890
HEURISTIC SIM
ILARITY- AN
D DISTAN
CE-BASED SUPERVISED FEATURE SELECTION
 M
ETHODS
Christoph Lohrm
ann
HEURISTIC SIMILARITY- AND DISTANCE-BASED
SUPERVISED FEATURE SELECTION METHODS
Christoph Lohrmann
ACTA UNIVERSITATIS LAPPEENRANTAENSIS 890
Christoph Lohrmann
HEURISTIC SIMILARITY- AND DISTANCE-BASED
SUPERVISED FEATURE SELECTION METHODS
Acta Universitatis
Lappeenrantaensis 890
Dissertation for the degree Doctor of Philosophy (Computational Engineering)
to be presented with due permission for public examination and criticism in
the Auditorium 1316 at Lappeenranta-Lahti University of Technology LUT,
Lappeenranta, Finland on the 16th of December, 2019, at noon.
Supervisors Professor Pasi Luukka
LUT School of Business and Management
Lappeenranta-Lahti University of Technology LUT
Finland
Professor Mikael Collan
LUT School of Business and Management
Lappeenranta-Lahti University of Technology LUT
Finland
Post-Doctoral Researcher Matylda Jabłońska-Sabuka
LUT School of Engineering Science
Lappeenranta-Lahti University of Technology LUT
Finland
Reviewers Associate Professor Yuri Lawryshyn
Faculty of Applied Science and Engineering
University of Toronto
Canada
Professor Frank Chung-Hoon Rhee
Department of Electronics and Computer Engineering
Hanyang University
South Korea
Opponent Associate Professor Yuri Lawryshyn
Faculty of Applied Science and Engineering
University of Toronto
Canada
ISBN 978-952-335-472-2
ISBN 978-952-335-473-9 (PDF)
ISSN-L 1456-4491
ISSN 1456-4491
Lappeenranta-Lahti University of Technology LUT
LUT University Press 2019
Abstract
Christoph Lohrmann
Heuristic similarity- and distance-based supervised feature selection methods
Lappeenranta 2019
128 pages
Acta Universitatis Lappeenrantaensis 890
Diss. Lappeenranta-Lahti University of Technology LUT
ISBN 978-952-335-472-2, ISBN 978-952-335-473-9 (PDF), ISSN-L 1456-4491, ISSN
1456-4491

In the field of machine learning, the available data often contain many features to describe
phenomena. This can pose a problem since only those features that are relevant to
characterize the target concept are needed, whereas additional features can make it even
more complicated to determine the underlying association between the features and the
phenomenon. Therefore, an essential task for data analysis is feature selection, which
means to reduce the number of features in the data to a set of relevant features. The focus
in this thesis is on supervised feature selection methods used in the context of
classification tasks. In particular, the emphasis is on heuristic filter methods, which do
not guarantee an optimal solution but are considerably faster and are deployed as a pre-
processing step for the data before a classification algorithm is applied.
The first approach presented is the ‘fuzzy similarity and entropy’ (FSAE) feature
selection method, which is a modification of the approach by Luukka (2011). It is
demonstrated that this approach, which evaluates each feature by itself (a univariate
approach), accomplishes at least comparable classification results to the original
approach, often with a considerably smaller feature subset. The results were competitive
to those of several other distance- and information-based filter methods. In addition to
several artificial examples and real-world medical datasets, the FSAE was deployed
together with a random forest to construct a classification model for the prediction of the
S&P500 intraday return. Several trading strategies derived from the classification model
demonstrated the ability to outperform a buy-and-hold strategy with small to moderate
transaction costs. In the context of classification, the similarity classifier, which as the
FSAE feature selection method works with a single representative point (ideal vector) for
each class, was modified to allow for multiple ideal vectors per class using clustering.
This classifier was able to outperform all single classifier models it was compared to in
terms of classification accuracy, often by a significant margin. The same idea of using
multiple class representatives was successfully applied in the context of feature selection
with the proposed ‘clustering one less dimension’ (COLD) algorithm. In addition, the
distance-based COLD filter algorithm is capable of accounting for dependencies among
features (a multivariate approach). This ability was highlighted on several artificial
examples. Lastly, it achieved at least competitive results compared to several other
heuristic filter methods on real-world datasets.
Keywords: feature selection, feature ranking, dimensionality reduction, filter method,
similarity classifier, FSAE, COLD, supervised learning, machine learning

Acknowledgements
The journey towards writing a dissertation is often depicted as challenging, laborious and,
at times, frustrating. Even though I also faced setbacks during this time, I felt they were
few in number and, at least retrospectively, relevant for my personal advancement.
However, it is clear that I would not be able to look back at the past three years with a
feeling of gratefulness if it were not for the many special people that accompanied me
during this journey.
First and foremost, I would like to thank my three supervisors. I am deeply grateful for
Professor Pasi Luukka’s continuous support and encouragement to pursue ideas and
engage in discussions and his sympathetic ear for problems of any kind I was facing
during that time. Moreover, I would like to thank Professor Mikael Collan and Professor
Pasi Luukka for their support in finding project works as well as funding and providing
me with the opportunity to teach. In this context, I would also like to thank the other
members of the business analytics team at LUT – Mariia, Jyrki, Jan, Sheraz and Azzurra.
I have always felt supported, and all of them made me feel as part of the team, which I
am very grateful for. In addition, I would like to thank Professor Ari Jantunen, who was
very open and supportive right from the start of my employment in the School of Business
and Management.
In terms of funding, I would like to express my appreciation for the financial support
obtained by the Manufacturing 4.0 (MFG 4.0) project of the Finnish Strategic Research
Council as well as two project-related personal grants obtained from the LUT Foundation.
None of these could I have obtained without the invaluable support of Professor Mikael
Collan.
I would like to thank my supervisor post-doctoral researcher Matylda Jabłońska-Sabuka
for providing me with the opportunity to start as a doctoral student in the School of
Engineering Science. It was she and Dr Tuomo Kauranne that believed in my ideas and
made it possible to return to LUT after my exchange at LUT during my master studies.
In addition, I would like to thank the staff at the Doctoral School, especially Sari Damsten
and Saara Merritt, for their support in any matters related to doctoral studies.
Moreover, I would like to stress my appreciation for the friends that I shared an office
and many emotions with: Mahinda Mailagaha Kumbure, Sebastian Springer, Ramona
Maraia and Dipal Shah. Last but not at least, I would like to express my appreciation for
the support from my family and friends. I would like to thank my wife, Alena, for her
continuous belief in me and for having the right advice and words of encouragement at
the right time. Finally, I would like to express my gratitude to my parents, my grandfather
and my friends Arthur, Benedict and Fabian in my home country. I always felt that no
matter where I am, I have your support and a place in your hearts, as you do in mine.
Christoph Lohrmann
August 2019
Lappeenranta, Finland

‘We are drowning in information and starving for knowledge’
– Rutherford D. Rogers

To my wife, Alena

Contents
Abstract
Acknowledgements
Contents
List of Publications 11
Nomenclature 13
1 Introduction 15
2 Related Methods 29
2.1 Similarity Classifier ... 29
2.2 Selected Feature Selection Methods .. 30
2.2.1 ReliefF ... 30
2.2.2 Fisher Score ... 34
2.2.3 Laplacian Score ... 35
2.2.4 Feature Selection by Luukka (2011) ... 36
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 41
3.1 Vulnerabilities of the Feature Selection Method by Luukka (2011) 41
3.2 Introduction and Reasoning ... 49
3.3 Step-by-Step Algorithm of FSAE ... 50
3.4 Application to Artificial Data .. 53
3.5 Application to Medical Data ... 57
3.6 Application to the Prediction of S&P500 Intraday Returns 62
3.6.1 Introduction and Objectives .. 62
3.6.2 Data and Feature Selection ... 63
3.6.3 Results and Conclusion ... 67
3.7 Conclusion and Limitations of FSAE Feature Selection 72
4 Similarity Classifier with Multiple Ideal Vectors 75
4.1 Introduction and Reasoning ... 75
4.2 Step-by-Step Algorithm of the Novel Similarity Classifier 76
4.3 Application to Artificial Data .. 80
4.4 Application to Credit Risk Data .. 83
4.5 Conclusion and Limitations of the Novel Similarity Classifier 87
5 Clustering One Less Dimension (COLD) Feature Selection 89
5.1 Introduction and Reasoning ... 89
5.2 Step-by-Step Algorithm of COLD Feature Selection 92
5.3 Application to Artificial Data .. 98
5.4 Application to Medical Data ... 108
5.5 Conclusion and Limitations of the COLD Algorithm 110
6 Conclusion, Limitations and Future Work 113
References 117
Publications 127

11
List of Publications
This dissertation is based on the following papers. The rights have been granted by the
publishers to include the papers in this dissertation.
I. Lohrmann, C., Luukka, P., Jabłońska-Sabuka, M., and Kauranne, T. (2018). A
combination of fuzzy similarity measures and fuzzy entropy measures for
supervised feature selection. Expert Systems with Applications, 110, pp. 216-
236. Publication Forum JUFO Level: 1

II. Lohrmann, C., and Luukka, P. (2019). Classification of intraday S&P500 returns
with a random forest. International Journal of Forecasting, 35, pp.390-407.
Publication Forum JUFO Level: 2

III. Lohrmann, C., and Luukka, P. (2018). A novel similarity classifier with multiple
ideal vectors based on k-means clustering. Decision Support Systems, 111, pp.27-
37. Publication Forum JUFO Level: 2

IV. Lohrmann, C., and Luukka, P. (2019). Using clustering for supervised feature
selection to detect relevant features. Accepted at the Fifth International
Conference on Machine Learning, Optimization, and Data Science (LOD 2019).
Publication Forum JUFO Level: 1

Author’s Contribution
For Publication I, the author analysed the vulnerabilities of the existing feature selection
algorithm by Luukka (2011), proposed the modification, suggested artificial examples to
illustrate the abilities of the modified algorithm, implemented it in MATLAB code, and
is the main author of the paper.
For Publication II, the author selected and collected the financial data, proposed the
trading strategies, implemented the MATLAB code and is the main author of the paper.
For Publication III, the author proposed the novel similarity classifier, suggested
artificial examples to illustrate its abilities, implemented the MATLAB code and is the
main author of the paper.
For Publication IV, the author proposed the multivariate feature selection method,
suggested artificial examples to illustrate its abilities, implemented the MATLAB code
and is the main author of the paper.

13
Nomenclature
Mathmematical Notations
α ridge regularization parameter
D number of features
H entropy
m generalized mean parameter
μ mean value of a distribution
N number of classes
n number of observations/samples
p Łukasiewicz parameter
r ratio of distances (COLD algorithm)
S similarity
SE scaled entropy
SF scaling factor
σ variance
Σ covariance matrix
v ideal vector
X dataset
x observation of the dataset
Abbreviations
COLD Clustering one less dimension
ETF Exchange traded fund
FS Feature selection
FSAE Fuzzy similarity and entropy
KNN K-nearest neighbour
LVF Las Vegas filter
MAP Minimum average partial (test)
MA Moving average
MACD Moving average convergence divergence
MVDE Multiple vector differential evolution
OWA Ordered weighted average
PA Parallel analysis
PC Principal component
PCA Principal component analysis
RSI Relative strength index
SVM Support vector machine
VIX Volatility index

15
1 Introduction
In machine learning and data analysis, it is common for there to be a ‘wealth’ of
information and features available for real-world problems (Caruana and Freitag, 1994a;
Blum and Langley, 1997). In this context the term ‘feature’ means a ‘measurable
property’ (Chandrashekar and Sahin, 2014) and is interchangeable with the term
‘variable’ or ‘attribute’. For instance, in connection with medical data, a feature can be
the height, age, blood pressure or information on the medical history of a patient. For a
credit evaluation, a feature can be the balance, income, credit history or the profession of
a customer. In many applications, the number of features available for use have increased
considerably (Chandrashekar and Sahin, 2014). What may appear at first glance an
unreserved benefit for machine learning algorithms poses problems for these algorithms
that do not appear in simple textbook examples (Caruana and Freitag, 1994a). The main
drawback of high-dimensional data, meaning data containing a large quantity of features
and often also of observations, is its potentially adverse effect on the generalization.
Features not relevant to or useful for a machine learning task can act as noise, interfering
with actually useful features and making it harder for the algorithm to determine the actual
signal or pattern(s) in the data (Caruana and Freitag, 1994a; Dessì and Pes, 2015). Hence,
using irrelevant features in a classifier that has no feature selection embedded can lead to
overfitting of the training data, which leads to a worse classification accuracy on the test
data. For instance, Luukka and Lampinen (2011) investigate and show that adding
additional irrelevant features that act as noise deteriorates the classification accuracy of
their classifier on the test set. Hence, additional features can deteriorate the performance
of an algorithm in addition to the higher computational complexity that naturally follows
from higher dimensional data (Rhee and Lee, 1999; Dessì and Pes, 2015). Therefore,
using, for instance, a suitable subset of features instead of all available data can improve
the generalization of an algorithm (Caruana and Freitag, 1994a). Unfortunately, the
common issue in real-world problems is that it is unknown which features are relevant
(Almuallim and Dietterich, 1994; Piramuthu, 2004). As a consequence, practitioners may
feel inclined to introduce and simply keep numerous features to address their task
(Almuallim & Dietterich, 1991; Dash & Liu, 1997). However, the more complex and
high-dimensional a task is, the more essential it becomes to focus on the relevant features
(Blum and Langley, 1997). To decrease the number of features, meaning the number of
dimensions under consideration, so-called dimensionality reduction techniques can be
applied.
A categorization of dimensionality reduction methods and selected related techniques is
outlined in Figure 1.1.
1 Introduction 16

Figure 1.1: Taxonomy of dimensionality reduction techniques

Dimensionality reduction techniques are commonly divided into feature selection and
feature extraction (Liu and Motoda, 2001; Li et al., 2017). Feature extraction
characterizes a process that uses the original set of features, projects it into a different
lower-dimensional feature space and extracts a new set of features that is smaller than the
original one (Liu and Motoda, 2001; Li et al., 2017). A classic and popular representative
of feature extraction is principal component analysis (PCA), where a smaller feature set
is obtained by linearly transforming the original features (Mitra, Murthy and Pal, 2002;
Motoda and Liu, 2002). Feature extraction belongs to the group of feature transformation
methods which change the original features by applying some form of transformation.
Feature transformation also includes the process of feature construction, which works
inherently differently than feature extraction and is not considered a dimensionality
reduction technique. The reason, therefore, is that feature construction augments the
existing set of features by creating and adding new features to the feature set based on the
existing features (Wnek and Michalski, 1994; Liu and Motoda, 2001; Piramuthu and
Sikora, 2009). In this way, it attempts to improve the information and expressive power
contained in the original features (Motoda and Liu, 2002). However, this method
obviously increases the number of features, which is the opposite of dimensionality
reduction.
Feature selection stands in stark contrast to feature transformation techniques such as
feature extraction but also feature construction. Feature selection can be defined as the
process of selecting a subset of the existing features measured according to some criterion
(e.g. classification accuracy/error rate, distance measure, etc.) (Liu and Setiono, 1996;
Bins and Draper, 2001; Liu and Motoda, 2001; Liu and Yu, 2005). Two aspects are
essential in this definition – first, the existing features are unaltered, and, second, a subset
is selected, meaning that the number of features and, hence, the dimension of the data,
are reduced. In contrast to feature extraction, no transformation of the features is
conducted, whereas in contrast to feature construction, no additional (transformed)
features are added.
 17
Feature selection has been successfully applied in various disciplines and applications.
These applications include, but are not limited to, diagnosis models for business crises
(Chen and Hsiao, 2008), credit scoring (Maldonado, Pérez and Bravo, 2017), image
classification (Zhou et al., 2017), diagnosis of Alzheimer’s disease (Trambaiolli et al.,
2017), prediction of groundwater pollution and quality (Rodriguez-Galiano et al., 2018)
and astronomy (Zheng and Zhang, 2008).
One of the main advantages of feature selection is that it results in simpler classification
models and benefits the generalization ability of these models (Mitra, Murthy and Pal,
2002; Saeys, Inza and Larranaga, 2007). This also positively impacts the classification
accuracy achieved with the corresponding classification model (Guyon and Elisseeff,
2003; Liu and Yu, 2005; Chandrashekar and Sahin, 2014). Moreover, the feature subset
obtained via feature selection has the advantage of containing unaltered features, which
preserves the interpretability of the results (Saeys, Inza and Larranaga, 2007). This aspect
and the lower dimensional feature set contribute to the ability to visualize and understand
the features and the corresponding model more easily (Guyon and Elisseeff, 2003;
Chandrashekar and Sahin, 2014). In addition, using fewer features for the model
construction leads to improvements in the computational complexity and data storage
requirements (Guyon and Elisseeff, 2003; Liu and Yu, 2005).
As highlighted in Figure 1.1, feature selection is commonly divided into supervised, semi-
supervised and unsupervised forms (Ang et al., 2016; Li et al., 2017). In unsupervised
feature selection, no class information (class labels) is available to indicate the group or
class the observations belong to (Mitra, Murthy and Pal, 2002). A class label could, for
instance, represent whether a credit applicant was paying his/her loan back (‘0’) or
defaulted on the payments (‘1’). Since the class labels are unknown, unsupervised feature
selection methods evaluate features with respect to the inherent structure of the data (e.g.
variance, distribution, separability, etc.) to determine a feature subset (Ang et al., 2016;
Li et al., 2017). This type of feature selection is commonly used in the context of
clustering, which is a form of unsupervised learning (Li et al., 2017). Semi-supervised
(or semi-unsupervised) feature selection is used when only for some proportion of the
observations the class label is known, and for the remaining part it is unknown (Ang et
al., 2016). Finally, in supervised feature selection, the class label for all observations is
known and used to select a subset of features (Ang et al., 2016). Hence, supervised feature
selection can be applied in the context of classification or regression (Li et al., 2017),
which are both forms of supervised learning. This dissertation centres on supervised
feature selection for classification, where the labelled information of classes is available
(highlighted in grey in Figure 1.1).
The aim of supervised feature selection is to find a set of relevant features. To be able to
determine ‘relevant’ features, a definition of relevance is required (Molina, Belanche and
Nebot, 2002). There is a variety of theoretical definitions of relevance in the context of
feature selection, with some authors presenting multiple definitions (Caruana and Freitag,
1994b; John, Kohavi and Pfleger, 1994; Blum and Langley, 1997; Bell and Wang, 2000;
Molina, Belanche and Nebot, 2002). As Blum & Langley (1997) point out, the diversity
1 Introduction 18
of definitions is dependent on the context of relevance or, as they phrase it, in the form of
the question ‘relevant to what?’. The focus in this research is on the practical aspect of
feature selection as a means by which to reduce the number of features in the feature set
and improve, or at a minimum not strongly deteriorate, the corresponding performance
of a classifier compared to the complete feature set. Hence, the definition of relevance
used in the context of this dissertation follows the fifth definition in Blum & Langley
(1997) on ‘incremental usefulness’. According to that definition, for a sample S, a
learning algorithm L and a set of features D, a feature d is incrementally useful to the
classifier L with respect to the feature set D if the classification accuracy of the hypothesis
produced by L using the features D and d together is higher than that of feature set D
alone (Blum and Langley, 1997). In simple terms, if adding a feature d to a set of features
D improves the mean accuracy of the classifier used on them, then feature d is
‘incrementally useful’, which means relevant. Hence, the features assumed to be relevant
according to the feature selection methods in this research are those that have shown to
have improved the classification accuracy for a classifier or are considered to contribute
to the discrimination among classes and, hence, are assumed to improve the classification
accuracy.
After having clarified the meaning of the term ‘relevance’ for feature selection in the
context of this research, it is essential to discuss the distinction of supervised feature
selection methods in order to set the scope of this dissertation. Supervised feature
selection is commonly subdivided into the three forms (Figure 1.2) of filter, wrapper and
embedded methods (Liu and Yu, 2005; Saeys, Inza and Larranaga, 2007; Chandrashekar
and Sahin, 2014).

Figure 1.2: Types of supervised feature selection

These three types and their respective advantages and disadvantages can be summarized
as follows:
Filter method: The filter method is part of the pre-processing of the data, meaning that
it is used before a classification algorithm (= induction algorithm) is applied to the data
(John, Kohavi and Pfleger, 1994; Blum and Langley, 1997). These methods evaluate the
 19
relevance of a feature based on the characteristics of the features in the data and then rank
the features according to an evaluation criterion (Liu and Yu, 2005; Saeys, Inza and
Larranaga, 2007). Then, a user-specified number of the highest-ranked features can be
retained, or a threshold can be used such that all features with a score exceeding the
threshold are included in the feature subset (Saeys, Inza and Larranaga, 2007;
Chandrashekar and Sahin, 2014). Since these methods ‘filter’ out features that are not
considered relevant even before any classification algorithm is used, they are independent
of a classifier and can be adjoined with any of them (Liu and Setiono, 1996; Blum and
Langley, 1997). Additional advantages include that these methods are computationally
inexpensive, fast and can also be easily applied for high-dimensional data (Saeys, Inza
and Larranaga, 2007). Common disadvantages include that they usually evaluate features
without accounting for feature interactions and without respect to the actual classification
performance as well as their inability to detect redundant features (Kohavi and John,
1997; Saeys, Inza and Larranaga, 2007; Chandrashekar and Sahin, 2014).
Wrapper method: The wrapper method is not part of pre-processing and deploys the
classification algorithm as part of feature selection, which is sometimes described as
being ‘wrapped around’ the classifier (Liu and Setiono, 1996; Liu and Yu, 2005;
Chandrashekar and Sahin, 2014). For this type of approach, multiple feature subsets are
generated based on some measure, and their performance is determined via an evaluation
criterion – commonly classification accuracy (Liu and Yu, 2005; Saeys, Inza and
Larranaga, 2007). This follows the general idea that using the classifier with the feature
subsets will provide a better indication of the classification accuracy on the feature subset
than other measures and their corresponding biases (Blum and Langley, 1997). Wrapper
methods are implemented as iterative processes that at each step evaluate a different
feature subset (Li et al., 2017). This can be achieved via (sequential) forward selection,
(sequential) backward elimination or bi-directional selection (Liu and Motoda, 2001; Liu
and Yu, 2005). Forward selection is an iterative procedure that starts with an empty
feature set and adds in each iteration a feature, backward elimination starts with a
complete feature set and iteratively removes a feature and the bi-directional selection
simultaneously adds and removes features at each step (Blum and Langley, 1997; Liu and
Yu, 2005). The wrapper process is terminated when a stopping criterion is met, for
instance, based on classification accuracy. An example of a stopping criterion could be
that the new feature subset in a step does not lead to better classification accuracy than
the one in the previous step (Liu and Yu, 2005). Thus, the advantages of the wrapper
approach are that it may lead to higher classification accuracies and may account for
feature interactions (Saeys, Inza and Larranaga, 2007; Dessì and Pes, 2015). The main
limitation of this approach is that the selection of the optimal feature subset and the
corresponding performance are specific to the classifier (Saeys, Inza and Larranaga,
2007). Hence, the selected feature subset might not generally be the best feature subset
for any classification algorithm (Liu and Setiono, 1996). This stands in contrast to filter
methods, which produce a feature ranking independently of any classifier. Last, a
common criticism of wrapper methods is their high computational complexity since they
incorporate the classifier in each iteration of the algorithm (Blum and Langley, 1997;
Guyon and Elisseeff, 2003; Saeys, Inza and Larranaga, 2007).
1 Introduction 20
Embedded method: The term embedded method refers to learning algorithms that
include feature selection in the training procedure (Guyon and Elisseeff, 2003). Thus,
similar to wrapper methods, the optimal feature subset provided by such an algorithm is
specific to the classifier (Saeys, Inza and Larranaga, 2007). Using such methods has the
advantage that they can be more efficient and less computationally expensive than
wrappers (Guyon and Elisseeff, 2003; Saeys, Inza and Larranaga, 2007). On the
downside, embedded methods do not account for feature interactions, which can lead
them to neglect features that are relevant in relation with other features but do not appear
to be relevant just by themselves (Blum and Langley, 1997). Decision trees are a common
example of embedded methods (Breiman et al., 1984) since they select features to
partition the feature space, implicitly determining their relevance.
For the sake of completeness it should be noted that, in addition to these three main types
of supervised feature selection, there is also a hybrid form, which is commonly not
mentioned as a separate type (Li et al., 2017). Hybrid methods combine aspects of filter
and wrapper methods to avoid part of the computational complexity of a wrapper but
implement evaluation criteria from both approaches (Das, 2001; Liu and Yu, 2005).
Besides that, it should be noted that the emphasis in this research is on filter methods.
In addition to the taxonomy of supervised feature selection methods into filter, wrapper
and embedded methods, there exist further categorizations of these methods with respect
to the process of how feature subsets are (1) generated and (2) evaluated. The first refers
to the ‘search strategy’ (also referred to as ‘generation procedure’), which is the way
candidate feature subsets are generated (Dash & Liu, 1997; Liu & Yu, 2005). The search
strategies are commonly distinguished into three types, as illustrated in Figure 1.3.

Figure 1.3: Search strategies for supervised feature selection methods

Complete (or exhaustive) search: In feature selection, there are 2𝑁 possible feature
subsets for a set of N features (Dash & Liu, 1997; Liu & Yu, 2005). Evaluating all of
these feature subsets in order to find the optimal one is termed an exhaustive search. This
form of search is only computationally feasible for a small number of features, is costly
and, even with moderate feature set size, computationally intractable (Chandrashekar &
 21
Sahin, 2014; Dash & Liu, 2003; Guyon & Elisseeff, 2003). Alternatively, exhaustive
search guarantees the optimal feature subset (Guyon and Elisseeff, 2003; Liu and Yu,
2005). An example of an exhaustive search is the FOCUS algorithm (Almuallim and
Dietterich, 1994). However, the search does not have to be exhaustive to guarantee the
optimal feature subset since the search can be reduced to a certain extent to still conduct
a ‘complete search’ that will find the optimal subset (Dash & Liu, 2003). An example of
a complete but non-exhaustive search is the branch and bound algorithm (Narendra and
Fukunaga, 1977).
Heuristic search: An alternative to a complete (or exhaustive) search is a heuristic
search. The basic trade-off with this type of search is that the guarantee to obtain the
optimal feature subset is exchanged for a (considerable) reduction in computational
complexity (Bins & Draper, 2001; Dash & Liu, 2003; Liu & Yu, 2005). Hence, heuristic
methods are able to provide a suggestion for a good feature subset faster (Dash & Liu,
1997). Many algorithms are heuristic, including ReliefF (Kononenko, Simec and Robnik-
Sikonja, 1997) and the feature selection algorithm by Luukka (2011).
Random/Probabilistic search: The last search type is, compared to the other
approaches, rather new and also embodies an attempt to reduce computational complexity
by allowing the user to end up with a suboptimal feature subset (Dash & Liu, 1997; 2003).
As the name suggests, it is premised on generating feature subsets randomly (according
to some probability distribution) or on inserting randomness into a sequential feature
subset generation approach (Liu and Yu, 2005). An example of the former is the Las
Vegas filter (LVF) (Liu and Setiono, 1996) and of the latter the random-start-hill-
climbing method (Doak, 1992). The advantage of random search methods is that the
randomness can allow them to ‘escape’ from a local optimum (Liu and Yu, 2005).
The supervised feature selection methods discussed in the scope of this dissertation are
limited to heuristic methods (as indicated in Figure 1.3). As mentioned previously, the
search strategy determines which feature subsets are selected and evaluated. The next
categorization to support the understanding of different supervised feature selection
methods is according to the ‘evaluation criterion’ for feature subsets. Finding the (locally)
optimal feature subset is always based on an evaluation criterion in relation to which the
feature subset is (locally) optimal (Dash & Liu, 1997). Moreover, different criteria can
lead to different feature subsets (Dash & Liu, 1997). The evaluation criteria according to
Dash & Liu (1997; 2003) can be categorized into five groups (Figure 1.4).

1 Introduction 22

Figure 1.4: Evaluation criteria for supervised feature selection methods

Distance criteria: A distance measure (or separability-, divergence-, discrimination
measure) was defined based on a simple two-class example by stating that if a feature
leads to a greater difference in the class conditional probabilities than another, then it is
preferred to the other feature (Dash & Liu, 1997; Liu & Yu, 2005). An example of a
distance measure is the commonly used Euclidean distance (Dash & Liu, 1997).
Information criteria: An information criterion is a measure focusing on the information
gain that a feature provides. This gain can be defined as the decrease in uncertainty by
including a specific feature (expected posterior) compared to the case without this feature
(prior). A feature that leads to a higher information gain, meaning to a higher (expected)
reduction in uncertainty, is preferred to one with a lower information gain (Dash & Liu,
1997; Liu & Yu, 2005; Molina et al., 2002). An example of an information criterion is
entropy (Dash & Liu, 2003).
Dependence criteria: A dependence criterion (or correlation criterion) quantifies the
ability of a feature to predict the values taken by another feature or the class label (Dash
& Liu, 1997; Liu & Yu, 2005; Molina et al., 2002). It is common to measure this
dependence between a feature and the class and subsequently prefer features that have a
stronger association with the class labels than other features (Liu and Yu, 2005).
However, it is also possible to use the correlation among the features themselves to
possibly determine redundant features or those features that are independent of others
(Dash & Liu, 1997). A common example of a dependence criterion is correlation (Hall,
2000). Dash & Liu (1997; 2003) mention that dependence criteria could also be divided
into distance and information criteria but are kept as a separate type. This aspect also
indicates that evaluation criteria for a supervised feature selection method, such as the
dependence criterion, do not necessarily only embody characteristics of one evaluation
criterion.
Consistency criteria: A consistency criterion uses the so-called ‘MIN-FEATURES bias’
(Almuallim and Dietterich, 1991, 1994). This bias states, ‘if two functions are consistent
with the training examples, prefer the function that involves fewer input features’
(Almuallim and Dietterich, 1991). Essentially, a feature subset that is ‘consistent’ with
the classes is selected that uses the smallest number of features. In this context, the term
‘consistency’ means that no two observations that share the same values for all features
 23
belong to different classes (Arauzo-Azofra, Benitez and Castro, 2008). In simple terms,
two observations cannot be the same in terms of all features but have different class labels.
The latter is defined as an ‘inconsistency’ (Molina, Belanche and Nebot, 2002; Liu and
Yu, 2005). Since zero inconsistencies may not be achievable in a certain dataset, a user-
specified acceptable inconsistency rate can be applied, based on which the corresponding
minimum feature subset is determined (Dash & Liu, 1997).
Accuracy criteria: An accuracy criterion (or error criterion) is simply the classification
accuracy (or probability of error) that is used to evaluate feature subsets (Dash & Liu,
1997; Molina et al., 2002). It is obvious that a feature subset leading to a higher
classification accuracy (or a lower error probability) will be preferred to other feature
subsets.
In addition to the type of evaluation criterion, it is crucial to distinguish between an
‘univariate’ and a ‘multivariate’ evaluation of feature subsets. Univariate methods
consider each feature separately, implicitly assuming the conditional independence of the
features, whereas multivariate methods account for such dependencies when evaluating
features (Martínez Sotoca and Pla, 2010; Dessì and Pes, 2015). Univariate feature
selection methods have the advantage of often being intuitive, easily interpretable and
computationally inexpensive compared to multivariate methods (Saeys, Inza and
Larranaga, 2007). However, univariate methods neglect feature interactions, which can
lead to worse classification accuracies for the corresponding feature subsets (Saeys, Inza
and Larranaga, 2007; Martínez Sotoca and Pla, 2010). In contrast, multivariate feature
selection methods account somehow for interactions among features, where univariate
methods fail to incorporate such (Robnik-Šikonja and Kononenko, 2003; Saeys, Inza and
Larranaga, 2007). However, multivariate feature selection methods are not always
necessary. In the majority of real-world cases Kononenko, Simec and Robnik-Sikonja
(1997) tested, there was only an insignificant difference in the results between
multivariate and univariate (= myoptic) filter methods. Notwithstanding, they state that
multivariate feature selection methods are useful if it is not known whether considerable
conditional dependencies exist among features in the data (Kononenko, Simec and
Robnik-Sikonja, 1997).
Combining the different categorizations of type, search strategy and evaluation criterion
for supervised feature selection methods, a two-dimensional taxonomy for supervised
feature selection methods can be obtained that includes selected examples of algorithms
that fall into certain categories (Figure 1.5). It is noteworthy that this taxonomy is two-
dimensional since the type of supervised feature selection and evaluation criterion are
closely related. In particular, the first four types of evaluation criteria are exclusively
found in filter methods, whereas accuracy is the preferred evaluation criterion for wrapper
methods (Kohavi and John, 1997; Liu and Yu, 2005).

1 Introduction 24
Branch & Bound
(Narendra and
Fukunaga, 1977)
Best First Strategy
(Xu, Yan and
Chang, 1998)
FOCUS
(Almuallim and
Dietterich, 1994)
ABB Branch &
Bound (Liu,
Motoda and Dash,
1998)
Beam Search
(Doak, 1992)
Smart Beam Search
(Gupta, Doermann
and DeMenthon,
2002)
Relief (Kira and
Rendell, 1992b)
ReliefF
(Kononenko, Simec
and Robnik-
Sikonja, 1997)
COLD (Publication
IV)
Laplacian Score
(He, Cai and
Niyogi, 2005)
Fisher Score (Duda,
Hart and Stork,
2012)
FS Luukka (2011)
FSAE (Publication
I)
Nonspecificity
(Luukka &
Lohrmann, 2019)
Information Gain
(Hall and Holmes,
2003)
Correlation-based
Feature Selection
(Hall, 2000)
Mutual Information
(Battiti, 1994)
Symmetrical
Uncertainty (Witten
and Frank, 2005;
Breiman et al.,
1984)
Gain Ratio
(Karegowda,
Manjunath and
Jayaram, 2010)
Set Cover (Dash,
1997)
BSE-SLASH
(Caruana and
Freitag, 1994a)
Importance Score
(Vafaie and Imam,
1994)
Bidirectional
Search (Doak,
1992)
Decision Tree
(Breiman et al.,
1984)
Random Forest
(Breiman, 2001)
Las Vegas Filter
(Liu and Setiono,
1996)
Random-Start Hill-
Climbing (Doak,
1992)
Genetic Algorithm
(Vafaie and Imam,
1994)
Figure 1.5: Taxonomy of supervised feature selection, search strategy and evaluation criteria
[modified from Liu & Yu (2005)]
As indicated in Figure 1.5 (in grey), the emphasis in this dissertation is on heuristic filter
methods using distance or information criteria to conduct supervised feature selection.
These two subcategories were selected since using distance and information criteria is
comparably simple but often yields good results and is a popular approach to supervised
filter methods. Moreover, the feature selection algorithm by Luukka (2011) was the
starting point of this research in feature selection, which is an information-theoretic
supervised filter method. This dissertation does not cover dependency- and consistency-
based filter methods.
 25
The research in this dissertation focuses on the development and improvement of feature
selection methods (Publications I, IV) and the application of feature selection on real-
world data (Publication II). However, it also covers a part on classification (Publication
III) since the idea underlying the modification of the discussed classifier is subsequently
deployed in one of the feature selection algorithms (Publication IV). An overview of the
objectives and contents of the publications is presented in Table 1.1 for the reader’s
convenience.

1 Introduction 26
IV

‘U
si
n
g
 c
lu
st
er
in
g
 f
o
r
su
p
er
v
is
ed
 f
ea
tu
re
 s
el
ec
ti
o
n

to
 d
et
ec
t
re
le
v
an
t
fe
at
u
re
s’

T
o
 d
ev
el
o
p
 a
 n
o
v
el

su
p
er
v
is
ed
 f
ea
tu
re
 s
el
ec
ti
o
n

al
g
o
ri
th
m
 t
er
m
ed
 ‘
cl
u
st
er
in
g

o
n
e
le
ss
 d
im
en
si
o
n
’
(C
O
L
D
)
an
d
 t
o
 d
em
o
n
st
ra
te
 i
ts
 a
b
il
it
y

to
 c
o
p
e
ef
fe
ct
iv
el
y
 w
it
h

ce
rt
ai
n
 c
o
m
p
le
x
 d
at
a
st
ru
ct
u
re
s
an
d
 t
o
 f
in
d
 s
u
b
se
ts

o
f
re
le
v
an
t
fe
at
u
re
s
th
at
 l
ea
d

to
 c
o
m
p
et
it
iv
e
re
su
lt
s
to
 t
h
e
b
en
ch
m
ar
k
 f
il
te
r
m
et
h
o
d
s
F
ea
tu
re
 s
el
ec
ti
o
n

S
u
p
er
v
is
ed

M
u
lt
iv
ar
ia
te
 f
il
te
r
(h
eu
ri
st
ic
,
d
is
ta
n
ce
 c
ri
te
ri
o
n
)
F
o
u
r
ar
ti
fi
ci
al
 d
at
as
et
s,
 t
w
o

re
al
-w
o
rl
d
 m
ed
ic
al
 d
at
as
et
s
T
ab
le
 1
.1
:
O
v
er
v
ie
w
 o
f
th
e
p
u
b
li
ca
ti
o
n
s
an
d
 t
h
ei
r
o
b
je
ct
iv
es

II
I
‘A
 n
o
v
el
 s
im
il
ar
it
y

cl
as
si
fi
er
 w
it
h
 m
u
lt
ip
le

id
ea
l
v
ec
to
rs
 b
as
ed
 o
n
 k
-
m
ea
n
s
cl
u
st
er
in
g
’
T
o
 d
ev
el
o
p
 a
n
 e
x
te
n
si
o
n
 t
o

th
e
si
m
il
ar
it
y
 c
la
ss
if
ie
r
th
at

d
ep
lo
y
s
cl
u
st
er
in
g
 t
o
 f
in
d

m
u
lt
ip
le
 i
d
ea
l
v
ec
to
rs
 f
o
r
cl
as
si
fi
ca
ti
o
n
 a
n
d
 t
o

d
em
o
n
st
ra
te
 t
h
e
ab
il
it
y
 o
f
th
is
 a
lg
o
ri
th
m
 t
o

o
u
tp
er
fo
rm
 t
h
e
o
ri
g
in
al

si
m
il
ar
it
y
 c
la
ss
if
ie
r
an
d

ac
h
ie
v
e
co
m
p
et
it
iv
e
re
su
lt
s
to
 t
h
e
b
en
ch
m
ar
k

cl
as
si
fi
ca
ti
o
n
 a
lg
o
ri
th
m
s
C
la
ss
if
ic
at
io
n

S
u
p
er
v
is
ed

S
in
g
le
 c
la
ss
if
ie
r
T
h
re
e
ar
ti
fi
ci
al
 d
at
as
et
s,

th
re
e
re
al
-w
o
rl
d
 f
in
an
ci
al

d
at
as
et
s
II

‘C
la
ss
if
ic
at
io
n
 o
f
in
tr
ad
ay

S
&
P
5
0
0
 r
et
u
rn
s
w
it
h
 a

R
an
d
o
m
 F
o
re
st
’
T
o
 d
ev
el
o
p
 a
 m
ac
h
in
e
le
ar
n
in
g
 a
p
p
ro
ac
h
 u
si
n
g

fe
at
u
re
 s
el
ec
ti
o
n
 a
n
d

cl
as
si
fi
ca
ti
o
n
 t
o
 p
re
d
ic
t
th
e
S
&
P
5
0
0
 i
n
tr
ad
ay
 r
et
u
rn
,
to

in
tr
o
d
u
ce
 a
 s
im
p
le
 t
ra
d
in
g

st
ra
te
g
y
 b
as
ed
 o
n
 t
h
e
cl
as
si
fi
ca
ti
o
n
 m
o
d
el
 a
n
d
 t
o

d
em
o
n
st
ra
te
 t
h
e
ab
il
it
y
 o
f
th
is
 s
tr
at
eg
y
 t
o
 o
u
tp
er
fo
rm
 a

b
u
y
-a
n
d
-h
o
ld
 s
tr
at
eg
y
 a
ft
er

tr
an
sa
ct
io
n
 c
o
st

F
ea
tu
re
 s
el
ec
ti
o
n
 a
n
d

cl
as
si
fi
ca
ti
o
n

S
u
p
er
v
is
ed

U
n
iv
ar
ia
te
 f
il
te
r
an
d

en
se
m
b
le
 c
la
ss
if
ie
r
R
ea
l-
w
o
rl
d
 f
in
an
ci
al
 s
to
ck

m
ar
k
et
 d
at
as
et

I
‘A
 c
o
m
b
in
at
io
n
 o
f
fu
zz
y

si
m
il
ar
it
y
 m
ea
su
re
s
an
d
 f
u
zz
y

en
tr
o
p
y
 m
ea
su
re
s
fo
r
su
p
er
v
is
ed
 f
ea
tu
re
 s
el
ec
ti
o
n
’
T
o
 h
ig
h
li
g
h
t
th
e
v
u
ln
er
ab
il
it
y

o
f
th
e
fe
at
u
re
 s
el
ec
ti
o
n

al
g
o
ri
th
m
 b
y
 L
u
u
k
k
a
(2
0
1
1
),

to
 d
ev
el
o
p
 a
n
 i
m
p
ro
v
ed

v
er
si
o
n
 t
er
m
ed
 f
u
zz
y

si
m
il
ar
it
y
 a
n
d
 e
n
tr
o
p
y

(F
S
A
E
)
fe
at
u
re
 s
el
ec
ti
o
n
 t
o

ad
d
re
ss
 t
h
es
e
v
u
ln
er
ab
il
it
ie
s
an
d
 t
o
 d
em
o
n
st
ra
te
 t
h
e
ab
il
it
y

o
f
th
e
im
p
ro
v
ed
 f
il
te
r
m
et
h
o
d

to
 f
in
d
 s
u
b
se
ts
 o
f
re
le
v
an
t
fe
at
u
re
s
m
o
re
 e
ff
ec
ti
v
el
y
 t
h
an

th
e
o
ri
g
in
al
 a
lg
o
ri
th
m

F
ea
tu
re
 s
el
ec
ti
o
n

S
u
p
er
v
is
ed

U
n
iv
ar
ia
te
 f
il
te
r/
w
ra
p
p
er

(h
eu
ri
st
ic
,
in
fo
rm
at
io
n

cr
it
er
io
n
)
T
h
re
e
si
m
p
le
 a
rt
if
ic
ia
l
d
at
as
et
s,
 f
iv
e
re
al
-w
o
rl
d

m
ed
ic
al
 d
at
as
et
s
P
u
b
li
ca
ti
o
n
 N
u
m
b
er

P
u
b
li
ca
ti
o
n
 N
am
e
P
u
rp
o
se
/O
b
je
ct
iv
e
P
ro
b
le
m
 T
y
p
e
P
ro
b
le
m
 M
o
d
e
T
y
p
e
o
f
A
lg
o
ri
th
m

D
at
a

 27
The structure of the dissertation as well as the objective and content of each section are
summarized in Table 1.2.
Section Content Related Publication(s)
1 Introduction Theoretical background
 Taxonomy of feature selection
 Scope of research
 Summary of objectives of each
publication

2 Related Methods Introduction to the similarity
classifier
 Introduction to several distance- and
information-based heuristic filter
methods for feature selection
(univariate and multivariate)
Publications I, III, IV
3 Fuzzy Similarity and
Entropy (FSAE) Feature
Selection
 Emphasis on vulnerabilities of the
feature selection by Luukka (2011)
[Research need]
 Introduction of the univariate filter
FSAE
 Application of feature selection
algorithms to artificial and real-world
data
Publications I, II
4 Similarity Classifier with
Multiple Ideal Vectors
 Emphasis on a common deficiency of
distance-based classifiers [Research
need]
 Introduction of the similarity
classifier with multiple ideal vectors
that deploys clustering and two
different forms of pre-processing
 Application of classification
algorithms to artificial and real-world
data
Publication III
5 Clustering One Less
Dimension (COLD) Feature
Selection
 In-depth discussion of univariate vs
multivariate filter methods
 Introduction of the multivariate
distance-based heuristic filter method
COLD using K-medoids clustering
 Application of feature selection
algorithms to artificial and real-world
data
Publication IV
6 Conclusion, Limitations and
Future Work
 Summary of the contributions of each
publication
 Limitations of the suggested
algorithms and findings
 Suggestions for future work
Publications I–IV
Table 1.2: Structure of the dissertation
1 Introduction 28
The subsequent section will focus on the introduction of the similarity classifer and the
related filter methods for feature selection. The similarity classifier is included because it
is linked to the feature selection approach by Luukka (2011), discussed afterwards.
Selected filter methods are depicted since they belong to the same categories (distance-
and information-based heuristic filter methods) as the filter methods presented in this
dissertation. Hence, they function as suitable benchmark algorithms for the artificial and
real-world examples deployed in this research.
29
2 Related Methods
2.1 Similarity Classifier
The similarity classifier is a classification method, which is a form of supervised learning.
The term ‘supervised’ refers to the fact that the targets, meaning in classification the class
labels of observations, are known (Webb, 2002; Bishop, 2006). Classification refers to
machine learning problems in which observations (synonymic: samples) have to be
assigned to classes (Bishop, 2006). The assignment is conducted based on the feature
values that characterize an observation. A very simple example is presented in Duda, Hart
and Stork (2012), where fishes should be assigned to one of two classes, ‘Bass’ or
‘Salmon’, premised on their length (first feature) and colour (second feature). The notion
of similarity is rooted in fuzzy set theory. In contrast to crisp sets, fuzzy sets do not simply
indicate whether a property is present or not but also allow the modelling of a membership
degree (Zadeh, 1965; Klawonn and Castro, 1995). The strength of the membership is
expressed as a real number in the compact interval [0,1] (Zadeh, 1965, 1971). The
similarity relation can be regarded as a generalization of the equivalence relation (Zadeh,
1971). So, the notion of the fuzzy equivalence relation can be used to formalize similarity
(Klawonn and Castro, 1995). The similarity classifier is based on the equivalence relation
of the generalized Łukasiewicz structure to define the membership or similarity of objects
(Luukka, Saastamoinen, & Könönen, 2001). The equivalence of two objects a and b can
be expressed in the generalized Łukasiewicz structure as follows:
 𝑎 ↔ 𝑏 = √1 − |𝑎𝑝 − 𝑏𝑝|
𝑝
, (2.1)
where the parameter p comes from the generalized Łukasiewicz structure (Luukka,
Saastamoinen, & Könönen, 2001). The idea to use generalized Łukasiewicz-valued
similarity takes an important role in the similarity classifier. Let us assume a dataset
denoted X containing n observations of D features (from 𝑑 = 1, 2, … , 𝐷). The
observations belong to one of N classes (from 𝑖 = 1, 2, … , 𝑁), and the class label for each
observation is known. The setup of the classifier is based on the observations in the
training set. The step-by-step algorithm underlying the similarity classifier is presented
below.
The first step is the scaling of the data into the compact interval [0,1] and the calculation
of a so-called ‘ideal vector’ for each class. Such an ideal vector is supposed to represent
a class well (Luukka et al., 2001). This means that for each feature it contains a value that
is supposed to embody the values that this feature takes for a given class. The ideal vector
for a class can, for instance, be calculated simply with an arithmetic mean, generalized
mean, Bonferroni mean or OWA operator (Kurama, Luukka, & Collan, 2016; Luukka &
Kurama, 2013; Luukka & Leppälampi, 2006). Using the generalized mean, the ideal
vector element for class i for a feature d can be calculated as:
2 Related Methods 30

𝑣𝑖,𝑑 = (
1
𝑛𝑖
∑ 𝑥𝑑
𝑚
𝑥𝜖𝑋𝑖
)
1
𝑚
, (2.2)
where 𝑋𝑖 is the subset of observations in 𝑋 that belongs to class i, 𝑛𝑖 is the number of
observations in that class and m is the generalized mean parameter. If 𝑚 = 1, then the
result is simply the arithmetic mean. The ideal vector for class i is the vector of all ideal
vector elements for all D features and can be denoted as 𝑣𝑖 = (𝑣𝑖,1, 𝑣𝑖,2, … 𝑣𝑖,𝐷). At the
end of this step, the ideal vector for each class in the dataset was calculated.
The second step is to calculate the similarity S of a new observation 𝑥𝑗 with the ideal
vectors of each of the N classes. The similarity values are generalized Łukasiewicz-valued
and are computed for each feature separately and then aggregated by using a mean or
weighted mean function. The similarity of observation 𝑥𝑗 with ideal vector 𝑣𝑖 can be
expressed as (Luukka and Leppälampi, 2006):

𝑆(𝑥𝑗 , 𝑣𝑖) = (
1
𝐷
∑ (√(1 − |𝑥𝑗,𝑑
𝑝 − 𝑣𝑖,𝑑
𝑝 |)
𝑝
)
𝑚𝐷
𝑑=1
)
1
𝑚
 (2.3)
The similarity expresses the strength of the membership of observation 𝑥𝑗 to class i. As
for the calculation of ideal vectors, different mean functions can also be deployed to
aggregate the similarity values over all D features. Here, a simple arithmetic mean is
applied.
The third step is the assignment of each observation to the class it is most similar to.
Since each class is represented by an ideal vector, the observation is assigned to the class
to whose ideal vector it is most similar or, in other words, has the highest membership
degree (Luukka et al., 2001).
An advantage of the similarity classifier is that the steps underlying this algorithm are
overall quite simple. Moreover, it requires only a few observations to accomplish high
classification accuracies and is also computationally inexpensive compared to many other
classification algorithms (Luukka, 2008). In addition, several applications on real-world
datasets have demonstrated its ability to achieve high classification accuracies (Luukka,
2008; Luukka & Leppälampi, 2006; Luukka, 2010).
2.2 Selected Feature Selection Methods
2.2.1 ReliefF
The ReliefF algorithm is an extension of the popular filter feature selection (and feature
weighting) approach called the Relief algorithm introduced by Kira and Rendell (1992a).
2.2 Selected Feature Selection Methods 31
The Relief algorithms belong to the most successful filter methods (Dietterich, 1997). It
is noteworthy that the original Relief algorithm was limited to binary class problems.
Relief is premised on the idea that for each observation, the closest observation from the
same class (near-hit) and from the other class (near-miss) can be used to determine each
feature’s relevance (Kira and Rendell, 1992b). In particular, for a certain feature, the
difference in the distance of the near-hit from an observation to the distance of the near-
miss with the same observation is calculated. This calculation is repeated for each
considered observation (with at most all observations) and then averaged to constitute the
weight of the feature, where higher weights indicate more important features (Kira and
Rendell, 1992b). It is apparent that the feature weight following this approach will be
higher if the average difference of the near-misses (other class) is higher than the near-
hits (same class). Using this approach allows an accounting for conditional dependencies
among features (Kononenko, Simec and Robnik-Sikonja, 1997). The reason for this is
that the near-hits and near-misses are determined based on the distance between
observations accounting for all features. Afterwards, the contribution to the feature
weight is computed premised solely on the distance of the near-hits and near-misses to an
observation. In this way, the selection of near-hits and near-misses accounts for
conditional dependencies among features, even though the subsequent evaluation is
conducted for only one feature. This makes Relief (and also the extension ReliefF) a
multivariate, distance-based filter method. Hence, Relief (and ReliefF) can address data
structures with conditional dependence among features (e.g. the XOR problem) that
simple dependence-based methods cannot account for (e.g. Gini-index, gain ratio)1
(Kononenko, Simec and Robnik-Sikonja, 1997). Therefore, already Relief is regarded as
a powerful algorithm for weighting and ranking features (Kononenko, Simec and Robnik-
Sikonja, 1997). One of the main drawbacks of Relief is that it is limited to two-class
problems (Kononenko, 1994). To address this point and other weaknesses of Relief,
Kononenko (1994) introduced ReliefF, which can cope with multiple classes and
performs better in the presence of noisy and incomplete data. The idea behind the
extension remains the same as in ReliefF but with certain additions that will be
highlighted in the algorithm’s step-by-step description below (Robnik-Šikonja and
Kononenko, 2003). Let us assume a dataset denoted X containing n observations of D
features (from 𝑑 = 1, 2, … , 𝐷).
In the first step the weights for each feature, W, which represent each feature’s relevance,
are initialized to zero. The weight for the d-th feature is denoted by 𝑊𝑑. Moreover, it is
decided for how many observations, denoted m, the algorithm is run (with 𝑚 ≤ 𝑛). More
observations m will lead to a more reliable feature ranking. Hence, for datasets not too
large, it is suggested to carry out ReliefF with all observations (Kononenko, Simec and
Robnik-Sikonja, 1997).

1 Kononenko, Simec and Robnik-Sikonja (1997) referred to these approaches as ‘myoptic’ (which is
synonymic to the word ‘shortsighted’), stating that they cannot take context into account such that (local)
dependencies remain hidden to them.
2 Related Methods 32
In the second step, a single observation 𝑥𝑖 is randomly selected and the near-hits (for the
same class) ℎ𝑗 and near-misses (for each other class) 𝑚𝑗 are calculated (with 𝑗 = 1 𝑡𝑜 𝑘).
In contrast to Relief, where only a single near-hit and near-miss are deployed, in ReliefF,
multiple near-hits and near-misses are used to make the feature ranking more reliable
when noisy data are present (Kononenko, Simec and Robnik-Sikonja, 1997). For the
given observation 𝑥𝑖, the contribution to the weight of each of the features is calculated.
For the d-th feature, the weight 𝑊𝑑 is updated as (Robnik-Šikonja and Kononenko, 2003):

𝑊𝑑 = 𝑊𝑑 − ∑
𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , ℎ𝑗)
𝑚 ∗ 𝑘
𝑘
𝑗=1
+ ∑
[
𝑃(𝐶)
1 − 𝑃(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖))
∑ 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , 𝑚𝑗(𝐶))
𝑘
𝑗=1]
𝑚 ∗ 𝑘
𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)
,
(2.4)
where k is the number of near-hits and near-misses used, m is the number of observations
considered for ReliefF, 𝑃(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)) is the probability of the class that observation 𝑥𝑖
belongs to, C is the set of all other classes and 𝑃(𝐶) is the probability of each of these
classes. In addition, 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , ℎ𝑗) is the difference between observation 𝑥𝑖 and the near-
hit ℎ𝑗 (from the same class), and 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , 𝑚𝑗(𝐶)) is the difference between observation
𝑥𝑖 and the near-miss 𝑚𝑗 of one of the classes in C.
The difference 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , ℎ𝑗) and 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , 𝑚𝑗) for an observation 𝑥𝑖 with the near-hit
ℎ𝑗 and near-miss 𝑚𝑗 is calculated differently for categorical and numerical variables. For
categorical features, the difference is calculated according to Equation (2.5) and for
numerical features as in Equation (2.6) (Robnik-Šikonja and Kononenko, 2003).

𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖, 𝑥𝑗) = {
0 𝑖𝑓 𝑥𝑖,𝑑 = 𝑥𝑗,𝑑
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.5)

𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖, 𝑥𝑗) =
|𝑥𝑖,𝑑 − 𝑥𝑗,𝑑|
max(𝑥𝑑) − min (𝑥𝑑)
 (2.6)
The basic difference between these two approaches is that for categorical features, only
the fact is measured whether the feature value is equal or unequal. For numerical features,
it is measured how far the values of the d-th feature are for two instances 𝑥𝑖 and 𝑥𝑗 from
each other, normalized to the unit interval [0,1]. According to Robnik-Šikonja and
Kononenko (2003), the same normalized distance is used via averaging over all features
D to calculate the near-hits and near-misses. In the original Relief algorithm, the
Euclidean distance was used for this purpose (Kira and Rendell, 1992b), which is not
normalized.
2.2 Selected Feature Selection Methods 33
The formula in Equation (2.4) essentially adjusts the weights 𝑊𝑑 for the near-hits and
near-misses. The weight is reduced by the average difference to the near-hits. This means
that if observations from the same class as the current observation are far from that
observation, this is regarded as negative for feature importance. The intuition behind this
is that observations of the same class being close is desirable and indicates a clear pattern
for the class. In contrast, the weight is increased by the weighted average distance of the
near-misses of the other classes C. Hence, it has a positive effect on the feature importance
score if observations from other classes are distant from the current observation. A high
distance from the observations of other classes indicates that the observation clearly
belongs to its class, and it is apparent that it is different to representatives of the remaining
classes. Overall, the weight is adjusted in favour of the weighted average difference to
the near-misses from other classes and faces a decrease from the average difference of
near-hits that belong to the same class. Thus, if the closest observations of other classes
are more distant than the closest observations of the same class (for a specific feature),
this represents a positive contribution overall to the weight of the feature. The differences
to the near-misses 𝑚𝑗 is weighted by the share of the probability of each of the classes C.
This probability is divided by the probability of all other classes (1 − 𝑃(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)))
which the given observation 𝑥𝑖 does not belong to. The calculation of 𝑊𝑑 is conducted
for all 𝑑 = 1 𝑡𝑜 𝐷, meaning for all features in the data.
It is noteworthy that in Equation (2.4) the division by 𝑚 ∗ 𝑘, which leads to an averaging
over all m and k for each weight, assumes that each observation m and each near-hit and
near-miss for an observation 𝑥𝑖 are equally important. For RRelief, the Relief algorithm
extension for regression, and ReliefF, Robnik-Šikonja and Kononenko (2003) introduce
the possibility to adjust the latter. This means that the rank of different near-misses and
near-hits affects their influence on the weight for observation 𝑥𝑖. Closer near-misses and
near-hits (meaning higher-ranked near-misses and near-hits) have a larger impact. In
contrast, the influence of near-misses and near-hits decreases exponentially if they are
further away. Hence, instead of using k in the denominator of Equation (2.4), which is
equivalent to multiplying by
1
𝑘
, the new multiplication factor can be stated in the following
(simplified) formula (Robnik-Šikonja and Kononenko, 2003):

𝑑𝑖,𝑗 =
𝑒
−(
𝑟𝑎𝑛𝑘(𝑥𝑖,𝑥𝑗)
𝜎
)
2
∑ 𝑒
−(
𝑟𝑎𝑛𝑘(𝑥𝑖,𝑥𝑗)
𝜎
)
2
𝑘
𝑗=1
 (2.7)
The 𝑟𝑎𝑛𝑘(𝑥𝑖, 𝑥𝑗) is the rank (or position) of 𝑥𝑗 in the sequence of all instances that is
ordered by their distance from 𝑥𝑖 (Robnik-Šikonja and Kononenko, 2003). The parameter
𝜎 is the decay factor that affects the calculation of the distance.
When all near-hits and near-misses are equally important (so when in Equation (2.4) k is
used in the denominator instead of the result from Equation (2.7)), a common choice for
the number of near-hits and near-misses is 10 (Kononenko, 1994; Kononenko, Simec and
2 Related Methods 34
Robnik-Sikonja, 1997). Opposed to that, when different weights are given to near-misses
and near-hits according to their rank (see Equation (2.7)), a suggested setup contains 70
nearest neighbours and 𝜎 = 20 (Robnik-Šikonja and Kononenko, 2003).
The third step encompasses the repetition of the second step until the contribution of all
m observations to the weight for each feature is calculated. Subsequently, a weight for
each feature will be obtained that is 𝜖[−1,1], with higher weights indicating more relevant
features (Kononenko, Simec and Robnik-Sikonja, 1997).
Relevant features are expected to have weights larger than zero, whereas irrelevant or
even noisy features should end up with negative weights or a weight close to zero (Kira
and Rendell, 1992b). After that, a user-specified number of features with the highest
weights can be selected or a weight threshold can be used so that only features above that
threshold are included in the feature subset (Kira and Rendell, 1992b; Robnik-Šikonja
and Kononenko, 2003; Souza, Matwin and Japkowicz, 2006). The selection of the
threshold value is one of the drawbacks of Relief(F) (Chandrashekar and Sahin, 2014) as
well as its inability to find redundant features, which can result in a feature subset
containing redundant variables (Liu and Setiono, 1996; Bins and Draper, 2001).
2.2.2 Fisher Score
The Fisher score is a simple supervised filter method for feature selection (Duda, Hart
and Stork, 2012). The objective behind the Fisher score is to select features for which the
distance between observations of different classes is large and the distance from
observations in the same class is small (Gu, Li and Han, 2011; Li et al., 2017). Since this
approach considers features only in isolation and no dependencies among features, it is a
univariate, distance-based feature selection method. Conceptually, the idea underlying
the Fisher score is implemented by measuring how distant the class means for a feature
are from the feature mean and dividing this value by the variation for the feature in that
class. Accordingly, the Fisher score for a feature d is defined as:

𝐹𝑖𝑠ℎ𝑒𝑟 𝑆𝑐𝑜𝑟𝑒𝑑 =
∑ 𝑛𝑖(?̅?𝑖,𝑑 − ?̅?𝑑)
2𝑁
𝑖=1
∑ 𝑛𝑖𝜎𝑖,𝑑
2𝑁
𝑖=1
 , (2.8)
where 𝑛𝑖 is the number of observations contained in class i, ?̅?𝑖,𝑑 is the mean value of the
d-th feature for class i, 𝜎𝑖,𝑑 is the corresponding standard deviation for the values feature
d takes for observations in class i and ?̅?𝑑 is the mean of the d-th feature in the entire
dataset. Following the objective of the Fisher score, high feature scores will be obtained
if the class means for a feature d are far from the mean of the feature ?̅?𝑑 while the variance
of observations in each class for feature d is small. The mean differences and variances
of the classes are weighted by the number of observations 𝑛𝑖 in each of these classes. It
is apparent that the difference between the class means to the feature mean is only large
when the class means are on average distant from the feature mean, meaning that the
feature mean does not represent the values for feature d in the classes well. This is
2.2 Selected Feature Selection Methods 35
obviously positive for the discrimination achieved among the classes. In addition, the
variance is included since features for which the classes are distant from each other and
that have a low variance are likely far from each other and, hence, well discriminating the
classes. In contrast, if the class means for a feature are on average distant from the feature
mean, but there is high variance in each class, this may likely lead to an overlap of the
classes, which results in a lower Fisher score. Hence, the Fisher score reflects the
relevance of features. Finally, the k features with the highest Fisher score should be
selected for the feature subset (Li et al., 2017).
2.2.3 Laplacian Score
The Laplacian score is a filter method that can be deployed for supervised and
unsupervised machine learning tasks (He, Cai and Niyogi, 2005). The explanation in this
section will focus on the supervised version of the Laplacian score. This heuristic
distance-based filter method aims to rank features according to their locality-preserving
power (He, Cai and Niyogi, 2005). The underlying supervised method can be represented
in the form of a step-by-step algorithm with the following three distinct steps:
The first step consists of the calculation of an affinity matrix S of dimension 𝑛 ∗ 𝑛, where
n is the number of observations in the data. The affinity matrix S adheres to the following
rule for two observations 𝑥𝑖 and 𝑥𝑗 (He, Cai and Niyogi, 2005; Li et al., 2017):

𝑆𝑖,𝑗 = {𝑒
−
‖𝑥𝑖−𝑥𝑗‖
2
𝑡 𝑖𝑓 𝑐𝑖 = 𝑐𝑗
0 𝑖𝑓 𝑐𝑖 ≠ 𝑐𝑗
 , (2.9)
where 𝑐𝑖 is the class of observation 𝑥𝑖 and 𝑐𝑗 the class of observation 𝑥𝑗, respectively. The
value for parameter t is a ‘suitable’ constant (He, Cai and Niyogi, 2005). The affinity (or
weight) matrix S represents the local structure of the data (He, Cai and Niyogi, 2005). If
two examples belong to the same class, then a weight/affinity value that represents the
similarity of these examples is calculated. If they do not belong to the same class, then
the weight is set to zero.
In the second step the diagonal matrix D is computed, for which off-diagonal elements
are zero, and the diagonal element for an observation 𝑥𝑖 is determined as (Li et al., 2017):

𝐷𝑖,𝑖 = ∑ 𝑆𝑖,𝑗
𝑛
𝑗=1
 (2.10)
This means that, for instance, the i-th element on the diagonal of D is the sum over all
columns j for the weights in the i-th row in the affinity matrix S. Based on the affinity
matrix S and the diagonal matrix D, the graph Laplacian (or Laplacian matrix) can be
calculated as 𝐿 = 𝐷 − 𝑆 (He, Cai and Niyogi, 2005; Li et al., 2017).
2 Related Methods 36
In the third step the Laplacian score for a feature d is calculated according to the
following formula (He, Cai and Niyogi, 2005):

𝐿𝑑 =
?̃?𝑑
𝑇𝐿?̃?𝑑
?̃?𝑑
𝑇𝐷?̃?𝑑
 𝑤ℎ𝑒𝑟𝑒 ?̃?𝑑 = 𝑥𝑑 −
𝑥𝑑
𝑇𝐷1
1𝑇𝐷1
1 , (2.11)
where 𝑥𝑑 denotes the d-th column of the dataset, T in the exponent the transpose and 1 a
column vector of ones [1,1, … ,1]𝑇. Even though it is not directly apparent from Equation
(2.11), the Laplacian score 𝐿𝑑 is related to the Fisher score and attempts to minimize the
difference between feature values of observations of the same class, taking into account
the multidimensional similarity of the observations and scaling the corresponding value
by the variance (He, Cai and Niyogi, 2005). After the Laplacian score for each feature is
determined, the user-specified k features with the smallest Laplacian scores are selected
for the feature subset (Li et al., 2017). Since the calculation of the affinity matrix S that
is deployed in the Laplacian score uses the similarity between observations accounting
for all features, the method can be regarded as a multivariate filter. In this aspect, it is
related to ReliefF, where the features are evaluated by themselves, but since the distance
to the near-hits and near-misses also accounts for all features, the method is overall
multivariate.
2.2.4 Feature Selection by Luukka (2011)
The feature selection method introduced by Luukka (2011) is a heuristic method that uses
similarity as well as fuzzy entropy measures. In the paper by Luukka (2011), the entropy
measure developed by De Luca and Termini (1972) and the two entropy measures from
Parkash, Sharma and Mahajan (2008) are deployed. De Luca and Termini (1972) depicted
fuzzy entropy as a ‘measure of the degree of fuzziness’ that provides insight into the
average information that is present in the data. The entropy measure by De Luca and
Termini is defined as:

𝐻(𝐴) = − ∑ [𝜇𝐴(𝑥𝑗)log 𝜇𝐴(𝑥𝑗) + (1 − 𝜇𝐴(𝑥𝑗)) log (1 − 𝜇𝐴(𝑥𝑗))]
𝑛
𝑗=1
, (2.12)
where 𝜇𝐴(𝑥𝑗) stands for the membership degree of 𝑥𝑗 to the fuzzy set A, which is within
the compact interval [0,1]. The other two entropy measures were develped by Parkash,
Sharma and Mahajan (2008) and are related to the idea of weighted entropy (Belis and
Guiasu, 1968). They are defined as:

𝐻1(𝐴) = ∑ 𝑤𝑗 [𝑠𝑖𝑛
𝜋𝜇𝐴(𝑥𝑗)
2
+ 𝑠𝑖𝑛
𝜋(1 − 𝜇𝐴(𝑥𝑗))
2
− 1]
𝑛
𝑗=1
 (2.13)
2.2 Selected Feature Selection Methods 37

𝐻2(𝐴) = ∑ 𝑤𝑗 [𝑐𝑜𝑠
𝜋𝜇𝐴(𝑥𝑗)
2
+ 𝑐𝑜𝑠
𝜋(1 − 𝜇𝐴(𝑥𝑗))
2
− 1]
𝑛
𝑗=1
 (2.14)
Two key properties of entropy measures for inputs 𝜖[0,1] are that the maximum entropy
is reached for an input value of 0.5 and that input values of ‘0’ and ‘1’ both yield an
entropy of zero (De Luca and Termini, 1972). This idea is visually represented in Figure
2.1.

Figure 2.1: Different entropy measures [reproduced from Publication II with the permission of
the publisher]

A high entropy value can indicate randomness and a low level of informativity in the data,
whereas a small entropy value can signal structure and a high level of informativity (Yao,
Wong and Butz, 1999). Luukka (2011) suggested combining a similarity measure as the
input to an entropy measure. In general, to combine entropy with the similarity values for
features is intuitive. A similarity close to ‘1’ indicates that two objects are very similar,
and a similarity of close to ‘0’ highlights that the objects are very dissimilar. It is obvious
to regard this as informative since there is no, or close to no, ambivalence in these
similarity values. The objects are in the first case clearly highly similar and in the second
case highly dissimilar. Therefore, the corresponding entropy value is close to zero and
indicates informativity. In contrast, a similarity value close to 0.5 indicates ambivalence
since the two objects are neither really dissimilar nor can they be considered very similar.
On account of this, the corresponding entropy value is high and emphasizes a low
informativity of such a similarity value. For each observation, the entropy is calculated
for all similarity values between the feature values of an observation with the feature
values of the ideal vectors. They are then summed for each feature. The outcome for each
feature will be a sum of entropy values for that feature over all observations and all ideal
vectors.
Being consistent in its meaning, a low sum of entropy values indicates that the feature
values of observations are informative and that the similarities on average tend to be far
from 0.5. Such a feature should be retained given that it is characterized on average with
2 Related Methods 38
low ambivalence and uncertainty. Opposed to that, a high sum of entropy values
represents low informativity, and the similarity values used as input are on average closer
to 0.5, indicating ambivalence of the observations’ memberships. In other words, features
with high summed entropy values are considered uninformative and potentially random.
Hence, they constitute candidates for feature removal. Thus, the idea to combine an
entropy and a similarity measure to determine relevant features in a dataset was developed
(Luukka, 2011). In his paper, Luukka (2011) implemented this approach as a heuristic
filter method. The step-by-step process underlying the approach is illustrated in Figure
2.2.

Figure 2.2: Step-by-step process underlying the feature selection method by Luukka (2011) for a
two-dimensional example with three classes [reproduced from Publication I with the permission
of the publisher]

The first step is centred on the calculation of the ideal vectors of each class. This can be
conducted the same way as in the similarity classifier with a generalized mean (Luukka,
2011; Publication I).
The second step consists of the calculation of the similarity values S of the observations
with the ideal vectors for each feature d (Luukka, 2011).

𝑆(𝑥𝑗,𝑑, 𝑣𝑖,𝑑) = √(1 − |𝑥𝑗,𝑑
𝑝 − 𝑣𝑖,𝑑
𝑝 |)
𝑝
, (2.15)
2.2 Selected Feature Selection Methods 39
where j denotes the observation (from 𝑗 = 1,2, … 𝑛), d the feature (from 𝑑 = 1,2, … 𝐷)
and i the class (from 𝑖 = 1,2, … 𝑁). This equation is similar to Equation (2.3) but does not
average over all D features. Since the similarity is calculated for each observation j for
all features d with ideal vectors of all classes i, the resulting matrix of similarities is
n*(DN) (Luukka, 2011; Publication I). This matrix is illustrated in Figure 2.2 under ‘Step
2’.
The third step encompasses the calculation of the entropy values. An entropy value is
calculated for each element in the n*(DN) matrix mentioned in the previous step and,
subsequently, summed over all observations and classes.

𝐻𝑑 = ∑ ∑ 𝐻 (𝑆(𝑥𝑗,𝑑, 𝑣𝑖,𝑑))
𝑛
𝑗=1
𝑁
𝑖=1
 (2.16)
The result is a summed entropy value for a feature d. This calculation is repeated for each
feature in order to obtain D summed entropy values.
The fourth step is simply the selection of a user-specified number of features with the
lowest entropy values to keep for the subsequent analysis.
The difficulty in following this procedure, as with many filter methods, is that there is no
clear threshold value after which features can be removed without the chance that they
are actually relevant. In contrast, removing too few features will leave irrelevant or even
noisy features in the feature subset. One way to address this problem is by using the idea
underlying the filter method by Luukka (2011) in the form of a wrapper approach, as
presented in Publication I. The wrapper version of the approach by Luukka (2011) uses
a similarity classifier as the evaluation criterion. In the first step, this requires dividing
the data into training and test data. The first three steps are now conducted exclusively on
the training data. After the feature ranking based on the training data is obtained, the
feature with the lowest rank (and the highest summed entropy value) is suggested for
removal from the feature set. Subsequently, the classification accuracy on the test set
before and after the removal is evaluated with a classifier (such as the similarity
classifier). The change in the classification accuracy can function as a ‘stopping criterion’
for this wrapper. If the classification accuracy after the removal of a feature remains
unchanged or increases, the feature can be considered irrelevant. Features that are not
relevant for the discrimination between the classes in the dataset are by definition
irrelevant. If the mean accuracy after the feature removal did not deteriorate, the feature
is removed, and all steps will be repeated another time. If, however, the ‘stopping
criterion’ is met since the performance on the test set after the feature removal is worse
than before the feature removal or has deteriorated more in performance than a user-
specified threshold, the algorithm is stopped, and only the features up to the previous step
are removed from the dataset.
The original pseudocode for this feature selection method is available in Luukka (2011).

41
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection
3.1 Vulnerabilities of the Feature Selection Method by Luukka (2011)
The feature selection algorithm developed and introduced by Luukka (2011) has
demonstrated on four medical datasets the ability to remove features that are not relevant
and useful for classification and even improve the classification accuracy in the majority
of them (Luukka, 2011). Hence, the algorithm has revealed the ability to successfully
conduct feature selection on these real-world datasets. In the following, the assumptions
underlying this algorithm, which characterize its ability to find relevant features, will be
examined in more detail. In particular, these assumptions will be analysed with respect to
vulnerabilities that the algorithm can be susceptible to.
One main assumption of the algorithm is that one ideal vector per class, so essentially a
single point in the feature space, is sufficient to characterize a class well. This assumption
is the same as in the similarity classifier (Luukka et al., 2001). However, it can pose a
problem for more complex data structures, where classes are composed of
groupings/clusters. It is clearly intuitive that multiple disjoint groups cannot be
represented well by a single point. However, it requires additional steps and computations
to determine a suitable number of class representatives. Moreover, for less complex data
structures, a single ideal vector is likely sufficient to represent each class. Thus, using a
single ideal vector per class is a trade-off between the ability to capture multiple decision
regions and the computational complexity of the algorithm.
The second main assumption concerns the use of similarity as the input to the entropy
measure. Recalling the shape of entropy functions (see Figure 2.1), inputs of close to 0
and 1 take low entropy values, whereas the closer the input value is to 0.5, the higher the
entropy associated with it. Since low entropy values indicate informativity, input values
of close to 0 and 1 are more informative than values closer to 0.5. Hence, if similarity
values are the input to the entropy function, this assumes that similarity values close to 0
and 1 are regarded as informative. This appears plausible when the feature of an
observation has a high similarity value to its own class’s ideal vector element and a low
similarity value to the competing class’s ideal vector element. This way, both similarity
values can be considered informative in the sense that they highlight that, for this
observation, the feature clearly indicates its class membership. Thus, the feature is
relevant to discriminate between these classes. However, this appears less plausible for
observations within a class. Using entropy on these similarity values implicitly assumes
that even within a class, observations that are highly similar to their ideal vector and those
being highly dissimilar to it can be treated equally. However, observations of a feature
that are highly dissimilar to their own class’s ideal vector element are intuitively not a
positive sign. This means that the ideal vector does not represent observations of the class
well. Nevertheless, such feature values lead to low entropy values, indicating
informativity. Likewise, feature values for observations that are close to any competing
class’s ideal vector element lead to low entropy values as well. Once more, this is not a
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 42
positive sign since a class’s feature representative should not also represent feature values
of other classes well.
One last assumption is that the features can be evaluated on a stand-alone basis
(univariate). Hence, it is expected that no or only marginal feature interactions are present
since they simply cannot be captured explicitly. It is noteworthy that this assumption is
different from the first assumption about one ideal vector per class. The first assumption
is related to the data structure and is independent of the number of features. In contrast,
assumption three means that a feature is evaluated merely by itself, and no information
of other features is incorporated into the calculation of the feature’s relevance. Figure 3.1
illustrates four examples that clearly show that the first and third assumption refer to
different properties of the data structure.

Figure 3.1: Comparison of the first and third assumption. Each graph shows a binary classification
problem and the approximate decision regions for each of the classes.

The first example shows one data cluster per class and the corresponding approximate
decision region for each of the classes. There is no (conditional) dependency between the
first and second feature so that this example can be evaluated univariately.
The second example shows two distinct decision regions for the red class that are non-
overlapping with the blue class. Once again, the features can be evaluated univariately
and it is apparent that the second feature is more important than the first feature, which
overlaps for both classes considerably. It is noteworthy that using a single ideal vector to
3.1 Vulnerabilities of the Feature Selection Method by Luukka (2011) 43
represent the red class is problematic. For the red as well as the blue class, the ideal vector
elements for the second feature are both essentially at the same position.
The third example highlights two classes that have each a single decision region. In
addition, the blue and red class have a (conditional) dependency between the first and
second feature. This means that knowing what value one of the features takes, affects the
probability of the values that the remaining feature has. Hence, for this example, a
multivariate evaluation is necessary to capture that the first and second feature together
can linearly separate the classes but are each alone highly overlapping.
The fourth example shows a numeric XOR problem, where both classes have two distinct
decision regions. For both features the centre point of each class is essentially the same,
which indicates that using one ideal vector per class will make it challenging, if not
impossible, to capture the feature relevance for this data structure. Moreover, this problem
needs to be addressed multivariately since the classes are for each feature overlapping
entirely, whereas both features together enable a linear separation between the two
classes.
In summary, the assumption of a single ideal vector and of a univariate evaluation of
features address two different aspects of the data. However, even when following the
assumptions that having one ideal vector per class and the univariate evaluation of
features are acceptable, dealing equally with high and low similarity values using entropy
(the second assumption) can pose a problem even with simple data structures.
Publication I and Publication II presented artificial examples to highlight the
vulnerability of the feature selection method by Luukka (2011) for selected simple, low-
dimensional two-class and three-class cases. In the following, a set of three binary
classification problems will be presented, which can be seen as a simple extension of the
binary problem presented in Publication II. The reason for presenting binary
classification problems in a two-feature context is that it is easy to follow, and the desired
removal decision is intuitive. The three examples are displayed in Figure 3.2. All of these
examples contain a first feature that is basically completely overlapping for both classes
and, therefore, irrelevant for the classification. In other words, knowing which value the
first feature takes does not help in assigning an observation to one of the two classes. For
almost any value this feature takes, it is equally probable that it will belong to either of
the classes. The focus of these three examples is on the second feature, which differs in
terms of the magnitude of the variance.
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 44

Figure 3.2: Examples of a binary classification problem with different magnitudes of variance.
Each class consists of 500 observations generated from a multivariate normal distribution.
Example 1 with means 𝜇𝑟𝑒𝑑 = (5,40), 𝜇𝑏𝑙𝑢𝑒 = (5,60) and covariance matrices Σ𝑟𝑒𝑑 = Σ𝑏𝑙𝑢𝑒 =
[
0.075 0
0 0.01
]; example 2 with the same means and covariance matrices but with the variance for
the second feature increased to 1; and example 3 with the same means and covariance matrices
but with the variance of the second feature set to 2.

In the first example, the second feature is in principle an optimal feature for the algorithm
by Luukka (2011) in the sense that the approach for this example will work exactly as
intended, and the data structure does not allow the vulnerabilities of the algorithm to be
revealed. For this feature, the two classes have mean values close to 0 and 1, respectively,
as well as a very low variance. In contrast, the first feature is entirely overlapping and,
hence, irrelevant. Thus, the first feature should be selected for removal.
Looking at Figure 3.2, the expectation for the first feature’s similarity values is that for
both classes a large share of observations of each class will be fairly close to the class’s
own ideal vector as well as the ideal vector of the competing class. The reason for this
expectation is that these ideal vectors are extremely close in that dimension. The
distribution of the observations’ similarities with their own class’s ideal vector and the
competing class’s ideal vector is displayed in Figure 3.3. Figure 3.3(a) highlights that,
indeed, the distribution of similarities for the first feature shows that most similarities are
very high. In particular, more than 50% of the similarity values are within the range of
0.9 to 1, and another 30% is between 0.8 to 0.9. However, given the large variance for
the first feature, also more than 15% are between 0.4 and 0.7, which is a range that will
result in high entropy values. Consequently, the entropy values for this feature are mainly
in the middle range of possible entropy values, with few entropies being very small (0 to
0.1) and even fewer being very large (0.6 to 0.7) (see Figure 3.3(c)). For the second
feature, however, all observations of both classes are highly similar to their ideal vector
(similarity of 0.9 to 1) and highly dissimilar to the ideal vector of the other class
(similarity of 0 to 0.1) (see Figure 3.3(b)). For this reason, analysing the corresponding
entropy values for the second feature reveals very low (0 to 0.1) to low (0.1 to 0.2)
3.1 Vulnerabilities of the Feature Selection Method by Luukka (2011) 45
entropies for all similarity values. Consequently, it comes as no surprise that the summed
entropy of the second feature is a fraction of that for the first feature (145 vs 628). For
this very distinct structure in example 1, the algorithm by Luukka (2011) correctly
suggests the first feature for removal.

Figure 3.3: Similarity and entropy histograms for both features (first example)

Before presenting the similarity and entropy values for the second and third example, the
effect that variance has on the scaled data and the corresponding similarity values will be
elaborated on. The effect is twofold:
First, the opposing ideal vector elements at the upper and lower ends of the scale are now
moved to the centre, which restricts the smallest similarity that an observation’s feature
value can possibly have to these ideal vector elements. This shift is premised on the
scaling to the compact interval [0,1]. In comparison to a feature with lower variance,
observations for a feature with higher variance are moved further away from their ideal
vector. Since the observations on the higher end (at the top of the figure) and the lower
end (bottom of the figure) have ‘nowhere to go’ due to the limits of 1 and 0, the ideal
vectors as the representative points are pushed downwards and upwards, respectively. So,
the ideal vectors are on average closer to each other. Hence, higher variance constrains
observations from being highly dissimilar to the ideal vectors of competing classes.
Second, the impact of a higher variance affects the similarity values to the competing
ideal vectors disproportionally. A simple example of this behaviour and the change in the
ideal vector elements is presented in Figure 3.4.
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 46

Figure 3.4: Change of similarity values for different levels of variance in a binary classification
task

Figure 3.4 illustrates for the red class how the similarity of the feature values to its own
ideal vector element does not account for whether the feature has a lower or higher value
than the ideal vector element. In other words, whether the observation is above or below
the ideal vector for that feature does not affect the similarity value. In contrast, for the
competing ideal vector that is non-overlapping, it does matter whether an observation’s
feature value is below or above the ideal vector element of that class. Hence, for non-
overlapping classes, an increase in a feature’s variance will affect all similarity values,
but this effect will be amplified for similarity values of observations with the competing
ideal vectors.
The focus is now on the change in the second feature since the first feature remains
unaltered throughout all three examples. The specific effect that the increased variance in
the second example has on the similarity values is displayed in Figure 3.5.
3.1 Vulnerabilities of the Feature Selection Method by Luukka (2011) 47

Figure 3.5: Similarity and entropy histograms for both features (second example)

For the second feature, the similarity values between the ideal vector element of a class
and the observation in that same class are on average still very high (Figure 3.5(b)).
However, a few observations start to become less similar to their own ideal vector element
(0.8 to 0.9). The changes in the similarity values of the observations’ feature value to the
competing class’s ideal vector element are more pronounced. There are no longer any
similarity values between 0 and 0.1. Moreover, the similarity values are more spread out
than those to the observation’s own ideal vector.
The corresponding entropy values (Figure 3.5(d)) are now on average considerably higher
than in the first example (Figure 3.3(d)). The entropy values for the similarities of
observations to the competing ideal vector for a feature experience the largest increase.
However, also, the decrease in the similarity of the observations’ feature values to their
own ideal vector element can be tracked to the elevated entropy values. Thus, the second
feature’s entropy is substantially increased. Nonetheless, this entropy value is still smaller
than that of the first feature (646 vs 680), and the first feature remains the one selected
for removal. Notwithstanding, in this example the features’ entropy values indicate that
the two features possess almost the same relevance, meaning a similar ability to
discriminate between classes. This is obviously not representative of the actual data
structure. A completely overlapping feature with high variance is certainly not as
discriminating as a non-overlapping feature with small variance.
In the third example, this issue of capturing the actual ability of features to discriminate
between classes is taken one step further. The second feature’s mean values for the two
classes are the same as before, but the in-class variance of the feature is increased one
more time. After normalization, once more a shift of the ideal vector (represented by the
centre of each class) towards the middle can be observed (see Figure 3.2). The
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 48
consequences of this shift and of the higher variance for the similarity and entropy values
come into view in Figure 3.6(b) and (d).

Figure 3.6: Similarity and entropy histograms for both features (third example)

Compared to Figure 3.5(b), the similarity values of the second feature have become more
ambivalent – that is, being closer to 0.5 – especially for the similarity of observations with
the competing ideal vector element. On account of this, the entropy values have likewise
increased on average, especially those based on the similarity of observations to a
competing ideal vector element. The summed entropy value for the second feature is now
clearly higher than that of the first feature (767 vs 689). As a result, for the first time, the
removal of the second feature is suggested. Nonetheless, the second feature in this third
example is still far from having a high variance within any of the two classes.
Additionally, it is also clearly non-overlapping among the different classes. All the same,
the feature selection method by Luukka (2011) suggests the removal of this feature rather
than the removal of the entirely overlapping first feature. Going one step beyond this, it
is obvious from this knowledge that a feature with higher overlap could also be ‘preferred’
for retention by the algorithm than one with a smaller overlap.
These examples demonstrate for a binary classification the problem that the feature
selection algorithm by Luukka (2011) faces and how it ends up making unintuitive and
incorrect feature removal decisions. Clearly, the effect of scaling and the entropy measure
do not necessarily lead to unintuitive feature removal decisions. However, it is clearly a
weakness of the algorithm by Luukka (2011) that for simple examples it can come up
with highly unintuitive and incorrect suggestions for the feature removal.
3.2 Introduction and Reasoning 49
3.2 Introduction and Reasoning
As demonstrated in the previous section, the feature selection method developed by
Luukka (2011) can encounter problems with simple intuitive feature selection tasks. Even
when the assumptions of a single ideal vector per class and the univariate evaluation are
acceptable for a feature selection problem, the combination of fuzzy similarity and
entropy (FSAE) by itself might not capture the relevance of features correctly or even
rank an irrelevant feature as most relevant. Overall, this weakness can be linked to an
inadequate consideration of the difference among ideal vectors, as was highlighted in
Publication I. The similarity values of observations with their class’s ideal vector element
capture variance in a class since the distribution will have a longer tail in the direction of
smaller similarity values. This means that if higher variance is present, more observations
will have lower similarity values with their class’s ideal vector element, and fewer
observations will be close to it (similarity close to 1). As can be seen in Figure 3.4 in the
prior section, variance can impact the ideal vectors as well by moving them towards the
centre. However, even in example 2, where the feature removal decision by the method
of Luukka (2011) was a close call, and in example 3, where it was clearly incorrect, the
distance between the ideal vectors was large with respect to the regarded compact interval
[0,1]. Even though the ideal vectors for the first feature were essentially at the same
position and for the second feature about 0.8 (80% of the entire range from [0,1]) from
one another, the algorithm decided that both features were comparably relevant. In these
examples, each class is embodied by a single grouping, where the single ideal vectors per
class represent the centre of the data points. Therefore, it is apparent that there is a link
between the features’ relevance and the relation of the distance between the classes’ ideal
vectors and their variance. In simple terms, if the ideal vector elements for a feature are
distant from one another, and the variance in the class is small, this indicates that the
feature is relevant. In contrast, if the ideal vectors are close, and the in-class variances are
high, then the feature is only marginally relevant or even irrelevant. As mentioned
previously, the in-class variance is accounted for by the similarity in the method by
Luukka (2011). In contrast, the distance between ideal vector elements is not sufficiently
considered. Hence, it is possible that a feature that is overlapping for different classes is
considered more relevant than a non-overlapping feature with small or moderate variance.
From this line of reasoning it is apparent that taking into consideration the distance
between the ideal vector elements of each feature in addition to similarity and entropy
could compensate for the vulnerability of the feature selection method of Luukka (2011).
Since the distance between classes for a specific feature is at the centre of this
vulnerability, a modification of the class- and feature-specific entropy values appears
intuitive. In the suggested improvement of the algorithm by Luukka (2011) presented
below, these entropy values can be scaled, for each feature, by a measure that accounts
for the distance between the classes’ ideal vector elements. Following this approach, the
summed scaled entropy values for each feature will incorporate the distance between the
classes’ ideal vector elements for that feature. The corresponding step-by-step algorithm
will be depicted and illustrated in the subsequent section.
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 50
3.3 Step-by-Step Algorithm of FSAE
The algorithm underlying the novel fuzzy similarity and entropy (FSAE) -based feature
selection method using a class- and feature-specific scaling factor is visualized in Figure
3.7. FSAE is conceptualized as an information-based filter method to rank features
according to their relevance with respect to the classes in a dataset.

Figure 3.7: Step-by-step process underlying the FSAE feature selection for a two-dimensional
example with three classes [reproduced from Publication I with the permission of the publisher]

The first step is the calculation of the ideal vectors for each class. As in the feature
selection method of Luukka (2011), the ideal vector can be computed as a generalized
mean (Luukka, 2011; Publication I). The ideal vector element for the d-th feature can be
calculated as

𝑣𝑖,𝑑 = (
1
𝑛𝑖
∑ 𝑥𝑑
𝑚
𝑥𝜖𝑋𝑖
)
1
𝑚
, (3.1)
where 𝑛𝑖 is the number of observations in class i, and the feature is denoted by d. The
calculation of the generalized mean is the same as in Luukka (2011).
The second step is the same as that of the feature selection method by Luukka (2011).
For each observation j and each feature d, this step consists of the calculation of its
similarity with the ideal vector values of that feature for each class i.
3.3 Step-by-Step Algorithm of FSAE 51

𝑆(𝑥𝑗,𝑑, 𝑣𝑖,𝑑) = √(1 − |𝑥𝑗,𝑑
𝑝 − 𝑣𝑖,𝑑
𝑝 |)
𝑝
, (3.2)
where j denotes the observation (from 𝑗 = 1,2, … 𝑛), d the feature (from 𝑑 = 1,2, … 𝐷)
and i the class (from 𝑖 = 1,2, … 𝑁). The resulting similarity matrix is of dimension
n*(DN) (Publication I).
The third step encompasses the calculation of the feature- and class-specific entropy and
the computation of the feature- and class-specific scaling factors. The feature- and class-
specific entropy values for class i and feature d denoted by 𝐻𝑖,𝑑 are the sum over the
observations’ entropy values for a certain feature and class.

𝐻𝑖,𝑑 = ∑ 𝐻 (𝑆(𝑥𝑗,𝑑 , 𝑣𝑖,𝑑))
𝑛
𝑗=1
 (3.3)
In contrast to the feature selection method by Luukka (2011), the summation of entropy
values is conducted over all observations but not over all classes (see Equation (2.16)).
The second computation implemented in this step is to determine the class- and feature-
specific scaling factors SF𝑖,𝑑. The objective of the scaling factor is to emphasize the
distance between the classes’ ideal vectors for a certain feature (Publication I). To do this,
the distance of the ideal vector element of class i for feature d from all other classes’ ideal
vector elements for this feature is measured and the resulting distances averaged.

SF𝑖,𝑑 = 1 −
(∑ |𝑣𝑖,𝑑 − 𝑣𝑗,𝑑|
𝑙
𝑖≠𝑗)
1
𝑙
𝑁 − 1

(3.4)
The parameter l controls the weight of the distance between two ideal vector elements
𝑣𝑖,𝑑 and 𝑣𝑗,𝑑 in the quotient. The numerator in the quotient in the above equation is
essentially the Minkowski distance. With l = 1, the result is simply the absolute distance
between two ideal vectors averaged. With l = 2 and any higher value for l, the impact of
larger distances is amplified in the formula, and the impact of lower distances between
two ideal vectors is diminished. The measure of distance between the ideal vectors
presented in the quotient in Equation (3.4) is subtracted from one. Hence, high distances
between ideal vectors lead to low scaling factors and small distances or a distance of zero
in a scaling factor close or equal to 1, respectively (Publication I).
The fourth step uses the feature- and class-specific entropy values obtained from
Equation (3.4). These values are multiplied with the feature- and class-specific scaling
factors and, subsequently, summed over all classes to obtain the scaled entropy values for
each feature (Publication I).
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 52

𝑆𝐸𝑑 = ∑(𝐻𝑖,𝑑 ∗ SF𝑖,𝑑)
𝑁
𝑖=1
 (3.5)
Using Equation (3.5), for each feature d a corresponding scaled entropy value 𝑆𝐸𝑑 is
calculated. The underlying idea behind the multiplication of the entropy values and the
scaling factors is based on the meaning of entropy. As mentioned in a previous section,
entropy embodies the level of informativity (Yao, Wong and Butz, 1999), with low
entropy values indicating a high degree and high entropy values indicating a low degree
of informativity. The objective of the scaling factor is to keep the entropy values at a
similar level if the ideal vector element of a class is close to the ideal vector elements of
other classes and to lower the entropy values if the ideal vector element of the feature is
far from all others. The first case represents no or a minor change in the informativity of
the features for the class label assignment. The second case can be interpreted as a
correction of the level of informativity towards more informativity if the ideal vector
element for a feature is far from those of competing ideal vectors. This assumes that a
distinct ideal vector element for a feature – one that is clearly separated from the feature
representatives of the other classes – is desirable for classification and increases the level
of informativity of a feature (Publication I). The examples for the feature selection by
Luukka (2011) indicated that not accounting in some form for the distance between class
ideal vector elements for a feature can result in unintuitive and incorrect feature removal
decisions.
The fifth step uses the scaled entropy value of each feature for the feature removal. The
feature ranking is implemented by sorting the scaled entropy values in ascending order,
from the most informative feature to the least informative one (Publication I). Since the
magnitude of the scaled entropy itself may be difficult to interpret, a simple normalization
to the compact interval [0,1] can be conducted and the meaning reversed by subtracting
the normalized value from 1. This ensures that these values represent a kind of
informativity score of features in relation to each other. The feature that is most
informative in the dataset obtains an informativity score of 1 and the least informative a
score of 0. Hence, any informativity score between 0 and 1 indicates how informative a
feature is in relation to the most informative feature in the dataset (Publication I). It is
apparent that this also means that more informative features in a dataset obtain higher
informativity scores than less informative ones. For the filter method FSAE, simply the
user-specified k features with the highest informativity scores (or the lowest scaled
entropy values) are selected for the feature subset (Publication I). The less informative
features with lower informativity scores (and higher scaled entropy values) are discarded.
As with the feature selection method of Luukka (2011), the FSAE algorithm can also be
applied as a wrapper method using a classifier. In the first step, the data need to be divided
into training and test data. Steps one to four are now conducted exclusively on the training
data. After the feature ranking based on the training data is obtained, only the least
informative feature (with the highest scaled entropy value) is suggested for removal. For
the wrapper version, the fifth step also encompasses the calculation of the classification
3.4 Application to Artificial Data 53
accuracy on the test set before and after the feature removal. If the stopping criterion,
such as a performance degradation above a user-specified threshold, is met, the wrapper
approach stops and suggests the feature subset with the highest test set performance from
one of the previous iterations. If the stopping criterion is not satisfied, the wrapper will
remove the feature and start another iteration of the algorithm from step 1 to step 5
(Publication I).
3.4 Application to Artificial Data
The fuzzy similarity and entropy (FSAE) feature selection algorithm can be applied to
the same examples that were previously presented in Figure 3.2. These examples
demonstrated the impact of higher variance on the entropy values in the algorithm by
Luukka (2011) and on its removal decision. The FSAE will be deployed on these
examples to illustrate the effect on the feature removal when the distance between ideal
vector elements is accounted for. It has to be stressed that the similarity values for both
feature selection approaches as well as the entropy measure deployed are the same.
Hence, the difference in the entropy values can exclusively be attributed to the difference
in the ideal vector elements incorporated into the FSAE in the form of scaling factors.
The comparison of both approaches for the second feature in all three examples is
displayed in Figure 3.8.

Figure 3.8: Comparison of entropy histograms for FS Luukka (2011) and FSAE (for the second
feature in all binary class examples)

3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 54
The first row of subplots from (a) to (c) shows the entropy values of the approach by
Luukka (2011) for each of the three artificial examples. In particular, these plots
demonstrate how the increase in variance from slight to moderate gradually increases the
entropy values (from left to right). Both the entropy values of the similarity values to the
ideal vector element of the same class as well as those to the competing class’s ideal
vector element experience this development. However, as discussed previously, the
inability to account for the difference in the ideal vectors of the classes results in entropy
values that do not represent the actual relevance of a feature.
The overall results for all three examples are presented in terms of the feature entropy
values in Table 3.1.

Algorithm Example 1 Example 2 Example 2
 Feature 1 Feature 2 Feature 1 Feature 2 Feature 1 Feature 2
FS Luukka 2011 627.5 144.7 679.6 645.6 688.8 766.9
FSAE 626.4 3.8 668.8 140.2 665.1 236.4
Table 3.1: Comparison of the feature selection algorithms on artificial two-class data examples

As with the approach by Luukka (2011), the FSAE is characterized by an increase in the
variance of the scaled entropy values. Notwithstanding, the range of these values is
considerably smaller and the distribution more compact than in the counterpart by Luukka
(2011). Even in the third example, the majority of scaled entropy values remains between
0 and 0.1, and the largest scaled entropy value does not exceed 0.3. Overall, the summed
scaled entropy value of the FSAE for the second feature is clearly lower than for the first
feature. Hence, for all three examples, FSAE suggests the completely overlapping first
feature for removal. In addition, it is apparent that the summed scaled entropy in the given
examples accounts for the variance that makes the feature less discriminating by resulting
in a higher summed scaled entropy value for the second feature in the first to the third
example. At the same time, it keeps the scaled entropy representative of the actual data
structure and avoids the unintuitive removal of the second feature. Both algorithms are
applied with the same standard parameters m = 1 and p = 1 to the three artificial examples.
For any combination of 𝑝 𝜖 [1,6] and 𝑚 𝜖 [1,8], the removal decision does not alter.
The same conclusion as in the previous three examples was drawn in the three artificial
examples presented in Publication I. These examples contained three classes and two
features, with a different level of variance and overlap in each example. These examples
are visualized in Figure 3.9.
3.4 Application to Artificial Data 55

Figure 3.9: Examples of three-class classification problems [reproduced from Publication I with
the permission of the publisher]

In all three examples, it is apparent that the first feature is less discriminative than the
second one. In the first two examples, the first feature overlaps entirely for all three
classes, and the second feature is non-overlapping with no variance and small variance,
respectively. This can simply be regarded as the three-class extension of the previous
binary examples. The third example is characterized by only a partial overlap of the first
feature and higher variance for the non-overlapping second feature. Hence, the first two
examples differ in terms of variance, making the second feature less discriminating,
whereas the third example additionally decreases the overlap of the first feature to make
it more discriminating than before.
The focus of all three examples remains on the second feature, which differs in terms of
variance in all of these examples. The corresponding entropy values for the approach of
Luukka (2011) and the FSAE are presented in Figure 3.10.

3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 56

Figure 3.10: Comparison of entropy histograms for FS Luukka (2011) and FSAE (all three-class
examples)

Overall, the first example for the feature selection algorithm by Luukka (2011) leads to
very low and very high entropy values, which summed up equate to a still rather high
entropy value. The reason for this outcome is intuitive considering the similarity values
associated with this example. All similarity values for the second feature with their class’s
ideal vector elements is close to 1, leading to low entropy values. In contrast, the entropies
of observations to competing ideal vector elements are either also negligible or at their
maximum of close to 0.7. Since the ideal vector elements for the second feature are at 0
(red), 0.5 (blue) and 1 (green) (see Figure 3.9), the similarity of observations to competing
ideal vector elements is either 1 or 0.5. This results in negligible and high entropy values,
respectively. For the second and third examples, the summed entropy rises further, mainly
due to increased similarity of feature values to the competing classes’ ideal vector
elements.
The results for the FSAE approach differ in terms of the distribution of scaled entropy
values. This difference originates in the use of the scaling factors. For the peripheral
classes (red and green), the scaling factor of 0.75 is larger than for the central cluster
(blue) at 0.5. It is apparent that the scaling factor accounts for the fact that the peripheral
classes are on average further from the remaining classes than the central class is. FSAE
reduces the high entropy values observed by Luukka (2011) for all observations – but
depending on the observation’s class to an unequal magnitude. The same logic applies
for the remaining two examples with an increasing degree of variance.
The entropy values for the feature selection by Luukka (2011) and the FSAE are presented
in Table 3.2.

3.5 Application to Medical Data 57
Algorithm Example 1 Example 2 Example 2
 Feature 1 Feature 2 Feature 1 Feature 2 Feature 1 Feature 2
FS Luukka 2011 1284.3 1474.2 1180.8 1686.9 1847.1 2058.6
FSAE 1024.5 430.3 904.3 532.4 1057.2 813.0
Table 3.2: Comparison of the feature selection algorithms on artificial three-class data examples
[modified from Publication I]2

In all examples, the average scaled entropy is clearly lower for the FSAE due to the
scaling factor that accounts for the distance between the ideal vectors for that feature.
While the approach by Luukka (2011) suggests in all three-class examples the removal
of the relevant second feature, FSAE correctly suggests the first feature for removal.
3.5 Application to Medical Data
In Publication I, the FSAE feature selection algorithm was also tested on five real-world
medical datasets. The medical datasets are freely available at the UCI Repository of
Machine Learning Database (Lichman, 2013). They are summarized in a condensed way
in Table 3.3.

2 In Publication I, the summed entropy values for the approach by Luukka (2011) were divided by the
number of classes. To make the entropy values for the approach by Luukka (2011) and the FSAE more
easily comparable, the results for the approach of Luukka (2011) for this three-class problem are multiplied
by three compared to the ones found in Publication I. This obviously has no impact on the feature ranking
and removal decision since the feature ranking is conducted for each method independently.
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 58
Dataset Short Description
Number of
Features
Number of
Classes
Complete
Observations
Contributor
Dermatology
Differential
diagnosis of
erythemato-
squamous diseases
34 6 358
Ilter and Guvenir
(1998)
Chronic
Kidney
Disease
Characteristics of
patients with and
without chronic
kidney disease
24 2 156
Soundarapandian
and Rubini
(2015)
Breast Cancer
Wisconsin
(Original)
Characteristics of
patients with benign
and malignant breast
cancer
10 2 683 Wolberg (1992)
Diabetic
Retinopathy
Debrecen
Features extracted
from the Messidor
image set for the
prediction of
diabetic retinopathy
19 2 1151
Antal and Hajdu
(2014)
Horse Colic
Medical features of
horses including that
had surgical and
non-surgical lesions
27 2 379
 McLeish and
Cecile (1989)
Table 3.3: Description of medical datasets for the FSAE

Before comparing the approach by Luukka (2011) and the FSAE filter with other
information- and distance-based filter methods, the wrapper versions of these two
algorithms were compared. The classifier deployed within the wrapper method and for
the comparison of feature subsets for the filter method is the standard similarity classifier
with optimal value search for the 𝑝 ∈ [1,6] and 𝑚 ∈ [1,8] parameters. The comparison
of the best setup for the wrapper version of the approach by Luukka (2011) with the
wrapper version of the FSAE is illustrated in Table 3.4.

3.5 Application to Medical Data 59
Dataset Approach Entropy
Removed
Features
Removed
(in %)
Avg.
Performance
Variance
Dermatology
No FS - - - 98.11 % 0.0110 %
Sim + FS Luukka (2011) Parkash et al 1 3.0 % 98.20 % 0.0119 %
Sim + FSAE (l = 1)
De Luca and
Termini
5 15.2 % 98.36 % 0.0112 %
Chronic
Kidney
Disease
No FS - - - 99.90 % 0 %
Sim + FS Luukka (2011)
De Luca and
Termini
6 25.0 % 100.00 % 0 %
Sim + FSAE (l = 2)
De Luca and
Termini
20 83.3 % 100.00 % 0 %
Breast Cancer
Wisconsin
No FS - - - 97.61 % 0.0001 %
Sim + FS Luukka (2011) Either entropy 0 0.0 % 97.64 % 0.0001 %
Sim + FSAE (l = 1 or 2) Either entropy 4 44.4 % 97.30 % 0.0001 %
Diabetic
Retinopathy
Debrecen
No FS - - - 59.57 % 0.0647 %
Sim + FS Luukka (2011)
De Luca and
Termini
7 36.8 % 61.05 % 0.0398 %
Sim + FSAE (l = 1 or 2) Either entropy 5 26.3 % 61.09 % 0.0419 %
Horse Colic
No FS - - - 86.72 % 0.0576 %
Sim + FS Luukka (2011) Parkash et al 7 30.4 % 87.70 % 0.0578 %
Sim + FSAE (l = 1 or 2) Either entropy 11 47.8 % 87.70 % 0.0667 %
Table 3.4: Comparison of wrapper feature selection on multiple medical datasets [modified from
Publication I]

The results highlight two essential aspects of these approaches with respect to one another
and to using no feature selection at all. The first aspect is that both approaches
successfully conduct feature selection, meaning that for basically all datasets, they
suggest a feature subset that leads to a classification accuracy at least comparable to the
complete feature set. For the first three medical datasets, the average classification
accuracy did not change notably when features were removed from the dataset, which
suggests that these features were not relevant for the classification. For the last two
medical datasets, the Diabetic Retinopathy and Horse Colic datasets, removing several
features even increased the classification accuracy as opposed to using the entire feature
set. This indicates that some features were not only irrelevant for classification but even
rendered the classification more challenging and acted as noise in the data.
The second aspect is that, with exception of the Diabetic Retinopathy dataset, the feature
subset suggested by FSAE achieved the same classification accuracy as the approach by
Luukka (2011) while using a smaller subset of features. From the five considered medical
datasets, the most distinct difference can be observed for the Chronic Kidney Disease
dataset, where the approach by Luukka (2011) suggests the removal of six features,
whereas FSAE suggests removing 20 out of the 24 features to obtain the perfect
classification accuracy of 100%. The Diabetic Retinopathy dataset shows only a slight
difference in favour of the approach by Luukka (2011). With the approach by Luukka
(2011), seven features are removed instead of the five features discarded according to the
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 60
FSAE. Nevertheless, both approaches essentially obtain the same increase in
classification accuracy for the dataset.
The results for the comparison of the filter version of the FSAE with the filter version of
the approach by Luukka (2011), the ReliefF algorithm, the Laplacian score and the Fisher
score are illustrated for all datasets in Figure 3.11. All filter methods were deployed to
obtain a feature ranking. Each graph represents the classification accuracy on the feature
set for that step-by-step the lowest-ranked features were removed in accordance with the
feature ranking of each algorithm. A similarity classifier is deployed for the evaluation of
the classification accuracy. For the Dermatology dataset, the ReliefF algorithm, which
accounts for the local neighbourhood, clearly outperforms all other filter methods. The
remaining filter methods perform comparably against one another. In particular, the mean
accuracies of the approach by Luukka (2011) and the FSAE are very similar. This
indicates that for this particular dataset, the consideration of the difference between ideal
vectors does not impact the feature removal decision considerably. For the second dataset,
the Chronic Kidney Disease data, once more the ReliefF algorithm performs particularly
well in ranking the features. All feature selection algorithms, with the sole exception of
the approach by Luukka (2011), end up within a small range of mean accuracy values
around 95%. The approach by Luukka (2011) apparently removes the more relevant
feature since the mean classification accuracy with only one feature is, with less than
70%, more than 20 percentage points lower than the accuracy of the remaining
algorithms. Since the consideration of the difference among ideal vectors is the main
difference between this approach and the FSAE, this clearly shows that, for this dataset,
it is essential for the feature removal to consider this difference.
3.5 Application to Medical Data 61
(a) Dermatology (b) Chronic Kidney Disease

(c) Breast Cancer Wisconsin (Original) (d) Diabetic Retinopathy Debrecen

(e) Horse Colic

Figure 3.11: Comparison of filter feature selection on multiple medical datasets [reproduced from
Publication I with the permission of the publisher]

3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 62
For the Breast Cancer Wisconsin dataset, most approaches, including ReliefF and FSAE,
result in similarly high mean accuracies. Only the approach by Luukka (2011) seems to
gradually deteriorate in its performance right from the start. The remaining approaches’
classification results are more or less stable until the removal of the sixth feature. At that
point, the approach by Luukka (2011) had already deteriorated about 4 percentage points
in performance. The choice of a single feature, for all approaches, leads to a considerable
decline in mean accuracy. However, it is apparent that the feature choice of the approach
by Luukka (2011) is inferior to those of the remaining algorithms. The approach’s
performance declines by an additional 10 percentage points to below 80%, whereas the
other filter methods face only a decline of 3 to 4 percentage points to a performance of
around 90%.
For the Diabetic Retinopathy Debrecen dataset, FSAE and the approach by Luukka
(2011) initially experience an increase in the classification accuracy on account of the
first four to five feature removals. While this increase for the approach by Luukka (2011)
withstands only the removal of four features, for the FSAE an additional feature can be
removed to further increase the mean accuracy. Overall, the FSAE results with five
removed features in the highest classification accuracy of all approaches for any number
of feature removals. That said, for more than five feature removals, the remaining filter
methods outperform the FSAE and the approach by Luukka (2011) by a margin of on
average 3 to 4 percentage points.
For the Horse Colic dataset, FSAE and the approach by Luukka (2011) belong initially
to the top-performing approaches, also outperforming the ReliefF algorithm by several
percentage points. While the FSAE remains for the majority of feature removals within
the top filter methods, the approach by Luukka (2011), after the tenth feature, evidently
removes several features that are relevant for classification. Thus, it experiences more
than once a decline of 5 percentage points for a feature removal. Eventually, the approach
by Luukka (2011) ends up at a performance of close to 50%, whereas the remaining
algorithms, including the FSAE, are more than 30 percentage points more accurate. Once
more, this demonstrates that incorporating the difference in the ideal vectors can improve
the feature removal decisions and result in considerably better feature subsets in terms of
their ability to classify observations.
Finally, it has to be noted that the FSAE and the approach by Luukka (2011) were applied
only with standard parameters and that potentially better results can be achieved with the
optimal parameters for each of these supervised feature selection tasks.
3.6 Application to the Prediction of S&P500 Intraday Returns
3.6.1 Introduction and Objectives
In the previous section it was demonstrated for several artificial examples in detail how
the FSAE feature selection method can improve the feature ranking of the approach by
3.6 Application to the Prediction of S&P500 Intraday Returns 63
Luukka (2011). In this section, the application to a real-world dataset with a focus on the
American financial stock market index the S&P500 is presented.
The prediction of price movements in financial markets, such as the S&P500, can be
regarded as a pattern recognition problem (Felsen, 1975; Guo et al., 2014). Hence, a
machine learning approach based on a combination of feature selection and,
subsequently, classification can be pursued to forecast future stock index returns.
Previous research using machine learning approaches includes the prediction of stock
markets with a variety of classification methods, including neural networks (Altay and
Satman, 2005; Fadlalla and Amani, 2014), support vector machines (Guo-qiang, 2011;
Guo, Wang, Liu, & Yang, 2014), genetic algorithms (Kim, Han, & Lee, 2004; Leigh,
Purvis, & Ragusa, 2002), case-based reasoning (Chun and Park, 2005) and a random
subspace classifier (Zhora, 2005). The findings in the academic literature, including
momentum anomalies, (Leigh, Purvis, & Ragusa, 2002) indicate that it is possible to
successfully derive trading strategies from a suitable set of financial features.
In Publication II, the objective is the prediction and classification of the intraday returns
of the S&P500 stock market index. The intraday return is the percentage change of the
stock market index between the daily opening of the stock exchange (opening price) to
its closing, when the trading for the day is finished (closing price). For this purpose, the
authors of that research paper used numerous features that they assumed to have an impact
on the changes in this market index. The FSAE algorithm is applied to this feature set to
obtain a subset of relevant features for this dataset. This subset is subsequently deployed
for classification. The aim is to derive trading strategies from the classification model that
can outperform a simple buy-and-hold trading strategy in terms of returns after
transaction costs.
3.6.2 Data and Feature Selection
The initial data for the analysis is obtained free of charge from the webpage Yahoo
Finance (2017) and covers daily data from 11/10/2010 until 28/3/2018. The features
downloaded from Yahoo Finance encompass seven large stock market indices, two
market exchange traded funds (ETF), six indices/ETFs representing economic sectors and
commodities, three currency exchange rates of the US dollar (USD) to the currencies of
major trading partners, four time series related to interest rates and yields and the VIX
index.
The seven stock market indices represent the stock markets in seven of the largest equity
markets around the globe. In addition, the two market ETFs replicate the medium and
large capitalized companies in the emerging markets (BlackRock, 2017a) and small,
medium and large capitalized ones in the global equity market (Morningstar, 2017). In
terms of sector exposure, one ETF reflects the large American companies in the materials
sector (State Street Global Advisors (SPDR), 2017b), one ETF represents large
companies in the financial sector in the United States (SPDR, 2017a) and one embodies
the financial sector in Europe (BlackRock, 2017b). The time series on commodities
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 64
includes a gold ETF, a crude oil ETF (S&P Dow Jones Indices, 2017) and an ETF for
energy, precious and industrial metals overall as well as grains and livestock (USCF,
2017). The volatility index VIX is included to represent market sentiment and can be
regarded as a barometer for investor sentiment in the S&P500 equity market (Rossilo,
Giner and De la Fuente, 2014). From all these time series, the return from one trading
day’s opening price to the same day’s closing price (open-close return or intraday return)
and from the closing price of one day to the next day’s opening price are calculated.
Moreover, the change in the daily highest and lowest quoted price and the change in
volume and the range (high price – low price) between two consecutive trading days were
computed. In addition to the time series data that are directly available from Yahoo
Finance, several features have to be derived from them. On one hand, yield spreads have
to be calculated between short-, medium- and long-term yields since previous research
has indicated that they are connected to the contraction and expansion of an economy
(Rudebusch and Williams, 2009). On the other hand, technical indicators such as
momentum, moving averages (MA), the relative strength index (RSI), Bollinger bands
and the moving average convergence divergence (MACD) are derived from the S&P500
time series (Hurwitz and Marwala, 2011; Di Lorenzo, 2013). Each of these indicates
short-term trends or are indicators of whether a market is overbought or oversold,
indicating a sell or buy signal. The complete list of features is presented in Table 3.5.

3.6 Application to the Prediction of S&P500 Intraday Returns 65
Dependent Variable
S&P500 Open-Close Return
Features
Time Series
S&P500 - Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
DAX Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range
Nikkei225 Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
iShares MSCI Emerging Markets Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
Vanguard Total World Stock ETF Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
Hang Seng Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
FTSE 100 Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
STOXX 50 Open-Close Return Close-Open Return - - - -
Russell 2000 Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
VIX S&P500 Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range
SPDR Gold Shares ETF Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
United States Commodity Index Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
Materials Select Sector SPDR ETF Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
iPath S&P GSCI Crude Oil Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
Financial Select Sector Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
iShares MSCI Europe Financials Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range
CBOE Interest Rate 10 Year Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range
Treasury Yield 30 Years Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range
Treasury Yield 5 Years Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range
13 Week Treasury Bill Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range
JPY/USD Exchange Rate Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range
EUR/USD Exchange Rate Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range
CNY/USD Exchange Rate Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range

 Technical Indicators and Yield Spreads
Δ (%) Spread Treasury 30y - 5y Δ (%) Momentum (1d) MACD (26d, 12d, Signal 9d) Mov.Avg. (5d)
Δ (%) Spread Treasury 30y - 13w Δ (%) Momentum (3d) Bollinger (2 Std) Mov.Avg. (10d)
Δ (%) Spread Treasury 5y - 13w Δ (%) Momentum (5d) RSI (14d)
 Δ (%) Momentum (10d)
Table 3.5: Initial list of features for the S&P500 feature selection and classification model
[modified from Publication II]

The selection of features is similar to that in previous research on stock market prediction,
where commonly at least financial time series, technical indicators, commodity prices,
exchange rates, interest rates and yields/yield spreads are included (Krollner, Vanstone
and Finnie, 2010).
The data are divided into two distinct and non-overlapping time periods (1) for training
and testing and (2) for forecasting. This division and the transformation of the intraday
returns into four classes is illustrated in Figure 3.12.
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 66

Figure 3.12: Data split and class assignment

The training and testing data span over a period of about five and a half years, whereas
the out-of-sample forecast period is located after the training and testing period and is
closer to two years of trading days. According to the magnitude of the S&P500 intraday
returns (dependent variable), four classes were defined to represent these returns. A
‘strong positive’ class for intraday returns over 0.5%, ‘slightly positive’ for returns
between 0% and up to 0.5%, ‘slightly negative’ for the range from -0.5% up to 0% and
the ‘strong negative’ class for intraday returns smaller than -0.5%. These four classes
represent the dependent variable for the classification task instead of the actual intraday
return values. This step is conducted since the aim is not to predict the exact return value,
as in a regression task, but to predict the return class, where each class represents how
positive or negative the market development is during a certain trading day. The step size
of 0.5% for the class assignment was selected because it divides the dependent variable
in the training and testing dataset into classes that are close to being balanced in terms of
observations in each of the classes. The classes in the forecast period are less balanced
and show more observations in the ‘slightly positive’ and ‘slightly negative’ class.
3.6 Application to the Prediction of S&P500 Intraday Returns 67
However, this does not pose a considerable problem since the model itself was set up with
the training and testing dataset and does not favour any class due to a disproportionally
large share of observations in any of the classes. It is worthwhile to note that using a four-
class setting differentiates this research from the majority of the existing literature. The
existing scientific literature limits itself to the use of two classes to cover exclusively
upward and downward movements in stock markets. For instance, in the research work
of Patel et al (2015) on stock market predictions, the authors used a two-class setup for
their model but suggested that using more categories than two is worth exploring.
The FSAE feature selection algorithm is applied to the initial dataset containing 136
features in order to obtain a feature subset that only contains features that are relevant for
the classification of the S&P500 stock index returns. The FSAE setup with Parkash,
Sharma and Mahajan (2008) entropy and l = 1 is selected to conduct the feature selection.
Deploying the FSAE together with a random forest classifier suggests the removal of 38
out of 136 features (27.9% of the features).
3.6.3 Results and Conclusion
The comparison of several classifiers on this feature subset of 98 features demonstrates
that the random forest achieved the highest average classification result (Publication II)
(see Table 3.6).

Approach
Setup and
Parameters
Avg. Performance Variance (in %)
Similarity Classifier p = 3, m = 1 44.04 % 0.03 %
Random Forest Min Leaf Size = 1 43.63 % 0.04 %
Random Forest Min Leaf Size = 10 44.72 % 0.03 %
KNN k = 1 32.36 % 0.04 %
KNN k = 10 36.80 % 0.05 %
Naive Bayes Normal Kernel 38.85 % 0.07 %
Decision Tree Min Leaf Size = 1 34.89 % 0.04 %
Decision Tree Min Leaf Size = 10 37.47 % 0.06 %
Table 3.6: Comparison of classification algorithms on the feature subset [reproduced from
Publication II with the permission of the publisher]

Setting up the final random forest model on a single partition into training and test set and
recording the test set and out-of-sample forecast highlights the classification accuracies
that this stock market model can obtain (Publication II).

3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 68
Test
Class 1 Class 2 Class 3 Class 4
62.1 % 54.6 % 18.8 % 48.3 %
46.3 %
Positive Negative
82.40 % 50.00 %
Forecast
Class 1 Class 2 Class 3 Class 4
40.7 % 55.8 % 23.8 % 41.2 %
41.0 %
Positive Negative
75.2 % 35.9 %
Table 3.7: Average classification accuracy on the test and forecast data [modified from
Publication II]

The results in Table 3.7 point out that the classification is distinct for each of the four
classes. On an aggregated basis, classifying observations into positive return classes
appears to be more accurate than into the negative classes. Overall, the results appear for
most classes to be consistent between the test and forecast data. An exception is the
‘strong positive’ class, which only shows an accuracy of 40.7% on the out-of-sample
forecast set, which is more than 20 percentage points less than in the test set. Evidently,
the classification into the third class of ‘slightly negative’ is in both datasets clearly the
least accurate assignment. Altogether, for the forecast dataset the classification accuracy
into the ‘slightly positive’ class is the highest, followed by the two classes with high
absolute returns, the ‘strong negative’ and ‘strong positive’ classes.
Based on these classification results, four trading strategies are suggested that aim to
deploy the classification model’s predictions to anticipate movements in the S&P500
index and benefit from them. To benefit directly from these market movements, a trader
needs financial instruments or investments to replicate the behaviour of the S&P500 stock
market as precisely as possible. There exist two simple possibilities to implement such an
equivalent to the S&P500. The first is using an exchange traded fund (ETF), which is an
inexpensive way to track markets such as the S&P500 index (Bodie, Kane, & Marcus,
2009). Another, more capital-intensive approach is to purchase/sell the (majority of the)
stocks constituting the S&P500 in the proportions they are represented in this market
index. Since these approaches directly aim to replicate the actual S&P500 index,
transactions conducted to purchase or sell such investments will simply be referred to as
‘buying the index’ or ‘selling the index’.
The four trading strategies can be implemented with investments replicating the S&P500
and following all or only a subset of the class predictions from the random forest model.3
These strategies are detailed in Table 3.8.

3 It should be noted that these strategies embody different levels of risk for an investor. An investor has to
decide which strategy to pursue based on the risk & return profile of the strategy. For this research, the
focus is exclusively on the returns achievable with the strategies accounting for only transaction costs.
3.6 Application to the Prediction of S&P500 Intraday Returns 69
No Strategy
1 Strongly positive or positive returns predicted (Classes 1 & 2) - Long (buy) the index
Strongly negative or negative returns predicted (Classes 3 & 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
2 Strongly positive returns predicted (Class 1) - Long (buy) the index
Strongly negative returns predicted (Class 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
3 Strongly positive returns predicted (Class 1) - Long (buy) the index
Strongly negative or negative returns predicted (Classes 3 & 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
4 Strongly positive or positive returns predicted (Classes 1 & 2) - Long (buy) the index
Strongly negative returns predicted (Class 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
5 Benchmark: Buy-and-Hold - Long (buy) the index at start of period and retain
Table 3.8: Investment strategies for S&P500 stock market index [reproduced from Publication II
with the permission of the publisher]

These strategies follow ‘strong positive’ or ‘slightly positive’ predictions for the
upcoming trading day with a buy decision for the market. If a person is already invested,
the decision is to remain ‘long’, meaning to stay invested in order to contribute from the
expected positive market development during that day. In contrast, these strategies
assume for ‘strong negative’ or ‘slightly negative’ predictions that the upcoming trading
day will eventuate in a negative intraday return. Hence, the traders in these strategies
‘short’ the market, so sell their investment, if they are already invested, and, additionally,
sell ‘short’ an investment they do not currently hold in order to make a profit on the
expected negative intraday return. The benchmark strategy for the four trading strategies
is a buy-and-hold strategy. A buy-and-hold strategy is a passive management strategy that
includes buying an index/investment and holding it over the entire investment period.
With this type of strategy, all positive returns but also all negative returns are incurred by
the investor and contribute to the return over the entire investment period.
For the comparison of the buy-and-hold strategy with the four classification model-based
strategies, transaction costs for buying and selling the index will be accounted for. Two
different approaches are selected: (1) using a fixed percentage of the trade value (e.g. as
in Pätäri and Vilska (2014)) and (2) using a fixed USD amount (e.g. as in Teixeira and
De Oliveira (2010)). Following this approach, Publication II finds that with small
transaction costs, it is possible to outperform a buy-and hold strategy. An example of such
an outperformance is illustrated in Figure 3.13 for transaction costs of 0.1% of the
transaction value.
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 70

Figure 3.13: Comparison of the performance of the trading strategies for the forecasting period
[reproduced from Publication II with the permission of the publisher]

The detailed results for the forecasting period are displayed in Table 3.9 with different
levels of transaction costs.4
Investment Strategy Buy & Hold Strategy 1 Strategy 2 Strategy 3 Strategy 4
Investment Transactions 1 201 64 68 89
- 0 26.39 % 60.14 % 39.97 % 39.33 % 57.51 %
- 0.10 % 26.26 % 30.97 % 31.28 % 30.16 % 44.09 %
- 0.20 % 26.13 % 7.09 % 23.13 % 21.60 % 31.80 %
- 0.30 % 26.01 % -12.46 % 15.48 % 13.58 % 20.55 %
- 0.40 % 25.88 % -28.45 % 8.30 % 6.09 % 10.25 %
10'000 10 26.26 % 35.22 % 32.62 % 31.57 % 46.59 %
10'000 20 26.13 % 10.31 % 25.28 % 23.81 % 35.68 %
50'000 10 26.36 % 55.15 % 38.50 % 37.78 % 55.33 %
50'000 20 26.34 % 50.17 % 37.03 % 36.22 % 53.14 %
Table 3.9: Performance of trading strategies for the forecasting period [modified from Publication
II]

4 In Publication II the returns of the buy-and-hold strategy for the percentage-based transaction costs were
the same for different levels of transaction costs. This was a transcription error. The actual returns for the
buy-and-hold strategy differ slightly (less than 0.3% lower or higher for all transaction cost setups over the
entire holding period). This did not alter either the returns for the four suggested trading strategies, the
findings or conclusions presented in the original paper.
3.6 Application to the Prediction of S&P500 Intraday Returns 71
It is apparent that higher transaction costs deteriorate the return of strategies requiring
frequent transactions. Thus, it is also obvious that the first strategy that acts on all class
predictions and that has about three times as many transactions as Strategies 2, 3 and 4
experiences a faster return decline when the transaction costs increase. Since more
transactions eventuate in higher cost, this result is intuitive. However, it is remarkable
that with a small transaction cost, for instance 0.10% or 10 USD, all four investment
strategies outperform the buy-and-hold strategy. Relying on all predictions, as in Strategy
1, is only the best approach when no transaction costs are present. If transaction costs are
present, Strategy 4 results in the highest returns after transaction costs of all the four
trading strategies. Considering the previous classification accuracies of the random forest
model (see Table 3.7) offers a simple explanation for this outcome. Strategies 1 and 3
include the predictions of the ‘slightly negative’ class (Class 3), which are comparatively
inaccurate (23.8%). In contrast to Strategy 2, which acts only on ‘strong positive’ and
‘strong negative’ return predictions, the better-performing Strategy 4 includes in addition
‘slightly positive’ return predictions. This comparison shows that including the ‘slightly
positive’ return predictions is beneficial. The ‘slightly positive’ class shows the highest
classification accuracy (55.8%) in the forecast set, making it the most reliable prediction.
Hence, Strategy 4 outperforming the remaining classifier-based trading strategies is
unsurprising.
The subsequent question of interest is how the class predictions contribute to the returns
achieved by the random forest-based trading strategies. The contributions can be
presented using the predicted classes and the actual returns in the forecast period. In
Figure 3.14, the contributions are distinguished not only by the prediction of the return
direction or class but also by whether the predictions were correct or incorrect
(misclassification).

Figure 3.14: Average return contribution from direction and class predictions [reproduced from
Publication II with the permission of the publisher]
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 72

The first graph in Figure 3.14 displays the average return achieved with positive
predictions (‘strong positive’ and ‘slightly positive’ combined) and negative ones (‘strong
negative’ and ‘slightly negative’ combined). It is apparent that both the positive and
negative predictions lead to overall positive returns. In particular, correct classifications
for positive or negative returns lead to on average high positive returns. The second graph
illustrates which class predictions are associated with the largest average returns. Overall,
the ‘strong positive’ and ‘strong negative’ classes show the highest average return, being
2 to 6 times larger than the slight return classes 2 and 3. This effect originates in the fact
that the very large average returns achieved in the case of correct predictions for these
classes is only partially offset by the negative returns experienced if these predictions are
misclassifications. If they are correctly classified, the average returns achieved for classes
1 and 4 are 0.84% and 1.24%, respectively, which for both is larger than 0.5%. This is an
intuitive outcome since classifying a return correctly as ‘strong positive’ means that the
return is correctly classified as being in excess of 0.5%, which leads to an average return
larger than 0.5%. The same logic is true for ‘strong negative’ returns, which by definition
are smaller than -0.5% – meaning for a seller a profit of on average larger than 0.5%. In
contrast, the consequence of misclassifying the ‘strong positive’ and ‘strong negative’
return is not necessarily a negative return. For instance, misclassifying a ‘slightly
positive’ return as ‘strong positive’ leads still to a positive return – but that positive return
is simply smaller in magnitude than expected. The same holds true for ‘strong negative’
returns. Hence, it is plausible that ‘strong positive’ and ‘strong negative’ predictions can
contribute on average most to a trading strategy.
In conclusion, the use of a combination of feature selection with the FSAE and the
classification algorithm random forest was demonstrated to yield results that can
successfully be implemented into trading strategies. Moreover, it was demonstrated that,
over the forecast period, all trading strategies were able to outperform a simple buy-and-
hold strategy when no or only minor transaction costs were present. Thereupon, it was
highlighted that the prediction of ‘strong positive’ and ‘strong negative’ returns can
contribute over-proportionally to the return of a trading strategy. In addition, this suggests
that considering more than two classes can be beneficial for a classification task. It also
stresses that using only a subset of the predictions, such as the extreme return classes 1
and 4, can be more beneficial for a trading strategy than simply using all predictions.
Finally, in future research these results can be validated and potentially be extended to
other stock markets worldwide.
3.7 Conclusion and Limitations of FSAE Feature Selection
The fuzzy similarity and entropy (FSAE) feature selection algorithm was introduced as
an improvement of the feature selection approach by Luukka (2011). As highlighted in
detail in this chapter, the feature selection by Luukka (2011) can fall victim to the fact
that it does not explicitly take into account the distance between ideal vectors (Publication
3.7 Conclusion and Limitations of FSAE Feature Selection 73
I). Deploying entropy in the approach by Luukka (2011) means that observations with
high and low similarity values are dealt with equally. Thus, they are considered equally
informative for a feature. This caused the approach to be vulnerable to certain data
structures and levels of variance within the classes. It was demonstrated for different two-
and three-class settings that even with small or moderate variance, non-overlapping
classes for a feature are perceived as being less informative than a feature with completely
overlapping classes and basically equal class centres. Such a feature ranking is clearly not
representative of the feature’s ability to discriminate between classes, and such an
outcome is certainly undesirable. The objective of the FSAE algorithm was to enhance
the feature selection algorithm by Luukka (2011) to add a scaling factor for the class- and
feature-specific entropy values. For the artificial examples, it was detailed extensively
how the scaling factor affects the features’ entropy values and the feature ranking overall.
In particular, it was demonstrated how this scaling factor contributed to overcoming this
vulnerability by accounting for the distance between ideal vectors for each feature. In
certain cases, a feature can have a high entropy value due to slight to moderate variance
even though it is separating classes well due to large differences in the classes’ ideal
vector elements. The scaling factor for such entropy values adjusts the entropy
downwards to highlight that the feature is more informative. In contrast, completely
overlapping features with almost identical ideal vector values stay at the same level of
informativity. In essence, the scaling factor operates as an adjustment of the informativity
of features for the distance between the classes’ ideal vector values for a feature.
The FSAE algorithm is conceptualized as a filter method for feature ranking but can also
be deployed as a wrapper method. It was demonstrated on five medical datasets that the
FSAE wrapper can achieve at least comparable mean classification accuracies to those of
the wrapper version of the approach by Luukka (2011) but often with considerably fewer
features. When comparing the filter version of both approaches with ReliefF, the
Laplacian score and the Fisher score, it was apparent that FSAE can achieve competitive
results in terms of mean accuracy. Opposed to that, the approach by Luukka (2011) was
only competitive in two of the five datasets throughout all feature removal decisions.
Additionally, it experienced a severe decline in mean performance of more than 10
percentage points for three of the five datasets.
Furthermore, a stock market prediction model for the S&P500 market index using the
FSAE together with a random forest was implemented. The trading strategies derived
from this model demonstrated the ability to outperform a buy-and-hold investment
strategy with a small to moderate amount of transaction costs. Furthermore, it was
highlighted that the high absolute return class predictions contributed more to the average
return of the trading strategies than the two classes with smaller absolute returns.
Overall, for the artificial and real-world datasets, the FSAE feature selection algorithm
exhibited the ability to detect and remove irrelevant features and to retain those that
contribute to the discrimination of the classes. Notwithstanding, there remain two
limitations of the FSAE feature selection method that can be problematic for certain
complex data structures. The first is the fact that it relies on a single ideal vector to
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 74
represent each class in the data. If classes consist of groups of data or are characterized
by large variances, then in the majority of cases a single point to represent the class will
not be sufficient. For this purpose, an extension of the concept of a single ideal vector is
required. The second limitation is the evaluation of a feature on a univariate basis. In the
FSAE, a feature is evaluated on its own without considering how it is related to other
features. In a setup where features are relevant if they are jointly present in the data and
otherwise not or less relevant, this can result in a suggestion to remove such features. As
mentioned previously, using the wrapper version of the FSAE may avoid such removals
but will, at a minimum, result in a larger feature subset than necessary. In the worst case,
the algorithm will stop prematurely and keep irrelevant features that act as noise in the
data.

75
4 Similarity Classifier with Multiple Ideal Vectors
4.1 Introduction and Reasoning
The previous section on the FSAE feature selection algorithm highlighted that one
limitation of this algorithm is the use of a single ideal vector to represent a class. Since
the FSAE is conceptually related to the similarity classifier, it is unsurprising that the
similarity classifier involves the same limitation. In the context of classification
algorithms, Luukka and Lampinen (2015) highlighted that distance-based techniques can
encounter difficulties when facing complex data structures. To address this limitation,
they introduced the differential evolution-based multiple vector prototype classifier
(MVDE). Essentially, the solution they proposed is to use multiple ideal vectors to
represent each class in the feature space. They highlight that this approach can handle
more complex data structures, such as data clusters that a simple distance-based classifier
has difficulties representing and classifying accurately (Luukka & Lampinen, 2015). The
main limitation of their novel algorithm is that the number of ideal vectors to represent a
class has to be known to run the algorithm. In addition, Luukka and Lampinen (2015)
state that their results started to deteriorate rapidly with a smaller or larger number of
ideal vectors per class than the number that is actually suitable to represent the decision
regions of the classes. Hence, for future research they suggested investigating ways to
optimize the number of ideal vectors. In Publication III, this problem was addressed for
the similarity classifier – but the results can clearly also be deployed or extended for the
MVDE presented by Luukka and Lampinen (2015). As Luukka and Lampinen (2015)
demonstrated, the number and position of ideal vectors in the feature space is pivotal to
represent classes in more complex data structures well since it allows the classification of
observations from such data structures accurately. We deploy a combination of the two
following approaches: a clustering algorithm and the similarity classifier. The underlying
idea is intuitive: The aim of multiple ideal vectors is to represent each distinct group of
data within a class with one separate ideal vector. This turns out to be a twofold problem
since, first, the optimal number of distinct groups in the data needs to be known, and,
second, each of these groups has to be specified so that an ideal vector for each of them
can be defined that represents the group well. The second problem is a typical clustering
problem, where groups of observations need to be found that are similar to each other but
dissimilar to observations forming another group (Dougherty, 2013). The first problem
concerning the lack of knowledge on how many ideal vectors to use is equivalent to not
knowing how many distinct groups or clusters are present in a class. This is essentially
the research need Luukka & Lampinen (2015) formulated for the MVDE. However, this
is also a clustering-specific problem since many clustering algorithms, such as K-means
clustering, can suggest a partition of the data but require the number of clusters to be
specified in advance (Bishop, 2006). Hence, a possible way to address the problem of
defining the number and position of multiple ideal vectors per class can be addressed
using a clustering algorithm together with an algorithm that determines the optimal
number of clusters for a certain dataset. In Publication III, the authors suggest using the
popular K-means clustering algorithm together with the Jump method (Sugar and James,
4 Similarity Classifier with Multiple Ideal Vectors 76
2003) to determine the number of ideal vectors per class as well as their position. In the
suggested classifier, which is a similarity classifier with multiple ideal vectors, the
position of the ideal vectors per class is set to the cluster centres. The cluster centres
constitute the cluster means (for K-means clustering) and, thus, embody cluster
representatives. The ideal vectors function in the same manner as in the original similarity
classifier by assigning new observations to the closest ideal vector’s class. Hence, the
ideal vectors operate as in the original classifier, albeit there are now multiple ideal
vectors per class that allow coping with more complex data structures, such as groupings
in the data.
4.2 Step-by-Step Algorithm of the Novel Similarity Classifier
The flowchart of the algorithm used for the similarity classifier with multiple ideal vectors
using clustering and the Jump method is illustrated in Figure 4.1. The algorithm is divided
into five steps, starting from the pre-processing until the computation of the test set
performance of the classifier.5 Before detailing the algorithm as suggested in Publication
III, it is noteworthy that this algorithm can also be seen as a framework to setup a
(similarity) classifier with multiple ideal vectors. This framework is independent of which
pre-processing, clustering algorithm or method to determine the number of clusters is
selected.

5 This is less than the eight steps mentioned in Publication III. The algorithm was simplified to five steps
since the author realized that three of the steps could be removed without likely having a noticeable impact
on the obtained solution and corresponding classification accuracy.
4.2 Step-by-Step Algorithm of the Novel Similarity Classifier 77

Figure 4.1: Step-by-step process underlying the similarity classifier with multiple ideal vectors
[modified from Publication III]

The first step is the data pre-processing. In Publication III, two forms of pre-processing
were examined – first, the standardization of the original data to the compact interval
[0,1] and, second, the normalization using the z-score in combination with principal
component analysis (PCA) to extract new features and a subsequent standardization to
[0,1]. It shall be noted that both approaches include a standardization to the compact
interval [0,1] since the data need to be scaled into this interval so that the similarity
classifier can be applied to them. For the second variant of pre-processing, a suitable
number of principal components has to be selected since the first several principal
components are commonly sufficient to explain the majority of the variance in the data
(Cangelosi and Goriely, 2007). In the literature there exist several methods for this task,
including the modified broken stick model (Cangelosi and Goriely, 2007), the Guttman-
Kaiser criterion (Guttman, 1954; Kaiser, 1961), the SCREE test (Cattell, 1966), the
minimum average partial (MAP) test (Velicer, 1976), Bartlett’s test (Bartlett, 1950) and
parallel analysis (PA) (Horn, 1965). For different data structures, MAP and PA showed
the highest performance of the tested methods (Zwick and Velicer, 1982, 1986;
O’Connor, 2000). Hence, the PCA-based pre-processing follows the recommendation by
O’Connor (2000b) to use a combination of the MAP test and PA to determine a suitable
number of principal components.
4 Similarity Classifier with Multiple Ideal Vectors 78
The second step represents the data division into a training set to build the classification
model and a test set to determine the out-of-sample classification accuracy of that model.
The data can, for instance, be divided using the holdout method, with a split of 70% of
observations for the training data and 30% of observations for the test set.
The third step consists of the actual clustering of the observations in each of the classes.
This clustering is performed for 1 to 𝐾𝑚𝑎𝑥 clusters, where 𝐾𝑚𝑎𝑥 is the user-specified
maximum number of clusters used within a class. Each clustering is conducted for a
certain number of clusters K (with 1 ≤ 𝐾 ≤ 𝐾𝑚𝑎𝑥) so that the outcome of the clustering
is K cluster centres denoted as 𝑐1, … , 𝑐𝐾. This step is the prerequisite for the next step (the
fourth step), where the results of the clustering for the different number of clusters are
needed to determine the optimal number of clusters for each class. Therefore, in this step,
for each number of clusters K, the so-called estimated average distortions between the
observations in a cluster to their corresponding cluster centre are calculated (Sugar and
James, 2003).

?̂?𝐾 =
1
𝑛
∑ ∑
𝑢𝑗𝑘 ∗ (𝑥𝑗 − 𝑐𝑘)
𝑇
Γ−1(𝑥𝑗 − 𝑐𝑘)
𝑝
𝐾
𝑘=1
𝑛
𝑗=1
 (4.1)
In the above equation, 𝑥𝑗 is the j-th observation, p is the number of features
6 and 𝑐𝑘 is the
k-th cluster centre (from k = 1 to K) for a class. The notation Γ−1 refers to the inverse of
the covariance matrix of the observations belonging to the k-th cluster (Sugar and James,
2003). For simplicity, instead of using the covariance matrix, the identity matrix can be
used so that the calculation determines the mean squared error (Sugar and James, 2003).
The notation 𝑢𝑗𝑘 denotes the crisp membership of the observation 𝑥𝑗 to the cluster centre
𝑐𝑘. This membership can be formalized as:

𝑢𝑗𝑘 = {
 1 𝑖𝑓 ‖𝑥𝑗 − 𝑐𝑘‖
2
< ‖𝑥𝑗 − 𝑐𝑘′‖
2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘′ ≠ 𝑘
 0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (4.2)
where the membership of 𝑥𝑗 to 𝑐𝑘 is one if 𝑥𝑗 is closer to the cluster centre 𝑐𝑘 than to any
other cluster centre 𝑐𝑘′ for ∀ 𝑘
′ ≠ 𝑘 and zero otherwise. The estimated average distortion
?̂?𝐾 is the sum of the distortions over all K clusters and averaged over all n observations.
After the third step, for each class the estimated average distortion for 1 to 𝐾𝑚𝑎𝑥 clusters
is known. Also, all clustering results are saved, including the cluster centres and cluster
memberships for each number of clusters for each class.
The fourth step is the identification of the optimal number of clusters for each class. For
this step, the estimated average ‘distortions’ for the different number of clusters from the

6 Denoting the number of features with p follows the notation in Sugar and Gareth (2003) for the Jump
method. Since the dimensionality p has an important meaning in their paper, the author refrained from
changing the notation for this particular equation. However, in general, the number of features is denoted
by D throughout the remaining dissertation to be consistent with the corresponding publications.
4.2 Step-by-Step Algorithm of the Novel Similarity Classifier 79
previous step are required. Based on these distortions the optimal number of clusters is
determined via the Jump method (Sugar and James, 2003). To calculate the ‘jump’
between the distortions of two consecutive numbers of clusters, the following Equation
is applied:
 𝐽𝐾 = ?̂?𝐾
−𝑌 − ?̂?𝐾−1
−𝑌 , (4.3)
where 𝐽𝐾 denotes the jump in the distortion from K-1 to K clusters and Y the
transformation power in the exponent of the distortions. The optimal number of clusters
for a class is the number of clusters K where the largest jump 𝐽𝐾 occurred. Since the
average distortion decreases as more cluster centres are deployed, the largest jump
represents the number of clusters that had the largest incremental decrease in average
distortion. Hence, according to the Jump method, the number of clusters for which the
largest jump occurs is the optimal number of clusters. After having applied the Jump
method the optimal number of clusters, the associated cluster centres and the cluster
memberships are saved. The cluster centres for each class constitute the ideal vectors that
represent this class. Thus, they embody the class representatives that observations are
compared to in order to assign observations to classes. The third and fourth steps are
conducted for each class.
The fifth step is the performance evaluation of the similarity classifier using multiple
ideal vectors. After having repeated the third and fourth steps for each class, O ideal
vectors were determined, and each is one of the representatives of a class. Since this
extension of the similarity classifier allows multiple ideal vectors per class, the number
of ideal vectors 𝑂 ≥ 𝑁, where N is the number of classes. To assign observations to
classes, they are initially compared with all O ideal vectors. For a feature d and an
observation denoted by 𝑥𝑗, the similarity of this observation’s d-th feature value with the
d-th feature value of the ideal vector o is computed as (see also Equation (2.15)):

𝑆(𝑥𝑗,𝑑, 𝑣𝑜,𝑑) = √(1 − |𝑥𝑗,𝑑
𝑝 − 𝑣𝑜,𝑑
𝑝 |)
𝑝
, (4.4)
where 𝑣𝑜,𝑑 denotes the d-th element of the o-th ideal vector. The similarity of the entire
observation 𝑥𝑗 with the o-th ideal vector 𝑣𝑜 is calculated as the average value over all D
features.

𝑆(𝑥𝑗 , 𝑣𝑜) = (
1
𝐷
∑ 𝑆(𝑥𝑗,𝑑, 𝑣𝑜,𝑑)
𝑚
𝐷
𝑑=1
)
1
𝑚
, (4.5)
where m is the parameter for the generalized mean function. In the same way, the
observation 𝑥𝑗 is compared to all O ideal vectors and then assigned to the cluster that it is
most similar to.
4 Similarity Classifier with Multiple Ideal Vectors 80
 𝐶𝑙(𝑥𝑗) = arg max
𝑜=1,….𝑂
𝑆(𝑥𝑗 , 𝑣𝑜) (4.6)
Finally, the observation is assigned to the class that corresponds to the cluster this
observation is most similar to. This is executed in terms of a simple mapping from the
cluster to the corresponding class.
 𝐶(𝑥𝑗) = 𝑓 (𝐶𝑙(𝑥𝑗)) (4.7)
The performance evaluation is then implemented by comparing the predicted class label
of the observations in the test set with the actual class labels and calculating the
corresponding classification accuracy.
4.3 Application to Artificial Data
To demonstrate the ability of the novel similarity classifier with multiple ideal vectors to
detect and represent multiple decision regions for each class, three artificial examples
were created. Each example is characterized by multiple decision regions for each class
in a two- or three-dimensional setting. All three examples are visualized in Figure 4.2.

Figure 4.2: Artificial datasets for the similarity classifier with multiple ideal vectors [reproduced
from Publication III with the permission of the publisher]

The observations for each grouping in the first example are drawn from a multivariate
normal distribution without covariance. Each of the three classes are characterized by
three almost entirely non-overlapping groups of observations in two-dimensional space.
It is apparent that a single ideal vector for each class would neither be representative of
the class nor would it support the classification of new observations. The second example
is generated from a uniform distribution and illustrates a three-dimensional numerical
4.3 Application to Artificial Data 81
XOR problem with two classes. This example is composed of two distinct decision
regions for each of the two classes and, hence, cannot be represented well by one ideal
vector per class. The last example is another three-dimensional classification task. It
differs from the previous two examples in two aspects. First, its observations are drawn
from a multivariate normal distribution with different variances for different clusters.
Second, it is a four-class problem, and the groups of observations are rather well separated
and non-overlapping. Once more, none of the four classes can be represented well by a
single ideal vector. On top of that, this example was selected to highlight that the
difference in variance does not pose a problem for the novel similarity classifier with
multiple ideal vectors when the classes are separated well enough.
As mentioned in above Section 4.2, the novel similarity classifier with multiple ideal
vectors can be used with two different pre-processing versions. The first is a simple
standardization of the features into the unit interval. The second approach is using the z-
score and conducting a PCA, selecting a suitable number of principal components and
subsequently standardizing them. Both approaches are implemented for the three artificial
datasets for the novel similarity classifier, and the outcome is also contrasted with the
original similarity classifier with a single ideal vector per class. The results are
summarized in Table 4.1 to Table 4.3.

Classifier
Number of
PCs (PCA)
Mean
Accuracy
Variance
Transformation
Power Y
Standard - 0.3247 0.0037 -
Standard - PCA 2 0.3116 0.0039 -
Novel - 0.9697 0.0001 p/2
Novel - PCA 2 0.9912 0 p/2
Novel - 0.9687 0.0001 1
Novel - PCA 2 0.9913 0 1
Table 4.1: Classification accuracy of the similarity classifier with multiple ideal vectors on the
first artificial example. ‘Standard’ refers to the standard similarity classifier, ‘Novel’ to the novel
similarity classifier with multiple ideal vectors and ‘Standard-PCA’ and ‘Novel-PCA’ to the
combination of each of these classifiers and the principal components from PCA [modified from
Publication III]

The mean classification accuracies for the first example show that the standard similarity
classifier with a single ideal vector and any of the two pre-processing approaches fails to
classify the observations well. It is obvious that, for this three-class problem, the mean
accuracy is not significantly different from a random assignment. In contrast, all setups
of the novel similarity classifier with multiple ideal vectors, with and without PCA and
with a transformation power of p/2 (dimensionality of the data divided by 2) or 1, achieve
a significantly higher mean accuracy close to 1.

4 Similarity Classifier with Multiple Ideal Vectors 82
Classifier
Number of
PCs (PCA)
Mean
Accuracy
Variance
Transformation
Power Y
Standard - 0.5142 0.0006 -
Standard - PCA 3 0.4824 0.0005 -
Novel - 0.9049 0.0009 p/2
Novel - PCA 3 0.9028 0.0011 p/2
Novel - 0.9653 0.0004 1
Novel - PCA 3 0.9613 0.0001 1
Table 4.2: Classification accuracy of the similarity classifier with multiple ideal vectors on the
second artificial example. ‘Standard’ refers to the standard similarity classifier, ‘Novel’ to the
novel similarity classifier with multiple ideal vectors and ‘Standard-PCA’ and ‘Novel-PCA’ to
the combination of each of these classifiers and the principal components from PCA [modified
from Publication III]

In the second artificial example, a similar result as in the first example can be observed.
The similarity classifier with a single ideal vector in both setups achieves an accuracy of
around 50%. In contrast, all novel similarity classifiers with multiple ideal vectors achieve
mean accuracies of more than 90%. In addition, using a transformation power of 1 instead
of p/2, meaning in this example 3/2, results in an approximately 6 percentage points
higher mean accuracy.

Classifier
Number of
PCs (PCA)
Mean
Accuracy
Variance
Transformation
Power Y
Standard - 0.3493 0.0081 -
Standard - PCA 3 0.3135 0.0085 -
Novel - 1 0 p/2
Novel - PCA 3 1 0 p/2
Novel - 1 0 1
Novel - PCA 3 1 0 1
Table 4.3: Classification accuracy of the similarity classifier with multiple ideal vectors on the
third artificial example. ‘Standard’ refers to the standard similarity classifier, ‘Novel’ to the novel
similarity classifier with multiple ideal vectors and ‘Standard-PCA’ and ‘Novel-PCA’ to the
combination of each of these classifiers and the principal components from PCA [modified from
Publication III]

The third example once more highlights the inability of a single ideal vector to classify
observations for a class with multiple decision regions well. While the novel similarity
classifier uses clustering to find the decision regions of each class and assigns
observations to classes without any misclassification, the standard classifier achieves an
accuracy of only 31 to 35%. The weak performance of the similarity classifier is premised
4.4 Application to Credit Risk Data 83
on the fact that the ideal vector of all four classes is around the centre of the graph
(0.5,0.5,0.5) so that even a small variation in the data can completely change the class
assignment. Certainly, this is not desired and stresses that the standard algorithm cannot
account for data structures more complex than a single decision region per class. The
standard similarity classifier can only perform well in an environment where the classes
are well separated from each other, and each class forms a single decision region.
The three presented artificial examples clearly emphasize the ability of the similarity
classifier with multiple ideal vectors to account for multiple decision regions. With both
pre-processing setups, it demonstrated that it can classify the observations in a multi-
decision region problem better than the standard similarity classifier, which relies solely
on a single ideal vector.
4.4 Application to Credit Risk Data
The similarity classifier with multiple ideal vectors is also applied to three credit risk
datasets to demonstrate its ability to perform well in a real-world data setting. All three
datasets were obtained from the UCI Machine Learning Repository (Lichman, 2013) and
address the credit approval decision or the quality of borrowers. Such problems are
relevant for financial institutions since these institutions need methods to support their
decision making for lending to and monitoring their borrowers (Tsaih et al., 2004; West,
Dellana and Qian, 2005). A related problem is credit card fraud, another topic that is of
pivotal interest for financial institutions (Maes, Tuyls and Vanschoenwinkel, 2002; Pun
and Lawryshyn, 2012).
The first dataset is the ‘Credit Approval Data Set’, which is a binary classification task
related to the acceptance and rejection of credit applications. The dataset contains 690
observations of 15 features that characterize the loan applicant and the loan application
itself. Incomplete observations with missing values were removed so that 653 complete
observations remained for the analysis.
The second dataset is the ‘Statlog (German Credit Data) Data Set’ in its adjusted version,
where categorical variables were transformed into integer-valued ones. The binary classes
embody whether a borrower is considered a good or bad debtor. The dataset contains
1000 complete observations of 24 numeric features in which the classes are unbalanced
– with 70% of borrowers belonging to the non-defaulting borrowers and the remaining
30% to the defaulted creditors.
The third dataset is an adjusted version of the first dataset and is referred to as the ‘Statlog
(Australian Credit Approval) Data Set’. It represents a binary classification problem
concerning the acceptance or rejection of credit card applicants. It encompasses 690
complete observations of 14 features that characterize the credit card applicant and his/her
application details.
For these three datasets, the standard similarity classifier with a single ideal vector and
the novel similarity classifier with multiple ideal vectors are contrasted against several
well-known classification methods. These include the K-nearest neighbour classifier
4 Similarity Classifier with Multiple Ideal Vectors 84
(Cover & Hart, 1967), the naive Bayes classifier (Russell and Norvig, 2009), a decision
tree (Quinlan, 1986) and the ensemble classifier random forest, which consists of multiple
decision trees (Breiman, 2001).
The results for the first dataset, the ‘Credit Approval’ data, are illustrated in Table 4.4.

Classification Algorithm Mean Accuracy Variance
Mean Mean
p m Y
FNR FPR
Standard Similarity Classifier 0.8599 0.0004 0.196 0.072 6 4 -
Standard Similarity Classifier (PCA, 4 PCs) 0.8057 0.0005 0.01 0.284 1 1 -
Novel Similarity Classifier 0.8525 0.0005 0.133 0.160 1 1 p/2
Novel Similarity Classifier 0.8706 0.0005 0.056 0.190 6 5 1
Novel Similarity Classifier (PCA, 4 PCs) 0.7716 0.0008 0.243 0.216 1 2 p/2
Novel Similarity Classifier (PCA, 4 PCs) 0.8076 0.0005 0.324 0.085 4 4 1
K-Nearest Neighbour, k = 1 0.8184 0.0005 0.207 0.161 - - -
K-Nearest Neighbour, k = 10 0.8608 0.0004 0.142 0.137 - - -
K-Nearest Neighbour, best k = 1 0.8184 0.0005 0.207 0.161 - - -
Naive Bayes (Normal Gaussian distribution) 0.8039 0.0006 0.321 0.093 - - -
Naive Bayes (Kernel with normal smoothing) 0.6823 0.0012 0.425 0.230 - - -
Random Decision Forest (Min leaf size = 1) 0.8733 0.0004 0.129 0.125 - - -
Random Decision Forest (Min leaf size = 10) 0.8708 0.0004 0.126 0.132 - - -
Decision Tree (Min leaf size = 1) 0.8322 0.0007 0.194 0.147 - - -
Decision Tree (Min leaf size = 10) 0.8561 0.0005 0.157 0.133 - - -
Table 4.4: Classification results for the ‘Credit Approval’ dataset [modified from Publication III]

The results indicate that on the first dataset the standard and the novel classifier perform
considerably better in terms of mean accuracy when the pre-processing is implemented
via standardization instead of using the z-score combined with a PCA. The classification
accuracy of the novel similarity classifier (with Y = p/2) is at 87.06% – higher than the
85.99% accuracy achieved with the standard classifier. Using the one-sided Welch’s test,
it can be demonstrated that the mean performance of the novel classifier is significantly
larger (p-value < 0.01) than that of the standard similarity classifier.
In comparison with the other well-known classification algorithms, the performance of
the similarity classifier with multiple ideal vectors is competitive. Comparing the novel
algorithm using transformation power Y = 1 with the K-nearest neighbour classifiers,
naive Bayes and decision trees highlights that it has the highest mean accuracy for all
these single classifiers. In particular, the positive difference in the mean accuracy of the
novel similarity classifier with multiple ideal vectors to these algorithms is highly
significant. In addition, the mean performance of the novel algorithm with transformation
power Y = 1 has an accuracy of 87.06% – competitive with the result achieved by the
ensemble classifier random forest, which achieved with 87.33% and 87.08% the best
4.4 Application to Credit Risk Data 85
mean accuracies for this example. This is remarkable since the random decision forest is
a classifier ensemble containing multiple classifiers (here: 50 decision trees). Opposed to
that, the similarity classifier with multiple ideal vectors is only a single classifier but still
achieves competitive results.
Contrasting the mean accuracies for the standard and the novel similarity classifier for
both pre-processing procedures, it is apparent that using PCA and selecting four principal
components underperforms simple standardization by 5.42 percentage points to 8.09
percentage points.
The results obtained for the second real-world dataset, the ‘German Credit’ data, are
summarized in Table 4.5.

Classification Algorithm Mean Accuracy Variance
Mean Mean
p m Y
FNR FPR
Standard Similarity Classifier 0.7263 0.0003 0.099 0.683 4 1 -
Standard Similarity Classifier (PCA, 8 PCs) 0.7299 0.0004 0.142 0.570 3 5 -
Novel Similarity Classifier 0.6822 0.0005 0.158 0.691 8 1 p/2
Novel Similarity Classifier 0.7314 0.0003 0.095 0.674 4 1 1
Novel Similarity Classifier (PCA, 8 PCs) 0.6966 0.0008 0.281 0.355 3 1 p/2
Novel Similarity Classifier (PCA, 8 PCs) 0.6998 0.0006 0.298 0.304 2 1 1
K-Nearest Neighbour, k = 1 0.6715 0.0005 0.237 0.543 - - -
K-Nearest Neighbour, k = 10 0.7164 0.0005 0.162 0.568 - - -
K-Nearest Neighbour, best k = 1 0.6715 0.0005 0.237 0.543 - - -
Naive Bayes (Normal Gaussian distribution) 0.7233 0.0006 0.229 0.388 - - -
Naive Bayes (Kernel with normal smoothing) 0.7068 0.0001 0.013 0.947 - - -
Random Decision Forest (Min leaf size = 1) 0.7584 0.0003 0.096 0.581 - - -
Random Decision Forest (Min leaf size = 10) 0.7516 0.0003 0.069 0.668 - - -
Decision Tree (Min leaf size = 1) 0.6946 0.0007 0.218 0.510 - - -
Decision Tree (Min leaf size = 10) 0.7197 0.0006 0.167 0.545 - - -
Table 4.5: Classification results for the ‘German Credit’ dataset [modified from Publication III]

Once more, the highest mean accuracy is achieved with the random forest classifier with
75.84% and 75.16% for the two different minimum leaf sizes. For the remaining
algorithms that rely on a single classifier, the similarity classifier with multiple ideal
vectors and Y = 1 reaches the highest mean accuracy of 73.14%. Using the Welch’s test,
the null hypothesis that the population mean accuracy for the novel classifier is equal to
or smaller than the one for the standard similarity classifier can be rejected with a
significance level of 5%. It is noteworthy that the performance of the standard similarity
classifier improves when the pre-processing is switched to PCA, whereas for the novel
similarity classifier it deteriorates by about 3 percentage points compared to the best setup
4 Similarity Classifier with Multiple Ideal Vectors 86
with Y = 1. Another point of interest is that the standard similarity classifier with a single
ideal vector performs well for this classification task and is characterized by a higher
mean accuracy than the K-nearest neighbour classifier, naive Bayes and the decision tree
classifier.
The classification accuracies for the third and last credit dataset, the ‘Australian Credit’
dataset, are presented in Table 4.6.

Classification Algorithm Mean Accuracy Variance
Mean Mean
p m Y
FNR FPR
Standard Similarity Classifier 0.8727 0.0004 0.144 0.114 3 3 -
Standard Similarity Classifier (PCA, 3 PCs) 0.8283 0.0005 0.268 0.094 1 2 -
Novel Similarity Classifier 0.8469 0.0005 0.151 0.155 1 1 p/2
Novel Similarity Classifier 0.8737 0.0004 0.118 0.133 2 3 1
Novel Similarity Classifier (PCA, 3 PCs) 0.7940 0.0006 0.273 0.152 1 3 p/2
Novel Similarity Classifier (PCA, 3 PCs) 0.8273 0.0004 0.228 0.128 1 1 1
K-Nearest Neighbour, k = 1 0.7997 0.0005 0.223 0.182 - - -
K-Nearest Neighbour, k = 10 0.8513 0.0004 0.177 0.126 - - -
K-Nearest Neighbour, best k = 1 0.7997 0.0005 0.223 0.182 - - -
Naive Bayes (Normal Gaussian distribution) 0.8016 0.0005 0.329 0.093 - - -
Naive Bayes (Kernel with normal smoothing) 0.6877 0.0015 0.417 0.228 - - -
Random Decision Forest (Min leaf size = 1) 0.8676 0.0004 0.143 0.124 - - -
Random Decision Forest (Min leaf size = 10) 0.8653 0.0004 0.153 0.12 - - -
Decision Tree (Min leaf size = 1) 0.8307 0.0006 0.194 0.149 - - -
Decision Tree (Min leaf size = 10) 0.8483 0.0005 0.164 0.142 - - -
Table 4.6: Classification results for the ‘Australian Credit’ dataset [modified from Publication
III]

For this dataset, the novel similarity classifier with Y = 1 demonstrates with 87.37% the
highest mean accuracy of all classification models – including both random forest setups.
It is remarkable that the difference in mean accuracy of the novel similarity classifier with
Y = 1 to the random forest is even highly significant. In general, this algorithm
outperforms all classifiers by a highly significant margin, with the sole exception of the
runner-up, which is the standard similarity classifier with a mean accuracy of 87.27%.
Once more, the pre-processing deploying a subset of the principal components results in
lower mean accuracies than a simple standardization. Moreover, for all three examples,
selecting a transformation power of Y = 1 outperforms the parameter value Y = p/2.
Looking at the results computed for all three real-world financial datasets, the similarity
classifier with multiple ideal vectors (and Y = 1) performed at least as good as the
similarity classifier with a single ideal vector. For one dataset, the ‘Australian Credit’
dataset, the novel similarity classifiers accomplished ‘only’ comparable results. For the
4.5 Conclusion and Limitations of the Novel Similarity Classifier 87
remaining two datasets, the ‘Credit Approval’ and ‘German Credit’ datasets, the
similarity classifier with multiple ideal vectors (and Y = 1) outperformed the standard
similarity classifier with a highly significant difference for the former and a significant
difference for the latter. Contrasting the results of the novel algorithm (and Y = 1) with
the well-known classification algorithms included in this study, it demonstrated, in the
majority of cases, competitive results. In particular, it outperformed the K-nearest
neighbour classifiers, naive Bayes and the decision trees for all presented examples.
4.5 Conclusion and Limitations of the Novel Similarity Classifier
As pointed out by Luukka and Lampinen (2015), simple distance-based techniques may
experience difficulties with more complex data structures composed of multiple decision
regions for each class. The novel similarity classifier with multiple ideal vectors was
introduced to address such complex data structures. The suggested algorithm for the
similarity classifier with multiple ideal vectors incorporates intra-class K-means
clustering in combination with the Jump method to determine the optimal number and
position of the cluster centres. These cluster centres function as ideal vectors that are
deployed as class representatives in the novel classifier. This is related to the research
need formulated by Luukka and Lampinen (2015) for the MVDE algorithm for which the
number of ideal vectors needs to be user-specified. In addition, these authors remarked
that, for their datasets, a deviation from the optimal number of clusters eventuated in rapid
declines in their classification results.
In response to this problem, the methodology for the similarity classifier with multiple
ideal vectors incorporates a clear framework how clustering and algorithms to determine
the optimal number of clusters can be deployed to select a suitable number of class
representatives and their coordinates. For a distance- or similarity-based classifier, the
cluster centres can function as the ideal vectors that represent the groups discovered
within each of the classes. Certainly, if desired, the class representatives can also be
selected in any other way based on the partitioning of a cluster algorithm.
The novel similarity classifier enables the use of multiple ideal vectors instead of just a
single one for the case where two or more distinct decision regions are present within a
class. Aside from that, the novel algorithm with multiple ideal vectors demonstrated on
three artificial example datasets with multiple decision regions per class the consistent
ability to outperform the standard similarity classifier. The two forms of pre-processing
demonstrated no clear difference for these three examples.
For the real-world datasets, using the novel similarity classifier with simple
standardization and a transformation power Y = 1 led in all cases to the best mean
classification accuracy of all similarity-based classifiers. In particular, in five out of six
setups, the novel similarity classifier performed better with simple standardization than
with a selected number of principal components. For this reason, it is suggested to apply
only the simple standardization for the similarity classifier and the transformation power
Y = 1 for the Jump method. The deployment of other transformation powers for the Jump
4 Similarity Classifier with Multiple Ideal Vectors 88
method can be examined in future research and is dependent on the distribution of the
clusters in the data.
It is also noteworthy that, with exception of the ensemble learning algorithm random
forest, the similarity classifier with multiple ideal vectors and Y = 1 outperformed all
benchmark algorithms, often by a highly significant margin. In comparison with the
random forest setups, the novel similarity classifier was in one case comparably accurate,
in the second it underperformed by a margin of 2 percentage points and another time even
outperformed it.
The similarity classifier with multiple ideal vectors addresses one of the main limitations
of the similarity classifier, which is the inherent assumption that a single data point can
represent a class well. However, using a Euclidean distance-based clustering approach,
such as the standard K-means algorithm, as well as measuring similarity without
incorporating the covariance structure of the data are the main limitations of the novel
classifier. These two limitations are directly related. Both illustrate that the novel
similarity classifier can in future work be extended to incorporate the level of variation
and correlation in the data for a more effective clustering and classification of complex
data structures. Moreover, different clustering algorithms can be applied that are more
effective in the context of non-convex clusters. Other methods to determine the optimal
number of clusters can be applied as well. As a last point, the idea to combine clustering
with a method to select the optimal number of clusters to find one or more suitable class
representatives can also be extended to the context of supervised feature selection.
89
5 Clustering One Less Dimension (COLD) Feature
Selection
5.1 Introduction and Reasoning
The differentiation between univariate and multivariate feature selection methods
highlights that feature selection can be conducted either with a focus on each feature
separately or by considering feature interactions. This is pivotal when considering that
the subset of the k most relevant features (univariate) does not need to be the same as the
best subset of k features (Cover, 1974). For redundant features, this appears obvious. The
best subset of two features is evidently not a subset containing two redundant features,
which are each by themselves the best standalone feature (Cover, 1974). Instead, for
instance, the best single feature together with any other feature that adds at least marginal
additional information and supports the discrimination between the classes would be
preferable. However, this is not the only case where the best k features are not necessarily
the best subset of k features. Elashoff, Elashoff and Goldman (1967) demonstrate this
circumstance also for (conditionally) independent features. In addition, Toussaint (1971)
extends this finding by illustrating that the subset of the k best features does not
necessarily contain the univariate best feature and can even consist of the two worst
univariate features. Guyon and Elisseeff (2003) present simple two-dimensional
examples and show how independent as well as highly correlated features can together
separate the two-dimensional space linearly even though each feature by itself is
completely useless. This illustrates a somewhat extreme example – but it exemplifies a
valid point. For their example, adding a feature that only partially overlaps for the two
classes and that could reach high classification accuracies close to 100% should not be
contained in the best subset of two features. Rather, two features that are essentially
useless by themselves due to high correlation should be selected for the best subset of two
features since they can jointly separate the classes linearly. Notwithstanding, each of these
features alone will result in an accuracy of about 50%, which is the same as a random
class assignment for a balanced two-class problem. Thus, Guyon and Elisseeff (2003)
reached the conclusion that feature selection methods evaluating features with a
univariate approach are not suitable for determining the best feature subset for such data
structures. For certain applications, simply selecting the feature subset with a univariate
or multivariate method can result in the same best feature subset. However, the depicted
findings and examples indicate that multivariate feature selection methods considering
the dependencies between two or more features can in other applications suggest better
feature subsets. As a consequence, a feature selection algorithm should not evaluate
features without factoring in the dependencies among features for the selection of the best
feature subset.
Hence, the objective of the heuristic feature ranking method proposed in this section is to
be able to account for the dependencies among features to find the best feature subset.
Before going into detail about the way the so-called COLD algorithm functions, it should
5 Clustering One Less Dimension (COLD) Feature Selection 90
be shown how the novel algorithm is linked to the research highlighted in previous
sections of this dissertation. As explained in detail in Section 3, using the distance
between class representatives, as implemented in the FSAE, can render the feature
selection more effective and lead to more intuitive feature removal decisions. In the
COLD algorithm, this logic is coupled with the concept of multiple ideal vectors per class
from the novel similarity classifier (see Section 4). This means that instead of using a
single class representative, as in the FSAE, COLD will deploy multiple class
representatives to determine which features are relevant. As in the similarity classifier
with multiple ideal vectors, these class representatives are identified using class-wise
clustering. Since Guyon and Elisseeff (2003) highlight several challenges that relate to
the dependency among features caused by correlation, the covariance structure of the
clusters is also considered. This provides additional information on the shape of each
cluster beyond the knowledge of one representative centre point.
The acronym COLD stands for ‘clustering one less dimension’ and hints at the logic
underlying this algorithm (Publication III). As the name indicates, one defining
characteristic of this supervised feature selection algorithm is that it deploys clustering.
In the algorithm, clustering is conducted for each class separately. The clustering is
implemented using all features to determine groupings within each class. Each of these
groupings can be represented by an ideal vector (cluster centre) and the covariance matrix
that defines the distribution of observations in that cluster. The second part of the name,
‘one less dimension’, refers to how the feature relevance is determined accounting for
dependencies among features. First, the separation in terms of the Mahalanobis distance
between each of the clusters of a class to all other classes’ clusters is calculated, which is
based on the complete set of features. For this purpose, the Mahalanobis distance accounts
for the ideal vector values of each cluster and the corresponding covariance matrices.
Subsequently, the separation among the same clusters is measured excluding a certain
feature from the full set of features. This step is repeated for each feature, always looking
at the entire feature set excluding only the feature currently under consideration. Then,
the separation between the clusters of the classes with the complete set of features is
compared to the separation achieved with the feature subset without a certain feature. The
interpretation of the comparison is straightforward. If the clusters from different classes
without a certain feature are overall closer, meaning the classes are less well separated,
then the feature is by itself or together with one or more of the features in the dataset
relevant and contributes to the separation of the classes. It is noteworthy that pursuing
this approach is not dependent on whether there is a dependency between two features or
among several ones. If a feature is dependent on one or multiple features that contribute
to the separation among classes, then removing such a feature will deteriorate the
separation of the classes in terms of distance. In contrast, if the separation between the
classes remains unchanged or improves after the feature removal, the feature is irrelevant.
On top of that, this feature might even act as noise in the data, which renders the
discrimination between classes more challenging.
Since the general idea of using clustering for feature selection is not entirely new, the
approach of the COLD algorithm has to be contrasted with other algorithms in the
5.1 Introduction and Reasoning 91
scientific literature to understand how the COLD algorithm differs from them and why it
was conceptualized in that way. The existing research on feature selection includes
clustering for unsupervised (Mitra, Murthy and Pal, 2002) as well as supervised feature
selection (Martínez Sotoca and Pla, 2010; Sahu, Dehuri and Jagadev, 2017; Chormunge
and Jena, 2018). For supervised feature selection, meaning the domain in which also the
COLD algorithm is applied, the existing research centres on using clustering of features.
This refers to the grouping of features to find representatives for similar features and to
keep only a subset of representative features (Martínez Sotoca and Pla, 2010; Sahu,
Dehuri and Jagadev, 2017; Chormunge and Jena, 2018). In this way, the identified subset
of features contains those features that may represent several features that are similar,
meaning that they are considered (potentially) redundant. In addition, in Chormunge and
Jena (2018), features that do not fit any cluster are considered irrelevant and removed as
well. A different approach is taken by Martínez Sotoca and Pla (2010), who interpret one
cluster as the cluster of the ‘residual features’ since it shares the least amount of
information with the class label and discard all features in that cluster entirely.
The COLD algorithm differs from all these approaches for supervised feature selection
using clustering in three distinct aspects.
1. Clustering of observations: The COLD algorithm clusters the observations in the
data, where the features are the characteristics that lead to the formation of clusters. In
the approaches found in the existing research, the features themselves are clustered and
not the observations. This difference is premised on the fact that the aim is not to find
groups of features to simply take a representative of each feature but to find groups of
observations and the representatives of these groups to later determine which features
contribute to the separation of these groups from each other.
2. Clustering of each class separately: To determine representatives for each class,
‘pure’ clusters are needed that only contain observations from one class. It is obvious that
not for every data structure clustering of all observations will end up with such ‘pure’
clusters. Hence, it seems natural to cluster each class separately. Using class-wise
clustering, a representative of each cluster specifically embodies a group of observations
of only a single class. Also, the covariance matrix for that cluster is based only on
observations of the same class. Finally, clustering for each class can capture more
complex data structures/groupings for each class and can represent these with several
class representatives (and the corresponding covariance matrices) instead of a single
representative. The idea behind this is that for complex data structures, allowing multiple
class representatives will be more suitable than a single representative to capture the
structure of each of the classes in the data.
3. Integration of the clusters into the feature selection algorithm: In the approaches
presented in the literature, clustering is directly deployed to discard features. This is
accomplished either by keeping only a representative feature for each cluster, by
discarding features that do not fit any of the clusters, by removing features that are highly
correlated or by discarding all features that belong to a cluster of ‘residual features’. In
5 Clustering One Less Dimension (COLD) Feature Selection 92
contrast, COLD takes the clustering result as a starting point to determine each feature’s
contribution to the separation of the clusters of the classes. Since COLD aims to determine
a feature’s multivariate relevance, the algorithm compares the cluster separation with all
features to the separation without each of the features. In this way, the impact of a certain
feature on the set of features can be measured.
Based on these points, it is apparent that the COLD algorithm takes an approach to using
clustering for feature selection entirely different from the algorithms presented in the
literature. In the next section, the detailed step-by-step algorithm that implements the
logic behind COLD will be depicted.
5.2 Step-by-Step Algorithm of COLD Feature Selection
The COLD algorithm can be divided into five distinct steps, which start with the pre-
processing and end with the COLD scores as well as the feature ranking. The steps are
outlined in Figure 5.1 and explained in detail below.

Figure 5.1: Step-by-step process underlying the COLD feature selection

The first step is the pre-processing of the data. Initially, the data are scaled into the
compact interval [0,1]. Thereafter, redundant features are removed. The term ‘redundant’
5.2 Step-by-Step Algorithm of COLD Feature Selection 93
for a feature is interpreted as a feature that can be perfectly represented by another feature
or a linear combination of multiple other features in the data. Fortunately, such linearly
dependent features can be determined with a rank-revealing QR factorization (Chan,
1987) and then discarded. Hence, only linearly independent features are kept in the data
for the subsequent steps. For the final feature ranking, these discarded features will be
ranked last.
The second step concerns the clustering of the data and the choice of the number of
clusters for each class. The clustering is conducted for each class using the K-medoids
clustering algorithm (Bishop, 2006). K-medoids is a generalization of the K-means
clustering algorithm, which is one of the most widely applied and popular hard clustering
algorithms (Koutroumbas and Theodoridis, 2003; Dougherty, 2013). There are two main
differences between K-medoids and K-means, which are the reason for the choice of K-
medoids clustering for the COLD algorithm. The first is that K-means requires numerical
features, whereas K-medoids can also handle categorical features (Hastie, Tibshirani and
Friedman, 2009). The second reason is that K-means is sensitive to outliers, which impact
the centroids used in K-means. In contrast, K-medoids is robust to outliers and noise since
it utilizes medoids (Hastie, Tibshirani and Friedman, 2009; Sammut and Webb, 2017). It
is well known that for clustering algorithms such as K-medoids or K-means, the number
of clusters has to be user-specified ahead of clustering. In other words, the number of
groups in the data to be assumed for the clustering has to be defined in advance. It is
apparent, that this is rarely known in advance. Without an investigation of the data, it may
not be possible for a user to specify what a suitable number of clusters is. In particular,
high-dimensional data are extremely difficult, if not impossible, to investigate visually to
determine a suitable number of clusters. Fortunately, there are several methods discussed
in the scientific literature that aim to determine the optimal number of clusters for a given
dataset. Some numerical and commonly used methods include the GAP-statistic
(Tibshirani, Walther and Hastie, 2001), the Silhouette method (Rousseeuw, 1987), the
Calinski-Harabasz index (Calinski and Harabasz, 1974) or the Jump method (Sugar and
James, 2003). For the COLD algorithm, the Silhouette method was selected. The
Silhouette method is, in the author’s view, a highly intuitive method, and it also
determines the number of clusters independently of the clustering algorithm but based on
the partitioning of the data. In other words, it can be used with any clustering algorithm,
and the optimal number of clusters depends only on the clusters suggested by the
deployed clustering algorithm. In addition, in a comparison of several methods to
determine the optimal number of clusters, the Silhouette method has demonstrated on
average a very good performance, which was even significantly higher than that of several
other methods (Arbelaitz et al., 2013).7

7 The Jump method that was deployed in the similarity classifier with multiple ideal vectors to determine
the optimal number of clusters was not considered. The reason for this choice is that the Jump method
requires the specification of the transformation power Y. The results presented in the previous section
indicated that the transformation power of Y = p/2 proposed by Sugar and James (2003) did not perform
well for the real-world datasets. Thus, the author decided to use the Silhouette method, which does not
require the specification of a parameter and demonstrated good performance in the existing literature.
5 Clustering One Less Dimension (COLD) Feature Selection 94
For the Silhouette method, the candidates for the optimal number of clusters need to be
user-specified. For this purpose, 1 to K clusters are determined as candidates, where K
can, for instance, be set to 10 (or based on the sample size). For the COLD algorithm,
both the K-medoids clustering and the Silhouette method are implemented using
Mahalanobis distance as the distance measure. In contrast to certain other distance
measures, such as Euclidean distance, the covariance information is included in the
calculation of Mahalanobis distance. In this way, the covariance among features and
differences in variance can be accounted for. To calculate the Mahalanobis distance
between two cluster centres, the covariance matrix has to be invertible. For the entire
dataset, the QR factorization ensures that all features are linearly independent, which
guarantees that the covariance matrix is invertible. However, this is not necessarily true
for the clusters, which obviously contain only a subset of the observations. Thus, the
clustering can suggest one or more clusters that have a covariance matrix that is not
invertible. For instance, a feature can be constant in one or several of the clusters.
However, such a feature can still be desirable for the classification. A simple example
would be that for one class, all clusters contain one feature that is constantly ‘0’, whereas
for the other class it is constantly ‘1’. Obviously, this feature can by itself perfectly
discriminate between the classes. Nonetheless, such a feature eventuates in non-invertible
(singular) covariance matrices of the clusters. A remedy for this problem is ridge
regularization (Warton, 2008) of the singular covariance matrices.
 Σ𝑘 = (1 − 𝛼)Σ𝑘 + 𝛼𝐼 (5.1)
In Equation (5.1), I stands for the identity matrix (a diagonal matrix with ones on the
diagonal and zeros as all off-diagonal elements). The parameter 𝛼 controls how much of
the identity matrix is added to the singular covariance matrix to ensure that it is invertible.
The regularization is applied only to singular covariance matrices. All other covariance
matrices can remain unaltered for the calculation of the Mahalanobis distance. The
covariance matrix is 𝐷 × 𝐷 dimensional, where D is the number of features that remain
after step one and the removal of redundant features.
The result of the second step and using K-medoids with the Silhouette method is the
knowledge of the cluster centres (ideal vectors) for the optimal number of clusters for
each class, the cluster membership of observations to these clusters and the (regularized)
covariance matrices of these clusters. The second step is repeated for each class so that
the ideal vectors, covariance matrices and cluster memberships are known for each class’s
clusters.
In the third step the distances between clusters of different classes are calculated. For
this purpose, let us denote the cluster indices by o = 1 to O, where O is the overall number
of clusters for all classes combined. In addition, the set of cluster indices that belong to
the same class as cluster o are denoted by 𝐶𝑜. The complement, meaning all clusters that
belong to any class other than cluster o is denoted by 𝐶?̅?. A simple example would be if
the first cluster belongs to class 1, where class 1 contains the clusters {1,2}, class 2
encompasses cluster {3} and class 3 comprises clusters {4,5}. In this example, 𝐶1 refers
5.2 Step-by-Step Algorithm of COLD Feature Selection 95
to the set containing {1,2}, and 𝐶1̅ encompasses the remaining clusters {3,4,5} belonging
to the remaining classes 2 and 3. The notation for features are selected in a similar manner.
The number of features is D, and a single feature can be denoted by d. The complement
of d is denoted by ?̅? and contains all features with the exception of d, which are obviously
the remaining D-1 features. The cluster centre of the o-th cluster is denoted by 𝑣𝑜, which
is consistent with the notation used for the similarity classifier with multiple ideal vectors.
The Mahalanobis distance between a cluster centre 𝑣𝑜 and the cluster centre 𝑣𝑚 of another
class measured from the perspective of 𝑣𝑜 and its covariance matrix is:
 S(𝑣𝑜 , 𝑣𝑚) = (𝑣𝑜 − 𝑣𝑚)
𝑇Σ𝑜
−1(𝑣𝑜 − 𝑣𝑚) (5.2)
This calculation is repeated for each combination of ideal vectors o and m, for which o
and m belong to different classes. It is essential to highlight that all computations in this
step include the entire set of D features and that both 𝑣𝑜 and 𝑣𝑚 are D-dimensional
vectors.
The fourth step consists of the calculation of the distance between clusters without one
of the features. The calculation is similar to the one conducted in the third step but does
not incorporate all D features. In particular, for a feature d the separation between clusters
of different classes without this feature is computed as:
 S(𝑣𝑜,?̅?, 𝑣𝑚,?̅?) = (𝑣𝑜,?̅? − 𝑣𝑚,?̅?)
𝑇
Σ𝑜,?̅?
−1 (𝑣𝑜,?̅? − 𝑣𝑚,?̅?), (5.3)
where 𝑣𝑜,?̅? and 𝑣𝑚,?̅? denote the o-th and m-th cluster centres, respectively, with all
features except for feature d – which simply means the cluster centres 𝑣𝑜 and 𝑣𝑚 without
their d-th element. Hence, 𝑣𝑜 and 𝑣𝑚 are both (D-1)-dimensional vectors. The covariance
matrix Σ𝑜,?̅? does not include the d-feature, either. This means that it is the covariance
matrix Σ𝑜 without the d-th row and column and, hence, is of dimension (D-1)×(D-1). As
in the third step, 𝑣𝑜 and 𝑣𝑚 belong to two different classes. This calculation is repeated
for each feature d and each combination of ideal vectors o and m, for which o and m
belong to different classes.
The fifth step is the calculation of the COLD score and the assignment of the
corresponding feature rank. This step centres on the change in the distances between
clusters of different classes with the entire feature set and the set of features without the
d-th feature. The first sub-step is the calculation of the ratio of the Mahalanobis distance
between two clusters without the d-th feature to the distance with the complete feature
set. For cluster centres 𝑣𝑜 and 𝑣𝑚, this ratio is computed as:

𝑟𝑜,𝑚,𝑑 =
S(𝑣𝑜,?̅? , 𝑣𝑚,?̅?)
S(𝑣𝑜 , 𝑣𝑚)
, (5.4)
5 Clustering One Less Dimension (COLD) Feature Selection 96
where 𝑟𝑜,𝑚,𝑑 refers to the ratio of the Mahalanobis distances, with 𝑟𝑜,𝑚,𝑑 ≥ 0 since the
Mahalanobis distance cannot be negative. There are three possible cases for values that
𝑟𝑜,𝑚,𝑑 can take, as follows:
𝒓𝒐,𝒎,𝒅 > 𝟏 : This case means that the distance between the cluster centres 𝑣𝑜 and 𝑣𝑚
without the d-th feature as denoted by S(𝑣𝑜,?̅? , 𝑣𝑚,?̅?) is larger than S(𝑣𝑜 , 𝑣𝑚), the distance
with all features. This indicates that the d-th feature in the context of 𝑣𝑜 and 𝑣𝑚 is
irrelevant and even noisy since it is easier to separate the clusters without this feature than
including it.
𝒓𝒐,𝒎,𝒅 = 𝟏 : This case embodies no change in the distance between the two clusters with
and without the d-th feature. Hence, the feature is irrelevant for the separation of these
two clusters since the feature does not contribute to it (neither in a positive nor a negative
way).
𝒓𝒐,𝒎,𝒅 < 𝟏 : This result represents the case when the distance S(𝑣𝑜,?̅? , 𝑣𝑚,?̅?) between 𝑣𝑜
and 𝑣𝑚 decreases compared to S(𝑣𝑜 , 𝑣𝑚) when the d-th feature is removed from the
complete set of features. Therefore, the separation between the clusters deteriorates when
the d-th feature is not present in the data. This suggests feature d is relevant for the
separation of 𝑣𝑜 and 𝑣𝑚 since it supports the discrimination between the two clusters.
The value for 𝑟𝑜,𝑚,𝑑 indicates if the removal of the d-th feature contributes to the
separation of two cluster centres 𝑣𝑜 and 𝑣𝑚. But for each cluster centre 𝑣𝑜 and a certain
feature d, it is important to determine how the separation changes in regard to all clusters
of other classes 𝐶?̅? since in the majority of cases there are multiple classes and/or multiple
clusters of different classes. It is pivotal to measure the change in the distance between
𝑣𝑜 with any cluster of another class. In addition, it is undoubtedly more important for the
separation of the classes if a cluster that is closer to 𝑣𝑜 changes its distance to 𝑣𝑜 than the
change of clusters comparably distant to 𝑣𝑜. Hence, when aggregating the ratio values
𝑟𝑜,𝑚,𝑑 for a given cluster centre 𝑣𝑜 to all other clusters of different classes 𝐶?̅?, these ratios
are weighted to give closer clusters a higher weight than more distant ones.

𝑤𝑜,𝑚 = {
1 𝑖𝑓 𝑐𝑎𝑟𝑑(𝐶?̅?) = 1
1 −
S(𝑣𝑜 , 𝑣𝑚)
∑ S(𝑣𝑜 , 𝑣𝑚)𝑚𝜖?̅?𝑜
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,
 (5.5)
where 𝑤𝑜,𝑚 𝜖 [0,1] and equals one if there is solely a single cluster from another class,
meaning that the cardinality of the set of clusters of other classes is 1. In a case where
there are multiple other clusters from all other classes, then the weight corresponds to one
minus the ratio of the distance of 𝑣𝑜 to a cluster 𝑣𝑚 divided by the sum of the distances
of 𝑣𝑜 to all other clusters from other classes. Therefore, the weight of closer clusters is
higher than that of distant clusters. This means that changes in closer clusters have a
higher impact on the evaluation of how much a feature contributes to the separation of
the classes. Using the weights 𝑤𝑜,𝑚 together with the corresponding ratios of the distances
5.2 Step-by-Step Algorithm of COLD Feature Selection 97
𝑟𝑜,𝑚,𝑑, the weighted change in the distances between 𝑣𝑜 and all clusters of the other classes
for the removal of the d-th feature can be computed.

𝑟𝑜,𝑑 =
∑ 𝑤𝑜,𝑚𝑚𝜖?̅?𝑜 ∗ 𝑟𝑜,𝑚,𝑑
∑ 𝑤𝑜,𝑚𝑚𝜖?̅?𝑜
 (5.6)
In a case where there are more than two clusters from other classes, the sum of the weights
is not equal to one. Thus, the denominator in Equation (5.6) is the sum of the weights.
The meaning of 𝑟𝑜,𝑑 is essentially the same as for 𝑟𝑜,𝑚,𝑑, with the sole exception that it
accounts for a given cluster for all clusters of the remaining classes and not just a single
one. Hence, 𝑟𝑜,𝑑 values larger than 1 indicate an irrelevant and even noisy feature, values
of exactly one indicate irrelevant features and 𝑟𝑜,𝑑 values smaller than 1 embody features
that are relevant for the separation of cluster 𝑣𝑜 from the clusters of all other classes.
Going one step further, to aggregate the information over all clusters for a certain feature,
the COLD score can be computed as one minus the average 𝑟𝑜,𝑑 value.

𝐶𝑂𝐿𝐷𝑑 = 1 −
∑ 𝑟𝑜,𝑑𝑜
𝑂
 (5.7)
The mean of the 𝑟𝑜,𝑑 values represents the average (weighted) change in the cluster
separation for a specific feature d. Changes smaller than 1 are more desirable than changes
larger than 1 since they indicate an improvement in the average separation of the clusters.
Threfore, the mean of 𝑟𝑜,𝑑 is subtracted from 1. This converts the average change in the
separation into an intuitive result. As a consequence, higher COLD scores represent more
relevant features than low scores. The COLD score for any feature d is ≤ 1, with the
following meaning for the corresponding feature:
𝑪𝑶𝑳𝑫𝒅 > 𝟎 : A relevant feature. Such a COLD score indicates a feature that contributes
to the separation of the clusters of different classes.
𝑪𝑶𝑳𝑫𝒅 = 𝟎 : An irrelevant feature. The feature neither contributes to the separation of
the clusters nor does it deteriorate the discrimination, which a noisy feature would do.
𝑪𝑶𝑳𝑫𝒅 < 𝟎 : An irrelevant and noisy feature. The feature does not contribute to the
separation of the clusters and even on average deteriorates the distance between clusters
of different classes.
Based on the COLD scores, the features can be ranked from the highest to the lowest
score. Based on these scores, the user can decide how many of the highest-ranked features
to keep. All features with a COLD score of less than or equal to zero can be discarded
since they deteriorate the cluster separation for the classes or do not impact them.
Concerning removing features in addition to those having negative or zero COLD scores,
it can be noted that the impact of discarding features with comparably small positive
COLD scores on the overall separation of classes will likely also be negligible.
5 Clustering One Less Dimension (COLD) Feature Selection 98
5.3 Application to Artificial Data
To illustrate and demonstrate the ability of the COLD algorithm to rank features
according to their contribution to the separation of the classes, four artificial examples
were constructed that represent different data structures.
The first artificial example (Figure 5.2) is a binary classification task with three
normally distributed features. The first two features embody a numerical XOR problem,
where the two data groups of each class are not separable by one linear function but form
distinct decision regions for each class. The third feature, as well as the first two features,
is not correlated with any of the remaining features. Moreover, it overlaps moderately for
both classes. In contrast, the first and second feature by itself overlaps entirely for both
classes and is essentially irrelevant from the univariate perspective. Hence, the univariate
evaluation will rank the third feature highest. Nonetheless, the best subset of two features
should contain the first and second feature, which can together linearly separate the
feature space.

Figure 5.2: First artificial example of COLD [modified from Publication IV]

5.3 Application to Artificial Data 99
The second artificial example is a simple extension of the first example with an
additional uncorrelated normally distributed feature that has identical mean values and
variance for both classes. Thus, this additional feature is irrelevant by itself and also from
a multivariate perspective since it does not contribute to the separation of the classes for
any set of features.
The third artificial example consists of another three-dimensional classification
problem with binary classes. All three features are normally distributed. In contrast to the
previous two examples, each class consists of a single cluster. The cluster formed in the
first and second dimension is elongated due to the high variance of the second feature and
rotated due to the high negative covariance between these two features. The third feature
is uncorrelated with the first two features and overlaps only to a small extent for both
classes – making it the best univariate feature. In marked contrast to the third feature, the
first and second feature overlap from a moderate to high extent and are each by
themselves clearly less discriminant than the third feature. Nonetheless, the set of the first
two features is capable of linearly separating the two classes. This is another example of
features where the best single feature is not contained in the best subset of two features.
Also, it illustrates that features that appear not or only slightly useful by themselves can
be highly relevant for the separation of the classes if used together with another feature
or a set of features. This example, as displayed in Figure 5.3, is related to the fourth
example, presented by Guyon & Elisseeff (2003).
5 Clustering One Less Dimension (COLD) Feature Selection 100

Figure 5.3: Third artificial example of COLD [modified from Publication IV]

The fourth artificial example is the same type of extension for the third example as
example two was for the first example – a normally distributed feature with equal mean
and variance was added that is uncorrelated with any of the remaining features. It is
apparent that this feature is irrelevant for the separation of the classes.
The first and third artificial examples are both only three-dimensional, which simplifies
the visualization of the classification problem they pose and the solution that COLD
reaches. The logic behind COLD for the first artificial example is displayed in Figure 5.4,
which shows the theoretical solution using COLD when the generated data points exactly
resemble the specified mean values and covariance matrices (and the observations are not
scaled to [0,1]). This representation was selected because of the simplicity of the
calculation and values obtained. It is noteworthy that the covariance information is
incorporated into COLD so that the scaling will not alter the results. The actual COLD
scores for this example are very similar to the ones presented in this slightly simplified
solution with COLD.
5.3 Application to Artificial Data 101

Figure 5.4: Theoretical COLD scores for the first artificial example

5 Clustering One Less Dimension (COLD) Feature Selection 102
The figure illustrates that in the three-dimensional space, the clusters of different classes
(in blue and red) are all 95 units away from each other. It is apparent that the first and
second feature contribute most to the separation of the classes. However, it is also obvious
that the third feature contributes slightly to the separation since the blue clusters are
situated slightly lower than the red ones. The removal of the first or second feature always
moves two of the clusters of each class closer together in the two-dimensional
representation. Consequently, these clusters start to overlap and reduce the Mahalanobis
distance between them to 5. The second pair of clusters (for instance 𝑣1 and 𝑣3 for the
first example) remain distant to each other solely on account of the one remaining feature
of the first two features. Hence, for the removal of the first or second feature, the average
distance between clusters of different classes is reduced to 52.5% of the original distance
with all three features. In contrast, the removal of the third dimension impacts all cluster
distances by an equally small magnitude. The weighted average ratio remains with 0.95
(meaning 95%) largely unchanged. This shows that the third feature did contribute to the
separation of the clusters of different classes but only to a small extent compared to the
first two features. Overall, the COLD score of 0.475 for each of the first two features and
only 0.05 for the third feature represents this difference. The corresponding feature
ranking places the first and second feature on the first two ranks (with equal COLD scores
the order can be arbitrary) and the third feature last.
The feature ranking for this example of COLD was compared with the ReliefF algorithm,
the feature selection by Luukka (2011), the FSAE, the Laplacian score and the Fisher
score. In addition to the scaling or normalization conducted within each filter method,
there is no initial scaling or normalization applied to the artificial examples.8 The results
of the comparison are summarized in Table 5.1.

8 The ReliefF setups, the feature selection of Luukka (2011), FSAE and COLD all explicitly incorporate
some form of scaling or normalization within their algorithms. This is not the case for the Laplacian score
and the Fisher score, which in their algorithms do not explicitly include a scaling or normalization (e.g. into
the unit interval). However, both algorithms incorporate some form of measuring distances/similarities and
divide these values by some form of variance (which is to a certain extent similar to a z-score).
Notwithstanding, the ranking for the Laplacian score for these four examples will change (with a tendency
to emulate the univariate results of, e.g., the Fisher score) if a scaling into the unit interval is initially
conducted.
5.3 Application to Artificial Data 103
Filter Method Feature 1 Feature 2 Feature 3
Actual Structure Ranks 1 & 2 Rank 3
ReliefF (10 nearest hits/misses) Rank 1 Rank 2 Rank 3
ReliefF (70 nearest hits/misses, sigma = 20) Rank 1 Rank 2 Rank 3
FS Luukka (2011) Rank 3 Rank 1 Rank 2
FSAE (De Luca & Termini entropy, l = 1) Rank 3 Rank 1 Rank 2
COLD Rank 1 Rank 2 Rank 3
Laplacian Score Rank 2 Rank 1 Rank 3
Fisher Score Rank 3 Rank 1 Rank 2
Table 5.1: First artificial example feature rankings [modified from Publication IV]9

It is apparent that the univariate filter methods that evaluate each feature separately rank
the third univariate best feature first and fail to detect that the first and second feature can
jointly separate the feature space without misclassification. Opposed to that, both versions
of ReliefF and the COLD algorithm as well as the Laplacian score correctly rank these
two features first. The difference that these rankings lead to is apparent when the feature
subsets of the two highest-ranked features are selected, and the mean accuracy for the
classification task is compared. The mean classification accuracies for this purpose are
the mean values of the accuracies achieved by a K-nearest neighbour classifier (k = 10),
a decision tree (minimum leaf size = 10) and (one-versus-all) support vector machines
(with radial basis function). All multivariate feature selection methods, including COLD,
were able to maintain or improve their mean accuracies to about 100% due to the removal
of the third-ranked feature. At the same time, the feature subsets of the univariate methods
lead to a decrease in the classification accuracy to on average about 87.9%, which is
significantly (p < 0.01) smaller. It is unsurprising that this situation would reverse in the
case where two features are discarded, and only a single feature is retained. In this case,
the feature subset of the univariate methods outperforms the subset of the multivariate
methods by a significant margin. The reason is that a univariate algorithm aims to find
the single best feature(s), whereas the multivariate algorithm determines the feature that
is jointly with one or more features most relevant. This obviously does not have to be the
same in the case of dependencies between features. For this artificial example, it also
highlights that the set of the best two features does not contain the single best feature.

9 The rankings for the feature selection method by Luukka (2011) and the FSAE differ from those presented
in Publication IV since in the original source no scaling to the unit interval was conducted, which is
necessary for both algorithms to calculate the similarities correctly. This is true for all four artificial
examples so that the results for these two benchmark algorithms differ in most cases to those reported in
the original publication. It should be noted that this alters neither the results of the remaining feature
selection methods, including COLD, nor the conclusions made in Publication IV concerning the COLD
algorithm. In particular, it does not alter the conclusion that COLD is the only algorithm that consistently
ranks features according to the best feature subset. Moreover, this error only occurred in the artificial
datasets. For the real-world datasets, the scaling into the unit interval was incorporated in the ranking
conducted by the feature selection of Luukka (2011) and the FSAE.
5 Clustering One Less Dimension (COLD) Feature Selection 104
The rankings for all filter methods for the second artificial example are displayed in Table
5.2.
Filter Method Feature 1 Feature 2 Feature 3 Feature 4
Actual Structure Rank 1 & 2 Rank 3 Rank 4
ReliefF (10 nearest hits/misses) Rank 2 Rank 1 Rank 3 Rank 4
ReliefF (70 nearest hits/misses, sigma = 20) Rank 2 Rank 1 Rank 3 Rank 4
FS Luukka (2011) Rank 4 Rank 3 Rank 2 Rank 1
FSAE (De Luca & Termini entropy, l = 1) Rank 3 Rank 4 Rank 2 Rank 1
COLD Rank 1 Rank 2 Rank 3 Rank 4
Laplacian Score Rank 1 Rank 2 Rank 3 Rank 4
Fisher Score Rank 3 Rank 2 Rank 4 Rank 1
Table 5.2: Second artificial example feature rankings [modified from Publication IV]

For the second artificial example, the same approaches as those used in the first example
are able to attain the desired correct ranking. Also, those approaches that incorrectly
ranked features previously do not improve their ordering. It is noteworthy that the
approach by Luukka (2011) ranks the new irrelevant normally distributed feature first,
whereas the FSAE and the Fisher score do not rank it last.10 One could argue that from
the univariate view, ranking the third feature first and the remaining features in any order
is plausible given that the third feature is univariately the single best feature and that,
from a one-dimensional perspective, all remaining features are similarly irrelevant.
However, it is apparent that the fourth feature should even according to a univariate
approach not be ranked first. Without going into detail, it can be stated that for the filter
method by Luukka (2011), this result is obtained due to the fact that the feature is
normally distributed and completely overlapping. Because of this, many observations will
show a similarity of close to one to their own class’s representative as well as the
representative of the other class. Unfortunately, this corresponds to a low entropy value,
which indicates a relevant feature in this feature selection method. Finally, for an
irrelevant uniformly distributed feature, such a behaviour would not be observed.
Before discussing the actual results for the third example, the conceptual solution with
COLD for this example is illustrated in Figure 5.5 and highlights how COLD determines
the multivariate relevance of the first and second feature. This solution assumes that the
generated samples perfectly resemble the specified means and covariance matrices, that

10 As mentioned previously, for this task the lack of scaling for the feature selection of Luukka (2011) and
the FSAE also changed the ranking. From a univariate standpoint, the fourth, irrelevant feature does not
necessarily have to be ranked last since the first and second feature are from that perspective also irrelevant.
In general, this makes the ranking (of all features with the exception of the third one) dependent on minor
variations in the observations. The statement in Publication IV that all filter methods ranked the additional
irrelevant feature last was inaccurate.
5.3 Application to Artificial Data 105
no scaling is conducted and that the clustering algorithm in COLD finds exactly these
two cluster centres.

Figure 5.5: Theoretical COLD scores for the third artificial example

The contour lines for the first and second feature indicate that these two features are
capable of linearly separating the two elongated clusters. If either the first or second
feature are removed, the classes start to overlap to a small extent. In addition, the
Mahalanobis distance between the clusters decreases from 77.5 with all features to 12.7
and 17, respectively. This demonstrates that the first and second feature are both strongly
contributing to the class separation. Their high COLD scores of 0.836 and 0.781,
respectively, reflect this. The third feature, which is univariately the best feature,
5 Clustering One Less Dimension (COLD) Feature Selection 106
contributes less to the separation of the clusters. Hence, the distance between the clusters
is only reduced from 77.5 to 65. This deterioration is considerably less severe than for the
first two features. Moreover, the two classes remain linearly separable even after the
removal of the third feature. The COLD score reflects the small but existing contribution
of the third feature with a comparably low positive COLD score of 0.161. The
corresponding feature ranking emphasizes that the first and second feature contribute
more to the cluster separation, and, hence, they are ranked first and second. The best
univariate feature only ranks third. Once more, the best subset of two features does not
contain the univariately best feature.
The rankings for the actual third artificial example with one correlated elongated cluster
for each class are presented in Table 5.3.

Filter Method Feature 1 Feature 2 Feature 3
Actual Structure Rank 1 & 2 Rank 3
ReliefF (10 nearest hits/misses) Rank 1 Rank 3 Rank 2
ReliefF (70 nearest hits/misses, sigma = 20) Rank 1 Rank 3 Rank 2
FS Luukka (2011) Rank 2 Rank 1 Rank 3
FSAE (De Luca & Termini entropy, l = 1) Rank 3 Rank 1 Rank 2
COLD Rank 1 Rank 2 Rank 3
Laplacian Score Rank 1 Rank 3 Rank 2
Fisher Score Rank 3 Rank 1 Rank 2
Table 5.3: Third artificial example feature rankings [modified from Publication IV]

It is apparent that for this example, the ranking according to the best subset of two features
is only accomplished by COLD and the approach by Luukka (2011). However, since the
approach by Luukka (2011) is a univariate approach, it is obvious that the correct ranking
is not due to its ability to account for the complementarity of the first and second feature.
Rather, the algorithm has determined that the first and second feature are univariately the
best two features. This is clearly not representative of their univariate ability to
discriminate the data. Both features have almost identical means and overlap essentially
completely. Once again, the overlapping features are univariately ranked high by this
approach since most similarities of observations with any ideal vector are close to 1. This
leads to low entropy values, falsely indicating a relevant feature. Hence, COLD is
effectively the only algorithm that correctly detects and ranks the complementarity11 of
the first and second feature. However, it does not score the features exactly as
theoretically expected. The K-medoids algorithm divides these strongly elongated
clusters into two less strongly elongated clusters. Still, the corresponding ranking remains

11 The term ‘complementarity’ is used in Guyon and Elisseeff (2003) to indicate a ‘perfect separation’ that
can be accomplished by a set of (two) variables.
5.3 Application to Artificial Data 107
unchanged compared to its theoretical counterpart, and also the third feature is clearly
ranked last, with a COLD score that is considerably lower than for either of the first two
features. Regardless, due to the subdivision of clusters, the first feature received a
considerably higher score than the second. This stresses the reliance of COLD on the
clustering partition even though this example illustrated that the ranking can be unaltered,
especially for such clear differences in the contribution of features to the separation of
classes.
The multivariate filter methods, such as ReliefF and the Laplacian score, which do not
rely on a distance or similarity measure that incorporates a mixture of locality and
covariance information, fail to end up with the correct feature ranking. As a consequence,
only COLD and the filter by Luukka (2011) and their two-feature subsets obtain a mean
accuracy of close to 100%. In contrast, the feature subsets suggested by the remaining
filter methods deteriorate the performance to about 96%, which is significantly smaller
than with COLD (p-value < 0.01). This decrease in performance is due to the small
overlap that occurs if either the first or second feature is removed.
Finally, the rankings of all filter methods for the fourth and last artificial example are
displayed in Table 5.4.

Filter Method Feature 1 Feature 2 Feature 3 Feature 4
Actual Structure Rank 1 & 2 Rank 3 Rank 4
ReliefF (10 nearest hits/misses) Rank 1 Rank 3 Rank 2 Rank 4
ReliefF (70 nearest hits/misses, sigma = 20) Rank 1 Rank 3 Rank 2 Rank 4
FS Luukka (2011) Rank 4 Rank 2 Rank 1 Rank 3
FSAE (De Luca & Termini entropy, l = 1) Rank 3 Rank 4 Rank 2 Rank 1
COLD Rank 1 Rank 2 Rank 3 Rank 4
Laplacian Score Rank 1 Rank 2 Rank 3 Rank 4
Fisher Score Rank 3 Rank 1 Rank 2 Rank 4
Table 5.4: Fourth artificial example feature rankings [modified from Publication IV]

Once again, COLD successfully ranks the features according to their contribution to the
separation of the classes. For this example, the Laplacian score is also able to rank the
features correctly. The multivariate ReliefF and the univariate Fisher score do not rank
all features correctly but recognize the fourth irrelevant feature as the least relevant one.
FSAE ranks the third univariately best feature first but ranks the fourth irrelevant
normally distributed feature second. The least desirable result is obtained for the
univariate feature selection method by Luukka (2011), where the irrelevant feature is
ranked first and the univariately best feature last. This problem once more originates in
the fact that the samples of the irrelevant fourth feature are normally distributed, so most
5 Clustering One Less Dimension (COLD) Feature Selection 108
observations of either class will have high similarities with their own and the competing
class’s ideal vector, which is an indication of a relevant feature.
Overall, only COLD demonstrated the consistent ability to rank features according to
their contribution to the separation of the classes. As a last point, it should be noted that
the rankings obtained by all filter methods remain unchanged for 500 iterations for each
of the artificial examples.
5.4 Application to Medical Data
The COLD algorithm demonstrated for all four artificial examples the ability to rank each
feature’s relevance according to its contribution to the separation of the classes. To
additionally show its ability to conduct feature selection successfully in a real-world
context, it will here be applied to two medical real-world datasets from the UCI Machine
Learning Repository (Lichman, 2013). The first dataset is the Dermatology Data Set (Ilter
and Guvenir, 1998), which was mentioned and used in Section 3.5 as well. It has 358
observations of 34 features and constitutes a 6-class problem. The second medical dataset
is the Arrhythmia dataset, which differentiates the presence and absence of cardiac
arrhythmia (Guvenir, Acar and Muderrisoglu, 1998). The dataset consists of 420
observations of 258 non-constant features.
The performance of COLD and that of the competing filter methods was evaluated by the
following three classifiers: a K-nearest neighbour classifier (with 10 neighbours), a
decision tree (with minimum leaf size of 10) and (one-versus-all) support vector machines
(with radial basis function). For the Dermatology dataset, the mean accuracies (over 500
runs) for all filter methods and feature subset sizes are displayed in Figure 5.6.

Figure 5.6: Comparison of filter feature selection on the Dermatology dataset

5.4 Application to Medical Data 109
At first glance, it is apparent that COLD outperforms the remaining feature selection
algorithms for a wide range of feature subsets. Besides that, COLD achieved for the K-
nearest neighbour (KNN) classifier the highest mean accuracy of 97.9%. Using the one-
sided Welch’s test with unequal variances, it can be highlighted that for the KNN
classifier, the outperformance of the feature subset of COLD compared to that of all other
filter methods in this study is highly significant (p-value < 0.01) for 7 to 29 feature
removals. For the decision tree, the highest performance of 93.83% is accomplished with
ReliefF (k = 70, sigma = 20) for 12 removed features. COLD achieved with 17 removed
features a competitive result of 93.48%. Moreover, COLD eventuates in a mean accuracy
of over 90% until the removal of 29 out of 34 features. At this point, the strongest
competitors, the two ReliefF setups, are already at a mean classification accuracy of close
to 75%. Unsurprisingly, the outperformance of COLD’s mean accuracy between 17 to 29
feature removals is highly significant (p-value < 0.01) compared to the remaining filter
methods. A similar picture to that from the KNN classifier is obtained for the support
vector machines. The highest performance of 98.19% is accomplished with the Fisher
score and 13 removed features. However, the highest classification accuracy with COLD
of 97.86% is not far off, and the subsequent mean accuracies with COLD remain at a
level of over 90% accuracy for a much longer time. The mean accuracy with COLD for
14 to 29 features is highly significantly larger than that of the Fisher score and all other
filter approaches. A remarkable result for COLD’s ability to select relevant feature
subsets can be seen for the removal of 29 out of 34 features. The classification accuracy
related to this subset of five features still exceeds 95%, whereas the runner-up ReliefF is
already below 80% and the Fisher score even below an accuracy of 40%.
For the Arrhythmia dataset, the mean accuracies for the three classifiers are illustrated in
Figure 5.7.

Figure 5.7: Comparison of filter feature selection on the Arrhythmia dataset

5 Clustering One Less Dimension (COLD) Feature Selection 110
For this dataset, the KNN classifier demonstrates for all filter methods and a wide range
of feature removals a performance between 61% and 65%. For up to 200 feature
removals, the mean classification accuracies of all filter methods appear very similar in
magnitude. Subsequently, the Fisher score clearly performs best and reaches an accuracy
of 70.1% with 242 features removed. This is the highest mean accuracy observed for the
KNN classifier on this dataset. All feature selection algorithms successfully conduct
feature selection since they are all capable of discarding (a large share of) features and
reach a comparable or even improved classification accuracy compared to using the
complete set of features. It is noteworthy that for KNN, the single best feature according
to all algorithms still reaches an accuracy between 58.2% and 60.4%. This is only slightly
less than the mean accuracy of about 60.7% for all 258 features. Moreover, the highest
performance, of 60.4%, for a single feature is reached with the Fisher score. This
univariate approach outperforms the remaining approaches, even COLD and ReliefF, on
this dataset. This indicates that it may be unnecessary to use a multivariate approach for
this classification task. Moreover, it shows that a univariate evaluation of the features
leads to even better results on this dataset. The comparison of the filter methods for the
decision tree is similar to that of KNN with the main exception that the best mean
accuracy of 72.66% is accomplished with COLD and 71 removed features. Even though
COLD remains competitive compared to the other filter methods for the remaining feature
removals, it is also for the decision tree apparent that the univariate Fisher score overall
performs at least as good as the multivariate approaches. It reaches a performance of about
72.5% for 232 discarded features and, eventually, also selects the single best feature. The
same outcome for the Fisher score is observed using support vector machines. The Fisher
score selects the best feature subset with 225 discarded features, resulting in a mean
accuracy of 73.83%. In addition, once more this algorithm selects the single best
performing feature. For the second medical dataset, Arrhythmia, the univariate Fisher
score performs overall very well and appears to be the most suitable algorithm for this
dataset. This indicates that a multivariate method is not necessary on this dataset. There
might not be any dependencies among the features that are adding any contribution to the
separation of the classes. Besides that, it is noteworthy that COLD reaches competitive
results for this dataset and that for the decision tree classifier it selects the best-performing
feature subset. COLD is capable of improving the mean accuracy on the dataset by a few
percentage points for about 200 discarded features and achieves a performance similar to
that with the entire feature subset with less than 8 out of 258 features.
5.5 Conclusion and Limitations of the COLD Algorithm
This section discussed a novel multivariate supervised filter method named COLD. The
algorithm ranks features according to their contribution to the separation of the
groups/clusters of different classes. It deploys class-wise clustering of the observations to
initially find the groups that each class is composed of and determine their characteristics
represented in terms of their cluster centres and covariance matrices. Only linearly
independent features are considered for the clustering since linearly dependent features
can be expressed in terms of one or more other features, which renders them redundant.
5.5 Conclusion and Limitations of the COLD Algorithm 111
After the clustering, the relevance of each feature is determined by measuring their
contribution to the separation of the clusters belonging to different classes. In this context,
contribution is interpreted as the change in the Mahalanobis distance between the clusters
of different classes when a feature is removed from the complete set of features. Hence,
the contribution of a feature is not restricted to its univariate impact on the cluster
separation but on how it contributes to the separation together with all other features.
Thus COLD accounts for the dependencies and complementarity of features
(multivariate).
COLD and several other filter methods were tested on four artificial examples, which
were constructed specifically in a way such that the set of the two best features does not
contain the univariate best feature. This was accomplished by either designing a
numerical XOR-like problem with two distinct decision regions for each class or by
generating elongated, correlated clusters that overlap along the first two dimensions. For
all four examples, only COLD consistently ranked the features according to the highest-
performing feature subset by accounting for the joint relevance of the two univariate less
relevant or even irrelevant features. It is apparent that the difference in the mean accuracy
for those approaches that did not detect this complementarity of the first two features is
highly significantly smaller than using COLD. Additionally, COLD also correctly
acknowledged the additional overlapping feature as irrelevant and ranked it last.
For the two medical real-world datasets, the COLD algorithm demonstrated at least
competitive results compared to the remaining six filter methods in this study. For both
datasets, COLD demonstrated the ability to remove irrelevant variables and improve the
classification accuracy for the three classifiers deployed for the comparison – the KNN
classifier, a decision tree and support vector machines. For the Dermatology dataset, the
feature ranking suggested by COLD outperformed the ranking of the remaining filter
methods for a large range of features by a highly significant margin.
One limitation of the COLD algorithm is that it is computationally expensive in
comparison to the other filter methods in this study. It is apparent that this limitation
originates from the fact that it evaluates features in a multivariate way. Moreover, it
incorporates the K-medoids algorithm for clustering, which functions well for categorical
and noisy data but is more complex than several other clustering algorithms, such as its
numerical counterpart K-means. Another limitation is that the algorithm’s ranking
depends on the clustering result and the covariance matrices determined during the
clustering. If the clusters are close to each other and have a difficult data structure/shape
(e.g. non-convex), or very few observations make up a cluster so that the covariance
matrix is based on only a few observations, COLD may face difficulties in ranking all
features according to their contribution to the class separation. This behaviour as well as
COLD’s ability to cope with a large number of irrelevant features in artificial and
additional real-world cases has to be investigated in future research. Finally, a univariate
but less complex version of COLD as well as an unsupervised setup for COLD could be
developed in prospective publications and research studies.

113
6 Conclusion, Limitations and Future Work
The focus of this dissertation is on heuristic filter methods, in particular those using
distance and information evaluation criteria. For this purpose, initially the univariate
information-based filter method by Luukka (2011) was discussed. On one hand, its ability
to improve the classification accuracy on selected datasets while using a subset of the
original features was highlighted. On the other hand, an emphasis was placed on its
vulnerabilities with respect to the use of a single ideal vector per class and the
combination of similarity and entropy for certain data structures. The representation of a
class by a single ideal vector is not suitable for more complex data structures in a class.
That said, it is an intentional simplification, which is part of a trade-off with respect to
the computational time and complexity of the algorithm. However, the vulnerability of
this algorithm to highly overlapping features does not reflect any trade-off. It was clearly
demonstrated and explained how measuring the similarity of observations to the ideal
vector of the same and competing class and using the similarity values for the entropy
calculation can result in a completely overlapping feature being preferred to a feature that
separates classes well and has small to moderate variance. On account of this
vulnerability, the ‘Fuzzy Similarity and Entropy’ (FSAE) feature selection method was
introduced. It is a univariate, information-based filter premised on the approach by
Luukka (2011). The FSAE incorporates a class- and feature-specific scaling factor that
accounts for the distance between the ideal vectors of the classes within each feature. For
the three artificial examples on which the vulnerability of the feature selection by Luukka
(2011) was highlighted, the FSAE showed intuitive feature scores and feature removal
decisions. The FSAE was compared to the feature selection by Luukka (2011) in regard
to its filter and wrapper form as well as to several distance- and information-based
heuristic filter methods (univariate and multivariate) on five real-world medical datasets.
In both feature selection types, FSAE accomplished at least comparable classification
results, often with fewer features than the approach by Luukka (2011). Moreover, it
achieved competitive results compared to the remaining filter methods.
Subsequently, the FSAE was implemented together with different classification
algorithms on a custom financial dataset constructed by the author of this dissertation for
the prediction of the S&P500 intraday return. Using FSAE and a random forest, a four-
class classification model was successfully developed. On top of that, several simple
trading strategies based on different predictions of this classification model were tested.
One important finding showed that the best feature selection- and classification-based
trading strategy outperformed a passive buy-and-hold strategy after small to moderate
transaction costs. Another contribution in this context was highlighted in the analysis of
the actual returns associated with the predicted return classes. For this dataset, the average
return of the ‘strong positive’ and ‘strong negative’ classes was higher than that of the
two classes for ‘slightly positive’ and ‘slightly negative’ returns even when
misclassifications were included.

6 Conclusion, Limitations and Future Work 114
All these results indicate that the FSAE is a clear improvement over the approach by
Luukka (2011), that it leads to intuitive results, that it demonstrated the ability to
successfully conduct feature selection and that it is a fast filter method due to its univariate
evaluation. The univariate evaluation of features and the single ideal vector per class are
two trade-offs made to keep the computational complexity low. Notwithstanding, these
two aspects as well as leaving out covariance information can be regarded as limitations
of this filter method with respect to determining the optimal feature subset.
Before addressing the limitation of using a single ideal vector, leaving out covariance
information and the univariate evaluation of features in the context of feature selection, a
framework to determine multiple ideal vectors per class was discussed in the context of
the similarity classifier. Using a single ideal vector to represent a class is not suitable for
classes with multiple distinct decision regions, neither with respect to classification nor
for feature selection. Hence, in the context of classification, the novel similarity classifier
with multiple ideal vectors was proposed. Using K-means clustering together with the
Jump method ensured that a suitable number of clusters for each class as well as each
corresponding centroid per cluster can be determined. These centroids can function as the
ideal vectors, meaning the cluster representatives, for each class. The similarity classifier
using these multiple ideal vectors demonstrated on artificial examples with multiple
distinct decision regions per class the consistent ability to acknowledge and represent
these regions. Moreover, it made use of the corresponding centre points to classify
observations with a highly significant outperformance compared to the original classifier.
On the real-world financial datasets, the similarity classifier with multiple ideal vectors
(Y = 1) was the similarity-based classifier with the highest mean accuracy in all examples.
Nonetheless, it is noteworthy that the similarity classifier with a single ideal vector also
performed well, especially on the Australian Credit dataset. This indicates that allowing
multiple decision regions per class can improve the classification results in some cases,
but it is not always necessary or beneficial for classification accuracy.
After demonstrating that deploying clustering to find and characterize multiple distinct
decision regions can benefit the classification of observations, this concept was also
deployed in the context of feature selection. In addition to allowing multiple ideal vectors
per class, covariance information for each cluster was included to incorporate differences
in the variance of different features and to account for correlation. The suggested
distance-based COLD filter algorithm emphasized the contribution of a feature to the set
of features with respect to the separation of the clusters of different classes. Following
this idea, the evaluation is multivariate since the dependencies among multiple features
can be accounted for. In a comparison of COLD with several univariate and multivariate
distance- and information-based filter methods for several artificial examples, only
COLD demonstrated the consistent ability to rank the features according to their joint
relevance. The results indicate that even in a setting where the subset of the best two
features does not contain the single best feature, the remaining multivariate algorithms
were not capable of ranking the features accordingly. On two real-world medical datasets,
COLD demonstrated at least competitive results compared to the benchmark filter
methods. Moreover, in one case it clearly outperformed all competing filter methods for
5.5 Conclusion and Limitations of the COLD Algorithm 115
a large range of feature removals. Overall, this suggests that COLD’s premise of
measuring the contribution of a feature to the set of features can account for conditional
dependencies among features that other algorithms cannot capture.
The results with COLD and the similarity classifier with multiple ideal vectors indicate
that it can be beneficial to apply clustering and, subsequently, combining the information
on the discovered decision regions for feature selection and classification. It is apparent
that the drawback of this approach is its computational complexity. Hence, future work
will focus on finding more efficient ways to determine (approximations) of the distinct
decision regions and their representatives. Currently, approaches such as FSAE and
COLD are very different from each other given that the former is univariate, more
simplistic and fast, whereas the latter is multivariate and more computationally expensive.
Hence, it seems intuitive to aim at finding either extensions of the FSAE to allow a
competitive multivariate evaluation of features or improve COLD to achieve stable, clear
clustering partitions in a more efficient way. Both enhancements can certainly contribute
to a more efficient and effective feature selection overall.

 References
Almuallim, H. and Dietterich, T. (1994) ‘Learning Boolean concepts in the presence of
many irrelevant features’, Artificial Intelligence, 69(1–2), pp. 279–305. doi:
10.1016/0004-3702(94)90084-1.
Almuallim, H. and Dietterich, T. G. (1991) ‘Learning With Many Irrelevant Features’, In
Proceedings of the Ninth National Conference on Artificial Intelligence, 91, pp. 547–552.
doi: 10.1.1.48.2488.
Altay, E. and Satman, M. H. (2005) ‘Stock market forecasting: artificial neural network
linear regression comparison in an emerging market’, Journal of Financial Management
& Analysis, 18(2), pp. 18–33.
Ang, J. C. et al. (2016) ‘Supervised, unsupervised, and semi-supervised feature selection:
A review on gene selection’, IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 13(5). doi: 10.1109/TCBB.2015.2478454.
Antal, B. and Hajdu, A. (2014) Diabetic retinopathy debrecen data set, UCI Machine
Learning Repository. Available at:
https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set.
Arauzo-Azofra, A., Benitez, J. M. and Castro, J. L. (2008) ‘Consistency measures for
feature selection’, Journal of Intelligent Information Systems, 30(3). doi:
10.1007/s10844-007-0037-0.
Arbelaitz, O. et al. (2013) ‘An extensive comparative study of cluster validity indices’,
Pattern Recognition, 46(1), pp. 243–256. doi: 10.1016/j.patcog.2012.07.021.
Bartlett, M. S. (1950) ‘Tests of significance in factor analysis’, British Journal of
Statistical Psychology, 3(2), pp. 77–85. doi: 10.1111/j.2044-8317.1950.tb00285.x.
Battiti, R. (1994) ‘Using Mutual Information for Selecting Features in Supervised Neural
Net Learning’, IEEE Transactions on Neural Networks, 5(4), pp. 537–550. doi:
10.1109/72.298224.
Belis, M. and Guiasu, S. (1968) ‘A quantitative-qualitative measure of information in
cybernetic systems’, IEEE Transactions on Information Theory, 14(4), pp. 593–594.
Bell, D. A. and Wang, H. (2000) ‘Formalism for relevance and its application in feature
subset selection’, Machine Learning, 41(2), pp. 175–195. doi:
10.1023/A:1007612503587.
Bins, J. and Draper, B. A. (2001) ‘Feature selection from huge feature sets’, Proceedings
of the IEEE International Conference on Computer Vision. doi:
10.1109/ICCV.2001.937619.
 Bishop, C. M. (2006) Pattern Recognition and Machine Learning. New York: Springer
ScienceBusiness Media.
BlackRock (2017a) iShares MSCI Emerging Markets ETF. Available at:
https://www.ishares.com/us/products/239637/EEM (Accessed: 20 May 2017).
BlackRock (2017b) iShares MSCI Europe Financials ETF. Available at:
https://www.ishares.com/us/products/239645/ishares-msci-europe-financials-etf
(Accessed: 30 April 2017).
Blum, A. L. and Langley, P. (1997) ‘Selection of relevant features and examples in
machine learning’, Artificial Intelligence, 97, pp. 245–271.
Bodie, Z., Kane, A. and Marcus, A. J. (2009) Investments. 8th edn. Irwin: Mc Graw-Hill.
Breiman, L. et al. (1984) Classification and regression trees, Wadsworth International
Group.
Breiman, L. (2001) ‘Random forests’, Machine Learning, 45(1), pp. 5–32. doi:
10.1023/A:1010933404324.
Calinski, T. and Harabasz, J. (1974) ‘A dendrite method for cluster analysis’,
Communications in Statistics - Theory and Methods, 3(1), pp. 1–27. doi:
10.1080/03610927408827101.
Cangelosi, R. and Goriely, A. (2007) ‘Component retention in principal component
analysis with application to cDNA microarray data.’, Biology direct, 2, p. 2. doi:
10.1186/1745-6150-2-2.
Caruana, R. and Freitag, D. (1994a) ‘Greedy Attribute Selection’, International
Conference on Machine Learning, 48, pp. 28–36. doi: 10.1.1.41.3576.
Caruana, R. and Freitag, D. (1994b) ‘How useful is relevance?’, AAAI Fall Symposium
Technical Report FS-94-02.
Cattell, R. B. (1966) ‘The Scree Test For The Number Of Factors’, Multivariate
Behavioral Research, 1(2), pp. 245–276. doi: 10.1207/s15327906mbr0102_10.
Chan, T. F. (1987) ‘Rank revealing QR factorizations’, Linear Algebra and Its
Applications, 88–89, pp. 67–82. doi: 10.1016/0024-3795(87)90103-0.
Chandrashekar, G. and Sahin, F. (2014) ‘A survey on feature selection methods’,
Computers and Electrical Engineering, 40, pp. 16–28.
Chen, L. H. and Hsiao, H. Der (2008) ‘Feature selection to diagnose a business crisis by
using a real GA-based support vector machine: An empirical study’, Expert Systems with
 Applications, 35(3), pp. 1145–1155. doi: 10.1016/j.eswa.2007.08.010.
Chormunge, S. and Jena, S. (2018) ‘Correlation based feature selection with clustering
for highdimensional data’, Journal of Electrical Systems and Information Technology, 5,
pp. 542–549.
Chun, S.-H. and Park, Y.-J. (2005) ‘Dynamic adaptive ensemble case-based reasoning:
application to stock market prediction’, Expert Systems with Applications, 28, pp. 435–
443.
Cover, T. and Hart, P. (1967) ‘Nearest neighbor pattern classification’, IEEE
Transactions on Information Theory, 13(1), pp. 21–27. doi: 10.1109/TIT.1967.1053964.
Cover, T. M. (1974) ‘The Best Two Independent Measurements Are Not the Two Best’,
IEEE Transactions on Systems, Man and Cybernetics, SMC-4(1), pp. 116–117. doi:
10.1109/TSMC.1974.5408535.
Das, S. (2001) ‘Filters, wrappers and a boosting-based hybrid for feature selection’,
Proceedings of the 18th International Conference on Machine Learning, pp. 74–81.
Dash, M. (1997) ‘Feature selection via set cover’, in Proceedings of the IEEE Knowledge
and Data Engineering Exchange Workshop, pp. 165–171.
Dash, M. and Liu, H. (1997) ‘Feature selection for classification’, Intelligent Data
Analysis, 1(1–4), pp. 131–156. doi: 10.3233/IDA-1997-1302.
Dash, M. and Liu, H. (2003) ‘Consistency-based search in feature selection’, Artificial
Intelligence, 151(1–2), pp. 155–176. doi: 10.1016/S0004-3702(03)00079-1.
Dessì, N. and Pes, B. (2015) ‘Similarity of feature selection methods: An empirical study
across data intensive classification tasks’, Expert Systems with Applications, 42(10), pp.
4632–4642. doi: 10.1016/j.eswa.2015.01.069.
Dietterich, T. (1997) ‘Machine-Learning Research Four Current Directions’, AI
Magazine, 18(4), pp. 97–136.
Doak, J. (1992) An Evaluation of Feature Selection Methodsand Their Application to
Computer Security, UC Davis Dept of Computer Science tech reports.
Dougherty, G. (2013) Pattern Recognition and Classification: An Introduction. New
York: Springer ScienceBusiness Media.
Duda, R. O., Hart, P. E. and Stork, D. G. (2012) ‘Pattern classification’, John Wiley &
Sons, Inc.
Elashoff, J. E., Elashoff, R. M. and Goldman, G. E. (1967) ‘On the choice of variables in
 classification problems with dichotomous variables.’, Biometrika, 54(3), pp. 668–670.
doi: 10.1093/biomet/54.3-4.668.
Fadlalla, A. and Amani, F. (2014) ‘Predicting next day closing price of Qatar Exchange
Index using technical indicators and artificial neural network’, Intelligent Systems in
Accounting, Finance and Management, 21, pp. 209–223.
Felsen, J. (1975) ‘Learning pattern recognition techniques applied to stock market
forecasting’, IEEE Transactions on Systems, Man, and Cybernetics, 5(6), pp. 583–594.
Gu, Q., Li, Z. and Han, J. (2011) ‘Generalized Fisher score for feature selection’, in
Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
pp. 266–273.
Guo-qiang, X. (2011) ‘The optimization of share price prediction model based on support
vector machine’, International Conference on Control, Automation and Systems
Engineering (CASE), pp. 1–4.
Guo, Z. et al. (2014) ‘Fusion based forecasting model for financial time series’, PLoS
ONE, 9(6), pp. 1–13.
Gupta, P., Doermann, D. and DeMenthon, D. (2002) ‘Beam search for feature selection
in automatic SVM defect classification’, Proceedings - International Conference on
Pattern Recognition. doi: 10.1109/ICPR.2002.1048275.
Guttman, L. (1954) ‘Some necessary conditions for common-factor analysis’,
Psychometrika, 19(2), pp. 149–161. doi: 10.1007/BF02289162.
Guvenir, H. A., Acar, B. and Muderrisoglu, H. (1998) Arrhythmia Data Set, UCI Machine
Learning Repository. Available at: https://archive.ics.uci.edu/ml/datasets/arrhythmia
(Accessed: 10 June 2019).
Guyon, I. and Elisseeff, A. (2003) ‘An introduction to variable and feature selection’,
Journal of Machine Learning Research, 3, pp. 1157–1182.
Hall, M. A. (2000) ‘Correlation-based feature selection for discrete and numeric class
machine learning’, Proceedings of the Seventeenth International Conference on Machine
Learning, pp. 359–366. doi: 10.1.1.34.4393.
Hall, M. A. and Holmes, G. (2003) ‘Benchmarking Attribute Selection Techniques for
Discrete Class Data Mining’, IEEE Transactions on Knowledge and Data Engineering,
15(6), pp. 1437–1447. doi: 10.1109/TKDE.2003.1245283.
Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer Series in Statistics. doi:
10.1007/b94608.
 He, X., Cai, D. and Niyogi, P. (2005) ‘Laplacian Score for Feature Selection’, in
Proceedings NIPS, pp. 507–514. doi:
http://books.nips.cc/papers/files/nips18/NIPS2005_0149.pdf.
Horn, J. L. (1965) ‘A rationale and test for the number of factors in factor analysis’,
Psychometrika, 30(2), pp. 179–185. doi: 10.1007/BF02289447.
Hurwitz, E. and Marwala, T. (2011) ‘Suitability of using technical indicator-based
Strategies as potential strategies within intelligent trading systems’, IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 80–84.
Ilter, N. and Guvenir, H. A. (1998) Dermatology Data Set, UCI Machine Learning
Repository. Available at: https://archive.ics.uci.edu/ml/datasets/Dermatology (Accessed:
5 March 2017).
John, G. H., Kohavi, R. and Pfleger, K. (1994) ‘Irrelevant Features and the Subset
Selection Problem’, in Machine Learning Proceedings 1994, pp. 121–129. doi:
10.1016/B978-1-55860-335-6.50023-4.
Kaiser, H. F. (1961) ‘A note on Guttman’s lower bound for the number of common
factors’, British Journial of Psychology, 14, pp. 1–2.
Karegowda, A. G., Manjunath, A. S. and Jayaram, M. A. (2010) ‘Comparative Study of
Attribute Selection Using Gain Ratio and Correlation Based Feature Selection’,
International Journal of Information Technology and Knowledge Management, 2(2), pp.
271–277.
Kim, M. J., Han, I. and Lee, K. C. (2004) ‘Hybrid knowledge integration using the fuzzy
genetic algorithm: Prediction of the Korea Stock Index’, Intelligent Systems in
Accounting, Finance and Management, 12, pp. 43–60.
Kira, K. and Rendell, L. (1992a) A practical approach to feature selection, Proceedings
of the ninth international workshop on Machine learning. doi: 10.1016/S0031-
3203(01)00046-2.
Kira, K. and Rendell, L. (1992b) ‘The feature selection problem: traditional methods and
a new algorithm’, AAAI-92 Proceedings, pp. 129–134.
Klawonn, F. and Castro, J. L. (1995) ‘Similarity in fuzzy reasoning’, Mathware and Soft
Computing, 2, pp. 197–228.
Kohavi, R. and John, G. H. (1997) ‘Wrappers for feature subset selection’, Artificial
Intelligence, 97, pp. 273–324.
Kononenko, I. (1994) ‘Estimating attributes: analysis and extensions of Relief’, in De
Raedt, L. and Bergadano, F. (eds) Machine Learning: ECML-94, pp. 171–182.
 Kononenko, I., Simec, E. and Robnik-Sikonja, M. (1997) ‘Overcoming the myopia of
inductive learning Algorithms with RELIEFF’, Applied Intelligence, 7, pp. 39–55.
Koutroumbas, S. and Theodoridis, K. (2003) Pattern Recognition. 2nd Editio. San Diego:
Academic Press. doi: 10.1016/B978-012369531-4/50016-0.
Krollner, B., Vanstone, B. and Finnie, G. (2010) ‘Financial time series forecasting with
machine learning techniques: A survey’, Proceedings of the 18th European Symposium
on Artificial Neural Networks (ESANN 2010), pp. 25–30.
Kurama, O., Luukka, P. and Collan, M. (2016) ‘A Similarity Classifier with Bonferroni
Mean Operators’, Advances in Fuzzy Systems, 2016. doi: 10.1155/2016/7173054.
Leigh, W., Purvis, R. and Ragusa, J. M. (2002) ‘Forecasting the NYSE composite index
with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case
study in romantic decision support’, Decision Support Systems, 32, pp. 361–377.
Li, J. et al. (2017) ‘Feature Selection: A Data Perspective’, ACM Computing Surveys
(CSUR), 50(6), p. 94. doi: 10.1145/3136625.
Lichman, M. (2013) UCI Machine Learning Repository, UCI Machine Learning
Repository. Available at: http://archive.ics.uci.edu/ml (Accessed: 5 March 2017).
Liu, H. and Motoda, H. (2001) Feature extraction, construction and selection: A data
mining perspective, Springer Science & Business Media.
Liu, H., Motoda, H. and Dash, M. (1998) ‘A monotonic measure for optimal feature
selection’, in Proceedings of the 10th European Conference on Machine Learning, pp.
101–106.
Liu, H. and Setiono, R. (1996) ‘A probabilistic approach to feature selection - a filter
solution’, Proceedings of the 13th International Conference on Machine Learning. doi:
citeulike-article-id:7791632.
Liu, H. and Yu, L. (2005) ‘Toward integrating feature selection algorithms for
classification and clustering’, IEEE Transactions on Knowledge and Data Engineering,
17(4), pp. 491–502. doi: 10.1109/TKDE.2005.66.
Di Lorenzo, R. (2013) Basic Technical Analysis of Financial Markets. A Modern
Approach. Milan: Springer Italia.
De Luca, A. and Termini, S. (1972) ‘A definition of a nonprobabilistic entropy in the
setting of fuzzy sets theory’, Information and Control, 20, pp. 301–312.
Luukka, P. (2008) ‘Similarity classifier in diagnosis of bladder cancer’, Computer
Methods and Programs in Biomedicine, 89, pp. 43–49.
Luukka, P. (2010) ‘Nonlinear fuzzy robust PCA algorithms and similarity classifier in
bankruptcy analysis’, Expert Systems with Applications, 37(12), pp. 8296–8302. doi:
10.1016/j.eswa.2010.05.055.
Luukka, P. (2011) ‘Feature selection using fuzzy entropy measures with similarity
classifier’, Expert Systems with Applications, 38, pp. 4600–4607.
Luukka, P. and Kurama, O. (2013) ‘Similarity classifier with ordered weighted averaging
operators’, Expert Systems with Applications, 40, pp. 995–1002.
Luukka, P. and Lampinen, J. (2011) ‘Differential evolution classifier in noisy settings and
with interacting variables’, Applied Soft Computing Journal. doi:
10.1016/j.asoc.2010.01.009.
Luukka, P. and Lampinen, J. (2015) ‘Differential evolution based multiple vector
prototype classifier’, Computing and Informatics, 34(5), pp. 1151–1167.
Luukka, P. and Leppälampi, T. (2006) ‘Similarity classifier with generalized mean
applied to medical data’, Computers in Biology and Medicine, 36, pp. 1026–1040.
Luukka, P. and Lohrmann, C. (2019) ‘Information Transmission and Nonspecificity in
Feature Selection’, in Kearfott R. et al. (eds) Fuzzy Techniques: Theory and Applications.
IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing, vol 1000.
Springer, pp. 340–350.
Luukka, P., Saastamoinen, K. and Könönen, V. (2001) ‘A classifier based on the maximal
fuzzy similarity in the generalized Lukasiewicz-structure’, 10th IEEE International
Conference on Fuzzy Systems.
Maes, S., Tuyls, K. and Vanschoenwinkel, B. (2002) ‘Credit card fraud detection using
bayesian and neural networks’, in Proceedings of the 1st International NAISO Conference
on Neuro-Fuzzy Technologies.
Maldonado, S., Pérez, J. and Bravo, C. (2017) ‘Cost-based feature selection for Support
Vector Machines: An application in credit scoring’, European Journal of Operational
Research, 261(2), pp. 656–665. doi: 10.1016/j.ejor.2017.02.037.
Martínez Sotoca, J. and Pla, F. (2010) ‘Supervised feature selection by clustering using
conditional mutual information-based distances’, Pattern Recognition, 43, pp. 2068–
2081. doi: 10.1016/j.patcog.2009.12.013.
McLeish, M. and Cecile, M. (1989) Horse colic data set, UCI Machine Learning
Repository. Available at: https://archive.ics.uci.edu/ml/datasets/Horse+Colic.
Mitra, P., Murthy, C. A. and Pal, S. K. (2002) ‘Unsupervised feature selection using
feature similarity’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
 24(3), pp. 301–312. doi: 10.1109/34.990133.
Molina, L. C., Belanche, L. and Nebot, À. (2002) ‘Feature selection algorithms: a survey
and experimental evaluation’, In Proceedings of the IEEE International Conference on
Data Mining 2002, pp. 306–313.
Morningstar (2017) Vanguard Total World Stock Index Fund ETF. Available at:
http://www.morningstar.co.uk/uk/etf/snapshot/snapshot.aspx?id=0P0000G5T2.
Motoda, H. and Liu, H. (2002) ‘Feature selection, extraction and construction’,
Communication of IICM (Institute of Information and Computing Machinery, Taiwan),
5(2), pp. 67–72.
Narendra, P. M. and Fukunaga, K. (1977) ‘A Branch and Bound Algorithm for Feature
Subset Selection’, IEEE Transactions on Computers, C-26(9), pp. 917–922. doi:
10.1109/TC.1977.1674939.
O’Connor, B. P. (2000) ‘SPSS and SAS programs for determining the number of
components using parallel analysis and Velicer’s MAP test’, Behavior Research Methods,
Instruments, & Computers, 32(3), pp. 396–402.
Parkash, O., Sharma, P. and Mahajan, R. (2008) ‘New measures of weighted fuzzy
entropy and their applications for the study of maximum weighted fuzzy entropy
principle’, Information Sciences, 178, pp. 2389–2395.
Pätäri, E. and Vilska, M. (2014) ‘Performance of moving average trading strategies over
varying stock market conditions: The Finnish evidence’, Applied Economics, 46(24), pp.
2851–2872. doi: 10.1080/00036846.2014.914145.
Patel, J. et al. (2015) ‘Predicting stock and stock price index movement using Trend
Deterministic Data Preparation and machine learning techniques’, Expert Systems with
Applications, 42(1), pp. 259–268. doi: 10.1016/j.eswa.2014.07.040.
Piramuthu, S. (2004) ‘Evaluating feature selection methods for learning in data mining
applications’, European Journal of Operational Research, 156(2), pp. 483–494. doi:
10.1016/S0377-2217(02)00911-6.
Piramuthu, S. and Sikora, R. T. (2009) ‘Iterative feature construction for improving
inductive learning algorithms’, Expert Systems with Applications, 2(2), pp. 3401–3406.
doi: 10.1016/j.eswa.2008.02.010.
Pun, J. and Lawryshyn, Y. (2012) ‘Improving Credit Card Fraud Detection using a Meta-
Classification Strategy’, International Journal of Computer Applications, 56(10), pp. 41–
46. doi: 10.5120/8930-3007.
Quinlan, J. R. (1986) ‘Induction of Decision Trees’, Machine Learning, 1(1), pp. 81–106.
 doi: 10.1023/A:1022643204877.
Rhee, F. and Lee, Y. (1999) ‘Unsupervised Feature Selection using a Fuzzy-Genetic
Algorithm’, in Proceedings of the International Conference on Fuzzy Systems, pp. 1266–
1269.
Robnik-Šikonja, M. and Kononenko, I. (2003) ‘Theoretical and Empirical Analysis of
ReliefF and RReliefF’, Machine Learning, 53(1–2), pp. 23–69. doi:
10.1023/A:1025667309714.
Rodriguez-Galiano, V. F. et al. (2018) ‘Feature selection approaches for predictive
modelling of groundwater nitrate pollution: An evaluation of filters, embedded and
wrapper methods’, Science of the Total Environment, 624, pp. 661–672. doi:
10.1016/j.scitotenv.2017.12.152.
Rossilo, R., Giner, J. and De la Fuente, D. (2014) ‘The effectiveness of the combined use
of VIX and support vector machines on the prediction of S&P 500’, Neural Computing
and Applications, 25, pp. 321–332.
Rousseeuw, P. J. (1987) ‘Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis’, Journal of Computational and Applied Mathematics, 20(C), pp. 53–
65. doi: 10.1016/0377-0427(87)90125-7.
Rudebusch, G. D. and Williams, J. C. (2009) ‘Forecasting recessions: The puzzle of the
enduring power of the yield curve’, Journal of Business and Economic Statistics, 27(4),
pp. 492–503. doi: 10.1198/jbes.2009.07213.
Russell, S. and Norvig, P. (2009) ‘Artificial Intelligence: A Modern Approach, 3rd
edition’, Prentice Hall, pp. 1–1132. doi: 10.1017/S0269888900007724.
S&P Dow Jones Indices (2017) S&P GSCI CRUDE OIL. Available at:
https://us.spindices.com/indices/commodities/sp-gsci-crude-oil (Accessed: 10 April
2017).
Saeys, Y., Inza, I. and Larranaga, P. (2007) ‘A review of feature selection techniques in
bioinformatics’, Bioinformatics, 23(19), pp. 2507–2517.
Sahu, B., Dehuri, S. and Jagadev, A. K. (2017) ‘Feature selection model based on
clustering and ranking in pipeline for microarray data’, Informatics in Medicine
Unlocked, 9, pp. 107–122. doi: 10.1016/j.imu.2017.07.004.
Sammut, C. and Webb, G. I. (2017) Encyclopedia of Machine Learning and Data Mining
2017 Edition. New York: Springer Science+Business Media.
Soundarapandian, P. and Rubini, L. (2015) Chronic Kidney Disease Data Set, UCI
Machine Learning Repository. Available at:
 https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease (Accessed: 5 March
2017).
Souza, J. T., Matwin, S. and Japkowicz, N. (2006) ‘Parallelizing feature selection’,
Algorithmica, 45, pp. 433–456.
State Street Global Advisors (SPDR) (2017a) SPDR S&P U.S. Financials Select Sector
UCITS ETF. Available at: https://fi.spdrs.com/en/professional/etf/spdr-sp-us-financials-
select-sector-ucits-etf-ZPDF-GY?cid=1365706 (Accessed: 5 May 2017).
State Street Global Advisors (SPDR) (2017b) SPDR S&P U.S. Materials Select Sector
UCITS ETF. Available at: https://fi.spdrs.com/en/professional/etf/SPDR-SP-US-
Materials-Select-Sector-UCITS-ETF-ZPDM-GY (Accessed: 5 May 2017).
Sugar, C. and James, G. (2003) ‘Finding the number of clusters in a data set : An
information theoretic approach’, Journal of the American Statistical Association, 98, pp.
750–763. doi: 10.1198/016214503000000666.
Teixeira, L. A. and De Oliveira, A. L. I. (2010) ‘A method for automatic stock trading
combining technical analysis and nearest neighbor classification’, Expert Systems with
Applications, 37(10), pp. 6885–6890. doi: 10.1016/j.eswa.2010.03.033.
Tibshirani, R., Walther, G. and Hastie, T. (2001) ‘Estimating the number of clusters in a
data set via the gap statistic’, Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 63(2), pp. 411–423. doi: 10.1111/1467-9868.00293.
Toussaint, G. T. (1971) ‘Note on Optimal Selection of Independent Binary-Valued
Features for Pattern Recognition’, IEEE Transactions on Information Theory, 17(5), p.
618. doi: 10.1109/TIT.1971.1054685.
Trambaiolli, L. R. et al. (2017) ‘Feature selection before EEG classification supports the
diagnosis of Alzheimer’s disease’, Clinical Neurophysiology, 128(10), pp. 2058–2067.
doi: 10.1016/j.clinph.2017.06.251.
Tsaih, R. et al. (2004) ‘Credit scoring system for small business loans’, Decision Support
Systems, 38(1), pp. 91–99. doi: 10.1016/S0167-9236(03)00079-4.
USCF (2017) United States Commodity Index Fund. Available at:
http://www.uscfinvestments.com/usci (Accessed: 5 May 2017).
Vafaie, H. and Imam, I. F. (1994) ‘Feature Selection Methods : Genetic Algorithms vs .
Greedy-like Search’, in Proceedings of the International Conference on Fuzzy and
Intelligent Control Systems.
Velicer, W. F. (1976) ‘Determining the number of components from the matrix of partial
correlations’, Psychometrika, 41(3), pp. 321–327. doi: 10.1007/BF02293557.
 Warton, D. I. (2008) ‘Penalized normal likelihood and ridge regularization of correlation
and covariance matrices’, Journal of the American Statistical Association, 103(481), pp.
340–349. doi: 10.1198/016214508000000021.
Webb, A. R. (2002) Statistical Pattern Recognition. Malvern: John Wiley Sons.
West, D., Dellana, S. and Qian, J. (2005) ‘Neural network ensemble strategies for
financial decision applications’, Computers and Operations Research, 32(10), pp. 2543–
2559. doi: 10.1016/j.cor.2004.03.017.
Witten, I. and Frank, E. (2005) Data Mining: Practical machine learning tools and
techniques. 2nd editio, Machine Learning. 2nd editio. San Francisco: Morgan Kaufman.
Wnek, J. and Michalski, R. S. (1994) ‘Hypothesis-Driven Constructive Induction in
AQ17-HCI: A Method and Experiments’, Machine Learning, 14(2), pp. 139–168. doi:
10.1023/A:1022622132310.
Wolberg, W. H. (1992) Breast cancer Wisconsin (original) data set, UCI Machine
Learning Repository. Available at:
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).
Xu, L., Yan, P. and Chang, T. (1998) ‘Best first strategy for feature selection’, in
Proceedings of the 9th International Conference on Pattern Recognition, pp. 706–708.
Yahoo Finance (2017) Selected time series. Available at: https://finance.yahoo.com/.
Yao, Y. Y., Wong, S. K. and Butz, C. J. (1999) ‘On information-theoretic measures of
attribute importance’, PacificAsia Conference on Knowledge Discovery and Data
Mining, pp. 133–137.
Zadeh, L. A. (1965) ‘Fuzzy sets’, Information and Control, 8, pp. 338–353.
Zadeh, L. A. (1971) ‘Similarity relations and fuzzy orderings’, Information Sciences, 3,
pp. 177–200.
Zheng, H. and Zhang, Y. (2008) ‘Feature selection for high-dimensional data in
astronomy’, Advances in Space Research, 41(12), pp. 1960–1964. doi:
10.1016/j.asr.2007.08.033.
Zhora, D. V. (2005) ‘Data preprocessing for stock market forecasting using random
subspace classifier network’, Proceedings of International Joint Conference on Neural
Networks, Montreal, Canada, pp. 2549–2554.
Zhou, X. et al. (2017) ‘Eye tracking data guided feature selection for image
classification’, Pattern Recognition, 63, pp. 56–70. doi: 10.1016/j.patcog.2016.09.007.
Zwick, W. R. and Velicer, W. F. (1982) ‘Factors influencing four rules for determining
the number of components to retain’, Multivariate Behavioral Research, 17(2), p. 253.
doi: 10.1207/s15327906mbr1702_5.
Zwick, W. R. and Velicer, W. F. (1986) ‘Comparison of five rules for determining the
number of components to retain’, Psychological Bulletin, 99(3), p. 432. doi:
10.1037/0033-2909.99.3.432.
Publication I
Lohrmann, C., Luukka, P., Jabłońska-Sabuka, M., and Kauranne, T.
A combination of fuzzy similarity measures and fuzzy entropy measures for
supervised feature selection
Reprinted with permission from
Expert Systems with Applications
Vol. 110, pp. 216-236, 2018
© 2018, Elsevier B.V.

Expert Systems With Applications 110 (2018) 216–236
Contents lists available at ScienceDirect
Expert Systems With Applications
journal homepage: www.elsevier.com/locate/eswa
A combination of fuzzy similarity measures and fuzzy entropy
measures for supervised feature selection
Christoph Lohrmann a , b , ∗, Pasi Luukka b , Matylda Jablonska-Sabuka a , Tuomo Kauranne a
a School of Engineering Science, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland
b School of Business and Management, Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland
a r t i c l e i n f o
Article history:
Received 13 October 2017
Revised 31 May 2018
Accepted 1 June 2018
Available online 3 June 2018
Keywords:
Feature ranking
Filter method
Wrapper method
Machine learning
ReliefF
a b s t r a c t
Large amounts of information and various features are in many machine learning applications available,
or easily obtainable. However, their quality is potentially low and greater volumes of information are not
always beneficial for machine learning, for instance, when not all available features in a data set are rel-
evant for the classification task and for understanding the studied phenomenon. Feature selection aims
at determining a subset of features that represents the data well, gives accurate classification results and
reduces the impact of noise on the classification performance. In this paper, we propose a filter feature
ranking method for feature selection based on fuzzy similarity and entropy measures (FSAE), which is
an adaptation of the idea used for the wrapper function by Luukka (2011) and has an additional scaling
factor. The scaling factor to the feature and class-specific entropy values that is implemented, accounts
for the distance between the ideal vectors for each class. Moreover, a wrapper version of the FSAE with
a similarity classifier is presented as well. The feature selection method is tested on five medical data
sets: dermatology, chronic kidney disease, breast cancer, diabetic retinopathy and horse colic. The wrap-
per version of FSAE is compared to the wrapper introduced by Luukka (2011) and shows at least as
accurate results with often considerably fewer features. In the comparison with ReliefF, Laplacian score,
Fisher score and the filter version of Luukka (2011), the FSAE filter in general achieves competitive mean
accuracies and results for one medical data set, the breast cancer Wisconsin data set, together with the
Laplacian score in the best results over all possible feature removals.
© 2018 Elsevier Ltd. All rights reserved.
1. Background
In the field of machine learning, researchers and practitioners
are commonly faced with classification problems, which is assign-
ing observations to discrete classes premised on the characteristics
of the observations (Bishop, 2006). The classification is conducted
based on the features, where the term ‘feature’ can in general refer
to a variable, attribute or aspect in the data set that was observed
and recorded (e.g. height of a person) or constructed from other
variables (such as a principal component score in principal compo-
nent analysis). The objective of the classification is to obtain deci-
sion regions of the feature space for each class (Luukka, 2008). The
class refers to the group that an observation belongs to, which can
be intuitively defined (e.g. positive or negative diagnosis) or de-
fined in another way by the data analyst. In many machine learn-
∗ Corresponding author at: School of Business and Management, Lappeenranta
University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland.
E-mail addresses: christoph.lohrmann@student.lut.fi (C. Lohrmann),
pasi.luukka@lut.fi (P. Luukka), matylda.jablonska-sabuka@lut.fi (M. Jablonska-
Sabuka), tuomo.kauranne@lut.fi (T. Kauranne).
ing applications, information and features are available in large
volumes, or easily obtainable, but are potentially of low quality
(Blum & Langley, 1997). Moreover, increased amounts of informa-
tion are not always beneficial (Chandrashekar & Sahin, 2014), for
example, when using data sets in which not all the available fea-
tures are relevant for understanding the studied phenomenon and
carrying out the classification task (Luukka, 2007). Classification
refers to the assignment of observations into discrete categories,
called classes (Bishop, 2006). If the information required for effec-
tive classification can be obtained with fewer features, the classifi-
cation process becomes less computationally expensive and irrele-
vant features, which may be a source of undesirable noise, can be
eliminated (Chandrashekar & Sahin, 2014). In other words, the in-
clusion and use of irrelevant features can lead to bias and reduce
classification accuracy (Chandrashekar & Sahin, 2014; Dougherty,
2013). Consequently, only those features should be selected for a
model that are relevant for the classification and lead to quali-
tatively good classification results (Luukka & Leppälampi, 2006).
Such feature selection aims to determine a subset of features that
represents the data well, reduces the effect of noise and gives ac-
curate classification results (Chandrashekar & Sahin, 2014). Theo-
https://doi.org/10.1016/j.eswa.2018.06.002
0957-4174/© 2018 Elsevier Ltd. All rights reserved.
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 217
retical study has demonstrated that by concentrating on a small
subset of the features of a data set, the generalization ability of the
classifier, i.e. the performance of the classifier on previously unseen
observations, can be improved (Blumer, Ehrenfeucht, Haussler, &
Warmuth, 1987). The objective of feature selection thus becomes
to choose a feature subset that can augment the performance of
the classifier or, at a minimum, remove features that lead only
to a minimal performance degradation (Liang, Yang, & Winstanley,
2008).
When discussing such data treatment, it is imperative to dis-
criminate feature selection from techniques that conduct feature
extraction. Feature extraction also relates to dimensional reduc-
tion of the feature space, but it does so by creating new features.
Feature selection, on the other hand, is a dimensional reduction
technique in which a subset of existing features is selected (Kittler
& Mardia, 1994). Feature selection exists in both, supervised and
unsupervised forms, i.e. where the associated class label for the
observations is known (supervised feature selection) or unknown
(unsupervised feature selection) (Liang et al., 2008). In this paper,
we focus on supervised feature selection.
Feature selection methods are commonly divided into three
types: filter techniques, wrapper functions and embedded func-
tions (Blum & Langley, 1997). Filter techniques do not use the clas-
sifier during feature selection. They are applied in the feature pre-
processing step (Luukka, 2011). The aim of such filter techniques
is to filter out features based on their characteristics and consis-
tency (Blum & Langley, 1997; Junttila, Maltamo, & Kauranne, 2008;
Seo & Oh, 2012). The wrapper approach is also applied during
preprocessing but includes the classifier in the feature selection
(Luukka, 2011). The classification accuracy of the classifier takes
the role of the feature selection criterion (Chandrashekar & Sahin,
2014; Seo & Oh, 2012). The feature subset is chosen that leads to
the best test performance with the classifier. Using the classifier
to find the optimal feature subset provides superior performance
compared to a simple filter technique but is also computation-
ally more expensive (Blum & Langley, 1997; Seo & Oh, 2012). It
should be noted that the classifier deployed after feature selection
should be the same as during feature selection, because the fea-
ture selection is optimized with respect to the particular classifier
(Liang et al., 2008). The last type of feature selection techniques
are the embedded methods. Embedded methods are incorporated
into the training process and search for the optimal feature sub-
set during the training (Chandrashekar & Sahin, 2014; Seo & Oh,
2012). The reasoning behind this approach is to decrease the com-
putational time required by deploying the classifier only during the
training process (Chandrashekar & Sahin, 2014). It must be kept in
mind that the chosen feature subset is also optimized for a given
classifier (Seo & Oh, 2012).
The supervised feature selection method discussed in this
paper is an adaptation of the wrapper method introduced by
Luukka (2011) in which a combination of entropy measures and a
similarity classifier is used to determine the least relevant features
in the dataset. This feature selection method has demonstrated to
be capable of reducing the number of features to a subsets that
gives an improvement in classification performance or only a small
degradation in classification accuracy (Luukka, 2011). The method
that will be discussed in this paper is conceptually a feature rank-
ing method (filter). However, it can also be used as a wrapper
method, for instance with a similarity classifier as the method by
Luukka (2011) . A similarity classifier is a suitable choice for the
wrapper version of the adapted method presented in this paper
since it has demonstrated high classification accuracy in several
applications with medical data sets (Luukka, 2008; Luukka & Lep-
pälampi, 2006).
On these data sets it was shown that a similarity classifier can
outperform other machine learning techniques such as linear dis-
criminant analysis, multi-layer perceptrons and the C4.5 algorithm
(Quinlan, 1992). The main advantages of this classifier type are
that it requires a comparably small computational time and can ac-
complish high classification accuracy with a small number of sam-
ples (Luukka, 2008). Recent research on a similarity classifier with
multiple ideal vectors also indicated the competitive performance
of a similarity classifier with other machine learning techniques
(Lohrmann & Luukka, 2018).
2. Objectives
The objective of this paper is to point out a clear deficiency of
the feature selection algorithm by Luukka (2011) that occurs for
certain data structures, demonstrate a measure that helps to detect
such data structures and address this deficiency with an adapted
feature selection algorithm. Moreover, the feature selection method
will be introduced as a supervised filter method. However, we
will also present the application as a wrapper method together
with a similarity classifier that uses backward elimination of fea-
tures, which is the process behind the initial algorithm proposed
by Luukka (2011) . In the work, we first show that the feature se-
lection technique developed by Luukka (2011) may remove essen-
tial features of a data set and, thus, lead to performance degra-
dation. This deficiency derives from the inadequate consideration
of the difference between ideal vectors in the feature selection al-
gorithm. The idea is that good class separability is, beside other
factors, also dependent on the length of the interclass distances,
which is a notion also found in filter techniques such as CScore
(Seo & Oh, 2012). A simple measure based on the standard devia-
tion of class means of a feature from the feature mean is presented
that supports the detection of the cases where the feature selec-
tion by Luukka (2011) will have this deficiency. To overcome this
weakness, an adjusted version of the feature selection algorithm is
introduced, where a scaling factor to the feature and class-specific
entropy values is used to account for the distance between the
ideal vectors for each class. The goal is to avoid the removal of es-
sential features and achieve a better classification performance or
as small performance degradation as possible. The proposed fea-
ture selection method is tested on three simple artificial tasks and
five real-world medical data sets.
3. Methods
3.1. Entropy measures
Entropy can be regarded as a “measure of the degree of fuzzi-
ness” (De Luca & Termini, 1972). Additionally, De Luca and Ter-
mini (1972) describe it as the average information contained in
data that is available for making a decision, e.g. to classify objects.
An entropy measure for input ∈ [0,1] has to satisfy at least the fol-
lowing properties (De Luca & Termini, 1972):
(1) Entropy = 0 if the input value is 0 or 1
(2) The maximum entropy value is obtained for an input of 0.5
(3) The entropy of input f has to be greater or equal to the entropy
of f ∗where f ∗is any “sharpened” version of f , which is any fuzzy
set such that f ∗(x) ≥ f (x) if f (x) ≥ 0.5 and f ∗(x) ≤ f (x) if f (x) ≤
0.5
In this paper, the entropy measures developed by De Luca and
Termini (1972) and Parkash, Sharma, and Mahajan (2008) are ap-
plied to feature selection. The entropy introduced by De Luca and
Termini (1972) can be described as follows:
218 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
H (A) = −
n ∑
i =1
[μA (x i) log μA (x i) + (1 − μA (x i)) log (1 − μA (x i))]
(1)
where μA (x i) ∈ [0, 1] is the membership degree of x i to the fuzzy
set A.
The entropy measures developed by Parkash et al. (2008) are
related to the concept of weighted entropy (Belis & Guiasu, 1968)
and are defined in the following way:
H 1 (A) =
n ∑
i =1
w i
[
sin
πμA (x i)
2
+ sin π(1 − μA (x i))
2
− 1
]
(2)
H 2 (A) =
n ∑
i =1
w i
[
cos
πμA (x i)
2
+ cos π(1 − μA (x i))
2
− 1
]
(3)
The entropy measures are applied to classification tasks since
small entropy values signal regularities and structure in the data,
whereas high entropy values indicate randomness (Yao, Wong, &
Butz, 1999). Thus, entropy can show whether the data is informa-
tive or whether it is characterized by uncertainty (Luukka, 2007).
More specifically, fuzzy entropy measures can be used to deter-
mine the relevance of features in a data set (Luukka, 2011). Since
both entropy measures of Parkash et al. (2008) lead to the same
entropy values, only the first entropy measure will in the follow-
ing be deployed.
3.2. Feature selection algorithm using a similarity classifier and
entropy measures
Feature selection using a combination of a similarity classi-
fier and entropy measures was introduced by Luukka (2011) . This
wrapper feature selection algorithm uses fuzzy entropy measures
to determine the importance of features. Similarity values are de-
ployed as input to the entropy measure. As mentioned in the pre-
vious section, similarity S ∈ [0, 1], where 0 indicates that an ob-
servation is completely dissimilar from the ideal vector and 1 indi-
cates the highest possible degree of similarity. The corresponding
entropy values for similarities 0 or 1 are low and represent high in-
formativeness. On the other hand, a similarity that is close to 0.5 is
characterized by the highest entropy value and signals uncertainty.
Luukka (2011) utilized this idea to calculate entropy values for
the similarities of features with the ideal vector of each class. The
entropy values are summed over all observations and classes to
obtain a single entropy value for each feature d . Given that high
entropy values represent uncertainty, during each step of feature
selection, the feature with the largest entropy value is removed.
The underlying assumption is that the feature removed does not
contribute to the difference between the classes (Luukka, 2011).
The accuracy of the classification with the similarity classifier is
examined after each feature removal, and the procedure is stopped
when performance degrades. Essentially, this procedure operates as
a wrapper function with stepwise backward elimination. The pro-
cedure for the removal of a feature is illustrated in Fig. 1 for a
three-class case with two features.
The corresponding pseudocode for the feature removal proce-
dure can be found in Luukka (2011) . The process as depicted by
Luukka (2011) can be separated in four distinct steps.
The first step is the division of the data into training and test
data, and calculation of the ideal vector for the training data. The
ideal vectors can, for instance, be calculated by using generalized
means over the samples for particular classes. With these ideal
vectors, the performance of the similarity classifier on the test set
is computed (before the removal step).
The second step is to determine the similarity S of feature d of
an observation x j of the training set with that of the ideal vector
of class i , which can be stated as:
S
(
x j,d , v i,d
)
= p
√ (
1 −
∣∣x p
j,d
− v p
i,d
∣∣) (4)
where the parameter p during the feature selection is set to 1. This
formula is used for each sample x j of the training data X for each
feature d and class i . The result is a n ∗(DN) matrix, where n is the
number of samples, D the number of features and N the number
of classes as illustrated in Fig. 1 .
The third step is concerned with the calculation of the entropy
value for each feature. The equation to determine the entropy H
for a feature d can subsequently be defined as:
H d =
N ∑
i =1
n ∑
j=1
H
(
S
(
x j,d , v i,d
))
(5)
where the similarity for feature d of an observation x j with the
ideal vector of class i is summed over all observations (j = 1,…, n)
and classes (i = 1,…, N).
The fourth step is the feature removal. The feature with the
highest entropy value is removed from the data set. Subsequently,
the performance of the similarity classifier with the test data set
before and after the removal of this feature is compared. The clas-
sifiers performance on the test set before removal was already ob-
tained in the first step and solely the classfication accuracy on the
test set without the removed feature has to be computed. Note,
that the ideal vectors for the classes do not change, only the ele-
ment the element in the ideal vector related to the removed fea-
ture is excluded. If the performance of the classifier is improved
or the stopping criterion is not met, the subsequent steps are re-
peated. After the stopping criterion is met, the feature subset that
led to the highest test performance will be selected.
Luukka (2011) applied this feature selection method to four
different medical datasets from the UCI Repository of Machine
Learning Database and compared its performance with the per-
formance of the similarity classifier without feature removal.
The entropy measures by De Luca and Termini (1972) and
Parkash et al. (2008) were chosen as entropy measures. Removal
of features using this feature selection algorithm led to inproved
classifier performance for some data sets, and resulted in a compa-
rable classification result, while using fewer features, for the other
data sets (Luukka, 2011).
3.3. Fuzzy similarity and entropy measure (FSAE) feature selection
In this work, an adaptation to the wrapper feature selection al-
gorithm of Luukka (2011) is proposed that is referred to as ‘fuzzy
similarity and entropy’ (FSAE) feature selection. In particular, two
changes to the original method are presented: First, a scaling fac-
tor for the distance between ideal vectors of classes, and, second,
the conceptualization of this adapted method as a feature ranking
filter method.
The first proposed adaptation is the scaling factor that empha-
sizes the distance between the ideal vectors of the classes by scal-
ing the entropy measure for each class and feature. It is suggested
that a measure of distance for each feature and class should be
used that in its logic is related to similarity. The form of the scal-
ing factor SF can be presented in generalized form as:
S F i,d = 1 −
(∑
i �= j
∣∣v i,d − v j,d ∣∣l) 1 l
N − 1 (6)
The numerator determines the sum of the absolute distances of
the ideal vector value for feature d for class i to all other classes
(in the most simple case with l = 1). In simple terms, the nomina-
tor measures how far the mean value of the feature of a class is
from the means of all the other classes. To obtain a value within
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 219
Fig. 1. Feature selection with a similarity classifier and entropy measures.
[0,1], the numerator is divided by N-1 , where N is the number of
classes. The denominator is N-1 since a class is compared to all
other classes (N-1 classes). The distance between two means can-
not exceed 1 since the ideal vectors can only take values ∈ [0,1].
Therefore, the quotient is also within [0, 1]. Since a large distance
to other ideal vectors is desirable, multiplying the entropy with
this quotient will have the opposite of the desired effect. It would
lead to higher scaled entropy values for ideal vectors that are far
from and, therefore, distinct from other ideal vectors. Thus, the
quotient is subtracted from 1, leading to a scale factor within [0,1]
but also with the desirable property that distinct ideal vectors for
a feature decrease the entropy value for that feature, while entropy
values of features where the ideal vectors are close remain at their
initial level or are only slightly decreased. In simple terms: if the
feature in a class takes on average largely different values than in
other classes, then this leads to smaller entropy values. The scaled
entropy SE for a feature d for all classes is:
S E d =
N ∑
i =1
(
H i,d ∗ S F i,d
)
(7)
The second change from the initial approach of Luukka (2011) is
the introduction of this adapted feature selection method as a fil-
ter, in particular, a feature ranking method. The use of the scaled
entropy values for the feature ranking is straight forward. Small
scaled entropy values characterize good features that are informa-
tive from information theory point of view and that have ideal vec-
tors that are on average far from another. In contrast to that, large
scaled entropy values are found for features that have low informa-
tiveness in terms of entropy, and ideal vectors that are on average
close to each other. Therefore, a ranking could be implemented di-
rectly by sorting the features by their scaled entropy in ascending
order, starting from the most important feature with the smallest
scaled entropy down to the least relevant feature with the highest
scaled entropy. A disadvantage of this approach is that the magni-
tude of the scaled entropy values per feature can be very high and
also difficult to interpret relative to each other in a precise manner.
For that reason, scaling the scaled entropy values into the compact
interval [0,1] fixes the range of the variable importance values for
the variable ranking. In order to obtain an intuitive result, the au-
thors suggest to subtract the standardized scaled entropy values
[0,1] from 1. With this scaling, the most relevant feature is set to
1 and the least relevant to 0. Every other feature possesses a value
between 0 and 1, which can be regarded as a ratio of how relevant
the feature is in comparison to the most important feature. In the
authors view, this makes this additional scaling more useful for the
interpretation of the results than a simple ranking based on the SE
values directly.
Obviously, the logic underlying this feature ranking method can
also be used in a wrapper function. The implementation of the
adapted method as a wrapper is presented since the initial ap-
proach was conceptualized as a wrapper function and a compar-
ison is simpler this way. Moreover, it presents a clear framework
for those that attempt to improve their classification performance
since, as mentioned above, wrapper functions, due to their iterative
process, often result in a better performance than the filter coun-
terpart. Also, the question of how many of the features to main-
tain is directly answered in the wrapper function itself. The overall
wrapper feature selection procedure is illustrated in Fig. 2 for a
three-class case with two features.
The step by step process for the FSAE wrapper is as follows:
The first step is the division of the data into training and test
data, the calculation of the ideal vectors for each class and the test
set performance before removal. This is equal to the first step of
the original method of Luukka (2011) .
The second step of the new feature selection algorithm is ex-
actly the same as in the original one of Luukka (2011) . At the end
of this step, the similarity of every sample for each feature of all
ideal vectors for the classes was determined.
The third step consists of the calculation of the scaling factor
for each feature and class, denoted by SF i,d , as defined in Eq. (6) ,
220 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
Fig. 2. Adapted feature selection with a similarity classifier and entropy measures.
and the computation of entropy for each feature and class as:
H i,d =
n ∑
j=1
H
(
S
(
x j,d , v i,d
))
(8)
The difference of Eq. (8) to Eq. (5) is that there is no summation
over the classes.
The fourth step is characterized by the calculation of the scaled
entropy. The class- and feature-specific entropy and scaling factors
are multiplied with each other and summed over the classes as
stated in Eq. (7) . The result is a scaled entropy value for each of
the D features.
The fifth step is equivalent to the fourth step of the original
algorithm of Luukka (2011) . The feature with the highest (scaled)
entropy is removed, the test set performance calculated and com-
pared to the one without the removal in this iteration of the al-
gorithm. All steps are repeated until a stopping criterion such as a
performance degradation is met.
3.4. Measure for detecting variation of class means
The objective of the new algorithm for feature selection is to
overcome the deficiency of the original method to incorporate the
difference of class means into the classification. In order to high-
light features with class means that have large (Euclidean) distance
between them, a suitable measure for the variation of class means
is required. The idea behind such a measure is that class means
for features that are far from each other on average also deviate
from the overall feature mean. Therefore, a simple measure based
on the well-known formula for the standard deviation of a popu-
lation can be used. The difference in the calculation is that not the
deviation of a feature value from its mean is calculated but the de-
viation from the class mean of a feature from the overall mean of a
feature. In simple terms, it measures the standard deviation of the
average value that a feature takes for the classes from the overall
average of the feature.
M d =
(∑ N
i =1
(
x¯ i,d − x¯ d
)2
N
) 1
2
(9)
Where d is a feature, x¯ i,d is the mean of feature d for class i, and
x¯ d is the mean of feature d . This measure M d is specific to feature
d and takes large values, when the class means for the feature de-
viate much from the feature mean. Vice versa, low values for M d
point out that the class means do not deviate much from the fea-
ture mean, which means that the class means are on average close
to one another.
In order to obtain an indication whether for all features on av-
erage the class means vary strongly, the mean of the standard de-
viations can be calculated. The overall formula for this measure,
which results in a single number for a dataset, is presented in
Eq. (10) :
M =
D ∑
d=1
(∑ N
i =1 (¯x i,d −x¯ d)
2
N
) 1
2
D
(10)
This is essentially the mean of M d . The idea is that a high value
for this measure M indicates that the class means of features in the
dataset are on average far from each other, whereas a small value
signals that they are close.
Assuming a simplified case where two features have the same
or comparable variation of the samples in each class. The feature
with the larger standard deviation between the class means as
measured by M d will likely be more discriminative and result on
its own in a superior classification accuracy than the other feature
alone. When this less discriminative feature, which possesses a low
value of M d is removed from the data set, the average standard de-
viation of class means for all features, as measured by M , should
decrease. This case can be generalized to several features. If one or
several features have low values for M d and the variation of sam-
ples in the classes do not differ strongly from other features, fea-
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 221
Table 1
Features of the dermatology data set (Ilter & Guvenir, 1998).
Clinical Attributes (values: 0, 1, 2, 3,
unless otherwise indicated)
Hispathological Attributes (take values 0, 1, 2, 3) Class Instances
1. Erythema 12. Melanin incontinence Psoriasis 112
2. Scaling 13. Eosinophils in the infiltrate Seboreic dermatitis 61
3. Definite borders 14. PNL infiltrate Lichen planus 72
4. Itching 15. Fibrosis of the papillary dermis Pityriasis rosea 49
5. Koebner phenomenon 16. Exocytosis Chronic dermatitis 52
6. Polygonal papules 17. Acanthosis Pityriasis rubra pilaris 20
7. Follicular papules 18. Hyperkeratosis
8. Oral mucosal involvement 19. Parakeratosis
9. Knee and elbow involvement 20. Clubbing of the rete ridges
10. Scalp involvement 21. Elongation of the rete ridges
11. Family history (0 or 1) 22. Thinning of the suprapapillary epidermis
34: Age (linear) 23. Spongiform pustule
24. Munro microabscess
25. Focal hypergranulosis
26. Disappearance of the granular layer
27. Vacuolation and damage of basal layer
28. Spongiosis
29. Saw-tooth appearance of retes
30. Follicular horn plug
31. Perifollicular parakeratosis
32. Inflammatory mononuclear infiltrate
33. Band-like infiltrate
ture selection should discard these features, which would improve
the classification accuracy. At the same time, this would increase
the average standard deviation of class means of a feature to the
feature mean, as expressed by measure M . Therefore, effective fea-
ture selection will likely remove a feature d or multiple features
with a low value of the feature-specific M d and by doing this, ele-
vate M .
It has to be remarked, that the removal of features depends also
to a large extent on variation of data as measured by e.g. standard
deviation or with support of an entropy measure. Thus, it is not
necessarily true that the features with low M d will be removed and
M improved.
3.5. Data
The data sets that are utilized in this paper are taken from
the UCI Repository of Machine Learning Database (Lichman, 2013).
Classification is performed for five medical datasets: the derma-
tology data set (Ilter & Guvenir, 1998), the chronic kidney disease
data set (Soundarapandian & Rubini, 2015), the breast cancer Wis-
consin (original) data set (Wolberg, 1992), the diabetic retinopathy
Debrecen data set (Antal & Hajdu, 2014) and the horse colic data
set (McLeish & Cecile, 1989).
3.5.1. Dermatology data set
The dermatology data set (Ilter & Guvenir, 1998) was donated in
1998 and relates to differential diagnosis of erythemato-squamous
diseases, which is considered a complicated problem in dermatol-
ogy. The diseases in this group are: (1) psoriasis, (2) seboreic der-
matitis, (3) lichen planus, (4) pityriasis rosea, (5) cronic dermatitis,
and (6) pityriasis rubra pilaris. The data set contains 34 explana-
tory variables, of which 12 are clinical features acquired on the
basis of a clinical evaluation and 22 are histopathological features
obtained from skin samples. The data set contains six class labels.
The features and classes are given in Table 1 . The features in the
table are referred to as ‘Attributes’ since this term is used in the
original description of this data set. The dataset initially contained
366 observations. Observations for which any of the feature values
were missing were removed manually, which narrowed down the
number of complete observations for the classification task to 358.
Table 2
Features and class of the chronic kidney disease data set (Soundarapandian
& Rubini, 2015).
Attribute and Class Scale
1. Age (numerical) age in years
2. Blood pressure (numerical) in mm/Hg
3. Specific gravity (nominal) (1.005,1.010,1.015,1.020,1.025)
4. Albumin (nominal) (0,1,2,3,4,5)
5. Sugar(nominal) (0,1,2,3,4,5)
6. Red blood cells (nominal) (normal, abnormal)
7. Pus cell (nominal) (normal, abnormal)
8. pus cell clumps (nominal) (present, notpresent)
9. Bacteria (nominal) (present, notpresent)
10. Blood glucose random (numerical) in mgs/dl
11. Blood urea (numerical) in mgs/dl
12. Serum creatinine (numerical) in mgs/dl
13. Sodium (numerical) in mEq/L
14. potassium (numerical) in mEq/L
15. Hemoglobin (numerical) in gms
16. Packed cell volume (numerical) –
17. White blood cell count (numerical) in cells/cumm
18. Red blood cell count (numerical) in millions/cmm
19. Hypertension (nominal) (yes, no)
20. Diabetes mellitus (nominal) (yes, no)
21. Coronary artery disease (nominal) (yes, no)
22. Appetite (nominal) (good, poor)
23. Pedal edema (nominal) (yes, no)
24. Anemia (nominal) (yes, no)
25. Class (nominal) (ckd, no ckd)
3.5.2. Chronic kidney disease data set
The chronic kidney data set (Soundarapandian & Rubini, 2015)
was donated in 2015. According to UCI Machine Learning Repos-
itory, at the time of conducting this research, no papers directly
relevant to the subject of our study have been published that use
this data set. The dataset contains 24 variables, of which 11 are nu-
meric and 13 are nominal. The classification task for this dataset is
binary, with the distinction being between patients with and with-
out chronic kidney disease. The features and the scale of the data
are presented in Table 2 . The features in the table are also referred
to as ‘Attributes’ since this term is used in the original descrip-
tion of this data set. The dataset initially contained 400 observa-
tions. Observations for which any of the feature values were miss-
222 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
Table 3
Features and class of the breast cancer Wisconsin (Original)
data set (Wolberg, 1992).
Features Class
1. Sample code number / ID number 2 - benign
2. Clump thickness (from 1 to 10) 4 - malignant
3. Uniformity of cell size (from 1 to 10)
4. Uniformity of cell shape (from 1 to 10)
5. Marginal adhesion (from 1 to 10)
6. Single epithelial cell size (from 1 to 10)
7. Bare nuclei (from 1 to 10)
8. Bland chromatin (from 1 to 10)
9. Normal nucleoli (from 1 to 10)
10. Mitoses (from 1 to 10)
Table 4
Features and class of the Diabetic retinopathy Debrecen data set.
Features Class
1. Quality assessment (0 = bad quality, 1 = sufficient
quality)
0 = No sign of DR
2. Pre-screening result (0 = no abnormality, 1 = severe
retinal abnormality)
1 = Signs of DR
3.–8. MA detection result (confidence level 0.5 to 1)
(numeric)
9.–16. MA detection result for exudates (confidence
level 0.5 to 1) (numeric)
17. Euclidean distance center of macula to center of
optic disc
18. Diameter of optic disc
19. AM/FM-based classification {0,1}
ing were removed manually, which reduced the number of com-
plete observations for the classification task to only 156.
3.5.3. Breast cancer Wisconsin (Original) data set
The breast cancer Wisconsin (Original) data set (Wolberg, 1992)
was donated in 1992. It consists of samples on breast cancer pa-
tients that were reported periodically. The data set contains 10
variables and a binary class label indicating whether a breast can-
cer is benign or malignant. The first feature is the ID number while
the remaining features represent medical information related to
the patient and the cancer. All features and the class labels are
enumerated in Table 3 . The dataset initially contained 699 observa-
tions. Observations for which any of the feature values were miss-
ing (indicated by a ‘?’) were removed manually, so that the number
of complete observations for the classification task was reduced to
683. The first feature, the ID number, was removed from the data
set for the classification since it is not directly related to the cancer
and has no meaning for the classification task.
3.5.4. Diabetic retinopathy Debrecen data set
The diabetic retinopathy Debrecen data set (Antal & Ha-
jdu, 2014) encompasses features that were extracted from the Mes-
sidor image set for the prediction of diabetic retinopathy from im-
ages. Each of the 19 features relates to a detected lesion, a feature
depicting the anatomy or is a descriptor of the image level (Antal
& Hajdu, 2014). The class label is binary for samples that contain
signs of diabetic retinopathy and those that do not contain such
signs. All features and the class labels are enumerated in Table 4 .
The data set contains 1151 observations without any missing val-
ues. Moreover, with 611 instances of signs for diabetic retinopathy
and 540 without such signs, the classes are quite well balanced.
3.5.5. Horse colic data set
The horse colic data set contains medical features of horses
including those that suffered from certain types of lesions
(McLeish & Cecile, 1989). The data contained initially 27 features
and a binary class label indicating whether a lesion was surgical
Table 5
Features and class of the Horse colic data set.
Features Class
1. Surgery (1 = yes, 2 = no) 1 = Surgical lesion
2. Age (1 = Adult, 2 = Young (< 6 months)) 2 = Not surgical lesion
3. Hospital ID (numeric)
4. Rectal temperature (numeric)
5. Pulse (numeric)
6. Respiratory rate (numeric)
7. Temperature of extremities (categorical from
1 to 4)
8. Peripheral pulse (categorical from 1 to 4)
9. Mucous membranes (categorical from 1 to 6)
10. Capillary refill time (1 = ’ < 3 seconds’,
2 = ’ ≥3 seconds’
11. Pain level (categorical from 1 to 5)
12. Peristalsis (categorical from 1 to 4)
13. Abdominal distension (categorical from 1 to
4)
14. Nasogastric tube (1 = none, 2 = slight,
3 = significant)
15. Nasogastric reflux (1 = none, 2 = ’ > 1 liter’,
3 = ’ < 1 liter’)
16. Nasogastric reflux pH (numeric)
17. Rectal examination (categorical from 1 to 4)
18. Abdomen (categorical from 1 to 5)
19. Packed cell volume (numeric)
20. Total protein (numeric)
21. Abdominocentesis appearance (1 = clear,
2 = cloudy, 3 = serosanguinous)
22. Abdomcentesis total protein (numeric)
23. Outcome (1 = lived, 2 = died, 3 = was
euthanized)
24. Type of Lesion (First Lesion)
25. Type of Lesion (Second Lesion)
26. Type of Lesion (Third Lesion)
27. CP Data (1 = Yes, 2 = No)
(retrospectively). All features and the class labels are depicted in
Table 5 .
The data set (including the ‘horse-colic.test’ data set) contains
27 features of 368 observations. The ‘Hospital ID’ (3) and the ‘CP
data’ (27) were removed since they are not relevant. The features
‘Nasogastric reflux PH’ (12) , ‘Abdominocentesis appearance’ (21)
and ‘Abdomcentesis total protein’ (22) were removed since the ma-
jority of their values was missing. Besides that, horses can have 0
to 3 lesions (as indicated by feature 25 to 27, showing whether a
lesion is present). The details of the lesion are presented in form of
a digit code indicating its site, type, subtype, and specific code. If
a horse had more than 1 lesion (feature 26 and/or 27 were not ze-
ros), the sample was duplicated so that each sample only encom-
passes one lesion. One sample has the first lesion and the second
sample the second lesion, and so on. Furthermore, the digit code of
the lesion was split into four categorical features indicating the site
(12 categories), the type (4 categories), the subtype (3 categories)
and a specification (11 categories). We interpolated missing values
by using basic mean /mode interpolation. As a consequence, the
final data set contains 23 features and 379 complete observations.
3.6. Feature selection and training procedure
The training and testing during both, the filter and wrapper
feature selection is conducted with the holdout method. The first
calculations are conducted to compare the wrapper method of
Luukka (2011) with the wrapper version of the proposed adapted
algorithm termed FSAE. The complete training and testing proce-
dure for the FSAE wrapper is illustrated in Fig. 3 . The main idea for
the wrapper feature selection is to iteratively remove the feature
with the highest entropy value. The procedure is stopped when
the test set performance deteriorated by more than 3% compared
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 223
Fig. 3. Training procedure for FSAE Wrapper.
to the previous step. Afterwards, the decision, which features re-
main, is conducted based on the highest test set performance after
all removal steps that occurred before the procedure was stopped
and the features removed to reach this performance are noted.
For the supervised filter methods, the FSAE filter is compared to
the well-known ReliefF algorithm, the Laplacian Score, the Fisher
Score and the feature selection by Luukka (2011) implemented
with its logic as a feature ranking method. The ReliefF algo-
rithm is an extension of the Relief algorithm of Kira and Ren-
dell (1992a) that is filter feature selection method suitable for
multi-class problems that can even handle noise and incomplete
data (Kononenko, Simec, & Robnik-Sikonja, 1997). This algorithm
adjusts iteratively its weights, which are initially set to zero, to de-
termine how relevant a feature is (Kononenko et al., 1997; Souza,
Matwin, & Japkowicz, 2006). The relevance of a feature is deter-
mined by the k Near-hit and Near-miss instances, so the clos-
est observations (based on Euclidean distance) from the same and
other classes (Kira & Rendell, 1992b; Kononenko et al., 1997). The
contribution of each k instances is averaged and the averaged
weights for each feature ∈ [−1, 1] indicate the relevance of the
features (Kononenko et al., 1997). A value that is larger than zero
is expected for relevant features and irrelevant features should
end up with negative values or values close to zero (Kira & Ren-
dell, 1992b). Now, either a user-specified number of features with
the largest weights or all those features larger than a threshold τ
can be chosen (Kira & Rendell, 1992b; Souza et al., 2006).
The Laplacian score introduced by He et al. (2005) is a
similarity-based unsupervised feature selection method that can
also be used as a supervised method when the class labels are
available. In the unsupervised version, only the k-nearest neigh-
bours - independent of the class label - are considered whereas in
the supervised version only the observations with the same class
label are considered for the calculation for the weight matrix S
(also called affinity matrix) (He et al., 2005; Li et al., 2017). The
value for an element S f,j in the weight matrix S for two observa-
tions x f and x j is:
S f, j = e
‖ x f −x j ‖ 2
t (11)
if f and j belong to the same class, and where t is a ‘suitable’
constant. For all combinations of elements in the weight matrix
S that do not belong to the same class, the value for S f,j is set to
zero. Subsequently, a diagonal matrix D is calculated where an el-
ement D(f,f) is defined as
∑ n
j=1 S f, j and the so-called ‘graph Lapla-
cian’ is calculated as L = D – S (Li et al., 2017). In order to calculate
the Laplacian score, ˜ xd is determined as (He et al., 2005; Li et al.,
2017):
˜ xd = x d −
x t
d
D 1
1 t D 1
1 (12)
Where x d is the column vector of feature d (in the reference liter-
ature denoted by f r for the r-th feature), 1 is a column vector of
ones, and t denotes the transpose (He et al., 2005). The Laplacian
score for a feature d can then be determined as:
Laplacian Scor e d =
˜ xt
d
L ˜ xd
˜ xt
d
D ˜ xd
(13)
Based on this weight matrix, the Laplacian matrix can be com-
puted and the k features with the smallest Laplacian scores shall
be retained (Li et al., 2017). For further details on the method,
please see He at al. (2005).
The Fisher Score is a similarity-based supervised feature selec-
tion method (Duda et al., 2012). It uses the squared distances be-
tween the mean of a feature and the mean of the feature in a class,
the standard deviations for the feature in the class and the number
224 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
Table 6
Artificial example tasks.
Features Task 1 Task 2 Task 3
Feature 1 All classes mean 50 with normal noise (0,
0.01)
All classes mean 50 with normal noise (0,
0.01)
Mean 80, 100, 120 with normal noise (0, 10) –
Overlapping
Feature 2 Mean 10, 50, 100 with normal noise (0, 0.01) Mean 10, 50, 100 with normal noise (0, 1) Mean 10, 20, 30 with normal noise (0, 1) –
Non-Overlapping
of observations in a class as a weight to determine the importance
of a feature. The Fisher score for a feature d can be defined as:
F isher Scor e d =
N ∑
i =1
n i
(
x¯ i,d − x¯ d
)2
N ∑
i =1
n i σi,d
(14)
Where d is a feature, x¯ i,d is the mean of feature d for class i , x¯ d
is the mean of feature d, σ i,d is the standard deviation of feature
d in class i, N is the number of classes and n i is the number of
observations in class i . For the Fisher score, the k variables with
the largest value of the Fisher score are chosen as feature subset
(Li et al., 2017).
The choice of the number of features to retain for the feature
ranking methods is based on the threshold for the ReliefF algo-
rithm and the result obtained from the FSAE wrapper method pre-
viously. In general, the number of features to keep can be user-
specified and the suggested approach is used for simplicity since
for ReliefF there are suggested procedures for the choice of a
threshold to determine which features to keep. First, all variables
with a positive ReliefF weight are chosen for the first feature sub-
set. Second, the features are selected according to the threshold
determined by τ = 1 √
αm
(Robnik-Šikonja & Kononenko, 2003). In
particular, the threshold is used with α = 1 (not strict) and m equal
to the training set size of 70% of the sample points.
The third way is premised on the same number of features
that lead to the best mean accuracy of the FSAE wrapper, which
will be calculated at that time. The authors want to stress, that
these approaches to select the number of features to retain are
simply suggestions and another number for k could be chosen.
After the removal of features for each of the wrapper and filter
techniques, the parameters of the similarity classifier are deter-
mined with an optimal value search for the remaining features to
accomplish the highest mean accuracy of the given dataset. It is
important to note that the performance achieved before the opti-
mal value search is independent of the tuning of the parameters
p and m (Luukka, 2008). All calculations were implemented with
MATLAB TM - software.
4. Results
4.1. Weaknesses of the feature selection algorithm
Three simple classification tasks were constructed to illustrate
the weakness in the benchmark feature selection technique as re-
gards accounting for the inter-class distance. Two features were
generated for each task as illustrated in Table 6 . The corresponding
visual illustration of the tasks can be regarded in Fig. 4 .
The feature selection and classification results are presented in
Table 7 . For the first task, one feature was generated that is ap-
proximately the same for all classes and contains a small amount
of noise (or variation), and one feature with means considerably
different in magnitude and the same small level of noise. Obvi-
ously, the first feature is not suitable for discrimination between
classes, whereas the second feature does not overlap, is precise,
and discriminates well between the classes.
When applied to the first task, the feature selection algorithm
presented by Luukka (2011) resulted in removal of the second fea-
ture, which leads to a significant performance decline. The FSAE
algorithm and the other feature ranking methods chose the first,
clearly less discriminant feature as the feature to be removed.
When applied to the second task, where the first feature is con-
structed as in the first task and the second feature is degraded
by more noise (or simply possesses more variation), the choice of
the feature to be removed remained the same for all algorithms
compared to the first task. The result acknowledges that the sec-
ond feature is still highly discriminatory since feature values of the
classes do not overlap.
The third task had one feature with large absolute mean dif-
ferences and large absolute normal noise and one feature with
smaller absolute mean difference and less absolute noise. However,
it should be remarked, that for the first feature the difference be-
tween class means is only two standard deviations, so the classes
overlap to a certain extent. On the other hand, for the second fea-
ture the mean values are at least 10 standard deviations from one
another so that the features do not overlap for the classes. This
makes this second feature more discriminative than the first fea-
ture, where the feature values between classes overlap. Therefore,
removal of the second feature will still lead to a classification rate
of 100%, whereas false removal of the first feature, as found when
using the original feature selection technique, will reduce the ac-
curacy to less than 80%.
The results indicate that the FSAE feature selection algorithms,
but also the other tested feature ranking methods, more suc-
cessfully distinguish between highly discriminant and less/non-
discriminant features than the approach by Luukka (2011) . Despite
the inability of the benchmark feature selection algorithm to over-
come the scaling issue and account for the effect of the inter-class
distance, the algorithm resulted in high classification accuracies in
other applications (see Luukka, 2011).
As part of this study, we additionally investigated the effect of
different l values up to 10 and found that the removal decision is
not altered but the difference between the original algorithm and
the proposed scaled version decreases gradually with increase in
l . Therefore, only parameter values of l = 1 and l = 2 are applied in
subsequent calculations.
4.2. Dermatology data sets
For the application on the real-world data sets, we ini-
tially compare the original wrapper feature selection method of
Luukka (2011) with our adapted approach, the FSAE, in its wrapper
version. Feature selection and classification results for the derma-
tology data set are presented in Table 8 . Results for the classifica-
tion appear very good for almost all classifiers and feature selec-
tion techniques, ranging from mean accuracy of 96.72% to 98.36%.
The most accurate result of 98.36% was obtained with the FSAE
wrapper method with l = 1, DeLuca & Termini entropy and 29 out
of 34 features. The second highest performance was found with the
benchmark feature selection method by Luukka (2011) with the
entropy measure of Parkash et al. (2008) and 33 features. These
two results are the only cases that exceed the performance accu-
racy of the entire set of features of 98.11%.
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 225
Fig. 4. Artificial example cases.
Table 7
Example cases for weakness of original feature selection.
Task Classifier Perf. Before
Removal (%)
Entropy / Score
Feature 1
Entropy / Score
Feature 2
Removal Perf. After
Removal (%)
1 FS (Entropy Parkash et al.) 10 0.0 0 428.1 491.4 Feature 2 33.92
FSAE (Entropy Parkash et al., l = 1) 10 0.0 0 1024.5 430.3 Feature 1 10 0.0 0
FSAE (Entropy Parkash et al., l = 2) 10 0.0 0 1022.8 622.1 Feature 1 10 0.0 0
Laplacian Score 10 0.0 0 0.0351 0.999 Feature 1 10 0.0 0
ReliefF 10 0.0 0 0.0 0 01 0.666 Feature 1 10 0.0 0
Fisher Score 10 0.0 0 0 1555.4 Feature 1 10 0.0 0
2 FS (Entropy Parkash et al.) 10 0.0 0 393.6 562.3 Feature 2 33.48
FSAE (Entropy Parkash et al., l = 1) 10 0.0 0 904.3 532.4 Feature 1 10 0.0 0
FSAE (Entropy Parkash et al., l = 2) 10 0.0 0 907 740.8 Feature 1 10 0.0 0
Laplacian Score 10 0.0 0 0.0351 0.999 Feature 1 10 0.0 0
ReliefF 10 0.0 0 0.0024 0.601 Feature 1 10 0.0 0
Fisher Score 10 0.0 0 0 14.0716 Feature 1 10 0.0 0
3 FS (Entropy Parkash et al.) 10 0.0 0 615.7 686.2 Feature 2 78.90
FSAE (Entropy Parkash et al., l = 1) 10 0.0 0 1057.2 813 Feature 1 10 0.0 0
FSAE (Entropy Parkash et al., l = 2) 10 0.0 0 1152.9 1022.6 Feature 1 10 0.0 0
Laplacian Score 10 0.0 0 0.7409 0.9848 Feature 1 10 0.0 0
ReliefF 10 0.0 0 0.0738 0.4374 Feature 1 10 0.0 0
Fisher Score 10 0.0 0 0.2628 2.4402 Feature 1 10 0.0 0
Table 8
Performance on dermatology data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
Sim – 34 None 98.11 – 0.0110 0.2 0.1
Sim + FS
Luukka (2011)
De Luca and
Termini
31 4, 19, 16 96.72 95.02 0.0195 0.7 0.3
Sim + FS
Luukka (2011)
Parkash et al. 33 16 98.20 97.17 0.0119 0.2 0.1
Sim + FSAE l = 1 De Luca and
Termini
29 32, 18, 19, 1, 17 98.36 95.73 0.0112 0.3 2
Sim + FSAE l = 1 Parkash et al. 27 19, 32, 18, 2, 3, 17,
1
98.01 95.28 0.0118 0.5 3
Sim + FSAE l = 2 De Luca and
Termini
30 19, 3, 4, 17 97.03 96.23 0.0198 0.6 0.3
Sim + FSAE l = 2 Parkash et al. 30 19, 4, 3, 32 97.36 95.28 0.0215 0.2 0.1
The impact of the scaling factor for the improvement of the re-
sult from the original classifier compared to the best performing
FSAE wrapper method can be regarded in Fig. 5 . The figure shows
that the features that were removed, as indicated in blue, show
in general comparably small values for the measure of M d . Since
their removal resulted in a slight improvement of the classifier, it
is probable that the variation of the class means contributed to
this effect on the mean accuracy. The value for M , which is the
mean over the feature-specific M d , increased from 0.2079 before
the removal to 0.2266 after the removal, showing that on average
the difference between class means was elevated. The result of the
optimal parameter value search for FSAE wrapper with l = 1 and
DeLuca & Termini entropy is illustrated in Fig. 6 .
Overall, the adapted FSAE feature selection method (with
l = 1) is equally accurate to the algorithm presented by
Luukka (2011) but leads to the removal of more features. In
226 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
Fig. 5. Feature specific measure M d for the Dermatology data set.
the next step, the FSAE filter will be deployed and compared
with ReliefF, the Laplacian Score, Fisher Score and the method of
Luukka (2011) implemented as a feature ranking filter method.
First, the ReliefF algorithm will be used with all features that
have positive weights as well as with a threshold based on the
formula presented above. With the same number of features,
12 and 3 respectively, all feature ranking methods are used. The
classification accuracy was determined with a similarity classifier,
as used by Luukka (2011) . The results are presented in Table 9 .
The ReliefF algorithm shows with 12 and 3 features the best
performance among all filter methods for this data set. Other filter
methods only show performances between 85.17% and 83.45% for
12 features and 66.38% and 50.91% for 3 features respectively. It
is noticable, that for 12 features, the performances of the Lapla-
cian Score, the Fisher Score, the approach by Luukka (2011) as a
filter and the FSAE filter are very close in their mean accuracies.
Especially the fact that the approach by Luukka (2011) performes
well given its obvious deficiencies that were highlighted above, is
remarkable. For only 3 features, the Laplacian Score and the Fisher
Score end up with mean accuracies of 55.64% and 50.91%, which
are well below the performance of the FSAE filter as well as the
filter version of the feature selection by Luukka (2011) of 66.38%
and 66.34%.
In order to gain a better understanding of the dependence of
the mean accuracies on the number of features removed by each
algorithm, the performance was recorded for all possible numbers
of features to keep based on the variable importance values de-
termined on the entire data set. The mean performances for the
filter methods and standard parameters p = 1 and m = 1 are dis-
played in Fig. 7 . It is apparent, that on this data set the ReliefF
algorithm performs best for most numbers of features. Only ini-
tially and for the choice of only a single feature, the performance
of ReliefF is lower than that of at least one other filter method. The
performance of FSAE, the method by Luukka (2011) , the Laplacian
score and the Fisher score appears initially very similar, with the
Fisher score being for the removal the best approach from these 4
methods. While Luukka (2011) and FSAE drop in performance few
features earlier, their drop is not as severe as the one by the Lapla-
cian score and Fisher score. In other words, for the initial removals,
Fisher and Laplacian Score perform comparable to FSAE and the
filter version of Luukka (2011) . In the medium range of removed
variables, Fisher score and Laplacian score seem to result in bet-
ter accuracies than FSAE and the approach by Luukka (2011) but
for the choice of only few variables, FSAE and Luukka (2011) are
more capable to retain suitable features, with accuracies of above
50% for 11 to 2 features, while the other two approaches in that in-
terval drop well below 40%. The performance for a single feature,
Fig. 6. Accuracies and variance w.r.t. to parameter p and m (dermatology data set).
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 227
Table 9
Performance with filter feature selection on dermatology data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
ReliefF t = 0, k = 10 12 10, 3, 18, 23, 11, 24,
25, 8, 27, 12, 26, 6,
1, 29, 17, 32, 34, 9,
2, 19, 20, 4
95.52 93.91 0.0284 0.2 0.1
ReliefF t = 0.0632,
k = 10
3 10, 3, 18, 23, 11, 24,
25, 8, 27, 12, 26, 6,
1, 29, 17, 32, 34, 9,
2, 19, 20, 4, 30, 33,
21, 16, 31, 7, 13, 28,
5
74.40 66.50 0.0343 0.1 0.1
Laplacian Score – 12 30, 9, 10, 28, 16,
24, 7, 26, 4, 11, 14,
5, 3, 23, 19, 2, 18,
13, 17, 1, 32, 34
85.15 81.29 0.0107 0.5 0.2
Laplacian Score – 3 6, 12, 29, 20, 25,
22, 15, 8, 21, 30, 9,
10 28, 16, 24, 7, 26,
4, 11, 14, 5, 3, 23,
19, 2, 18, 13, 17, 1,
32, 34
55.64 38.46 0.0077 1 0.1
Fisher Score – 12 30, 28, 9, 7, 16, 10,
24, 14, 26, 5, 4, 3,
23, 11, 19, 2, 34, 1,
13, 18, 17, 32
85.17 81.07 0.0098 0.2 0.1
Fisher Score – 3 12, 33, 25, 31, 20, 8,
15, 22, 21, 30, 28, 9,
7, 16, 10, 24, 14, 26,
5, 4, 3, 23, 11, 19, 2,
34, 1, 13, 18, 17, 32
50.91 41.89 0.0 0 0 0 0.8 0.1
FS Luukka – De Luca and
Termini
12 24, 20, 23, 11, 13,
26, 10, 9, 21, 14, 1,
5, 17, 32, 34, 2, 18,
28, 3, 19, 16, 4
83.49 75.05 0.0247 0.8 0.1
FS Luukka – Parkash et al. 12 13, 23, 20, 24, 11,
26, 10, 9, 21, 14, 1,
17, 5, 32, 34, 2, 18,
28, 3, 19, 16, 4
83.77 74.86 0.0258 0.8 0.1
FS Luukka De Luca & Termini,
Parkash et al.
3 6, 27, 30, 29, 12, 7,
8, 25, 22, 13, 23,
20, 24, 11, 26, 10, 9,
21, 14, 1, 17, 5, 32,
34, 2, 18, 28, 3, 19,
16, 4
66.34 50.85 0.0183 1 0.1
FSAE l = 1 & l = 2 De Luca and
Termini
12 22, 20, 11, 24, 23,
21, 9, 13, 10, 26, 14,
5, 28, 16, 1, 17, 34,
4, 2, 3, 32, 19, 18
83.45 74.88 0.0241 0.8 0.1
FSAE l = 1 & l = 2 Parkash et al. 12 20, 11, 24, 23, 13,
21, 9, 10, 26, 14, 5,
28, 1, 16, 17, 34, 2,
32, 4, 3, 18, 19
83.89 75.06 0.0244 0.8 0.1
FSAE l = 1 & l = 2 De Luca & Termini,
Parkash et al.
3 6, 27, 29, 30, 12, 8,
7, 25, 22, 20, 11, 24,
23, 21, 9, 13, 10, 26,
14, 5, 28, 16, 1, 17,
34, 4, 2, 3, 32, 19,
18
66.38 50.94 0.0245 1 0.1
however, is best for the Fisher score, the second best by FSAE and
ReliefF, and third by Luukka (2011) and Laplacian Score.
Comparing the filter results with the wrapper performances, it
is apparent that the FSAE wrapper performs better than the fil-
ter methods, even better than the ReliefF algorithm with 12 and 3
suggested removals respectively. However, FSAE wrapper requires
more features than ReliefF for the higher mean accuracy.
4.3. Chronic kidney disease data set
Feature selection and classification results for the chronic kid-
ney data set are presented in Table 10 . The highest mean accu-
racy was obtained with the FSAE feature selection method with
l = 2 and DeLuca & Termini entropy and only 4 out of 24 fea-
tures. In most cases, the FSAE methods led to only a small degra-
dation in classification performance for the removal of 12 to 21
features. Moreover, the algorithms achieved accuracies between
99.42–10 0.0 0%. In contrast, feature selection using the benchmark
feature selection approach by Luukka (2011) achieved accuracies
between 96.92–10 0.0 0%. Besides that, the highest performance of
10 0.0 0% accuracy for the benchmark feature selection method of
Luukka (2011) was achieved with 18 features, while the FSAE (with
l = 2 and DeLuca & Termini entropy) needed only 4 features and,
with the same entropy measure, produced an equivalent result. Us-
228 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
Table 10
Performance on chronic kidney disease data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
Sim – 24 None 99.90 – 0 0.5 0.1
Sim + FS
Luukka (2011)
De Luca and
Termini
18 3, 18, 13, 15, 16, 10 10 0.0 0 97.83 0 0.4 0.1
Sim + FS
Luukka (2011)
Parkash et al. 5 3, 18, 13, 16, 15, 1,
4, 8, 20, 24, 12, 7,
11, 6, 21, 2, 10, 22,
9
96.92 97.83 0.0355 5 1.4
Sim + FSAE l = 1 De Luca and
Termini
12 1, 2, 13, 16, 15, 10,
3, 18, 17, 11, 12, 23
99.84 95.65 0 0.5 0.1
Sim + FSAE l = 1 Parkash et al. 3 2, 1, 3, 13, 16, 18,
15, 12, 17, 10, 5, 9,
11, 24, 8, 23, 21, 22,
6, 20, 19
99.42 97.83 0.0123 0.4 0.1
Sim + FSAE l = 2 De Luca and
Termini
4 1, 13, 2, 16, 3, 11,
18, 15, 17, 10, 12, 6,
23, 8, 22, 9, 21, 24,
5, 14
10 0.0 0 95.72 0 0.9 0.1
Sim + FSAE l = 2 Parkash et al. 12 13, 2, 1, 16, 3, 18,
15, 12, 11, 17, 8, 6
99.98 97.83 0.0 0 04 5.9 0.1
Fig. 7. Comparison of filter methods (dermatology data set).
ing exhaustive search to determine if it is possible to reach 10 0.0 0%
accuracy with any combination of fewer features, showed, that 3
features can be enough to reach the best mean accuracy in the
test set. Therefore, the result of the FSAE in the setup mentioned
above was fairly close to the optimal result of 10 0.0 0% accuracy
with 3 features.
The values of the feature specific measure M d for the best per-
forming FSAE wrapper are illustrated in Fig. 8 . The figure highlights
that all features despite the four features with the clearly high-
est M d values were removed. The performance after the removal
of 20 out of 24 features reached 10 0.0 0%, which is an indication
that all removed features were irrelevant for the classification task.
Since all features with small and medium values for M d were re-
moved, it is unsurprising that the value for M strongly increased
from 0.2024 to 0.3965, highlighting a larger average difference of
class means. The fact that comparably many features of the Kidney
data set could be removed, indicates that the difference in means
is highly relevant for the discrimination of the classes for this data
set. The result of the optimal parameter value search for this al-
gorithm and DeLuca & Termini entropy is illustrated in Fig. 9 . It is
Fig. 8. Feature specific measure M d for the Kidney data set.
noteworthy that a high mean accuracy can be achieved with sev-
eral variations of the p and m parameters.
The results for all discussed filter methods on the chronic kid-
ney disease data are presented in Table 11 . The ReliefF algorithm
suggests 12 and 17 features respectively, which results in both
cases in an accuracy of 10 0.0 0%. All other filter methods also re-
sult in 10 0.0 0% accuracies with 12 features. Since with the FSAE
wrapper, a mean accuracy of 10 0.0 0% could be achieved with only
4 features, this number of ranked features is also tested with all
filter methods. With 4 features, ReliefF, Laplacian score and Fisher
score result in 10 0.0 0% accuracy and the FSAE filter in 99.50%
(for both entropies and l = 1 and l = 2). Only the performance of
Luukka (2011) deteriorates considerably with 4 features compared
to 12. The mean accuracy for this approach decreases to 97.25% and
95.69% respectively.
The mean performances for the filter methods and standard pa-
rameters p = 1 and m = 1 are displayed in Fig. 10 . The compari-
son of the filter methods shows that ReliefF performs again very
well from the beginning up to the removal of 19 features. Be-
tween the removal of 1 to 19 features, the performance of the
Laplacian score and FSAE is largely comparable, whereas the ap-
proach of Luukka (2011) first underperforms, then outperforms and
then clearly underperforms the performance of these two filter
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 229
Fig. 9. Accuracies and variance w.r.t. to parameter p and m (chronic kidney disease data set).
Fig. 10. Comparison of filter methods (kidney data set).
methods. For the standard parameters, FSAE shows the highest
mean performance for 4 out of 24 features. In general, when 5
to 2 features remain, all filter methods perform comparably. To-
wards the end, ReliefF and the Fisher score perform slightly better
than the other filter methods. At the same time, the approach by
Luukka (2011) leads to a considerable decrease in the classification
performance to less than 70% with a single feature whereas the re-
maining filter approaches still result in a mean accuracy of about
and more than 95%.
In comparison with the FSAE wrapper, all filter methods can
also lead to a feature subset selection of 4 features that are ca-
pable to reach a mean accuracy of 100%. However, it is for the
feature ranking methods not obvious that 4 features are sufficient
to reach this performance. For ReliefF, 12 and 17 features are sug-
gested. Clearly, this number of features also leads to an accuracy
of 10 0.0 0% but it is three or even more than four times the num-
ber of features that are sufficient to end up with the same result.
For this data set, the FSAE wrapper as well as the FSAE filter show
competitive results to their benchmark algorithms.
4.4. Breast cancer Wisconsin (Original) data set
The feature selection and classification results for the breast
cancer Wisconsin data set are presented in Table 12 . Without any
feature selection, a performance of 97.61% can be accomplished.
The wrapper approach from Luukka (2011) with both entropies in-
dicates that no feature removal should be conducted. Opposed to
that, the FSAE wrapper for both entropies and l = 1 as well as l = 2
leads to the removal of four features. With 5 out of 9 features, still
a performance of over 97% can be achieved, which indicates that
these features were not important for the classification.
The values of the feature specific measure M d for the best per-
forming FSAE wrapper feature selection method are illustrated in
Fig. 11 . The figure shows that all features despite the four features
with the highest M d values and one feature with the lowest value
were removed. The performance after the removal of 4 out of 9
features reached with 97.30% a comparable performance than the
97.61% without feature selection. Since all removed features have
lower values of M d than 4 out of 5 of the remaining features, it is
unsurprising that the value for M increased from 0.2475 to 0.2649.
The fact that four out of 5 of the remaining features are the ones
with the largest difference in class means indicates that the dif-
ference in means appears to be relevant to discriminate between
the classes in the Breast cancer Wisconsin data set. The result of
230 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
Table 11
Performance with filter feature selection on chronic kidney disease data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
ReliefF t = 0, k = 10 17 23, 1, 14, 24, 21, 5,
11
10 0.0 0 96.85 0 0.1 0.1
ReliefF t = 0.0957,
k = 10
12 23, 1, 14, 24, 21, 5,
11, 2, 12, 9, 10, 13
10 0.0 0 97.42 0 0.1 0.1
ReliefF k = 10 4 7, 3, 16, 15, 17, 22,
18, 8, 13, 10, 9, 12,
2, 11, 5 21, 24, 14,
1, 23
10 0.0 0 95.04 0 1 0.1
Laplacian Score – 12 12, 14, 11, 10, 3, 16,
15, 18, 1, 13, 17, 2
10 0.0 0 90.69 0 1 0.1
Laplacian Score – 4 20, 24, 22, 23, 6, 9,
8, 21, 5, 12, 14, 11,
10, 3, 16, 15, 18, 1,
13, 17, 2
10 0.0 0 94.17 0 0.9 0.1
Fisher Score – 12 18, 8, 11, 9, 21, 13,
5, 10, 17, 1, 2, 14
10 0.0 0 95.50 0 1 0.1
Fisher Score – 4 22, 23, 3, 16, 6, 15,
24, 12, 18, 8, 11, 9,
21, 13, 5, 10, 17, 1,
2, 14
10 0.0 0 94.67 0 1 0.1
FS Luukka (2011) De Luca and
Termini
12 22, 23, 10, 11, 2, 12,
1, 13, 15, 16, 18, 3
10 0.0 0 90.46 0 1 0.1
FS Luukka (2011) De Luca and
Termini
4 21, 7, 17, 8, 20, 4,
24, 6, 22, 23, 10, 11,
2, 12, 1, 13, 15, 16,
18, 3
97.25 94.60 0.0315 6 1.2
FS Luukka (2011) Parkash et al. 12 2, 24, 6, 12, 1, 22,
23, 13, 15, 16, 18, 3
10 0.0 0 92.40 0 0.8 0.1
FS Luukka (2011) Parkash et al. 4 9, 21, 10, 7, 4, 11, 8,
20, 2, 24, 6, 12, 1,
22, 23, 13, 15, 16,
18, 3
95.69 94.69 0.0572 7.7 4.9
FSAE l = 1 & l = 2 De Luca and
Termini
12 5, 12, 3, 11, 17, 10,
16, 15, 18, 13, 2, 1
10 0.0 0 91.38 0 1 0.1
FSAE l = 1 & l = 2 Parkash et al. 12 8, 17, 12, 10, 11, 3,
15, 16, 18, 13, 2, 1
10 0.0 0 90.25 0 1 0.1
FSAE l = 1 & l = 2 De Luca & Termini,
Parkash et al.
4 20, 22, 23, 5, 6, 9,
21, 24, 8, 17, 12, 10,
11, 3, 15, 16, 18, 13,
2, 1
99.50 96.56 0.0080 1.3 0.1
Table 12
Performance on breast cancer Wisconsin (original) data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
Sim – 9 None 97.61 94.55 0.0070 0.3 0.8
Sim + FS
Luukka (2011)
De Luca & Termini
Parkash et al.
9 None 97.64 94.62 0.0082 0.6 0.3
Sim + FSAE l = 1 & l = 2 De Luca & Termini
Parkast et al.
5 7, 1, 5, 4 97.30 94.93 0.0072 0.6 0.2
Table 13
Performance with filter feature selection on breast cancer data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
ReliefF t = 0.0457,
k = 10
7 7, 9 97.70 95.40 0.0076 1 0.2
ReliefF k = 10 5 5, 2, 7, 9 97.59 94.73 0.0071 1.3 0.2
Laplacian Score – 7 1, 9 97.39 95.18 0.0063 0.7 0.2
Laplacian Score – 5 7, 5, 1, 9 97.05 94.68 0.0097 0.5 0.4
Fisher Score – 7 5, 9 97.61 95.12 0.0097 0.8 0.2
Fisher Score – 5 7, 1, 5, 9 96.95 94.77 0.0074 0.6 0.3
FS Luukka (2011) – De Luca & Termini,
Parkash et al.
7 7, 1 97.14 94.33 0.0133 0.8 0.2
FS Luukka (2011) De Luca & Termini,
Parkash et al.
5 4, 3, 7, 1 97.33 93.36 0.0101 0.8 0.2
FSAE l = 1 & l = 2 De Luca & Termini,
Parkash et al.
7 1, 7 97.25 94.34 0.0077 0.7 0.2
FSAE l = 1 & l = 2 De Luca & Termini,
Parkash et al.
5 4, 5, 1, 7 97.40 94.94 0.0085 0.5 0.2
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 231
Table 14
Performance on diabetic retinopathy Debrecen data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
Sim – 19 – 59.57 – 0.0647 0.2 0.1
Sim + FS
Luukka (2011)
De Luca and
Termini
12 19, 7, 6, 5, 8, 4, 2 61.05 58.22 0.0398 2.0 1.5
Sim + FS
Luukka (2011)
Parkash et al. 15 19, 7, 6, 5 60.53 59.49 0.0677 0.3 0.1
Sim + FSAE l = 1 & l = 2 De Luca & Termini,
Parkast et al.
14 19, 7, 6, 5, 8 61.09 60.22 0.0419 0.8 0.2
Fig. 11. Feature specific measure M d for the Breast Cancer data set.
the optimal parameter value search for FSAE wrapper and Parkash
et al. entropy is illustrated in Fig. 12 .
Subsequently, the results for the filter methods on the breast
cancer Wisconsin data are presented in Table 13 . For ReliefF, all
features possess positive weights, which makes the approach of
using only the features with weights larger zero equivalent to con-
ducting no feature selection. In contrast to that, using the formula
for the threshold for the ReliefF algorithm suggests using 7 fea-
tures. In addition, the knowledge from the previous comparison
of wrappers indicates that 5 features can result in a performance
comparable to using all features. The performances for all filter
methods with 7 and 5 features are very close to each other, only
ranging from 96.95% to 97.70%. There appears to be no clear differ-
ence in the performance for these two numbers of features among
the filter methods.
The mean accuracies for the filter methods with standard pa-
rameters p = 1 and m = 1 are displayed in Fig. 13 . Three aspects
of these results are remarkable. First, the ReliefF, Laplacian score,
Fisher score and FSAE perform comparable over the entire range
of removals. Second, FSAE but also the Laplacian score and Fisher
score perform at least as good as ReliefF. For only 3 remaining
features (6 removals) they even perform about 1% better than
ReliefF. It is apparent that FSAE and the Laplacian score peform
best for this data set. The third point is that the approach by
Luukka (2011) starts right from the beginning to continuously in-
crease the difference in performance to the remaining 4 filter ap-
proaches. Until the removal of 7 out of 9 features, there is al-
ready a difference of more than 3% in the mean performance to
the other filters but with only a single feature the approach by
Luukka (2011) shows a performance of around 79% whereas the
remaining approaches achieve a mean accuracy of more than 90%.
Finally, the results from the FSAE wrapper and the filter meth-
ods are comparable in terms of mean accuracy and variance. Once
more, the main consideration is that the FSAE wrapper incorpo-
rates the choice of the number of features whereas the filter rank-
ing methods do not – and ReliefF suggest to retain more features
than the FSAE wrapper.
4.4.1. Diabetic retinopathy Debrecen data set
The results for classification with and without feature selection
for the diabetic retinopathy Debrecen data set are presented in
Table 14 . The mean accuracy with all features is the lowest, indi-
cating that all feature selection techniques were capable to remove
irrelevant features and improve the performance. The two best re-
sults were accomplished with the wrapper of Luukka (2011) and
the FSAE wrapper (for both entropies and l parameter values). The
feature selection of Luukka (2011) uses between 12 and 15 fea-
tures for the classification whereas the result of FSAE is more sta-
ble with 14 features for all setups. Besides that, the wrapper of
Luukka (2011) requires the smallest amount of features to achieve
the second highest result. However, at the same time, it has the
lowest result before the optimal value search for the p and m pa-
rameter.
The values of the feature specific measure M d for the best per-
forming FSAE wrapper are displayed in Fig. 14 . The figure shows
that the features that were removed had medium to large val-
ues for M d . Besides that, the two largest M d values of the third
and fourth feature were not removed, indicating that at least in
these cases the variation in the means were relevant for the clas-
sification. Given that the performance after the removal of 5 fea-
tures improved by about 1.5% points, the variation in means for
these features was irrelevant for the classification. Their irrelevance
might be on account of larger variation in these features. This data
set embodies the only case in this research, where the value for M
decreased after feature selection from 0.0182 to 0.0133. It should
be noted that the variation in the means M d is in this data set
considerably lower than in the previous data sets, by a factor of
more than 10. Therefore, other factors such as variance could have
impacted the discriminative ability of the features more easily. The
result of the optimal parameter value search for FSAE and DeLuca
& Termini entropy is illustrated in Fig. 15 .
The results for the filter methods on the diabetic retinopathy
Debrecen data are presented in Table 15 . For ReliefF, all features
possess positive weights. Therefore, using the rule to select for
the feature subset only the features with weights larger zero is
equivalent to conducting no feature selection at all. Moreover, us-
ing the threshold formula depicted before, suggests removing all
features, which is also not suitable for feature selection. As a con-
sequence, only the performance on 14 features, as suggested by the
FSAE wrapper, will be compared. The FSAE filter method for both
entropies and l parameters results in the same feature removal
and the highest mean performance. Moreover, using the similar-
ity classifier only with standard parameters on the feature subset
232 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
Fig. 12. Accuracies and variance w.r.t. parameter p and m (breast cancer data set).
Table 15
Performance with filter feature selection on diabetic retinopathy Debrecen data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
ReliefF k = 10 14 13, 18, 2, 1, 17 59.71 57.07 0.0466 0.1 0.7
Laplacian Score – 14 16, 13, 17, 18, 1 59.39 56.92 0.0563 0.2 0.1
Fisher Score – 14 1, 11, 18, 17, 10 59.64 56.90 0.0438 0.2 0.1
FS Luukka (2011) De Luca & Termini,
Parkash et al.
14 4, 5, 6, 7, 19 59.51 56.46 0.0418 0.2 0.5
FSAE l = 1 & l = 2 De Luca & Termini,
Parkash et al.
14 8, 5, 6, 7, 19 61.06 60.11 0.0470 0.5 0.2
Fig. 13. Comparison of filter methods (breast cancer data set).
obtained by the FSAE still outperforms the remaining approaches
after the optimal value search for the p and m parameter.
Fig. 14. Feature specific measure M d for the Diabetic retinopathy Debrecen data set.
The mean accuracies for the filter methods with standard pa-
rameters p = 1 and m = 1 are illustrated in Fig. 16 . The comparison
highlights, that the FSAE filter performs best for the removal of
up to 5 features. It shows with over 60% mean accuracy for the
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 233
Fig. 15. Accuracies and variance w.r.t. parameter p and m (diabetic retinopathy Debrecen data set).
Fig. 16. Comparison of filter methods (Diabetic retinopathy Debrecen data set).
standard parameters the highest performance for all approaches
and removal decisions overall. Between 6 to 13 features, ReliefF,
Laplacian score and Fisher score show about 2% higher mean ac-
curacies. However, after 13 removed features, ReliefF experiences a
strong decline in performance, which makes it the worst approach
for the removal of the last features. Towards, the end, the Fisher
score performs best while FSAE, Laplacian score and the approach
of Luukka (2011) demonstrate comparable performance.
In comparison with the FSAE wrapper, the FSAE filter ends up
with the same feature subset and performance. For the diabetic
retinopathy Debrecen data set overall, the FSAE wrapper demon-
strates good and stable results, whereas the FSAE filter obtains the
best results compared to ReliefF, Laplacian score, Fisher score and
Luukka (2011) .
4.5. Horse colic data set
The feature selection and classification results for the Horse
colic data set are presented in Table 16 . Once more, both fea-
ture selection methods demonstrate an improvement of the mean
classification accuracy after feature removal. The FSAE wrapper to-
gether with the approach by Luukka (2011) eventuate in the high-
est mean accuracies of 87.70%, which is an improvement of about
1% compared to no feature selection. The feature subset selected
by the FSAE wrapper is preferable to that of Luukka (2011) since it
is with 12 features smaller and also leads already to a higher mean
accuracy before optimal value search. Once more, the result of the
FSAE is more stable since all setups of entropy and l parameter
suggest the same feature subset. Opposed to that, the approach by
Luukka (2011) selects a different number of features – both higher
than those of the FSAE wrapper.
The feature specific measures M d for the best performing FSAE
wrapper are presented in Fig. 17 . The results show that the eleven
removed features show only small to medium values for the vari-
ation of the means. The features with the three largest, as well as
numerous of the medium to large values for M d , are not removed
from the feature set. This indicates that the difference in mean
values is relevant for the classification. Furthermore, the removal
led to an increase in the value for M from 0.0753 to 0.0940. The
performances of the optimal parameter value search for the FSAE
wrapper and DeLuca & Termini entropy is illustrated in Fig. 18 .
The performances of the filter methods on the horse colic data
set are depicted in Table 17 . The performances for all approaches
are tested for 21 features, as suggested by all positive ReliefF
weights, with 14 features, as indicated with the FSAE wrapper, and
with 6 features based on the threshold formula for ReliefF. The
mean accuracies with 21 features are highly comparable among all
approaches, ranging from 86.77% to 87.37%. With 12 features, the
FSAE filter with Parkash et al. entropy is the best performing ap-
proach with a mean accuracy of 89.05%. It even demonstrates the
highest mean accuracy of all options and number of features. On
top of that, this performance for 12 features is higher than that of
234 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
Table 16
Performance Horse colic data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
Before
Optimization
Variance
(in %)
p m
Sim – 23 – 86.72 – 0.0576 0.7 0.4
Sim + FS
Luukka (2011)
De Luca and
Termini
18 12, 7, 19, 8, 6 87.41 84.38 0.0821 0.6 0.5
Sim + FS
Luukka (2011)
Parkash et al. 16 15, 19, 7, 18, 6, 12,
8
87.70 83.40 0.0578 1 0.5
Sim + FSAE l = 1 & l = 2 De Luca & Termini,
Parkash et al.
12 18, 6, 19, 8, 15, 7,
22, 9, 12, 13, 14
87.70 85.16 0.0667 0.7 0.4
Fig. 17. Feature specific measure M d for the Horse colic data set.
the best performing wrapper approach. In contrast to that, the ap-
proach of Luukka (2011) is characterized by the worst performance
for 12 features and also overall. Finally, with 6 features, the FSAE
is not performing as strong as ReliefF, Laplacian score and Fisher
score but is still clearly outperforming Luukka (2011) .
The mean accuracies for the filter methods with standard pa-
rameters p = 1 and m = 1 are diagrammed in Fig. 19 . All filter
methods perform for the removal of up to 10 features without
any considerable decline in performance. Initially, the approach by
Luukka (2011) performs best but subsequently is ranked only sec-
ond after FSAE, which is up to the removal of 14 features perform-
ing better than the Fisher score, Laplacian score and ReliefF. The
difference to ReliefF are in this range even several % points more
accurate. However, towards the removal of the last features, these
approaches again perform better. The method of Luukka (2011) ex-
periences a clear performance drop after the removal of 11 features
and continues to decline in mean accuracy for most subsequent re-
movals. With 10 out of 23 features it is already about 15% points
less accurate than all other feature selection methods, whereas at
1 remaining feature its performance is already approximately 30%
points worse.
Overall, the FSAE approaches achieve on the horse colic data
set very good results. The FSAE wrapper accomplishes the same
performance than the wrapper of Luukka (2011) with 4 features
less. At the same time, the FSAE filter achieves the highest mean
accuracy of all approaches, including the wrapper approaches, with
12 out of 23 features.
Fig. 18. Accuracies and variance w.r.t. parameter p and m (Horse colic data set).
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 235
Table 17
Performance filter feature selection Horse colic data set.
Approach Parameters Entropy No.
Features
Features Removed
(not ordered)
Avg.
Performance
(%)
Before
Optimization
(%)
Variance
(in %)
p m
ReliefF t = 0, k = 10 21 6, 9 86.79 81.02 0.0643 0.8 0.2
ReliefF k = 10 12 15, 11, 5, 13, 8, 4, 2,
17, 3, 6, 9
88.25 81.44 0.0700 0.9 0.5
ReliefF t = 0.0614,
k = 10
6 18, 12, 7, 16, 14, 10,
15, 11, 5, 13, 8, 4, 2,
17, 3, 6, 9
88.24 85.10 0.0760 0.5 0.2
Laplacian Score – 21 13, 3 86.77 79.95 0.0741 0.9 0.5
Laplacian Score – 12 20, 4, 6, 2, 9, 18, 17,
22, 5, 13, 3
86.57 81.20 0.0838 0.8 0.4
Laplacian Score – 6 19, 15, 11, 10, 14, 8,
20, 4, 6, 2, 9, 18, 17,
22, 5, 13, 3
87.97 82.44 0.0610 0.5 0.2
Fisher Score – 21 3, 13 86.79 80.10 0.0649 1.1 0.4
Fisher Score – 12 6, 4, 5, 8, 17, 9, 18,
2, 22, 3, 13
87.52 82.47 0.0561 0.6 0.5
Fisher Score – 6 20, 11, 7, 14, 19, 15,
6, 4, 5, 8, 17, 9, 18,
2, 22, 3, 13
87.43 84.19 0.0689 0.7 0.3
FS Luukka (2011) De Luca & Termini,
Parkash et al.
21 12, 7 87.37 82.88 0.0538 0.3 0.5
FS Luukka (2011) De Luca & Termini,
Parkash et al.
12 23, 1, 10, 16, 8, 18,
15, 6, 19, 12, 7
81.67 68.21 0.0598 0.1 0.1
FS Luukka (2011) De Luca & Termini,
Parkash et al.
6 13, 21, 11, 22, 9, 14,
23, 1, 10, 16, 8, 18,
15, 6, 19, 12, 7
82.15 63.86 0.0525 0.4 0.2
FSAE l = 1 & l = 2 De Luca & Termini,
Parkash et al.
21 6, 18 86.86 80.35 0.0603 0.8 0.4
FSAE l = 1 & l = 2 De Luca and
Termini,
12 14, 13, 12, 9, 22, 7,
15, 8, 19, 6, 18
87.40 85.15 0.0691 0.6 0.1
FSAE l = 1 & l = 2 Parkash et al. 12 16, 13, 9, 22, 12, 15,
7, 8, 19, 6, 18
89.05 82.31 0.0746 0.6 0.2
FSAE l = 1 & l = 2 De Luca & Termini,
Parkash et al.
6 23, 4, 21, 11, 10, 16,
14, 13, 12, 9, 22, 7,
15, 8, 19, 6, 18
84.20 81.75 0.0828 0.3 0.1
Fig. 19. Comparison of filter methods (Horse colic data set).
5. Conclusions
In this paper, an adapted version of the wrapper by
Luukka (2011) was introduced that is termed fuzzy similarity and
entropy (FSAE) feature selection. This approach is intended as a fil-
ter method, in particular, a feature ranking method, but is also pre-
sented as a wrapper method that is used together with a similar-
ity classifier. The results for the FSAE feature selection method are
three-fold. First, the FSAE wrapper approach can achieve at least
comparable results to the benchmark feature selection method
presented by Luukka (2011) but with on average fewer features.
In several cases, they can even outperform the original feature se-
lection wrapper method with a significant reduction in the num-
ber of features. Second, the FSAE filter achieves results that are
at least comparable but often better than that of the method of
Luukka (2011) implemented as a feature ranking method. For the
first real-world data set, the dermatology data set, and the diabetic
retinopathy Debrecen data no considerable difference can be ob-
served. However, for the chronic kidney disease, the breast can-
cer Wisconsin data set, and the Horse colic data, the mean per-
formance of the approach by Luukka (2011) declines considerable
after a certain amount of removals. For the chronic kidney data
set, this deterioration in the accuracy is present especially in the
choice of the last feature to retain. For the breast cancer Wiscon-
sin data set and the Horse colic data, the performances consis-
tently deteriorated for each removal, ending up with mean perfor-
mances that are more than 10% and 30% lower for a single fea-
ture than of all other filter methods in this study. Third, the re-
sults of the FSAE filter is often competitive to those by the other
four feature selection techniques. For the first data set, the ReliefF
clearly outperforms the remaining filter methods for a large range
of feature removals. However, of the remaining four approaches
non is clearly better throughout the entire range of removals. For
the chronic kidney disease, the performance of FSAE for the initial
removals and the last removals is comparable with the remaining
approaches whereas for the removal of 3 to 18 features the mean
accuracy is worse. For the third data, the breast cancer Wiscon-
sin data set, the filter FSAE leads together with the Laplacian score
to the highest mean accuracies throughout all the removals. For
236 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236
the diabetic retinopathy Debrecen data, the FSAE wrapper leads to
good and stable results, whereas the FSAE filter achieved the high-
est mean accuracy of all filter methods. For the last data set, the
horse colic data, the FSAE wrapper reaches the same high perfor-
mance as the method by Luukka (2011) but accomplishes this with
4 features less. For the filter methods, FSAE shows competitive re-
sults, being for many removals few percentage points better than
ReliefF and clearly better than the filter version of Luukka (2011) .
For the five medical data sets in almost all cases the results for
l = 1 and l = 2 are the same, suggesting the same features for re-
moval. Overall, the results clearly demonstrate that the FSAE algo-
rithms can find irrelevant features in the data well, while retaining
the discriminating features. At a minimum, performance degrada-
tion is low compared to the use of no feature selection. However,
in many cases the performance accuracy can be improved com-
pared to the wrapper feature selection by Luukka (2011) or no
feature selection, and, moreover, the results to the regarded filter
methods are comparable.
Acknowledgements
Peter Jones (Saimaa University of Applied Sciences) is acknowl-
edged for his help with the English language. A preliminary version
of the work was presented at the “Real Option Workshop ROW17”
at Lappeenranta University of Technology, Finland. This research
would like to acknowledge the funding received from the Finnish
Strategic Research Council, grant number 313396 / MFG40 Manu-
facturing 4.0.
Supplementary materials
Supplementary material associated with this article can be
found, in the online version, at doi: 10.1016/j.eswa.2018.06.002 .
References
Antal, B., Hajdu, A. Diabetic retinopathy debrecen data set . 2014. Retrieved from https:
//archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set .
Belis, M. , & Guiasu, S. (1968). A quantitative-qualitative measure of information in
cybernetic systems. IEEE Transactions on Information Theory , 593–594 .
Bishop, C. M. (2006). Pattern recognition and machine learning . New York: Springer
Science Business Media .
Blum, A. L. , & Langley, P. (1997). Selection of relevant features and examples in ma-
chine learning. Artificial Intelligence, 97 , 245–271 .
Blumer, A. , Ehrenfeucht, A. , Haussler, D. , & Warmuth, M. K. (1987). Occam’s razor.
Information Processing Letters, 24 , 377–380 .
Chandrashekar, G. , & Sahin, F. (2014). A survey on feature selection methods. Com-
puters and Electrical Engineering, 40 , 16–28 .
De Luca, A. , & Termini, S. (1972). A definition of a nonprobabilistic entropy in the
setting of fuzzy sets theory. Information and Control, 20 , 301–312 .
Dougherty, G. (2013). Pattern recognition and Classification: an introduction . New
York: Springer Science Business Media .
Ilter, N., & Guvenir, H. A. Dermatology Data Set Retrieved March 5, 2017, from https:
//archive.ics.uci.edu/ml/datasets/Dermatology .
Junttila, V. , Maltamo, M. , & Kauranne, T. (2008). Sparse bayesian estimation of
forest stand characteristics from airborne laser scanning. Forest Science, 54 (5),
543–552 .
Kira, K., & Rendell, L. A. A practical approach to feature selection https://doi.org/10.
1016/S0031-3203(01)00046-2 .
Kira, K. , & Rendell, L. A. (1992b). The feature selection problem: Traditional methods
and a new algorithm. In Proceedings of the AAAI-92 (pp. 129–134) .
Kittler, J. , & Mardia, K. V. (1994). Statistical pattern recognition in image analysis.
Journal of Applied Statistics, 21 (1,2), 61–75 .
Kononenko, I. , Simec, E. , & Robnik-Sikonja, M. (1997). Overcoming the myopia of
inductive learning Algorithms with RELIEFF. Applied Intelligence, 7 , 39–55 .
Liang, J. , Yang, S. , & Winstanley, A. (2008). Invariant optimal feature selection: A
distance discriminant and feature ranking based solution. Pattern Recognition,
41 , 1429–1439 .
Lichman, M. UCI machine learning repository Retrieved March 5, 2017, from http:
//archive.ics.uci.edu/ml .
Lohrmann, C. , & Luukka, P. (2018). A novel similarity classifier with multiple ideal
vectors based on k-means clustering. Decision Support Systems In press .
Luukka, P. (2007). Similarity classifier using similarity measure derived fromYu’s
norms in classification of medical data sets. Computers in Biology and Medicine,
37 , 1133–1140 .
Luukka, P. (2008). Similarity classifier in diagnosis of bladder cancer. Computer
Methods and Programs in Biomedicine, 89 , 43–49 .
Luukka, P. (2011). Feature selection using fuzzy entropy measures with similarity
classifier. Expert Systems with Applications, 38 , 4600–4607 .
Luukka, P. , & Leppälampi, T. (2006). Similarity classifier with generalized mean ap-
plied to medical data. Computers in Biology and Medicine, 36 , 1026–1040 .
McLeish, M., & Cecile, M. Horse colic data set Retrieved from https://archive.ics.uci.
edu/ml/datasets/Horse+Colic .
Parkash, O. , Sharma, P. , & Mahajan, R. (2008). New measures of weighted fuzzy en-
tropy and their applications for the study of maximum weighted fuzzy entropy
principle. Information Sciences, 178 , 2389–2395 .
Quinlan, J. R. (1992). C4.5: programs for machine learning . San Mateo: Morgan Kauf-
mann Publishers Ed .
Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of
relieff and rreliefF. Machine Learning, 53 (1–2), 23–69. https://doi.org/10.1023/A:
1025667309714 .
Seo, M. , & Oh, S. (2012). CBFS: High performance feature selection algorithm based
on feature clearness. PLoS ONE, 7 (7), 1–10 .
Soundarapandian, P., & Rubini, L. (2015). Chronic kidney disease data set. https://
archive.ics.uci.edu/ml/datasets/chronic _ kidney _ disease .
Souza, J. T. , Matwin, S. , & Japkowicz, N. (2006). Parallelizing feature selection. Algo-
rithmica, 45 , 433–456 .
Yao, Y. Y. , Wong, S. K. , & Butz, C. J. (1999). On information-theoretic measures of
attribute importance. In Proceedings of the pacificasia conference on knowledge
discovery and data mining (pp. 133–137) .

Publication II
Lohrmann, C., Luukka, P.
Classification of intraday S&P500 returns with a random forest
Reprinted with permission from
International Journal of Forecasting
Vol. 35, pp. 390-407, 2019
© 2019, Elsevier B.V.

International Journal of Forecasting 35 (2019) 390–407
Contents lists available at ScienceDirect
International Journal of Forecasting
journal homepage: www.elsevier.com/locate/ijforecast
Classification of intraday S&P500 returns with a Random
Forest
Christoph Lohrmann a,b,∗, Pasi Luukka b
a LUT University - School of Engineering Science, Skinnarilankatu 34, Lappeenranta, South Karelia 53850, Finland
b LUT University - School of Business, Skinnarilankatu 34, Lappeenranta, South Karelia 53850, Finland
a r t i c l e i n f o
Keywords:
Financial markets
Machine learning
Forecasting
Trading strategy
Feature selection
a b s t r a c t
Stock markets can be interpreted to a certain extent as prediction markets, since they
can incorporate and represent the different opinions of investors who disagree on the
implications of the available information on past and expected events and trade on their
beliefs in order to achieve profits.Many forecastmodels have beendeveloped for predicting
the future state of stockmarkets, with the aim of using this knowledge in a trading strategy.
This paper interprets the classification of the S&P500 open-to-close returns as a four-
class problem. We compare four trading strategies based on a random forest classifier
to a buy-and-hold strategy. The results show that predicting the classes with higher
absolute returns, ‘strong positive’ and ‘strong negative’, contributed themost to the trading
strategies on average. This finding can help shed light on the way in which using additional
event outcomes for the classification beyond a simple upward or downward movement
can potentially improve a trading strategy.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
1. Introduction
1.1. Background
The ability to predict the stock market accurately is of
pivotal interest to investors, stakeholders, researchers and
even governments (Fadlalla & Amani, 2014). For instance,
investors use forecasts as a tool for making investment de-
cisions (Lu &Wu, 2011), to identify opportunities and chal-
lenges in a market (Enke, Grauer, & Mehdiyev, 2011) and
to generate trading strategies (Krauss, Do, & Huck, 2017;
Leigh, Purvis, & Ragusa, 2002; Leung, Daouk, & Chen, 2000).
Many forecastmodels assume that the past can be analyzed
in order to approximate future stock market movements
(Guerard Jr., 2013). The two main forms of analysis that
∗ Correspondence to: Lappeenranta University of Technology, School
of Engineering Science, Skinnarilankatu 34, 53850 Lappeenranta,
Finland.
E-mail addresses: christoph.lohrmann@student.lut.fi (C. Lohrmann),
pasi.luukka@lut.fi (P. Luukka).
are deployed for generating investment strategies are tech-
nical and fundamental analysis. Technical analysis focuses
on the market price dynamics and trading volume behav-
ior in order to predict the future behavior of a stock or
financialmarket (Leigh et al., 2002). The technical approach
follows the assumption that the price patterns that have
occurred in the past repeat and will continue to occur in
the future and, therefore, can beused to predict future price
movements (Bodie, Kane, &Marcus, 2009; Fama, 1965b). It
can be regarded as a pattern recognition problem (Felsen,
1975; Guo, Wang, Liu, & Yang, 2014). In contrast, funda-
mental analysis assumes that stock prices are predicated
on fundamental data. Fundamental analysis uses infor-
mation such as company-specific earnings and prospects
to predict future cash flows and the company’s value to
forecast future stock price movements (Bodie et al., 2009;
Leigh et al., 2002).
However, the efficient market hypothesis (EMH) states
that market prices follow a random walk and therefore
cannot be forecasted based on past market movements
and behaviors (Leigh et al., 2002). The efficient market
hypothesis (EMH), introduced by Eugene Fama in 1970,
https://doi.org/10.1016/j.ijforecast.2018.08.004
0169-2070/© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 391
defines a financial market as ‘efficient’ if it reflects the
available information fully (Fama, 1970). One form of fi-
nancial market that is related to stock markets via the
concept of information efficiency is the prediction market,
which can be regarded as a new form of betting market
(Page, 2012), as traders on prediction markets are effec-
tively betting on the outcome of a certain event. The pay-
off from this bet depends on the outcome of that future
event (Wolfers & Zitzewitz, 2004). The price setting oc-
curs between traders, as on a financial market, and in the
case of well-calibrated traders may be considered as an
estimate of the probability of the event (Page, 2012). A
central aspect for financial markets, including prediction
markets, is information efficiency, which refers to the fact
that information is incorporated in and reflected by a price,
and that no market participant is able to influence the
market price directly (Vaughan Williams & Reade, 2016).
However, prediction markets also show irrationality and
anomalies that are common for other financial markets,
such as price misalignments (Rothschild & Pennock, 2014)
and the tendency to overweight low-probability events
and underweight events that are almost certain to occur
(Wolfers & Zitzewitz, 2004). Consequently, predictionmar-
kets show many parallels to financial stock markets. To
a certain extent, stock markets can also be interpreted as
prediction markets, because, according to Fama (1965a),
they reflect the effects of information onpast events aswell
as events that are expected to happen. Moreover, Fama
(1970) stated that market efficiency does not have to be
violated by the fact that investors disagree on the impli-
cations of the available information, as long as no investor
can consistently beat the market. As a consequence, a fi-
nancial market such as a stock market can incorporate and
represent the different opinions of investors who disagree
on the implications of the available information and trade
on their beliefs in order to achieve a profit.
Various different strategies have been developed over
the years for forecasting stock prices and returns. These
strategies include support vector machines (Guo et al.,
2014; Guo-qiang, 2011), neural network models (Altay &
Satman, 2005; Fadlalla & Amani, 2014), the random sub-
space classifier (Zhora, 2005), systems incorporating ge-
netic algorithms (Kim, Han, & Lee, 2004; Leigh et al., 2002)
and case-based reasoning (Chun & Park, 2005). Cao and Tay
(2001) use a support vectormachine to forecast the S&P500
daily index between 1993 and 1995 by transforming the
data into five-day relative difference in percentage (RDP)
values, and use lagged RDP values and technical indicators
for the prediction. Their model obtains better forecasting
results in terms of normalizedmean squared errors (NMSE)
than a backpropagation neural network. Kim (2003) also
used support vector machines on daily data from the Ko-
rean stock exchange (KOSPI) from 1989 to 1998. He de-
ployed 12 common technical indicators and found the SVM
to outperform the benchmark neural network and the CBR
model, obtaining results that were compatible with those
of Cao and Tay (2001). Kim et al. (2004) used a hybrid
integrationmechanismwith a fuzzy genetic algorithm that
encompasses nine technical indicators such as the moving
average, the relative strength index (RSI) and the stochastic
%D. Their approach can generate accurate results for the
prediction of the Korean stock index KOSPI. Subsequent
research by Kim, Min, and Han (2006) used five technical
indicators from weekly KOSPI index data from 1990 to
2001 to address this as a four-class classification problem.
They combined knowledge obtained fromaneural network
and human experts for a genetic algorithm and were able
to outperform the benchmark methods. However, the data
set used for this research was rather small, with only 312
weekly observations. Teixeira and De Oliveira (2010) built
amethod for automatic stock trading based on a k-nearest-
neighbor classifier, with the inputs to the model including
closing prices, trading volumes and technical indicators
such as moving averages, the RSI, stochastics and Bollinger
bands. For daily data from 1998 to 2009 for 15 stocks from
the Sao Paulo stock exchange, they managed to achieve
profits after transaction costs for 12 of the 15 stocks. For
the two-class problem, they accomplished these profits
even though the accuracy of the KNN classifier was well
below 50%. Nyberg (2013) usedmonthly data from 1957 to
2010, encompassing both technical and fundamental data
(e.g. industrial production and unemployment), to predict
bear and bull markets for the S&P500. Using a dynamic
probit model, they were able to produce predictions for
these two types of market sentiments that were superior
to those from a static model. Bhaduri and Saraogi (2010)
investigated stock and bond markets with a probit model
with the aim of identifying bull and bear markets and
finding a relationship between yield spreads and these
market states. They use a proxy for the Indian stockmarket
from 1996 to 2008 (monthly) to find entry and exit points
to the market, and achieve returns in excess of those of a
conventional buy-and-hold strategy. Guo et al. (2014) used
39 features, including the open price, high price, low price,
moving averages, momentum terms, RSI, stochastic %K and
%D, MACD, momentum and other technical indicators, to
forecast the Shanghai stock market and the Dow Jones in-
dex. Their model outperformed the two other models that
they compared their classifier with. Fadlalla and Amani
(2014) used 10 features to predict the Qatar Stock Ex-
change closing price, including simple and weighted mov-
ing averages, RSI, MACD, stochastic %K and %Dmomentum,
and the commodity channel index. Their neural network
outperformed an ARIMA model on the given dataset. The
study by Karymshakov and Abdykaparov (2012) on fore-
casting price movements of the Istanbul Stock Exchange
(ISE) included a currency exchange rate, the gold price,
common technical indicators such as moving averages and
price information such as the high and low prices of the
ISE during a trading day. O’Connor and Madden (2006)
constructed a neural network for forecasting theDow Jones
Industrial Average Index and incorporated fundamental
factors including currency exchange rates and commodity
prices (crude oil). They report an accurate model perfor-
mance. Research by Lendasse, De Bodt, Wertz, and Ver-
leysen (2000) deployed external variables such as other
stock market indices, exchange rates and interest rates,
combined with technical indicators of the daily Belgian
Bel 20 stock index, to predict the sign of the change up
to five days in the future. Niaki and Hoseinzade (2013)
included 27 financial and economic factors in their analysis
for forecasting the direction of the daily S&P500 and were
392 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
able to outperform a buy-and-hold strategy. Moreover,
Zhong and Enke (2017) included the factors of Niaki and
Hoseinzade (2013) among the variables in their study for
forecasting the direction of the closing price of the SPDR
S&P 500 ETF. Their variables encompassed 60 financial
and economic factors, including the trading volume of the
SPDR S&P 500 ETF, interest and exchange rates, commodity
prices, other stock market indices and common technical
indicators. Their results show that they are able to outper-
form the benchmarks, including a buy-and-hold strategy,
significantly in terms of risk-adjusted returns.
Some authors attempted to identify a pattern for the
classification of transformed technical indicators into fea-
tures that represent a trading signal/ strategy in order
to better classify returns. Leigh et al. (2002) deployed
a combination of a genetic algorithm and a neural net-
work that attempted to use the ‘‘bull flag’’ pattern to
predict the NYSE Composite Index. They forecast stock
prices successfully and showed a violation of the weak-
form EMH. Chang and Wu (2015) used daily data from 15
US stocks between 2008 and 2012 to compute 32 tech-
nical indicators. Using kernel-based feature extraction to
identify trading signals, and their stock tradingmodel with
SVR, they reached a higher profitability than the other
dimensionality-reduction methods with this classifier. Pa-
tel, Shah, Thakkar, and Kotecha (2015) extracted trend
deterministic data from 10 technical indicators for two
stocks and two stock indices (CNX Nifty and S&P Bombay
Stock Exchange Sensex) from daily data from 2003 to 2012.
They showed that the performances of all of the prediction
models in their study improved when the technical indica-
tors were converted into trend deterministic data.
Overall, previous research and momentum anomalies
(Leigh et al., 2002) have indicated that both fundamental
factors and technical indicators can be integrated success-
fully into a trading strategy.
1.2. Objectives
The objective of this paper is to use feature selection
together with the ensemble classifier random forest to
build a classification model for predicting the open-to-
close returns of one of themain equity indices, the S&P500,
in a four-class setting. Subsequently, a more detailed anal-
ysis of the feature importance will be conducted to gain a
better understanding of which features are relevant for the
prediction task. The classifier and its result on the feature
subset from the feature selection will then be used as the
basis of several trading strategies. These trading strate-
gies will be derived from the four classes related to the
magnitude of the S&P500 open-to-close returns, and their
performanceswill be benchmarked against a buy-and-hold
strategy. Finally, the contributions of the four classes in the
prediction to the trading strategies will be investigated.
The remaining paper is structured as follows: Section
2 discusses the methods, including the feature selection
algorithm, and Section 3 depicts the data set and the ap-
plication of the methodology to it. Section 4 presents the
results for the random forest classifier and the analysis
of the feature importance and the investment strategies,
which are evaluated critically with respect to the buy-and-
hold strategy and the contributions of the predicted classes
to the returns in Section 5.
Table 1
Example observations.
Observation Feature 1 Feature 2 Class
X1 5 10 1
X2 5.2 30 1
X3 5.1 50 2
X4 4.9 70 2
2. Methodology
2.1. Entropy measures
Entropy can be regarded as a ‘‘measure of the degree of
fuzziness’’ (De Luca& Termini, 1972). Furthermore, De Luca
and Termini (1972) described it as the average information
contained in a dataset that is available when making a
decision.
This paper will apply the entropy measures defined
by De Luca and Termini (1972) and Parkash, Sharma, and
Mahajan (2008) for feature selection. This entropymeasure
can be defined as (De Luca & Termini, 1972):
H (A) = −
n∑
i=1
[µA (xi) logµA (xi)
+ (1− µA (xi)) log (1− µA (xi))] , (1)
whereµA (xi) ∈ [0, 1] is themembership degree of xi to the
fuzzy set A. The entropy measures introduced by Parkash
et al. (2008) are related to the concept of weighted entropy
(Belis & Guiasu, 1968), and are defined as follows:
H1 (A) =
n∑
i=1
wi
[
sin
πµA (xi)
2
+ sin π (1− µA (xi))
2
− 1
]
(2)
H2 (A) =
n∑
i=1
wi
[
cos
πµA (xi)
2
+ cos π (1− µA (xi))
2
− 1
]
.
(3)
The shape of the entropy function values is illustrated
in Fig. 1. The characteristic that all three entropy measures
share is that they reach their maximums at an input of 0.5,
while their minimums are reached at inputs of 0 and 1. The
idea of an entropy measure is that a small entropy value,
which is reached with an input close to 0 or 1, represents
certainty and structure, while high entropy values, which
occur for inputs close to 0.5, suggest uncertainty and a
low level of informativity (Yao, Wong, & Butz, 1999). This
aspect can be used for classification tasks in combination
with similarity. Since the outputs obtained with both en-
tropy measures of Parkash et al. (2008) are the same for
the same input values, it is sufficient to consider only the
first measure (see Eq. (6)) in what follows.
Imagine a simple classification problem where four ob-
servations are available. The observations belong to one of
two classes and contain two features that are independent
of each other, as is presented in Table 1.
After scaling the observation values of each feature to
the unit interval with max–min-scaling, the observations
and ideal vectors can be illustrated as in Fig. 2. It is apparent
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 393
Fig. 1. Comparison of different entropy measures.
from Fig. 2 that the scaled feature values vary strongly
within each class for the first feature and considerably
less for the second feature. Moreover, the classes for the
first scaled feature overlap, whereas those for the second
feature take values in a different range of values.
Following the logic of the feature selection algorithm
proposed by Luukka (2011), the first step is to calculate an
ideal vector for each class that aims to characterize each
class well (Luukka, Saastamoinen, & Könönen, 2001). An
ideal vector should differ between classes so that it can
discriminate between these classes well.
There exist several ways of computing ideal vectors,
with the arithmetic mean being one of the earliest meth-
ods. An ideal vector can also be calculated with more gen-
eralized mean operators such as the generalized mean, the
Bonferroni mean or ordered weighted averaging (OWA).
Using the generalized mean, the ideal vector vi for a
class Ci is:
vi,d =
⎛⎝ 1
#Xi
∑
x∈Xi
xdm
⎞⎠ 1m , ∀d = 1, . . . ,D, (4)
where vi,d is the value of the ideal vector for class i for
feature d and #Xi refers to the number of observations that
belong to class i. For this simple example, m = 1, so that
the ideal vector is simply the class mean for each feature.
The second step is the calculation of the similarity be-
tween each ideal vector vi and each observation xj, with
j = 1 to n. This is carried out by computing the similarities
between the observation and the ideal vector:
S
(
xj,d, vi,d
) = p√1− ⏐⏐xj,dp − vi,dp⏐⏐, (5)
where, for simplicity, p is set to 1. Using Eq. (1) for De Luca
and Termini entropy, entropy values for each feature d can
be obtained as
Hd =
N∑
i=1
n∑
j=1
H
(
S
(
xj,d, vi,d
))
. (6)
The entropy value Hd for each feature, which is the sum
of the two entropy values for that feature in the two classes,
Fig. 2. Scaled example observations.
indicates which feature should be removed. The removal
decision is based on the idea that small entropy values
refer to regularities and structure in a dataset, while high
entropy values indicate randomness (Yao et al., 1999). This
means that entropy can show whether data are character-
ized by uncertainty or are informative (Luukka, 2007).
More specifically, fuzzy entropy measures can be used
to determine the relevance of features (Luukka, 2011). For
feature removal, the feature that has the highest entropy
value and, therefore, is assumed to be least informative,
will be removed; thus, for the given example, feature 2
would be removed (see Table 2).
This example illustrates how entropy can be included
in the feature selection so as to remove less informative
features. However, a closer look suggests that the proposed
feature removal for the given example is not a good choice
with respect to the classification accuracy. Assuming that
the observations in this example are a representative sam-
ple of the underlying population, it is obvious that the
feature space for feature 2 can be split into distinct regions
for the decision making, whereas feature 1 shows a clear
overlap in the values that this feature takes in the two
394 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Table 2
Example similarity and entropy values.
Similarity Feature 1 Feature 2 Class
S(x1, v1) 0.67 0.83 1
S(x2, v1) 0.67 0.83 1
S(x3, v1) 1.00 0.50 1
S(x4, v1) 0.33 0.17 1
S(x1, v2) 1.00 0.17 2
S(x2, v2) 0.33 0.50 2
S(x3, v2) 0.67 0.83 2
S(x4, v2) 0.67 0.83 2
H(d, Class1) 1.91 2.04 1
H(d, Class 2) 1.91 2.04 2
H(d) 3.82 4.09
Table 3
Example of scaled entropy.
Entropy Feature 1 Feature 2
H(d) 3.82 4.09
SE(d) 2.55 1.36
different classes. In simple terms, the second feature allows
an observation to be assigned to one of the classes with-
out uncertainty, but the first feature does not. Thus, the
removal of the second feature will lead to a deterioration
in the classification with these observations. However, as
this simple example has illustrated, this shortcoming can
be overcome by using a scaling factor for the entropies that
takes into account the distance between a feature value
of one ideal vector and the corresponding feature values
of all other ideal vectors (Lohrmann, Luukka, Jablonska-
Sabuka, & Kauranne, 2018). Feature selection based on
fuzzy similarity and entropy measures (FSAE), which uses
a scaling factor for the entropy values, is discussed in more
detail in the subsequent section.
2.2. Fuzzy similarity and entropy measure (FSAE) based fea-
ture selection
Feature selection using fuzzy similarity and entropy
measures (FSAE) using scaled entropy was introduced by
Lohrmann et al. (2018), and has its origin in the algorithm
developed by Luukka (2011). This feature selection algo-
rithm is designed as a filter method, and in particular a
feature rankingmethod, but can also be used as a wrapper;
for instance, together with a similarity classifier. It is based
on the idea of using scaled fuzzy entropy measures on
similarity values to determine the importance of features.
First, the similarity S ∈ [0, 1] is calculated, where 0 im-
plies complete dissimilarity of an observation to the ideal
vector while 1 emphasizes the highest degree of similarity.
Second, the entropy values for similarities are computed.
Similarities of 0 or 1will lead to the lowest entropies,which
emphasizes high informativeness. On the other hand, a
similarity close to 0.5 results in the highest entropy value
and signals uncertainty. This idea is applied to a classifica-
tion problem in order to calculate the similarity of features
from observations with the ideal vector of each class and
determine their entropy values. This entropy value will be
low if the feature is highly informative and high if the un-
certainty of the feature is high (Luukka, 2011). In addition,
a scale factor for the entropy values is used to emphasize
the distances among the ideal vectors of the classes. Using
the scale factor on the entropy has the desirable property
that distinct features of ideal vectors decrease the entropy
value, while the entropy values of features where the ideal
vectors are close remain at their initial level or decrease
only slightly. In other words, if a feature on average has
largely different values in one class from those in all other
classes, this results in a smaller entropy value. In this case,
the scaled entropy will indicate that the feature is more
informative.
In generalized form, the scaling factor SF can be denoted
as
SF i,d = 1−
(∑
o̸=j
⏐⏐vi,d − vo,d⏐⏐l) 1l
N − 1 . (7)
The numerator determines the sum of the absolute dis-
tances of the ideal vector value for feature d for class i to all
other classes (in the most simple case with l = 1).
The scaled entropy SE for a feature d for all classes is
calculated based on Eq. (6) for the entropy and Eq. (7) for
the scaling factor:
SEd =
N∑
i=1
⎛⎝ n∑
j=1
H
(
S
(
xj,d, vi,d
))⎞⎠
∗
⎛⎜⎜⎝1−
(∑
o̸=j
⏐⏐vi,d − vo,d⏐⏐l) 1l
N − 1
⎞⎟⎟⎠ . (8)
The result of the FSAE filter is a scaled entropy value for
each feature. Since high scaled entropy values indicate un-
certainty, the features with the lowest scaled entropy val-
ues aremost important for distinguishing between classes.
For the feature selection, the user specifies which number
of features (denoted k) should be kept, and subsequently
only uses the k features with the lowest scaled entropy
values. The underlying assumption is that this removes
features that do not contribute to the deviation among
classes (Luukka, 2011).
For the simple example presented in Section 2.1, the
use of the scaled entropy (SE) changes the feature removal
from feature 2 to feature 1 (see Table 3).
The second feature has a higher degree of informativity
than the first, since the distance between the values of the
ideal vectors of the two classes is larger for this feature
than for the first feature. The scaling factor accounts for
this interclass distance,which led to the decision to remove
feature 1 instead.
The feature importance based on the scaled entropy val-
ues determined by the FSAE filtermethod can be presented
in an intuitive form between [0,1] by dividing the scaled
entropy by the sum of scaled entropy values, subtracting
this value from 1, and standardizing the resulting feature
importance vector to [0,1].
FId = 1− SEd∑D
d=1 SEd
. (9)
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 395
The feature importancewill be close to one for informa-
tive features, while uninformative and irrelevant features
will show feature importance values of close or equal to
zero.
This feature selection method was chosen because it
showed results that were competitive with those of the
most common feature selection methods, is intuitive in its
use and is computationally inexpensive (Lohrmann et al.,
2018). Moreover, using a feature ranking method allows
the feature importance values to be analyzed for a single
feature as well as for a group of features.
3. Application of our methodology to the data
3.1. Data
The dataset that is analysed in this paper consists of
time series obtained from Yahoo Finance (2017). The time
horizon for the training and testing of the classifier is
from 10/11/2010 to 04/29/2016, and the time period
selected for the out-of-sample forecast is from 05/2/2016
to 3/28/2018 . The dependent variable is the daily open-to-
close return of the S&P500 index from the opening price to
the closing price of a single trading day. The feature dataset
includes seven financial market indices, two market ETFs,
six indices and ETFs related to sectors and commodities,
three currency time series, seven time series related to
interest rates, yields and yield spreads, nine technical in-
dicators, and the VIX index. The seven financial market
indices encompass large indices such as the S&P500 (US),
the STOXX50 (EU), the Hang Seng (C), the Nikkei225 (J), the
FTSE100 (UK), and the DAX (GER). Moreover, it contains
the Russel 2000, which is an index premised on firms
with small market capitalization in the US. The two mar-
ket exchange traded funds (ETF) are intended to repre-
sent large- andmedium-capitalized emergingmarket com-
panies (iShares MSCI Emerging Markets; see BlackRock,
2017a), and to track the performances of large-, medium-
and small-capitalized firms worldwide (Vanguard Total
World Stock ETF; see Morningstar, 2017).
Commodities and materials are represented by the
United States Commodity Index and the SPDR S&P U.S.
Materials Select Sector UCITS ETF, respectively. The former
is supposed to reflect the performance of a portfolio of
commodity futures, which represents the energy, precious
metals, industrial metals, grains, livestock and softs sec-
tors (USCF, 2017). The latter aims to track the perfor-
mance of American large-capitalized material firms within
the S&P500 (State Street Global Advisors (SPDR), 2017b).
These features are intended to capture the influence of
the commodities and materials sector on the American
economy, and thus, on the American stock market. The
SPDR Gold Shares ETF is the largest physically backed gold
ETF, and tracks mainly long exposure to gold. This ETF is
included because commodities, especially gold, can indi-
cate future inflation, and their price volatility is believed
to have negative consequences for financial markets (Baur,
2012), whichmay have a severe impact on the US economy
(Gokmenoglu & Fazlollahi, 2015). The iPath S&PGSCI Crude
Oil Total Return Index concentrates its exposure on the S&P
GSCI Crude Oil Total Return Index, which is a benchmark
for the total return accomplished in the crude oil market
(S & P Dow Jones Indices, 2017). This index is used to
incorporate the impact of changes in the crude oil market
on financial markets, as the oil price can have an extensive
impact on both the economy and financial markets (Gok-
menoglu & Fazlollahi, 2015). Three additional factors are
the exchange rates of the USD to the Yen (Japan), the Euro
(EU) and the Yuan (China), which reflect the attractiveness
of US exports and its purchasing power with respect to
imports for the US economy relative to its largest trading
partners. We also integrate the relevance of the financial
sector for the S&P500 index by including the Financial
Select Sector ETF and the iShares MSCI Europe Financials.
The former is supposed to track the investment results of
large financial companies in the US that are listed in the
S&P 500 (State Street Global Advisors (SPDR), 2017a), while
the latter attempts to track the performance of an index
of European equities in the financial sector (BlackRock,
2017b).
The category encompassing interest rates and yields
contains the CBOE 10-year interest rate, the 30-year Trea-
sury yield (US), the 5-year Treasury yield (US) and the 13-
week Treasury bill (US). The CBOE 10-year interest rate is
a time series of the Chicago Board Options Exchange that
represents interest rate options for the 10-year Treasury
note (Chicago Board Options Exchange, 2017). The short-
term 13-week Treasury bill (US) will also be used as a
proxy for the 13-week yield for the calculation of two of the
yield spreads. From the three yield curves, the 30-year-to-
5-year yield spread, the 30-year-to-13-weeks yield spread,
and the 5-year-to-13-weeks yield spread are computed as
additional time series. No 10-year yield curve is available
from Yahoo Finance, but a 30-year yield curve and a 5-year
yield curve are used instead, in addition to the 13-week
one. This follows the convention of using a short-term
government yield curve and a long-term one of at least
several years for the calculation of yield spreads (Bhaduri &
Saraogi, 2010;Nyberg, 2013; Rudebusch&Williams, 2009).
Research has indicated that yield spreads contain useful
information in relation to the contraction and expansion of
the economy, and therefore theymight also be of relevance
for predicting a stockmarket index (Rudebusch&Williams,
2009). Finally, the authors use the VIX as an additional
financial time series to represent the market sentiment.
The volatility index VIX is included in the features because
it can be regarded as a barometer for investor sentiment in
the market (Rossilo, Giner, & de la Fuente, 2014).
In general, our choice of features is in line with previous
research that has used at least a subset of these features,
such as lagged index data, technical indicators, the oil price,
exchange rates, the gold price, or short- and long-term
interest rates/yields (Krollner, Vanstone, & Finnie, 2010).
For each of these time series, the closing and opening
prices, daily high and low values and volumes are down-
loaded if available. These data are included in the feature
dataset because price and volume information are the ma-
jor components in technical analysis (Achelis, 1995).More-
over, the daily range values of the indices are derived from
their daily high and low values. The range indicates the
maximum daily variation in the price series. For each time
series, we also calculate the returns between the opening
396 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Table 4
List of features.
Dependent variable
S&P500 Open-close return
Features
Time series
S&P500 – Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
DAX Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
Nikkei225 Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
iShares MSCI Emerging Markets Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
Vanguard Total World Stock ETF Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
Hang Seng Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
FTSE 100 Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
STOXX 50 Open-close return Close-open return – - – –
Russell 2000 Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
VIX S&P500 Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
SPDR Gold Shares ETF Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
United States Commodity Index Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
Materials Select Sector SPDR ETF Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
iPath S&P GSCI Crude Oil Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
Financial Select Sector Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
iShares MSCI Europe Financials Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
CBOE Interest Rate 10 Year Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
Treasury Yield 30 Years Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
Treasury Yield 5 Years Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
13 Week Treasury Bill Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
JPY/USD Exchange Rate Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
EUR/USD Exchange Rate Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
CNY/USD Exchange Rate Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
Technical indicators and yield spreads
∆ (%) Spread Treasury 30y – 5y ∆ (%) momentum (1d) MACD (26d, 12d, Signal 9d) Mov.Avg. (5d)
∆ (%) Spread Treasury 30y – 13w ∆ (%) momentum (3d) Bollinger (2 Std) Mov.Avg. (10d)
∆ (%) Spread Treasury 5y – 13w ∆ (%) momentum (5d) RSI (14d)
∆ (%) momentum (10d)
and the respective closing prices, which are the changes
that occur during the trading day, as well as the returns
between the closing andopeningprices, reflecting the price
changes during the times when no trading is occurring.
Table 4 lists all features for the classification problem.
The remaining features are technical indicators, includ-
ing the changes in the 1-, 3-, 5- and 10-day momen-
tums, the relative strength index (RSI), the moving average
convergence–divergence (MACD), moving averages (MA)
andBollinger bands (Di Lorenzo, 2013;Hurwitz &Marwala,
2011). The technical indicators MACD, RSI and Bollinger
bands are transformed into trading signals instead of just
using their values directly. A comparable approach was
pursued by Patel et al. (2015), who referred to this as
trend deterministic data and found that this transforma-
tion led to a significantly higher classification accuracy
than using the technical indicators in their original form.
The transformation into signals follows common trading
rules. An RSI of less than 30 takes a value of 1 (oversold/buy
signal), an RSI of over 70 takes a value of 0 (overbought/sell
signal), and an RSI between 30 and 70 takes a value of
0.5. For the MACD, the feature is assigned a value of 1 if
the MACD (26 days EMA/12 days MA) is smaller than the
signal line (exponential moving average (EMA), 9 days),
which indicates to buy, and a value of zero if the MACD
exceeds the signal line. If the MACD equals the signal line,
the feature takes on a value of 0.5 (Achelis, 1995).
Lastly, the Bollinger bands feature is assigned a value of
1 if the signal line crosses the lower Bollinger band from
below (buy signal), a value of 0 if the signal line crosses the
upper Bollinger band from above (sell signal), and 0.5 if the
signal line is within the lower and upper Bollinger bands
(Di Lorenzo, 2013).
When the initial time series are downloaded from Ya-
hoo Finance, volume time series for which no information
can be downloaded andwhere the entire feature download
consists of zeros are removed. For the remaining features,
missing values are replaced by the last previously known
value to avoid biasing the time series with future values
that are yet unknown (e.g. through interpolation). More-
over, the rank of the data set is calculated in order to
check the features for multicollinearity, with the objective
of removing features that are highly correlated with other
features in the dataset, which essentially means that this
feature does not provide any additional information for the
classification. However, no features have to be removed
here since no multicollinearity is present in the dataset.
After this procedure, the training and testing dataset
contains 1373 observations and the dataset for the
forecasting period consists of 481 observations for all 136
features. Finally, the features are normalized to the unit in-
terval [0, 1]. The time series to be classified is the open-to-
close return of the S&P 500. The open-to-close returns are
split into four classes according to their daily magnitudes.
Table 5 lists the classes for both the training/testing and
forecast periods.
The idea is to create distinct groups for ‘strong positive’,
‘slightly positive’, ‘slightly negative’ and ‘strong negative’
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 397
Table 5
Classes for the S&P 500 closing returns.
S&P 500 closing return Class Training and testing Forecast period
Observations in % Observations in %
Larger than 0.5% 1 345 25.13% 59 12.27%
Between 0.5% and 0.0% 2 399 29.06% 199 41.37%
Between 0.0% and –0.5% 3 339 24.69% 172 35.76%
Smaller than –0.5% 4 290 21.12% 51 10.60%
returns. The proportions of the four classes are similar in
the training and testing data, but more unbalanced in the
forecast period, with slightly positive and slightly negative
returns being the majority classes and higher-magnitude
returns having smaller numbers of observations. The clas-
sification of the daily S&P data into four classes is one
of the aspects that differentiates the approach pursued in
this paper from most of the existing literature. Kim et al.
(2006) used a four-class approach, but on weekly data for
the Korean KOSPI index. Patel et al. (2015) worked with
their trenddeterministic features on a binary class case, but
mentioned that a settingwithmore categories is alsoworth
exploring.
Another aspect that is worth mentioning is that all of
the information presented can be downloaded without
cost, and is available easily to potential investors and re-
searchers.
3.2. Training procedure
The first step is feature selection for the initial 136
features in the data set, and for that purpose we use the
FSAE filter method. Each feature is ranked according to
FSAE based on its scaled entropy value (in ascending or-
der). Initially, we calculate the performance using a simple
similarity classifier with all features, and one feature will
be removed in each step, that with the next lowest rank.
This procedure is conducted using the FSAE with different
combinations of entropy measures and l-parameters. Each
setup is tested for different values of the p (from 1 to 8) and
m (from 1 to 6) parameters, and we report only the accu-
racies for the p andm values that lead to the highest mean
accuracy for each combination of entropy and l-parameter.
Finally,we choose the setup of the entropy and l-parameter
that appears most suitable in terms of performance and
number of features removed.
With this setup, the main classifier in this study, the
random forest (Breiman, 2001), will be used together with
the FSAE to determine which features should be removed.
The random forest is an ensemble classifier that trains
multiple decision trees and combines their results in order
to assign observations to a class (Adele, Cutler, & Stevens,
2012). This procedure is supposed to avoid the common
problem of single decision trees, which tend to overfit data
easily if their parameters are not set suitably. Other advan-
tages of this model include its ability to model interactions
between features and its robustness to outlier values for
features (Hastie, Tibshirani, & Friedman, 2009). Here, the
random forest will consist of 50 decision trees. As was
demonstrated by Breiman (2001), the choice of the number
of decision trees can be as desired, since the generalization
error is converging to a limit. Random forests have been
applied successfully in a variety of different applications
(Adele et al., 2012), including the classification of financial
time series. Khaidem, Saha, and Dey (2016) used a random
forest in a context comparable to that in this paper, using
technical indicators but considering the prediction of stock
returns, and reported high classification results. Recently,
Zhang, Cui, Xu, Li, and Li (2018) used a random forest
in their stock price trend prediction system and demon-
strated its ability to outperform a KNN classifier, support
vector machines and an artificial neural network.
In order to find a model with limited complexity and
a good generalization ability for previously unseen obser-
vations, noise can be added during the training procedure
(Özesmi, Tan, & Özesmi, 2006). Since noise is supposed to
prevent a model from being overfitted to the given obser-
vations, adding noise should make the learning algorithm
less sensitive to the variation in the features for reasonable
amounts of noise, thus preventing overfitting (Matsuoka,
1992; Özesmi et al., 2006). In this paper, the authors add
independently and uniformly distributed noise to the fea-
tures before using the random forest algorithm with FSAE
for the feature selection. The idea behind this proceeding
is that using a certain amount of noise should make the
choice of features more robust and reliable.
Oncemore, the classifier, in this case the random forest,
will be used first with all features, then features will be
removed iteratively based on their ranking from the FSAE
feature selection. For this purpose, the entire testing and
training time series (with 1373 observations) is split using
the hold-out method into 70% of observations for training
and the remaining 30% for testing. The use of stratified
sampling ensures that the training and test data consist
of observations from all four return classes and in pro-
portions that represent the classes. Noise is added to the
training data solely to ensure that the result generalizes
to the actually observed test data, not to fit the perturbed
data. The magnitude of the noise added at each iteration
is varied from +/– 0 standard deviations (Std) up to +/– 4
Std, by steps of 1 Std. The standard deviation is determined
based on the feature values of all observations. The level
of noise that is added is random, but is limited in each
step to +/– the number of standard deviations for that level
of noise. The only exception is when adding noise to the
technical indicators and the trading strategies premised
on these indicators. Since these indicators all depend on
the price series, it would be inconsistent and implausi-
ble to perturb them separately rather than perturbing the
underlying stock price series. Thus, we inject the trading
strategies with noise by perturbing the underlying S&P500
closing price series according to the standard deviation of
the S&P500 index (from +/– 0 up to +/– 4 Std), then deter-
mine the technical indicators and trading strategy values
398 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Table 6
Classification results with feature selection (before noise injection).
Approach Parameter Entropy No. of
features
Features
removed
Avg.
performance
Variance
(in %)
p m
Sim – 136 None 44.73% 0.05% 2 2
Sim + FSAE l = 1 De Luca & Termini 121 15 44.78% 0.03% 5 3
Sim + FSAE l = 1 Parkash et al. 64 72 44.38% 0.05% 3 1
Sim + FSAE l = 2 De Luca & Termini 119 17 43.06% 0.06% 2 2
Sim + FSAE l = 2 Parkash et al. 120 16 42.91% 0.05% 3 2
Fig. 3. Results for FSAE setups.
afterwards. In each iteration, and therefore for each feature
subset, the data set is split 20 times and for each split, the
perturbed training data is used for the FSAE feature ranking
and the noise-free testing set with the random forest is
used for the evaluation of the performance for the feature
subset. The test accuracy is averaged over the 20 runs for
a feature subset. After removing the features iteratively
according to their ranks and computing themean accuracy
for each of these subsets, we select the feature subset that
results in the highest mean accuracy on the test data.
The second step of the training procedure is classifi-
cation. The feature subset determined previously will be
deployed for the classification with the random forest,
while four other classification algorithms, the k-nearest
neighbour algorithm (KNN; see Cover & Hart, 1967), the
naive Bayes classifier (Russell & Norvig, 2009), decision
trees (Breiman, Friedman, Stone, & Olshen, 1984) and a
similarity classifier (Luukka et al., 2001), will be applied
as benchmarks for the classification accuracy. The classifier
with the highest classification accuracy will be used as the
basis for the evaluation of four different strategies that
are conceptualized according to the four classes that were
created for the classification problem. These strategies are
depicted in detail in the next section. The returns gen-
erated with these strategies (after transaction costs) are
then determined for the test set and validated with the
separate data set for the forecast period. The out-of-sample
forecast data set is used with the trading strategies that
are premised on the best classification model’s predictions
in order to validate the performance against a buy-and-
hold strategy. All of the calculations are implemented using
MATLABTM software.
4. Results
The results for the different setups of the FSAE filter for
feature selection show that most algorithms are capable
of identifying features that are redundant or of small rel-
evance for the classification. Table 6 lists the results with
the similarity classifier for the choice of the FSAE setup. The
best performance accuracy, 44.78%, is accomplished with
the entropy measure of De Luca and Termini (1972) and
an l-parameter of 1. However, the combination of Parkash
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 399
Table 7
FSAE results with random forest and noise.
Perturbation 0 Std. 1 Std. 2 Std. 3 Std. 4 Std.
Remaining features 129 117 98 105 127
Mean accuracy 47.16% 47.51% 47.78% 47.60% 47.76%
Variance (in %) 0.07% 0.07% 0.07% 0.08% 0.08%
Table 8
Comparison of classifiers on the feature subset.
Approach Setup and parameters Avg. performance Variance (in %)
Similarity classifier p = 3,m = 1 44.04% 0.03%
Random forest Min leaf size= 1 43.63% 0.04%
Random forest Min leaf size= 10 44.72% 0.03%
KNN k = 1 32.36% 0.04%
KNN k = 10 36.80% 0.05%
Naive Bayes Normal kernel 38.85% 0.07%
Decision tree Min leaf size= 1 34.89% 0.04%
Decision tree Min leaf size= 10 37.47% 0.06%
et al. (2008) entropy and l = 1 leads to a comparable ac-
curacy of 44.38%, but with only 64 features instead of 121.
Since almost the same performance as the most accurate
approach can be achieved with only slightly over half the
number of features, the approachwith Parkash et al. (2008)
entropy and l = 1 is more suitable for further analysis.
Fig. 3 shows that, for all FSAE setups, the performance
initially decreases, but then has a peak or secondary peak
at around 70 removed features. This stresses that all setups
work well, but using Parkash et al. (2008) entropy and
l = 1, which found the best performance at this peak of
around 70 removed features, is the most suitable choice of
these setups.
In the next step, we conduct the actual feature selec-
tion with the classifier random forest (based on 50 deci-
sion trees) as the evaluation criterion and the FSAE with
Parkash et al. (2008) entropy and l = 1, which was the
setup selected in the previous step. The feature selection
is conducted with and without noise, and the results are
displayed in Table 7.
This procedure shows that the most accurate mean
accuracy on the test set is achieved with noisy features
with two standard deviations. Moreover, this accuracy is
achieved on the smallest subset with 98 remaining fea-
tures. Unlike the initial step with the choice of the FSAE
setup, it can be seen that the number of features removed
can vary depending on the classification algorithm used
for the evaluation, but that their order does not. With the
random forest, only 38 features are removed, but the per-
formance of 47.78% is not only higher than the 44.38% after
FSAE and the similarity classifier, but also considerably
higher than the 44.73%with the similarity classifier and the
entire data set.
In what follows, the feature subset that results from
the feature selection with the random forest is deployed
with different classifiers in order to determine whether
the random forest is the most accurate classifier on this
feature subset. The results of the comparison are presented
in Table 8.
The results demonstrate that the random forest with
a minimum leaf size of 10 is the most accurate classifier
of the eight classifier setups presented. The minimum leaf
size is a parameter that sets the minimum number of
observations that must be in a ‘‘branch’’ of a decision tree.
Aminimum leaf size that is too lowmay lead to overfitting,
since it allows overly complex models, whereas a value for
theminimum leaf size that is too high can oversimplify the
model andmake it unable to capture certain patterns in the
data. Both theminimum leaf size parameter (random forest
and decision tree) and the k-parameter (KNN) are varied
from 10 to 100, by steps of 10. For each of these algorithms,
the value of the parameterwas chosen based on the highest
mean training performance, and the corresponding mean
accuracy on the test set is reported. This procedure avoids
overfitting the parameters to the test set, since they are
chosen based on the training set.
Since the random forest with a minimum leaf size of
10 has been shown to be the most accurate classifier with
this feature subset, the performance of this classifier will
be examined in more detail, including with respect to the
out-of-sample forecast data set. Table 9 presents the clas-
sification of this setup on one random split of the training
and test data, and on the forecast data. The classification
rates of 46.3% and 41.0% for the random test set and the
given forecast data set do not seem very high; however,
low classification results do not have to mean a low ability
to generate excess returns with a strategy based on this
classifier (Teixeira & De Oliveira, 2010).
The correct classification rates between the classes
range from 28.8% to 62.1% within the test data. Class 1
shows the highest correct classification rate, and is the only
class to exceed 60.0%. Clearly, theworst classification result
is obtained for Class 3, which addresses ‘slightly negative’
returns. The returns for the positive classes, Class 1 and
Class 2, are the highest in the test set. For the validation
dataset, the accuracies range between 23.8% for Class 3
and 55.8% for Class 2. Only for the ‘strong positive’ Class
1 is the classification accuracy considerably lower than
on the test set, at 40.7% compared to 62.1%. Simplifying
things by considering the results from the perspective of
an investor, who will probably focus mainly on whether
the predicted returns are positive or negative, the correct
classification rates can differ considerably from those of the
single classes. The correct classification rates for positive
and negative returns for the data are 75.2% and 35.9%. This
is worse than the result for the test data, and indicates a
400 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Fig. 4. Top 10 lowest scaled entropy values.
Table 9
Classification results for test and forecast data.
Test Class 1 Class 2 Class 3 Class 462.1% 54.6% 18.8% 48.3%
46.3% Positive Negative82.40% 50.00%
Forecast Class 1 Class 2 Class 3 Class 440.7% 55.8% 23.8% 41.2%
41.0% Positive Negative75.2% 35.9%
clearly higher ability of the classifier to predict positive
returns correctly. The low negative prediction is burdened
by the low classification rate in Class 3, which accounts for
more than three times as many observations as Class 4. In
conclusion, the classifier for the validation dataset seems
to be more accurate at determining positive returns, but
performs more poorly at predicting the negative return
classes.
We will attempt to obtain a better understanding of the
decision-making abilities of the classifier by discussing the
features with the lowest scaled entropy values, since low
entropy corresponds to high informativity. As Fig. 4 illus-
trates, the S&P500 Momentum terms, currency exchange
rates, the European stock market and the United States
Commodity Index (USCI) possess the highest information
content. Three of the top four features for predicting the
S&P500 open-to-close return are related to the change
in momentum. The remaining features consist of the ex-
change rates USD/Yuan andUSD/EUR, the European STOXX
50 open-to-close return and the change in the low value of
the USCI.
We examine patterns for a certain type of information
that may potentially be relevant for the prediction of the
S&P500 open-to-close return by investigating in more de-
tail the results of the variable importance obtained from
FSAE with the random forest as the evaluation criterion.
The results illustrated in Fig. 5 show that the momentum
terms of the S&P500 are characterized by the largest vari-
able importance, and that the currencies on average show
a large importance for the classification task related to
the S&P500. On the othter hand, the relevance of spreads
appears to be low, since the variable importance has a
low average value and comparatively low values for the
whiskers. The range features show the longest whisker,
indicating that some of the range values are relevant for
this classification. It is noteworthy that the minimum for
the indicators (excluding outliers) is the largest of all tech-
nical feature groups except the momentum group. This,
together with one of the highermean values, indicates that
technical indicators do possess an elevated relevance for
the classification overall.
The analysis of the feature importance grouped by fi-
nancial market indices as displayed in Fig. 6 reveals that,
according to these results, the S&P500 related information
(which also includes the momentum terms) is the most
relevant group of information for the classification. The
groups with the second and third largest mean importance
are the Nikkei225 and the STOXX50 group. This appears to
be in line with the fact that the STOXX50 open-close return
is the only non-S&P500 financial market feature in the top
10 lowest scaled entropies presented earlier.
Since grouping according to the remaining features such
as gold, oil or sectors only resulted in lower to medium
importance values that could not be distinguished clearly,
these results will not be presented or discussed here in
detail.
After analyzing the features and the classification re-
sults for the four-class problem,we consider various differ-
ent trading strategies based on this FSAE and the random
forest results. We derive four distinct trading strategies,
which represent different levels of risk tolerance of the
investor (e.g. willingness to ‘‘short’’ (sell) the index) and
varying levels of confidence in the model (e.g. willingness
to invest solely for strongly positive or negative predic-
tions). The benchmark strategy in this paper is a classic
buy-and-hold strategy (passive management), where the
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 401
Fig. 5. Feature importance for technical features.
Fig. 6. Feature importance for financial market indices.
Table 10
Investment strategies.
No Strategy
1 Strongly positive or positive returns predicted (Classes 1 & 2) - Long (buy) the index
Strongly negative or negative returns predicted (Classes 3 & 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
2 Strongly positive returns predicted (Class 1) - Long (buy) the index
Strongly negative returns predicted (Class 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
3 Strongly positive returns predicted (Class 1) - Long (buy) the index
Strongly negative or negative returns predicted (Classes 3 & 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
4 Strongly positive or positive returns predicted (Classes 1 & 2) - Long (buy) the index
Strongly negative returns predicted (Class 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
5 Benchmark: buy-and-hold - Long (buy) the index at start of period and retain
index is bought and then held over the respective invest-
ment period. All investment strategies are enumerated in
Table 10.
It is important to mention that only the index returns
are regarded in the subsequent analysis of the returns; no
dividends of the underlying stocks are included.
For the comparison to a buy-and-hold strategy, various
different levels of transaction costs are considered. Trans-
action costs can be incorporated either as a percentage of
the underlying trade (e.g. Pätäri &Vilska, 2014) or as a fixed
amount in a certain currency (e.g. Teixeira & De Oliveira,
2010), and can vary considerably from country to country
(Domowitz, Glen, & Madhavan, 2001). In this study, both
approaches will be used – a fixed amount in US dollars that
can be expected to be paid to a broker in the US, as well
as a low percentage of the underlying trade value. Using
both approaches ensures that our results can be compared
to other existing and future findings more easily. For the
402 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Fig. 7. Performances of trading strategies out-of-sample (with transaction costs).
first approach, the transaction cost varied between $10
and $20, which is within the range of transaction costs
that an investor can expect for an order at a broker to
purchase a stock or financial instrument (Nasdaq, 2017).
The percentage-based transaction costs are set at 0.1%,
0.2%, 03% and 0.4%, to incorporate low to medium levels
of transaction costs.
In addition, it is assumed that no capital or gains are
withdrawn during the investment period considered. Since
the S&P500 open-to-close return is the dependent variable,
the results of the strategies assume that the financial in-
struments used track the S&P500 as closely as possible.
This may be by buying all, or at least the majority, of the
shares in the proportions that represent the firms in the
S&P500, by investing in an exchange traded fund (ETF)
that attempts to replicate the behavior of the S&P500, or
potentially by using a suitable financial derivative. An ETF
is an inexpensive alternative for tracking a certain market
or sector, and can also be bought at a broker (Bodie et al.,
2009). It is crucial for some of the strategies presented here
that ETFs can be sold short (Bodie et al., 2009). If an investor
deploys an ETF to follow one of the strategies presented
here, it must be taken into account that, in addition to
broker costs for the purchase of the ETF, costs are also
incurred for the ETF itself. Thus, investors should consider
that the performance numbers presented here need to be
reduced by any additional cost such as the total expense
ratio (TER) of the ETF,which is commonly rather low (Bodie
et al., 2009).
The performances of the buy-and-hold strategy and the
four strategies considered here are illustrated in Fig. 7 for
an investment of $10,000 and transaction costs of 0.1% for
the forecast data set.
The graph highlights the fact that all strategies based
on the classifier results can outperform the buy-and-hold
strategy after transaction costs out-of-sample in the
forecast period. The results show that, for transaction costs
of 0.1%, investment strategy 4 is characterized by the high-
est performance of 44.09% for the forecast period (21.09%
p.a.), while the buy-and-hold strategy returns 26.13%
(12.93% p.a.). With respect to the classification results, this
is not surprising. Strategy 4 does not initiate a transaction
if the prediction is Class 3, which is the class with by far the
lowest classification accuracy. Thus, it leaves out the class
that the model predicts worst and that is associated with
low absolute returns even when it is classified correctly,
since it is the lownegative return class. Investment strategy
2, which also does not use the Class 3 predictions, performs
well too, but it does worse than strategy 4 since it does not
conduct transactions based on Class 2 predictions, though
this was the class with the highest prediction accuracy.
The performances of the other investment strategies range
between 30.16% (14.81% p.a.) and 31.28% (15.33% p.a.).
The results show that higher percentage-based transaction
costs affect the performances of the trading strategies
adversely, since they make using these strategies more
expensive. The first strategy, which shows with the largest
return without transaction costs, at 60.14% (27.98% p.a.),
is affected most by higher transaction costs, since it uses
all four class predictions as signals to conduct transactions
if possible. Since it therefore conducts two to three times
as many transactions as any of the other trading strate-
gies, it underperforms the buy-and-hold strategy even for
transaction costs of only 0.2%. The remaining strategies,
which initiate trades premised only on a subset of the
classes, show fewer transactions and are therefore less
sensitive to changes in the transaction costs. For invest-
ments of $10.000 and $50.000, the performances again
depend on the transaction costs, with the returns logi-
cally being higher the lower the value of the transaction
costs, as the costs are in proportion to the investment
amount.
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 403
Table 11
Performances of the investment strategies for all datasets.
Test
(410 Obs.)
Transactions 1 150 58 60 88
– 0 16.88% 311.73% 543.19% 520.14% 322.68%
– 0.1% 16.83% 254.35% 506.93% 484.01% 287.06%
– 0.2% 16.83% 204.93% 472.68% 449.95% 254.41%
– 0.3% 16.83% 162.35% 440.33% 417.85% 224.48%
– 0.4% 16.83% 125.69% 409.78% 387.59% 197.05%
10,000 10 16.76% 287.61% 530.36% 506.92% 310.65%
10,000 20 16.65% 263.50% 517.52% 493.70% 298.62%
50,000 10 16.86% 306.91% 540.63% 517.50% 320.28%
50,000 20 16.83% 302.09% 538.06% 514.86% 317.87%
Forecast
(481 Obs.)
Transactions 1 201 64 68 89
– 0 26.39% 60.14% 39.97% 39.33% 57.51%
– 0.1% 26.13% 30.97% 31.28% 30.16% 44.09%
– 0.2% 26.13% 7.09% 23.13% 21.60% 31.80%
– 0.3% 26.13% –12.46% 15.48% 13.58% 20.55%
– 0.4% 26.13% –28.45% 8.30% 6.09% 10.25%
10,000 10 26.26% 35.22% 32.62% 31.57% 46.59%
10,000 20 26.13% 10.31% 25.28% 23.81% 35.68%
50,000 10 26.36% 55.15% 38.50% 37.78% 55.33%
50,000 20 26.34% 50.17% 37.03% 36.22% 53.14%
Table 11 displays the detailed results for all strategies
for the test and forecast periods. It is apparent that the
differences between the performances on the test and fore-
cast data sets are considerable.
However, this difference can be explained based on the
data and the class imbalance. The test data set possesses a
standard deviation of returns of 0.96%, while in the fore-
cast set this value is about one third lower, at 0.63%. The
same is true for the standard deviation as a measure of
the volatility in the returns that were classified as positive
(Classes 1 and 2), with values of 0.84% and 0.54% for the
test and forecast data, respectively, as well as for those
observations classified as negative (Classes 3 and 4), with
values of 0.98% and 0.82%, respectively. Moreover, in both
data sets the average returns for observations that are
classified as Classes 1 and 4 are particularly distinct. In the
test set, the average return for Class 1 predictions is 0.57%,
whereas that in the forecast data is only 0.26%, which is
not even half. We find comparable results for the average
return for Class 4 predictions, with –0.73% on the test set
versus –0.20% on the forecast set, which is not even a third
of the magnitude. This discrepancy between the results
in the test and forecast data sets is due to the fact that
the predictions in Classes 1 and 4 contribute most to the
returns achieved by any of the trading strategies depicted.
The effect is amplified by the fact that the forecast data
set is more unbalanced, with fewer observations in Classes
1 and 4, whose correct prediction could boost the returns
of the strategy. As a consequence, the difference between
the results in the test and forecast sets is considerable, but
plausible after further investigation. Moreover, the returns
achieved by the trading strategies clearly depend on the
market volatility and returns.
The next step is an analysis of the performances of
strategies in the forecast period solely for the forecasted
open-to-close returns (without transaction costs). Strategy
4 is characterized by average daily returns of 0.076%, while
the buy-and-hold strategy performs more than 40% worse,
with average daily returns of 0.044%. However, an optimal
strategy, namely a strategy that always foresees positive
and negative returns correctly and invests accordingly,
would achieve a daily return of 0.411% in the forecast
period, outperforming any of the presented investment
strategies considerably. All average daily returns are pre-
sented in Fig. 8. Even though the best investment strategy,
strategy 4, clearly underperforms the optimal strategy, it
still notably outperforms the passive buy-and-hold strat-
egy.
Fig. 9 highlights the average returns for positive and
negative predictions, as well as for returns related to class-
specific predictions following the logic of the trading strat-
egy of buying in the case of a Class 1 or Class 2 classification
and selling short in the case of a predicted Class 3 or Class
4. The first graph shows that the prediction of the negative
classes (Class 3 and Class 4) accounts for a higher average
return than the positive classes in the forecast period.
Moreover, it stresses that the correct prediction of the
positive and negative classes (0.36% and 0.48%) is higher
in magnitude than the average return of misclassifying the
direct counterparts of these two return directions (–0.33%
and –0.37%).
The second graph in Fig. 9 highlights the average class-
specific returns overall, in the cases of both correct clas-
sification and misclassifications. The graph illustrates two
relevant aspects of the classification result. The first is that,
for all classes, the returns are higher in magnitude in the
case of correct classification than when a misclassification
occurs. This contributes to the fact that the average return
overall is positive for all classes. In particular, all predicted
classes lead to positive returns on average. In simple terms,
if the classifier predicts a class for a daily return, following
this prediction will lead to a positive return on average –
even though the prediction may be incorrect.
The second aspect that this graph highlights is the dif-
ference between the average returns for the classes with
‘strong positive’ (Class 1) and ‘strong negative’ (Class 4)
404 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Fig. 8. Average daily open-to-close returns (without transaction costs).
Fig. 9. Performances for all predictions for trading (Strategy 1).
predicted returns, as opposed to those with ‘slightly pos-
itive’ and ‘slightly negative’ returns (Classes 2 and 3). In
the case of correct classifications, the average returns of
Classes 1 and 4 (at 0.84% and1.24%) are considerably higher
than those of the two other classes. This result is intuitive,
given that correct classification means that the returns
for Classes 1 and 4 are respectively larger than 0.5% and
smaller than –0.5% (larger than 0.5% for the trading strat-
egy that sells short). The noticeable impact of this higher
average return is that the negative return in the case of a
misclassification apparently does not entirely compensate
for the positive return from a correct classification. This
results not only in positive average returns for Classes 1
and 4 overall (independently of whether the classification
is correct or not), but also in considerably higher average
returns than those for Classes 3 and 4. Predicting ‘strong
positive’ returns (Class 1) leads to more than double the
average return of ‘slightly positive’ returns (Class 2). The
pattern is seen even more strongly for negative returns,
where the prediction of ‘strong negative’ returns (Class 4)
results in an average return that is more than 6 times that
of a classification of ‘slightly negative’ returns (Class 3). The
considerably smaller numbers of observations fromClasses
1 and 4 in the forecast data set are part of the reason why
the average returns for the positive and negative returns in
the first graph are positive but considerably lower than the
average returns for these classes.
Overall, this analysis has demonstrated that it is plau-
sible for trading strategies without transaction costs, or
even up to a certain level of transaction costs, to result
in considerably higher positive returns than the buy-and-
hold benchmark strategy. These results indicate that our
trading model with FSAE feature selection and a random
forest can result in superior returns after transaction costs.
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 405
It should be noted, though, that no taxes, slippage costs, or
adjustments for risk are considered, and no statement con-
cerning the validity of the efficient market hypothesis can
be made without these aspects being included. However,
this was not an objective of the current study.
5. Discussion
This paper has classified the S&P500 open-to-close re-
turns (intraday) as a four-class problem that incorporates
‘strong positive’, ‘slightly positive’, ‘slightly negative’ and
‘strong negative’ return classes. A variety of features from
stock markets, related to currencies and commodities and
technical indicators, were incorporated for the prediction.
With regard to three of the technical indicators, namely
the RSI, the MACD and the Bollinger bands, we did not use
their values, but transformed them into trading strategies,
which were then used as the features. The feature sub-
set for the classification was determined using the FSAE
feature ranking method with noise injection in order to
make the feature subset selection more robust. The subse-
quent analysis of the feature importance indicated that the
changes in themomentum terms embody the highest level
of information for the classification of the S&P500, while
currencies rank second overall. Technical indicators such
as the moving averages and the trading strategies based
on RSI, MACD and Bollinger bands showed only medium
to high relevance. In terms of markets, the S&P500-related
information, including momentum, shows the highest im-
portance of information from all markets regarding the
prediction of the S&P500 returns. The second and third
most important markets were the Japanese Nikkei 225
and the European STOXX50. In previous research studies,
features (with and without feature extraction and selec-
tion) have commonly been used simply for classification,
without examining in more detail their feature impor-
tance for the class labels/event prediction for the future
state of the financial market. In future research, our results
for the feature importance must be validated and ana-
lyzed with respect to their generalizability to other equity
markets.
The classification of the feature subset was conducted
using the random forest classifier, and contrasted with the
performances of different setups of the KNN algorithm,
decision trees, naive Bayes and the similarity classifier. The
mean classification accuracy was demonstrated to be the
highest for the random forest model. It is noteworthy that
the prediction rates for the four classes differ considerably.
The subsequent use of four different trading strategies
showed that trading based on only a subset of the predicted
classes can be more profitable than following all predic-
tions. In particular, using only predictions of Classes 1, 2
and 4 led to the highest return for the forecasting period,
since the classification accuracy for Class 3 was clearly the
lowest and the average return from using this class predic-
tion was also comparatively low. Another essential finding
of this research is that the contributions of the classes to
the returns of the trading strategies vary. Predictions on a
‘buy’ decision for the ‘strong positive’ Class 1 or a ‘sell’ for
the ‘strong negative’ Class 4 have overall (correct classifica-
tions and misclassifications) multiple times higher returns
than those on the ‘slightly positive’ and ‘slightly negative’
return classes (Classes 2 and 3). In other words, using the
two extreme classes with returns that are far from zero in
absolute terms contributes most to the trading strategies
on average. Sincemost previous research has simply used a
binary classification problemwith only upward and down-
wardmovements being considered, this finding can help to
shed light on the way in which usingmore event outcomes
for the classification, rather than merely simple upward
or downward movements, can improve the benefit of a
trading strategy (or a bet on an event). This finding needs
to be validated in future research. It will be also of interest
to see whether this pattern is observed for the forecasts
of other financial markets and whether the prediction of
the extreme classes can result in higher average returns or
payoffs in other contexts too.
Acknowledgments
This research would like to acknowledge the funding
received from the Finnish Strategic Research Council, grant
number 313396/MFG40 Manufacturing 4.0.
References
Achelis, S. B. (1995). Technical analysis from A to Z (2nd ed.). New York:
McGraw-Hill.
Adele, C., Cutler, D. R., & Stevens, J. R. (2012). Random forests. In Ensemble
machine learning: methods and applications (pp. 157–175). Springer.
Altay, E., & Satman,M.H. (2005). Stockmarket forecasting: artificial neural
network linear regression comparison in an emerging market. Journal
of Financial Management and Analysis, 18(2), 18–33.
Baur, D. G. (2012). Asymmetric volatility in the gold market. Journal of
Alternative Investments, 14(4), 26–38.
Belis, M., & Guiasu, S. (1968). A quantitative-qualitative measure of infor-
mation in cybernetic systems. IEEE Transactions on Information Theory,
14(4), 593–594.
Bhaduri, S., & Saraogi, R. (2010). The predictive power of the yield spread
in timing the stock market. Emerging Markets Review, 11(3), 261–272.
BlackRock (2017a). iShares MSCI emerging markets ETF. Retrieved May
20, 2017, from https://www.ishares.com/us/products/239637/EEM.
BlackRock (2017b). iSharesMSCI Europe financials ETF. RetrievedApril 30,
2017, from https://www.ishares.com/us/products/239645/ishares-
msci-europe-financials-etf.
Bodie, Z., Kane, A., & Marcus, A. J. (2009). Investments (8th ed.). Irwin:
McGraw-Hill.
Breiman, L. (2001). Random forests.Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification
and regression trees. Wadsworth International Group.
Cao, L., & Tay, F. E. H. (2001). Financial forecasting using support vector
machines. Neurocomputing, 1(2), 1–36.
Chang, P. C., & Wu, J. L. (2015). A critical feature extraction by kernel PCA
in stock trading model. Soft Computing, 19(5), 1393–1408.
Chicago Board Options Exchange (2017). CBOE interest rate 10 year.
Retrieved May 20, 2017, from http://www.cboe.com/delayedquote/
advanced-charts?ticker=TNX.
Chun, S. -H., & Park, Y. -J. (2005). Dynamic adaptive ensemble case-based
reasoning: application to stockmarket prediction. Expert Systems with
Applications, 28, 435–443.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1), 21–27.
De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic entropy
in the setting of fuzzy sets theory. Information and Control, 20, 301–
312.
Di Lorenzo, R. (2013). Basic technical analysis of financial markets. Amodern
approach. Milan: Springer Italia.
406 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Domowitz, I., Glen, J., & Madhavan, A. (2001). Liquidity, volatility and
equity trading costs across countries and over time. International
Finance, 4(2), 221–255.
Enke, D., Grauer, M., & Mehdiyev, N. (2011). Stock market prediction with
multiple regression, fuzzy type-2 clustering and neural networks.
Procedia Computer Science, 6, 201–206.
Fadlalla, A., & Amani, F. (2014). Predicting next day closing price of
Qatar Exchange Index using technical indicators and artificial neural
network. Intelligent Systems in Accounting, Finance and Management,
21, 209–223.
Fama, E. F. (1965a). Random walks in stock market prices. Financial Ana-
lysts Journal, 21(5), 55–59.
Fama, E. F. (1965b). The behavior of stock market prices. Journal of Busi-
ness, 38(1), 34–105.
Fama, E. F. (1970). Efficient capital markets: a review of theory and
empirical work. Journal of Finance, 25(2), 383–417.
Felsen, J. (1975). Learning pattern recognition techniques applied to stock
market forecasting. IEEE Transactions on Systems, Man and Cybernetics,
5(6), 583–594.
Gokmenoglu, K. K., & Fazlollahi, N. (2015). The interactions among gold,
oil, and stockmarket: evidence from S & P500. Procedia Economics and
Finance, 25, 478–488.
Guerard Jr., J. B. (2013). Introduction to financial forecasting in investment
analysis. New York: Springer ScienceBusiness Media.
Guo, Z.,Wang, H., Liu, Q., & Yang, J. (2014). Fusion based forecastingmodel
for financial time series. PLoS ONE, 9(6), 1–13.
Guo-qiang, X. (2011). The optimization of share price prediction model
based on support vector machine. In international conference on con-
trol, automation and systems engineering (pp. 1–4).
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: data mining, inference, and prediction. In Springer Series in
Statistics: Vol. 2.
Hurwitz, E., & Marwala, T. (2011). Suitability of using technical indicator-
based strategies as potential strategies within intelligent trading sys-
tems. In IEEE international conference on systems, man, and cybernetics
(pp. 80–84).
Karymshakov, K., & Abdykaparov, Y. (2012). Forecasting stock index
movement with artificial neural networks: the case of İstanbul stock
exchange. Trakya University Journal of Social Science, 14(2), 231–242.
Khaidem, L., Saha, S., & Dey, S. R. (2016). Predicting the direction of stock
market prices using random forest.AppliedMathematical Finance, 1(5),
1–20.
Kim, K. (2003). Financial time series forecasting using support vector
machines. Neurocomputing, 55(1–2), 307–319.
Kim, M. J., Han, I., & Lee, K. C. (2004). Hybrid knowledge integration
using the fuzzy genetic algorithm: prediction of the Korea Stock Index.
Intelligent Systems in Accounting, Finance and Management, 12, 43–60.
Kim, M. -J., Min, S. -H., & Han, I. (2006). An evolutionary approach to
the combination of multiple classifiers to predict a stock price index.
Expert Systems with Applications, 31(2), 241–247.
Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-
boosted trees, random forests: statistical arbitrage on the S & P 500.
European Journal of Operational Research, 259, 689–702.
Krollner, B., Vanstone, B., & Finnie, G. (2010). Financial time series fore-
casting with machine learning techniques: a survey. In European
symposium on artificial neural networks: Computational and machine
learning (pp. 25–30).
Leigh,W., Purvis, R., & Ragusa, J.M. (2002). Forecasting the nyse composite
indexwith technical analysis, pattern recognizer, neural network, and
genetic algorithm: a case study in romantic decision support. Decision
Support Systems, 32, 361–377.
Lendasse, A., De Bodt, E., Wertz, V., & Verleysen, M. (2000). Non-linear
financial time series forecasting – application to the Bel 20 stock
market index. European Journal of Economic and Social Systems, 14(1),
81–91.
Leung, M. T., Daouk, H., & Chen, A. -S. (2000). Forecasting stock indices:
a comparison of classification and level estimation models. Interna-
tional Journal of Forecasting, 16(2), 173–190.
Lohrmann, C., Luukka, P., Jablonska-Sabuka, M., & Kauranne, T. (2018).
Supervised feature selection with a combination of fuzzy similarity
measures and fuzzy entropy measures. Expert Systems with Applica-
tions, 110, 216–236.
Lu, C. -J., & Wu, J. -Y. (2011). An efficient CMAC neural network
for stock index forecasting. Expert Systems with Applications, 38
(12), 15194–15201.
Luukka, P. (2007). Similarity classifier using similarity measure derived
from Yu’s norms in classification of medical data sets. Computers in
Biology and Medicine, 37, 1133–1140.
Luukka, P. (2011). Feature selection using fuzzy entropy measures with
similarity classifier. Expert Systems with Applications, 38, 4600–4607.
Luukka, P., Saastamoinen, K., & Könönen, V. (2001). A classifier based
on the maximal fuzzy similarity in the generalized Lukasiewicz-
structure. In 10th IEEE international conference on fuzzy systems.
Matsuoka, K. (1992). Noise injection into inputs in back-propagation-
learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
22(3), 436–440.
Morningstar (2017). Vanguard total world stock index fund ETF. Retrieved
from http://www.morningstar.co.uk/uk/etf/snapshot/snapshot.aspx?
id=0P0000G5T2.
Nasdaq (2017). Start investingwith only $1, 000. Retrieved April 30, 2017,
from http://www.nasdaq.com/investing/start-investing-1000stm.
Niaki, S. T. A., & Hoseinzade, S. (2013). Forecasting S & P 500 index
using artificial neural networks and design of experiments. Journal of
Industrial Engineering International, 9(1), 1–9.
Nyberg, H. (2013). Predicting bear and bull stock markets with dy-
namic binary time series models. Journal of Banking and Finance, 37
(9), 3351–3363.
O’Connor, N., & Madden, M. G. (2006). A neural network approach to pre-
dicting stock exchangemovements using external factors. Knowledge-
Based Systems, 19(5), 371–378.
Özesmi, S. L., Tan, C. O., & Özesmi, U. (2006). Methodological issues in
building, training, and testing artificial neural networks in ecological
applications. Ecological Modelling, 195(1–2), 83–93.
Page, L. (2012). ‘‘It ain’t over till it’s over.’’ Yogi Berra bias on prediction
markets. Applied Economics, 44(1), 81–92.
Parkash, O., Sharma, P., & Mahajan, R. (2008). New measures of
weighted fuzzy entropy and their applications for the study of max-
imum weighted fuzzy entropy principle. Information Sciences, 178,
2389–2395.
Pätäri, E., & Vilska, M. (2014). Performance of moving average trading
strategies over varying stockmarket conditions: the finnish evidence.
Applied Economics, 46(24), 2851–2872.
Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and
stock price index movement using trend deterministic data prepa-
ration and machine learning techniques. Expert Systems with Applica-
tions, 42(1), 259–268.
Rossilo, R., Giner, J., & de la Fuente, D. (2014). The effectiveness of the
combined use of VIX and support vector machines on the prediction
of S & P 500. Neural Computing and Applications, 25, 321–332.
Rothschild, D., & Pennock, D. M. (2014). The extent of price misalignment
in prediction markets. Algorithmic Finance, 3(1–2), 3–20.
Rudebusch, G. D., & Williams, J. C. (2009). Forecasting recessions: The
puzzle of the enduring power of the yield curve. Journal of Business
& Economic Statistics, 27(4), 492–503.
Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach
(3rd ed.). Prentice Hall.
S & P Dow Jones Indices (2017). S & P GSCI CRUDE OIL. Retrieved
April 10, 2017, from https://us.spindices.com/indices/commodities/
sp-gsci-crude-oil.
State Street Global Advisors (SPDR) (2017a). SPDR S & P US
financials select sector UCITS ETF. Retrieved May 5, 2017, from
https://fi.spdrs.com/en/professional/etf/spdr-sp-us-financials-
select-sector-ucits-etf-ZPDF-GY?cid=1365706.
State Street Global Advisors (SPDR) (2017b). SPDR S & P US
materials select sector UCITS ETF. Retrieved May 5, 2017, from
https://fi.spdrs.com/en/professional/etf/SPDR-SP-US-Materials-
Select-Sector-UCITS-ETF-ZPDM-GY.
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 407
Teixeira, L. A., & De Oliveira, A. L. I. (2010). A method for automatic stock
trading combining technical analysis and nearest neighbor classifica-
tion. Expert Systems with Applications, 37(10), 6885–6890.
USCF (2017). United states commodity index fund. RetrievedMay 5, 2017,
from http://www.uscfinvestments.com/usci.
Vaughan Williams, L., & Reade, J. J. (2016). Prediction markets, social
media and information efficiency. Kyklos, 69(3), 518–556.
Wolfers, J., & Zitzewitz, E. (2004). Prediction markets. Journal of Economic
Perspectives, 18(2), 107–126.
Yahoo Finance (2017). Selected time series. Retrieved from https://
finance.yahoo.com/.
Yao, Y. Y., Wong, S. K., & Butz, C. J. (1999). On information-theoretic mea-
sures of attribute importance. In PacificAsia conference on knowledge
discovery and data mining (pp. 133–137).
Zhang, J., Cui, S., Xu, Y., Li, Q., & Li, T. (2018). A novel data-driven stock price
trend prediction system. Expert Systems with Applications, 97, 60–69.
Zhong, X., & Enke, D. (2017). Forecasting daily stock market return us-
ing dimensionality reduction. Expert Systems with Applications, 67,
126–139.
Zhora, D. V. (2005). Data preprocessing for stock market forecasting using
random subspace classifier network. In Proceedings of international
joint conference on neural networks,Montreal, Canada (pp. 2549–2554).
Christoph Lohrmann received theM.Sc. degree with Distinction in Bank-
ing and Financial Management in 2016 from the Institute for Financial
Services, University of Liechtenstein, Liechtenstein. He is currently Ph.D.
student in Computational Engineering with the School of Engineering
Science, Lappeenranta University of Technology. His research interests
include data analysis, classification, feature selection, decision making
and financial markets.
Pasi Luukka received the M.Sc. degree in 1999 from the Department
of Information Technology, Lappeenranta University, Finland, where he
also received the D.Sc. degree in Applied Mathematics in 2005 from the
Department of Mathematics and Physics. He is currently Full Professor
with the School of Business and Management, Lappeenranta University
of Technology. His research interests include fuzzy data analysis, classifi-
cation, feature selection and fuzzy decision making.
Publication III
Lohrmann, C., Luukka, P.
A novel similarity classifier with multiple ideal vectors based on k-means
clustering
Reprinted with permission from
Decision Support Systems
Vol. 111, pp. 27-37, 2018
© 2018, Elsevier B.V.

Contents lists available at ScienceDirect
Decision Support Systems
journal homepage: www.elsevier.com/locate/dss
A novel similarity classifier with multiple ideal vectors based on k-means
clustering
Christoph Lohrmann⁎, Pasi Luukka
Lappeenranta University of Technology, School of Engineering Science, Skinnarilankatu 34, 53850 Lappeenranta, Finland
A R T I C L E I N F O
Keywords:
Supervised classification
Jump method
Principal component analysis
MAP test
Parallel Analysis
A B S T R A C T
In the literature, researchers and practitioners can find a manifold of algorithms to perform a classification task.
The similarity classifier is one of the more recently suggested classification algorithms. In this paper, we suggest
a novel similarity classifier with multiple ideal vectors per class that are generated with k-means clustering in
combination with the jump method. Two approaches for pre-processing, via simple standardization and via
principal component analysis in combination with the MAP test and Parallel Analysis, are presented. On the
artificial data sets, the novel classifier with standardization and with transformation power Y=1 for the jump
method results in significantly higher mean classification accuracies than the standard classifier. The results of
the artificial data sets demonstrate that in contrast to the standard similarity classifier, the novel approach has
the ability to cope with more complex data structures. For the real-world credit data sets, the novel similarity
classifier with standardization and Y=1 achieves competitive results or even outperforms the k-nearest
neighbour classifier, the Naive Bayes algorithm, decision trees, random forests and the standard similarity
classifier.
1. Introduction
1.1. Background
One common type of problem in machine learning is classification,
which means using characteristics of observations to assign these ob-
servations to discrete classes [4]. Classification algorithms support the
decision-making for enterprises and individuals in numerous applica-
tions, including medical diagnostics [28], product positioning [26],
recommendation systems [21] and sentiment analysis in social media
[13]. A common interest in these algorithms in finance is with respect
to the evaluation of the creditworthiness of customers and for the credit
granting decision [13,19,42].
In the literature, researchers and practitioners can find a manifold of
algorithms to conduct a classification tasks, which include, but are not
limited to, the well-known neural networks, support vector machines,
decision trees, k-nearest neighbours, random forests and numerous
more. One of the more recently developed and applied classifiers is the
similarity classifier [33]. The first results for the similarity classifier
were published in Luukka et al. [33]. Since then, the classifier has been
applied to several medical data sets [28,32] and to two bankruptcy data
sets [30], showing high classification accuracies. Moreover, Luukka &
Leppälampi [32] demonstrated that the similarity classifier outperforms
classifiers such as linear discriminant analysis, the C4.5 algorithm [36]
and multi-layer perceptron neural networks on the medical data sets in
their study. Luukka [29] even deployed the classifier on linguistic
statements that were transformed into fuzzy numbers. Overall, the
advantages of the similarity classifier are that it is comparably com-
putationally inexpensive and requires only a small amount of ob-
servations to achieve high classification results [28].
The similarity classifier is premised on the idea to represent each
class in the data by one so-called ideal vector, which can be, for in-
stance, determined with a generalized mean. Each ideal vector is es-
sentially a point in the feature space and the class assignment is con-
ducted based on the highest similarity of an observation with one of
these points that represent the classes. The idea of similarity is closely
related to the concept of distance [14] and the similarity classifier can
be regarded as a distance-based technique. Luukka & Lampinen [31]
pointed out that distance-based techniques may face difficulties to
classify complex data structures. Hence, Luukka & Lampinen [31] in-
troduced the differential evolution based multiple vector prototype
classifier (MVDE). Their approach included defining multiple vectors
that represent each class. This approach demonstrated to be able to
handle data structures for which a simple distance-based technique was
not sufficient [31]. However, Luukka & Lampinen [31] highlighted that
the choice of the number of vectors per each class is pivotal for the
https://doi.org/10.1016/j.dss.2018.04.003
Received 19 October 2017; Received in revised form 23 February 2018; Accepted 19 April 2018
⁎ Corresponding author.
E-mail addresses: christoph.lohrmann@student.lut.fi (C. Lohrmann), pasi.luukka@lut.fi (P. Luukka).
Decision Support Systems 111 (2018) 27–37
Available online 24 April 2018
0167-9236/ © 2018 Elsevier B.V. All rights reserved.
T
accuracy of the classifier performance. The reason behind this is that
too few ideal vectors per class may not be sufficient to appropriately
capture the data complexity while too many will result in overfitting. As
a final remark, these authors stated that a subject for future research is
to optimize for a given data structure a suitable number of re-
presentative class vectors.
1.2. Objectives
In this paper, the idea of using multiple representatives, as pre-
sented in Luukka & Lampinen [31] in the context of their MVDE clas-
sifier, will be transferred to the context of the similarity classifier. The
aim is to define a novel similarity classifier that uses multiple ideal
vectors for the classification. This should enable to classify more com-
plex data structure, including those that are characterized by multiple
decision regions for each class, better than the standard similarity
classifier as presented in Luukka et al. [33]. As a second contribution,
the authors in this paper clearly address the research need mentioned
by Luukka & Lampinen [31] to provide a framework for the choice of
the number of representatives of a class, which is in case of the simi-
larity classifier the number of ideal vectors. The number and position of
these ideal vectors is pivotal for the classification since the distance-
based classifier's ability to capture complex data structures but at the
same time not to overfit the data depends on it. In this paper, a novel
approach for the similarity classifier will be presented, where k-means
clustering in combination with the jump method is conducted to de-
termine suitable multiple deal vectors for each class. The multiple ideal
vectors are then used within the similarity classifier to assign class la-
bels to observations. The novel similarity classifier aims to overcome
the problem of classifying observations with complex data structures.
In particular, we will illustrate the inability of the standard simi-
larity classifier to cope with more complex data structures with artifi-
cial data sets and contrast its result to the novel similarity classifier.
The remaining paper is structured as follows: in Section 2 the
methods deployed for the novel similarity classifier approach will be
introduced and the artificial and real-world data sets will be depicted,
on which the standard and the novel classifier are applied in order to
compare their performances. Moreover, the training procedure for the
classifiers will be described. In Section 3, the results of the comparison
will be presented, which will subsequently be discussed in detail in
Section 4.
2. Methods
2.1. K-means clustering
Clustering in general is concerned with finding clusters that en-
compass observations that are similar to one another and dissimilar to
those observations in other clusters [11]. In other words, observations
in a cluster have small inter-point distances in relation to the distance to
observations in other clusters [4]. The k-means clustering algorithm is
one of the first and widely applied hard clustering algorithms [11,24].
The process behind k-means clustering is rather simple. Initially, one
observation for each cluster is chosen randomly and used as the cen-
troid for the initial cluster [11]. In an iterative procedure, each ob-
servation is assigned first to the nearest cluster and, second, the cluster
centre is adjusted to represent all observations in the cluster [4]. The
assignment of an observation i to the cluster with the closest cluster
centre can be expressed as [4,12]:
= ⎧⎨⎩
− < − ′ ≠′u if x μ x μ for all j j
Otherwise
1 ‖ ‖ ‖ ‖
0
ij
i j i j
2 2
(1)
For the second step, the centre of the closest cluster is adapted for
the new additional observation. A cluster centre μj is updated as [4]:
= ∑∑μ
u x
uj
i ij i
i ij (2)
The objective function that will be minimized with respect to the
membership coefficients and cluster centres is [4,24]:
∑∑= −
= =
J u x μ
i
N
j
k
ij i j
1 1
2
(3)
This function represents the sum of squared distances of each ob-
servation to its cluster centre [4].
2.2. Jump method
An essential aspect of the k-means algorithm is that the data is
partitioned into K clusters. However, K, the number of clusters, has to
be specified in order to conduct the clustering and the choice of K is
nontrivial [4]. The problem for choosing K arises from the fact that the
total squared distance, which is commonly used in the evaluation of a
clustering, will always prefer more clusters to less. Therefore, using this
way of evaluating clusters will end up choosing as many clusters as
observations are available [47]. In the literature, many approaches to
determine a suitable number of clusters can be found. These include the
‘Elbow method’, the ‘Gap statistic’ [40], the ‘Jump method’ [39] and
the ‘Calinski-Harabasz index’ [6]. For the novel similarity classifier, the
k-means with the jump method is chosen since this approach is theo-
retically motivated, applicable for a wide range of problems and mix-
ture distributions, and even performs well when clusters are over-
lapping to a large extent [39]. The ‘jump method’ developed by Sugar &
Gareth [39] is related to rate distortion theory. Distortion is a measure
for the dispersion within clusters [11]. The minimum distortion dk
obtainable with K cluster centres is [39]:
= − −… −d p E X c X c
1 min [() Γ ()]K
c c
X
T
X
, ,
1
K1 (4)
where X is a p-dimensional random variable with a mixture distribution
with G components and covariance matrix Γ for X. In addition, c1,…, cK
are the candidates for the K cluster centres, cX is the cluster centre that
is closest to X, and T indicates the transpose. For the use in practice, the
distortion dK can be estimated based on the minimum distortion dK
obtained in the k-means clustering [39]. The covariance matrix Γ might
in practice not be known. However, Sugar & Gareth [39] stress that the
identity matrix can be used as a simplification, which makes dK the
mean squared error. They deployed this approach and found it to be
robust concerning the shape of the distortion curve for different cov-
ariance matrices [39]. Consequently, the minimum distortions can ea-
sily be obtained given the observations and K clusters. The ‘jump
method’ can be stated as follows [39]:
1. Conduct k-means clustering with a different number of clusters from
1 to K and determine the values for dK , the distortions that corre-
spond to the number of clusters
2. Choose the parameter called ‘transformation power’ denoted by Y,
where Y > 0, which is required for the calculation of the ‘jumps’ in
the next step. A common choice is Y=p/2
3. Transform the distortions with the transformation power Y by
computing −dK Y . Calculate ‘jumps’ as JK= −− −−d dK Y K Y1 , which is the
difference between the transformed distortions of k-means clus-
tering with K clusters compared to K-1 clusters
4. Determine the estimated number of clusters denoted K∗ as the k
corresponding to the largest ‘jump’, which is the maximum JK. In
order to be able to obtain as a result K=1, the distortion for no
clusters is defined as =−d 0Y0
The choice of the Y parameter, the transformation power, is no
straight forward. For uncorrelated features and Gaussian clusters, Sugar
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
28
& Gareth [39] suggest choosing Y=p/2, where p is the number of
dimensions of the data. However, features are often correlated to a
certain extent and do not need to be in Gaussian clusters. If it is im-
practical to analyse the cluster distribution, Sugar & Gareth [39] re-
commend to either use a relatively low value for the transformation
power Y (e.g. 1 or even lower) or to determine Y with the help of the
‘effective’ dimension of the data set. In this paper, two approaches will
be considered, selecting Y premised on the ‘effective’ dimensionality or
simply setting it to 1.
2.3. ‘Effective dimensionality’
In an example, Sugar & Gareth [39] explain that the effective di-
mensionality of a data set is lower than the dimensionality of the fea-
ture space if there are features that are highly correlated. In this paper,
we will use principal component analysis to transform the data into
uncorrelated principal components [1,20]. We will keep only a subset
of all principal components, since the first principal components are
often enough to represent the overall data set and its variance well
[11]. Since the new features are uncorrelated, their effective dimension
should be equal to their dimension. Yet, the choice of how many of the
principal components should be retained is not trivial [35,43]. Ex-
tracting too few principal components will result in a loss of informa-
tion while extracting too numerous principal components might include
irrelevant information or noise [7,51].
In the literature, various methods to determine a suitable number of
principal components can be found [7]. These methods include, but are
not limited to, the modified broken stick model [7], the Guttman-Kaiser
criterion [17,22], the SCREE test [8], the Minimum Partial Average
(MAP) test [43], Bartlett's test [2] and Parallel Analysis [18]. Of these
methods, the MAP and Parallel Analysis demonstrated the highest
performance across different data complexities [35,50,51]. The
minimum average partial (MAP) test is based on conducting a PCA and
subsequently analyse the matrix of partial correlations [7,35,43,50].
The idea behind this procedure is that the average squared partial
correlation will decline until a ‘unique’ component would be removed
[43,50]. Therefore, the stopping point is reached at the minimum
average squared partial correlation [44,50]. According to Velicer [43]
the method results in an exact stopping point for the selection of
principal components. Velicer et al. [44] find that the average of the
partial correlations to the fourth power outperforms the initial ap-
proach with average squared partial correlations for continuous data. A
disadvantage of the MAP is that it can in certain situations under-
estimate the number or principal components to select [50].
The second highly recommended approach is Parallel Analysis de-
veloped by Horn [18] [44,50]. It is based on the criticism that the proof
for another well-known approach for choosing the number of principal
components, the Guttman-Kaiser criterion (also referred to as K1 rule),
is concerned with population statistics and, therefore, not applicable for
samples [15,18]. Essentially, Parallel Analysis is concerned with finding
those principal components that account for a larger amount of var-
iance than a counterpart based on random data [35]. An alternative
approach for Parallel Analysis is to deploy an upper percentile (com-
monly the 95th) for the distribution of the eigenvalues as explained by
Glorfeld [16]. Using this approach decreases the tendency of Parallel
Analysis to extract too numerous components [16].
MAP and Parallel Analysis usually lead to the selection of the same
principal components to retain [35]. However, since results may differ,
applying both approaches is beneficial since MAP and Parallel Analysis
complement each other given that the first may extract too few com-
ponents and the second too many [35,51].
2.4. Novel classification algorithm
The idea of the similarity classifier originates in fuzzy theory. Fuzzy
theory is based on the idea that a number of non-mathematical
properties cannot be reflected by crisp sets since they solely indicate
whether a certain property is present or not [23]. In contrast to that,
fuzzy sets reflect a membership degree to a class or property [49]. Using
membership degrees allows to model partial memberships. This is of
interest for classification since it allows partial membership of an ob-
servation to classes [33]. As a consequence, the similarity measure can
be used as a classifier using the partial membership values of an ob-
servation to classes in order to assign an observation to the class it is
most similar to. This type of classification is referred to as supervised
classification since the class label of observations is known [4,45].
The similarity classifier presented by Luukka et al. [33] was pre-
mised on the idea to compute for each class one so-called ‘ideal vector’
that is supposed the represent that class well. There are several ways of
computing ideal vectors, of which arithmetic mean is one of the earliest
methods used. To classify an observation, it is compared to the ideal
vector of each class and, eventually, a similarity value is calculated. The
similarity embodies a membership degree for an observation to a class.
The class assignment is then simply conducted based on the highest
similarity, meaning that the observation is assigned to the class for
which is shows the highest membership degree (between [0,1]). For
more details, please see Luukka et al. [33] and Luukka [28].
The novel similarity classifier algorithm is premised on the idea to
represent each class by multiple ideal vectors. The k-means clustering
algorithm with the jump method will be deployed in order to determine
the ideal vectors per class and gives a clear answer to the question how
many ideal vectors per class should be constructed. An observation is
then assigned to the class that corresponds to the ideal vector it is
closest to. This approach seems suitable in case that classes have one or
more decision regions that can be represented by one or more clusters.
It should be even adequate when the clusters representing the decision
regions overlap since using the jump method has demonstrated to
perform well even when clusters overlap to a large extent [39]. The idea
is related to the K-Nearest Neighbour (KNN) algorithm but attempts to
be more robust for classification by finding the nearest cluster instead of
the nearest neighbours to conduct the class assignment. Opposed to
KNN, it is not necessary to define the number of nearest neighbours/
clusters, since the nearest cluster aims at representing the nearest re-
gion where observations of a class are located.
The novel algorithm can be characterized by several distinct steps,
which are illustrated in a flow chart in Fig. 1 and depicted in detail
subsequently.
Step 1: Data pre-processing. Before the novel similarity classifier algo-
rithm is applied, the input data require pre-processing. We examined
two different setups: one based on simple standardization to the com-
pact interval [0,1] and using the original features of the data set, and, a
second one, based on normalization of the raw data, so that that they
follow a standard normal distribution and using PCA to extract new
features from the existing features in the data. For the second approach,
a combination of MPA and PA can be used to select a suitable number of
principal components, as recommended by O'Connor [35], and subse-
quently standardize them to the compact interval [0,1] in order for the
similarity classifier to be applicable.
Step 2: Division of the data set. The available data is divided into a
training set and a test set via the hold-out method (e.g. 70% training
samples and 30% test samples).
Step 3: Conduct k-means clustering for each class. For the training
data, the k-means clustering is performed for each class. The clus-
tering is performed for each suggested number of clusters from 1 to
K, where K is a user-specified number. For each number of clusters
K, the average distortion over the observations xi from i=1 to N is
estimated as:
 ∑∑= − −
= =
∗ −
d
N
u x c x c
p
1 () Γ ()
K
i
N
k
K
ik i k
T
i k
1 1
1
(5)
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
29
where uik shows the membership of an observation xi to cluster ck,
which takes for the cluster with the closest cluster centre the value 1
and otherwise 0:
= ⎧⎨⎩
− < − ′ ≠′u if x c x c for all k k
Otherwise
1 ‖ ‖ ‖ ‖
0ik
i k i k
2 2
(6)
This notation differs in certain elements from the one presented
above from Sugar & Gareth [39]. First, the minimization of the dis-
tortion with respect to the cluster centres for a given K is conducted
already in the k-means algorithm, so that is not present in this formula
any more. Second, we use the membership to a cluster in our formula
and include all clusters in it since it appeared more straight-forward for
the implementation then using cX for the notation as the closest cluster
centre. The xi denotes a p-dimensional observation and Γ is the covar-
iance matrix for X, the data set, but can for reasons of simplicity be the
identity matrix, as explained before. The cluster centre candidates are
denoted c1,…, cK and T indicates the transpose. The distortion estimatedK is obtained by summing for each observation xi over the cluster
centres from 1 to K and then summing over the observations themselves
and taking the average over the observations. The outcome for the
class-specific clustering is a distortion vector with each element being a
value of dK corresponding to a specific number of clusters K.
Step 4: Determine optimal number of clusters for each class. For the
jump method, the transformation power Y is then used in the ex-
ponent of the distortions dK to obtain −dK Y . Afterwards, the ‘jumps’,
meaning the differences between subsequent values of these trans-
formed distortions −dK Y , are calculated as:
 = −− −−J d dK K Y K Y1 (7)
where JK is the jump between the distortions of using K and K-1 clusters
on the training data. The number of clusters where the maximum jump
JK can be observed, is the candidate for the optimal number of clusters.
The cluster centres that correspond to the candidate for the optimal
number of clusters is recorded/saved. To choose the optimal number of
clusters for each class, the k-means clustering (Step 3) and the Jump
method (Step 4) are repeated n times (e.g. n=10). This eventuates in n
candidates for the optimal number of clusters for the class. The number
of clusters for a class is then chosen as the most frequent candidate
number of clusters suggested (mode-value).
Step 5: Record ideal vector candidates. For future steps, the cluster
centres of all of the n repetitions of Step 3 and Step 4 that also led to
the optimal number of clusters are recorded/saved. Therefore, for
each class, there are one or more sets of ideal vector candidates.
Step 6: Training with ideal vector candidates. For each class, a
randomly selected set of ideal vector candidates from those saved in
the previous step is chosen and they are used together for the si-
milarity classifier. The calculations in this step correspond to a large
extent to those of the original similarity classifier with the difference
that each set of ideal vector candidates contains multiple ideal
vectors. First, for each feature d the similarity between each ideal
vector candidate vo and each sample (vector), for simplicity of the
index notation denoted x instead of xi, of the training set is calcu-
lated as:
= − −S x v x v(,) 1 | |d o d dp o dp, ,p (8)
where xd denotes the d-th element of the vector of observation x and vo,
d is the d-th element of the ideal vector vo. Moreover, p is a parameter
for the similarity that is in the most basic case set to 1. Afterwards, the
generalized mean from this similarity vector is computed by summing
over all features d and then dividing by the number of features denoted
by D to obtain the similarity of the observation x with the entire ideal
vector candidate vo:
∑= ⎛
⎝⎜
⎞
⎠⎟=
S x v
D
S x v(,) 1 (,)o
d
D
d o d
m
1
,
m
1
(9)
where m is a parameter for the applied mean function and S(x,vo) re-
presents the scalar similarity value of the observation x with the ideal
vector vo. This is repeated for all ideal vectors to obtain for the ob-
servation x the similarity with all clusters (for all classes). Finally, ob-
servation x is assigned to a cluster based on the highest similarity value
that the observation has with the ideal vector (candidate) of a cluster:
=
= …
Cl x S x v() arg max (,)
o O
o
1, . (10)
Since the cluster to which x is assigned, belongs to one of the
classes, the observation is assigned to the corresponding class. This can
be formally expressed as a simple mapping from the cluster Cl of the
observation x to the class C:
=C x f Cl x() (()) (11)
Repeating these calculations of Step 6 for each observation gives all the
predicted class labels. These are compared to the target class labels in the
training data set and the classification accuracy (or another evaluation
criterion) is calculated. The evaluation criterion can be specified by the user,
for instance also the False-Positive-Rate (FPR) or the False-Negative-Rate
(FNR) on the training set can be chosen as evaluation criterion. For the
given combination of sets of ideal vector candidates for each class, this
evaluation criterion is computed. The calculations in this step are repeated
(e.g. 50 times) and for each run a different combination of sets of ideal
vectors are used and the value for the evaluation criterion and the corre-
sponding ideal vector candidates (for all classes) are recorded.
Fig. 1. Flowchart of the similarity classifier with multiple ideal vectors.
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
30
Step 7: Choice of ideal vectors. The combination of sets of ideal
vector candidates that resulted in the best value for the evaluation
criterion for the training set, e.g. the highest performance, are
chosen as the ideal vectors for the similarity classifier. This allows to
customize the choice of ideal vectors to the evaluation criterion. The
authors suggest for instance to choose the ideal vectors to maximise
the mean accuracy or minimize the False-Negative-Rate or False-
Positive-Rate, depending on the application and objective.
Step 8: Calculation of the test set performance. The ideal vectors
obtained from the previous Step 7 are deployed with the similarity
classifier on the test data set from Step 2. The calculation of the
similarities, the assignment of classes and of the performance are
conducted with the formulas (8) to (11) from Step 6.
2.5. Data
For this paper, three artificial data sets are generated to investigate
the difference between the original and novel similarity classifier ap-
proaches. In addition to that, three real-world data sets were obtained
from the UCI Machine Learning Repository [27] to compare the per-
formance of these approaches with other well-known supervised clas-
sification algorithms.
The three artificially composed data sets are all characterized by
multiple decision regions for each class. This setup is supposed to de-
monstrate the novel similarity classifier's ability to use multiple ideal
vectors to cope with more complex decision regions than the original
similarity classifier using only a single ideal vector. Moreover, the
performance with different pre-processing and Y parameters is in-
vestigated. The specific features for each of the three artificial datasets
A, B and C is depicted in Table 1.
The first data set, Case A, normally distributed features with small
variations are generated that form two-dimensional clusters for each
class. In this data set small overlap of classes is present, but the feature
space can almost distinctly be divided into the multiple decision regions
for each class. The second artificial data set, referred to as Case B, is
related to the binary XOR problem with the three-dimensional feature
space being divided into two distinct decision regions for each class
(overall 4 decision regions). The last case, Case C, is characterized by a
three-dimensional feature space for a 4-class classification problem. For
each class, there exist two clusters, one cluster with small variation in
the data and the other with moderate variation. None of the clusters
shows an overlap with another cluster of the same or another class. All
features are scaled into the compact interval [0,1]. The three artificial
data sets are plotted in Fig. 2.
The real-world data sets discussed in this paper are all related to the
approval and quality of credit borrowers. It seemed reasonable to use
these data sets since we assumed that distinct decision regions for good
and bad applicants exist and that they can be characterized rather well
in form of multiple clusters. Moreover, the class imbalance that is
common for many credit default/approval problems, meaning that one
class can be considerably larger than the other, is assumed to be more
effectively addressed with a classifier based on clusters than e.g. simply
based on nearest neighbours. However, we want to remark, that our
selection for real-world data sets is by no means exhaustive and
knowing in advance in what real-world data sets this is useful is not
possible.
The subject of credit approval is essential for financial institutes
since they require approaches to support the decision-making for loan
applications as well as for the ongoing monitoring of the financial si-
tuation of their clients [42,46]. The credit granting decision copes with
the risk of granting credits to not suitable applicants and the non-ac-
ceptance of credits for solvent clients [25]. The classification of clients
is particularly important since a credit scoring that is conducted ef-
fectively will most likely lead to savings in the future [48].
The first credit data set is available at the UCI Machine Learning
Repository as ‘Credit Approval Data Set’. It is listed as a ‘Financial’ data
set and neither the date of donation nor the author is known. The data
set contains 690 observations of 15 features related to credit card ap-
plications. Six features are continuous. The remaining attribute values
in the data set have been adjusted to meaningless symbols by the donor.
We changed these symbols for the similarity classifier into discrete in-
teger values. The class label is binary and indicates whether a credit
was granted to a client or if the credit proposal was rejected. The fea-
tures characterize the client and represent properties of the credit de-
cision. The ‘Credit Approval’ data set contains missing values, which
have been removed for this study, which leaves 653 complete ob-
servations for the classification task.
The second real-world data set is the numeric version of the ‘Statlog
(German Credit Data) Data Set’. The original data set was donated by
Professor Dr. Hans Hofmann in 1994 and adjusted by Strathclyde
University by changing categorical features into numeric integer-valued
ones. This data set encompasses 1000 observations with 24 numeric
features. It does not contain any missing values. The data are char-
acterized by two classes, which represent the evaluation if a person is a
good or bad credit-taker and the 24 features embody characteristics of
the credit borrower. In contrast to all other data set, the imbalance in
this data set was high with 70% belonging to the first group and 30% to
the second.
The third and last real-world data set is the ‘Statlog (Australian
Credit Approval) Data Set’, which is an adapted form of the ‘Credit
Approval Data Set’. Neither the donor nor the date of donation for this
data set is known. This financial data set is also related to credit card
applications. The data set contains 690 observations without missing
values. The 14 features, of which 6 are continuous and 8 are discrete,
represent the characteristics of a credit applicant. The binary class label
indicates whether the credit decision was positive or negative.
2.6. Data pre-processing and training process
As mentioned above, one out of two approaches for the pre-pro-
cessing in this paper is based on principal component analysis and
choosing a suitable number of principal components as new features.
For the choice of the number of principal components, Parallel Analysis
(with 1000 random data sets) as the upper bound for the number of
components, and MAP will be used. If the result differs between MAP
[44] and PA, it will be investigated whether the MAP decision was
‘close’. Since the authors did not find a specification for what con-
stitutes a ‘close call’ [35], it is defined as an increase of the average
Table 1
Characteristics of the three artificial data sets.
Cases Observations Class Feature 1 Feature 2 Feature 3
Case A 900 1 N(1,0.2) N(1,0.2) –
1 N(2,0.2) N(2,0.2) –
1 N(3,0.2) N(3,0.2) –
2 N(3,0.2) N(2,0.2) –
2 N(2,0.2) N(1,0.2) –
2 N(1,0.2) N(3,0.2) –
3 N(3,0.2) N(1,0.2) –
3 N(1,0.2) N(2,0.2) –
3 N(2,0.2) N(3,0.2) –
Case B 1000 1 [0, 0.5) [0, 0.5) [0, 1]
1 [0.5, 1] [0.5, 1] [0, 1]
2 [0, 0.5) [0.5, 1] [0, 1]
2 [0.5, 1] [0, 0.5) [0, 1]
Case C 1000 1 N(2,0.1) N(2,0.1) N(2,0.1)
1 N(6,0.5) N(6,0.5) N(6,0.5)
2 N(6,0.1) N(6,0.1) N(2,0.1)
2 N(2,0.5) N(2,0.5) N(6,0.5)
3 N(2,0.5) N(6,0.5) N(2,0.5)
3 N(6,0.1) N(2,0.1) N(6,0.1)
4 N(6,0.5) N(2,0.5) N(2,0.5)
4 N(2,0.1) N(6,0.1) N(6,0.1)
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
31
partial correlations per step of< 70% points. The reasoning behind this
choice is that in the regarded cases in this paper, changes per additional
component that showed a difference of up to 70% points appeared
small compared to larger changes that were characterized by increases
of at least 100% for an additional component. Therefore, the 70%
points threshold for an additional component appears to be justified.
For the k-means clustering, we suggest K, the maximum number of
clusters that k-means is performed with, to be set as the maximum of,
first, 10 clusters and, second, of the number of observations contained
in the smallest class divided by 20. This should ensure that the number
of clusters K is only set larger than 10 if on average 20 or more ob-
servations will be contained in a cluster. If the data set is small or the
minority class(es) encompass few observations, the minimum number
of clusters might have to be reduced below 10 to avoid a potential
overfit. On the other hand, if the data set is large, the average number
of observations per cluster to allow additional clusters can be set higher
to capture all pattern contained in the data.
For the classification, the data is divided with the holdout method
and using stratified sampling. For all algorithms in this paper the ob-
servations were split into 70% training data and the remaining 30% for
testing. For all classifiers, despite the standard and novel similarity
classifiers, 1000 iterations are performed during the training of the
classifiers.
For the standard and novel similarity classifiers, the entire algo-
rithm is run for different combinations of the p- (varied from 1 to 8) and
m-parameter (varied from 1 to 6) to find the values for p and m with
which highest mean accuracy for the given dataset can be reached. This
is referred to as ‘optimal value search’ and for each combination of p
and m, 100 iterations of the algorithm are performed before the mean
performances are computed. In general, conducting the optimal value
search increases the number of required computations to improve the
mean classification accuracy. In order to avoid increasing the compu-
tational complexity notably, 100 iterations are conducted with optimal
value search as opposed to 1000 iterations for the remaining classifi-
cation algorithms.
For the novel similarity classifier, the number of clusterings n (in
Step 3 and 4 of the algorithm) was set to 10 and the random combi-
nations for the ideal vector candidates was chosen to be 50 (Step 6 of
the algorithm).
For the simplified artificial data sets with known structure using the
standard parameters p= 1 (parameter for similarity) and m=1
(parameter for the generalized mean) for all similarity classifiers is
sufficient, since the data structures are simple enough to find very good
solutions without an optimal value search. For the real-world data sets,
the performance of the novel and original similarity classifiers is
compared to the K-nearest neighbour algorithm [10], the Naive Bayes
classifier [38], decision trees [37] and the ensemble learning algorithm
called random forest [5]. All calculations are implemented with the
MATLAB™- software. The code for the MAP and PA are based on Ma-
tlab-files provided by O'Connor [34].
3. Results
3.1. Results for the artificial data sets
First, the results for the artificial datasets are presented in Table 2.
For the first artificial dataset, Case A, the standard classifier in the
three-class problem shows a mean accuracy of only 32.47%. In contrast
to that, the mean accuracy of the novel similarity classifiers is 96.97%
and 96.87% respectively. It has to be stressed, that for the two-di-
mensional Case A transformation power Y=p/2 is also equal 1 (since p
is in the context of the jump method the dimensionality). Consequently,
the results in Case A are for both novel classifiers essentially equal.
Using the one-sided version of the Welch's test with unequal variance to
test whether one population mean is larger than another, the means for
the novel similarity classifier with both transformation powers are
highly significantly larger than that of the standard classifier (with>
99.99% confidence). Clearly, for the two remaining 3-dimensional
cases, Y=p/2 and Y=1 do not take the same values. For Case B the
highest result is accomplished with the novel similarity classifier with
Y=1 with 96.53%. For the novel similarity classifier with transfor-
mation power of Y=p/2 the mean accuracy is 90.49%, which is highly
significantly lower than that of the same classifier with Y= 1. How-
ever, only the standard classifier reaches a mean accuracy of close to
50%. On account of this, the novel similarity classifiers both perform
highly significantly better on Case B than the original similarity clas-
sifier with a single ideal vector. For the last data set, Case C, the
Fig. 2. Artificial data sets.
Table 2
Performance for artificial data sets with standard parameters.
Data set Similarity Mean accuracy Variance runs Y
Case A Standard 0.3247 0.0037 100 –
Case A Novel 0.9697 0.0001 100 p/2
Case A Novel 0.9687 0.0001 100 1
Case B Standard 0.5142 0.0006 100 –
Case B Novel 0.9049 0.0009 100 p/2
Case B Novel 0.9653 0.0004 100 1
Case C Standard 0.3493 0.0081 100 –
Case C Novel 1 0 100 p/2
Case C Novel 1 0 100 1
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
32
standard similarity classifier reaches for the four-class problem a mean
accuracy of 34.93% while the novel similarity classifier with Y= 1 and
Y=p/2 accomplishes a 100% performance on the non-overlapping
class clusters of the data set. This result is once again highly significant
compared to the standard classifier (with>99.99% confidence).
The performance of the novel similarity classifier and the standard
similarity classifier are also tested with the suggested pre-processing
with PCA. The mean accuracies obtained with this pre-processing are
highlighted in Table 3. The magnitude of the performances for the ar-
tificial data sets is comparable with those without PCA. For Case 3 both
transformation powers for the novel classifier eventuate in a 100%
mean accuracy. Overall, the results for all artificial data sets show that
the novel similarity classifier with and without PCA as pre-processing
clearly outperforms the standard similarity classifier with the mean
accuracy being in all cases highly significantly larger (with>99.99%
confidence). However, the difference in the performances with the two
transformation powers Y can be significant, as was observed for Case B.
Overall, these artificially created classification problems clearly show
the advantage of the proposed novel method compared to the standard
similarity classifier.
The results for the artificial data sets are calculated only for the
default parameters for the similarity of p=1 and m=1, since the
results of the novel similarity classifier are already high and only a
marginal improvement could be expected for these data sets.
3.2. Results for the real-world data sets
In this next step, the results of the real-world credit data sets
achieved with the similarity classifiers and different pre-processing
methods are presented and compared with the performances of the
KNN algorithm, the Naive Bayes classifier, decision trees and random
forests on these credit data sets.
The performance of all classifiers on the first real-world data sets,
the ‘Credit Approval’ data set, is highlighted in Table 4. The first seven
classifiers presented there are the standard and novel similarity classi-
fier with different pre-processing methods. The remaining 9 classifiers
are different setups for the remaining benchmark algorithms. For KNN
the result on the test set with a single nearest neighbour, the 10 nearest
neighbours and for the optimal number k are displayed. To obtain the
optimal number for k, the KNN algorithm was run for all k from 1 to the
training sample size and the result on the test data set for the setup
leading to the best mean accuracy on the training data set was chosen
and is displayed in the table. For the Naive Bayes classifier two setups
were used: the first assumed normal Gaussian distributions, the second
used a kernel with normal smoothing. The random forest is composed
of 50 decision trees and is implemented in the first setup with minimum
leafsize of 1. The second setup displays the mean performance on the
test data set based on the minimum leafsize (from 10 to 100 by steps of
10) that showed the highest mean training performance. The same
procedure was deployed for the two decision tree setups. The different
leafsizes are tried since too small leafsizes may incorporate noise and
harm the generalization ability while too large leafsizes can result in a
classifier that only captures the broadest patterns.
For the ‘Credit Approval’ data set, the highest performance of
87.33% is reached with the ensemble learning algorithm random de-
cision forest with minimum leafsize= 1. This performance is closely
followed by the random decision forest with minimum leafsize= 10
with mean accuracy 87.08% and the novel similarity classifier with
transformation power Y= 1 leading to mean performance of 87.06%.
Three aspects of this result are noteworthy. First, the novel similarity
classifier with Y= 1 achieves a performance that is competitive to the
one of the ensemble learning algorithm, random forest, and possesses
the highest mean accuracy for all classifiers that are based on a single
learning algorithm. Second, using the Welch's test (with unequal var-
iances), it can be demonstrated that the mean accuracy accomplished
with the novel similarity classifier with Y=1 is highly significantly
larger than that of the standard similarity classifier (p-value < 0.001).
Thirdly, in comparison with all other single learning algorithm-based
classifiers, the mean accuracy of the novel similarity classifier with
Y=1 shows a highly significant positive difference in the mean per-
formance. The classifier mean accuracies with the 4 selected principal
components (PCs) in the pre-processing are between 5.42% to 8.09%
lower than its direct counterpart without PCA and only standardized
initial features.
In credit scoring and for the evaluation of credit applications, the
consequences of misclassification are unequal. Consequently, it appears
suitable to evaluate the classifiers' performances also with respect to the
False-Negative-Rate (FNR) and the False-Positive-Rate (FPR). For all
real-world data sets, the FNR represents the proportion of falsely re-
jected customers to the sum of falsely rejected customers and the
rightfully accepted customers. In other words, it is the share of custo-
mers that is falsely classified as bad compared to all customers that are
actually good. Opposed to that, the FPR is the proportion of falsely
accepted customers to the sum of falsely accepted customers and the
rightfully rejected ones. The FPR is with respect to credit decisions
more relevant than the FNR. In particular, classifying a bad customer
falsely as a good one and giving him/her a credit that may not be repaid
(as focused on by FPR) outweighs the potential forgone profit of as-
signing a good customer to the bad customer class (as emphasized by
FNR) [3,9,41].
Since the FPR is of additional relevance for credit scoring, for each
real-world data set one novel similarity classifier was customized in the
choice of ideal vectors with respect to the FNR rate. This classifier is
referred to as ‘Novel Similarity Classifier (Minimize FPR)’. The lowest
FPR rate for the ‘Credit Approval’ data set of 7.2% is achieved for the
standard similarity classifier. On the other hand, the FNR for this setup
belongs with 19.6% to one of the higher rates and is above the mean
and median of all classifiers. The FNR of the novel similarity classifier
with Y= 1 is with 5.6% one of the lowest, while the FPR with 19.0% is
above the median of all algorithms. Comparing FPR and FNR stressed
that the novel similarity classifier with Y=1 performs very well with
respect to avoiding allocating good customers in the ‘bad’ class and
foregoing profits but worse than the average in recognizing customers
that should not be assigned to the ‘good’ class and, therefore, avoiding
credit default. The ‘Novel Similarity Classifier (Minimize FPR)’ with
Y=1 leads to a slight improvement of the FPR from 19.0% to 15.5%
compared to the novel similarity classifier with Y=1 that was custo-
mized with respect to the mean accuracy. This improvement in FPR was
accomplished as a trade-off to the mean accuracy. However, for this
data set the ensemble learner random forest still achieved a better FPR
and at the same time a higher classification accuracy. The result of the
optimal parameter value search for the ‘Credit Approval’ data set with
the novel similarity classifier with Y= 1 is illustrated in Fig. 3.
The surface for the mean accuracy for the novel similarity classifier
appears smooth and high accuracies are achieved and seem robust with
respect to several different setups of the p and m parameter.
The classification performances for the ‘German Credit’ data set are
presented in Table 5. The best mean accuracy for the ‘German Credit’
Table 3
Performance for artificial data sets after optimal value search.
Data set Similarity PC Mean accuracy Variance Y
Case A Standard-PCA 2 0.3116 0.0039 –
Case A Novel - PCA 2 0.9912 0.0000 p/2
Case A Novel - PCA 2 0.9913 0.0000 1
Case B Standard-PCA 3 0.4824 0.0005 –
Case B Novel - PCA 3 0.9028 0.0011 p/2
Case B Novel - PCA 3 0.9613 0.0001 1
Case C Standard-PCA 3 0.3135 0.0085 –
Case C Novel - PCA 3 1 0 p/2
Case C Novel - PCA 3 1 0 1
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
33
data set of 75.84% is again reached with the random forest algorithm.
Notwithstanding, the highest classification accuracies of single classi-
fier algorithms is once more accomplished with the novel similarity
classifier with Y=1. Compared to the remaining single classifier al-
gorithms, the novel similarity classifier's mean classification accuracy is
highly significant with the single exception of the standard similarity
classifier based on 8 PCs. Notably, the performance of the standard
similarity classifier with and without PCA belongs to the best mean
accuracies for all algorithms on this data set. However, the novel si-
milarity classifier's mean accuracy is significantly larger than that of the
standard similarity classifier (p-value= 0.0193).
For the ‘German credit’ data set, the novel similarity classifier with
Y= 1, eventuates in a FPR of 67.4%, which is in absolute terms high
but compared to all other algorithms not far from the mean FPR. For the
FNR, this classifier ends up with a value of 9.5%, which belongs to the
better results for FNR, being well below the median value. The most
accurate classifiers, the random forests, show FPR values of 58.1% and
66.8%. The tendency of most algorithms to result in high FP rates and
lower FN rates appears to be the consequence of the high class im-
balance with the positive class being with 70% the apparent majority.
However, the novel similarity classifier that was customized to result in
lower FPR values shows the opposite behaviour, being with a low FPR
of 17% good at avoiding to give credits to ‘bad’ customers while with
53.5% FNR being worse at not giving credits to ‘good’ customers. Given
that the FPR for credit decisions is of higher relevance, this algorithm
seems very suitable to reduce potential losses. The result of the optimal
parameter value search for the ‘German Credit’ data set of the novel
similarity classifier with Y= 1, is illustrated in Fig. 4. It again shows a
rather stable and smooth surface for the mean classification depending
on the p and m parameter showing that good classification perfor-
mances can be reached with different setups of these parameters.
The classification results on the third real-world data set, the
‘Australian Credit’ data set, are presented in Table 6. The highest mean
accuracy on the ‘Australian Credit’ data set is 87.37%, which is
achieved with the novel similarity classifier with transformation power
Y=1. The performance of the standard similarity classifier with
87.27% embodies the second highest mean accuracy. It is remarkable,
that the mean performance of the novel similarity classifier with Y=1
not only exceeds the mean performance of the ensemble learner
random forest, but this difference is even highly significant. On top of
that, the mean accuracy of the novel similarity classifier with Y=1 is
highly significantly larger than that of almost all other algorithms - the
KNN classifiers, decision trees, random decision forests, Naive Bayes
and the novel similarity classifiers – with the sole exception of the
standard similarity classifier.
The lowest FPR rate for the ‘Credit Approval’ data set of 9.0% is
accomplished with the novel similarity classifier that was customized to
result in low FPR rates. Also, this algorithm still leads to a performance
that is competitive or higher than that of the KNN algorithms, the Naive
Bayes and the decision trees. The novel similarity classifier with Y=1,
the best performing algorithm on this data set, is with a FPR of 13.3%
still below the average FPR rate of all classifiers. The FPR of the random
forests is with 12.4% and 12.0% in magnitude comparable to that of the
novel similarity classifier with Y= 1. The result of the optimal para-
meter value search for the ‘Australian Credit’ data set and the novel
similarity classifier with Y= 1 is illustrated in Fig. 5.
Overall, the novel similarity classifier achieved for all artificial data
sets superior classification results to the standard similarity classifier
Table 4
Results for the ‘Credit Approval’ data set (the highest mean accuracy, the lowest FNR and the lowest FPR are highlighted in bold).
Classification algorithm Mean accuracy Variance Mean FNR Mean FPR p m Y
Standard similarity classifier 0.8599 0.0004 0.196 0.072 6 4 –
Novel similarity classifier 0.8525 0.0005 0.133 0.160 1 1 p/2
Novel similarity classifier 0.8706 0.0005 0.056 0.190 6 5 1
Novel similarity classifier (minimize FPR) 0.8615 0.0003 0.119 0.155 2 6 1
Standard similarity classifier (PCA, 4 PCs) 0.8057 0.0005 0.010 0.284 1 1 –
Novel similarity classifier (PCA, 4 PCs) 0.7716 0.0008 0.243 0.216 1 2 p/2
Novel similarity classifier (PCA, 4 PCs) 0.8076 0.0005 0.324 0.085 4 4 1
K-nearest neighbours, k= 1 0.8184 0.0005 0.207 0.161 – – –
K-nearest neighbours, k= 10 0.8608 0.0004 0.142 0.137 – – –
K-nearest neighbours, best k= 1 0.8184 0.0005 0.207 0.161 – – –
Naive Bayes (normal Gaussian distribution) 0.8039 0.0006 0.321 0.093 – – –
Naive Bayes (kernel with normal smoothing) 0.6823 0.0012 0.425 0.230 – – –
Random decision forest (min leafsize= 1) 0.8733 0.0004 0.129 0.125 – – –
Random decision forest (min leafsize= 10) 0.8708 0.0004 0.126 0.132 – – –
Decision tree (min leafsize= 1) 0.8322 0.0007 0.194 0.147 – – –
Decision tree (min leafsize= 10) 0.8561 0.0005 0.157 0.133 – – –
Fig. 3. Optimal value search for the novel similarity classifier with Y= 1 (‘Credit Approval’ data set).
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
34
with only a single ideal vector per class. For the real-world data sets, the
novel similarity classifier with Y=1 was performing at least as accu-
rate as the standard classifier, in two data sets it was significantly more
accurate than the standard similarity classifier, in one of them the
difference was even highly significant. Compared to the remaining
benchmark algorithms, the novel similarity classifier showed in most
cases competitive result, often even outperforming the benchmark
classifiers.
4. Discussion
In this paper, the authors designed a novel similarity classifier based
on k-means clustering. The k-means clustering is deployed in combi-
nation with the jump method to determine the number of clusters and
also the cluster centres themselves for each class. These clusters are
then used as the multiple ideal vectors for each class in the similarity
classifier. It is also possible to a certain extent to customize the classifier
Table 5
Results for the ‘German Credit’ data set (the highest mean accuracy, the lowest FNR and the lowest FPR are highlighted in bold).
Classification algorithm Mean Accuracy Variance Mean FNR Mean FPR p m Y
Standard similarity classifier 0.7263 0.0003 0.099 0.683 4 1 –
Novel similarity classifier 0.6822 0.0005 0.158 0.691 8 1 p/2
Novel similarity classifier 0.7314 0.0003 0.095 0.674 4 1 1
Novel similarity classifier (minimize FPR) 0.5750 0.0012 0.535 0.170 2 6 1
Standard similarity classifier (PCA, 8 PCs) 0.7299 0.0004 0.142 0.570 3 5 –
Novel similarity classifier (PCA, 8 PCs) 0.6966 0.0008 0.281 0.355 3 1 p/2
Novel similarity classifier (PCA, 8 PCs) 0.6998 0.0006 0.298 0.304 2 1 1
K-nearest neighbours, k= 1 0.6715 0.0005 0.237 0.543 – – –
K-nearest neighbours, k= 10 0.7164 0.0005 0.162 0.568 – – –
K-nearest neighbours, best k= 1 0.6715 0.0005 0.237 0.543 – – –
Naive Bayes (normal Gaussian distribution) 0.7233 0.0006 0.229 0.388 – – –
Naive Bayes (kernel with normal smoothing) 0.7068 0.0001 0.013 0.947 – – –
Random decision forest (min leafsize= 1) 0.7584 0.0003 0.096 0.581 – – –
Random decision forest (min leafsize= 10) 0.7516 0.0003 0.069 0.668 – – –
Decision tree (min leafsize= 1) 0.6946 0.0007 0.218 0.510 – – –
Decision tree (min leafsize= 10) 0.7197 0.0006 0.167 0.545 – – –
Fig. 4. Optimal value search for the novel similarity classifier with Y=1 (‘German Credit’ data set).
Table 6
Results for the ‘Australian Credit’ data set (the highest mean accuracy, the lowest FNR and the lowest FPR are highlighted in bold).
Classification algorithm Mean accuracy Variance Mean FNR Mean FPR p m Y
Standard similarity classifier 0.8727 0.0004 0.144 0.114 3 3 –
Novel similarity classifier 0.8469 0.0005 0.151 0.155 1 1 p/2
Novel similarity classifier 0.8737 0.0004 0.118 0.133 2 3 1
Novel similarity classifier (minimize FPR) 0.8478 0.0005 0.229 0.090 2 6 1
Standard similarity classifier (PCA, 3 PCs) 0.8283 0.0005 0.268 0.094 1 2 –
Novel similarity classifier (PCA, 3 PCs) 0.7940 0.0006 0.273 0.152 1 3 p/2
Novel similarity classifier (PCA, 3 PCs) 0.8273 0.0004 0.228 0.128 1 1 1
K-nearest neighbours, k= 1 0.7997 0.0005 0.223 0.182 – – –
K-nearest neighbours, k= 10 0.8513 0.0004 0.177 0.126 – – –
K-nearest neighbours, best k= 1 0.7997 0.0005 0.223 0.182 – – –
Naive Bayes (normal Gaussian distribution) 0.8016 0.0005 0.329 0.093 – – –
Naive Bayes (kernel with normal smoothing) 0.6877 0.0015 0.417 0.228 – – –
Random decision forest (min leafsize= 1) 0.8676 0.0004 0.143 0.124 – – –
Random decision forest (min leafsize= 10) 0.8653 0.0004 0.153 0.120 – – –
Decision tree (min leafsize= 1) 0.8307 0.0006 0.194 0.149 – – –
Decision tree (min leafsize= 10) 0.8483 0.0005 0.164 0.142 – – –
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
35
by the choice of the evaluation criterion during the training to focus on
the mean accuracy, the False-Positive-Rate (FPR) or another metric. In
this research, two methods for pre-processing and for the choice of the
transformation power Y are proposed. The first one is premised on a
simple standardization to [0,1] and using simple transformation power
Y= 1. This method led on the artificial and real-world data sets in most
cases to the highest performance accuracy. The second approach based
on the ‘effective dimensionality’ eventuated in the majority of cases in
lower mean accuracies than the first method. Therefore, the authors
suggest, premised on the observed results, to use the novel similarity
classifier on standardized data with transformation power Y=1 since it
showed superior results compared to the standard similarity classifier.
On the real-world data sets, the novel similarity classifier with trans-
formation power Y set to 1 achieved in most cases competitive mean
accuracies and on the Australian Credit Data set even the highest mean
accuracy. Except for the ensemble learning technique random forest,
the novel similarity classifier with Y=1 was often significantly or
highly significantly more accurate than the benchmark algorithms in
this study. Moreover, the novel similarity classifier customized to
achieve small FPR reached comparably low FPR values, in two out of
three cases even accomplishing the lowest FPR of all algorithms.
Finally, a future research need is a systematic analysis of the transfor-
mation power for the novel similarity classifier for different data sets.
References
[1] H. Abdi, L.J. Williams, Principal component analysis, Wiley Interdisciplinary
Reviews: Computational Statistics 2 (2010) 433–459.
[2] M.S. Bartlett, Tests of significance in factor analysis, British Journal of Statistical
Psychology 3 (2) (1950) 77–85.
[3] V.L. Berardi, G.Q. Zhang, The effect of misclassification costs on neural network
classifiers, Decision Sciences Institute, 1997 Annual Meeting, Proceedings, Vols.
1–3, 30(3) 1997, pp. 364–366.
[4] C.M. Bishop, Pattern Recognition and Machine Learning, Springer ScienceBusiness
Media, New York, 2006.
[5] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.
[6] T. Calinski, J. Harabasz, A dendrite method for cluster analysis, Communications in
Statistics - Theory and Methods 3 (1) (1974) 1–27.
[7] R. Cangelosi, A. Goriely, Component retention in principal component analysis with
application to cDNA microarray data, Biology Direct 2 (2007) 2.
[8] R.B. Cattell, The scree test for the number of factors, Multivariate Behavioral
Research 1 (2) (1966) 245–276.
[9] C.-L. Chuang, S.-T. Huang, A hybrid neural network approach for credit scoring,
Expert Systems 28 (2) (2011) 185–196.
[10] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Transactions on
Information Theory 13 (1) (1967) 21–27.
[11] G. Dougherty, Pattern Recognition and Classification: An Introduction, Springer
ScienceBusiness Media, New York, 2013.
[12] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley, Section, New
York, 2000.
[13] S. Figini, F. Bonelli, E. Giovannini, Solvency prediction for small and medium en-
terprises in banking, Decision Support Systems 102 (2017) 91–97.
[14] F. Formato, G. Gerla, L. Scarpati, Fuzzy subgroups and similarities, Soft Computing
3 (1999) 1–6.
[15] L.E. Garrido, F.J. Abad, V. Ponsoda, A new look at Horn's parallel analysis with
ordinal variables, Psychological Methods 18 (4) (2013) 454–474.
[16] L.W. Glorfeld, An improvement on Horn's parallel analysis methodology for se-
lecting the correct number of factors to retain, Educational and Psychological
Measurement 55 (3) (1995) 377–393.
[17] L. Guttman, Some necessary conditions for common-factor analysis, Psychometrika
19 (2) (1954) 149–161.
[18] J.L. Horn, A rationale and test for the number of factors in factor analysis,
Psychometrika 30 (2) (1965) 179–185.
[19] Z. Huang, H. Chen, C.-J. Hsu, W.-H. Chen, S. Wu, Credit rating analysis with support
vector machines and neural networks: a market comparative study, Decision
Support Systems 37 (4) (2004) 543–558.
[20] J.E. Jackson, A User's Guide to Principal Components, John Wiley & Sons, Inc.,
1991.
[21] Y. Jiang, J. Shang, Y. Liu, Maximizing customer satisfaction through an online re-
commendation system: a novel associative classification model, Decision Support
Systems 48 (3) (2010) 470–479.
[22] H.F. Kaiser, A note on Guttman's lower bound for the number of common factors,
British Journal of Psychology 14 (1961) 1–2.
[23] F. Klawoon, J.L. Castro, Similarity in fuzzy reasoning, Mathware and Soft
Computing, 2 1995, pp. 197–228.
[24] S. Koutroumbas, K. Theodoridis, Pattern recognition, Pattern Recognition 8 (2003).
[25] T.-S. Lee, C.-C. Chiu, Y.-C. Chou, C.-J. Lu, Mining the customer credit using clas-
sification and regression tree and multivariate adaptive regression splines,
Computational Statistics and Data Analysis 50 (4) (2006) 1113–1130.
[26] N. Lei, S.K. Moon, A decision support system for market-driven product positioning
and design, Decision Support Systems 69 (2015) 82–91.
[27] M. Lichman, UCI machine learning repository, Retrieved from, 2013. http://
archive.ics.uci.edu/ml, .
[28] P. Luukka, Similarity classifier in diagnosis of bladder cancer, Computer Methods
and Programs in Biomedicine 89 (2008) 43–49.
[29] P. Luukka, PCA for fuzzy data and similarity classifier in building recognition
system for post-operative patient data, Expert Systems with Applications 36 (2 Part
1) (2009) 1222–1228.
[30] P. Luukka, Nonlinear fuzzy robust PCA algorithms and similarity classifier in
bankruptcy analysis, Expert Systems with Applications 37 (12) (2010) 8296–8302.
[31] P. Luukka, J. Lampinen, Differential evolution based multiple vector prototype
classifier, Computing and Informatics 34 (5) (2015) 1151–1167.
[32] P. Luukka, T. Leppälampi, Similarity classifier with generalized mean applied to
medical data, Computers in Biology and Medicine 36 (2006) 1026–1040.
[33] P. Luukka, K. Saastamoinen, V. Könönen, A classifier based on the maximal fuzzy
similarity in the generalized Lukasiewicz-structure, 10th IEEE International
Conference on Fuzzy Systems, 2001.
[34] B.P. O'Connor, Code for minimum average partial correlation test and parallel
analysis, Retrieved from, 2000. https://people.ok.ubc.ca/brioconn/nfactors/
nfactors.html, .
[35] B.P. O'Connor, SPSS and SAS programs for determining the number of components
using parallel analysis and Velicer's MAP test, Behavior Research Methods,
Instruments, & Computers 32 (3) (2000) 396–402.
[36] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,
San Mateo, 1992.
[37] J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1) (1986) 81–106.
[38] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition,
Prentice Hall, 2009, pp. 1–1132.
[39] C. Sugar, J. Gareth, Finding the number of clusters in a data set: an information
theoretic approach, Journal of the American Statistical Association 98 (2003)
750–763.
[40] R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data set
via the gap statistic, Journal of the Royal Statistical Society, Series B (Statistical
Methodology) 63 (2) (2001) 411–423.
[41] C.-F. Tsai, J.-W. Wu, Using neural network ensembles for bankruptcy prediction and
credit scoring, Expert Systems with Applications 34 (4) (2008) 2639–2649.
[42] R. Tsaih, Y.J. Liu, W. Liu, Y.L. Lien, Credit scoring system for small business loans,
Decision Support Systems 38 (1) (2004) 91–99.
Fig. 5. Optimal value search for the novel similarity classifier with Y= 1 (‘Australian Credit’ data).
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
36
[43] W.F. Velicer, Determining the number of components from the matrix of partial
correlations, Psychometrika 41 (3) (1976) 321–327.
[44] W.F. Velicer, C.A. Eaton, J.L. Fava, Construct explication through factor or com-
ponent analysis: a review and evaluation of alternative procedures for determining
the number of factors or components, Problems and Solutions in Human
Assessment, vol. 1998, 2000, pp. 41–71.
[45] A.R. Webb, Statistical Pattern Recognition, John Wiley Sons, Malvern, 2002.
[46] D. West, S. Dellana, J. Qian, Neural network ensemble strategies for financial de-
cision applications, Computers and Operations Research 32 (10) (2005)
2543–2559.
[47] I.H. Witten, E. Frank, Data mining: practical machine learning tools and techniques,
Machine Learning, 2005.
[48] L. Yu, S. Wang, K.K. Lai, L. Zhou, Bio-inspired credit risk analysis, Bio-inspired
Credit Risk Analysis: Computational Intelligence With Support Vector Machines,
2008.
[49] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
[50] W.R. Zwick, W.F. Velicer, Factors influencing four rules for determining the number
of components to retain, Multivariate Behavioral Research 17 (2) (1982) 253.
[51] W.R. Zwick, W.F. Velicer, Comparison of five rules for determining the number of
components to retain, Psychological Bulletin 99 (3) (1986) 432.
Christoph Lohrmann received the M.Sc. degree with Distinction in Banking and
Financial Management in 2016 from the Institute for Financial Services, University of
Liechtenstein, Liechtenstein. He is currently PhD student in Computational Engineering
with the School of Engineering Science, Lappeenranta University of Technology. His re-
search interests include data analysis, classification, feature selection, decision-making
and financial markets.
Pasi Luukka received the M.Sc. degree in 1999 from the Department of Information
Technology, Lappeenranta University, Finland, where he also received the D.Sc. degree in
Applied Mathematics in 2005 from the Department of Mathematics and Physics. He is
currently Full Professor with the School of Business and Management, Lappeenranta
University of Technology. His research interests include fuzzy data analysis, classifica-
tion, feature selection and fuzzy decision-making.
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
37

Publication IV
Lohrmann, C., Luukka, P.
Using clustering for supervised feature selection to detect relevant features
Reprinted with permission from
Lecture Notes in Computer Science
Vol. n.d, pp. n.d, 2019
© 2019, Springer Nature Switzerland AG

ACTA UNIVERSITATIS LAPPEENRANTAENSIS
852. RISSANEN, TOMMI. Perspectives on business model experimentation in
internationalizing high-tech companies. 2019. Diss.
853. HASSANZADEH, AIDIN. Advanced techniques for unsupervised classification of remote
sensing hyperspectral images. 2019. Diss.
854. POPOVIC, TAMARA. Quantitative indicators of social sustainability applicable in
process systems engineering. 2019. Diss.
855. RAMASAMY, DEEPIKA. Selective recovery of rare earth elements from diluted
aqueous streams using N- and O –coordination ligand grafted organic-inorganic hybrid
composites. 2019. Diss.
856. IFTEKHAR, SIDRA. Synthesis of hybrid bio-nanocomposites and their application for
the removal of rare earth elements from synthetic wastewater. 2019. Diss.
857. HUIKURI, MARKO. Modelling and disturbance compensation of a permanent magnet
linear motor with a discontinuous track 2019. Diss.
858. AALTO, MIKA. Agent-based modeling as part of biomass supply system research.
2019. Diss.
859. IVANOVA, TATYANA. Atomic layer deposition of catalytic materials for environmental
protection. 2019. Diss.
860. SOKOLOV, ALEXANDER. Pulsed corona discharge for wastewater treatment and
modification of organic materials. 2019. Diss.
861. DOSHI, BHAIRAVI. Towards a sustainable valorisation of spilled oil by establishing a
green chemistry between a surface active moiety of chitosan and oils. 2019. Diss.
862. KHADIJEH, NEKOUEIAN. Modification of carbon-based electrodes using metal
nanostructures: Application to voltammetric determination of some pharmaceutical and
biological compounds. 2019. Diss.
863. HANSKI, JYRI. Supporting strategic asset management in complex and uncertain
decision contexts. 2019. Diss.
864. OTRA-AHO, VILLE. A project management office as a project organization’s
strategizing tool. 2019. Diss.
865. HILTUNEN, SALLA. Hydrothermal stability of microfibrillated cellulose. 2019. Diss.
866. GURUNG, KHUM. Membrane bioreactor for the removal of emerging contaminants
from municipal wastewater and its viability of integrating advanced oxidation processes.
2019. Diss.
867. AWAN, USAMA. Inter-firm relationship leading towards social sustainability in export
manufacturing firms. 2019. Diss.
868. SAVCHENKO, DMITRII. Testing microservice applications. 2019. Diss.
869. KARHU, MIIKKA. On weldability of thick section austenitic stainless steel using laser
processes. 2019. Diss.
870. KUPARINEN, KATJA. Transforming the chemical pulp industry – From an emitter to a
source of negative CO2 emissions. 2019. Diss.
871. HUJALA, ELINA. Quantification of large steam bubble oscillations and chugging using
image analysis. 2019. Diss.
872. ZHIDCHENKO, VICTOR. Methods for lifecycle support of hydraulically actuated mobile
working machines using IoT and digital twin concepts. 2019. Diss.
873. EGOROV, DMITRY. Ferrite permanent magnet hysteresis loss in rotating electrical
machinery. 2019. Diss.
874. PALMER, CAROLIN. Psychological aspects of entrepreneurship – How personality and
cognitive abilities influence leadership. 2019. Diss.
875. TALÁSEK, TOMÁS. The linguistic approximation of fuzzy models outputs. 2019. Diss.
876. LAHDENPERÄ, ESKO. Mass transfer modeling in slow-release dissolution and in
reactive extraction using experimental verification. 2019. Diss.
877. GRÜNENWALD, STEFAN. High power fiber laser welding of thick section materials -
Process performance and weld properties. 2019. Diss.
878. NARAYANAN, ARUN. Renewable-energy-based single and community microgrids
integrated with electricity markets. 2019. Diss.
879. JAATINEN, PEKKO. Design and control of a permanent magnet bearingless machine.
2019. Diss.
880. HILTUNEN, JANI. Improving the DC-DC power conversion efficiency in a solid oxide
fuel cell system. 2019. Diss.
881. RAHIKAINEN, JARKKO. On the dynamic simulation of coupled multibody and hydraulic
systems for real-time applications. 2019. Diss.
882. ALAPERÄ, ILARI. Grid support by battery energy storage system secondary
applications. 2019. Diss.
883. TYKKYLÄINEN, SAILA. Growth for the common good? Social enterprises' growth
process. 2019. Diss.
884. TUOMISALO, TEEMU. Learning and entrepreneurial opportunity development within a
Finnish telecommunication International Venture. 2019. Diss.
885. OYEDEJI, SHOLA. Software sustainability by design. 2019. Diss.
886. HUTTUNEN, MANU. Optimizing the specific energy consumption of vacuum filtration.
2019. Diss.
887. LIIKANEN, MIIA. Identifying the influence of an operational environment on
environmental impacts of waste management. 2019. Diss.
888. RANTALA, TERO. Operational level performance measurement in university-industry
collaboration. 2019. Diss.
889. LAUKKANEN, MINTTU. Sustainable business models for advancing system-level
sustainability. 2019. Diss.

890
HEURISTIC SIM
ILARITY- AN
D DISTAN
CE-BASED SUPERVISED FEATURE SELECTION
 M
ETHODS
Christoph Lohrm
ann
ISBN 978-952-335-472-2
ISBN 978-952-335-473-9 (PDF)
ISSN-L 1456-4491
ISSN 1456-4491
Lappeenranta 2019

