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Abstract. In the past years, a rapid deployment of battery energy stor-
age systems for diverse smart grid services has been seen in electric
power systems. However, a cost-effective and multi-objective application
of these services necessitates a utilization of forecasting methods for a
development of efficient capacity allocation and risk management strate-
gies over the uncertainty of battery state-of-charge. The aim of this paper
is to assess the tuning efficiency of multi-attention recurrent neural net-
work for multi-step forecasting of battery state-of-charge under provision
of primary frequency control. In particular, this paper describes hyper-
parameter optimization of the network with a tree-structured parzen es-
timator and compares such optimization performance with random and
manual search on a simulated battery state-of-charge dataset. The ex-
perimental results demonstrate that the tree-structured parzen estimator
enables 0.6% and 1.5% score improvement for the dataset compared with
the random and manual search, respectively.

Keywords: battery state-of-charge · hyper-parameter optimization ·
multi-attention neural network · random search · tree parzen estimator.

1 Introduction

Battery energy storage systems (BESSs) are expected to be one of the key
smart grid technologies residing in all electric grid levels and providing variety of
system- or grid-oriented services [15, 11]. Primary frequency control (PFC) with
a fast dynamic response is one of the lucrative and highest-value application of
BESSs from a power system stability and economic perspectives [16, 3]. How-
ever, many studies conclude that in order to realize the full potential of costly
batteries, it requires a multi-objective operation and hence estimation of how its
state-of-charge (SOC) capacity will change in different time intervals [10]. Con-
sequently, forecasting methods are of extraordinate importance for the optimal
utilization of BESSs in the multi-objective smart grid environment.
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Time-series forecasting with deep learning has proven to be efficient tool
for a time-dependent decision making in electric power systems. Most of the
applications found in the literature can be related to forecasting of wind power
generation [9], load consumption [13], market price [24], and solar photo-voltaic
(PV) generation [14], respectively. There is, however, a deficit of expertise in
forecasting of BESS SOC under the PFC, and the existing research in related
domains is limited by rare attempts of frequency deviation forecasting [8].

This paper aims to assess the efficiency of multi-attention recurrent neu-
ral network (MARNN) to forecast hourly BESS SOC delta under the PFC on
multi-step time intervals. However, the performance of such deep learning mod-
els is highly dependent on the selection of model hyper-parameters and, hence,
requires comprehensive hyper-parameter tuning prior to an evaluation of the
model efficiency. In order to solve this hyper-parameter optimization problem, a
tree-structured parzen estimator (TPE) introduced in [6, 5] is deployed for the
MARNN and described in this paper. Moreover, the results of the paper provide
a comparison of the performance of the TPE optimization with a random and
manual search. The validation of the optimization approaches is carried out on a
simulated BESS SOC dataset generated based on the historical frequency data
measured in continental Europe synchronous area.

This paper is structured as follows. Section 2 provides a general overview of
the hyper-parameter optimization and the TPE. The description of an applied
automatic hyper-parameter tuning methodology including testing dataset, neu-
ral network model, hyper-parameter search spaces, and scenarios are given in
Section 3. The performance evaluation of the results is presented in Section 4.
Finally, discussion of the results and conclusions are given in Sections 5 and 6,
respectively.

2 Background

2.1 Hyper-parameter optimization

Hyper-parameter optimization in machine learning assesses the problem of find-
ing a set of optimal hyper-parameters x∗ in the domain χ that return the best
performance as evaluated on a validation set x:

x∗ = arg min
x∈χ

f(x), (1)

where the best score is defined as minimum of objective function f(x) that
usually corresponds to an error rate or a loss function.

Most of the hyper-parameter optimization techniques can be categorized to
manual, grid search, random search, and Bayesian model-based optimization in
the increasing order of their efficiency [4]. The highest efficiency of the Bayesian
approaches can be explained by taking into account the results of previous evalu-
ations in contrast to the grid and the random search. The efficiency of Bayesian
optimization is estimated with a probability model of the objective function
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based on observed hyper-parameter values:

P (f(x)|x). (2)

This probability model is called a ”surrogate” and represents a high-dimensional
response surface of hyper-parameters mapped to the probability of a score on
the objective function. Hence, the hyper-parameters in Bayesian optimization
are chosen based on greater probability of surrogate model and then evaluated
on the actual objective function.

2.2 Tree Parzen Estimator

The Tree-structured Parzen Estimator is a variant of sequential Bayesian model-
based optimization. Similar to the other model-based optimizations, in TPE
every hyper-parameter has a domain (search space) that is expressed via the
probability distributions such as uniform, log-normal, and normal distributions,
or categorical variables. However, dissimilar to other algorithms, for each hyper-
parameter, the TPE creates two different distributions, where l(x) is a distri-
bution for the hyper-parameters where the value of the objective function is
less than the threshold y∗, and g(x) is the distribution that is greater than the
threshold. Then, the TPE uses a Bayes rule to build a surrogate model with the
probability of the hyper-parameters given the score on the objective function:

P (x|f(x)) =

{
l(x), if y < y∗

g(x), if y ≥ y∗ . (3)

Finally, the next set of hyper-parameters is selected from the surrogate model
with aim to maximize Expected Improvement (EI) criteria that is proportional to
l(x)/g(x) ratio and promotes a choice of hyper-parameters from l(x) distribution:

EIy∗(x) =
γy∗l(x)− l(x)

∫ −∞
y∗

p(y)dy

γy∗l(x) + (1− γ)g(x)
∝ (γ +

g(x)

l(x)
(1− γ))−1, (4)

where γ is a quantile of the observed y values, so that γ = P (y < y∗).

3 Methods

3.1 Automatic hyper-parameter tuning

The process of automatic hyper-parameter tuning applied in this paper for the
TPE optimization is described in Fig. 1 as sequential Bayesian model-based
optimization. This automatic process can be explained as closed loop simulation
between the model of a neural network and Bayesian optimizer. The part of
the neural network simulation starts with building the neural network model
on a set of hyper-parameters from search space, continues with the network
training and the evaluation of the network performance on a validation set. A
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history of such evaluations serves as an input for the optimizer that is using this
history to form a surrogate model and obtain new hyper-parameters maximizing
EI criteria. This iterative process is repeated until the maximum number of
estimations is reached. In the case of random search, such process does not
assume any evaluation of the previous results and generates the hyper-parameter
set randomly.

Fig. 1. A sequential automatic hyper-parameter optimization modified from [17].

3.2 Testing data

The BESS SOC dataset for the automatic hyper-parameter tuning was modelled
according to the rules for provision of the PFC that are based on the deviation
of locally measured frequency f(t) from the nominal system frequency fN:

∆f(t) = f(t)− fN. (5)

A power output at every moment PFCR(t) required for the PFC is defined
by a reference droop curve that is shaped by two main parameters, which are
an allowed dead-band ∆fdb and a full activation frequency deviation ∆fmax:

PFCR(t) =


0, |∆f(t)| ≤ |∆fdb|
Pmax

FCR

(
∆f(t)
|∆fmax|

)
, |∆fdb| < |∆f(t)| < |∆fmax|

Pmax
FCR

(
∆f(t)
|∆f(t)|

)
, |∆f(t)| ≥ |∆fmax|

. (6)

A negative frequency deviation over the dead-band corresponds to a positive
reference power output, which in the case of BESS leads to discharging, while
BESS charging is provoked by the positive deviation under the same condition.
A BESS is in idle state when the frequency deviation is within the dead-band.
When the frequency deviations are larger that the dead-band, BESS regula-
tion power is proportionally increased until the full activation frequency limit
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is reached. Finally, the deviations that are equal or exceeding ∆fmax require a
maximum reference power. Besides these parameters there is a full activation
time for the resources, but BESS can provide continuous support with a small
activation time.

Historical grid frequency measurements with 10-second resolution retrieved
from the Rseau de Transport d’lectricit (RTE - transmission system operator
of France) [21] were utilized as an input parameter for the dataset modelling.
The measurements correspond to a continental Europe synchronous area during
the time period from October 2014 to April 2019. The droop curve ∆fmax was
set to ±200 mHz with no-activation deadband ∆fdb of ±10 mHz. A chosen
BESS power to energy ratio was equal to 1 as it is one of the most common
ratios for PFC according to [11]. The resulted 10-second BESS SOC dataset
has been re-sampled to a hourly SOC resolution and is depicted in Fig. 2. The
data is stationary with a vivid correlation at 24-hour lagged data points that is
illustrated in Fig. 3.
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Fig. 2. Raw, standard deviation, and rolling mean values of BESS SOC dataset.
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Fig. 3. Autocorrelation and partial autocorrelation plots of BESS SOC dataset with
200-hour lag values.

3.3 Model description

Recurrent Neural Networks (RNNs) that were initially developed for language
modelling [23] are one of the state-of-art architecture designs applied for solving
sequential forecasting problems in an energy sector [22, 18]. A structure of RNN
models usually consists of encoder and decoder RNNs represented by a set of
long short term memory (LSTM) units or gated recurrent unit (GRU). In this
architecture, the former is trying to compress an input sequence into a context
vector and the latter attempts to decode this vector in an output sequence.
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Attention mechanism is one of the latest advances in neural machine transla-
tion [2] that led to significant performance improvements of deep learning mod-
els. The main difference with the encoder-decoder RNN is that the attention
model develops an aggregate context vector that is filtered specifically for each
output time step and memorized in the decoder layer. In this work, MARNN is
deployed to assess its effectiveness on the above introduced dataset. A MARNN
was implemented based on the model in [20] using Keras 2.0.2 high-level neural
networks API [7] with Tensorflow 1.0.1 [1] as backend in the Python 3.6 envi-
ronment, and an example functional model of this network with two attention
heads is visualized in Fig. 4. This functional model can be separated into Input,
Encoder, Attention, and Decoder layers.

Fig. 4. An example of a functional model of the MARNN with two attention heads
and four decoder units.

3.4 Hyper-parameters

Attention length corresponds to a number of multi-attention heads used in the
attention layer and defines possible capability of the attention mechanism. Num-
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ber of hidden units in the decoder layer specifies the number of states kept in
the decoder layer and is tightly linked with the attention length. For instance,
setting the number to 4 units in case of 24-hour input sequence will provide
only 4 days saved for the attention at maximum. Activation function defines the
relevance of the attention by leveling the output of aggregated context vector
in a concatenated part of the attention layer. Dropout addresses an over-fitting
problem by randomly dropping units from the neural network during training.
In the model, the dropout was applied to a densely-connected attention and
decoder layers, respectively. Learning rate is one of the crucial parameters for
training. Usually it varies from less than 1 to 10−6 with 10−2 as default value.
In the model, the learning rate was adjusted for Adam optimizer.

3.5 Testing scenario

A testing scenario applied in this study for the automatic hyper-parameter tun-
ing is presented in Table 1. The parameters of the testing scenario are defined
by search spaces and distributions of the above-described hyper-parameters. The
search spaces for the number of hidden units and attention heads were set in
range from 2 to 14 with randint distribution. Categorical variable choice was
used for the activation function to select among None, ReLu, and Sigmoid func-
tions. Finally, an uniform distribution was used for the dropout and the learning
rate with corresponding ranges from 0 to 1 and from 10−3 to 10−2, respectively.

Table 1. Scenarios for a hyper-parameter optimization of the model.

Hyper-parameter Search space Distribution

Attention length 2− 14 Randint
Hidden units 2− 14 Randint
Activation function None, Sigmoid, ReLu Categorical
Dropout 1 0.0− 1.0 Uniform
Dropout 2 0.0− 1.0 Uniform
Learning rate 10−3 − 10−2 Uniform

In this work, the automatic hyper-parameter optimization was implemented
with Hyperas package [19] that is a wrapper over Hyperopt library [12]. The
objective function for the performance evaluation of the MARNN model was
Root Mean Square Error (RMSE). Prior to the testing, a difference was applied
to the dataset to prevent persistence model properties. Moreover, a MinMax
scaling with range from 0 to 1 was utilized for the dataset. A number of maximum
iterations was limited to 100 for both algorithms, and a number of epochs was
limited to 10 for each trial. A batch size was set equal to 128 data points. Two
optimization approaches were used from the Hyperas, which are the TPE and
random search.
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4 Results

A visualization of the automatic hyper-parameter optimization with the TPE
and the random search is presented in Fig. 6-5 with PairGrid plot and the
best optimization parameters are summarized in Table 2 including the optimal
manual search parameters. The color of the points in a scatter plot above a
diagonal is mapped to a sequential order of the testing trials, where dark blue
points correspond to the first trials and dark red to the last trials. A density plots
below the diagonal demonstrate the highest concentration of the trials with dark
red color and the lowest with dark blue color. The best trial is marked with a
red star, and diagonal plots show the distribution of the trials along the search
spaces. In both of the methods, some of the testing estimations were removed
from the visualization because of the extremely high values of their RMSE scores.
In Table 2, the best RMSE score among the methods is marked in bold.

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n 
fu

nc
 io

n

0

5

10

15

20

A 
 e

n 
io

n 
le

n 
h

0

5

10

15

20

De
co

de
r u

ni
 

0.0

0.5

1.0

Dr
op

ou
  1

0.0

0.5

1.0

Dr
op

ou
  2

−0.005

0.000

0.005

0.010

0.015

Le
ar

ni
ng

 ra
 e

None ReLu Sigmoid

Ac iva ion func ion

2.6

2.8

3.0

3.2

3.4

RM
SE

0 10

A  en ion len h
0 10

Decoder uni 
0.0 0.5 1.0

Dropou  1
0.0 0.5 1.0

Dropou  2
0.000 0.005 0.010

Learning ra e
2.8 3.0 3.2

RMSE

Fig. 5. Results of the random search hyper-parameter optimization.
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Fig. 6. Results of the TPE hyper-parameter optimization.

Table 2. Results of the model hyper-parameter optimization.

Hyper-parameter TPE optimization Random search Manual search

Attention length 13 2 7
Hidden units 9 4 8
Activation function None ReLu None
Dropout 1 0.295 0.054 0.2
Dropout 2 0.108 0.364 0.2
Learning rate 0.001 0.002 0.01

RMSE 2.671 2.688 2.710

According to the results, the best score was achieved by the TPE method
with a difference from random and manual search approaches in 0.6% and 1.5%,
respectively. However the scores of all methods are comparable, the hyper-
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parameters used for their best trials have major dissimilarities. For example,
the TPE optimization achieved its best result with None activation function,
while ReLU was the best choice for the random search. The TPE was searching
for the attention length and the number of decoder units near the highest values
of the given search space, while just 2 multi-attention heads and 4 decoder units
were used in the random search. This dissimilarity can be also seen from the
dropout values where a midpoint area of the interval was used for the dropout 1
and the beginning - for the dropout 2 by the TPE, but the opposite combination
was utilized in the random search. However, a partial convergence can be seen
in low values for the learning rate in both cases.

A performance of the tested methods is demonstrated in Fig. 7 on 24-hour
forecasting intervals that were chosen randomly from the testing set. For each
of the method, the MARNN was built based on the best trial hyper-parameters,
trained during 50 epochs, and tested against BESS SOC testing data.
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Fig. 7. A performance of the TPE, random search, and manual search optimization
methods on unobserved testing data.

5 Discussion

The outcomes of the automatic hyper-parameter tuning are inline with the re-
sults shown by these optimization algorithms in other studies. The advantages
of TPE are in lower number of iterations required for a score improvement com-
pared with the random search and generally higher score performance. However,
in this case, the TPE optimization has not improved the neural network accu-
racy notably, it gave much more understanding about areas with the highest
expected improvement. It is also possible that the best results were not achieved
because of the low number of testing trials that might not have been sufficient
for TPE to select the best hyper-parameters. However, a higher number of trials
was not possible due to hardware memory limits. In this situation, a possible ap-
proach would be an iterative simulations with several testing search spaces that
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would be chosen from the most promising areas of each previous optimization
test. Moreover, taking into account the similarity of the models results and the
different hyper-parameters values used for the different methods, it is possible
to conclude that the obtained performance scores are close to the optimal value,
and further performance improvement is restricted by the effects of the chosen
hyper-parameters on the model score. Moreover, an additional limitation of the
utilized approach is that the methods were delivering the best score of each trial
based on the last epoch but it is also possible that the lowest score could have
been achieved at early epochs. Moreover, a better approach would be to substi-
tute the restriction of fixed number of epochs with early-stopping criteria and
to save the best score among the epochs.

6 Conclusions

This paper describes a deployment of the automatic hyper-parameter tuning on
top of the MARNN model for forecasting of BESS SOC under the PFC. The
TPE optimization was applied for hyper-parameter tuning and compared with
the random and manual search. The best score was achieved by the TPE but the
close performances were demonstrated by the random and manual search. Taking
into consideration the similarity of the results with different hyper-parameters,
it is possible to assume the near-optimal values of the chosen hyper-parameters
for BESS SOC forecasting.

The future work should resolve the limitations of the current work and inves-
tigate the results of TPE optimization for a larger number of trials with different
stopping criteria for the trials. Moreover, an assessment of the TPE optimiza-
tion efficiency for BESS SOC datasets from grid synchronous areas with different
provision curve parameters is a matter of interest.
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