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Abstract

The moisture content of filter cakes is probably the most important characteristic that should be
kept at a desired level in industrial cake filtration applications to maintain consistent product quality
and minimize energy consumption. Most of the currently applied methods for contactless real-time
monitoring of the moisture content are based for example on x-ray or microwave techniques, and
therefore, the equipment for the purpose is highly specialized. This paper introduces a novel soft
sensor for filter cake moisture estimation that uses machine learning algorithms and data collected
with basic process instrumentation. The method is primarily based on the cooling effect observed
in the cake and air, caused by evaporation of liquid from the cake during the dewatering period,
and it can be supported by other process data. The specific energy consumption of vacuum filtration
and the subsequent thermal drying to zero moisture is also analyzed. The results of pilot-scale
experiments with calcite slurry and a horizontal belt vacuum filter show that in order to minimize
the specific energy consumption of vacuum filtration, it is crucial to find the right combination of
slurry concentration, vacuum level, and mass of filter cake per unit area. The proposed method for
estimating the filter cake moisture content is especially suitable for real-time monitoring and
control, enabling also considerable reduction in the energy consumption of the overall process.
When applying the proposed soft sensor method in a pilot-scale process, the mean absolute error
of the estimated moisture content of the filter cake is ~0.4 percentage points when the temperature
of air at the vacuum pump inlet and the vacuum pump air flow rate are included in the input
variables.

Keywords: Thermodynamics; Vacuum filtration; Dewatering; Moisture content prediction; Soft
sensor
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Nomenclature

A filtration area (m2) Greek symbols
a experimentally determined slope t/V2

c filtration concentration (kg m୤୧୪୲୰ୟ୲ୣ
ଷ⁄ ) α specific cake resistance (m/kg)

E energy consumption (J) ε cake porosity
ES specific energy consumption (kJ/kg) (volume of voids per unit cake volume)
L thickness of the filter cake (mm) η efficiency (%)
M moisture content (% kg/kg) μ dynamic viscosity of the filtrate
Ms solids mass flow rate (g/s) (N s/m2)
ṁ mass flow (kg/s) ρ density (kg/m3),
ms mass of solids (kg) Pearson correlation coefficient (-)
P power (W)
p pressure (bar) Subscripts and superscripts
Δp applied pressure difference (bar)
Q standard volumetric flow rate a air

(Nm3/h), heat transfer av average
qm mass flow rate (kg/s) belt filter belt
qsl slurry mass flow rate (kg/min) c filter cake
qV volumetric flow rate (m3/s) dw dewatering
Rm resistance of the filter medium (1/m) e evaporation
s solids content (kg/kg) f filtrate, filtration
T temperature (°C) in input value
ΔT temperature difference (°C) m medium
t time (s) out output value
Vf volume of the filtrate (m3) S isentropic, specific
v velocity (mm/s) s solids
wa specific humidity of air (kgv/kga) sl slurry
w mass of cake deposited per unit area T isothermal

(kg/m2) t thermal
z length on filter belt (cm) V volumetric

v vapor
Dimensionless number vp vacuum pump

w water
k isentropic exponent
R2 coefficient of determination

1. Introduction

Filtration and dewatering operations of easily filtering slurries are commonly performed with
vacuum filters, which provide a robust and reliable technology for industrial dewatering. There are
several vacuum cake filter designs available, including for instance rotary discs, drum and
horizontal belt filters, and table and tilting pan filters [1]. Depending on the filter design, vacuum
filters are operated by using different filter media, such as polymeric filter cloths or ceramic filter
elements. Most industrial vacuum filters are continuously operating devices with high production
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capacities and energy requirements. The importance of vacuum filtration has increased
considerably over the past decades [2].

In the cake dewatering stage in vacuum filters, the air flow rate through the cake and the filter
medium is high, provided that the applied pressure difference is higher than the capillary threshold
pressure of the cake and the filter medium [1,3]. In belt filters equipped with filter cloths there is
also a significant ineffective bypass flow at the imperfectly sealed edges of the filter medium. For
these reasons, large vacuum pumps consuming considerable amounts of energy are required to
maintain the target level of pressure difference. In many vacuum filtration plants, however, the
operators typically have no online information about the cake moisture content, nor have the
possibility of controlling the rotational speeds of the vacuum pumps to reduce the energy
consumption of the process.

The moisture content of the cake at the point of its discharge is one of the most important factors
reflecting the filtration and dewatering performance. Determination of the cake moisture content
after a dewatering process can be carried out by measuring the weight of a cake sample before and
after drying it to complete dryness, according to an appropriate standard (e.g. ASTM D2216). To
make it possible to monitor the dewatering process online, without delays caused by the laboratory
determination, some indirect methods for the moisture determination have been developed. As an
example, the MoistScan® technology by Callidan Instruments, based on a microwave transmission
technique, represents an indirect method for online moisture determination in vacuum filters [4].
Other potential methods for the purpose include for instance NMR spectroscopy [5], NIR
spectroscopy [6], neutron scattering, and gamma-ray attenuation [7]. Most of these methods have
been considered for soil moisture determination, not for continuous filters, where the studied
material is in constant movement. On the other hand, theoretical approximation of the cake
moisture content is even more challenging because of inevitable variation in the slurry properties
and filtration conditions in time, as well as inaccuracy or unavailability of process data. The major
factors affecting the filterability have been discussed for example in [8].

The objective of this paper is to introduce a novel soft sensor technique that is suitable for online
determination of cake moisture content in industrial vacuum filters. Additionally, the energy
consumption of the dewatering stage and the overall material drying process is evaluated.

2. Theory

2.1. Filtration and dewatering of filter cakes

In cake filtration, the solid particles in the slurry are retained on the filter medium during the
filtration phase, forming a matrix of solid particles with a void space, i.e., a filter cake. When
applying a pressure difference greater than the threshold pressure over the filter cake, air may enter
the filter cake and start displacing the liquid. The capillary retention forces holding the liquid in
the pores of the filter cake depend on the size range and surface properties of the particles in the
cake. For cake filtration, there is also a minimum moisture content, called irreducible saturation, at
which the flow of the liquid ceases at any pressure. Increasing the pressure difference over the filter
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cake decreases the time required to achieve a certain moisture content or, on the other hand, a lower
moisture content is achieved in the same amount of time [9,10].

In the conventional filtration theory, the average specific cake resistance αav is determined from
experimental constant pressure filtration data and by using the equation:

ݐ
୤ܸ

=
ܿߤୟ୴ߙ
݌ଶΔܣ2 ୤ܸ +

୫ܴߤ
݌Δܣ , (1)

where t is time, Vf is the volume of the filtrate, μ is the dynamic viscosity of the filtrate, c is the
filtration concentration, i.e., mass of solids collected per volume of the filtrate, A is the filtration
area, Δp is the applied pressure difference, and Rm is the resistance of the filter medium [9].

When omitting the resistance of the filter medium and solving Eq. (1) with respect to αav, where a
denotes the experimentally determined slope t/V2, the average specific resistance of the cake is
expressed by:

ୟ୴ߙ =
݌ଶΔܣ2ܽ
ܿߤ . (2)

The average cake porosity is the ratio of the void volume of the cake to the total volume of the
cake, which can also be calculated by subtracting the solids volume from the total cake volume
applying the formula

ୟ୴ߝ = 1 −
݉ୱ

ܮܣୱߩ
, (3)

where ms is the mass of solids, ρs is the density of solids, and L is the thickness of the filter cake
[10].

In addition to the properties in Eqs. (1)–(3), the mathematical dewatering models derived from the
classical filtration theory require the irreducible saturation and threshold pressure of the filter cake
as inputs [11]. Furthermore, the assumption underlying the conventional theory is that the specific
cake resistance and the porosity are functions of applied pressure only. In reality, the cake porosity
and specific resistance depend on time (creep effect) and solids concentration (rate of cake
formation) [9,12].

2.2. Thermodynamic background of vacuum dewatering

When considering the thermodynamics of the flow of air through a filter cake with a partially water-
saturated void space, the evaporation of water has to be included in the analysis (Fig. 1). The
driving force for evaporation of water in the filter cake is the difference of vapor pressures at the
saturation and interface temperatures. If the air being forced through the filter cake (ṁa) is
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unsaturated, there will be a difference in vapor pressures. Because of the difference, some of the
water will evaporate (ṁw). The latent heat required for this change of state (Qe) will be drawn from
the sensible heat of the water in the cake. As a result, the water will be slightly cooled ( ୵ܶ

ଵ > ୵ܶ
ଶ).

The flow of sensible heat from the air and the solids in the filter cake to the water provides the
latent heat to evaporate a part of it and a thermal balance is pursued [13].

As a section of the filter cake moves from the start of the dewatering period to the end of the belt,
water is both mechanically removed from the filter cake with suction and evaporated. The
mechanically removed water is extracted from the process as filtrate, and the evaporated water is
extracted in the air evacuated by the vacuum pump. The saturation of the filter cake section
decreases as it travels on the filter belt and the flow of air through the filter cake increases. The
rates of heat transfer between the liquid and gas phases depend on the properties of the volatile
fluid, the dimensions of the interface, and the velocities of flow [13]. Throughout the thickness of
the filter cake, heat (Q) is transferred between the liquid water, the cake solids, and the air flowing
through. As a result, the filter cake and the air in the vacuum box are at a lower temperature than
the room temperature air entering the filter cake ( ୟܶ

ଵ > ୟܶ
ଶ). The decreasing saturation and the

increasing air flow through the filter cake in the horizontal direction towards the end of the
dewatering zone, and the changing temperature through the filter cake in the vertical direction
render the phenomena into a multiphase flow and transient heat flow process. For a more detailed
account of the governing equations for flow and transport in porous media, the reader is directed
to [14].

Fig. 1. Diagram illustration of the heat transfer inside the filter cake caused by evaporation. The latent heat Qe
required for evaporation of water will be drawn from the sensible heat of the water. The sensible heat is
transferred from the cake solids to the cooled water. In this case ୶ܶ

ଵ > ୶ܶ
ଶ  and aݓ

in < aݓ
out .

The mass transfer from water to air by evaporation is proportional to the air mass flow through a
filter cake and to the difference between the specific humidity of the outlet and inlet air

݉̇୵ = ݉̇ୟ൫ݓୟ୭୳୲ − ,ୟ୧୬൯ݓ (4)
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where ݉̇ is the mass flow, the subscripts w and a denote water and air, and ୟ is the specificݓ
humidity of air [15]. On the other hand, in an air-water vapor mixture, the rate of mass transfer is
roughly proportional to the rate of heat transfer at the interface [13].

2.3. Power demand

In vacuum filtration processes, the pressure difference across the filter cake is generated by a
vacuum pump. The ideal isentropic power demand PS of a dry claw vacuum pump for a given inlet
volumetric flow rate qV,in generated by the pump can be calculated by the equation

ୗܲ =
݇

݇ − 1 ୧୬݌୚,୧୬ݍ ൥൬
୭୳୲݌
୧୬݌

൰
௞ିଵ
௞
− 1൩, (5)

where pin is the pressure at the inlet of the vacuum pump, pout is the outlet pressure of the vacuum
pump, and k is the isentropic exponent. For a cooled vacuum pump, such as a liquid-ring vacuum
pump, the isothermal power demand PT can be used to describe the ideal process,

୘ܲ = ୧୬݌୚,୧୬ݍ ln ൬
୭୳୲݌
୧୬݌

൰. (6)

If the moisture content of the product after vacuum filtration is too high, additional drying is
required. In thermal drying, the moisture is removed from the cake by evaporation. Ideally, the
power Pv required to provide the heat for evaporation can be calculated by using the equation

୴ܲ = ୫,୴ΔH୴ݍ = ୫,ୱݍ ൬
1
୧୬ݏ

−
1
୭୳୲ݏ

൰ ΔH୴, (7)

where qm is the mass flow, ΔHv is the latent heat of evaporation, and sin is the weight per weight
solids content of the filter cake after vacuum filtration [16]. The subscript v denotes vapor and s
solids. For ideal evaporation, it is assumed that all the supplied energy goes to heating of the matter
and evaporation of water. The specific heat used in the calculations for water and calcite solids is
cw = 4.186 kJ/(kg K) and cs = 0.8 kJ/(kg K) respectively, and the latent heat for evaporation of
water ΔHv = 2256 kJ/kg [17].



This is an original manuscript of an article published by Elsevier in Separation and Purification Technology on 15 September 2019,
available online: https://doi.org/10.1016/j.seppur.2019.03.091.

3. Materials and methods

3.1. Preparation of slurries

The slurries used for the experiments were prepared from Nordkalk Parfill H80 calcite and tap
water to form a variety of slurries with dimensionless weight based solids contents in the range of
0.26–0.44. The particle size distribution of solids was measured with a Malvern Mastersizer 3000
particle size analyzer. Five parallel measurements were performed, and the average distribution
(Fig. 2) was then produced by using a software provided by the analyzer manufacturer.

Fig. 2. Particle size distribution of Nordkalk Parfill H80.

3.2. Equipment and instrumentation

Filtration experiments were conducted using a pilot-scale horizontal belt vacuum filter with a
reciprocating tray. The main operational parts of the machine comprise slurry infeed, filter belt,
vacuum generation by a claw or a liquid-ring vacuum pump, and filtrate handling. The filter belt
effective length is 2.1 m and the width is 10 cm. The instrumentation of the device is illustrated in
Fig. 3. The majority of the experiments were run with the claw vacuum pump and 16 experiments
with the liquid-ring vacuum pump.
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Fig. 3. Horizontal belt vacuum filter device setup and instrumentation: 1) slurry tank, 2) slurry infeed, 3) cake
discharge, 4) filtrate intermediate tanks, 5) barometric leg, and 6) filtrate collection tank.

3.3. Experimental work

Experiments were conducted with various weight based slurry solids contents ssl and masses of
cake solids deposited per unit area w varying also the pressure difference Δp over the filter cake.
The mass of cake deposited per unit area was varied by varying the feed flow rate qsl and the belt
speed vbelt. The varied experiment settings determined the slurry density ρsl and the solids mass
flow rate Ms. Summary statistics of the experiment settings with mean μ, standard deviation σ,
minimum, 25th percentile, median, 75th percentile, and maximum values are presented in Table 1.
The subscripts sl, s, and belt denote the slurry, solids, and the filter belt. The complete settings and
measurement results for a total of 80 experiments are presented in an [dataset] additional file.
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Table 1.  Summary statistics of the settings of a total of 80 experiments. The symbols μ and σ denote mean and
standard deviation.

Δp
(bar)

ssl

(-)
ρsl

(kg/m3)
qsl

(kg/min)
Ms

(g/s)
vbelt

(mm/s)
w

(kg/m2)
μ 0.34 0.33 1259 1.1 5.8 6.6 9.7
σ 0.11 0.07 69 0.2 0.9 2.3 3.2
min 0.20 0.26 1192 0.6 4.4 5.0 4.4
25 % 0.30 0.28 1214 1.0 5.0 5.0 6.5
50 % 0.31 0.29 1221 1.1 5.8 5.0 10.1
75 % 0.40 0.39 1323 1.2 6.5 10.0 12.1
max 0.61 0.44 1384 1.5 7.4 10.0 14.7

When running the experiments, the filtration process was allowed to stabilize to a steady state, in
other words, to a steady filtration length before data collection was started. The pressure difference
was held at a constant level using a programmable logic controller (PLC) and a variable speed
drive (VSD) for the vacuum pump. The slurry infeed rate and the belt speed were also kept constant
during the data collection with the help of variable speed drives. Data were collected from the filter
instrumentation using the PLC and a 100 ms sampling rate. For a number of experiments, the
surface temperature of the filter cake in the dewatering zone was measured with a PeakTech 4695
infrared thermometer. The device has a measuring range from -50 °C to +380 °C and a
distance/spot ratio of 12:1. The measurement distance perpendicular to the filter cake was 10 cm,
and the measurements were made along the centerline of the filter cake.

Cake samples were collected from the scraper located at the end of the filter belt to determine their
dimensionless weight based solids contents s and the weight based moisture contents percentage
M. The cake samples were weighed wet immediately after sampling, dried to zero moisture, and
reweighed. The total solids content of each slurry was determined by collecting two parallel
samples from the slurry recirculation loop and processed in the same way as the cake samples.

3.4. Regression models

Mathematical models of processes that are designed based on experimental data to estimate
relevant process variables are known as inferential models, virtual sensors, or soft sensors [18].
Data-driven methods for building soft sensor models to estimate difficult to measure quality
variables of a process have gained much attention in recent years [19–26]. Machine learning
algorithms serve as basic tools for constructing models from relationships between difficult to
measure quality or key variables and easy to measure variables [27]. Contactless online
measurement of the filter cake moisture content requires special equipment that uses for instance
x-rays or microwave radiation. A reliable soft sensor model for moisture content could possibly
render the use of special equipment and radiation obsolete.

The development of a special soft sensor regression algorithm for the solids content of the filter
cake is beyond the scope of this study. The aim of experimenting with machine learning algorithms
was to find the simplest model with reliable estimation results. To this end, soft sensor regression
was experimented with five standard machine-learning algorithms, namely regularized linear
regression algorithms Lasso, Ridge, and Elastic-Net as well as ensemble decision tree algorithms
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Random Forest and Gradient Boosting capable of modeling non-linear relationships between
variables.

The data set was randomly divided into training and testing sets with 80% and 20% of data
respectively. The models were trained with fivefold cross-validation using algorithms provided in
the Scikit-Learn software package. For hyperparameter tuning, the strengths of penalty for Lasso,
Ridge, and Elastic-Nets were 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, and 10, and for Elastic-Net the
L1-ratios were 0.1, 0.3, 0.5, 0.7, and 0.9. The number of estimators for the decision tree algorithms
were 10, 20, 40, 60, 80, 100, and 200. The tuned maximum features settings for the Random Forest
Algorithm were auto, sqrt, and 0.33. The Gradient Boosting tuned learning rates were 0.05, 0.1,
and 0.2, and the maximum depths 1, 3, and 5.

4. Results and discussion

4.1. Summary statistics of filtration results

The pressure difference range for the experiments was from 0.2 to 0.6 bar, and the mass of solids
per unit area on the filter belt varied between 4.4 and 14.7 kg/m2. This resulted in a filter cake
height Lc varying between 2.1 and 8.0 mm. Experiments with extremely short and long filtration
lengths zf were also ran for values between 30 and 190 cm. The mean moisture content of the filter
cakes M was 16.6 % with a standard deviation of 1.3 percentage points (pp). Summary statistics of
filter cake properties are presented in Table 2. The subscripts f, dw, c, and av denote filtration,
dewatering, filter cake, and average.  Filtration results for all the 80 experiments are presented in
an [dataset] additional file.

Table 2.  Summary statistics of filter cake properties for a total of 80 experiments. The symbols μ and σ denote
mean and standard deviation. For other symbol definitions, see Nomenclature.

Δp
(bar)

w
(kg/m2)

zf

(cm)
tf

(s)
tdw

(s)
Lc

(mm)
εav

(-)
s

(-)
M

(%)
μ 0.34 9.7 110 189 162 5.2 0.34 0.834 16.6
σ 0.11 3.2 35 85 63 1.7 0.08 0.013 1.3
min 0.20 4.4 30 30 30 2.1 0.04 0.797 14.7
25 % 0.30 6.5 94 115 118 3.9 0.28 0.829 15.7
50 % 0.31 10.1 110 199 160 5.6 0.35 0.836 16.4
75 % 0.40 12.1 130 249 209 6.6 0.40 0.843 17.1
max 0.61 14.7 190 379 349 8.0 0.46 0.853 20.3

4.2. Volumetric air flow rates

During the dewatering phase, air flows through the partly desaturated porous filter cake. As can be
seen on the left in Fig. 4, the air flow rate increases with an increasing pressure difference and
length of the dewatering zone. The results show that within a similar pressure difference range, i.e.,
the pressure differences 0.2, 0.3, 0.4, and 0.5 bar, an overall increasing trend in the air flow rate
with the increasing dewatering zone length is observable. There are, however, exceptions to this
trend, and smaller slurry loading and thereby a longer dewatering zone length does not mean a
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higher air flow rate in all cases. This is interesting in the sense that with a thinner filter cake one
might expect to get more leak flow at the edges of the filter cake.

As more air is pumped through the vacuum pump and the filter cake, the temperature difference
between the vacuum pump inlet air and the slurry feed increases (Fig. 4 on the right). This would
indicate a higher heat transfer rate between water and air and thereby a greater evaporation rate.

Fig. 4. Air flow rates through the vacuum pump Qa plotted against the dewatering length zdw (left) and the
temperature difference between the vacuum pump suction air and the slurry feed ΔTa plotted against the
air flow through the vacuum pump Qa (right). The size of the marker is varied according to the mass of
cake deposited per unit area w and the color according to the pressure difference Δp.

4.3. Solids contents of filter cakes

The filter cake solids content after dewatering sc with respect to the dewatering time is depicted on
the left in Fig. 5. In general, a higher solids content is achieved with a higher pressure difference
and a longer dewatering time. The correlation of the filter cake solids content with the pressure
difference and the dewatering time arouses interest to study how the interaction feature of the
pressure difference and the dewatering time correlates with the solids content. As can be seen on
the right in Fig. 5, the product of these two features yields a stronger correlation with the filter cake
solids content.
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Fig. 5. Filter cake solids content plotted against the dewatering time tdw (left) and the pressure difference
multiplied by the dewatering time Δptdw (right). The size of the marker is varied according to the mass of
cake deposited per unit area w and the color according to the pressure difference Δp.

As expected, a higher pressure difference and a higher vacuum pump air flow rate, maintaining
that pressure difference, yields a drier cake as can be seen as a general trend on the left in Fig. 6.
A lower air temperature measured at the vacuum pump inlet would suggest a drier cake as
illustrated on the right in Fig. 6. As the air entering the filter cake was at a room temperature, the
deviation in that temperature is small and thus neglected in this study. The correlation between the
solids content of the cake and the air temperature at the vacuum pump inlet is in line with the
thermodynamic background of vacuum dewatering described in the theory section.
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Fig. 6. Filter cake solids content plotted against air flow rates through the vacuum pump Qa (left) and air
temperature at the vacuum pump inlet Tvp (right). The size of the marker is varied according to the mass
of cake deposited per unit area w and the color according to the pressure difference Δp.

In most cases, a greater temperature difference between the vacuum pump suction air and the slurry
feed seems to indicate a drier cake as can be seen in Fig. 7. Variations in the interdependence of
these two features could be caused for example by the increased leak flow around the edges of the
filter cake that would make the air mixture at the vacuum inlet warmer.

Fig. 7. Filter cake solids content plotted against temperature difference between the vacuum pump suction air
and the slurry feed. The size of the marker is varied according to the mass of cake deposited per unit area
w and the color according to the pressure difference Δp.
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For a limited number of experiments, the surface temperature of the filter cake in the dewatering
region was measured, and the minimum, mean, and maximum values for each vacuum level are
depicted in Fig. 8. The slurry solids content for these experiments was held constant, but the slurry
infeed and filter belt speed were adjusted to vary the slurry loading on the belt. As more and more
water was evaporated from the pore space of the filter cake towards the end of the belt, more and
more sensible heat was removed from the cake and the temperature of the filter cake decreased.
The slope of the temperature profile suggests that the cooling effect would continue for some time
if the filter belt were longer. As can be clearly seen in Fig. 8, the greater the pressure difference
over the filter cake is, the greater is the temperature change on the surface of the filter cake.

Fig. 8. Mean filter cake surface temperature profiles along the filter belt (lines) and variation between the
minimum and maximum temperatures due to varying slurry loadings (filled area) at the corresponding
pressure difference levels.

From the limited number of experiments with cake surface temperature measurements, it can be
concluded that the change in the cake temperature seems to give an indication of the solids content
of the filter cake as depicted in Fig. 9. In general, the greater the pressure difference is, the greater
is the temperature change of the filter cake in the dewatering zone and the drier is the filter cake.
It was also found that the cake surface temperature varies greatly also in the direction perpendicular
to the filter belt movement. Hence, in the future research, it would be a good idea to measure the
filter cake temperature along the whole width of the cake.
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Fig. 9. Filter cake solids content plotted against temperature difference between the filter cake surface at the end
of the dewatering region and slurry feed. The size of the marker is varied according to the mass of cake
deposited per unit area w and the color according to the pressure difference Δp.

4.4. Specific energy consumption

To investigate the specific energy consumption of vacuum filtration and to minimize the variation
in results arising from the two different types of vacuum pumps used in the study, theoretical power
demand calculations for the two pumps were made using Eqs. (5)–(6). The power demand of
thermal drying of the filtration product to zero moisture was calculated by Eq. (7). The specific
energy consumption of vacuum filtration, ୗ୤ܧ = ୤ܧ ݉ୱ⁄ , versus the filter cake solids content is
illustrated in Fig. 10. The specific energy requirement of vacuum filtration increases exponentially
as the pressure difference is increased. Similar findings were also observed by the authors of [28]
in experiments conducted using a Büchner filter. For experiments with the filter cake solids content
between 0.835 and 0.845, the results show nearly a tenfold increase in the specific energy
consumption of vacuum filtration from 29.5 to 291 kJ/kg as a result of the increasing pumping
demand for maintaining a higher pressure difference. When increasing the solids content of the
filter cake from 0.84 to 0.85, the specific energy consumption almost tripled from 56.1 to 153
kJ/kg. For experiments with the pressure difference of 0.2 bar, the solids content varied by 4.1 pp
between 0.797 and 0.838 while the specific energy consumption remained below 50 kJ/kg.
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Fig. 10. Specific energy consumption of vacuum filtration plotted against filter cake solids content. The size of
the marker is varied according to the mass of cake deposited per unit area w and the color according to
the pressure difference Δp.

The theoretical specific energy consumption of thermal drying, ୗ୲ܧ = ୲ܧ ݉ୱ⁄ , i.e., evaporation of
the residual moisture content in the filter cake was calculated with the help of Eq. (7) and assuming
a thermal efficiency η=50% of the drying process based on the heat efficiency of a spin-flash dryer
reported by Kudra et al. [29]. The specific energy consumption of thermal drying versus the filter
cake solids content is depicted on the left in Fig. 11. The moist solids are heated to 100 °C from
the initial temperature, which is assumed to be the same as the vacuum pump inlet air temperature.
A higher solids content decreases the energy required in the thermal drying stage. The majority of
the energy in drying is consumed by the evaporation of water and the small deviations from the
decreasing linear energy demand trend are due to the differences in the initial temperature (after
dewatering) of the filter cake. The total specific energy consumption to zero moisture, i.e., the sum
of the specific energy consumption of vacuum filtration and the specific energy consumption of
thermal drying (evaporation),ܧୗ୲୭୲ = ୗ୤ܧ + ୗ୲ܧ , versus the filter cake solids content after dewatering,
is presented on the right in Fig. 11. The optimum operating conditions in terms of specific energy
consumption for the pilot-scale filter and the slurry in question seem to concentrate around the
solids content of 0.84, emphasizing the importance of online tracking of the filter cake solids
content. Given that the total specific energy consumption mostly varies from 1000 to 1150 kJ/kg,
the potential for energy conservation by optimizing slurry concentration, pressure difference, and
cake deposited per unit area could be as high as 13 % in this case. In order to identify the optimum
operating point, the experiments with the total specific energy consumption in the lowest 10% are
presented in Table 3 in an ascending order according to the total specific energy consumption.
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Fig. 11. Specific energy consumption of evaporation of the residual moisture content of the filter cake (left) and
the total specific energy consumption to zero moisture (right) plotted against filter cake solids content.
The size of the marker is varied according to the mass of cake deposited per unit area w and the color
according to the pressure difference Δp.

The total specific energy consumption to zero moisture within the lowest 10 % is achieved with
pressure differences ranging from 0.2 to 0.3 bar. All these experiments with the exception of one
are from the test series with two of the highest levels of the slurry solids content. The majority of
the experiments with a low total specific energy consumption are from experiments with a slow
filter belt speed and a high mass of cake deposited per unit area w. The solids contents after vacuum
filtration for the experiments in Table 3 is between 0.835 and 0.846. With one exception, the
porosities of the experiments are within the 50th percentile, and six of them deviate from the 25th
percentile by 3 pp or less. The two minimum energy consumption values are achieved with the
slurry solids content of 0.39 and long filtration times, the second-row experiment having an
increase in the mass of cake deposited per unit area w and in the pressure difference compared with
the first-row experiment. Compared with the two minimum specific energy consumption
experiments, increasing the slurry solids content to 0.44 and shortening the filtration time by
increasing the filter belt speed, produces a thinner, higher porosity cake with only a 6–7 kJ/kg (0.6–
0.7%) increase in the total specific energy consumption but a 25 to 42 % increase in the solids
throughput Ms.
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Table 3.  Filtration experiments with the total specific energy consumption in the lowest 10%. For symbol
definitions, see Nomenclature.

ssl

(-)
ρsl

(kg/m3)
w

(kg/m2)
Ms

(g/s)
Δp

(bar)
Lc

(mm)
z

(cm)
tf

(s)
tdw

(s)
s

(-) εav
M

(%)
ܜܗܜ܁ࡱ

(kJ/kg)
0.39 1323 10.4 5.2 0.20 5.1 130 259 160 0.838 0.27 16.2 1010
0.39 1323 11.7 5.9 0.30 5.7 125 249 170 0.845 0.27 15.5 1011
0.44 1384 7.4 7.4 0.20 4.2 100 100 110 0.835 0.36 16.5 1017
0.39 1323 10.4 5.2 0.30 5.0 105 209 209 0.846 0.24 15.4 1018
0.39 1323 9.1 4.6 0.20 4.4 105 209 209 0.839 0.25 16.1 1020
0.44 1384 14.7 7.4 0.30 7.6 115 229 190 0.840 0.31 16.0 1022
0.44 1384 7.4 7.4 0.30 3.9 85 85 125 0.841 0.31 15.9 1025
0.34 1270 12.1 6.1 0.30 5.8 120 239 180 0.842 0.25 15.8 1029

4.5. Prediction of the moisture contents of filter cakes

Nine combinations of experiment settings, measured process values, and interaction features were
used as inputs to the regression models (Table 4) to predict the filter cake solids content after
dewatering. The correlation map of the correlation coefficients ρ between these inputs is presented
in Fig. 12. The values of |ρ| ≥ 0.60 with the cake solids content are found for the pressure difference
∆p, air temperature at the vacuum pump inlet Tvp, the dewatering time tdw, the air flow rate at the
vacuum pump outlet Qa, and the interaction feature Δptdw. Other features presented in the
correlation map were also considered to have an impact on the filter cake solids content and were
thus included in the analysis.
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Fig. 12. Correlation map presenting the Pearson correlation coefficients ρ between the experiment settings, process
variables, the two interaction features ΔTa and Δptdw, and the filter cake solids content sc.

The selection of features for the nine feature sets used as inputs to model the cake solids content
was started from the bare minimum of Δp and w and increased and varied from set to set to see
which features would be advantageous to the modeling and to keep the number of input features at
a reasonable level. As these two features were the main controlled process variables in the
experiments, they were included in each of the feature sets, in two of which Δp was included only
in the interaction feature Δptdw.

Table 4. Features selected for different feature sets for experimentation as model inputs.

Feature Set
Features 1 2 3 4 5 6 7 8 9
ssl x x x x
w x x x x x x x x x
Δp x x x x x x x
tdw x x
Tsl x
Tvp x x x x x x
Qa x x x x x
ΔTa x x x x
Δptdw x x x x
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For all other algorithms except Gradient Boosting, the selection between the dewatering time and
the vacuum pump inlet air temperature favors the latter as can be seen in Fig. 13. This suggests that
the temperature of air after passing through the filter cake would be a better indicator of the cake
moisture content than the dewatering time. When relying on the two interaction features and the
mass of solids deposited per unit area, regression results for all the other algorithms except for
Gradient Boosting, again, take a turn to the worse. Selecting both the temperature and flow rate of
air as inputs in addition to w and Δptdw helps all the algorithms to perform better.

For feature sets 6, 7, 8, and 9, which all also include the solids content of slurry and the pressure
difference as inputs, the coefficients of determination R2 for the ensemble decision tree algorithms
Random Forest and Gradient Boosting rise to the 0.8 region. This indicates that these models are
able to explain ~80 % of the variability in the cake solids content. The fact that the training and
test scores for Random Forest are close to each other indicates a good fit of the algorithm for the
non-linear regression problem. When including all the features as inputs, the linear regression
algorithms Ridge and Elastic Net also achieve R2 values above 0.7 and the Ridge mean absolute
error (MAE) falls close to that of the Random Forest. The smallest MAE of 0.41 pp is achieved
using the Gradient Boosting regression algorithm and the feature set seven with the R2 values for
training and testing of 0.86 and 0.82 respectively.

Fig. 13. Performance of the trained models for the filter cake solids content. The mean absolute error MAE is
presented as percentage points of the target value. The coefficients of determination R2 are presented both
for the regression model training and testing.

Firstly, the application of the method on an industrial scale would require a proper instrumentation
of the filter to measure the variables used as inputs for the model. Secondly, a sufficient number of
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recordings of the input variables and an analysis of the corresponding cake samples at different
operating points of the filter would be required to train the model. The solids content of the slurry
as input variable could be replaced by a density measurement of the slurry.

5. Conclusions

The previously unexplored application of thermodynamics to cake vacuum filtration has proven
highly beneficial for predicting the filter cake moisture content. The heat transfer between air
forced through the filter cake, the water inside the filter cake, and the solids of the filter cake
resulting from evaporation of water can be seen clearly from the results of this study. Predicting
the cake solids content by using regression modeling with the vacuum pump inlet air temperature
and the air flow rate as inputs in addition to the traditional vacuum filtration process variables
makes it possible to explain 80% of the variance in the target variable by the model, while keeping
the mean absolute error below 0.5 pp.

An interesting approach for predicting the filter cake moisture content would be the use of cake
surface temperature as an input variable for modeling. The room temperature leak flow air mixes
with the cooled air that has passed through the filter cake, warming the air/vapor mixture in the
vacuum box especially at higher pressure differences with the increased leak flow. This moderates
the cool down effect of evaporation in the vacuum box, which could be prevented by using the
surface temperature of the filter cake as a key variable in the prediction. In addition to horizontal
belt vacuum filters, the proposed method for real-time monitoring of the moisture content of the
filter cake is applicable to other types of filters where similar temperature measurements can be
made. However, the applicability of the method to air drying in pressure filters would require
further investigation. Given the promising results of this pilot-scale research, next steps for future
investigation of the technology could include a trial setup on an industrial scale. Another topic for
future research could be the development of a rigorous mathematical model for evaporation using
the governing equations for mass, momentum, and energy.

Regarding the energy consumption of vacuum filtration and the subsequent thermal drying of the
calcite material investigated in this study, the following conclusions can be made:

1) The lowest total energy demand is achieved in the pressure difference range from 0.2 to 0.3
bar, when the cake is dewatered to approximately 84 wt.% solids content prior to thermal
drying.

2) Finding the right combination of slurry solids content, mass of cake per unit area, and
pressure difference is crucial in minimizing the specific energy consumption of vacuum
filtration.

Lappeenranta University of Technology has patented the methods for the filter cake moisture
estimation described in this publication.
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