

Lappeenranta University of Technology

School of Engineering Science

Degree Program in Computer Science

Tuomo Harjula

DESIGN AND IMPLEMENTATION OF A TASK SCHEDULING

SERVICE

Examiners: Professor Jari Porras

 M.Sc. Arto Hämäläinen

Supervisors: Professor Jari Porras

 M.Sc. Arto Hämäläinen

ii

ABSTRACT

Lappeenranta University of Technology

School of Engineering Science

Degree Program in Computer Science

Tuomo Harjula

Design and implementation of a task scheduling service

Master’s Thesis

2019

31 pages, 5 figures, 2 tables

Examiners: Professor Jari Porras

 M.Sc. Arto Hämäläinen

Keywords: task scheduling, queue optimization, scheduling algorithm

Computing server resources are limited and the usage should be optimized. Literature review

was conducted to identify various aspects of a scheduling service. Multiagent scheduling

was identified as a solution to the problem of scheduling heterogeneous tasks using shared

and limited resources. Unfairness, resource monitoring and load balancing were considered.

The current systems were introduced and the requirements for the service identified. A

scheduling service and scheduling algorithm were designed and implemented. A prototype

of the service was built. The findings, insufficiencies of the design and built prototype were

discussed.

iii

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto

School of Engineering Science

Tietotekniikan koulutusohjelma

Tuomo Harjula

Design and implementation of a task scheduling service

Diplomityö

2019

31 sivua, 5 kuvaa, 2 taulukkoa

Työn tarkastajat: Professori Jari Porras

M.Sc. Arto Hämäläinen

Hakusanat: tehtävien ajastus, jonon optimointi, aikataulutus algoritmi

Tietokonepalvelinten resurssit ovat rajalliset ja niiden käyttö pitäisi olla optimoitua.

Suoritettiin kirjallisuuskatsaus ja aikataulutuspalvelun eri näkökulmat tunnistettiin. Usean

agentin ajautus tunnistettiin ratkaisuna sekalaisten tehtäväryhmien aikatauluttamiseen

jaetuilla resursseilla. Epäreiluutta, resurssien tarkkailua ja kuormantasausta harkittiin.

Nykyiset järjestelmät esiteltiin ja uuden aikataulutusjärjestelmän vaatimukset tunnistettiin.

Aikataulutusjärjestelmä ja aikataulutusalgoritmi suunniteltiin ja toteutettiin. Palvelusta

toteutettiin prototyyppi. Löydöksistä, puutteista ja toteutuneesta prototyypistä keskusteltiin.

iv

ACKNOWLEDGEMENTS

I would like to acknowledge my supervisors and coworkers for being supportive and

providing critical feedback that enabled me to make this thesis.

1

TABLE OF CONTENTS

1 INTRODUCTION .. 4

 BACKGROUND... 4

 GOALS AND DELIMITATIONS ... 5

2 PRECEDING RESEARCH ... 7

 OPTIMALITY ... 8

 MULTIAGENT SCHEDULING ... 9

 UNFAIRNESS ... 10

 JOB DETERIORATION ... 11

 SCHEDULING PROBLEM ... 11

 LOAD BALANCING ... 12

3 OVERVIEW OF EXISTING SYSTEMS ... 14

 MICROSOFT MESSAGE QUEUING .. 14

 APPLE DEVICE ENROLLMENT PROGRAM .. 15

 TASKS ... 16

 Wake-ups .. 16

 Application deployments to devices ... 17
 Reporting ... 17

 DEMAND FOR A NEW SERVICE/IMPLEMENTATION ... 18

4 DESIGN AND IMPLEMENTATION ... 19

 CLASS STRUCTURE .. 19

 SCHEDULING PROCESS .. 20

 IMPLEMENTED SCHEDULING ALGORITHM .. 21

 TASK ... 23

 Task configuration ... 25

 Subtask ... 26
 MONITORING OF EXTERNAL RESOURCES ... 26

 PERFORMANCE COUNTERS .. 27

 HANDLING TASK FEEDBACK .. 28

 OTHER FUNCTIONS .. 28

2

5 DISCUSSION ... 29

6 CONCLUSION ... 31

REFERENCES .. 32

3

LIST OF SYMBOLS AND ABBREVIATIONS

API Application programming interface

CMS Configuration management solution

CPU Central processing unit

DEP Device enrollment program

EDD Earliest due date

EDF Earliest deadline first

FIFO First-in, first-out

HTTP Hypertext transfer protocol

IT Information technology

MDM Mobile device management

MSMQ Microsoft Message Queuing

OS Operating System

QoS Quality of service

RR Round robin

SPT Shortest processing time

TPL Task Parallel Library

WSPT Weighted shortest processing time

4

1 INTRODUCTION

In real world scenarios, server resources are limited and their usage should be optimized.

Software should aim to optimize resource utilization for multiple reasons, mainly to avoid

performance bottlenecks and to minimize costs. Task scheduling is needed to maximize

throughput and to optimize resource usage. The purpose of such a service is to sort and queue

incoming tasks and execute them in an optimized manner depending on variables such as

required quality of service (QoS) and priority of tasks. To identify the main concerns that

need to be considered when building such a service, a thorough investigation of existing

literature on relevant topics needs to be conducted.

A schedule is a combination of feasible allocation of activities using given resources. The

quality of a schedule is measured by optimality criterion such as minimizing completion

time, resource usage and keeping due dates. Scheduling problems are problems where the

task is to find optimal combination of heterogeneous tasks that achieve specified criterion.

(Agnetis et al. 2014, 2) Environment monitoring is necessary for adapting to dynamically

changing resource levels (Porras et al. 2009). Available resources need to be monitored and

regulated to optimize throughput of tasks and to keep the load stable.

 Background

This Master’s thesis is conducted for a company that provides information technology (IT)

asset and system management solutions to enterprises. The company has two main products:

a cloud based mobile device management (MDM) solution and a configuration management

solution (CMS). The MDM solution provides enterprises with device management

functionalities such as application and configuration profile deployment. CMS offers

enterprises a comprehensive IT asset lifecycle management including software asset, license,

incident and security management capabilities.

The need for such a service originated from having suboptimal solutions in place to existing

scheduling problems and partially from the absence of task scheduling in some parts of the

company’s current MDM product. Instead of implementing heterogeneous and disconnected

scheduling in various locations, the idea for a centralized task scheduling service came forth.

5

The goal is to provide a shared task scheduling service for heterogeneous demands of various

applications. To make the development of future products easier, an external service could

be a viable solution for handling scheduling jobs. Monitoring of external resources is also a

large part of the scheduling service. Company’s current solutions do not support this kind of

functionality.

The service should also be able to accommodate dynamic changes to the schedules, such as

the addition of new tasks, within a sufficient time span. Use cases include and are not limited

to scheduling mobile device wake-ups, application deployments to devices, and creating and

sending of periodical, instance specific reports.

The task scheduling service, or simply the service, is to be used as part of a product that

works in a cloud environment. Cloud architectures represent a seemingly infinite amount of

resources (Ould Deye et al. 2013). Despite the ample amount of potential resources, the

service’s goal is to minimize overall resource usage and moderate load on resources.

 Goals and delimitations

The goal of this thesis is to design and implement a prototype of a task scheduling service

that can be used in various existing and future products. The idea is to make solid design

decisions based on existing literature and internal experts’ opinions to enable designing a

dynamic and portable scheduling service. This thesis focuses on the various aspects of such

a service and provides argumentation on why particular design decisions were made and

why they are better suited for the service in the given context than the alternatives.

Research questions are defined as following:

1. What has to be taken into consideration when designing a task scheduling service?

2. How to optimize performance of available resources?

3. How to avoid unfairness between different types of tasks?

Topics that have to be taken into consideration when designing a task scheduling service are

investigated by conducting a literature review on existing research that addresses similar

problems. Main concerns are disclosed when analyzing reviewed literature and by

interviewing company’s internal field experts. A design for the service is crafted based on

6

the resulting analysis and a prototype of the service is built. The prototype is created as a

proof of concept for the usability of the scheduling and execution.

Various usage scenarios of the service are explained and their requirements and main

challenges are reviewed. Their inner workings are only mentioned and are not discussed

further. The goal is to keep the service sufficiently generic for extensibility to support new

types of tasks.

The aim of this thesis is to build a design for a centralized scheduling service. The service

focuses on optimizing limited resources such as central processing unit (CPU) usage and

time. Distributed computing is a theme that appeared frequently during the literature

overview process. Since scheduling in distributed computing deals with scheduling in a

decentralized environment, it is excluded from the scope of this thesis.

Chapter 1 introduces the background and defines research questions. In chapter 2 a literature

review is conducted on preceding research on similar problems and the various things that

need to be taken into consideration when designing a task scheduling service are introduced.

Chapter 3 describes the current systems, its issues and needs. Chapter 4 presents design and

implementation of the scheduling service. Chapter 5 discusses thesis’ findings and future

research areas. Chapter 6 gives a conclusion of the thesis and its results.

7

2 PRECEDING RESEARCH

This section introduces the main preceding research findings on the topics that need to be

decided on in order to design an effective task scheduling service. Prominent scheduling

algorithms that could be taken into use in the new service are presented.

Literature review process begun with test searches using keywords that were identified in

the beginning, or were identified in initial meetings with coworkers. These include terms

such as scheduling service, queue optimization, load balancing, concurrency, scalability and

background job. Keywords related to technologies in use were also identified: HTTP, API

and web service. Main keywords were recognized and more literature was searched for using

them. Found literature was reviewed for acquiring a better and larger understanding of the

topic under scrutiny. Additional keywords were identified within found literature and more

searches were conducted.

Discussions were held with co-workers to identify the main requirements for the service and

additional keywords were identified. The interviews were conducted based on literature

review findings and identified concepts were discussed openly. The experts were queried for

their opinions on topics they thought are important in the context of the task scheduling

service. New concepts were identified through this process. Discussions with co-workers led

to the identification of multiple technical aspects concerning the service. The concept of

multiagent scheduling was approached in the meetings, when considering how the various

tasks should be grouped in the service. The current implementation environment provides

specific restrictions that need to be considered in the implementation phase. Various

alternative technical approaches were considered, such as using events instead of scheduling

and if the existing codebase be used for building the service.

Scheduling theory has been discussed widely in books and other scientific literature since

1950s. Scheduling problems are combinatorial optimization problems where limited

quantities of resources are to be shared among multiple activities in an optimized manner.

Agnetis et al. (Agnetis et al. 2014) introduces multi-criteria and multi-agent scheduling

problems and algorithms. Brucker et al. (Brucker et al. 2005) writes about complex

scheduling problems and presents heuristic methods for solving such problems. Madni et al.

8

(Madni et al. 2017) compared different heuristic algorithms on various optimality criterion

such as makespan and throughput for task scheduling in a cloud environment. Maurya et al.

(Maurya et al. 2018) benchmarked some well-known scheduling algorithms for

heterogeneous computing systems with multiple cores where applications can run different

tasks concurrently. They also proposed a general framework for benchmarking task

scheduling algorithms in heterogeneous computing systems.

 Optimality

The quality of a schedule is measured by optimality criterion that are often based on total

completion time of the schedule. A key issue in multiagent scheduling algorithms is the

determination of non-dominated (or Pareto optimal) schedules. Pareto optimal schedule

refers to a schedule that is globally optimal with respect to the optimality criterion, without

sacrificing one agent’s schedule over another. (Agnetis et al. 2014, 2) Each agent aims for a

locally optimal schedule, which most often is globally sub-optimal at best, since it may be

unfair in relation to other agents. Optimized schedule must resolve from a decision process

where all agents are involved and must not result in a blockage of certain agents.

Optimality criterion implies to various metrics that can be used to measure the optimality of

an algorithm. Agnetis et al (Agnetis et al. 2014, 9) lists the most important objective criterion

in multi-agent scheduling problems as makespan, maximum lateness, maximum tardiness,

total (weighted) completion time, total (weighted) tardiness and (weighted) number of tardy

jobs. For the optimization algorithm used in the service, the most important task is to

minimize the total completion time of tasks.

Due dates are important in QoS critical systems where waiting can cause significant

problems. The service will not have functionality to support due date tasks. This means that

a task can only have a scheduled start date; a deadline for the completion of a task cannot be

defined. This will simplify the required scheduling algorithm, since it removes an additional

element from the complexity. The MDM solution in general does not support defining a due

date for functions; only the configuration of scheduled start date is supported. Most

9

schedulable tasks in the system need only to start on the defined date; they do not need to be

finished by a certain date.

 Multiagent scheduling

Research on multiagent scheduling started approximately 10 years ago. Multiple agents

interacting to perform their respective tasks while sharing a common resource pool on which

the tasks are executed on is called multiagent scheduling (Agnetis et al. 2014, 3.) Multiagent

scheduling approach was chosen for the thesis because it closely resembles the problem at

hand, where various heterogenic tasks compete for limited amount of resources. The

problem of handling heterogeneous group of tasks within a single service introduced its own

limitations in terms of complexity.

Agnetis et al. (Agnetis et al. 2004) analyzed a scenario where two agents, each with their

own set of jobs, schedule on a common resource while minimizing their own cost functions.

They tackled the problem of computing schedules for sharing common resources in

optimized way by first determining the best schedule for one agent and then determining set

of pareto-optimal schedules for both agents. Agnetis et al. laid out a way to generate a

minimum set of alternative schedules to provide a basis for negotiation between agents in

pareto-optimization problems. Lee et al. (Lee et al. 2010) studied single-machine scheduling

problems with two agents for minimizing total weighted completion time of jobs with

linearly deteriorating jobs. They proposed a branch-and-bound algorithm and three different

heuristic algorithms. Computational experimentations were conducted for the algorithms

and the findings showed that the branch-and-bound algorithm could optimize up to 20 tasks

in a reasonable amount of time, and one of the heuristic algorithms had an error percentage

of less than 1.64%. Cheng et al. (Cheng et al. 2006) studied feasibility of minimizing total

number of tardy jobs in multi-agent scheduling. They presented a fully polynomial-time

approximation scheme for the problem. Rabelo et al. (Rabelo et al. 1999) discussed various

multi-agent approaches to agile scheduling and how effective a negotiation-based aspect of

multi-agent scheduling is to the development of agile scheduling systems. They built a

prototype and showed that the approach is feasible in case of shop floor scheduling.

Polanczyk (Polanczyk, 2012) extended semantics of scheduling priorities, where the writer

10

argued that including priority over shared resources could lead to less contention for

resources.

Agnetis et al. (Agnetis et al. 2014, 13-14) classifies the different types of sharing resources

between two agents into four distinct categories: competing agents, interfering sets, multi-

criteria optimization and non-disjoint sets. Competing agents purely compete with each other

for resources. In interfering sets, tasks are nested and need to be executed in a specific order.

In multi-criteria optimization, which is a special case of interfering sets, allocation of

resources happens based on multiple criterion. Non-disjoint set is the most general case,

where two tasks may or may not intersect with each other. Set is disjoint if they have no

common elements and are not dependent on each other.

 Unfairness

Ajtai et al. (Ajtai et al. 1998.) explored fairness in scheduling in a scenario where multiple

long-lived processes exist and the processes need to be scheduled repeatedly for various

tasks across their lifecycle. Ajtai et al. studied the problem from the perspective that a

process has a desired load level. In the context of the service, unfairness refers to the act of

a specific agent reserving a larger quantity of resources for its own purposes while

introducing the possibility of blocking other agents from executing due to lack of resources

available to them.

Measures against unfairness should to be implemented in the scheduling algorithm to avoid

situations where an agent blocks another agent’s execution for long periods of time. An

example of such a rule is introducing minimum/maximum resource quotas to each agent

which would promote fair treatment.

11

 Job deterioration

Job deterioration refers to situations where the processing time of a job depends on its

starting time in the queue (Alidaee et al. 1999.) For example, a fire-fighting situation where

the fire spreads the longer it takes to be put off. Alidaee et al. reviewed existing research on

scenarios where the processing time of a job is unknown and deteriorating. They found out

that when the number of jobs is large, processing times can grow rapidly and suggested that

this can be mitigated by increasing the amount of resources.

Mosheiov (Mosheiov, 2005) studied job deterioration when a task’s processing time is

dependent on its position in the queue using exponential deteriorating function. He noted

that the structure of an optimal schedule in job-position deterioration was similar to waiting-

time deterioration. Using the exponential deteriorating function, Mosheiov found that an

optimal schedule is V-shaped in respect to job processing times, favoring large jobs at the

beginning of the schedule.

In the service, a task’s processing time is not dependent on its starting time, although the

total makespan of the task is dependent on its position in the queue. Job deterioration can be

ruled outside the consideration for the service.

 Scheduling problem

Scheduling a heterogeneous group of tasks in an optimal sequence depends largely on the

optimality criterion that needs to be fulfilled by the algorithm. For example, if the aim is to

minimize total completion time or tardiness, the algorithm needs to adjust to meet the

requirements of the scheduling.

Various scheduling algorithms exist that could be used in the scheduling scenario. Weighted

Shortest Processing Time First (WSPT) is a scheduling algorithm where tasks are sorted in

non-decreasing order by their weights and completion time estimates. Shortest Processing

Time (SPT) is a simplified version of WSPT, where tasks are sorted according to their

completion times. Both SPT and WSPT require accurate completion time estimates for

12

maximum profit. In Round Robin (RR) scheduling algorithm, each process or task is given

a slice of time in a circular order.

One of the most common cases of scheduling problems in literature is for agents to try and

minimize their own total completion time. The problem can be classified as both non-disjoint

set and multi-criteria optimization. It is considered NP-hard even when agent weights are

not considered. (Agnetis et al. 2004) Lee et al. (Lee et al. 2009) proposed several multi-agent

scheduling approximation algorithms for solving a weighted scheduling problem of

minimizing total completion time.

 Load balancing

In cloud environment, load balancing refers to the process of distributing load among virtual

machines so that it improves execution ratio and resource utilization (Soni et al. 2018.) In

the context of the service, the emphasis is on mitigating server load by limiting throughput.

Monitoring server resources enables the service to react dynamically to load changes on the

server. Thus, the service can either increase or decrease throughput of tasks to minimize

resource throttling.

Optimally tasks that come through the service should only utilize a portion of a processing

server’s resources without reducing server’s throughput to other processes. Task’s utilization

of server resources should be minimal. In case the server’s capacities are below required

level and the quantity of tasks grows faster than they can be processed, the processing

servers’ capacity needs to be increased.

Earliest Deadline First (EDF) is a dynamic scheduling algorithm where the task closest to

its deadline is scheduled first. In contrast, in Earliest Due Date (EDD) scheduling tasks are

ordered in non-decreasing order according to due dates. Casini et al. (Casini et al. 1998)

proposed a semi-partitioned scheduling approach to scheduling real-time dynamic workload

in a multiprocessor system. The proposed approach is simpler to implement and less heavy

than global scheduling. Gracioli et al. (Gracioli et al. 2013) compared global and partitioned

EDF strategies in scheduling in real-time environments with hard real-time tasks, where

13

deadlines must be always met. The experiments showed that in hard real-time systems,

partitioned EDF is always better than global EDF.

Ould Deye et al. (Ould Deye et al. 2013) suggested an approach to make load-balancing

more dynamic to better suit QoS requirements in multi-instance cloud applications. The

given approach used a new load balancing policy that was more scalable and took into

account the interference on performance that occurs with resource sharing.

14

3 OVERVIEW OF EXISTING SYSTEMS

In this section, scheduling systems that are currently in place are introduced and their

strengths and weaknesses are discussed. Usage scenarios of the products that will use the

new service are introduced. The requirements for the new service are explained. The overall

view of the existing systems was acquired from personal experience and discussions with

experienced co-workers.

 Microsoft Message Queuing

Existing scheduling in the MDM solution is accomplished by using Microsoft Message

Queuing (MSMQ) technology. MSMQ operates in a first in, first out (FIFO) fashion, which

executes the first item in queue and pushes new tasks to the end of the queue. It is a simple

solution to scheduling a multitude of tasks.

MSMQ requires Windows platform, which limits the possible servers to Microsoft’s own

products and it cannot be operated on other platforms. MSMQ is widely used in the MDM

solution, usage scenarios include such services as sending text messages, sending wake-ups

to devices and updating inventory information.

Fig. 1. Workflow process for device wake-up.

Figure 1 shows an example workflow diagram to help identify main concerns of the current

implementations. Task is scheduled to MSMQ, which forwards it to the server that executes

it. Task executer tells the device to send inventory data back to server. Tasks are scheduled

before they are sent to MSMQ queue, since MSMQ does not support queuing tasks for a

15

later date. Task types are discussed in more depth in section 3.3. As briefly mentioned in the

introduction, there is no current implementation of server resource monitoring. By

monitoring resource usage in the processing end, throughput to external services such as

MSMQ could be regulated dynamically. In current solution, throughput is limited statically

in the calling end, before it is sent to MSMQ.

Using the new service, resource usage of the inventory-processing server could be monitored

and task throughput could be regulated accordingly. Figure 2 shows a workflow diagram

when using the new service. Tasks can be scheduled in the service, removing the need to

have them scheduled in an external queue. The service uses resource monitoring to directly

acquire real-time usage data from the server. New solution would also have an algorithm

that is more optimal than MSMQ’s FIFO -approach.

Fig. 2. Workflow process using the new service.

 Apple Device Enrollment Program

Apple’s Device Enrollment Program (DEP) is a solution offered by Apple Inc. used for

enrolling new devices automatically to the MDM solution. Currently in the product there

does not exist automatic retrieval of updated device lists. This process requires multi-phased

processing and it consists of three steps: an update request is sent to the DEP service, a list

of devices is sent back and lastly, predefined application configurations are deployed to new

devices. This turns into a requirement for the service to provide support for multiple steps in

the scheduling process. A DEP task would need to be able to wait for feedback after it’s

execution and execute again based on the feedback.

16

 Tasks

Existing tasks that need to be scheduled are discussed here. Their main characteristics and

challenges are explained to get an understanding of how the scheduling service should work

internally.

Some of the tasks have subsequent actions that needs to be executed after getting a feedback

from the task executor. For example, when updating Apple DEP devices, first, an update

request is sent to the Apple Inc.’s service, a list is sent back to the caller in response and then

a separate deployment order is sent to another internal service. Configuration and handling

of tasks and subtasks is an essential part of the service and is discussed more closely in

section 4.3.

 Wake-ups

Wake-up is a way of monitoring available devices, their inventories and statuses. Woken

devices send their inventories to a server to be processed. Executing a wake-up is a small

and fast operation, but the inventory data processing that is required when devices send their

inventories back to the server generates a large load on server resources.

Wake-ups are sent to all managed devices once a day. In the current implementation, all

wake-ups are divided into 24 equally sized groups of tasks that are subsequently executed

within a given time span of maximum of 1 hour, adding to a total of 24 hours. This kind of

approach is needed in the current implementation, since there is no implementation to

monitor the load that the inventory processing generates. By monitoring inventory

processing server’s resources, the time used to execute all wake-ups could potentially be cut

drastically without burdening the servers any more than necessary.

A new recurring scheduled task needs to be created for all existing and new instances

automatically. The new recurring task is added to the corresponding task agent. When

predefined date and time elapses, the task is queued to the service. The priority of scheduled

wake-up tasks is minimal but they need to be executed once a day at minimum. Wake-ups

17

can also be dispatched manually by the user. In this case, the task is directly queued to the

optimization process.

Android devices are polled in three-hour intervals. Other devices do not support polling and

require a wake-up distribution. Wake-ups to iOS devices are sent through Apple Inc.’s Apple

Push Certificate that establishes a trusted connection between the devices and the managing

service.

 Application deployments to devices

Applications can be deployed to multiple devices remotely and simultaneously using the

MDM solution. Deploy process will use each device platform’s corresponding application

deployment services for deploying the applications.

An example of deployment needs is Apple DEP update process. Currently user can request

an updated list of devices, and after acquiring information of new devices, user can deploy

configuration profiles to them.

To use scheduling service for the automation, new devices should be checked periodically

from the Apple’s service. This would happen via a recurring scheduled task for Apple DEP

updating with a subtask of deploying configuration profiles to new devices.

 Reporting

A use case for the service is the creation and distribution of instance reports. The report

creation process is time demanding can take minutes. Reporting tasks are of low priority and

should be allowed to process slowly, or when the server has less load.

18

 Demand for a new service/implementation

Current products do not have efficient scheduling solutions implemented. Scheduling is

scattered across different functions or does not exist at all. Existing scheduling solutions are

also simple and inefficient, for example, wake-up tasks are simply distributed in equal blocks

across the day. The new service would allow easier implementation of scheduling

automation to a wide variety of existing and future functionalities. There is a need for

dynamic scheduling that is based on efficiency and monitoring of available server resources.

The requirements and use cases for the new service were identified through discussions with

co-workers. Scalability was a major concern to enable future usage of the service.

Subsequent tasks need to be supported to enable scheduling tasks with multiple steps.

Informing other components on the tasks was also identified as a requirement.

19

4 DESIGN AND IMPLEMENTATION

The design and implementation of the service is detailed in this section. A comprehensive

picture of the service as a whole is given. The service is written using C# 7.3 and .NET Core

framework 2.1, which at the time of writing are the latest versions. The service runs on

Microsoft Corporation’s Microsoft Azure cloud computing platform.

Section 4.1 shows the project’s class structure. Scheduling process and implemented

scheduling algorithm are discussed in section 4.2 Implemented scheduling algorithm is

discussed in 4.3. Tasks are discussed in section 4.4. Resource monitoring of external servers

is discussed in section 4.5. Section 4.6 introduces performance counters. Section 4.7.

discusses task feedback. Other functions of the service are discussed in section 4.8.

 Class structure

Fig. 3. Class diagram of the service. The service consists of two main components,

scheduling service and resource monitor.

Class diagram of the service is shown in figure 3. The scheduling consists of two main

components, scheduling service and resource monitor. SchedulingService.cs contains the

main logic of the service including handling task flow during task lifecycle and schedule

optimization. SchedulingService.cs contains all tasks inside TaskAgent –objects, which in

turn contain Task-objects.

20

TaskAgent.cs defines a task agent that handles specific types of tasks that are assigned to it.

It stores tasks with different parameters, such as priority, to be later called by the scheduling

service for execution. Task.cs contains the definition for a task. It defines each task’s

behavior including recurrence, timeout, status and subtasks.

ResourceMonitor.cs contains the handling of performance counters, including the

calculations of counter values, and supplies these values to the users of a resource monitor.

Individual counter details are held in an object of type PerformanceCounterDetails.

 Scheduling process

The scheduling process consists of 5 main processes:

- Adding a new task to the service: moving it to its corresponding agent

- Scheduling algorithm: Cost assessment: algorithm picks tasks for execution

according to criterion such as monitoring data

- Execution: task is executed

- Handling feedback

- Environment monitoring: check server availability, resource levels

Fig. 4. Sequence diagram of the inner workings of the service.

Scheduling process from the viewpoint of a task is shown as a sequence diagram in figure

4. A new task is scheduled to the service and is moved to the corresponding task agent. If

21

the task is scheduled to start immediately, it is added to its agent’s queue. If the task is queued

for later, it is added to its agent’s waiting queue. When the scheduled date has elapsed, the

task is queued in the agent’s main queue. The executor requests tasks from agents according

to the algorithm.

Tasks inside an agent’s queue are in a FIFO order based on their arrival to the queue. A

single task is requested from an agent based on each agent’s weight. Agent then sends the

first task in its high priority task queue. If no tasks exist in the high priority task queue, a

task from the low priority task queue is sent instead. If both queues are empty, the executor

is signaled that no tasks exist in the agent. The executor then proceeds to execute the task in

an external service that is responsible for processing the specific task. The executor waits

for a feedback. When feedback is received, it is processed according to predefined criterion.

For example, if task has been configured for recurrence, it is sent back to its responsible

agent and is queued again. If no feedback is received by predefined timeout duration, the

task is deemed as failed.

Microsoft’s task parallel library (TPL) is used for adding concurrent functionality to the

service. With TPL, each job can be allocated to an independent thread that processes apart

from other jobs. Task execution is divided into multiple threads that each can wait for status

feedback on their execution without halting other tasks from completing. Concurrency in the

service is handled using C# language’s Thread class offered in System.Threading

namespace. Signaling between different parts of the service execution is implemented using

Thread’s EventWaitHandle.WaitOne() method for waiting, and EventWaitHandle.Set()

method for resuming. Signaling is used to notify other parts when new tasks are needed and

when new tasks arrive to the service. When no tasks exist in the service, the service can stop

and wait for new tasks.

 Implemented scheduling algorithm

A task has three criteria on which the scheduling optimization is based on:

- Task quantity of agent k, 𝑡𝑘

- Task completion time estimate 𝑐𝑘

22

- Resource load on executing server x, 𝑠𝑥

Implemented algorithm is based on each agent’s weight proportional of the total weight:

𝑊 = ∑ 𝑤𝑘 =
𝑐𝑘𝐾𝑘

𝑠𝑥

𝑛

𝑘=0

, where 𝑊 is the total weight of all agents, 𝑤𝑘 is the weight of agent k, 𝑐𝑘 is the completion

time estimate of agent k, 𝐾𝑘 is the coefficient of agent k and 𝑠𝑥 is the executing server x’s

load. In calculations, 𝑐𝑘 is limited to maximum of 0.95 to allow tasks to execute even on

overloaded machines. Available resources for task execution are split into concurrent threads

with each thread capable of handling one task at a time. The amount of threads each task

type has depends on its weight. For example, if agent A has relative weight of 90% and 20

tasks can be run concurrently, it is executed on maximum of 20 ∗ 0.9 = 18 threads.

The weights for each agent are re-calculated frequently to keep the proportions up-to-date.

Resources allocated to agent k are calculated as follows:

𝑟𝑘 =
𝑤𝑘

𝑊
𝑅

, where 𝑅 is the total amount of available resources (e.g. x concurrent threads), 𝑤𝑘 is the

weight of agent k and 𝑊 is the total weight of all agents.

To factor in agent’s total task quantity into the agent’s weight, a manually defined coefficient

𝐾𝑡 can be introduced to the algorithm. It can be defined as a threshold-based value

𝐾𝑡 = 𝑡𝑘𝑐𝑘

Depending on the quantity and size of tasks in an agent. Thresholds can be defined when

deemed necessary. Thresholds for the 𝐾𝑡 can be defined as:

𝐾𝑡 < 𝑥 → 1

𝑥 ≤ 𝐾𝑡 < 𝑦 → 𝑎

𝐾𝑡 ≥ 𝑦 → 𝑏

, where 0 ≤ 𝑥 ≤ 𝑦 and 1 ≤ 𝑎 ≤ 𝑏. Value a/b is the wanted coefficient for multiplying the

weight of an agent based on the threshold value. For example, threshold values are initialized

with as 𝑥 = 1000, 𝑦 = 3000, 𝑎 = 1.5, 𝑏 = 2 and the coefficient 𝐾𝑡 is 2500, the weight of

the agent t is 1.5 times higher than regularly, since 1000 ≤ 2500 < 3000 → 1.5. This is a

simplified but relatively robust way of accounting in agent’s task quantity to the algorithm.

23

The emphasis on task quantities between various agents is highly subjective value and cannot

be used as is.

Pseudocode for the scheduling algorithm is shown in algorithm 1. Resources to execute each

agents’ tasks are divided between agents according to their weights. Minimum and

maximum quotas have been introduced to avoid agents having too much or too little

resources to execute tasks. Quota limitations are not active when only one type of task is

handled in the service or when no tasks are available for execution.

WHILE service is active

Calculate relative weights of each agent and assign resources accordingly

Loop through agents and execute tasks according to assigned resources

Re-calculate weights frequently

ENDWHILE

Algorithm 1. The pseudocode for the algorithm.

 Task

A new task is created by specifying its properties. Table 1. introduces each of the task

properties. All the properties of a task are initialized when a new task is created. Task name

and description are free-text fields that state general information about the task. Task type

defines how the task is handled and executed. Task priority ranges from high to low.

Estimated completion time is a dynamic estimation of last x executions that is used to

optimize the scheduling algorithm’s accuracy. When the task is scheduled for later date,

scheduled date can be defined. Recurrence states whether the task can be retried in case of a

failure to execute and maximum retry count states how many times it can be retried. Current

retry count tells how many times the task has been retried. If task has a subsequent task that

should be executed after the main task has finished executing, a subtask is defined. Timeout

duration states how long the service will keep the task execution running before it is

terminated and the task status is set to fail.

24

Table 1. Properties of a task.

Property Description

Name Name of the task

Description Description for the task

Type Task type can be e.g. wake-up/DEP update/reporting

Priority Priority has two values: high/low

Status Task status can be New/Succeeded/Failed

Estimated

completion

time

Estimation for the time that a task takes to process from

that to finish.

Schedule Task can be scheduled for a specific date/time

Recurrence Task is recurring or not

Maximum

retry count

The maximum count of retries for a task

Current retry

count

The current amount of retries

Subtask A subsequent task can be defined for a task

Timeout

duration

The time a task tries to execute before timeout

Task’s flow in the service is shown as a flowchart diagram in figure 5. When a new task is

added to the service, it is moved to the corresponding task agent. Each task agent holds

specific types of tasks, for example all wake-up tasks can be held in the same task agent.

Executor fetches the task from task agent. In case an execution fails for any reason, if

recurrence has been enabled and the current retry count has not reached the maximum retry

count, the task is moved back to the task agent from where it is re-queued.

25

Fig. 5. Flowchart shows the workflow for a task’s transition in the service from creation to

execution.

 Task configuration

When creating a new task, basic information is given to the initialization. Task-specific

functionality has been configured inside the service and tasks are handled accordingly.

Configuring new tasks needs to be relatively lightweight to make adding them to the service

straightforward. When creating a new task type, the configuration needs to be coherent

across all locations where the task is created in. All callers of the service using the configured

task need to be sure that they are using it correctly.

Two locations for configuring tasks were considered: inside the service itself and in the

calling end of the service. In case the configuration would be located in the calling end, the

service itself could remain more generic and fewer modifications would be required to the

service itself. However, if the task would be configured outside the service, uncertainties

would arise. If definition of the task would change, modifications would be required to every

location where the task has been configured and it would be harder to manage. The volatility

of any step of the task changing later would affect maintenance of task configurations

negatively.

26

To configure tasks inside the service would risk the genericity of the service. The pros of

configuring tasks in a single location at the cost of lessening genericity seemed a good trade-

off, and the decision was made to centralize the configuration of tasks inside the service for

the benefit of easier modifications later on.

 Subtask

Subtask is a task that is scheduled for execution after the main task has been executed

successfully. Subtasks are useful when a task has multiple steps that need to be executed

sequentially in order to do all the work that needs to be done. DEP update is an example of

a use case when a subtask is required; first new devices are fetched from Apple Inc.’s server

and then another task is run to deploy configurations to the discovered devices. After

successful execution of the main task and a feedback is acquired, if a subtask has been

defined, it is added to the service as a new task.

 Monitoring of external resources

Monitoring external servers’ resources that the service uses to execute its tasks is an essential

part of the service. Monitoring is needed to avoid resource overload, throttling and

bottlenecks. By monitoring the service, performance on both ends can be optimized, limiting

the throughput to react to resource usage. Monitoring provides the service with up-to-date

data on server resources.

Microsoft provides Performance Counters that are used to provide performance information

of an operating system (OS), application, server or a driver (Microsoft, 2018.) They are used

to supply the service with real-time data of different tasks’ execution loads. Performance

counter data can be used to limit task throughput in the scheduler so that the resource throttle

of the server can be stabilized. The monitoring is implemented as a separate service and the

resource usage values are retrieved to the service.

Microsoft provides various performance counters that are preinstalled in every Windows

machine, which makes using them in Windows environment relatively simple. In the thesis

27

only existing, default performance counters are used, the creation of additional counters is

not needed. In the C# project, a NuGet package called

System.Diagnostics.PerformanceCounter is used to utilize pre-existing code for interacting

with performance counters. Used performance counters are discussed in following section

4.4.1.

Resource monitors for each server and task are initialized in the service and run on

background. While active, a monitor collects counter values periodically and when

requested, provides an average counter value based on recent values.

 Performance counters

Used performance counters include counters for the total server CPU usage, total memory

usage and the process times used by distinct processes. Used performance counters are listed

in the table 2.

Table 2. Used performance counters: category name, counter name and process name.

Category Counter Process

name

Value description

Memory % Committed

Bytes in Use

_Total Total memory used by the machine in bytes.

Processor

information

% Processor Time _Total A measure of how often the system is doing

nothing subtracted from 100%, a calculation

that gives the time that the processor is busy

working on productive threads.

Process % Processor Time <Process>,

e.g.

Chrome

The amount of time the process spends using

the processor resource.

Counters “Memory (% Committed Bytes in Use)” and “Processor information (% Processor

Time)” provide the amount of resources used in percentages, which makes using them

straightforward. These values are used in the service as limiting factors. When server

28

resources are nearing their maximum limit, service task throughput is slowed until the server

can handle more load again. When using counter “Process (% Processor Time)” additional

calculations are required to make the provided value understandable. The value is calculated

over the baseline of (No of logical CPUs * 100). The value may be larger than 100 percent

per core. This indicates that the process is using more than its capacity via multithreading.

By calculating the sum of distinct processes with the same name, we can get the resource

usage of a distinct type of task. Multiple instances of same process are named similarly, for

example in the case of Chrome; the processes are named as follows: ‘Chrome’, ‘Chrome#1’,

‘Chrome#2’, and so forth. Machines are searched for process names matching this scheme,

the values are summed up and a calculated value is sent back to the caller.

 Handling task feedback

Task execution in most cases returns a value of some sort. In case of a successful execution,

a notification to the caller of the service can be sent. If a task fails to execute it is removed

or, if concurrence and maximum retry count have been provided, moved back to its

corresponding task agent and an error message is sent to the caller. Tasks that exceed their

defined timeout duration are terminated automatically.

 Other functions

The service needs a multitude of additional functionalities to operate. In addition to handling

task lifecycle and executing tasks in optimally, several functionalities are needed. A list of

additional functionalities to be added:

- Cancel (scheduled) tasks

- Clear queues

- Modify task parameters dynamically

- Copy tasks

29

5 DISCUSSION

Research questions were answered in the course of this thesis. Design of the task scheduling

service consists of multiple aspects that needed to be addressed, such as what the optimality

criterion for the service are. Finding a fitting approach to the problem was achieved by

studying existing literature. Multiagent scheduling was approached because it closely

resembled the aim of the service: scheduling heterogeneous tasks using shared and limited

resources. Other elements such as unfairness, resource monitoring and load balancing were

discovered. The optimization of the service depended on task properties and the defined

optimality criterion. Safeguards against unfairness were implemented to avoid bottlenecks

and resource throttling. Resource usage of the service and of the executing servers were

considered when implementing the service.

A working prototype of the service and the scheduling algorithm was built based on the

design laid out in section 4. The built prototype was very limited in features due to pressing

schedule of the thesis, it was not implemented in a real test environment and no comparisons

were tested against more traditional approaches due to lack of time. Initial localized tests

with the prototype showed that the approach is feasible from performance perspective. To

make the service work in real-life situations, more development is needed to support more

of the features listed and described in the thesis.

The designed algorithm leaves a lot of space for improvement. The implemented algorithm

was built to match the needs of the company and its performance is sub-optimal at best. A

lot of improvements and simplifications were made to it during the writing of this thesis.

The service has a few insufficiencies concerning different types of tasks and their handling.

If the type of task that is used in the service cannot return any feedback on its status of

completion, having recurrence rules is not possible. In addition, since task’s average

completion time is of vital value for the optimization process, if the execution of task cannot

be tracked a manual value must be given for the completion time. Another insufficiency

concerns the availability of monitoring external resources. If resources aimed at a specific

task cannot be monitored outside the service, the value of a task’s weight cannot be

calculated reliably. All of the above-mentioned scenarios will lead to inaccurate estimates

30

for a task’s weight and the optimality of the schedule cannot be guaranteed. The algorithm’s

optimality can only be assured when all of the preceding factors can be acquired reliably. A

few measures against these insufficiencies were implemented, but no real testing was

conducted to ascertain their effectiveness.

Security is a valid concern which has not been addressed within the scope of this thesis.

Since the service consists of variety of different parts that need to communicate with each

other, trust between the processes is required. Future work consists mainly of testing the

prototype in real test environment and refining the variables and weights according to real-

life usage for optimal performance.

31

6 CONCLUSION

Requirements for a new task scheduling service were defined and discussed. Literature

review was conducted and various considerable aspects relevant to creating a task scheduling

service for the given purpose were introduced. Existing scheduling problems and algorithms

were introduced. A new task scheduling service was designed and a prototype was

implemented. Various design choices were made with the aim of optimizing the service and

available resources. An algorithm was built for executing heterogeneous group of tasks while

aiming to minimize total completion time and resource usage. Minimizing unfairness

between task agents was a key feature when designing the algorithm. A prototype was built.

Several key insufficiencies and problems were discussed and further research and

development targets were identified.

REFERENCES

1. Agnetis, A., Billaut, J-C., Gawiejnowicz, S., Pacciarelli, D., Soukhal, A., Multiagent

scheduling – models and algorithms, Springer, Berlin, 2014.

2. Agnetis, A., Mirchandani, P. B., Pacciarelli, D., Pacifici, A., Scheduling problems

with two competing agents, Operations Research 52(2), Informs, 2004, pp. 229-242.

3. Ajtai, M., Aspnes, J., Naor, M., Rabani, Y., Schulman, L. J., Waarts, O., Fairness in

scheduling, Journal of Algorithms 29, 1998, pp. 306-357.

4. Alidaee, B., Womer, N. K., Scheduling with time dependent processing times:

review and extensions, Journal of the Operational Research Society 50, 1999, pp.

711-720.

5. Brucker, P., Knust, S., Complex scheduling, 2nd edition, GOR-Publications,

Springer, 2012.

6. Casini, D., Biondi, A., Buttazzo, G., Semi-partitioned scheduling of dynamic real-

time workload: a practical approach based on analysis-driven load balancing, C.3

Real-Time and Embedded Systems, ACM, 1998.

7. Cheng, T. C. E., Ng, C. T., Yuan, J. J., Multi-agent scheduling on a single machine

to minimize total weighted number of tardy jobs, Theoretical Computer Science 362,

Elsevier, 2006, pp. 273-281.

8. Gracioli, G., Fröhlich, A. A., Pellizzoni, R., Fischmeister, S., Implementation and

evaluation of global and partitioned scheduling in real-time OS, Real-Time Systems,

Vol. 49, Issue 6, 2013, pp. 669-714.

9. Lee, K., Choi, B. C., Leung, J. Y. T., Pinedo, M. L., Approximation algorithms for

multi-agent scheduling to minimize total weighted completion time, Information

Processing Letters 109, Elsevier, 2009, pp. 913-917.

10. Lee, W. C., Wang, W. J., Shiau, Y. R., Wu, C. C., A single-machine scheduling

problem with two-agent and deteriorating jobs, Applied Mathematical Modelling 34,

Elsevier, 2010, pp. 3098-3107.

11. Madni, S. H. H., Latiff, M. S. A., Abdullahi, M., Abdulhamid, S. M., Usman, M. J.,

Performance comparison of heuristic algorithms for task scheduling in IaaS cloud

computing environment, PLOS ONE 12(5), 2017.

12. Maurya, A. K., Tripathi, A. K., On benchmarking task scheduling algorithms for

heterogeneous computing systems, The Journal of Supercomputing Vol. 74, Issue 7,

Elsevier, 2018, pp. 3039-3070.

13. Microsoft, Performance counters, available at https://docs.microsoft.com/en-

us/windows/desktop/perfctrs/performance-counters-portal, 2018, retrieved 8.1.2019.

14. Mosheiov, G., A Note on Scheduling deteriorating jobs, Mathematical and Computer

Modeling 41, Elsevier, 2005, pp. 883-886.

15. Ould Deye, M. M., Slimani, Y., Sene, M., Load balancing approach for QoS

management of multi-instance applications in clouds, 2013 International Conference

on Cloud Computing and Big Data, 2013, pp. 120-126.

16. Polanczyk, R. V., Extending the semantics of scheduling priorities, ACM Queue,

Vol. 10, Issue 6, 2012.

17. Porras, J., Riva, O., Darø Kristensen, M., Dynamic Resource Management and Cyber

Foraging, Middleware for Network Eccentric and Mobile Applications, Springer,

Berlin, Heidelberg, 2009, pp. 349-368.

18. Rabelo, R. J., Camarinha-Matos, L. M., Afsarmanesh, H., Multi-agent-based agile

scheduling, Robotics and Autonomous Systems, Vol. 27, Issues 1-2, Elsevier, 1999,

pp. 15-28.

19. Soni, S., Sangwan, S., Load balancing in cloud computing: a review, International

Journal of Advanced Research in Computer Science, Vol. 9 No. 2, 2018.

https://docs.microsoft.com/en-us/windows/desktop/perfctrs/performance-counters-portal
https://docs.microsoft.com/en-us/windows/desktop/perfctrs/performance-counters-portal

