

Lappeenranta-Lahti University of Technology LUT

School of Business and Management

Degree Program in Computer Science

Eemeli Manninen

Implementing a Continuous Integration and Delivery Pipeline for a

Multitenant Software Application

Examiners: Professor Kari Smolander

 M.Sc. (Tech.) Timo Storhammar

Instructors: Professor Kari Smolander

 M.Sc. (Tech.) Timo Storhammar

1

ABSTRACT

Lappeenranta-Lahti University of Technology LUT

School of Business and Management

Degree Program in Computer Science

Eemeli Manninen

Implementing a Continuous Integration and Delivery Pipeline for a Multitenant

Software Application

Master’s thesis

41 pages, 4 figures, 2 tables

Examiners: Professor Kari Smolander

M.Sc. (Tech.) Timo Storhammar

Keywords: Continuous Integration, Continuous Deployment, Continuous Delivery,

Pipeline, Multitenancy, Implementation, Design

Continuous integration and delivery are processes which allow software companies to

automate the building, testing and installation of software solutions. This thesis designs

and documents a CI/CD pipeline for Enerity Solutions Oy with the intent of allowing the

company to automate its manual deployment processes in a multitenant environment. The

pipeline was created as a design science artifact based on company interviews and the

current processes of the field. The feature development and integration stages of the

pipeline automatically build and test source code changes while the delivery stage enables

a scheduled delivery process. The pipeline reduces risk of defects by introducing

performance testing, database schema validation and environment replicability but requires

upfront technical investment, may cause tenant system availability to suffer during

implementation and may introduce over reliance on single pipeline components.

2

TIIVISTELMÄ

Lappeenrannan-Lahden teknillinen yliopisto LUT

School of Business and Management

Tietotekniikan koulutusohjelma

Eemeli Manninen

Jatkuvan integraatio- ja toimitusprosessin käyttöönotto moniasiakasympäristössä

toimivaan ohjelmistoon

Diplomityö

41 sivua, 4 kuvaa, 2 taulukkoa

Työn tarkastajat: Professori Kari Smolander

 Diplomi-insinööri Timo Storhammar

Hakusanat: Jatkuva Integraatio, Jatkuva toimitus, Julkaisuputki, Moniasiakasympäristö,

Käyttönotto, Suunnittelu

Jatkuva integraatio ja -käyttöönotto ovat prosesseja jotka mahdollistavat ohjelmistokoodin

automatisoidun kääntämisen, testaamisen ja julkaisun ohjelmistoyrityksissä. Tässä

tutkielmassa suunnitellaan jatkuva integraatio ja -toimitusprosessi Enerity Solutions Oy:lle

tarkoituksenaan mahdollistaa yrityksen ohjelmistotuotteiden käsin toimituksen

automatisointi. Suunnitelma kehitettiin suunnittelutieteen teennöksenä jossa yhdistettiin

yrityshaastatteluja ja nykyisiä alan lähestymistapoja. Tuotannon ja integraation vaiheet

kääntävät ja testaavat ohjelmakoodia automaattisesti ja toimitusvaihe koostuu ajastetusta

toimitusprosessista. Suunnitelma vähentää ohjelmistovirheiden riskiä mahdollistamalla

suorituskykytestauksen, tietomallien validaation ja ympäristöjen kahdentamisen, mutta

vaatii teknistä investointia, voi aiheuttaa ohjelmiston toimimaattomuutta käyttöönoton

aikana ja voi johtaa yliriippuvuuteen yksittäisistä prosessin komponenteista.

3

ABBRIVIATIONS

SaaS – Software as a Service

B2B – Business to Business

B2C – Business to Customer

CI – Continuous Integration

CD – Continuous Deployment/Delivery

4

Table of contents

1 Introduction .. 6

1.1 Thesis background .. 6

1.2 Goals ... 7

1.3 Structure of thesis .. 7

2 Research methodology ... 8

2.1 Design science ... 8

2.2 Research environment ... 8

2.3 Data gathering ... 9

3 Continuous integration and deployment .. 11

3.1 Agile software development ... 11

3.2 Continuous Integration .. 12

3.3 Continuous Deployment and Delivery .. 13

3.4 Multitenancy in software applications .. 14

3.4.1 Software solution multitenancy ... 14

3.4.2 Workload distribution .. 15

3.4.3 Data multitenancy .. 16

3.5 Summary ... 17

4 Solution design .. 18

4.1 Design environment .. 18

4.2 Requirements of the solution .. 19

4.2.1 Source code and CI .. 19

4.2.2 Unit test support ... 19

4.2.3 Cloud connectivity and multitenancy .. 19

4.2.4 Database updates .. 20

5

4.2.5 Logging .. 21

4.2.6 Ease of use ... 21

4.3 Implementation ... 22

4.3.1 CI platform requirements ... 22

4.3.2 CI platform selection ... 24

4.3.3 Pipeline structure ... 26

4.3.3.1 Feature integration .. 27

4.3.3.2 Feature merges .. 28

4.3.3.3 Version delivery ... 29

4.4 Evaluation ... 30

4.4.1 Initial requirement coverage .. 30

4.4.2 Changes in work culture and practices .. 31

4.4.3 Negatives of implementation ... 32

4.5 Summary ... 33

5 Discussion .. 34

5.1 Multitenancy in the future ... 34

5.2 Future development of pipeline .. 35

5.3 Thesis retrospective ... 35

6 Conclusions .. 37

7 References .. 38

6

1 INTRODUCTION

Enerity Solutions Oy is a Finnish software company developing and hosting multiple

multitenant electricity trade focused software-as-a-service (SaaS) web applications as the

market leader of its field in Finland. The company is aiming to switch its software

deployment processes from a manual process to the utilization of an automated deployment

pipeline due. The change has been proposed due to the increase in the frequency of

required software deployments, the number of tenants and new features between its

multiple products. The proposed change should help control the software deployment

process and increase the quality of software installations in the future.

This thesis focuses on documenting the industry practices of continuous integration (CI)

and continuous deployment (CD), which are used as a part of a software lifecycle to handle

frequent software releases, as well as design, document and evaluate one such process fit

for the existing workflows and technical infrastructure of Enerity Solutions Oy. This thesis

also takes into account the possible changes in day to day work practices when

implementing a CI/CD solution as well as possible problem areas of such implementation

both now and in the future.

The design is created in cooperation with various personnel from Enerity Solutions Oy to

both collect requirements for the technical aspects of the design but also to help guide the

design to make use of the existing technical infrastructure and work practices of the

company. In addition to cooperation with the company personnel, the general industry

frameworks, component interactions and technical considerations were gathered from

current literature of the research field.

1.1 Thesis background

DevOps is an overarching set of software development principles aimed at speeding up the

frequency of software feature integration, minimizing the risk of large scale conflicts

during the merge process, keeping the release version of the software bug free and to

automate the deployment of the software. These principles consist of regular software

development, quality assurance and the deployment process of the software. The end goal

of these principles is to have an always deployable, tested and working version of the

software ready to be deployed whenever necessary. (Virmani, 2015) This can be achieved

7

by utilizing a process which automates and documents the flow of actions from a change in

source code to a deployed software, a pipeline.

A software company, such as Enerity Solutions Oy planning to start utilizing DevOps

principles in practice should have an existing software development process with support

for not only the specification, design and development phases of a software project, but

also allocated resources for evaluation and evolution of the process and the projects

finished using these principles. (Samarawickrama, 2017)

1.2 Goals

This thesis sets up three goals. These goals are to:

1. Describe the environment and requirements of a CI/CD pipeline for a multitenant

SaaS ASP.NET web application

2. Design and document a CI/CD pipeline for Enerity Solutions Oy

3. Evaluate the design against the initial requirements and industry standards

These goals were chosen with an intent of offering a concrete design for Enerity Solutions

Oy with its decisions justified by both the current industry standards of the field and the

current company environment. The reasoning of dividing the thesis into three distinct goals

is to allow for a logical flow of design from industry standards and techniques to

environmental requirements and core design into evaluation, reasoning and future proofing

of the design. The first two goals are required to create the initial pipeline design for the

company and the third goal adds conclusions to the concrete examples and allows for a

more academic outlook of the problems stated in the rest of the thesis.

1.3 Structure of thesis

The remaining chapters of the thesis are divided into three parts. Firstly, the research

methodology and data gathering methods of the thesis are introduced, and a theoretical

look at current frameworks, methods and definitions of CI/CD pipelines are detailed. The

second part focuses on documenting the business environment and requirements of a

CI/CD pipeline for Enerity Solutions Oy, documents a reasoned design for such a process

and evaluates it against the initial requirements of the company as well as against the best

practices of the industry. Lastly, the future of both the pipeline design and multitenant

environments in general are discussed.

8

2 RESEARCH METHODOLOGY

This chapter goes over the research methodology used in this thesis, the reasoning of why

it was chosen, the data gathering methods used within the research methodology and the

application plans for the gathered data.

2.1 Design science

Design science is a problem-solving paradigm which aims to satisfy organizational

informational system needs by combining foundational theories, frameworks, instruments,

constructs, models and instantiations to organizational environment problems with the aim

of creating various artifacts to describe or solve these problems. These artifacts can range

from completed software to formal logic, mathematical models and descriptions which

allows them to fit the problem environment in the best possible way. (Hevner, 2004) These

artifacts can afterwards be evaluated and modified further in order to react to possible

changes in the original environment.

This thesis was chosen to utilize design science as its research methodology since it is

answering a concrete business need for a real organization and the creation of a

documented design artifact was one of the wanted outcomes. What sets this approach apart

from regular software design, which could have been used instead to create the design in a

purely practical organizational approach is that design science uses previous informational

system theories in addition to existing technical knowledge of the developers to justify its

design choices, allowing for a more objective solution to be created.

2.2 Research environment

The implementation artifact produced as a product of this thesis is created for Enerity

Solutions Oy, which has multiple software products already in production. As a

consequence of this, the company has already established most of the needed software

development architecture such as source control, development frameworks, database

implementations and cloud service architecture. This means that the design of the solution

must to be designed around these environmental variables instead of expecting it to

realistically change or redesign the existing company structure to create the most efficient,

scalable and most technologically advanced theoretical solution.

9

2.3 Data gathering

The data used to design and implement the CI/CD pipeline was collected from two main

sources: the existing foundational theories and models of the field via design science, and

the requirements gathered from technology lead developers of Enerity Solutions Oy. This

allowed the design creation to benefit from both the technical frameworks of the industry

and the expertise, insight and strategic goals of the company to create the best possible

design. The interviews conducted were structured to firstly describe the wanted outcome of

the implementation project, giving an early direction for the design. Secondly, the

interviews were used to accumulate technical and nontechnical requirements for the design

as well as the reasoning behind these requirements. Thirdly, the interviews provided a list

of possible technical pitfalls and possible future prospects for the software product

lifecycle, which were important to keep in mind during the development of the design.

The first interview was conducted during the beginning of the thesis with the software

development manager of Enerity Solutions Oy. This interview consisted of going over the

technical details which should be taken into consideration as a part of the pipeline design.

The main requirements concerned the performance of the automated build process in the

context of current master commit frequency and size and the database update management

as well as the handling of tenant-specific configurations in a multitenant environment as a

part of the deployment process.

After the first interview during the design phase, a workshop was created to go help guide

the selection of the CI platform. The workshop format was chosen because it allowed the

technical knowledge of software engineers with practical knowledge of the software

solutions to be used to spot and evaluate possible tool candidates best fit for the company.

The workshop participants were selected to be three software engineers from Enerity

Solutions Oy and the workshop consisted of two meetings and individual research between

these meetings. The purpose of the first meeting was to collectively go over the most

common CI platform tools used with SaaS solutions and filter the list roughly to end up

with potential candidates worth further investigation. At the end of the first workshop

meeting, these candidates were distributed along the participants with the intent of

researching them further or even creating small proofs of concept of their properties with

the end goal of figuring out their pros and cons.

10

The second workshop was scheduled a few weeks after the first one and it consisted of

going over the potential candidates and figuring out which of them was the most work

pursuing as the CI platform tool for the pipeline design.

After the selection of the CI platform tool, a second interview was conducted with the lead

software engineer of one of the software solutions intended to be updated via the CI/CD

pipeline. The interview consisted of collaboratively discussing the everyday software

development workflow practices of Enerity Solutions Oy which would be affected by the

implementation of the CI/CD pipeline. This both allowed the lead software engineer to be

informed of the possible future changes as well as gave insight to the current workflow

practices to be used in the future predictions of the pipeline design.

11

3 CONTINUOUS INTEGRATION AND DEPLOYMENT

This chapter takes a theoretical look on the different building blocks of a CI/CD pipeline

from software development practices to deployment tools as well as researches and

describes other software themes and processes which are relevant to the software

infrastructure and business environment of Enerity Solutions Oy. These contain subjects

such as software multitenancy and automated data structure change management.

3.1 Agile software development

Agile software development is a software development approach conceptualized in the late

1990s and early 2000s, which switched the focus of software development from complex

methods to people and the interactions between them (Hoda, Salleh, & Grundy, 2018). In

2001s the Agile Manifesto agile methods were defined to focus on customer satisfaction by

shortening the interaction time between versions of a software solution in development and

advocate working software to be its primary measure of progress (Manifesto for Agile

Software Development, 2019). The increase in customer satisfaction in turn caused the

companies to generate more value to their customers and also to themselves making them

more desirable for future endeavors. Furthermore the flexible structure allowed the

companies to include Lean principles to their software development practices either by

noticing probable problem areas faster due to the increased developer interactions and

allocating resources there easier or by discontinuing parts of the previous development

process which weren’t beneficial to the value generated. (Alahyari, 2017)

Agile software development allowed companies to better respond to changing customer

demands and help aid communication both internally and externally, since the rapid

change management demands active interplay between different parts of a software

company, which before might have been separate and had no shared responsibilities at all.

(Rauf, 2015) The introduction of agile methodologies to the software business environment

were deemed successful and according to the 13th Annual State of Agile Report agile was

exercised in some form in 97% of all surveyed software organizations in 2019. (CollabNet,

2019)

In addition to the more flexible workflows and lower response times, agile software

deployment practices also allowed companies to switch from project-focused to product-

focused business models. This allowed the software lifecycle to be defined more loosely

12

instead of the previous strictly stage-focused structure. This change also allowed software

teams to specialize to be software product-specific instead of specializing in any one

process stage in the development of multiple software projects. This allowed for an easier

division of responsibility and the application of technical expertise. (Dornenburg, 2018)

3.2 Continuous Integration

The change from infrequent changes of conventional software development methodologies

to frequent version changes of agile software development methodology introduces a need

for greater attendance of change handling and code testing for new versions of the

software. This is to reduce the risk of introducing uncompilable code to the code base,

since the increase in the number of changes inherently increases the change of developer

errors. CI is a development practice which favors frequent integration of smaller features

over large changes to reduce the severity of individual merge conflicts. (Arachichi &

Perera, 2018) CI requires several common agile practices to be already implemented, such

as single source code repository, revision control, build automation and unit testing.

(Lavriv, Buhyl, Klymash, & Grynkevych, 2017)

CI is designed to be an unbiased judge of source code quality, meaning that all changes are

examined equally without any temperance from for instance difference between different

development workstations or environments. This is made possible by a centralized source

code repository, which allows the rebuilding or retesting of any version of the source code

whenever and wherever necessary. Depending on the solution, an external build tool might

be required to build the source code such as the Microsoft Build Engine for C#

applications (Meyer, 2014)

Build waiting time is a large part of a CI process since it defines how many builds

generated from new features can be processed in a given time. In CI practices the lowest

possible build time is not always the best, since the reduction of build duration at the cost

of test coverage might compromise the integrity of the code base. (Erich, 2017) However,

if the build takes too long to complete it can cause a bottleneck in the amount of processed

changes by the pipeline as well as affect the overall process compliance of developers,

since they have to wait for their builds to complete before continuing. Because of this, the

final build time of a solution must be assessed by collecting feedback from both the

developers and statistical history of failed and successful builds to find a balance between

13

efficiency and stability. (Laukkanen & Mäntylä, 2015) For a solution built multiple times a

day, a build wait time should not exceed 10 minutes or be lower than 5 minutes (Rogers,

2004). In addition to the build time, the over addition of test suites can increase the

maintenance requirements of the pipeline, possibly leading to a situation where the CI

pipeline can fail for external reasons, halting all progress of pull requests which require a

successful build to proceed. (Zampetti, Bavota, Canfora, & Penta, 2019)

3.3 Continuous Deployment and Delivery

The abbreviation CD is used in the other chapters of this thesis to address both Continuous

Deployment and Continuous Delivery processes, since their differences are not

consequential when describing the overall process flow and component interactions of the

whole pipeline. Continuous Deployment and Delivery are both deployment approaches

which handle the tested and production ready packages created during the CI phase of the

pipeline and deploy them to any chosen environment, be they for testing or production. In

addition the CD phase of a pipeline can also run any required installation scrips associated

with that environment automatically which allows for the source control of the

deployment. (Arachichi & Perera, 2018) The source control of deployment scripts and

environmental configurations allow the process to be replicated, duplicated and developed

further in a controlled manner.

Continuous Deployment and Delivery both move, unpack and install the built packages

similarly, but they differ in the frequency and timing of the deployment. Continuous

Deployment deploys the selected version of the software automatically every time a new

package is created via the CI stage and pushed to the CD tool. This method is useful in a

system where software updates are done multiple times a day, are required to be applyable

to all solution users immediately and support constant software updates without risking

solution availability for its users. In these environments the usage of a Continuous

Deployment process requires an extremely reliable CI platform to ensure the validity of

each change in the software.

Continuous Delivery focuses on scheduled or manually approved updates to production

environments by not automatically deploying a version of software as it finishes the CI

phase, but instead by storing the newest package and waiting the installation to be

manually confirmed. This approach has the advantage of being viable in software

14

environments which do not support fluid installations of new versions of the software. To

accomplish successful deployments in these types of environments, they can be scheduled

during off-business hours for business-to-business (B2B) applications and deployed during

scheduled maintenance windows with notice to users in business-to-customer (B2C)

applications. The usage of a Continuous Delivery process allows for a more thorough

testing of the staged software version by deploying the version to a testing environment

and running manual performance and usability tests while waiting for the scheduled

installation window for the production environment. Continuous Delivery also allows for

the gathering of many small updates or parts of features to release them as one new version

with manually created version notes detailing the most important changes in the update,

allowing for more info to be passed to the users about things that were changed.

Even though the integration of a Continuous Deployment or Delivery process help ease the

manual labor of software updates and introduce the positive requirement of frequent testing

of the code base, its integration may also have drawbacks. In a case where the software

code base is changed frequently but is not tested thoroughly enough due to old or missing

testing practices or when the testing is not fast enough for the requirements of the pipeline,

can the end result bring more harm than good to the overall customer experience. This can

be especially true when the problems stem from environmental sources such as the

production hosting environment configurations or customer data conversions, which

cannot be tested by testing the source code. Furthermore, the integration of an automated

delivery or deployment process also requires that all parts of the delivery process are done

automatically and within the process, such as database scripts and schema updates. Having

parts of the pipeline be manually controlled undermines the benefits of having an

automated process, and in worst cases can make the deployment of the software even more

time consuming since in addition to the manual tasks, the CD process itself requires

supervision and maintenance. (Shahin, Ali Babar, & Zhu, 2017)

3.4 Multitenancy in software applications

3.4.1 Software solution multitenancy

Multitenancy is an architectural pattern approach used in software service hosting which

allows multiple tenants to share hardware resources and even databases used to host an

application with different, tenant-specific configurations (Bezemer & Zaidman, 2010).

15

These configurations can include service addresses, business logic paths or user interface

changes. (Kang, Kang, & Hur, 2011) By customizing the tenant environments separately

the software can offer user experiences similar to dedicated, single tenant environments

while allowing for easier software upkeep and greater resource efficiency for the offering

software company. (Liu, et al., 2014)

The usage of a single shared application instance for multiple tenants has multiple benefits

when compared to more traditional approaches where each tenant has been dedicated their

own software instance. Firstly, modern cloud-based software service hosting already uses

pool-based resource grouping which allows the shared applications to be scaled up or

down depending on the amount of active tenants at any time. This allows the hosting

company to save on fixed hosting costs on times of low demand by automatically scaling

the service down when it is not needed. (Kwok, 2008) The opposite of this would be to use

a static amount of resources either in the form of a single virtual machine or a physical

server. This decrease in operating costs can then be directly directed towards the cost for

the tenant, making the cost-based competition with rival services possible. Secondly,

having only one application instance shared between multiple tenants makes updating and

maintaining it less time consuming, easier to replicate and manage, when comparing it to a

process of having to update and maintain multiple environments, which might differ in

configurations or hardware specification.

However, hosting a multitenant application will also introduce some drawbacks, such as

the need for a built-in configuration management process for the application itself. This

means that the application has to be able to modify its behavior, styles or functionalities

depending on the tenant using it in order to offer an experience comparable to a self-hosted

service while keeping the tenants separate from each other. The modification of these

configurations for one tenant might require interruptions of the service itself while it

readjusts to the new settings, potentially disrupting all the tenants using the shared instance

of the service. (Bhuvaneswari & Saraswathi, 2014)

3.4.2 Workload distribution

A multitenant software application with multiple different components has to deploy them

in a way in which the workload required from these components is distributed throughout

its tenants. This is called degrees of isolation of the different software components. The

16

highest degree of isolation is hosting every tenant as their own instance in their own virtual

machine without any resource sharing, and the lowest degree of isolation is having the

tenants share all resources with others. (Ochei, Petrovski, & Bass, 2018) The process of

finding a working degree of isolation in a multitenant environment requires finding a

middle ground between high running costs and possible idling of having few tenants

hosted together and individual performance loss or possible security threats of having too

many tenants in a shared instance.

3.4.3 Data multitenancy

Another drawback of a multitenancy is that the handling of tenant specific data has to be

done properly in an environment where multiple tenants share resources, software

components or even databases. This means that different tenant configurations have to be

managed and updated properly to make sure that tenants cannot access each other’s data,

adding to the maintenance costs of the system. The possibility of mixing up tenant data

because of a bug in the software increases the operational risk of the system since any

problems in the shared application will in the worst case permeate to all tenants using it.

(Bhuvaneswari & Saraswathi, 2014) Because of this, special care must be placed on tenant

management, such as adding tenants to or removing tenants from an already existing

system.

There are three approaches to managing the data in a multitenant software which define

how much of the data of the tenants is stored and managed in shared databases. The first

approach focuses on isolation and security by storing a tenants data in their own database,

avoiding any possible database specific overlap with other tenants. The second approach

uses schema separation to store all tenants’ data in a common database and focuses on

allowing possible data aggregation while still only modifying the schema of a database

query between different tenants. The third approach holds the tenants’ data in a common

database and only one schema, using custom identification to separate the tenant’ data.

This approach has the most responsibility placed on the application itself, relying on it to

only handle the correct data with no internal data segregation from the database itself.

(Bhuvaneswari & Saraswathi, 2014)

Data security has an increased role in multitenant software applications since the risk of

individual tenants gaining access to other tenant’s data by mistake or by exploitation is

17

increased when they share an environment (Mann & Metzger, 2017). The most effective

way to counteract this would be to focus on the data isolation by supplying each tenant

with their own database. This however could reduce the system’s ability to utilize resource

sharing thus leading to potential performance issues in some databases. Furthermore,

sometimes a shared database is required in a multitenant software system for system wide

configuration- or other non-tenant-specific information management.

3.5 Summary

A CI/CD pipeline builds upon an existing agile software development infrastructure of a

software company by automating the frequent source code integration and upping the

quality of the created features by systemically testing and validating every new pull request

that is introduced to the code base. The integration of a CI process requires the evaluation

of the frequency of code changes and the size of the complete solution and test suites to

generate a suitable compromise of solution build time and test coverage to both keep the

development process fluid and the quality of the created changes high.

The CD process requires the environmental attributes of the software solutions, such as

multitenancy both for the deployed application as well as possible database structure

changes to be taken into account to ensure that the final design can offer the most value

possible. The introduction of a CD process can also affect the availability of the software

solution during deployments so the design must be tuned to suit the needs of the tenants

either by scheduling orderly maintenance windows for all tenants in a shared environment

or using techniques such as rolling deployments to allow solution usability even during

deployments.

18

4 SOLUTION DESIGN

This chapter focuses on the CI/CD pipeline design for Enerity Solutions Oy. The design is

created by combining the design requirements generated from interviews and workshops

with the industry standard methods, frameworks and suggested processes provided by the

recent publications of the field. This chapter goes over the overall design environment of

Enerity Solutions Oy, lists the concrete requirements of the design generated from the data

gathering phase which guide the direction of the design, propose one solution design for

the company and evaluates the created design against the initial requirements and aims to

justify any deviations it might have from the literature best practices.

4.1 Design environment

The current workflow practices used at Enerity Solutions Oy focus mostly on the mix of

regular small source code changes stemming from bug fixes which need to be deployed to

production environments as soon as possible as well as from large feature updates which

need to be thoroughly tested and which usually require database schema changes or scripts

as a part of the deployment process. Both of these deployment types are currently done

manually consisting of building of the solution, possibly cancelling any currently running

scheduled tasks active in the deployment environment, running database schema change

scripts to all tenant databases and the manual testing of the environments to make sure the

update didn’t cause any unforeseeable consequences linked to, for instance, tenant data or

configurations. In addition these, steps have to be preferably done during office off-hours

since updating the solution during the day will directly affect its availability in a negative

manner. This style of workflow has worked in the past when the number of tenants and the

amount of required fixes and features was relatively low, but as these numbers increase the

workload and required frequency of updates rises as well.

Manual delivery for a commercial software product is one of the hardest parts of a systems

development life cycle since it requires constant expertise and knowledge of the contents

of every new software release to fix any potential problems during the deployment in

addition to placing a lot of responsibility on humans, which are inherently prone to making

mistakes. (Arachchi & Perera, 2018) Enerity Solutions Oy already uses most of the

required elements for a CI/CD process, such as central code repositories, pull requests for

feature updates, test automation and configuration management. This means that the

19

process of moving from manual updates to automated ones requires mostly linking of the

pre-existing components to be a part of a controlled and monitored process.

The trend of incorporating software new tenants to use a shared multitenant cloud instance

instead of offering tenant-specific environment hosting, as well as actively aiming to

transfer existing tenants from tenant-specific environments to a shared one further adds to

the importance and usability of a CI/CD pipeline now and in the future.

4.2 Requirements of the solution

The requirements of the solution listed in this chapter were generated primarily from

interviews with personnel of Enerity Solutions Oy which were detailed in chapter 2.3. In

addition to this, some of the requirements were generated from technical attributes and

current processes of the solution environment.

4.2.1 Source code and CI

The solution design should be able to utilize the existing source code solution Bitbucket to

fetch and build the selected solution whenever needed. The build of the solution should be

linked to existing code review conventions, such as pull reviews to allow the buildability

of the solution to serve as a required step in the merging of a new feature. Since the

solution is estimated to be built many times a day by the build server, the individual build

time of a single modified or merged pull request should not exceed 10 minutes.

4.2.2 Unit test support

Unit tests are a part of software products by Enerity Solutions Oy, but they are not used

actively as a part of the manual deployment process. They are instead utilized during

development of new features to ensure the buildability and continuous structure of the

software. These tests should be able to be integrated into the new pipeline as a part of the

CI build process to allow for real-time information of the performance as well as to serve

as a regression test failsafe to ensure that the new feature does not affect other parts of the

solution negatively.

4.2.3 Cloud connectivity and multitenancy

Enerity Solutions hosts most of its tenants using a SaaS model, and uses a shared cloud

instance situated in Microsoft Azure to provide both the production as well as the testing

20

environment of the solutions. The design of the pipeline should allow multiple automated

deployments to the shared SaaS instance located in Microsoft Azure.

4.2.4 Database updates

Database schema updates offer one of the biggest problems to modern CD processes since

the schemas of SQL databases have to be matched to the current version of the software to

allow the software to correctly communicate with the databases. This means that often the

update of the database is required to be completed as a part of the software update to make

sure that the software version and the database schema match. (Jong & Deursen, 2015)

In the case of Enerity Solutions Oy, the solutions are used only by B2B tenants which

means that there is no requirement for a zero-downtime updates or undisturbed availability.

This allows the software and database updates to be done using maintenance windows

outside office hours, which has practically allowed the software to be manually updated in

the past. The design of an automated pipeline must retain some of the most important steps

done while updating the solution manually, such as monitoring the database update scripts

for possible tenant-specific errors and checking the performance after possible changes to

the database schemas of the solution. In addition the solution must still be able to be

deployed even during business hours to fix immediate bugs which could compromise the

data safety or business logic of the solution.

The database management of the multitenant software is currently done with a combination

of using shared databases for environment configuration and tenant-specific databases for

operational data management. This allows some of the environment-specific tasks and

services to manage the tenants effectively but also provide the best possible separation of

tenants’ business-critical data inside the environment. This requires the pipeline to be able

to automatically update both the shared and customer-specific databases with their required

configurations.

Furthermore, the database updates must not be excessively time-consuming in a situation

where there are no needed changes but the whole database schema is still updated. The

implementation of a checksum system or a comparable tenant-specific management tool to

keep track of needed database changes could save time in situations where the deployment

version does not modify the database schema or add new data. Since many tenant database

21

updates are run sequentially using a shared tool, unnecessarily run database updates can

add up especially as the number of tenants increases in the future.

Automated database updates have to also take into account the long-running tasks that are

required for the functionality of the software which require an active database connection

to function correctly. These include for instance daily measurement readings and business

calculations run for all tenants of the software. The problem with these tasks is making

sure that none of them are running while a update to the database is done since

mismatching the executing code with the database schema mid calculation might lead to

unwanted consequences such as damage to the tenant data in an event of an premature task

interruption. For this reason a maintenance window which makes sure all running tasks

have completed successfully should be used as a part of the update of the solution. This

window must be sufficiently long to allow for all updates to finish but must also not

interfere with the consistent competition of the rest of the tasks.

The validity of database updates for a given deployment version can be tested in a test

environment which replicates the production environment as closely as possible. This

environment can also be used to run performance tests to make sure that any changes

which pass all unit tests and the review process of source control are not slowing down the

solution when tested on a production-grade load and with production-style cloud database

infrastructure which might function differently to local test databases.

4.2.5 Logging

Logging of the stages of the automated deployment process is paramount for the

monitoring of the pipeline, especially in the early stages of implementation. The required

levels of reporting generated by the pipeline should contain at least the integration build

status and duration for each build, the deployment status and duration to the shared cloud

instance and lastly the information from the performance tests run in the test environment.

The amount of logging can be incrementally tuned down to only reports of possible

performance decreases between builds or failures during automated deployments when the

process is fully implemented.

4.2.6 Ease of use

Lastly the functionality of the automated pipeline must be accessible to the person creating

a release. Since Enerity Solutions Oy must handle their deployment scheduling and feature

22

bundling manually in an organized manner, requiring maintenance windows whenever a

new version is ready for installation, it cannot use Continuous Deployment as its

installation strategy, which makes Continuous Delivery the preferred choice. This allows

an version composed of many feature updates of fixes to be deployed whenever a release

is deemed to be ready or when a critical bug has to be fixed immediately. The person

creating the release must be able to choose the time the solution will be tested and updated

with the wanted features and freeze the selected version, excluding all sequential changes

from affecting the scheduled release version before it has been successfully delivered.

4.3 Implementation

This chapter details the process of creating a CI/CD pipeline process design for Enerity

Solutions Oy from the choosing of the CI platform for the pipeline, to the description and

integration strategy of all required pipeline components and finally detailing the process of

the pipeline from a source code change to a software delivery.

4.3.1 CI platform requirements

Enerity Solutions Oy bases most of its software products on the Microsoft Azure cloud

platform, which sets some restrictions on the choices of further technologies especially

those related or designed for Amazon Web Services. One of the main goals for the design

is the ability to integrate as many already existing systems as possible to the pipeline thus

reducing the overall changes to the day-to-day workflow of the software developers.

The first step of selecting the pipeline components is to choose the CI platform to perform

the core functionality of fetching source code, building and testing the solution and

packaging the versions for deployment as well as to integrate to other tools readily used for

the whole CI/CD pipeline process. The integration platform had several key requirements

which are detailed in table 1.

23

Requirement Priority

Integration to Bitbucket Mandatory

MSBuild support Mandatory

xUnit support Mandatory

Octopus Deploy support Preferred

Microsoft Teams support Preferred

Email reporting Preferred

Cloud hosting Preferred

Table 1: CI platform requirements for Enerity Solutions Oy

Enerity Solutions Oy hosts its source code in a Git repository in Bitbucket, which makes

integration between the CI platform and Bitbucket mandatory for the pipeline design. The

solution deployed using the pipeline is a ASP.NET MVC web application, which makes

both MSBuild, Microsoft’s C# application build platform and xUnit, an unit testing tool for

.NET applications the preferred tools for building and testing the software. The

integrationability of these tools is mandatory for the pipeline.

Octopus Deploy is a CD platform which has previously been used in Enerity Solutions Oy

during manual software deployments of the software solution to allow multiple distinct

packages to be deployed to predefined locations at the same time as well as to

automatically run the necessary deployment scripts as a part of the deployment process and

manage the configuration management between different environments. Due to the

existing experience with the tool and the already established deployment scripts, the

integration of Octopus Deploy would be preferred for the pipeline. This is however not a

mandatory requirement since the equivalent functionalities could be recreated in other

delivery tools if nescessary.

All tools of the pipeline are preferred to be hosted off premises in a cloud instance, since

the company does not host its software locally either. In addition to the mandatory

integrations, reporting features to both email and Microsoft Teams, Microsoft’s

communications platform, are preferred to ease the tracking of the pipeline. Email can be

24

used to alert the service manager or their team of possible problems during deployment,

and Microsoft Teams can be used to keep developers informed on the progress of their pull

requests during feature development.

4.3.2 CI platform selection

Stemming from the gathered technical and non-technical requirements, a workshop

consisting of three developers was formed with the intent of going over possible solutions

and cataloging their pros and cons for further analysis. This research found four possible

pipeline configurations for Enerity Solution Oy: Jenkins, Shippable, AppVeyor and Azure

Pipelines. In addition to these choices, the possibility of the refusal of any automated

deployment tool was also considered to ground the different choises to the existing

environment more clearly. The positive and negative aspects of each choice are listed in

table 2.

Tool Positive aspects Negative aspects

Manual deployment Customizable for each

deployment

Requires a person to

supervise and deploy the

software

 Human supervision for fast

response for deployment

errors

Deployment for multiple

environments is time-

consuming

 No automated builds to

validate version stability

Jenkins Support for Windows

platform, Bitbucket and

Octopus Deploy

Locally hosted

Shippable Support for xUnit and

Bitbucket

Requires additional

configuration to support C#

25

 Cloud hosting

AppVeyor Support for Windows

platform, Bitbucket and

Octopus Deploy

 Cloud hosting

Azure Pipelines Support for Windows

platform, Bitbucket and

Octopus Deploy

 Cloud hosting

 Included in Azure service

already in use

Table 2: Automated deployment pipeline tool comparisons for Enerity Solutions Oy

From the considered alternatives both AppVeyor and Azure Pipelines fulfilled all the given

mandatory and preferred requirements with very little to no drawbacks while both Jenkins

and Shippable had at least one missing mandatory or preferred requirement. This meant

that only AppVeyor and Azure Pipelines were considered further.

The possibility of rejecting a CI/CD pipeline entirely and continuing to deploy the software

solutions manually was also considered. Continuing to use a manual deployment process

would save the company resources and development time which otherwise would have

been used in the implementation of the pipeline and also allows for hands-on quality

control of each deployment by a human which allows for fast response times for any

problems during the deployment. However, a manual deployment process lacks the

26

scalability of an automated one and as the number of environments increases the

replicability of the pipeline would allow for a much more standardised and stable

deployment process for every environment. Furthermore, the decrease in introduced bugs

and the early discovery of runtime errors via reviewed configuration changes will decrease

the failure rate of deployments in the future which is much more favourable than being

able to fix many more problems faster. For these reasons a manual deployment process

was ruled out of the considered options.

The choice between the two remaining CI platforms was decided by the fact that Azure

cloud services are already used by Enerity Solutions Oy to host its software products which

would be affected by the introduction of a automated deployment pipeline. Therefore the

introduction of a new Azure service in parallel to the already existing ones would be easier

than establishing a new service. For these reasons Azure Pipelines was chosen to be the CI

tool for the CI/CD pipeline.

4.3.3 Pipeline structure

The pipeline consists of three distinct phases relying on different tools: source control

including code hosting and pull request management using Bitbucket Cloud, software

builds and unit testing using Azure Pipelines and software installation and script execution

using Octopus Deploy. The different parts of the pipeline are activated either automatically

depending on the state of the code repository or manually during a deployment. The

overall pipeline flow is illustrated in figure 1. The process starts with feature integration

between the source control tool, Bitbucket and the CI platform, Azure Pipelines where an

pull request update or merge triggers a new CI event. After a successful CI merge event the

CD platform Octopus Deploy is provided with the new version of the packaged software.

Both the CI and CD events are logged via Microsoft Teams. The deployment event to a

Microsoft Azure hosted environment through Octopus Deploy is manually scheduled and

is not automatically triggered by any action done by the CI platform.

27

Figure 1: Pipeline components and process flow

4.3.3.1 Feature integration

The first phase of the CI/CD pipeline is feature integration which occurs when a new

feature branch is created, the feature is developed and a pull request is created. The already

existing development and testing phases as well as repository control of Enerity Solutions

Oy do not need to change for this step to be implemented, only a connection from

Bitbucket to Azure Pipelines is required to be created. The feature integration flow

between source control and CI platform is pictured in figure 2. After the creation or

modification of a pull request, Azure Pipelines is triggered and fetches the selected feature

branch source code from the code repository, builds the solution, runs any unit tests

associated with it and marks the pull request ready be merged if the build is successful.

The merging process of successfully tested pull requests is not automated, since that would

undermine the already existing code review conventions used at Enerity Solutions Oy

which state that every new feature introduced to the code base must have at least two

28

manual approvals from other developers. In addition to this the build validation procedure

makes sure that all manually reviewed changes are also a part of still compliable software

solution. In an event where the pull request is modified after its creation the change

triggers a new build and test process for that feature to make sure the changes do not affect

the compatibility of the solution.

Figure 2: Feature integration flow between Bitbucket and Azure Pipelines

4.3.3.2 Feature merges

After a pull request created from a new feature branch has been approved by code

reviewers and the build and test procedure has been successfully completed, the feature is

ready to be merged to the master version of the code solution. After the merge has been

made, another trigger for the build and test pipeline is made to make sure the merge was

successful. The flow of master version build process is pictured in figure 3. This procedure

is identical to the pull request creation and modification one, but it contains the stage to

package up the application and push it to the CD tool Octopus Deploy to be used in the

later stages of the pipeline. In a situation where the build and test procedures fail due to

unseen conflicts in the merge process, the pull request can be manually reverted to return

the master version of the source code back to a deliverable state.

29

Figure 3: Master deliverability check and package delivery process

4.3.3.3 Version delivery

The final stage of the pipeline focuses on the deployment of the software to a multitenant

Microsoft Azure environment and consists of deployments to both test and production

environments. The solution deployment is a two-staged process meaning that in order to

release a version to a production environment it must first be successfully deployed to a

testing environment which has a configuration and database structure comparable to the

production environment. In addition to just testing the validity of the solution as well as the

build, test and packaging processes of the CI tool, the test environment can also be used to

run tests to validate the performance of for instance some data-reliant tasks which cannot

be reliably tested during development. In addition to performance testing, the testing

environment also allows the testing of the installation scripts, database updates and internal

setup changes of the delivery tool itself before installation to the production environment.

After the software is successfully been deployed to the testing environment, the software

can be scheduled to be deployed to the corresponding production environment. This allows

flexibility in the software deployment timeframes since the action doesn’t require

developers to oversee its progress, allowing for more solution availability for tenants

during business hours. In an event of an unforeseeable error in the production deployment

phase, the pipeline reports the incident both via email and Microsoft Teams. This allows

for fast responses to the problems either by redeploying the software automatically using

30

the pipeline or in a worst case scenario reverting back to manual update process in the case

where the pipeline itself is causing the installation problem. This delivery flow is pictured

in figure 4.

Figure 4: Version testing and delivery

4.4 Evaluation

This chapter evaluates the proposed design through the viewpoints of initial requirement

coverage, the changes in day to day work practices of the development process and the

possible negative side effects of the implementation of a CI/CD pipeline.

4.4.1 Initial requirement coverage

The previous manual process of deploying new versions of software focused on building

the solution once before every deployment and manually testing its performance, which

was both time consuming and prone to human errors. The proposed pipeline solution was

designed to primarily ease this burden on deployers by allowing a working version of the

software to be deliverable on a scheduled time and minimizing the risk of deployment

errors or performance problems in production environments while utilizing already

31

existing source control, delivery and communication tools of Enerity Solutions Oy. These

requirements have been fulfilled by the pipeline design since the cyclic nature of pull

request testing and verification and the two-staged delivery process offer flexibility and

security in all stages of the pipeline.

4.4.2 Changes in work culture and practices

The new pipeline design has some required changes on the daily development practices but

the bulk of the changes are centered around software deployments. One of the concrete

changes for developers is the addition of environment spesific configurations used by the

CI/CD pipeline to the code repository to. This change allows the software to be always

deliverable to a new environment if something would to happen to already existing

production environments since the configurations are not stored within the environments

itself. Additionally, forcing any changes to enviroment spesific configurations to be done

as part of the normal development process allows them to be reviewed like any other

changes, decreasing the risk of an environment braking because of a faulty configuration

file. The passive changes to a developer workflow include the addition of automated builds

for every pull request a developer creates. This assures the quality and buildability of the

new feature with every small change to the source code which might otherwise be too

small to be tested manually and could slip past the review process. This addition can also

be seen to passively push the quality of the code changes up since every addition will

trigger the testing of the whole solution which gives instant feedback to the developers and

encourages them to double check their changes next time.

The largest change to work practices caused by the addition of a new pipeline is targeted

towards the delivery process and the engineers responsible for them. Firstly, the new

pipeline frees engineers from manually installing the software during off-business hours

and running and monitoring all deployment scripts individually tenant by tenant. Secondly,

the pipeline documents each delivery individually for future reference and also can spot

differences in performance during the delivery by running the version first through a test

environment designed to resemble the production environment as closely as possible.

Thirdly, the design of the pipeline allows the environmental configuration changes to be

monitored like any other source code change which in turn decreases the risk of them

causing problems in the deployment process.

32

4.4.3 Negatives of implementation

The introduction of new technologies can cause negative consequences to a normal

workflow of a company. Firstly, time and resources must be spent to design, develop and

implement the pipeline solution and integrate it as a part of the companys daily practices.

This includes moving resources away from normal software development work which

could generate more instant revenue for the company, whereas the benefits of the pipeline

might not be so obvious and increase productivity and quality only in the long run.

Secondly, the introduction of the pipeline to development or production environments might

cause interruptions of their normal operations during the initial implementation phase of the

pipeline where any environmental difficulties get resolved. This might result in multiple

failed deployments while the correct environmental settings get development through trial

and error. This problem is further aggrevated by the fact that all the changes required for

testing the validity of the pipeline must be processed through the normal code change

management process, since they are modified with the rest of the solution code base. This

problem could be mitigated by creating additional pipelines for testing purposes, but these

might be only partially successful since existing production environments might still have

differences when compared to new test environments which can not be reasonably accounted

for.

Thirdly, the developers of the company have to take into account the added steps to the

development process, such as the requirement of making sure all created pull requests are

compatible to the pipeline process and utilize it to its full potential. This can cause some

loss of efficiency for the software development process in the very beginning of the

introduction of the pipeline while developers readjust to the new conventions. In addition

to the additional steps required and the learning nescessary, the actual build times added to

the pull requests might slow the previously instantanious merges down, especially when

large amount of small incremental changes are made to existing pull requests, each

triggering a new build of the solution. This can however be countered by allowing multiple

builds per pipeline to be run sequentially as long as they are not the ones required for the

merge of the pull requests, though they might drive the cost of pipeline maintenance up

along with its performance.

33

Fouthly, the over reliance of external automated systems can cause problems in cases

where the pipeline system or some of its components malfunction or otherwise lose their

ability to provide their required service. In these situations, if a version update is absolutely

still required, a manual process might still be needed.

4.5 Summary

The proposed CI/CD pipeline design aims to replace manual deployments in Enerity

Solutions Oy by offering a structured and monitored way of making source code changes,

building and testing them with both unit and performance tests suites and installing a

working version of the software whenever needed with attention paid to the existing

environmental requirements of the company. This design requires work, resources, work

culture changes and possibly risky software solution desing changes to implement and

further constant care and maintenance to be able to provide a stable and reliable tool for

deployment engineers. The pipeline is designed to provide long term value for both the

developers and the company by easing the day-to-day operations of the deployment

engineers as well as lowering the risk of errors in both the development and delivery

phases of the pipeline. The addition of the pipeline also allows the company to expand and

add new tenants to its multitenant environments easier when the process is partly or

completely automated.

34

5 DISCUSSION

Just as the software products which can be improved through incremental change via the

CI/CD pipeline, the pipeline itself must be able to be improved upon. These changes can

occur as a consequence of modifications to software architecture, the different tools used

as a part of the pipeline or external requirements from the company or its developers. This

chapter focuses on the potential future changes for both Enerity Solutions Oy and its

products, as well as the proposed CI/CD pipeline and its role in the process of change.

5.1 Multitenancy in the future

After the implementation and introduction of a CI/CD pipeline, it has to be maintained and

ready to be developed further along with the increase of tenants and the introduction of

new technologies and company trends and needs. One of the most likely developments

would be to introduce the CI/CD pipeline designed for B2B tenants to the software

solutions which serve B2C tenants as well. This would require a much greater potential for

system availability meaning that the automated software updates must not disturb the

functionality of the solution in any way. One of the potential solutions is to host the

solution on multiple mirror servers which can be used interchangeably. In addition of

balancing the load of users on multiple servers, this can be used as a platform for a rolling

software update. A rolling update allows multiple versions of a software to coexist, and the

tenants can be redirected to use the updated version once it has been successfully updated

on at least one server. (Sun, et al., 2014)

This however can introduce problems to the database update process, since the databases

must remain accessible and functional during potentially large schema updates to work

with both versions of the software across all the staging servers. These schema changes,

such as adding new columns to a table or updating column default values can cause the

whole table to refuse any new statements during the schema update, resulting in wait times

and in worst cases inoperative software for the tenants. One of the solutions for dealing

with table locking schema changes is to develop the software to support mixed-state

databases, which allow it to operate on multiple database schemas at once. (Jong, Deursen,

& Cleve 2017) This however would require large changes in the software components

which communicate with databases to allow support to many different concurrent schemas

of the databases.

35

Another challenge of a continuously evolving database schema is the ability to rewind

possible database schema changes along with the software version without loss of possible

user made changes to the database data after the intial update. This might be required in an

event of a faulty deployment process which prevents the partial usage of the software. This

can however be extremely difficult since the user changes to a database might not be able

to be converted back to the previous schema of the database leading to a loss of data which

in a business-critical software system might be unacceptable.

5.2 Future development of pipeline

The future developments of the pipeline depend mostly on the future of the software

solutions it is used to deploy. If the software solution integration and delivery process

works flawlessly there will probably be no external motivation to change it outside of

quality of life changes, such as the introduction of a more detailed reporting suite.

However, there are a few additions to the pipeline which could be considered in the future.

The first possible addition is the utilization of automated version notes. The current

practice for informing solution tenants of new features is to manually collect all merged

features from the latest release and to manually compile a list of their descriptions to be

sent to the tenants. This process could be automated by adding the step of creating version

notes for the current feature as a part of the pull request process. This way a descriptive

note of the merged feature will always be added, and the version release notes can now be

compiled from these.

Secondly, the process of user interface testing could be integrated alongside performance

testing to the CD process of the pipeline. This would allow the testing of user interface

performance as well as changes in used client-side library versions and their effect on the

functionality of the solution. The addition of client-side testing would round up the

coverage of the testing suites of the solution and allow the validity of the user interface to

be checked without the need of deployment engineers and possible defects to be fixed

before any tenants are affected.

5.3 Thesis retrospective

The goals of the thesis were firstly to describe the environment and requirements of a

CI/CD pipeline the context of a software company specializing in multitenant cloud

36

applications. The environmental context and requirements were gathered via interviews

and a workshop conducted at Enerity Solutions Oy and also by surveying and researching

the relevant and recent publications of the field. The interviews and workshop were

successful and provided plenty of requirements and discussion to use in the design of the

pipeline. The literature research provided ample theory on the fundamental building blocks

of a CI/CD pipeline in such an environment such as agile development, multitenant

software architecture and database schema validation, which were used to create and future

proof the pipeline design.

The selection of the different components of the pipeline were a combination of the

existing technical infrastructure of Enerity Solutions Oy and the new tools introduced and

researched during the organized workshop. After the selection of Azure Pipelines as the CI

tool, the rest of the work was focused around getting the already existing tools integrated to

form a complete pipeline process which could be used to practically complete software

deliveries in a way which provides value to the company and the users of the pipeline.

This thesis could have been expanded further by addressing the implications of a CI/CD

pipeline on an enterprise level, meaning the interconnectivity between different software

products which all utilise the same delivery process. The possible resource sharing

benefits, but also the security drawbacks could have been examined to figure out if there is

a balance between solution-spesific deliveries and the entanglement of different software

solutions.

37

6 CONCLUSIONS

CI and CD are processes which allow the automatization of source code testing and

validation in addition to the installation or the software. This thesis created a pipeline

design for Enerity Solutions Oy which was created by gathering requirements stemming

from the existing solution environment, used components and services, and the future

vision of the delivery process and the software products. The pipeline design in composed

of Bitbucket Cloud, Azure Pipelines, Octopus Deploy and Microsoft Teams which allow

support for both the solution build tool, Microsoft Build Engine, as well as the unit test

tool, xUnit, and also offer adequate information communication in all phases of the

pipeline. The design of the pipeline is divided into three distinct phases which are the

feature integration-, feature merge- and version delivery processes. These processes

together allow the automatization of pull request validation via solution building and unit

testing as well as provides a platform to schedule software version updates whenever they

are deemed most fitting for the solution.

The proposed pipeline design supports the continuous testing and validation of the code

base health by running at least two automated build and test suites on every new feature to

the software code base to ensure the buildability of the solution during the automated

process. Furthermore, the delivery phase of the pipeline design also supports dedicated

testing environments which mimic the production environments of the solution as closely

as possible. The testing environments allow the validation of database schema and

environmental configuration changes as well as the running of performance tests to spot

any defects which could cause loss of availability in the production environments.

The drawbacks of the pipeline design are mostly focused on its workload requirements,

since the pipeline requires multiple new and existing processes to be integrated to a single

process with support for possibly multiple software products. Moreover, the introduction

of a new pipeline design can cause tenant availability and the success rate of deployments

to lower during the integration stages since the deployment processes have to be verified in

each environment separately.

38

7 REFERENCES
Alahyari, H. (2017). A study of value in agile software development organizations. The

Journal of Systems & Software, 125, 271-288.

Arachchi, S., & Perera, I. (2018). Continuous Integration and Continuous Delivery

Pipeline Automation for Agile Software Project Management. 2018 Moratuwa

Engineering Research Conference (MERCon) (pp. 156-161). Moratuwa: IEEE.

Arachichi, S. A., & Perera, I. (2018). Continuous Integration and Continuous Delivery

Pipeline Automation for Agile Software Project Management. 2018 Moratuwa

Engineering Research Conference (MERCon), 156-161.

Bezemer, C., & Zaidman, A. (2010). Multi-Tenant SaaS Applications: Maintenance Dream

or Nightmare? Proceedings of the Joint ERCIM Workshop on Software Evolution

(EVOL) and International Workshop on Principles of Software Evolution (IWPSE)

(pp. 88-92). Antwerp: ACM.

Bhuvaneswari, T., & Saraswathi, M. (2014). Multitenant SaaS model of cloud computing:

Issues and solutions. 2014 International Conference on Communication and

Network Technologies (pp. 27-32). Sivakasi: ICCNT.

CollabNet. (2019). 13th Annual State Of Agile Report.

Dornenburg, E. (2018). The Path to DevOps. IEEE Software Vol 35(5), 71-75.

Erich, F. (2017). A qualitative study of DevOps usage in practice. Journal of software:

Evolution and Process 29, no. 6.

Hevner, A. R. (2004). Design Science in Information Systems Research. MIS Quarterly,

28, 75-105.

Hoda, R., Salleh, N., & Grundy, J. (2018). The Rise and Evolution of Agile Software

Development. IEEE Software, vol. 35, no. 5, 58-63.

Jong, M., & Deursen, A. (2015). Continuous Deployment and Schema Evolution in SQL

Databases. 2015 IEEE/ACM 3rd International Workshop on Release Engineering

(pp. 16-19). Florence: IEEE.

39

Jong, M., Deursen, A., & Cleve, A. (2017). Zero-Downtime SQL Database Schema

Evolution for Continuous Deployment. 39th International Conference on Software

Engineering: Software Engineering in Practice Track (ICSE-SEIP) (pp. 143-152).

Buenos Aires: IEEE.

Kang, S., Kang, S., & Hur, S. (2011). A Design of the Conceptual Architecture for a

Multitenant SaaS Application Platform. 2011 First ACIS/JNU International

Conference on Computers, Networks, Systems and Industrial Engineering (pp. 462-

467). Jeju Island: IEEE.

Kwok, T. (2008). A Software as a Service with Multi-tenancy Support for an Electronic

Contract Management Application. 2008 IEEE International Conference on

Services Computing, 179-186.

Laukkanen, M., & Mäntylä, E. (2015). Build Waiting Time in Continuous Integration --

An Initial Interdisciplinary Literature Review. 2015 IEEE/ACM 2nd International

Workshop on Rapid Continuous Software Engineering (pp. 1-4). Florence: IEEE.

Lavriv, O., Buhyl, B., Klymash, M., & Grynkevych, G. (2017). Services continuous

integration based on modern free infrastructure. 2017 2nd International Conference

on Advanced Information and Communication Technologies (AICT) (pp. 150-153).

Lviv: IEEE.

Liu, J., Di, Z., Liu, S., Pu, C., Wu, L., & Pan, L. (2014). Finding Optimized Deployment

Strategy for Multitenant Services by Iterative Staging. 2014 Asia-Pacific Services

Computing Conference (pp. 129-135). Fuzhou: IEEE.

Manifesto for Agile Software Development. (2019, 6 19). Retrieved from

https://agilemanifesto.org/

Mann, Z. Á., & Metzger, A. (2017). Optimized Cloud Deployment of Multi-tenant

Software Considering Data Protection Concerns. 2017 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (pp.

609-618). Madrid: IEEE.

Meyer, M. (2014). Continuous Integration and Its Tools. IEEE Software, vol. 31, no. 3, 14-

16.

40

Ochei, L. C., Petrovski, A., & Bass, J. M. (2018). Evolutionary Computation for Optimal

Component Deployment with Multitenancy Isolation in Cloud-hosted Applications.

2018 Innovations in Intelligent Systems and Applications (INISTA), 1-7.

Rauf, A. (2015). Gap Analysis between State of Practice and State of Art Practices in Agile

Software Development. 2015 (pp. 102-106). Washington, DC: IEEE.

Rogers, R. (2004). Scaling continuous integration. 5th Internationl Conference Extreme

Programming and Agile Processes in Softwave Engineering (pp. 68-76). Garmisch-

Partenkirchen: SPRINGER-VERLAG BERLIN.

Samarawickrama, S. S. (2017). Continuous scrum: A framework to enhance scrum with

DevOps. Seventeenth International Conference on Advances in ICT for Emerging

Regions (ICTer) (pp. 1-7). Colombo: IEEE.

Shahin, M., Ali Babar, M., & Zhu, L. (2017). Continuous Integration, Delivery and

Deployment: A Systematic Review on Approaches, Tools, Challenges and

Practices. IEEE Access, vol. 5, 3909-3943.

Sun, D., Bass, L., Fekete, A., Gramoli, V., Tran, A. B., Xu, S., & Zhu, L. (2014).

Quantifying Failure Risk of Version Switch for Rolling Upgrade on Clouds. 2014

IEEE Fourth International Conference on Big Data and Cloud Computing (pp.

175-182). Sydney: IEEE.

Virmani, M. (2015). Understanding DevOps & bridging the gap from continuous

integration to continuous delivery. Fifth International Conference on the Innovative

Computing Technology (INTECH 2015), 78-82.

Zampetti, F., Bavota, G., Canfora, G., & Penta, M. D. (2019). A Study on the Interplay

between Pull Request Review and Continuous Integration Builds. 2019 IEEE 26th

International Conference on Software Analysis, Evolution and Reengineering

(SANER) (pp. 38-48). Hangzhou: IEEE.

