using the actual functions in cloud
infrastructure instead of local machine to get numbers that really reflect the reality.
Eivy (2017) also reminds that even if price per-request might get higher for serverless
solution, operational costs might be lower in comparison as autoscale, security patches
and loadbalancing are taken care of by the provider.

When optimizing performance, one should remember that many times the provider will
round up function execution time. For example with Lambda, this means that user will
always pay at least for 100ms of execution time – meaning that optimizing runtime from
50ms to 20ms would be a wasted effort regarding costs (Eivy 2017). With really high
RPS it might still make sense to optimize even when being under minimum billable unit
as one could avoid hitting concurrent invocation limit.

As Jonas et al. (2019) writes, serverless computing might have somewhat unpredictable
costs due to the nature of the pay-as-you-go model and thus it’s not that straightforward
to estimate future costs. There’s no concept of pre-planned capacity on serverless
platforms, as CNCF (2018) reminds. This fact might be undesired for some
organizations, although as serverless approach is used more, it can be expected that
organisations become better in doing estimates based on history (Jonas et al. 2019).

3.5 Benefits of serverless

Roberts & Chapin (2017) list five benefits for infrastructural outsourcing that are also
elements of serverless: reduced cost of labor and resource, reduced risk, increased
flexibility of scaling and shorter lead time. First four are mainly about cost savings
where as the last item, shorter lead time, actually allows developing new functionality
faster. Stigler (2018, pp. 6–7) lists similar benefits, highlighting speed of development
with less stress about infrastructure management, lower costs and enhanced scalability.

Reduced labor cost is due to the fact that there’s no longer a need to maintain your
own server process, development team can focus on unique business logic and state
of the application instead of looking after operation systems, database version updates
and so on. Labor costs are also saved if separate BaaS components are used – for
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example, if authentication service is provided as BaaS, there is less logic that needs
to be developed (Roberts & Chapin 2017, p. 20). Risks are reduced due to the fact that
there are less different systems and components to maintain. As outsourced components
are usually the ones like NoSQL databases that require less attention and infrequent
updates in comparison to core application functionality, when problems occur with such
components they are more difficult to solve as team usually isn’t as familiar with them
as with core business logic – thus risk is reduced when these components are outsourced
to serverless platform (Roberts & Chapin 2017, pp. 21–22). Resource costs are saved
as there’s no need for host management: in serverless approach one does not need to
plan, allocate or provision resources. Thus, there’s also no need to to prepare for peaks
by over-provisioning - that is, having resources available just in case traffic increases
suddenly. Automatic scaling is available for non-serverless applications, but it’s not
as precise as with serverless (Roberts & Chapin 2017, p. 23). More flexible scaling
is gained by the fact that scaling is totally automatic: there’s no need to set up scaling
by configuring auto-scaling groups or monitor processes (Roberts & Chapin 2017, p.
25). Shorter lead time is defined as the time it takes from initial concept to deployment
of MVP (minimun viable product) into production enviroment. With serverless model
this time is highly reduced as there’s a lot of complexity of building, deploying and
operating applications that are removed. It should also be remembered that these kinds
of MVPs are highly available, scalable and fast to deploy from day one (Roberts &
Chapin 2017, pp. 25–26). Also Cockcroft (2017) writes about this, reminding that
prototype application on serverless platform is by nature scalable for production use.

3.6 Limitations of serverless

Roberts & Chapin (2017) introduces two kinds of limitations of serverless: inherent
limitations and implementation limitations. There’s never going to be away to get totally
around the inherent limitations but it might be possible to learn to embrace some of them.
Implementation limitations are in fact limitations as of now but as serverless approach
matures and ecosystem improves, some rapid improvements are expected.

The most obvious inherent limitation of serverless is that most of the components
are stateless. While it makes scaling more straightforward as it can be done just
by increasing concurrency it does mean that stateless components are required to
communicate with stateful components in order to persist information - which in further
will introduce latency and additional complexity (Roberts & Chapin 2017, p. 28;
Hellerstein et al. 2018). Current BaaS options for storage are bit lacking, for example
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autoscaling can be slow and costs high (Jonas et al. 2019). Latency is a concern in
two ways: first is the latency between components and the second is the impact of the
so called cold starts where new instance is initialized instead of using existing one.
As communication between components is usually implemented via HTTP APIs, it’s
slower than communication inside the same host in non-serverless application that
may use faster transports (Roberts & Chapin 2017, p. 29). Local testing of serverless
applications is challenging because large part of the infrastructure is abstracted away
inside the platform, making it difficult to connect components in the same way as it
happens when deployed. These limitations apply to integration and end-to-end testing
whereas unit tests can be implemented as with any application (Roberts & Chapin
2017, p. 29). As the BaaS and FaaS platforms are managed by a third party, control
over the software stack is given to the provider in various ways. Configuration options
are limited or non-existing. For example, there’s no control over operating system
runtime parameters. Control over performance-related matters is limited as there’s no
access to operating system or runtime process. Same FaaS function may have different
performance characteristics depending on when it’s executed. Also response times in
BaaS components might be inconsistent and user doesn’t really have other options than
contacting the platform provider for support. This is actually the only option with any
issue other than the ones directly related to serverless application code or configuration.
Control is lost also in security-related matters. If AWS API Gateway is used, it’s always
accessible to public internet, there’s no option to limit access for example by IP address
(Roberts & Chapin 2017, pp. 30–32).

On implementation limitations, Roberts & Chapin (2017) mention the following:
inconsistent and sparingly documented performance characteristics, tooling limitations
and vendor lock-in. With FaaS platforms, most common performance issue is the so
called cold start. It happens when new container instance is created for the function
invocation, for example when function is called for the first time after a change, or
after a longer pause or when new concurrent instances are needed for automatic scaling.
Once instantiated, subsequent requests don’t require running the initilization process,
making these requests much faster (Roberts & Chapin 2017, pp. 32–33). Selected
runtime makes a big difference on instantiation speed, for example JavaScript and
Python are fast where as Java takes significantly longer (Adzic & Chatley 2017). On
AWS Lambda platform, containers are said to stay warm for hours (Roberts & Chapin
2017, pp. 32–33), although much shorter times have been also reported (Adzic &
Chatley 2017; Vojta 2016). Platform providers like AWS don’t reveal any numbers nor
do they offer any strict service-level agreements, so performance characteristics are
based more or less on observations (Adzic & Chatley 2017).

27



Tools for deployment, developments and monitoring are still on early stages and limited.
Best practices and patterns are still shaping up. As serverless applications consist of
many individual components, orchestrating deployment of the whole application can
be challenging. FaaS environments have limited execution environment regarding on
CPU, memory, disk and I/O (input/output) resources. Execution times are also limited,
for example AWS Lambda has maximum execution time of five minutes (Roberts &
Chapin 2017, pp. 33–35). Hellerstein et al. (2018) mention these same limitations
and argue that current FaaS offering is too restricting for data-centric distributed
computing because of limitations in both function lifetimes and I/O bandwidth,
along with slow communication between functions and no option to use specialized
hardware. Roberts & Chapin (2017, pp. 33–35) continue by writing that monitoring
and logging in serverless applications is more complicated as applications consist of
multiple individual components, making it harder to track request that is processed by
multiple services. This same challenge of distributed monitoring is also present with
microservices. Difficulties on local testing were already mentioned, but possibilities
for remote testing are also quite limited at the moment. Component-level testing is
usually possible, but testing the whole serverless application safely can be complicated.
Debugging remote application is currently not possible on most platforms and runtimes.

There’s always some level of vendor lock-in with serverless applications, although
different levels of lock-in are enforced by different providers, depending on their
APIs, documentation and integration patterns. Then again, using a single vendor is
beneficial as components are well integrated, meaning that lock-in is present more in
the way how components are tied together than in the components itself (Roberts &
Chapin 2017, pp. 35–36). For example, in Lambda environment code that is executed
depends little on the environment but as the platform provides various services like
authentication, monitoring and configuration management, and the fact that serverless
architectures provide incentives let clients communicate directly with backend services,
client code may become tighly-coupled with the different services offered by the
vendor. Consequently, changing provider would require significant rewrite of client
code (Adzic & Chatley 2017). Newman (2017) argues that one should think more about
migration costs than the actual vendor lock-in. There is varying difficulty in switching
components between vendors in serverless application and it should be considered
whether to prepare for that for example by building abstraction layers or accept the risk
that some day there might be migration to new vendor.
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3.7 Summary

In this chapter, the concept of serverless computing was introduced and defined as a
way of developing and running applications that don’t require server management and
that are billed based on actual execution times. Its impact on software architecture and
hosting costs were examined. In addition, known benefits and limitations of serverless
were presented. In the next chapter, real world experiences of splitting services into
smaller units and into serverless microservices are discussed.
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4. Case study

A Finnish video on demand service is used as a case study. Service offers video content
both as free and as SVOD (Subscription Video on Demand), meaning that part of the
content requires paid subscription. As the service is owned by a TV broadcasting
company, it integrates into broadcast TV by making it possible to watch live TV,
view airing schedule and watch most of the content aired on TV later on-demand.
Service launched in 2009 with a web service, nowadays web client is accompanied
with native client applications available for mobile platforms iOS and Android and
also on smart TV platforms such as Samsung, LG and Apple TV. In addition to video
content, audio-only content is supported as well. Audio content is managed by the
same system as video content but separate client applications are used for consuming
audio content. Development is done in a multi-vendor environment where in-house
engineering and design team is supported by contractors from various vendors. Most of
the development teams work in what Narayan (2018) calls product-mode, meaning that
instead of projects there are near-permanent teams working on a persistent business
issue, such as mobile applications or web client, for long periods of time and there’s no
separation between build and maintenance teams. In this sense, “you build it, you run
it” principle is in use.

The organization that owns the video service has made a strategic decision years ago
to host all services in AWS, where applicable. Hence, the video service too has been
gradually transforming into using more and more AWS services. Lately also serverless
approach has been used in various services. Also, infrastructure as code (IaC) approach
is used for configuring all cloud resources in an organised way in definition files that are
under version control. The transition process could be described as evolution instead of
revolution and modern cloud native architectures and approaches have been taken into
use in controlled fashion and step by step instead of big bang rewrites.

4.1 Overview of the system

Overview of the video publishing system is shown in figure 13.
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Figure 13: Video publishing platform overview.

In figure 13 main components of the video publishing platform are presented. ERP
(Enterprise resource planning) is the systemwhere broadcast airing schedule is managed
and information is imported into video content management system (CMS). Most of the
meta information originates from ERP, including series, season and video text fields
and images. Video files originate from various sources and information about them
is automatically sent to CMS. It’s also possible for content editors to upload videos
directly to CMS. Video files are processed by video file control system and for example
different quality versions are generated. Files are then pushed into CDN (Content
Delivery Network). Video CMS is a Drupal instance and while great for managing
content, in high performance environment it’s not suitable for offering APIs due to
challenges with scaling, performance and availability. Thus, video integration platform
is used where all the content is indexed and then offered in JSON format via various
APIs. In addition to content APIs in video integration platform, it also has an API that
defines what components different clients should display and how these components
should be formatted. Client applications themselves are headless so that content isn’t
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imported but merely cached in them.

In addition to core video system presented in figure 13 there are plenty of other
supporting systems as well, for example applications for e-commerce, integrations to
single sign-on (SSO), service for authenticating to smart TV via client app, services
to manage user entitlements, and so on. As a large ecosystem with over ten years of
history these are hosted and built in different ways: some are running on traditional
VMs, others are serverful apps in Kubernetes-managed cluster and some are true
serverless applications.

4.2 From monoliths to microservices and serverless

Over the years the video publishing platform has steadily moved from monolithic
applications towards more decoupled and smaller services, many of them can now be
categorized as microservices. For example, web client started as a monolithic Drupal
application that provided not only video viewing UI but also e-commerce functionality
and it imported all the video content into its own database. In the early days of the
service there still wasn’t video integration platform APIs available that would have been
flexible and performant enough to be used by a headless application. Later the web
client has been split into smaller applications, for example e-commerce components
that provide checkout pages, voucher redeeming and entitlement updating were split
into its own application that while still a monolith, was now separated from the video
viewing UI. Later this e-commerce focused monolith application was replaced with
API-driven serverful cloud application managed by Kubernetes. As consuming video
content is more or less read-only activity, totally different caching patterns were then
possible compared to the e-commerce site that involved heavy write requests to various
backend services, making performance optimizations much easier. Better and more
flexible content APIs were also introduced, making it eventually possible for web client
to stop importing all the content into its own database and instead just render content
provided by content APIs, on-the-fly.

4.3 Serverless in use

While the organization owning the video publishing platform has step by step moved
over to AWS, the first questions when building a new service (or updating the existing
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one) have been how to best leverage various AWS services and whether serverless
approach could be used. At an accelerating pace the answer to the latter question has
been yes. Next, various real-life examples of serverless approach are presented and
discussed.

4.3.1 New web client and Component API

In 2018, the web client was renewed and implemented with React. As a decoupled
application it doesn’t have its own database: all the content is loaded from different
content APIs. Also the site structure - which components should be shown on which
page (or a view in the context of an application) and what kind of content these
components should list and how - is defined by a separate service. We call this service
Structure API as that’s what it does: defines the structure of the service. As a high-level
architectural decision it has been decided that only limited amount of business logic
should be in clients themselves. Whenever feasible, the goal is to avoid duplicated
business logic across different clients. In a sense, this can be seen as a bit of an
opposition on common serverless architecture where clients actually would have more
logic in themselves, communicating directly with backend services and skipping central
gateway (a server), as explained in chapter 3.3. So far it has seemed to be more efficient
and economical to keep client applications as simple as possible and avoid duplicating
business logic whenever possible. As all applications are native, they can’t really share
any code and thus dedicated developers are required. One could say that we want to
avoid updating native applications at all costs because of change in the backend.

Structure API defines what components each web page (or view in applications) should
have and what formatter should be used to render it. It also defines parameters that
should be used in a request to content API. As a simplified example, it might define
that third element on the frontpage should list items from video content API, filter by
category to list only movies and sort by weight defined by queue managed by human
editor. And it should list these videos using the formatter called “video_thumbnails”.
There’s a detailed design and definition how formatter “video_thumbnails” should look
like, but it’s up to each client to implement it. As content APIs offer only generic data,
it’s these formatters that define things such as what date formats to use, whether or not
the title should be prefixed with “Movie:” or if only a thumbnail should be shown or
title as well. Duplicating these kinds of simple logic across all the clients is not costly,
but there are a lot more complex components as well. For example we might want to list
series based on the most popular episodes. Here the content API query would be against
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the video API but rendered items should not be videos but series. Another complexity
is the fact that many listings are contextual: on series page list of seasons and episodes
should be filtered based on the currently viewed series. Eventually things add up and
there’s a lot of logic to deal with.

This is where the idea of Component API was born. Some of the logic could be moved
to separate service that acts between client application, Structure API and Content
APIs. It would process the component definitions from Structure API, load items from
content APIs and parse results into JSON that client could simply render without further
processing or complex logic to figure out how to merge information from various
content APIs. Component API is first used by web client, but later it could be taken into
use with other clients as well. Main AWS services of Component API are presented in
figure 14.

Figure 14: Component API AWS architecture.

In figure 14, AWS services used by Component API are shown. This model is common
for applications that expose public HTTP API endpoints to internet. AWS content
delivery network (CDN) service CloudFront is in front of API Gateway that is a
service to manage and maintain APIs. Lambda functions include the business logic for
interpreting the instructions defined in Structure API and using these instructions to
fetch content from various APIs for aggregation. Component API is fully stateless and
read-only, thus there’s no need for storage services like DynamoDB or S3.

4.3.2 Auth API and the issue of cold starts

All clients, including the web client, use the same SSO system. A microservice that
we call Auth API is used as kind of a proxy service between web client and the SSO
system. Auth API consists of Lambda functions fronted by API Gateway, similarly as
in Component API. Authentication process requires saving state: a token generated by
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the client in the beginning of login or registration process and when user is redirected
from the SSO back into client, state is carried from the SSO authentication pages as a
parameter. This state is then compared to initial value and only if they match should
the user be authenticated. An in-memory storage Redis by AWS Elasticache service is
used to store state and possible referrer URL. As AWS invoices for Redis instances even
if they aren’t used, Auth API can’t be considered truly serverless application. Because
of Redis, Lambda function needs to be a part of the same subnet as Redis. In AWS,
this means using VPC (Virtual Private Cloud) and ENI (Elastic Network Interface).
Unfortunately, using VPC drastically increases function cold start times. In our tests we
experienced wait times as high as eight seconds for the container initilization, this being
in line with observations by Cui (2018). In the case of cold start, end-user would need to
wait for over eight seconds for login screen to load in the worst case. So called warmer
function could be used tomake sure there’s one container always available, but wewould
still have the issue of autoscaling: if multiple requests would hit exactly the same time,
then all of these concurrent requests would trigger a cold start, as demonstrated by Cui
(2018) and confirmed in my own test as well. Visualization of this test can be seen in
figure 15.
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Figure 15: First concurrent requests causing a cold start in Lambda.

In figure 15 screenshot from web proxy debugging application Charles is presented. In
the test scenario 25 requests were done with a concurrency of five. We can clearly see
how the first five concurrent requests caused a cold start in Lambda and subsequent
requests were served from warm containers with significantly faster response times.
This is a known limitation of Lambda platform and something users of Lambda platform
just need to live with, at least for now. If traffic spikes are to be expected, then various
pre-warming methods could be used, although all these kinds of hacks fight against the
promise of serverless computing that you would not need to worry about things like
scaling. With Auth API, large amount of concurrent requests are luckily rare and none
of the authentication related functions take more than 120ms on average to execute,
making it quite rare that there isn’t a warm container available for the request. Traffic is
quite steady around the day and thus there’s usually always at least one container warm.
However, it would be better to use DynamoDB instead of Redis as DynamoDB would
be fast enough and it also supports On-Demand mode nowadays that would allow more
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efficient auto-scaling and pricing model that would make Auth API truly serverless.

4.3.3 Background tasks

FaaS is a great solution for tasks that are executed periodically and can happen in the
background. In such use cases delay caused by a cold start is not an issue as there’s
no risk of UI interaction being on hold because of container initilization. And with
serverless computing, there’s no need to pay for idle time between periodically executed
tasks.

In the video integration platform, Lambda functions are used to update various fields
in the Elasticsearch index. For example, each season of a series has fields for various
counters: how many videos there are in total, how many of them can be viewed
without paid subscription and so on. Periodically executed Lambda function fetches
required information and updates counters. Similar functions are used to update so
called premium statuses of series and seasons. One more example is a function that
updates weight used for sorting in various content types, for example a series might be
scheduled to show up as first item in the listings for certain timeframe.

Web client offers a sitemap in order to help search engine crawlers to be aware of every
content URL. A periodically run Lambda function loads content from different content
APIs and generates these XML (Extensible Markup Language) files that are then stored
in S3 storage. Cloudfront distribution is configured to map sitemap file URLs into S3
origin. Previously sitemap generation process used to be a Drupal module function
call triggered by a server process cron task, but with Lambda it’s now totally separate
component that can be developed, tested and deployed independently from the web
application. At the time of writing, Lambda functions still have a 15 minute execution
time limit. This is something to keep in mind with long-running tasks like sitemap
generation, although luckily most of the current content APIs allow loading paginated
results in parallel, thus making it possible to generate sitemap in just under two minutes.
In future sitemap generation might need to be split into separate functions, each one
taking care of a smaller chunk of the sitemap and then a last function that would build
the final sitemap from generated chunks. For example Lambda Step functions could be
used to handle this kind of sequal process.
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4.3.4 Using FaaS to manage infrastructure

Asmentioned by Roberts (2016), one commonway to use FaaS is to use it to “glue” code
in operations. In our use we have used small functions for example to subscribe new
applications to logger function that then submits application logs into Datadog that is an
external monitoring and log aggregation service. Another example is a case where team
experimented with Lambda function that altered how AWS auto-scales DynamoDB. By
default DynamoDB scales up a bit slowly based on consumed read and write capacity
units. With Lambda function it would be possible to alter scaling logic and for example
count new provisioned capacity by yourself based on request count and thusmake it scale
up early and then scale down slowly. This would be more suitable for a quick burst of
traffic, for example during the couple of minutes before popular ice hockey match when
a lot of users are authenticating and creating new subscriptions. FaaS is also a great fit
for chatbots and one example of this kind of usage is a serverless application that posts
status messages to Slack channels based on open pull requests GitHub, providing useful
information for the developers.

4.3.5 Video playback token verification with Lambda@Edge

During video playback the player will periodically make an authorization request
to backend. An access token based on JWT (JSON Web Token) standard is used.
As verification of JWT is really quick stateless authentication operation, it’s a good
use-case for Lambda@Edge functions. AWS (2019) defines Lambda@Edge functions
as feature of CloudFront CDN and they allow modifying request and response on
edge. This function is executed in massive amounts but as average function execution
time only 1 ms, it’s possible to reach high number of requests per seconds without
actually having that many concurrent function invocations. As possible request count
per second might reach tens of thousands for this function, calculations were done
carefully taking possible traffic bursts and future demand in to account, as Eivy (2017)
recommends and was examined in chapter 3.4.

4.3.6 Radio playlist API

There is a web service for audio content that is managed by the video publishing
platform. Each radio station has its own section on the web service and these sections
contain a list of songs broadcasted on radio channel. A serverless microservice was
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built to store playlist history and it offers API for saving and retrieving song information.
Broadcasting software used by radio stations posts the song to microservice which
saves it into DynamoDB database. Microservice offers an API that clients can use to
fetch list of played songs for each radio channel. This microservice consists of around
250 lines of TypeScript code for business logic and a bit over 500 lines of Terraform
code used for defining various cloud resources like API Gateway, Lambda function,
caching rules, DynamoDB table, deployment pipeline and various permission related
resources like IAM roles and policies.

4.4 Thoughts on serverless experiences

One of the biggest benefits of serverless approach is that it almost completely removes
the burden of capacity forecasting. While traffic for video on demand service is quite
predictable as most of the video viewing is done during peaktime at evenings, sudden
bursts might still happen anytime of the day due to breaking news, for example. Capacity
forecasting is hard: estimate low and customers will face long response times or even
downtime, and if estimated too high, you end up paying for idle capacity. Some years
ago video service actually was facing downtime as critical DynamoDB table wasn’t
configured to have enough read capacity. When you can trust the platform to do scaling
automatically, a lot of work time can be saved and there’s less stress about availability.

With hosting costs there haven’t been big savings yet. Sometimes serverless application
in AWS was actually more expensive than previous version of the app hosted on VMs.
Then again, most of the applications were already quite cheap to host. It’s not uncommon
that the amount of monthly hosting costs for an application was less than one day of
development work invoiced by a contractor. If there are cost savings to see, it’s from
the decreased amount of development time needed. If one day of development time
might cost more than hosting of multiple microservices for a month, it’s clear that bigger
savings can be done here. Usually smaller codebases are easier to develop with and a lot
of development time can be saved when there’s less need for implementing and testing
capacity scaling. It can be said that serverless approach can save money but with current
implementations in video service it’s not due to reduced hosting costs but because of less
effort is needed for development and infrastructure management.

Video service is developed in a multi-vendor environment. One important benefit
of smaller services has been the additional flexibility in resourcing: with smaller
services there are less dependencies compared to monolithic application where feature

39



development and deployments require more coordination. Thus, building smaller
services have enabled teams to work more in parallel. One goal has been to try to avoid
locking developers to work with only one part of the system and thus avoid leaving
overall knowledge only to individual developers. This can be seen as a way to do
risk management. Developer happiness has also increased as people have been able
to work with more varied tasks instead of sticking in their own sandbox. Automatic
build processes and deployment pipelines can be seen as an improvement to developer
experience as well as it reduces the need to worry about sometimes tedious work of
building and deploying. Setting up these deployment workflows seems to still require
quite a lot of effort even with serverless applications, but luckily configurations can
be re-used in other projects. Smaller codebases make code more readable and secure.
More granular services make it also easier for new developers to make changes to code
they haven’t written themself in the first place. This also means that onboarding new
team members is easier.

When an organization has a lot of services and resources in cloud, it’s desirable to use
IaC approach to have all of these resources defined in code and under version control so
it’s easy to keep track of resources and their changes. There are languages like AWS’s
own Cloudformation and HashiCorp’s Terraform that are used to define infrastructure
as code. While AWS offers visual tool like AWS CloudFormation Designer for defining
cloud resources, configuration of cloud resources is still usually manual work of writing
definitions for resources by hand. This can be tedious work and as mentioned in
chapter 4.3.6, for small application there might be twice as much code for infrastructure
configuration than for actual business logic. While it’s true that there’s less to worry
about regarding infrastructure as things like auto-scaling and high-availability are taken
care of by the vendor, the developers would still need to spend considerable amount of
time with tasks that can’t be considered to be directly linked to business logic.

Local development for smaller applications that consist of function or two is efficient.
With monolithic Drupal applications, setting up and configuring local development
environment with virtual machine was always a bit tricky and time-consuming. Then
again, a microservice that depends on PaaS services like DynamoDB can make local
setup complex quite quickly and local testing more challenging. Best practices and
tooling for local development are changing rapidly and are still somewhat lacking. For
example, earlier versions of AWS SAM CLI tool that is used for local development and
testing of serverless application crashed when API was hit concurrent requests.

Monitoring serverless microservices is more of a challenge compared to tradional
applications, as Newman (2017) writes. For example, tracking a request that is
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handled by multiple microservices is challenging. While AWS offers services like
Cloudwatch, X-Ray and CloudWatch Logs Insight, these still leave a lot to be desired
for larger applications. Video services uses monitoring service Datadog with some of
its applications and it can show visualizations of Cloudwatch metrics and log messages.
Using external service for log aggregation does introduce a slight delay that is a bit
problematic if there’s a need to get a realtime view of the application status. With
serverless applications it also seems to be more likely that one needs to add additional
code into application code itself in order to generate more advanced traces, to mention
one example. This is something that we would usually want to avoid as it introduces
tight coupling to the external monitoring service.
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5. Conclusions

The promise of building small serverless applications is the introduction of effiency and
cost savings as development team would be able to focus more on the unique business
logic instead of managing infrastructure and challenges like scaling, high-availability
and server security. Granular pay-as-you-go billing model is said to offer significant
savings on hosting costs. The aim of this thesis was to examine the characteristics of
microservices and serverless approach, find out what literature has to say about their pros
and cons and compare learnings to real-life experiences on video on-demand service.
Furthermore, the aim was to gather information on what are the suitable use cases for
serverless approach today.

Our experiences have shown that relying on cloud computing and building smaller,
loosely coupled applications has had a positive impact on quality and availability of
services. Smaller is better, as Nadareishvili et al. (2016, pp. 65–66) writes. In addition,
there have been clear benefits on how to manage work: smaller deployable units have
enabled to work in parallel easier and when applications have smaller codebases, it’s
more effortless to onboard new engineers. So even if “you build it, you run it” principle
isn’t always possible, there’s still the benefit of easier onboarding and making it easier
for engineers to work on different projects. Smaller services makes it faster to peer
review code as well as it’s easier to get your head around smaller codebase compared to
monolithic application – this is also good for writing secure code.

While the amount of execution time one can get for free is often shouted out loud when
talking about serverless, often in real life cost savings in hosting aren’t the main driving
factor to adapt serverless computing. While costs savings are real – specifically with
small applications that experience a lot of idle time, such as cron jobs – the actual savings
can be found from the reduced work related to infrastructure management and having
more time to dedicate for building actual business logic. It’s true that building serverless
components removes most of the burden related to auto-scaling and high-availability,
but a considerable amount of work is still required for defining cloud resources when
infrastructure as code approach is used. Luckily, many of these definitions can be reused
between different applications and it was found to be benefial to put some effort for
creating templates for commonly needed definitions. On security side of things, it can
be argued that many of the easiest attack vectors are blocked as cloud vendor takes
care of patching vulnerable OS dependencies on servers and also provides services for
coping with denial-of-service attacks. Fine-grained isolation of small functions written
in high-level languages on FaaS platform is also benefial for security, but attention is
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needed in configuration of security policies.

It’s easy to agree withWagner (2018) when he argues that the real value of serverless is in
the operating model. Then again, for small businesses such as new startup companies,
the pricing of FaaS and BaaS services alone is really attractive and arguably the best
way to go when starting from scratch. And as Cockcroft (2017) writes, prototyping a
serverless application is fast and the application on serverless platform is automatically
scalable for production use, highly available, high utilization and fast to deploy. You
may write your prototype for just a few users, but it will scale for millions – a huge
benefit when considering things like time-to-market in a competitive environment. This
all comeswith a price of giving away a lot of control over infrastructure to cloud provider,
which migh be even impossible in some cases, for example in public sector.

It was apparent that serverless computing is still a new concept. Tooling is evolving
rapidly and patterns on how to bundle functions, how to develop serverless application,
manage versions and deployment workflows are still shaping up. This means that one
needs to prepare some additional work for setting up tooling, workflows and designing
patterns when starting to adapt serverless approach. It’s also good to remember that the
question of what well-formed serverless application looks like remains still a bit open.
Also, for critical services with really high requirements for performance, low latency
and availability, serverful application is likely still a better option as FaaS does introduce
additional latency and the issue of cold start is very much a reality, not to mention the
fact that one could want more control over infrastructure.

It’s still early days for serverless computing and things will keep changing fast.
However, based on literature and experiences from the case study presented in chapter
4, serverless computing is already widely useful for various kinds of services –
especially for services where really low latency isn’t required and where things like
high-throughput and time-to-market are important. Thus, it’s easy to agree with Jonas
et al. (2019) and see serverless approach becoming the default paradigm of the cloud
era and for large parts replacing the serverful computing.
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