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In the field of machine learning, the available data often contain many features to describe 
phenomena. This can pose a problem since only those features that are relevant to 
characterize the target concept are needed, whereas additional features can make it even 
more complicated to determine the underlying association between the features and the 
phenomenon. Therefore, an essential task for data analysis is feature selection, which 
means to reduce the number of features in the data to a set of relevant features. The focus 
in this thesis is on supervised feature selection methods used in the context of 
classification tasks. In particular, the emphasis is on heuristic filter methods, which do 
not guarantee an optimal solution but are considerably faster and are deployed as a pre-
processing step for the data before a classification algorithm is applied.  
The first approach presented is the ‘fuzzy similarity and entropy’ (FSAE) feature 
selection method, which is a modification of the approach by Luukka (2011). It is 
demonstrated that this approach, which evaluates each feature by itself (a univariate 
approach), accomplishes at least comparable classification results to the original 
approach, often with a considerably smaller feature subset. The results were competitive 
to those of several other distance- and information-based filter methods. In addition to 
several artificial examples and real-world medical datasets, the FSAE was deployed 
together with a random forest to construct a classification model for the prediction of the 
S&P500 intraday return. Several trading strategies derived from the classification model 
demonstrated the ability to outperform a buy-and-hold strategy with small to moderate 
transaction costs. In the context of classification, the similarity classifier, which as the 
FSAE feature selection method works with a single representative point (ideal vector) for 
each class, was modified to allow for multiple ideal vectors per class using clustering. 
This classifier was able to outperform all single classifier models it was compared to in 
terms of classification accuracy, often by a significant margin. The same idea of using 
multiple class representatives was successfully applied in the context of feature selection 
with the proposed ‘clustering one less dimension’ (COLD) algorithm. In addition, the 
distance-based COLD filter algorithm is capable of accounting for dependencies among 
features (a multivariate approach). This ability was highlighted on several artificial 
examples. Lastly, it achieved at least competitive results compared to several other 
heuristic filter methods on real-world datasets.  
Keywords: feature selection, feature ranking, dimensionality reduction, filter method, 
similarity classifier, FSAE, COLD, supervised learning, machine learning  
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1 Introduction 
In machine learning and data analysis, it is common for there to be a ‘wealth’ of 
information and features available for real-world problems (Caruana and Freitag, 1994a; 
Blum and Langley, 1997). In this context the term ‘feature’ means a ‘measurable 
property’ (Chandrashekar and Sahin, 2014) and is interchangeable with the term 
‘variable’ or ‘attribute’. For instance, in connection with medical data, a feature can be 
the height, age, blood pressure or information on the medical history of a patient. For a 
credit evaluation, a feature can be the balance, income, credit history or the profession of 
a customer. In many applications, the number of features available for use have increased 
considerably (Chandrashekar and Sahin, 2014). What may appear at first glance an 
unreserved benefit for machine learning algorithms poses problems for these algorithms 
that do not appear in simple textbook examples (Caruana and Freitag, 1994a). The main 
drawback of high-dimensional data, meaning data containing a large quantity of features 
and often also of observations, is its potentially adverse effect on the generalization. 
Features not relevant to or useful for a machine learning task can act as noise, interfering 
with actually useful features and making it harder for the algorithm to determine the actual 
signal or pattern(s) in the data (Caruana and Freitag, 1994a; Dessì and Pes, 2015). Hence, 
using irrelevant features in a classifier that has no feature selection embedded can lead to 
overfitting of the training data, which leads to a worse classification accuracy on the test 
data. For instance, Luukka and Lampinen (2011) investigate and show that adding 
additional irrelevant features that act as noise deteriorates the classification accuracy of 
their classifier on the test set. Hence, additional features can deteriorate the performance 
of an algorithm in addition to the higher computational complexity that naturally follows 
from higher dimensional data (Rhee and Lee, 1999; Dessì and Pes, 2015). Therefore, 
using, for instance, a suitable subset of features instead of all available data can improve 
the generalization of an algorithm (Caruana and Freitag, 1994a). Unfortunately, the 
common issue in real-world problems is that it is unknown which features are relevant 
(Almuallim and Dietterich, 1994; Piramuthu, 2004). As a consequence, practitioners may 
feel inclined to introduce and simply keep numerous features to address their task 
(Almuallim & Dietterich, 1991; Dash & Liu, 1997). However, the more complex and 
high-dimensional a task is, the more essential it becomes to focus on the relevant features 
(Blum and Langley, 1997). To decrease the number of features, meaning the number of 
dimensions under consideration, so-called dimensionality reduction techniques can be 
applied.  
A categorization of dimensionality reduction methods and selected related techniques is 
outlined in Figure 1.1.  
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Figure 1.1: Taxonomy of dimensionality reduction techniques 
 
Dimensionality reduction techniques are commonly divided into feature selection and 
feature extraction (Liu and Motoda, 2001; Li et al., 2017). Feature extraction 
characterizes a process that uses the original set of features, projects it into a different 
lower-dimensional feature space and extracts a new set of features that is smaller than the 
original one (Liu and Motoda, 2001; Li et al., 2017). A classic and popular representative 
of feature extraction is principal component analysis (PCA), where a smaller feature set 
is obtained by linearly transforming the original features (Mitra, Murthy and Pal, 2002; 
Motoda and Liu, 2002). Feature extraction belongs to the group of feature transformation 
methods which change the original features by applying some form of transformation. 
Feature transformation also includes the process of feature construction, which works 
inherently differently than feature extraction and is not considered a dimensionality 
reduction technique. The reason, therefore, is that feature construction augments the 
existing set of features by creating and adding new features to the feature set based on the 
existing features (Wnek and Michalski, 1994; Liu and Motoda, 2001; Piramuthu and 
Sikora, 2009). In this way, it attempts to improve the information and expressive power 
contained in the original features (Motoda and Liu, 2002). However, this method 
obviously increases the number of features, which is the opposite of dimensionality 
reduction. 
Feature selection stands in stark contrast to feature transformation techniques such as 
feature extraction but also feature construction. Feature selection can be defined as the 
process of selecting a subset of the existing features measured according to some criterion 
(e.g. classification accuracy/error rate, distance measure, etc.) (Liu and Setiono, 1996; 
Bins and Draper, 2001; Liu and Motoda, 2001; Liu and Yu, 2005). Two aspects are 
essential in this definition – first, the existing features are unaltered, and, second, a subset 
is selected, meaning that the number of features and, hence, the dimension of the data, 
are reduced. In contrast to feature extraction, no transformation of the features is 
conducted, whereas in contrast to feature construction, no additional (transformed) 
features are added.  
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Feature selection has been successfully applied in various disciplines and applications. 
These applications include, but are not limited to, diagnosis models for business crises 
(Chen and Hsiao, 2008), credit scoring (Maldonado, Pérez and Bravo, 2017), image 
classification (Zhou et al., 2017), diagnosis of Alzheimer’s disease (Trambaiolli et al., 
2017), prediction of groundwater pollution and quality (Rodriguez-Galiano et al., 2018) 
and astronomy (Zheng and Zhang, 2008).  
One of the main advantages of feature selection is that it results in simpler classification 
models and benefits the generalization ability of these models (Mitra, Murthy and Pal, 
2002; Saeys, Inza and Larranaga, 2007). This also positively impacts the classification 
accuracy achieved with the corresponding classification model (Guyon and Elisseeff, 
2003; Liu and Yu, 2005; Chandrashekar and Sahin, 2014). Moreover, the feature subset 
obtained via feature selection has the advantage of containing unaltered features, which 
preserves the interpretability of the results (Saeys, Inza and Larranaga, 2007). This aspect 
and the lower dimensional feature set contribute to the ability to visualize and understand 
the features and the corresponding model more easily (Guyon and Elisseeff, 2003; 
Chandrashekar and Sahin, 2014). In addition, using fewer features for the model 
construction leads to improvements in the computational complexity and data storage 
requirements (Guyon and Elisseeff, 2003; Liu and Yu, 2005).  
As highlighted in Figure 1.1, feature selection is commonly divided into supervised, semi-
supervised and unsupervised forms (Ang et al., 2016; Li et al., 2017). In unsupervised 
feature selection, no class information (class labels) is available to indicate the group or 
class the observations belong to (Mitra, Murthy and Pal, 2002). A class label could, for 
instance, represent whether a credit applicant was paying his/her loan back (‘0’) or 
defaulted on the payments (‘1’). Since the class labels are unknown, unsupervised feature 
selection methods evaluate features with respect to the inherent structure of the data (e.g. 
variance, distribution, separability, etc.) to determine a feature subset (Ang et al., 2016; 
Li et al., 2017). This type of feature selection is commonly used in the context of 
clustering, which is a form of unsupervised learning (Li et al., 2017). Semi-supervised 
(or semi-unsupervised) feature selection is used when only for some proportion of the 
observations the class label is known, and for the remaining part it is unknown (Ang et 
al., 2016). Finally, in supervised feature selection, the class label for all observations is 
known and used to select a subset of features (Ang et al., 2016). Hence, supervised feature 
selection can be applied in the context of classification or regression (Li et al., 2017), 
which are both forms of supervised learning. This dissertation centres on supervised 
feature selection for classification, where the labelled information of classes is available 
(highlighted in grey in Figure 1.1).  
The aim of supervised feature selection is to find a set of relevant features. To be able to 
determine ‘relevant’ features, a definition of relevance is required (Molina, Belanche and 
Nebot, 2002). There is a variety of theoretical definitions of relevance in the context of 
feature selection, with some authors presenting multiple definitions (Caruana and Freitag, 
1994b; John, Kohavi and Pfleger, 1994; Blum and Langley, 1997; Bell and Wang, 2000; 
Molina, Belanche and Nebot, 2002). As Blum & Langley (1997) point out, the diversity 
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of definitions is dependent on the context of relevance or, as they phrase it, in the form of 
the question ‘relevant to what?’. The focus in this research is on the practical aspect of 
feature selection as a means by which to reduce the number of features in the feature set 
and improve, or at a minimum not strongly deteriorate, the corresponding performance 
of a classifier compared to the complete feature set. Hence, the definition of relevance 
used in the context of this dissertation follows the fifth definition in Blum & Langley 
(1997) on ‘incremental usefulness’. According to that definition, for a sample S, a 
learning algorithm L and a set of features D, a feature d is incrementally useful to the 
classifier L with respect to the feature set D if the classification accuracy of the hypothesis 
produced by L using the features D and d together is higher than that of feature set D 
alone (Blum and Langley, 1997). In simple terms, if adding a feature d to a set of features 
D improves the mean accuracy of the classifier used on them, then feature d is 
‘incrementally useful’, which means relevant. Hence, the features assumed to be relevant 
according to the feature selection methods in this research are those that have shown to 
have improved the classification accuracy for a classifier or are considered to contribute 
to the discrimination among classes and, hence, are assumed to improve the classification 
accuracy.  
After having clarified the meaning of the term ‘relevance’ for feature selection in the 
context of this research, it is essential to discuss the distinction of supervised feature 
selection methods in order to set the scope of this dissertation. Supervised feature 
selection is commonly subdivided into the three forms (Figure 1.2) of filter, wrapper and 
embedded methods (Liu and Yu, 2005; Saeys, Inza and Larranaga, 2007; Chandrashekar 
and Sahin, 2014).  
 
 
Figure 1.2: Types of supervised feature selection 
 
These three types and their respective advantages and disadvantages can be summarized 
as follows: 
Filter method: The filter method is part of the pre-processing of the data, meaning that 
it is used before a classification algorithm (= induction algorithm) is applied to the data 
(John, Kohavi and Pfleger, 1994; Blum and Langley, 1997). These methods evaluate the 
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relevance of a feature based on the characteristics of the features in the data and then rank 
the features according to an evaluation criterion (Liu and Yu, 2005; Saeys, Inza and 
Larranaga, 2007). Then, a user-specified number of the highest-ranked features can be 
retained, or a threshold can be used such that all features with a score exceeding the 
threshold are included in the feature subset (Saeys, Inza and Larranaga, 2007; 
Chandrashekar and Sahin, 2014). Since these methods ‘filter’ out features that are not 
considered relevant even before any classification algorithm is used, they are independent 
of a classifier and can be adjoined with any of them (Liu and Setiono, 1996; Blum and 
Langley, 1997). Additional advantages include that these methods are computationally 
inexpensive, fast and can also be easily applied for high-dimensional data (Saeys, Inza 
and Larranaga, 2007). Common disadvantages include that they usually evaluate features 
without accounting for feature interactions and without respect to the actual classification 
performance as well as their inability to detect redundant features (Kohavi and John, 
1997; Saeys, Inza and Larranaga, 2007; Chandrashekar and Sahin, 2014).  
Wrapper method: The wrapper method is not part of pre-processing and deploys the 
classification algorithm as part of feature selection, which is sometimes described as 
being ‘wrapped around’ the classifier (Liu and Setiono, 1996; Liu and Yu, 2005; 
Chandrashekar and Sahin, 2014). For this type of approach, multiple feature subsets are 
generated based on some measure, and their performance is determined via an evaluation 
criterion – commonly classification accuracy (Liu and Yu, 2005; Saeys, Inza and 
Larranaga, 2007). This follows the general idea that using the classifier with the feature 
subsets will provide a better indication of the classification accuracy on the feature subset 
than other measures and their corresponding biases (Blum and Langley, 1997). Wrapper 
methods are implemented as iterative processes that at each step evaluate a different 
feature subset (Li et al., 2017). This can be achieved via (sequential) forward selection, 
(sequential) backward elimination or bi-directional selection (Liu and Motoda, 2001; Liu 
and Yu, 2005). Forward selection is an iterative procedure that starts with an empty 
feature set and adds in each iteration a feature, backward elimination starts with a 
complete feature set and iteratively removes a feature and the bi-directional selection 
simultaneously adds and removes features at each step (Blum and Langley, 1997; Liu and 
Yu, 2005). The wrapper process is terminated when a stopping criterion is met, for 
instance, based on classification accuracy. An example of a stopping criterion could be 
that the new feature subset in a step does not lead to better classification accuracy than 
the one in the previous step (Liu and Yu, 2005). Thus, the advantages of the wrapper 
approach are that it may lead to higher classification accuracies and may account for 
feature interactions (Saeys, Inza and Larranaga, 2007; Dessì and Pes, 2015). The main 
limitation of this approach is that the selection of the optimal feature subset and the 
corresponding performance are specific to the classifier (Saeys, Inza and Larranaga, 
2007). Hence, the selected feature subset might not generally be the best feature subset 
for any classification algorithm (Liu and Setiono, 1996). This stands in contrast to filter 
methods, which produce a feature ranking independently of any classifier. Last, a 
common criticism of wrapper methods is their high computational complexity since they 
incorporate the classifier in each iteration of the algorithm (Blum and Langley, 1997; 
Guyon and Elisseeff, 2003; Saeys, Inza and Larranaga, 2007).  
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Embedded method: The term embedded method refers to learning algorithms that 
include feature selection in the training procedure (Guyon and Elisseeff, 2003). Thus, 
similar to wrapper methods, the optimal feature subset provided by such an algorithm is 
specific to the classifier (Saeys, Inza and Larranaga, 2007). Using such methods has the 
advantage that they can be more efficient and less computationally expensive than 
wrappers (Guyon and Elisseeff, 2003; Saeys, Inza and Larranaga, 2007). On the 
downside, embedded methods do not account for feature interactions, which can lead 
them to neglect features that are relevant in relation with other features but do not appear 
to be relevant just by themselves (Blum and Langley, 1997). Decision trees are a common 
example of embedded methods (Breiman et al., 1984) since they select features to 
partition the feature space, implicitly determining their relevance.  
For the sake of completeness it should be noted that, in addition to these three main types 
of supervised feature selection, there is also a hybrid form, which is commonly not 
mentioned as a separate type (Li et al., 2017). Hybrid methods combine aspects of filter 
and wrapper methods to avoid part of the computational complexity of a wrapper but 
implement evaluation criteria from both approaches (Das, 2001; Liu and Yu, 2005). 
Besides that, it should be noted that the emphasis in this research is on filter methods. 
In addition to the taxonomy of supervised feature selection methods into filter, wrapper 
and embedded methods, there exist further categorizations of these methods with respect 
to the process of how feature subsets are (1) generated and (2) evaluated. The first refers 
to the ‘search strategy’ (also referred to as ‘generation procedure’), which is the way 
candidate feature subsets are generated (Dash & Liu, 1997; Liu & Yu, 2005). The search 
strategies are commonly distinguished into three types, as illustrated in Figure 1.3.  
 
 
Figure 1.3: Search strategies for supervised feature selection methods 
 
Complete (or exhaustive) search: In feature selection, there are 2𝑁 possible feature 
subsets for a set of N features (Dash & Liu, 1997; Liu & Yu, 2005). Evaluating all of 
these feature subsets in order to find the optimal one is termed an exhaustive search. This 
form of search is only computationally feasible for a small number of features, is costly 
and, even with moderate feature set size, computationally intractable (Chandrashekar & 
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Sahin, 2014; Dash & Liu, 2003; Guyon & Elisseeff, 2003). Alternatively, exhaustive 
search guarantees the optimal feature subset (Guyon and Elisseeff, 2003; Liu and Yu, 
2005). An example of an exhaustive search is the FOCUS algorithm (Almuallim and 
Dietterich, 1994). However, the search does not have to be exhaustive to guarantee the 
optimal feature subset since the search can be reduced to a certain extent to still conduct 
a ‘complete search’ that will find the optimal subset (Dash & Liu, 2003). An example of 
a complete but non-exhaustive search is the branch and bound algorithm (Narendra and 
Fukunaga, 1977).  
Heuristic search: An alternative to a complete (or exhaustive) search is a heuristic 
search. The basic trade-off with this type of search is that the guarantee to obtain the 
optimal feature subset is exchanged for a (considerable) reduction in computational 
complexity (Bins & Draper, 2001; Dash & Liu, 2003; Liu & Yu, 2005). Hence, heuristic 
methods are able to provide a suggestion for a good feature subset faster (Dash & Liu, 
1997). Many algorithms are heuristic, including ReliefF (Kononenko, Simec and Robnik-
Sikonja, 1997) and the feature selection algorithm by Luukka (2011).  
Random/Probabilistic search: The last search type is, compared to the other 
approaches, rather new and also embodies an attempt to reduce computational complexity 
by allowing the user to end up with a suboptimal feature subset (Dash & Liu, 1997; 2003). 
As the name suggests, it is premised on generating feature subsets randomly (according 
to some probability distribution) or on inserting randomness into a sequential feature 
subset generation approach (Liu and Yu, 2005). An example of the former is the Las 
Vegas filter (LVF) (Liu and Setiono, 1996) and of the latter the random-start-hill-
climbing method (Doak, 1992). The advantage of random search methods is that the 
randomness can allow them to ‘escape’ from a local optimum (Liu and Yu, 2005).  
The supervised feature selection methods discussed in the scope of this dissertation are 
limited to heuristic methods (as indicated in Figure 1.3). As mentioned previously, the 
search strategy determines which feature subsets are selected and evaluated. The next 
categorization to support the understanding of different supervised feature selection 
methods is according to the ‘evaluation criterion’ for feature subsets. Finding the (locally) 
optimal feature subset is always based on an evaluation criterion in relation to which the 
feature subset is (locally) optimal (Dash & Liu, 1997). Moreover, different criteria can 
lead to different feature subsets (Dash & Liu, 1997). The evaluation criteria according to 
Dash & Liu (1997; 2003) can be categorized into five groups (Figure 1.4). 
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Figure 1.4: Evaluation criteria for supervised feature selection methods 
 
Distance criteria: A distance measure (or separability-, divergence-, discrimination 
measure) was defined based on a simple two-class example by stating that if a feature 
leads to a greater difference in the class conditional probabilities than another, then it is 
preferred to the other feature (Dash & Liu, 1997; Liu & Yu, 2005). An example of a 
distance measure is the commonly used Euclidean distance (Dash & Liu, 1997).  
Information criteria: An information criterion is a measure focusing on the information 
gain that a feature provides. This gain can be defined as the decrease in uncertainty by 
including a specific feature (expected posterior) compared to the case without this feature 
(prior). A feature that leads to a higher information gain, meaning to a higher (expected) 
reduction in uncertainty, is preferred to one with a lower information gain (Dash & Liu, 
1997; Liu & Yu, 2005; Molina et al., 2002). An example of an information criterion is 
entropy (Dash & Liu, 2003).  
Dependence criteria: A dependence criterion (or correlation criterion) quantifies the 
ability of a feature to predict the values taken by another feature or the class label (Dash 
& Liu, 1997; Liu & Yu, 2005; Molina et al., 2002). It is common to measure this 
dependence between a feature and the class and subsequently prefer features that have a 
stronger association with the class labels than other features (Liu and Yu, 2005). 
However, it is also possible to use the correlation among the features themselves to 
possibly determine redundant features or those features that are independent of others 
(Dash & Liu, 1997). A common example of a dependence criterion is correlation (Hall, 
2000). Dash & Liu (1997; 2003) mention that dependence criteria could also be divided 
into distance and information criteria but are kept as a separate type. This aspect also 
indicates that evaluation criteria for a supervised feature selection method, such as the 
dependence criterion, do not necessarily only embody characteristics of one evaluation 
criterion.  
Consistency criteria: A consistency criterion uses the so-called ‘MIN-FEATURES bias’ 
(Almuallim and Dietterich, 1991, 1994). This bias states, ‘if two functions are consistent 
with the training examples, prefer the function that involves fewer input features’ 
(Almuallim and Dietterich, 1991). Essentially, a feature subset that is ‘consistent’ with 
the classes is selected that uses the smallest number of features. In this context, the term 
‘consistency’ means that no two observations that share the same values for all features 
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belong to different classes (Arauzo-Azofra, Benitez and Castro, 2008). In simple terms, 
two observations cannot be the same in terms of all features but have different class labels. 
The latter is defined as an ‘inconsistency’ (Molina, Belanche and Nebot, 2002; Liu and 
Yu, 2005). Since zero inconsistencies may not be achievable in a certain dataset, a user-
specified acceptable inconsistency rate can be applied, based on which the corresponding 
minimum feature subset is determined (Dash & Liu, 1997).  
Accuracy criteria: An accuracy criterion (or error criterion) is simply the classification 
accuracy (or probability of error) that is used to evaluate feature subsets (Dash & Liu, 
1997; Molina et al., 2002). It is obvious that a feature subset leading to a higher 
classification accuracy (or a lower error probability) will be preferred to other feature 
subsets.  
In addition to the type of evaluation criterion, it is crucial to distinguish between an 
‘univariate’ and a ‘multivariate’ evaluation of feature subsets. Univariate methods 
consider each feature separately, implicitly assuming the conditional independence of the 
features, whereas multivariate methods account for such dependencies when evaluating 
features (Martínez Sotoca and Pla, 2010; Dessì and Pes, 2015). Univariate feature 
selection methods have the advantage of often being intuitive, easily interpretable and 
computationally inexpensive compared to multivariate methods (Saeys, Inza and 
Larranaga, 2007). However, univariate methods neglect feature interactions, which can 
lead to worse classification accuracies for the corresponding feature subsets (Saeys, Inza 
and Larranaga, 2007; Martínez Sotoca and Pla, 2010). In contrast, multivariate feature 
selection methods account somehow for interactions among features, where univariate 
methods fail to incorporate such (Robnik-Šikonja and Kononenko, 2003; Saeys, Inza and 
Larranaga, 2007). However, multivariate feature selection methods are not always 
necessary. In the majority of real-world cases Kononenko, Simec and Robnik-Sikonja 
(1997) tested, there was only an insignificant difference in the results between 
multivariate and univariate (= myoptic) filter methods. Notwithstanding, they state that 
multivariate feature selection methods are useful if it is not known whether considerable 
conditional dependencies exist among features in the data (Kononenko, Simec and 
Robnik-Sikonja, 1997). 
Combining the different categorizations of type, search strategy and evaluation criterion 
for supervised feature selection methods, a two-dimensional taxonomy for supervised 
feature selection methods can be obtained that includes selected examples of algorithms 
that fall into certain categories (Figure 1.5). It is noteworthy that this taxonomy is two-
dimensional since the type of supervised feature selection and evaluation criterion are 
closely related. In particular, the first four types of evaluation criteria are exclusively 
found in filter methods, whereas accuracy is the preferred evaluation criterion for wrapper 
methods (Kohavi and John, 1997; Liu and Yu, 2005).  
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Branch & Bound 
(Narendra and 
Fukunaga, 1977)  
Best First Strategy 
(Xu, Yan and 
Chang, 1998) 
FOCUS 
(Almuallim and 
Dietterich, 1994) 
ABB Branch & 
Bound (Liu, 
Motoda and Dash, 
1998) 
Beam Search 
(Doak, 1992) 
Smart Beam Search 
(Gupta, Doermann 
and DeMenthon, 
2002) 
Relief (Kira and 
Rendell, 1992b) 
ReliefF 
(Kononenko, Simec 
and Robnik-
Sikonja, 1997) 
COLD (Publication 
IV) 
Laplacian Score 
(He, Cai and 
Niyogi, 2005) 
Fisher Score (Duda, 
Hart and Stork, 
2012) 
FS Luukka (2011) 
FSAE (Publication 
I) 
Nonspecificity 
(Luukka & 
Lohrmann, 2019) 
Information Gain 
(Hall and Holmes, 
2003) 
Correlation-based 
Feature Selection 
(Hall, 2000) 
Mutual Information 
(Battiti, 1994) 
Symmetrical 
Uncertainty (Witten 
and Frank, 2005; 
Breiman et al., 
1984) 
Gain Ratio 
(Karegowda, 
Manjunath and 
Jayaram, 2010) 
Set Cover (Dash, 
1997) 
BSE-SLASH 
(Caruana and 
Freitag, 1994a) 
Importance Score 
(Vafaie and Imam, 
1994) 
Bidirectional 
Search (Doak, 
1992) 
Decision Tree 
(Breiman et al., 
1984) 
Random Forest 
(Breiman, 2001) 
Las Vegas Filter 
(Liu and Setiono, 
1996) 
Random-Start Hill-
Climbing (Doak, 
1992) 
Genetic Algorithm 
(Vafaie and Imam, 
1994) 
Figure 1.5: Taxonomy of supervised feature selection, search strategy and evaluation criteria 
[modified from Liu & Yu (2005)] 
As indicated in Figure 1.5 (in grey), the emphasis in this dissertation is on heuristic filter 
methods using distance or information criteria to conduct supervised feature selection. 
These two subcategories were selected since using distance and information criteria is 
comparably simple but often yields good results and is a popular approach to supervised 
filter methods. Moreover, the feature selection algorithm by Luukka (2011) was the 
starting point of this research in feature selection, which is an information-theoretic 
supervised filter method. This dissertation does not cover dependency- and consistency-
based filter methods. 
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The research in this dissertation focuses on the development and improvement of feature 
selection methods (Publications I, IV) and the application of feature selection on real-
world data (Publication II). However, it also covers a part on classification (Publication 
III) since the idea underlying the modification of the discussed classifier is subsequently 
deployed in one of the feature selection algorithms (Publication IV). An overview of the 
objectives and contents of the publications is presented in Table 1.1 for the reader’s 
convenience.  
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The structure of the dissertation as well as the objective and content of each section are 
summarized in Table 1.2. 
Section Content Related Publication(s) 
1 Introduction  Theoretical background 
 Taxonomy of feature selection 
 Scope of research 
 Summary of objectives of each 
publication 
 
2 Related Methods  Introduction to the similarity 
classifier  
 Introduction to several distance- and 
information-based heuristic filter 
methods for feature selection 
(univariate and multivariate) 
Publications I, III, IV 
3 Fuzzy Similarity and 
Entropy (FSAE) Feature 
Selection 
 Emphasis on vulnerabilities of the 
feature selection by Luukka (2011) 
[Research need] 
 Introduction of the univariate filter 
FSAE 
 Application of feature selection 
algorithms to artificial and real-world 
data 
Publications I, II 
4 Similarity Classifier with 
Multiple Ideal Vectors 
 Emphasis on a common deficiency of 
distance-based classifiers [Research 
need] 
 Introduction of the similarity 
classifier with multiple ideal vectors 
that deploys clustering and two 
different forms of pre-processing 
 Application of classification 
algorithms to artificial and real-world 
data 
Publication III 
5 Clustering One Less 
Dimension (COLD) Feature 
Selection 
 In-depth discussion of univariate vs 
multivariate filter methods 
 Introduction of the multivariate 
distance-based heuristic filter method 
COLD using K-medoids clustering 
 Application of feature selection 
algorithms to artificial and real-world 
data 
Publication IV 
6 Conclusion, Limitations and 
Future Work 
 Summary of the contributions of each 
publication 
 Limitations of the suggested 
algorithms and findings 
 Suggestions for future work 
Publications I–IV 
Table 1.2: Structure of the dissertation 
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The subsequent section will focus on the introduction of the similarity classifer and the 
related filter methods for feature selection. The similarity classifier is included because it 
is linked to the feature selection approach by Luukka (2011), discussed afterwards. 
Selected filter methods are depicted since they belong to the same categories (distance- 
and information-based heuristic filter methods) as the filter methods presented in this 
dissertation. Hence, they function as suitable benchmark algorithms for the artificial and 
real-world examples deployed in this research. 
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2 Related Methods 
2.1 Similarity Classifier 
The similarity classifier is a classification method, which is a form of supervised learning. 
The term ‘supervised’ refers to the fact that the targets, meaning in classification the class 
labels of observations, are known (Webb, 2002; Bishop, 2006). Classification refers to 
machine learning problems in which observations (synonymic: samples) have to be 
assigned to classes (Bishop, 2006). The assignment is conducted based on the feature 
values that characterize an observation. A very simple example is presented in Duda, Hart 
and Stork (2012), where fishes should be assigned to one of two classes, ‘Bass’ or 
‘Salmon’, premised on their length (first feature) and colour (second feature). The notion 
of similarity is rooted in fuzzy set theory. In contrast to crisp sets, fuzzy sets do not simply 
indicate whether a property is present or not but also allow the modelling of a membership 
degree (Zadeh, 1965; Klawonn and Castro, 1995). The strength of the membership is 
expressed as a real number in the compact interval [0,1] (Zadeh, 1965, 1971). The 
similarity relation can be regarded as a generalization of the equivalence relation (Zadeh, 
1971). So, the notion of the fuzzy equivalence relation can be used to formalize similarity 
(Klawonn and Castro, 1995). The similarity classifier is based on the equivalence relation 
of the generalized Łukasiewicz structure to define the membership or similarity of objects 
(Luukka, Saastamoinen, & Könönen, 2001). The equivalence of two objects a and b can 
be expressed in the generalized Łukasiewicz structure as follows: 
 𝑎 ↔ 𝑏 = √1 − |𝑎𝑝 − 𝑏𝑝|
𝑝
, (2.1) 
where the parameter p comes from the generalized Łukasiewicz structure (Luukka, 
Saastamoinen, & Könönen, 2001). The idea to use generalized Łukasiewicz-valued 
similarity takes an important role in the similarity classifier. Let us assume a dataset 
denoted X containing n observations of D features (from 𝑑 = 1, 2, … , 𝐷). The 
observations belong to one of N classes (from 𝑖 = 1, 2, … , 𝑁), and the class label for each 
observation is known. The setup of the classifier is based on the observations in the 
training set. The step-by-step algorithm underlying the similarity classifier is presented 
below. 
The first step is the scaling of the data into the compact interval [0,1] and the calculation 
of a so-called ‘ideal vector’ for each class. Such an ideal vector is supposed to represent 
a class well (Luukka et al., 2001). This means that for each feature it contains a value that 
is supposed to embody the values that this feature takes for a given class. The ideal vector 
for a class can, for instance, be calculated simply with an arithmetic mean, generalized 
mean, Bonferroni mean or OWA operator (Kurama, Luukka, & Collan, 2016; Luukka & 
Kurama, 2013; Luukka & Leppälampi, 2006). Using the generalized mean, the ideal 
vector element for class i for a feature d can be calculated as: 
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𝑣𝑖,𝑑 = (
1
𝑛𝑖
∑ 𝑥𝑑
𝑚
𝑥𝜖𝑋𝑖
)
1
𝑚
, (2.2) 
where 𝑋𝑖 is the subset of observations in 𝑋 that belongs to class i, 𝑛𝑖 is the number of 
observations in that class and m is the generalized mean parameter. If 𝑚 = 1, then the 
result is simply the arithmetic mean. The ideal vector for class i is the vector of all ideal 
vector elements for all D features and can be denoted as 𝑣𝑖 = (𝑣𝑖,1, 𝑣𝑖,2, … 𝑣𝑖,𝐷). At the 
end of this step, the ideal vector for each class in the dataset was calculated.  
The second step is to calculate the similarity S of a new observation 𝑥𝑗 with the ideal 
vectors of each of the N classes. The similarity values are generalized Łukasiewicz-valued 
and are computed for each feature separately and then aggregated by using a mean or 
weighted mean function. The similarity of observation 𝑥𝑗 with ideal vector 𝑣𝑖 can be 
expressed as (Luukka and Leppälampi, 2006): 
 
𝑆(𝑥𝑗 , 𝑣𝑖) = (
1
𝐷
∑ ( √(1 − |𝑥𝑗,𝑑
𝑝 − 𝑣𝑖,𝑑
𝑝 |)
𝑝
)
𝑚𝐷
𝑑=1
)
1
𝑚
 (2.3) 
The similarity expresses the strength of the membership of observation 𝑥𝑗 to class i. As 
for the calculation of ideal vectors, different mean functions can also be deployed to 
aggregate the similarity values over all D features. Here, a simple arithmetic mean is 
applied.  
The third step is the assignment of each observation to the class it is most similar to. 
Since each class is represented by an ideal vector, the observation is assigned to the class 
to whose ideal vector it is most similar or, in other words, has the highest membership 
degree (Luukka et al., 2001).  
An advantage of the similarity classifier is that the steps underlying this algorithm are 
overall quite simple. Moreover, it requires only a few observations to accomplish high 
classification accuracies and is also computationally inexpensive compared to many other 
classification algorithms (Luukka, 2008). In addition, several applications on real-world 
datasets have demonstrated its ability to achieve high classification accuracies (Luukka, 
2008; Luukka & Leppälampi, 2006; Luukka, 2010).  
2.2 Selected Feature Selection Methods 
2.2.1 ReliefF 
The ReliefF algorithm is an extension of the popular filter feature selection (and feature 
weighting) approach called the Relief algorithm introduced by Kira and Rendell (1992a). 
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The Relief algorithms belong to the most successful filter methods (Dietterich, 1997). It 
is noteworthy that the original Relief algorithm was limited to binary class problems. 
Relief is premised on the idea that for each observation, the closest observation from the 
same class (near-hit) and from the other class (near-miss) can be used to determine each 
feature’s relevance (Kira and Rendell, 1992b). In particular, for a certain feature, the 
difference in the distance of the near-hit from an observation to the distance of the near-
miss with the same observation is calculated. This calculation is repeated for each 
considered observation (with at most all observations) and then averaged to constitute the 
weight of the feature, where higher weights indicate more important features (Kira and 
Rendell, 1992b). It is apparent that the feature weight following this approach will be 
higher if the average difference of the near-misses (other class) is higher than the near-
hits (same class). Using this approach allows an accounting for conditional dependencies 
among features (Kononenko, Simec and Robnik-Sikonja, 1997). The reason for this is 
that the near-hits and near-misses are determined based on the distance between 
observations accounting for all features. Afterwards, the contribution to the feature 
weight is computed premised solely on the distance of the near-hits and near-misses to an 
observation. In this way, the selection of near-hits and near-misses accounts for 
conditional dependencies among features, even though the subsequent evaluation is 
conducted for only one feature. This makes Relief (and also the extension ReliefF) a 
multivariate, distance-based filter method. Hence, Relief (and ReliefF) can address data 
structures with conditional dependence among features (e.g. the XOR problem) that 
simple dependence-based methods cannot account for (e.g. Gini-index, gain ratio)1 
(Kononenko, Simec and Robnik-Sikonja, 1997). Therefore, already Relief is regarded as 
a powerful algorithm for weighting and ranking features (Kononenko, Simec and Robnik-
Sikonja, 1997). One of the main drawbacks of Relief is that it is limited to two-class 
problems (Kononenko, 1994). To address this point and other weaknesses of Relief, 
Kononenko (1994) introduced ReliefF, which can cope with multiple classes and 
performs better in the presence of noisy and incomplete data. The idea behind the 
extension remains the same as in ReliefF but with certain additions that will be 
highlighted in the algorithm’s step-by-step description below (Robnik-Šikonja and 
Kononenko, 2003). Let us assume a dataset denoted X containing n observations of D 
features (from 𝑑 = 1, 2, … , 𝐷). 
In the first step the weights for each feature, W, which represent each feature’s relevance, 
are initialized to zero. The weight for the d-th feature is denoted by 𝑊𝑑. Moreover, it is 
decided for how many observations, denoted m, the algorithm is run (with 𝑚 ≤ 𝑛). More 
observations m will lead to a more reliable feature ranking. Hence, for datasets not too 
large, it is suggested to carry out ReliefF with all observations (Kononenko, Simec and 
Robnik-Sikonja, 1997).  
                                                 
1 Kononenko, Simec and Robnik-Sikonja (1997) referred to these approaches as ‘myoptic’ (which is 
synonymic to the word ‘shortsighted’), stating that they cannot take context into account such that (local) 
dependencies remain hidden to them. 
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In the second step, a single observation 𝑥𝑖 is randomly selected and the near-hits (for the 
same class) ℎ𝑗  and near-misses (for each other class) 𝑚𝑗 are calculated (with 𝑗 = 1 𝑡𝑜 𝑘). 
In contrast to Relief, where only a single near-hit and near-miss are deployed, in ReliefF, 
multiple near-hits and near-misses are used to make the feature ranking more reliable 
when noisy data are present (Kononenko, Simec and Robnik-Sikonja, 1997). For the 
given observation 𝑥𝑖, the contribution to the weight of each of the features is calculated. 
For the d-th feature, the weight 𝑊𝑑 is updated as (Robnik-Šikonja and Kononenko, 2003): 
 
𝑊𝑑 = 𝑊𝑑 − ∑
𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , ℎ𝑗)
𝑚 ∗ 𝑘
𝑘
𝑗=1
+ ∑
[
𝑃(𝐶)
1 − 𝑃(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖))
∑ 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , 𝑚𝑗(𝐶))
𝑘
𝑗=1 ]
𝑚 ∗ 𝑘
𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)
, 
(2.4) 
where k is the number of near-hits and near-misses used, m is the number of observations 
considered for ReliefF, 𝑃(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖)) is the probability of the class that observation 𝑥𝑖 
belongs to, C is the set of all other classes and 𝑃(𝐶) is the probability of each of these 
classes. In addition, 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , ℎ𝑗) is the difference between observation 𝑥𝑖 and the near-
hit ℎ𝑗  (from the same class), and 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , 𝑚𝑗(𝐶)) is the difference between observation 
𝑥𝑖 and the near-miss 𝑚𝑗 of one of the classes in C.  
The difference 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , ℎ𝑗) and 𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖 , 𝑚𝑗) for an observation 𝑥𝑖 with the near-hit 
ℎ𝑗  and near-miss 𝑚𝑗 is calculated differently for categorical and numerical variables. For 
categorical features, the difference is calculated according to Equation (2.5) and for 
numerical features as in Equation (2.6) (Robnik-Šikonja and Kononenko, 2003). 
 
𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖, 𝑥𝑗) = {
0 𝑖𝑓 𝑥𝑖,𝑑 = 𝑥𝑗,𝑑
1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.5) 
 
𝑑𝑖𝑓𝑓(𝑑, 𝑥𝑖, 𝑥𝑗) =
|𝑥𝑖,𝑑 − 𝑥𝑗,𝑑|
max(𝑥𝑑) − min (𝑥𝑑)
 (2.6) 
The basic difference between these two approaches is that for categorical features, only 
the fact is measured whether the feature value is equal or unequal. For numerical features, 
it is measured how far the values of the d-th feature are for two instances 𝑥𝑖 and 𝑥𝑗 from 
each other, normalized to the unit interval [0,1]. According to Robnik-Šikonja and 
Kononenko (2003), the same normalized distance is used via averaging over all features 
D to calculate the near-hits and near-misses. In the original Relief algorithm, the 
Euclidean distance was used for this purpose (Kira and Rendell, 1992b), which is not 
normalized.  
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The formula in Equation (2.4) essentially adjusts the weights 𝑊𝑑 for the near-hits and 
near-misses. The weight is reduced by the average difference to the near-hits. This means 
that if observations from the same class as the current observation are far from that 
observation, this is regarded as negative for feature importance. The intuition behind this 
is that observations of the same class being close is desirable and indicates a clear pattern 
for the class. In contrast, the weight is increased by the weighted average distance of the 
near-misses of the other classes C. Hence, it has a positive effect on the feature importance 
score if observations from other classes are distant from the current observation. A high 
distance from the observations of other classes indicates that the observation clearly 
belongs to its class, and it is apparent that it is different to representatives of the remaining 
classes. Overall, the weight is adjusted in favour of the weighted average difference to 
the near-misses from other classes and faces a decrease from the average difference of 
near-hits that belong to the same class. Thus, if the closest observations of other classes 
are more distant than the closest observations of the same class (for a specific feature), 
this represents a positive contribution overall to the weight of the feature. The differences 
to the near-misses 𝑚𝑗 is weighted by the share of the probability of each of the classes C. 
This probability is divided by the probability of all other classes (1 − 𝑃(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖))) 
which the given observation 𝑥𝑖 does not belong to. The calculation of 𝑊𝑑 is conducted 
for all 𝑑 = 1 𝑡𝑜 𝐷, meaning for all features in the data.  
It is noteworthy that in Equation (2.4) the division by 𝑚 ∗ 𝑘, which leads to an averaging 
over all m and k for each weight, assumes that each observation m and each near-hit and 
near-miss for an observation 𝑥𝑖 are equally important. For RRelief, the Relief algorithm 
extension for regression, and ReliefF, Robnik-Šikonja and Kononenko (2003) introduce 
the possibility to adjust the latter. This means that the rank of different near-misses and 
near-hits affects their influence on the weight for observation 𝑥𝑖. Closer near-misses and 
near-hits (meaning higher-ranked near-misses and near-hits) have a larger impact. In 
contrast, the influence of near-misses and near-hits decreases exponentially if they are 
further away. Hence, instead of using k in the denominator of Equation (2.4), which is 
equivalent to multiplying by 
1
𝑘
, the new multiplication factor can be stated in the following 
(simplified) formula (Robnik-Šikonja and Kononenko, 2003): 
 
𝑑𝑖,𝑗 =
𝑒
−(
𝑟𝑎𝑛𝑘(𝑥𝑖,𝑥𝑗)
𝜎
)
2
∑ 𝑒
−(
𝑟𝑎𝑛𝑘(𝑥𝑖,𝑥𝑗)
𝜎
)
2
𝑘
𝑗=1
 (2.7) 
The 𝑟𝑎𝑛𝑘(𝑥𝑖, 𝑥𝑗) is the rank (or position) of 𝑥𝑗 in the sequence of all instances that is 
ordered by their distance from 𝑥𝑖 (Robnik-Šikonja and Kononenko, 2003). The parameter 
𝜎 is the decay factor that affects the calculation of the distance.  
When all near-hits and near-misses are equally important (so when in Equation (2.4) k is 
used in the denominator instead of the result from Equation (2.7)), a common choice for 
the number of near-hits and near-misses is 10 (Kononenko, 1994; Kononenko, Simec and 
2 Related Methods 34 
Robnik-Sikonja, 1997). Opposed to that, when different weights are given to near-misses 
and near-hits according to their rank (see Equation (2.7)), a suggested setup contains 70 
nearest neighbours and 𝜎 = 20 (Robnik-Šikonja and Kononenko, 2003). 
The third step encompasses the repetition of the second step until the contribution of all 
m observations to the weight for each feature is calculated. Subsequently, a weight for 
each feature will be obtained that is 𝜖[−1,1], with higher weights indicating more relevant 
features (Kononenko, Simec and Robnik-Sikonja, 1997).  
Relevant features are expected to have weights larger than zero, whereas irrelevant or 
even noisy features should end up with negative weights or a weight close to zero (Kira 
and Rendell, 1992b). After that, a user-specified number of features with the highest 
weights can be selected or a weight threshold can be used so that only features above that 
threshold are included in the feature subset (Kira and Rendell, 1992b; Robnik-Šikonja 
and Kononenko, 2003; Souza, Matwin and Japkowicz, 2006). The selection of the 
threshold value is one of the drawbacks of Relief(F) (Chandrashekar and Sahin, 2014) as 
well as its inability to find redundant features, which can result in a feature subset 
containing redundant variables (Liu and Setiono, 1996; Bins and Draper, 2001). 
2.2.2 Fisher Score 
The Fisher score is a simple supervised filter method for feature selection (Duda, Hart 
and Stork, 2012). The objective behind the Fisher score is to select features for which the 
distance between observations of different classes is large and the distance from 
observations in the same class is small (Gu, Li and Han, 2011; Li et al., 2017). Since this 
approach considers features only in isolation and no dependencies among features, it is a 
univariate, distance-based feature selection method. Conceptually, the idea underlying 
the Fisher score is implemented by measuring how distant the class means for a feature 
are from the feature mean and dividing this value by the variation for the feature in that 
class. Accordingly, the Fisher score for a feature d is defined as: 
 
𝐹𝑖𝑠ℎ𝑒𝑟 𝑆𝑐𝑜𝑟𝑒𝑑 =
∑ 𝑛𝑖(?̅?𝑖,𝑑 − ?̅?𝑑)
2𝑁
𝑖=1
∑ 𝑛𝑖𝜎𝑖,𝑑
2𝑁
𝑖=1
 , (2.8) 
where 𝑛𝑖 is the number of observations contained in class i, ?̅?𝑖,𝑑 is the mean value of the 
d-th feature for class i, 𝜎𝑖,𝑑 is the corresponding standard deviation for the values feature 
d takes for observations in class i and ?̅?𝑑 is the mean of the d-th feature in the entire 
dataset. Following the objective of the Fisher score, high feature scores will be obtained 
if the class means for a feature d are far from the mean of the feature ?̅?𝑑 while the variance 
of observations in each class for feature d is small. The mean differences and variances 
of the classes are weighted by the number of observations 𝑛𝑖 in each of these classes. It 
is apparent that the difference between the class means to the feature mean is only large 
when the class means are on average distant from the feature mean, meaning that the 
feature mean does not represent the values for feature d in the classes well. This is 
2.2 Selected Feature Selection Methods 35 
obviously positive for the discrimination achieved among the classes. In addition, the 
variance is included since features for which the classes are distant from each other and 
that have a low variance are likely far from each other and, hence, well discriminating the 
classes. In contrast, if the class means for a feature are on average distant from the feature 
mean, but there is high variance in each class, this may likely lead to an overlap of the 
classes, which results in a lower Fisher score. Hence, the Fisher score reflects the 
relevance of features. Finally, the k features with the highest Fisher score should be 
selected for the feature subset (Li et al., 2017). 
2.2.3 Laplacian Score 
The Laplacian score is a filter method that can be deployed for supervised and 
unsupervised machine learning tasks (He, Cai and Niyogi, 2005). The explanation in this 
section will focus on the supervised version of the Laplacian score. This heuristic 
distance-based filter method aims to rank features according to their locality-preserving 
power (He, Cai and Niyogi, 2005). The underlying supervised method can be represented 
in the form of a step-by-step algorithm with the following three distinct steps: 
The first step consists of the calculation of an affinity matrix S of dimension 𝑛 ∗ 𝑛, where 
n is the number of observations in the data. The affinity matrix S adheres to the following 
rule for two observations 𝑥𝑖 and 𝑥𝑗 (He, Cai and Niyogi, 2005; Li et al., 2017): 
 
𝑆𝑖,𝑗 = {𝑒
−
‖𝑥𝑖−𝑥𝑗‖
2
𝑡   𝑖𝑓 𝑐𝑖 = 𝑐𝑗
0                 𝑖𝑓 𝑐𝑖 ≠  𝑐𝑗
  , (2.9) 
where 𝑐𝑖 is the class of observation 𝑥𝑖 and 𝑐𝑗 the class of observation 𝑥𝑗, respectively. The 
value for parameter t is a ‘suitable’ constant (He, Cai and Niyogi, 2005). The affinity (or 
weight) matrix S represents the local structure of the data (He, Cai and Niyogi, 2005). If 
two examples belong to the same class, then a weight/affinity value that represents the 
similarity of these examples is calculated. If they do not belong to the same class, then 
the weight is set to zero.  
In the second step the diagonal matrix D is computed, for which off-diagonal elements 
are zero, and the diagonal element for an observation 𝑥𝑖 is determined as (Li et al., 2017): 
 
𝐷𝑖,𝑖 = ∑ 𝑆𝑖,𝑗
𝑛
𝑗=1
  (2.10) 
This means that, for instance, the i-th element on the diagonal of D is the sum over all 
columns j for the weights in the i-th row in the affinity matrix S. Based on the affinity 
matrix S and the diagonal matrix D, the graph Laplacian (or Laplacian matrix) can be 
calculated as 𝐿 = 𝐷 − 𝑆 (He, Cai and Niyogi, 2005; Li et al., 2017).  
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In the third step the Laplacian score for a feature d is calculated according to the 
following formula (He, Cai and Niyogi, 2005): 
 
𝐿𝑑 =
?̃?𝑑
𝑇𝐿?̃?𝑑
?̃?𝑑
𝑇𝐷?̃?𝑑
      𝑤ℎ𝑒𝑟𝑒     ?̃?𝑑 = 𝑥𝑑 −
𝑥𝑑
𝑇𝐷1
1𝑇𝐷1
1 , (2.11) 
where 𝑥𝑑 denotes the d-th column of the dataset, T in the exponent the transpose and 1 a 
column vector of ones [1,1, … ,1]𝑇. Even though it is not directly apparent from Equation 
(2.11), the Laplacian score 𝐿𝑑 is related to the Fisher score and attempts to minimize the 
difference between feature values of observations of the same class, taking into account 
the multidimensional similarity of the observations and scaling the corresponding value 
by the variance (He, Cai and Niyogi, 2005). After the Laplacian score for each feature is 
determined, the user-specified k features with the smallest Laplacian scores are selected 
for the feature subset (Li et al., 2017). Since the calculation of the affinity matrix S that 
is deployed in the Laplacian score uses the similarity between observations accounting 
for all features, the method can be regarded as a multivariate filter. In this aspect, it is 
related to ReliefF, where the features are evaluated by themselves, but since the distance 
to the near-hits and near-misses also accounts for all features, the method is overall 
multivariate. 
2.2.4 Feature Selection by Luukka (2011) 
The feature selection method introduced by Luukka (2011) is a heuristic method that uses 
similarity as well as fuzzy entropy measures. In the paper by Luukka (2011), the entropy 
measure developed by De Luca and Termini (1972) and the two entropy measures from 
Parkash, Sharma and Mahajan (2008) are deployed. De Luca and Termini (1972) depicted 
fuzzy entropy as a ‘measure of the degree of fuzziness’ that provides insight into the 
average information that is present in the data. The entropy measure by De Luca and 
Termini is defined as: 
 
𝐻(𝐴) = − ∑ [𝜇𝐴(𝑥𝑗)log 𝜇𝐴(𝑥𝑗) + (1 − 𝜇𝐴(𝑥𝑗)) log (1 − 𝜇𝐴(𝑥𝑗))]
𝑛
𝑗=1
, (2.12) 
where 𝜇𝐴(𝑥𝑗) stands for the membership degree of 𝑥𝑗 to the fuzzy set A, which is within 
the compact interval [0,1]. The other two entropy measures were develped by Parkash, 
Sharma and Mahajan (2008) and are related to the idea of weighted entropy (Belis and 
Guiasu, 1968). They are defined as: 
 
𝐻1(𝐴) = ∑ 𝑤𝑗 [𝑠𝑖𝑛
𝜋𝜇𝐴(𝑥𝑗)
2
+ 𝑠𝑖𝑛
𝜋(1 − 𝜇𝐴(𝑥𝑗))
2
− 1]
𝑛
𝑗=1
 (2.13) 
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𝐻2(𝐴) = ∑ 𝑤𝑗 [𝑐𝑜𝑠
𝜋𝜇𝐴(𝑥𝑗)
2
+ 𝑐𝑜𝑠
𝜋(1 − 𝜇𝐴(𝑥𝑗))
2
− 1]
𝑛
𝑗=1
 (2.14) 
Two key properties of entropy measures for inputs 𝜖[0,1] are that the maximum entropy 
is reached for an input value of 0.5 and that input values of ‘0’ and ‘1’ both yield an 
entropy of zero (De Luca and Termini, 1972). This idea is visually represented in Figure 
2.1. 
 
Figure 2.1: Different entropy measures [reproduced from Publication II with the permission of 
the publisher] 
 
A high entropy value can indicate randomness and a low level of informativity in the data, 
whereas a small entropy value can signal structure and a high level of informativity (Yao, 
Wong and Butz, 1999). Luukka (2011) suggested combining a similarity measure as the 
input to an entropy measure. In general, to combine entropy with the similarity values for 
features is intuitive. A similarity close to ‘1’ indicates that two objects are very similar, 
and a similarity of close to ‘0’ highlights that the objects are very dissimilar. It is obvious 
to regard this as informative since there is no, or close to no, ambivalence in these 
similarity values. The objects are in the first case clearly highly similar and in the second 
case highly dissimilar. Therefore, the corresponding entropy value is close to zero and 
indicates informativity. In contrast, a similarity value close to 0.5 indicates ambivalence 
since the two objects are neither really dissimilar nor can they be considered very similar. 
On account of this, the corresponding entropy value is high and emphasizes a low 
informativity of such a similarity value. For each observation, the entropy is calculated 
for all similarity values between the feature values of an observation with the feature 
values of the ideal vectors. They are then summed for each feature. The outcome for each 
feature will be a sum of entropy values for that feature over all observations and all ideal 
vectors.  
Being consistent in its meaning, a low sum of entropy values indicates that the feature 
values of observations are informative and that the similarities on average tend to be far 
from 0.5. Such a feature should be retained given that it is characterized on average with 
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low ambivalence and uncertainty. Opposed to that, a high sum of entropy values 
represents low informativity, and the similarity values used as input are on average closer 
to 0.5, indicating ambivalence of the observations’ memberships. In other words, features 
with high summed entropy values are considered uninformative and potentially random. 
Hence, they constitute candidates for feature removal. Thus, the idea to combine an 
entropy and a similarity measure to determine relevant features in a dataset was developed 
(Luukka, 2011). In his paper, Luukka (2011) implemented this approach as a heuristic 
filter method. The step-by-step process underlying the approach is illustrated in Figure 
2.2. 
 
Figure 2.2: Step-by-step process underlying the feature selection method by Luukka (2011) for a 
two-dimensional example with three classes [reproduced from Publication I with the permission 
of the publisher] 
 
The first step is centred on the calculation of the ideal vectors of each class. This can be 
conducted the same way as in the similarity classifier with a generalized mean (Luukka, 
2011; Publication I). 
The second step consists of the calculation of the similarity values S of the observations 
with the ideal vectors for each feature d (Luukka, 2011). 
 
𝑆(𝑥𝑗,𝑑, 𝑣𝑖,𝑑) = √(1 − |𝑥𝑗,𝑑
𝑝 − 𝑣𝑖,𝑑
𝑝 |)
𝑝
, (2.15) 
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where j denotes the observation (from 𝑗 = 1,2, … 𝑛), d the feature (from 𝑑 = 1,2, … 𝐷) 
and i the class (from 𝑖 = 1,2, … 𝑁). This equation is similar to Equation (2.3) but does not 
average over all D features. Since the similarity is calculated for each observation j for 
all features d with ideal vectors of all classes i, the resulting matrix of similarities is 
n*(DN) (Luukka, 2011; Publication I). This matrix is illustrated in Figure 2.2 under ‘Step 
2’.  
The third step encompasses the calculation of the entropy values. An entropy value is 
calculated for each element in the n*(DN) matrix mentioned in the previous step and, 
subsequently, summed over all observations and classes. 
 
𝐻𝑑 = ∑ ∑ 𝐻 (𝑆(𝑥𝑗,𝑑, 𝑣𝑖,𝑑))
𝑛
𝑗=1
𝑁
𝑖=1
 (2.16) 
The result is a summed entropy value for a feature d. This calculation is repeated for each 
feature in order to obtain D summed entropy values.  
The fourth step is simply the selection of a user-specified number of features with the 
lowest entropy values to keep for the subsequent analysis. 
The difficulty in following this procedure, as with many filter methods, is that there is no 
clear threshold value after which features can be removed without the chance that they 
are actually relevant. In contrast, removing too few features will leave irrelevant or even 
noisy features in the feature subset. One way to address this problem is by using the idea 
underlying the filter method by Luukka (2011) in the form of a wrapper approach, as 
presented in Publication I. The wrapper version of the approach by Luukka (2011) uses 
a similarity classifier as the evaluation criterion. In the first step, this requires dividing 
the data into training and test data. The first three steps are now conducted exclusively on 
the training data. After the feature ranking based on the training data is obtained, the 
feature with the lowest rank (and the highest summed entropy value) is suggested for 
removal from the feature set. Subsequently, the classification accuracy on the test set 
before and after the removal is evaluated with a classifier (such as the similarity 
classifier). The change in the classification accuracy can function as a ‘stopping criterion’ 
for this wrapper. If the classification accuracy after the removal of a feature remains 
unchanged or increases, the feature can be considered irrelevant. Features that are not 
relevant for the discrimination between the classes in the dataset are by definition 
irrelevant. If the mean accuracy after the feature removal did not deteriorate, the feature 
is removed, and all steps will be repeated another time. If, however, the ‘stopping 
criterion’ is met since the performance on the test set after the feature removal is worse 
than before the feature removal or has deteriorated more in performance than a user-
specified threshold, the algorithm is stopped, and only the features up to the previous step 
are removed from the dataset.  
The original pseudocode for this feature selection method is available in Luukka (2011). 
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3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 
3.1 Vulnerabilities of the Feature Selection Method by Luukka (2011) 
The feature selection algorithm developed and introduced by Luukka (2011) has 
demonstrated on four medical datasets the ability to remove features that are not relevant 
and useful for classification and even improve the classification accuracy in the majority 
of them (Luukka, 2011). Hence, the algorithm has revealed the ability to successfully 
conduct feature selection on these real-world datasets. In the following, the assumptions 
underlying this algorithm, which characterize its ability to find relevant features, will be 
examined in more detail. In particular, these assumptions will be analysed with respect to 
vulnerabilities that the algorithm can be susceptible to.  
One main assumption of the algorithm is that one ideal vector per class, so essentially a 
single point in the feature space, is sufficient to characterize a class well. This assumption 
is the same as in the similarity classifier (Luukka et al., 2001). However, it can pose a 
problem for more complex data structures, where classes are composed of 
groupings/clusters. It is clearly intuitive that multiple disjoint groups cannot be 
represented well by a single point. However, it requires additional steps and computations 
to determine a suitable number of class representatives. Moreover, for less complex data 
structures, a single ideal vector is likely sufficient to represent each class. Thus, using a 
single ideal vector per class is a trade-off between the ability to capture multiple decision 
regions and the computational complexity of the algorithm. 
The second main assumption concerns the use of similarity as the input to the entropy 
measure. Recalling the shape of entropy functions (see Figure 2.1), inputs of close to 0 
and 1 take low entropy values, whereas the closer the input value is to 0.5, the higher the 
entropy associated with it. Since low entropy values indicate informativity, input values 
of close to 0 and 1 are more informative than values closer to 0.5. Hence, if similarity 
values are the input to the entropy function, this assumes that similarity values close to 0 
and 1 are regarded as informative. This appears plausible when the feature of an 
observation has a high similarity value to its own class’s ideal vector element and a low 
similarity value to the competing class’s ideal vector element. This way, both similarity 
values can be considered informative in the sense that they highlight that, for this 
observation, the feature clearly indicates its class membership. Thus, the feature is 
relevant to discriminate between these classes. However, this appears less plausible for 
observations within a class. Using entropy on these similarity values implicitly assumes 
that even within a class, observations that are highly similar to their ideal vector and those 
being highly dissimilar to it can be treated equally. However, observations of a feature 
that are highly dissimilar to their own class’s ideal vector element are intuitively not a 
positive sign. This means that the ideal vector does not represent observations of the class 
well. Nevertheless, such feature values lead to low entropy values, indicating 
informativity. Likewise, feature values for observations that are close to any competing 
class’s ideal vector element lead to low entropy values as well. Once more, this is not a 
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positive sign since a class’s feature representative should not also represent feature values 
of other classes well.  
One last assumption is that the features can be evaluated on a stand-alone basis 
(univariate). Hence, it is expected that no or only marginal feature interactions are present 
since they simply cannot be captured explicitly. It is noteworthy that this assumption is 
different from the first assumption about one ideal vector per class. The first assumption 
is related to the data structure and is independent of the number of features. In contrast, 
assumption three means that a feature is evaluated merely by itself, and no information 
of other features is incorporated into the calculation of the feature’s relevance. Figure 3.1 
illustrates four examples that clearly show that the first and third assumption refer to 
different properties of the data structure. 
 
 
Figure 3.1: Comparison of the first and third assumption. Each graph shows a binary classification 
problem and the approximate decision regions for each of the classes. 
 
The first example shows one data cluster per class and the corresponding approximate 
decision region for each of the classes. There is no (conditional) dependency between the 
first and second feature so that this example can be evaluated univariately. 
The second example shows two distinct decision regions for the red class that are non-
overlapping with the blue class. Once again, the features can be evaluated univariately 
and it is apparent that the second feature is more important than the first feature, which 
overlaps for both classes considerably. It is noteworthy that using a single ideal vector to 
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represent the red class is problematic. For the red as well as the blue class, the ideal vector 
elements for the second feature are both essentially at the same position.  
The third example highlights two classes that have each a single decision region. In 
addition, the blue and red class have a (conditional) dependency between the first and 
second feature. This means that knowing what value one of the features takes, affects the 
probability of the values that the remaining feature has. Hence, for this example, a 
multivariate evaluation is necessary to capture that the first and second feature together 
can linearly separate the classes but are each alone highly overlapping.  
The fourth example shows a numeric XOR problem, where both classes have two distinct 
decision regions. For both features the centre point of each class is essentially the same, 
which indicates that using one ideal vector per class will make it challenging, if not 
impossible, to capture the feature relevance for this data structure. Moreover, this problem 
needs to be addressed multivariately since the classes are for each feature overlapping 
entirely, whereas both features together enable a linear separation between the two 
classes.  
In summary, the assumption of a single ideal vector and of a univariate evaluation of 
features address two different aspects of the data. However, even when following the 
assumptions that having one ideal vector per class and the univariate evaluation of 
features are acceptable, dealing equally with high and low similarity values using entropy 
(the second assumption) can pose a problem even with simple data structures.  
Publication I and Publication II presented artificial examples to highlight the 
vulnerability of the feature selection method by Luukka (2011) for selected simple, low-
dimensional two-class and three-class cases. In the following, a set of three binary 
classification problems will be presented, which can be seen as a simple extension of the 
binary problem presented in Publication II. The reason for presenting binary 
classification problems in a two-feature context is that it is easy to follow, and the desired 
removal decision is intuitive. The three examples are displayed in Figure 3.2. All of these 
examples contain a first feature that is basically completely overlapping for both classes 
and, therefore, irrelevant for the classification. In other words, knowing which value the 
first feature takes does not help in assigning an observation to one of the two classes. For 
almost any value this feature takes, it is equally probable that it will belong to either of 
the classes. The focus of these three examples is on the second feature, which differs in 
terms of the magnitude of the variance. 
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Figure 3.2: Examples of a binary classification problem with different magnitudes of variance. 
Each class consists of 500 observations generated from a multivariate normal distribution. 
Example 1 with means 𝜇𝑟𝑒𝑑 = (5,40), 𝜇𝑏𝑙𝑢𝑒 = (5,60) and covariance matrices Σ𝑟𝑒𝑑 = Σ𝑏𝑙𝑢𝑒 = 
[
0.075 0
0 0.01
]; example 2 with the same means and covariance matrices but with the variance for 
the second feature increased to 1; and example 3 with the same means and covariance matrices 
but with the variance of the second feature set to 2. 
 
In the first example, the second feature is in principle an optimal feature for the algorithm 
by Luukka (2011) in the sense that the approach for this example will work exactly as 
intended, and the data structure does not allow the vulnerabilities of the algorithm to be 
revealed. For this feature, the two classes have mean values close to 0 and 1, respectively, 
as well as a very low variance. In contrast, the first feature is entirely overlapping and, 
hence, irrelevant. Thus, the first feature should be selected for removal.  
Looking at Figure 3.2, the expectation for the first feature’s similarity values is that for 
both classes a large share of observations of each class will be fairly close to the class’s 
own ideal vector as well as the ideal vector of the competing class. The reason for this 
expectation is that these ideal vectors are extremely close in that dimension. The 
distribution of the observations’ similarities with their own class’s ideal vector and the 
competing class’s ideal vector is displayed in Figure 3.3. Figure 3.3(a) highlights that, 
indeed, the distribution of similarities for the first feature shows that most similarities are 
very high. In particular, more than 50% of the similarity values are within the range of 
0.9 to 1, and another 30% is between 0.8 to 0.9. However, given the large variance for 
the first feature, also more than 15% are between 0.4 and 0.7, which is a range that will 
result in high entropy values. Consequently, the entropy values for this feature are mainly 
in the middle range of possible entropy values, with few entropies being very small (0 to 
0.1) and even fewer being very large (0.6 to 0.7) (see Figure 3.3(c)). For the second 
feature, however, all observations of both classes are highly similar to their ideal vector 
(similarity of 0.9 to 1) and highly dissimilar to the ideal vector of the other class 
(similarity of 0 to 0.1) (see Figure 3.3(b)). For this reason, analysing the corresponding 
entropy values for the second feature reveals very low (0 to 0.1) to low (0.1 to 0.2) 
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entropies for all similarity values. Consequently, it comes as no surprise that the summed 
entropy of the second feature is a fraction of that for the first feature (145 vs 628). For 
this very distinct structure in example 1, the algorithm by Luukka (2011) correctly 
suggests the first feature for removal. 
 
 
Figure 3.3: Similarity and entropy histograms for both features (first example) 
 
Before presenting the similarity and entropy values for the second and third example, the 
effect that variance has on the scaled data and the corresponding similarity values will be 
elaborated on. The effect is twofold:  
First, the opposing ideal vector elements at the upper and lower ends of the scale are now 
moved to the centre, which restricts the smallest similarity that an observation’s feature 
value can possibly have to these ideal vector elements. This shift is premised on the 
scaling to the compact interval [0,1]. In comparison to a feature with lower variance, 
observations for a feature with higher variance are moved further away from their ideal 
vector. Since the observations on the higher end (at the top of the figure) and the lower 
end (bottom of the figure) have ‘nowhere to go’ due to the limits of 1 and 0, the ideal 
vectors as the representative points are pushed downwards and upwards, respectively. So, 
the ideal vectors are on average closer to each other. Hence, higher variance constrains 
observations from being highly dissimilar to the ideal vectors of competing classes.  
Second, the impact of a higher variance affects the similarity values to the competing 
ideal vectors disproportionally. A simple example of this behaviour and the change in the 
ideal vector elements is presented in Figure 3.4.  
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Figure 3.4: Change of similarity values for different levels of variance in a binary classification 
task 
 
Figure 3.4 illustrates for the red class how the similarity of the feature values to its own 
ideal vector element does not account for whether the feature has a lower or higher value 
than the ideal vector element. In other words, whether the observation is above or below 
the ideal vector for that feature does not affect the similarity value. In contrast, for the 
competing ideal vector that is non-overlapping, it does matter whether an observation’s 
feature value is below or above the ideal vector element of that class. Hence, for non-
overlapping classes, an increase in a feature’s variance will affect all similarity values, 
but this effect will be amplified for similarity values of observations with the competing 
ideal vectors. 
The focus is now on the change in the second feature since the first feature remains 
unaltered throughout all three examples. The specific effect that the increased variance in 
the second example has on the similarity values is displayed in Figure 3.5.  
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Figure 3.5: Similarity and entropy histograms for both features (second example) 
 
For the second feature, the similarity values between the ideal vector element of a class 
and the observation in that same class are on average still very high (Figure 3.5(b)). 
However, a few observations start to become less similar to their own ideal vector element 
(0.8 to 0.9). The changes in the similarity values of the observations’ feature value to the 
competing class’s ideal vector element are more pronounced. There are no longer any 
similarity values between 0 and 0.1. Moreover, the similarity values are more spread out 
than those to the observation’s own ideal vector.  
The corresponding entropy values (Figure 3.5(d)) are now on average considerably higher 
than in the first example (Figure 3.3(d)). The entropy values for the similarities of 
observations to the competing ideal vector for a feature experience the largest increase. 
However, also, the decrease in the similarity of the observations’ feature values to their 
own ideal vector element can be tracked to the elevated entropy values. Thus, the second 
feature’s entropy is substantially increased. Nonetheless, this entropy value is still smaller 
than that of the first feature (646 vs 680), and the first feature remains the one selected 
for removal. Notwithstanding, in this example the features’ entropy values indicate that 
the two features possess almost the same relevance, meaning a similar ability to 
discriminate between classes. This is obviously not representative of the actual data 
structure. A completely overlapping feature with high variance is certainly not as 
discriminating as a non-overlapping feature with small variance.  
In the third example, this issue of capturing the actual ability of features to discriminate 
between classes is taken one step further. The second feature’s mean values for the two 
classes are the same as before, but the in-class variance of the feature is increased one 
more time. After normalization, once more a shift of the ideal vector (represented by the 
centre of each class) towards the middle can be observed (see Figure 3.2). The 
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consequences of this shift and of the higher variance for the similarity and entropy values 
come into view in Figure 3.6(b) and (d). 
 
 
Figure 3.6: Similarity and entropy histograms for both features (third example) 
 
Compared to Figure 3.5(b), the similarity values of the second feature have become more 
ambivalent – that is, being closer to 0.5 – especially for the similarity of observations with 
the competing ideal vector element. On account of this, the entropy values have likewise 
increased on average, especially those based on the similarity of observations to a 
competing ideal vector element. The summed entropy value for the second feature is now 
clearly higher than that of the first feature (767 vs 689). As a result, for the first time, the 
removal of the second feature is suggested. Nonetheless, the second feature in this third 
example is still far from having a high variance within any of the two classes. 
Additionally, it is also clearly non-overlapping among the different classes. All the same, 
the feature selection method by Luukka (2011) suggests the removal of this feature rather 
than the removal of the entirely overlapping first feature. Going one step beyond this, it 
is obvious from this knowledge that a feature with higher overlap could also be ‘preferred’ 
for retention by the algorithm than one with a smaller overlap.  
These examples demonstrate for a binary classification the problem that the feature 
selection algorithm by Luukka (2011) faces and how it ends up making unintuitive and 
incorrect feature removal decisions. Clearly, the effect of scaling and the entropy measure 
do not necessarily lead to unintuitive feature removal decisions. However, it is clearly a 
weakness of the algorithm by Luukka (2011) that for simple examples it can come up 
with highly unintuitive and incorrect suggestions for the feature removal. 
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3.2 Introduction and Reasoning 
As demonstrated in the previous section, the feature selection method developed by 
Luukka (2011) can encounter problems with simple intuitive feature selection tasks. Even 
when the assumptions of a single ideal vector per class and the univariate evaluation are 
acceptable for a feature selection problem, the combination of fuzzy similarity and 
entropy (FSAE) by itself might not capture the relevance of features correctly or even 
rank an irrelevant feature as most relevant. Overall, this weakness can be linked to an 
inadequate consideration of the difference among ideal vectors, as was highlighted in 
Publication I. The similarity values of observations with their class’s ideal vector element 
capture variance in a class since the distribution will have a longer tail in the direction of 
smaller similarity values. This means that if higher variance is present, more observations 
will have lower similarity values with their class’s ideal vector element, and fewer 
observations will be close to it (similarity close to 1). As can be seen in Figure 3.4 in the 
prior section, variance can impact the ideal vectors as well by moving them towards the 
centre. However, even in example 2, where the feature removal decision by the method 
of Luukka (2011) was a close call, and in example 3, where it was clearly incorrect, the 
distance between the ideal vectors was large with respect to the regarded compact interval 
[0,1]. Even though the ideal vectors for the first feature were essentially at the same 
position and for the second feature about 0.8 (80% of the entire range from [0,1]) from 
one another, the algorithm decided that both features were comparably relevant. In these 
examples, each class is embodied by a single grouping, where the single ideal vectors per 
class represent the centre of the data points. Therefore, it is apparent that there is a link 
between the features’ relevance and the relation of the distance between the classes’ ideal 
vectors and their variance. In simple terms, if the ideal vector elements for a feature are 
distant from one another, and the variance in the class is small, this indicates that the 
feature is relevant. In contrast, if the ideal vectors are close, and the in-class variances are 
high, then the feature is only marginally relevant or even irrelevant. As mentioned 
previously, the in-class variance is accounted for by the similarity in the method by 
Luukka (2011). In contrast, the distance between ideal vector elements is not sufficiently 
considered. Hence, it is possible that a feature that is overlapping for different classes is 
considered more relevant than a non-overlapping feature with small or moderate variance.  
From this line of reasoning it is apparent that taking into consideration the distance 
between the ideal vector elements of each feature in addition to similarity and entropy 
could compensate for the vulnerability of the feature selection method of Luukka (2011). 
Since the distance between classes for a specific feature is at the centre of this 
vulnerability, a modification of the class- and feature-specific entropy values appears 
intuitive. In the suggested improvement of the algorithm by Luukka (2011) presented 
below, these entropy values can be scaled, for each feature, by a measure that accounts 
for the distance between the classes’ ideal vector elements. Following this approach, the 
summed scaled entropy values for each feature will incorporate the distance between the 
classes’ ideal vector elements for that feature. The corresponding step-by-step algorithm 
will be depicted and illustrated in the subsequent section.  
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3.3 Step-by-Step Algorithm of FSAE 
The algorithm underlying the novel fuzzy similarity and entropy (FSAE) -based feature 
selection method using a class- and feature-specific scaling factor is visualized in Figure 
3.7. FSAE is conceptualized as an information-based filter method to rank features 
according to their relevance with respect to the classes in a dataset. 
 
Figure 3.7: Step-by-step process underlying the FSAE feature selection for a two-dimensional 
example with three classes [reproduced from Publication I with the permission of the publisher] 
 
The first step is the calculation of the ideal vectors for each class. As in the feature 
selection method of Luukka (2011), the ideal vector can be computed as a generalized 
mean (Luukka, 2011; Publication I). The ideal vector element for the d-th feature can be 
calculated as 
 
𝑣𝑖,𝑑 = (
1
𝑛𝑖
∑ 𝑥𝑑
𝑚
𝑥𝜖𝑋𝑖
)
1
𝑚
, (3.1) 
where 𝑛𝑖 is the number of observations in class i, and the feature is denoted by d. The 
calculation of the generalized mean is the same as in Luukka (2011). 
The second step is the same as that of the feature selection method by Luukka (2011). 
For each observation j and each feature d, this step consists of the calculation of its 
similarity with the ideal vector values of that feature for each class i. 
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𝑆(𝑥𝑗,𝑑, 𝑣𝑖,𝑑) = √(1 − |𝑥𝑗,𝑑
𝑝 − 𝑣𝑖,𝑑
𝑝 |)
𝑝
, (3.2) 
where j denotes the observation (from 𝑗 = 1,2, … 𝑛), d the feature (from 𝑑 = 1,2, … 𝐷) 
and i the class (from 𝑖 = 1,2, … 𝑁). The resulting similarity matrix is of dimension 
n*(DN) (Publication I).  
The third step encompasses the calculation of the feature- and class-specific entropy and 
the computation of the feature- and class-specific scaling factors. The feature- and class-
specific entropy values for class i and feature d denoted by 𝐻𝑖,𝑑 are the sum over the 
observations’ entropy values for a certain feature and class. 
 
𝐻𝑖,𝑑 = ∑ 𝐻 (𝑆(𝑥𝑗,𝑑 , 𝑣𝑖,𝑑))
𝑛
𝑗=1
 (3.3) 
In contrast to the feature selection method by Luukka (2011), the summation of entropy 
values is conducted over all observations but not over all classes (see Equation (2.16)).  
The second computation implemented in this step is to determine the class- and feature-
specific scaling factors SF𝑖,𝑑. The objective of the scaling factor is to emphasize the 
distance between the classes’ ideal vectors for a certain feature (Publication I). To do this, 
the distance of the ideal vector element of class i for feature d from all other classes’ ideal 
vector elements for this feature is measured and the resulting distances averaged. 
 
SF𝑖,𝑑 = 1 −
(∑ |𝑣𝑖,𝑑 − 𝑣𝑗,𝑑|
𝑙
𝑖≠𝑗 )
1
𝑙
𝑁 − 1
 
(3.4) 
The parameter l controls the weight of the distance between two ideal vector elements 
𝑣𝑖,𝑑 and 𝑣𝑗,𝑑 in the quotient. The numerator in the quotient in the above equation is 
essentially the Minkowski distance. With l = 1, the result is simply the absolute distance 
between two ideal vectors averaged. With l = 2 and any higher value for l, the impact of 
larger distances is amplified in the formula, and the impact of lower distances between 
two ideal vectors is diminished. The measure of distance between the ideal vectors 
presented in the quotient in Equation (3.4) is subtracted from one. Hence, high distances 
between ideal vectors lead to low scaling factors and small distances or a distance of zero 
in a scaling factor close or equal to 1, respectively (Publication I).  
The fourth step uses the feature- and class-specific entropy values obtained from 
Equation (3.4). These values are multiplied with the feature- and class-specific scaling 
factors and, subsequently, summed over all classes to obtain the scaled entropy values for 
each feature (Publication I).  
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𝑆𝐸𝑑 = ∑(𝐻𝑖,𝑑 ∗ SF𝑖,𝑑)
𝑁
𝑖=1
 (3.5) 
Using Equation (3.5), for each feature d a corresponding scaled entropy value 𝑆𝐸𝑑 is 
calculated. The underlying idea behind the multiplication of the entropy values and the 
scaling factors is based on the meaning of entropy. As mentioned in a previous section, 
entropy embodies the level of informativity (Yao, Wong and Butz, 1999), with low 
entropy values indicating a high degree and high entropy values indicating a low degree 
of informativity. The objective of the scaling factor is to keep the entropy values at a 
similar level if the ideal vector element of a class is close to the ideal vector elements of 
other classes and to lower the entropy values if the ideal vector element of the feature is 
far from all others. The first case represents no or a minor change in the informativity of 
the features for the class label assignment. The second case can be interpreted as a 
correction of the level of informativity towards more informativity if the ideal vector 
element for a feature is far from those of competing ideal vectors. This assumes that a 
distinct ideal vector element for a feature – one that is clearly separated from the feature 
representatives of the other classes – is desirable for classification and increases the level 
of informativity of a feature (Publication I). The examples for the feature selection by 
Luukka (2011) indicated that not accounting in some form for the distance between class 
ideal vector elements for a feature can result in unintuitive and incorrect feature removal 
decisions.  
The fifth step uses the scaled entropy value of each feature for the feature removal. The 
feature ranking is implemented by sorting the scaled entropy values in ascending order, 
from the most informative feature to the least informative one (Publication I). Since the 
magnitude of the scaled entropy itself may be difficult to interpret, a simple normalization 
to the compact interval [0,1] can be conducted and the meaning reversed by subtracting 
the normalized value from 1. This ensures that these values represent a kind of 
informativity score of features in relation to each other. The feature that is most 
informative in the dataset obtains an informativity score of 1 and the least informative a 
score of 0. Hence, any informativity score between 0 and 1 indicates how informative a 
feature is in relation to the most informative feature in the dataset (Publication I). It is 
apparent that this also means that more informative features in a dataset obtain higher 
informativity scores than less informative ones. For the filter method FSAE, simply the 
user-specified k features with the highest informativity scores (or the lowest scaled 
entropy values) are selected for the feature subset (Publication I). The less informative 
features with lower informativity scores (and higher scaled entropy values) are discarded.  
As with the feature selection method of Luukka (2011), the FSAE algorithm can also be 
applied as a wrapper method using a classifier. In the first step, the data need to be divided 
into training and test data. Steps one to four are now conducted exclusively on the training 
data. After the feature ranking based on the training data is obtained, only the least 
informative feature (with the highest scaled entropy value) is suggested for removal. For 
the wrapper version, the fifth step also encompasses the calculation of the classification 
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accuracy on the test set before and after the feature removal. If the stopping criterion, 
such as a performance degradation above a user-specified threshold, is met, the wrapper 
approach stops and suggests the feature subset with the highest test set performance from 
one of the previous iterations. If the stopping criterion is not satisfied, the wrapper will 
remove the feature and start another iteration of the algorithm from step 1 to step 5 
(Publication I). 
3.4 Application to Artificial Data 
The fuzzy similarity and entropy (FSAE) feature selection algorithm can be applied to 
the same examples that were previously presented in Figure 3.2. These examples 
demonstrated the impact of higher variance on the entropy values in the algorithm by 
Luukka (2011) and on its removal decision. The FSAE will be deployed on these 
examples to illustrate the effect on the feature removal when the distance between ideal 
vector elements is accounted for. It has to be stressed that the similarity values for both 
feature selection approaches as well as the entropy measure deployed are the same. 
Hence, the difference in the entropy values can exclusively be attributed to the difference 
in the ideal vector elements incorporated into the FSAE in the form of scaling factors. 
The comparison of both approaches for the second feature in all three examples is 
displayed in Figure 3.8. 
 
 
Figure 3.8: Comparison of entropy histograms for FS Luukka (2011) and FSAE (for the second 
feature in all binary class examples) 
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The first row of subplots from (a) to (c) shows the entropy values of the approach by 
Luukka (2011) for each of the three artificial examples. In particular, these plots 
demonstrate how the increase in variance from slight to moderate gradually increases the 
entropy values (from left to right). Both the entropy values of the similarity values to the 
ideal vector element of the same class as well as those to the competing class’s ideal 
vector element experience this development. However, as discussed previously, the 
inability to account for the difference in the ideal vectors of the classes results in entropy 
values that do not represent the actual relevance of a feature. 
The overall results for all three examples are presented in terms of the feature entropy 
values in Table 3.1.  
 
Algorithm Example 1 Example 2 Example 2 
  Feature 1 Feature 2 Feature 1 Feature 2 Feature 1 Feature 2 
FS Luukka 2011 627.5 144.7 679.6 645.6 688.8 766.9 
FSAE 626.4 3.8 668.8 140.2 665.1 236.4 
Table 3.1: Comparison of the feature selection algorithms on artificial two-class data examples 
 
As with the approach by Luukka (2011), the FSAE is characterized by an increase in the 
variance of the scaled entropy values. Notwithstanding, the range of these values is 
considerably smaller and the distribution more compact than in the counterpart by Luukka 
(2011). Even in the third example, the majority of scaled entropy values remains between 
0 and 0.1, and the largest scaled entropy value does not exceed 0.3. Overall, the summed 
scaled entropy value of the FSAE for the second feature is clearly lower than for the first 
feature. Hence, for all three examples, FSAE suggests the completely overlapping first 
feature for removal. In addition, it is apparent that the summed scaled entropy in the given 
examples accounts for the variance that makes the feature less discriminating by resulting 
in a higher summed scaled entropy value for the second feature in the first to the third 
example. At the same time, it keeps the scaled entropy representative of the actual data 
structure and avoids the unintuitive removal of the second feature. Both algorithms are 
applied with the same standard parameters m = 1 and p = 1 to the three artificial examples. 
For any combination of 𝑝 𝜖 [1,6] and 𝑚 𝜖 [1,8], the removal decision does not alter.  
The same conclusion as in the previous three examples was drawn in the three artificial 
examples presented in Publication I. These examples contained three classes and two 
features, with a different level of variance and overlap in each example. These examples 
are visualized in Figure 3.9. 
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Figure 3.9: Examples of three-class classification problems [reproduced from Publication I with 
the permission of the publisher] 
 
In all three examples, it is apparent that the first feature is less discriminative than the 
second one. In the first two examples, the first feature overlaps entirely for all three 
classes, and the second feature is non-overlapping with no variance and small variance, 
respectively. This can simply be regarded as the three-class extension of the previous 
binary examples. The third example is characterized by only a partial overlap of the first 
feature and higher variance for the non-overlapping second feature. Hence, the first two 
examples differ in terms of variance, making the second feature less discriminating, 
whereas the third example additionally decreases the overlap of the first feature to make 
it more discriminating than before.  
The focus of all three examples remains on the second feature, which differs in terms of 
variance in all of these examples. The corresponding entropy values for the approach of 
Luukka (2011) and the FSAE are presented in Figure 3.10. 
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Figure 3.10: Comparison of entropy histograms for FS Luukka (2011) and FSAE (all three-class 
examples) 
 
Overall, the first example for the feature selection algorithm by Luukka (2011) leads to 
very low and very high entropy values, which summed up equate to a still rather high 
entropy value. The reason for this outcome is intuitive considering the similarity values 
associated with this example. All similarity values for the second feature with their class’s 
ideal vector elements is close to 1, leading to low entropy values. In contrast, the entropies 
of observations to competing ideal vector elements are either also negligible or at their 
maximum of close to 0.7. Since the ideal vector elements for the second feature are at 0 
(red), 0.5 (blue) and 1 (green) (see Figure 3.9), the similarity of observations to competing 
ideal vector elements is either 1 or 0.5. This results in negligible and high entropy values, 
respectively. For the second and third examples, the summed entropy rises further, mainly 
due to increased similarity of feature values to the competing classes’ ideal vector 
elements.  
The results for the FSAE approach differ in terms of the distribution of scaled entropy 
values. This difference originates in the use of the scaling factors. For the peripheral 
classes (red and green), the scaling factor of 0.75 is larger than for the central cluster 
(blue) at 0.5. It is apparent that the scaling factor accounts for the fact that the peripheral 
classes are on average further from the remaining classes than the central class is. FSAE 
reduces the high entropy values observed by Luukka (2011) for all observations – but 
depending on the observation’s class to an unequal magnitude. The same logic applies 
for the remaining two examples with an increasing degree of variance.  
The entropy values for the feature selection by Luukka (2011) and the FSAE are presented 
in Table 3.2. 
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Algorithm Example 1 Example 2 Example 2 
  Feature 1 Feature 2 Feature 1 Feature 2 Feature 1 Feature 2 
FS Luukka 2011 1284.3 1474.2 1180.8 1686.9 1847.1 2058.6 
FSAE 1024.5 430.3 904.3 532.4 1057.2 813.0 
Table 3.2: Comparison of the feature selection algorithms on artificial three-class data examples 
[modified from Publication I]2 
 
In all examples, the average scaled entropy is clearly lower for the FSAE due to the 
scaling factor that accounts for the distance between the ideal vectors for that feature. 
While the approach by Luukka (2011) suggests in all three-class examples the removal 
of the relevant second feature, FSAE correctly suggests the first feature for removal. 
3.5 Application to Medical Data 
In Publication I, the FSAE feature selection algorithm was also tested on five real-world 
medical datasets. The medical datasets are freely available at the UCI Repository of 
Machine Learning Database (Lichman, 2013). They are summarized in a condensed way 
in Table 3.3.  
  
                                                 
2 In Publication I, the summed entropy values for the approach by Luukka (2011) were divided by the 
number of classes. To make the entropy values for the approach by Luukka (2011) and the FSAE more 
easily comparable, the results for the approach of Luukka (2011) for this three-class problem are multiplied 
by three compared to the ones found in Publication I. This obviously has no impact on the feature ranking 
and removal decision since the feature ranking is conducted for each method independently.  
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Dataset Short Description 
Number of 
Features 
Number of 
Classes 
Complete 
Observations 
Contributor 
Dermatology 
Differential 
diagnosis of 
erythemato-
squamous diseases 
34 6 358 
Ilter and Guvenir 
(1998)  
Chronic 
Kidney 
Disease 
Characteristics of 
patients with and 
without chronic 
kidney disease 
24 2 156 
Soundarapandian 
and Rubini 
(2015)  
Breast Cancer 
Wisconsin 
(Original) 
Characteristics of 
patients with benign 
and malignant breast 
cancer 
10 2 683  Wolberg (1992) 
Diabetic 
Retinopathy 
Debrecen 
Features extracted 
from the Messidor 
image set for the 
prediction of 
diabetic retinopathy 
19 2 1151 
Antal and Hajdu 
(2014)  
Horse Colic 
Medical features of 
horses including that 
had surgical and 
non-surgical lesions 
27 2 379 
 McLeish and 
Cecile (1989) 
Table 3.3: Description of medical datasets for the FSAE 
 
Before comparing the approach by Luukka (2011) and the FSAE filter with other 
information- and distance-based filter methods, the wrapper versions of these two 
algorithms were compared. The classifier deployed within the wrapper method and for 
the comparison of feature subsets for the filter method is the standard similarity classifier 
with optimal value search for the 𝑝 ∈ [1,6] and 𝑚 ∈ [1,8] parameters. The comparison 
of the best setup for the wrapper version of the approach by Luukka (2011) with the 
wrapper version of the FSAE is illustrated in Table 3.4.  
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Dataset Approach Entropy 
Removed 
Features 
Removed 
(in %) 
Avg. 
Performance 
Variance 
Dermatology 
No FS - - - 98.11 % 0.0110 % 
Sim + FS Luukka (2011) Parkash et al 1 3.0 % 98.20 % 0.0119 % 
Sim + FSAE (l = 1) 
De Luca and 
Termini 
5 15.2 % 98.36 % 0.0112 % 
Chronic 
Kidney 
Disease 
No FS - - - 99.90 % 0 % 
Sim + FS Luukka (2011) 
De Luca and 
Termini 
6 25.0 % 100.00 % 0 % 
Sim + FSAE (l = 2) 
De Luca and 
Termini 
20 83.3 % 100.00 % 0 % 
Breast Cancer 
Wisconsin  
No FS - - - 97.61 % 0.0001 % 
Sim + FS Luukka (2011) Either entropy 0 0.0 % 97.64 % 0.0001 % 
Sim + FSAE (l = 1 or 2) Either entropy 4 44.4 % 97.30 % 0.0001 % 
Diabetic 
Retinopathy 
Debrecen 
No FS - - - 59.57 % 0.0647 % 
Sim + FS Luukka (2011) 
De Luca and 
Termini 
7 36.8 % 61.05 % 0.0398 % 
Sim + FSAE (l = 1 or 2) Either entropy 5 26.3 % 61.09 % 0.0419 % 
Horse Colic 
No FS - - - 86.72 % 0.0576 % 
Sim + FS Luukka (2011) Parkash et al 7 30.4 % 87.70 % 0.0578 % 
Sim + FSAE (l = 1 or 2) Either entropy 11 47.8 % 87.70 % 0.0667 % 
Table 3.4: Comparison of wrapper feature selection on multiple medical datasets [modified from 
Publication I] 
 
The results highlight two essential aspects of these approaches with respect to one another 
and to using no feature selection at all. The first aspect is that both approaches 
successfully conduct feature selection, meaning that for basically all datasets, they 
suggest a feature subset that leads to a classification accuracy at least comparable to the 
complete feature set. For the first three medical datasets, the average classification 
accuracy did not change notably when features were removed from the dataset, which 
suggests that these features were not relevant for the classification. For the last two 
medical datasets, the Diabetic Retinopathy and Horse Colic datasets, removing several 
features even increased the classification accuracy as opposed to using the entire feature 
set. This indicates that some features were not only irrelevant for classification but even 
rendered the classification more challenging and acted as noise in the data.  
The second aspect is that, with exception of the Diabetic Retinopathy dataset, the feature 
subset suggested by FSAE achieved the same classification accuracy as the approach by 
Luukka (2011) while using a smaller subset of features. From the five considered medical 
datasets, the most distinct difference can be observed for the Chronic Kidney Disease 
dataset, where the approach by Luukka (2011) suggests the removal of six features, 
whereas FSAE suggests removing 20 out of the 24 features to obtain the perfect 
classification accuracy of 100%. The Diabetic Retinopathy dataset shows only a slight 
difference in favour of the approach by Luukka (2011). With the approach by Luukka 
(2011), seven features are removed instead of the five features discarded according to the 
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FSAE. Nevertheless, both approaches essentially obtain the same increase in 
classification accuracy for the dataset. 
The results for the comparison of the filter version of the FSAE with the filter version of 
the approach by Luukka (2011), the ReliefF algorithm, the Laplacian score and the Fisher 
score are illustrated for all datasets in Figure 3.11. All filter methods were deployed to 
obtain a feature ranking. Each graph represents the classification accuracy on the feature 
set for that step-by-step the lowest-ranked features were removed in accordance with the 
feature ranking of each algorithm. A similarity classifier is deployed for the evaluation of 
the classification accuracy. For the Dermatology dataset, the ReliefF algorithm, which 
accounts for the local neighbourhood, clearly outperforms all other filter methods. The 
remaining filter methods perform comparably against one another. In particular, the mean 
accuracies of the approach by Luukka (2011) and the FSAE are very similar. This 
indicates that for this particular dataset, the consideration of the difference between ideal 
vectors does not impact the feature removal decision considerably. For the second dataset, 
the Chronic Kidney Disease data, once more the ReliefF algorithm performs particularly 
well in ranking the features. All feature selection algorithms, with the sole exception of 
the approach by Luukka (2011), end up within a small range of mean accuracy values 
around 95%. The approach by Luukka (2011) apparently removes the more relevant 
feature since the mean classification accuracy with only one feature is, with less than 
70%, more than 20 percentage points lower than the accuracy of the remaining 
algorithms. Since the consideration of the difference among ideal vectors is the main 
difference between this approach and the FSAE, this clearly shows that, for this dataset, 
it is essential for the feature removal to consider this difference.  
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(a) Dermatology (b) Chronic Kidney Disease 
  
(c) Breast Cancer Wisconsin (Original) (d) Diabetic Retinopathy Debrecen  
  
(e) Horse Colic 
 
Figure 3.11: Comparison of filter feature selection on multiple medical datasets [reproduced from 
Publication I with the permission of the publisher] 
 
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 62 
For the Breast Cancer Wisconsin dataset, most approaches, including ReliefF and FSAE, 
result in similarly high mean accuracies. Only the approach by Luukka (2011) seems to 
gradually deteriorate in its performance right from the start. The remaining approaches’ 
classification results are more or less stable until the removal of the sixth feature. At that 
point, the approach by Luukka (2011) had already deteriorated about 4 percentage points 
in performance. The choice of a single feature, for all approaches, leads to a considerable 
decline in mean accuracy. However, it is apparent that the feature choice of the approach 
by Luukka (2011) is inferior to those of the remaining algorithms. The approach’s 
performance declines by an additional 10 percentage points to below 80%, whereas the 
other filter methods face only a decline of 3 to 4 percentage points to a performance of 
around 90%.  
For the Diabetic Retinopathy Debrecen dataset, FSAE and the approach by Luukka 
(2011) initially experience an increase in the classification accuracy on account of the 
first four to five feature removals. While this increase for the approach by Luukka (2011) 
withstands only the removal of four features, for the FSAE an additional feature can be 
removed to further increase the mean accuracy. Overall, the FSAE results with five 
removed features in the highest classification accuracy of all approaches for any number 
of feature removals. That said, for more than five feature removals, the remaining filter 
methods outperform the FSAE and the approach by Luukka (2011) by a margin of on 
average 3 to 4 percentage points.  
For the Horse Colic dataset, FSAE and the approach by Luukka (2011) belong initially 
to the top-performing approaches, also outperforming the ReliefF algorithm by several 
percentage points. While the FSAE remains for the majority of feature removals within 
the top filter methods, the approach by Luukka (2011), after the tenth feature, evidently 
removes several features that are relevant for classification. Thus, it experiences more 
than once a decline of 5 percentage points for a feature removal. Eventually, the approach 
by Luukka (2011) ends up at a performance of close to 50%, whereas the remaining 
algorithms, including the FSAE, are more than 30 percentage points more accurate. Once 
more, this demonstrates that incorporating the difference in the ideal vectors can improve 
the feature removal decisions and result in considerably better feature subsets in terms of 
their ability to classify observations.  
Finally, it has to be noted that the FSAE and the approach by Luukka (2011) were applied 
only with standard parameters and that potentially better results can be achieved with the 
optimal parameters for each of these supervised feature selection tasks.  
3.6 Application to the Prediction of S&P500 Intraday Returns 
3.6.1 Introduction and Objectives 
In the previous section it was demonstrated for several artificial examples in detail how 
the FSAE feature selection method can improve the feature ranking of the approach by 
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Luukka (2011). In this section, the application to a real-world dataset with a focus on the 
American financial stock market index the S&P500 is presented.  
The prediction of price movements in financial markets, such as the S&P500, can be 
regarded as a pattern recognition problem (Felsen, 1975; Guo et al., 2014). Hence, a 
machine learning approach based on a combination of feature selection and, 
subsequently, classification can be pursued to forecast future stock index returns. 
Previous research using machine learning approaches includes the prediction of stock 
markets with a variety of classification methods, including neural networks (Altay and 
Satman, 2005; Fadlalla and Amani, 2014), support vector machines (Guo-qiang, 2011; 
Guo, Wang, Liu, & Yang, 2014), genetic algorithms (Kim, Han, & Lee, 2004; Leigh, 
Purvis, & Ragusa, 2002), case-based reasoning (Chun and Park, 2005) and a random 
subspace classifier (Zhora, 2005). The findings in the academic literature, including 
momentum anomalies, (Leigh, Purvis, & Ragusa, 2002) indicate that it is possible to 
successfully derive trading strategies from a suitable set of financial features. 
In Publication II, the objective is the prediction and classification of the intraday returns 
of the S&P500 stock market index. The intraday return is the percentage change of the 
stock market index between the daily opening of the stock exchange (opening price) to 
its closing, when the trading for the day is finished (closing price). For this purpose, the 
authors of that research paper used numerous features that they assumed to have an impact 
on the changes in this market index. The FSAE algorithm is applied to this feature set to 
obtain a subset of relevant features for this dataset. This subset is subsequently deployed 
for classification. The aim is to derive trading strategies from the classification model that 
can outperform a simple buy-and-hold trading strategy in terms of returns after 
transaction costs. 
3.6.2 Data and Feature Selection 
The initial data for the analysis is obtained free of charge from the webpage Yahoo 
Finance (2017) and covers daily data from 11/10/2010 until 28/3/2018. The features 
downloaded from Yahoo Finance encompass seven large stock market indices, two 
market exchange traded funds (ETF), six indices/ETFs representing economic sectors and 
commodities, three currency exchange rates of the US dollar (USD) to the currencies of 
major trading partners, four time series related to interest rates and yields and the VIX 
index.  
The seven stock market indices represent the stock markets in seven of the largest equity 
markets around the globe. In addition, the two market ETFs replicate the medium and 
large capitalized companies in the emerging markets (BlackRock, 2017a) and small, 
medium and large capitalized ones in the global equity market (Morningstar, 2017). In 
terms of sector exposure, one ETF reflects the large American companies in the materials 
sector (State Street Global Advisors (SPDR), 2017b), one ETF represents large 
companies in the financial sector in the United States (SPDR, 2017a) and one embodies 
the financial sector in Europe (BlackRock, 2017b). The time series on commodities 
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includes a gold ETF, a crude oil ETF (S&P Dow Jones Indices, 2017) and an ETF for 
energy, precious and industrial metals overall as well as grains and livestock (USCF, 
2017). The volatility index VIX is included to represent market sentiment and can be 
regarded as a barometer for investor sentiment in the S&P500 equity market (Rossilo, 
Giner and De la Fuente, 2014). From all these time series, the return from one trading 
day’s opening price to the same day’s closing price (open-close return or intraday return) 
and from the closing price of one day to the next day’s opening price are calculated. 
Moreover, the change in the daily highest and lowest quoted price and the change in 
volume and the range (high price – low price) between two consecutive trading days were 
computed. In addition to the time series data that are directly available from Yahoo 
Finance, several features have to be derived from them. On one hand, yield spreads have 
to be calculated between short-, medium- and long-term yields since previous research 
has indicated that they are connected to the contraction and expansion of an economy 
(Rudebusch and Williams, 2009). On the other hand, technical indicators such as 
momentum, moving averages (MA), the relative strength index (RSI), Bollinger bands 
and the moving average convergence divergence (MACD) are derived from the S&P500 
time series (Hurwitz and Marwala, 2011; Di Lorenzo, 2013). Each of these indicates 
short-term trends or are indicators of whether a market is overbought or oversold, 
indicating a sell or buy signal. The complete list of features is presented in Table 3.5. 
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Dependent Variable             
S&P500 Open-Close Return           
Features             
Time Series             
S&P500 - Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
DAX Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
Nikkei225 Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
iShares MSCI Emerging Markets Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
Vanguard Total World Stock ETF Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
Hang Seng Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
FTSE 100 Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
STOXX 50 Open-Close Return Close-Open Return - - - - 
Russell 2000 Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
VIX S&P500 Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
SPDR Gold Shares ETF Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
United States Commodity Index Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
Materials Select Sector SPDR ETF Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
iPath S&P GSCI Crude Oil Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
Financial Select Sector Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
iShares MSCI Europe Financials  Open-Close Return Close-Open Return Δ (%) High Δ (%) Low Δ (%) Volume Δ (%) Range 
CBOE Interest Rate 10 Year Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
Treasury Yield 30 Years Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
Treasury Yield 5 Years Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
13 Week Treasury Bill Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
JPY/USD Exchange Rate Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
EUR/USD Exchange Rate Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
CNY/USD Exchange Rate Open-Close Return Close-Open Return Δ (%) High Δ (%) Low - Δ (%) Range 
              
       Technical Indicators and Yield Spreads           
Δ (%) Spread Treasury 30y - 5y Δ (%) Momentum (1d) MACD (26d, 12d, Signal 9d) Mov.Avg. (5d)     
Δ (%) Spread Treasury 30y - 13w Δ (%) Momentum (3d) Bollinger (2 Std) Mov.Avg. (10d)     
Δ (%) Spread Treasury 5y - 13w Δ (%) Momentum (5d) RSI (14d)         
  Δ (%) Momentum (10d)           
Table 3.5: Initial list of features for the S&P500 feature selection and classification model 
[modified from Publication II] 
 
The selection of features is similar to that in previous research on stock market prediction, 
where commonly at least financial time series, technical indicators, commodity prices, 
exchange rates, interest rates and yields/yield spreads are included (Krollner, Vanstone 
and Finnie, 2010). 
The data are divided into two distinct and non-overlapping time periods (1) for training 
and testing and (2) for forecasting. This division and the transformation of the intraday 
returns into four classes is illustrated in Figure 3.12. 
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Figure 3.12: Data split and class assignment 
 
The training and testing data span over a period of about five and a half years, whereas 
the out-of-sample forecast period is located after the training and testing period and is 
closer to two years of trading days. According to the magnitude of the S&P500 intraday 
returns (dependent variable), four classes were defined to represent these returns. A 
‘strong positive’ class for intraday returns over 0.5%, ‘slightly positive’ for returns 
between 0% and up to 0.5%, ‘slightly negative’ for the range from -0.5% up to 0% and 
the ‘strong negative’ class for intraday returns smaller than -0.5%. These four classes 
represent the dependent variable for the classification task instead of the actual intraday 
return values. This step is conducted since the aim is not to predict the exact return value, 
as in a regression task, but to predict the return class, where each class represents how 
positive or negative the market development is during a certain trading day. The step size 
of 0.5% for the class assignment was selected because it divides the dependent variable 
in the training and testing dataset into classes that are close to being balanced in terms of 
observations in each of the classes. The classes in the forecast period are less balanced 
and show more observations in the ‘slightly positive’ and ‘slightly negative’ class. 
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However, this does not pose a considerable problem since the model itself was set up with 
the training and testing dataset and does not favour any class due to a disproportionally 
large share of observations in any of the classes. It is worthwhile to note that using a four-
class setting differentiates this research from the majority of the existing literature. The 
existing scientific literature limits itself to the use of two classes to cover exclusively 
upward and downward movements in stock markets. For instance, in the research work 
of Patel et al (2015) on stock market predictions, the authors used a two-class setup for 
their model but suggested that using more categories than two is worth exploring.  
The FSAE feature selection algorithm is applied to the initial dataset containing 136 
features in order to obtain a feature subset that only contains features that are relevant for 
the classification of the S&P500 stock index returns. The FSAE setup with Parkash, 
Sharma and Mahajan (2008) entropy and l = 1 is selected to conduct the feature selection. 
Deploying the FSAE together with a random forest classifier suggests the removal of 38 
out of 136 features (27.9% of the features). 
3.6.3 Results and Conclusion 
The comparison of several classifiers on this feature subset of 98 features demonstrates 
that the random forest achieved the highest average classification result (Publication II) 
(see Table 3.6).  
 
Approach 
Setup and 
Parameters 
Avg. Performance Variance (in %) 
Similarity Classifier p = 3, m = 1 44.04 % 0.03 % 
Random Forest Min Leaf Size = 1 43.63 % 0.04 % 
Random Forest Min Leaf Size = 10 44.72 % 0.03 % 
KNN k = 1 32.36 % 0.04 % 
KNN k = 10 36.80 % 0.05 % 
Naive Bayes Normal Kernel 38.85 % 0.07 % 
Decision Tree Min Leaf Size = 1 34.89 % 0.04 % 
Decision Tree Min Leaf Size = 10 37.47 % 0.06 % 
Table 3.6: Comparison of classification algorithms on the feature subset [reproduced from 
Publication II with the permission of the publisher] 
 
Setting up the final random forest model on a single partition into training and test set and 
recording the test set and out-of-sample forecast highlights the classification accuracies 
that this stock market model can obtain (Publication II).  
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Test 
Class 1  Class 2 Class 3 Class 4 
62.1 % 54.6 % 18.8 % 48.3 % 
46.3 % 
Positive Negative 
82.40 % 50.00 % 
Forecast 
Class 1  Class 2 Class 3 Class 4 
40.7 % 55.8 % 23.8 % 41.2 % 
41.0 % 
Positive Negative 
75.2 % 35.9 % 
Table 3.7: Average classification accuracy on the test and forecast data [modified from 
Publication II] 
 
The results in Table 3.7 point out that the classification is distinct for each of the four 
classes. On an aggregated basis, classifying observations into positive return classes 
appears to be more accurate than into the negative classes. Overall, the results appear for 
most classes to be consistent between the test and forecast data. An exception is the 
‘strong positive’ class, which only shows an accuracy of 40.7% on the out-of-sample 
forecast set, which is more than 20 percentage points less than in the test set. Evidently, 
the classification into the third class of ‘slightly negative’ is in both datasets clearly the 
least accurate assignment. Altogether, for the forecast dataset the classification accuracy 
into the ‘slightly positive’ class is the highest, followed by the two classes with high 
absolute returns, the ‘strong negative’ and ‘strong positive’ classes.  
Based on these classification results, four trading strategies are suggested that aim to 
deploy the classification model’s predictions to anticipate movements in the S&P500 
index and benefit from them. To benefit directly from these market movements, a trader 
needs financial instruments or investments to replicate the behaviour of the S&P500 stock 
market as precisely as possible. There exist two simple possibilities to implement such an 
equivalent to the S&P500. The first is using an exchange traded fund (ETF), which is an 
inexpensive way to track markets such as the S&P500 index (Bodie, Kane, & Marcus, 
2009). Another, more capital-intensive approach is to purchase/sell the (majority of the) 
stocks constituting the S&P500 in the proportions they are represented in this market 
index. Since these approaches directly aim to replicate the actual S&P500 index, 
transactions conducted to purchase or sell such investments will simply be referred to as 
‘buying the index’ or ‘selling the index’.  
The four trading strategies can be implemented with investments replicating the S&P500 
and following all or only a subset of the class predictions from the random forest model.3  
These strategies are detailed in Table 3.8. 
                                                 
3 It should be noted that these strategies embody different levels of risk for an investor. An investor has to 
decide which strategy to pursue based on the risk & return profile of the strategy. For this research, the 
focus is exclusively on the returns achievable with the strategies accounting for only transaction costs.  
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No Strategy 
1 Strongly positive or positive returns predicted (Classes 1 & 2) - Long (buy) the index 
Strongly negative or negative returns predicted (Classes 3 & 4) - Short (sell) the index 
After decision: Remain long or short until next decision requires a change 
2 Strongly positive returns predicted (Class 1) - Long (buy) the index 
Strongly negative returns predicted (Class 4) - Short (sell) the index 
After decision: Remain long or short until next decision requires a change 
3 Strongly positive returns predicted (Class 1) - Long (buy) the index 
Strongly negative or negative returns predicted (Classes 3 & 4) - Short (sell) the index 
After decision: Remain long or short until next decision requires a change 
4 Strongly positive or positive returns predicted (Classes 1 & 2) - Long (buy) the index 
Strongly negative returns predicted (Class 4) - Short (sell) the index 
After decision: Remain long or short until next decision requires a change 
5 Benchmark: Buy-and-Hold - Long (buy) the index at start of period and retain 
Table 3.8: Investment strategies for S&P500 stock market index [reproduced from Publication II 
with the permission of the publisher] 
 
These strategies follow ‘strong positive’ or ‘slightly positive’ predictions for the 
upcoming trading day with a buy decision for the market. If a person is already invested, 
the decision is to remain ‘long’, meaning to stay invested in order to contribute from the 
expected positive market development during that day. In contrast, these strategies 
assume for ‘strong negative’ or ‘slightly negative’ predictions that the upcoming trading 
day will eventuate in a negative intraday return. Hence, the traders in these strategies 
‘short’ the market, so sell their investment, if they are already invested, and, additionally, 
sell ‘short’ an investment they do not currently hold in order to make a profit on the 
expected negative intraday return. The benchmark strategy for the four trading strategies 
is a buy-and-hold strategy. A buy-and-hold strategy is a passive management strategy that 
includes buying an index/investment and holding it over the entire investment period. 
With this type of strategy, all positive returns but also all negative returns are incurred by 
the investor and contribute to the return over the entire investment period.  
For the comparison of the buy-and-hold strategy with the four classification model-based 
strategies, transaction costs for buying and selling the index will be accounted for. Two 
different approaches are selected: (1) using a fixed percentage of the trade value (e.g. as 
in Pätäri and Vilska (2014)) and (2) using a fixed USD amount (e.g. as in Teixeira and 
De Oliveira (2010)). Following this approach, Publication II finds that with small 
transaction costs, it is possible to outperform a buy-and hold strategy. An example of such 
an outperformance is illustrated in Figure 3.13 for transaction costs of 0.1% of the 
transaction value. 
3 Fuzzy Similarity and Entropy (FSAE) Feature Selection 70 
 
Figure 3.13: Comparison of the performance of the trading strategies for the forecasting period 
[reproduced from Publication II with the permission of the publisher] 
 
The detailed results for the forecasting period are displayed in Table 3.9 with different 
levels of transaction costs.4 
Investment Strategy Buy & Hold Strategy 1 Strategy 2 Strategy 3 Strategy 4 
Investment Transactions 1 201 64 68 89 
- 0 26.39 % 60.14 % 39.97 % 39.33 % 57.51 % 
- 0.10 % 26.26 % 30.97 % 31.28 % 30.16 % 44.09 % 
- 0.20 % 26.13 % 7.09 % 23.13 % 21.60 % 31.80 % 
- 0.30 % 26.01 % -12.46 % 15.48 % 13.58 % 20.55 % 
- 0.40 % 25.88 % -28.45 % 8.30 % 6.09 % 10.25 % 
10'000 10 26.26 % 35.22 % 32.62 % 31.57 % 46.59 % 
10'000 20 26.13 % 10.31 % 25.28 % 23.81 % 35.68 % 
50'000 10 26.36 % 55.15 % 38.50 % 37.78 % 55.33 % 
50'000 20 26.34 % 50.17 % 37.03 % 36.22 % 53.14 % 
Table 3.9: Performance of trading strategies for the forecasting period [modified from Publication 
II] 
                                                 
4 In Publication II the returns of the buy-and-hold strategy for the percentage-based transaction costs were 
the same for different levels of transaction costs. This was a transcription error. The actual returns for the 
buy-and-hold strategy differ slightly (less than 0.3% lower or higher for all transaction cost setups over the 
entire holding period). This did not alter either the returns for the four suggested trading strategies, the 
findings or conclusions presented in the original paper. 
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It is apparent that higher transaction costs deteriorate the return of strategies requiring 
frequent transactions. Thus, it is also obvious that the first strategy that acts on all class 
predictions and that has about three times as many transactions as Strategies 2, 3 and 4 
experiences a faster return decline when the transaction costs increase. Since more 
transactions eventuate in higher cost, this result is intuitive. However, it is remarkable 
that with a small transaction cost, for instance 0.10% or 10 USD, all four investment 
strategies outperform the buy-and-hold strategy. Relying on all predictions, as in Strategy 
1, is only the best approach when no transaction costs are present. If transaction costs are 
present, Strategy 4 results in the highest returns after transaction costs of all the four 
trading strategies. Considering the previous classification accuracies of the random forest 
model (see Table 3.7) offers a simple explanation for this outcome. Strategies 1 and 3 
include the predictions of the ‘slightly negative’ class (Class 3), which are comparatively 
inaccurate (23.8%). In contrast to Strategy 2, which acts only on ‘strong positive’ and 
‘strong negative’ return predictions, the better-performing Strategy 4 includes in addition 
‘slightly positive’ return predictions. This comparison shows that including the ‘slightly 
positive’ return predictions is beneficial. The ‘slightly positive’ class shows the highest 
classification accuracy (55.8%) in the forecast set, making it the most reliable prediction. 
Hence, Strategy 4 outperforming the remaining classifier-based trading strategies is 
unsurprising.  
The subsequent question of interest is how the class predictions contribute to the returns 
achieved by the random forest-based trading strategies. The contributions can be 
presented using the predicted classes and the actual returns in the forecast period. In 
Figure 3.14, the contributions are distinguished not only by the prediction of the return 
direction or class but also by whether the predictions were correct or incorrect 
(misclassification). 
 
 
Figure 3.14: Average return contribution from direction and class predictions [reproduced from 
Publication II with the permission of the publisher] 
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The first graph in Figure 3.14 displays the average return achieved with positive 
predictions (‘strong positive’ and ‘slightly positive’ combined) and negative ones (‘strong 
negative’ and ‘slightly negative’ combined). It is apparent that both the positive and 
negative predictions lead to overall positive returns. In particular, correct classifications 
for positive or negative returns lead to on average high positive returns. The second graph 
illustrates which class predictions are associated with the largest average returns. Overall, 
the ‘strong positive’ and ‘strong negative’ classes show the highest average return, being 
2 to 6 times larger than the slight return classes 2 and 3. This effect originates in the fact 
that the very large average returns achieved in the case of correct predictions for these 
classes is only partially offset by the negative returns experienced if these predictions are 
misclassifications. If they are correctly classified, the average returns achieved for classes 
1 and 4 are 0.84% and 1.24%, respectively, which for both is larger than 0.5%. This is an 
intuitive outcome since classifying a return correctly as ‘strong positive’ means that the 
return is correctly classified as being in excess of 0.5%, which leads to an average return 
larger than 0.5%. The same logic is true for ‘strong negative’ returns, which by definition 
are smaller than -0.5% – meaning for a seller a profit of on average larger than 0.5%. In 
contrast, the consequence of misclassifying the ‘strong positive’ and ‘strong negative’ 
return is not necessarily a negative return. For instance, misclassifying a ‘slightly 
positive’ return as ‘strong positive’ leads still to a positive return – but that positive return 
is simply smaller in magnitude than expected. The same holds true for ‘strong negative’ 
returns. Hence, it is plausible that ‘strong positive’ and ‘strong negative’ predictions can 
contribute on average most to a trading strategy.  
In conclusion, the use of a combination of feature selection with the FSAE and the 
classification algorithm random forest was demonstrated to yield results that can 
successfully be implemented into trading strategies. Moreover, it was demonstrated that, 
over the forecast period, all trading strategies were able to outperform a simple buy-and-
hold strategy when no or only minor transaction costs were present. Thereupon, it was 
highlighted that the prediction of ‘strong positive’ and ‘strong negative’ returns can 
contribute over-proportionally to the return of a trading strategy. In addition, this suggests 
that considering more than two classes can be beneficial for a classification task. It also 
stresses that using only a subset of the predictions, such as the extreme return classes 1 
and 4, can be more beneficial for a trading strategy than simply using all predictions. 
Finally, in future research these results can be validated and potentially be extended to 
other stock markets worldwide. 
3.7 Conclusion and Limitations of FSAE Feature Selection 
The fuzzy similarity and entropy (FSAE) feature selection algorithm was introduced as 
an improvement of the feature selection approach by Luukka (2011). As highlighted in 
detail in this chapter, the feature selection by Luukka (2011) can fall victim to the fact 
that it does not explicitly take into account the distance between ideal vectors (Publication 
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I). Deploying entropy in the approach by Luukka (2011) means that observations with 
high and low similarity values are dealt with equally. Thus, they are considered equally 
informative for a feature. This caused the approach to be vulnerable to certain data 
structures and levels of variance within the classes. It was demonstrated for different two- 
and three-class settings that even with small or moderate variance, non-overlapping 
classes for a feature are perceived as being less informative than a feature with completely 
overlapping classes and basically equal class centres. Such a feature ranking is clearly not 
representative of the feature’s ability to discriminate between classes, and such an 
outcome is certainly undesirable. The objective of the FSAE algorithm was to enhance 
the feature selection algorithm by Luukka (2011) to add a scaling factor for the class- and 
feature-specific entropy values. For the artificial examples, it was detailed extensively 
how the scaling factor affects the features’ entropy values and the feature ranking overall. 
In particular, it was demonstrated how this scaling factor contributed to overcoming this 
vulnerability by accounting for the distance between ideal vectors for each feature. In 
certain cases, a feature can have a high entropy value due to slight to moderate variance 
even though it is separating classes well due to large differences in the classes’ ideal 
vector elements. The scaling factor for such entropy values adjusts the entropy 
downwards to highlight that the feature is more informative. In contrast, completely 
overlapping features with almost identical ideal vector values stay at the same level of 
informativity. In essence, the scaling factor operates as an adjustment of the informativity 
of features for the distance between the classes’ ideal vector values for a feature.  
The FSAE algorithm is conceptualized as a filter method for feature ranking but can also 
be deployed as a wrapper method. It was demonstrated on five medical datasets that the 
FSAE wrapper can achieve at least comparable mean classification accuracies to those of 
the wrapper version of the approach by Luukka (2011) but often with considerably fewer 
features. When comparing the filter version of both approaches with ReliefF, the 
Laplacian score and the Fisher score, it was apparent that FSAE can achieve competitive 
results in terms of mean accuracy. Opposed to that, the approach by Luukka (2011) was 
only competitive in two of the five datasets throughout all feature removal decisions. 
Additionally, it experienced a severe decline in mean performance of more than 10 
percentage points for three of the five datasets.  
Furthermore, a stock market prediction model for the S&P500 market index using the 
FSAE together with a random forest was implemented. The trading strategies derived 
from this model demonstrated the ability to outperform a buy-and-hold investment 
strategy with a small to moderate amount of transaction costs. Furthermore, it was 
highlighted that the high absolute return class predictions contributed more to the average 
return of the trading strategies than the two classes with smaller absolute returns.  
Overall, for the artificial and real-world datasets, the FSAE feature selection algorithm 
exhibited the ability to detect and remove irrelevant features and to retain those that 
contribute to the discrimination of the classes. Notwithstanding, there remain two 
limitations of the FSAE feature selection method that can be problematic for certain 
complex data structures. The first is the fact that it relies on a single ideal vector to 
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represent each class in the data. If classes consist of groups of data or are characterized 
by large variances, then in the majority of cases a single point to represent the class will 
not be sufficient. For this purpose, an extension of the concept of a single ideal vector is 
required. The second limitation is the evaluation of a feature on a univariate basis. In the 
FSAE, a feature is evaluated on its own without considering how it is related to other 
features. In a setup where features are relevant if they are jointly present in the data and 
otherwise not or less relevant, this can result in a suggestion to remove such features. As 
mentioned previously, using the wrapper version of the FSAE may avoid such removals 
but will, at a minimum, result in a larger feature subset than necessary. In the worst case, 
the algorithm will stop prematurely and keep irrelevant features that act as noise in the 
data.  
 
75 
4 Similarity Classifier with Multiple Ideal Vectors 
4.1 Introduction and Reasoning 
The previous section on the FSAE feature selection algorithm highlighted that one 
limitation of this algorithm is the use of a single ideal vector to represent a class. Since 
the FSAE is conceptually related to the similarity classifier, it is unsurprising that the 
similarity classifier involves the same limitation. In the context of classification 
algorithms, Luukka and Lampinen (2015) highlighted that distance-based techniques can 
encounter difficulties when facing complex data structures. To address this limitation, 
they introduced the differential evolution-based multiple vector prototype classifier 
(MVDE). Essentially, the solution they proposed is to use multiple ideal vectors to 
represent each class in the feature space. They highlight that this approach can handle 
more complex data structures, such as data clusters that a simple distance-based classifier 
has difficulties representing and classifying accurately (Luukka & Lampinen, 2015). The 
main limitation of their novel algorithm is that the number of ideal vectors to represent a 
class has to be known to run the algorithm. In addition, Luukka and Lampinen (2015) 
state that their results started to deteriorate rapidly with a smaller or larger number of 
ideal vectors per class than the number that is actually suitable to represent the decision 
regions of the classes. Hence, for future research they suggested investigating ways to 
optimize the number of ideal vectors. In Publication III, this problem was addressed for 
the similarity classifier – but the results can clearly also be deployed or extended for the 
MVDE presented by Luukka and Lampinen (2015). As Luukka and Lampinen (2015) 
demonstrated, the number and position of ideal vectors in the feature space is pivotal to 
represent classes in more complex data structures well since it allows the classification of 
observations from such data structures accurately. We deploy a combination of the two 
following approaches: a clustering algorithm and the similarity classifier. The underlying 
idea is intuitive: The aim of multiple ideal vectors is to represent each distinct group of 
data within a class with one separate ideal vector. This turns out to be a twofold problem 
since, first, the optimal number of distinct groups in the data needs to be known, and, 
second, each of these groups has to be specified so that an ideal vector for each of them 
can be defined that represents the group well. The second problem is a typical clustering 
problem, where groups of observations need to be found that are similar to each other but 
dissimilar to observations forming another group (Dougherty, 2013). The first problem 
concerning the lack of knowledge on how many ideal vectors to use is equivalent to not 
knowing how many distinct groups or clusters are present in a class. This is essentially 
the research need Luukka & Lampinen (2015) formulated for the MVDE. However, this 
is also a clustering-specific problem since many clustering algorithms, such as K-means 
clustering, can suggest a partition of the data but require the number of clusters to be 
specified in advance (Bishop, 2006). Hence, a possible way to address the problem of 
defining the number and position of multiple ideal vectors per class can be addressed 
using a clustering algorithm together with an algorithm that determines the optimal 
number of clusters for a certain dataset. In Publication III, the authors suggest using the 
popular K-means clustering algorithm together with the Jump method (Sugar and James, 
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2003) to determine the number of ideal vectors per class as well as their position. In the 
suggested classifier, which is a similarity classifier with multiple ideal vectors, the 
position of the ideal vectors per class is set to the cluster centres. The cluster centres 
constitute the cluster means (for K-means clustering) and, thus, embody cluster 
representatives. The ideal vectors function in the same manner as in the original similarity 
classifier by assigning new observations to the closest ideal vector’s class. Hence, the 
ideal vectors operate as in the original classifier, albeit there are now multiple ideal 
vectors per class that allow coping with more complex data structures, such as groupings 
in the data.  
4.2 Step-by-Step Algorithm of the Novel Similarity Classifier 
The flowchart of the algorithm used for the similarity classifier with multiple ideal vectors 
using clustering and the Jump method is illustrated in Figure 4.1. The algorithm is divided 
into five steps, starting from the pre-processing until the computation of the test set 
performance of the classifier.5 Before detailing the algorithm as suggested in Publication 
III, it is noteworthy that this algorithm can also be seen as a framework to setup a 
(similarity) classifier with multiple ideal vectors. This framework is independent of which 
pre-processing, clustering algorithm or method to determine the number of clusters is 
selected.  
                                                 
5 This is less than the eight steps mentioned in Publication III. The algorithm was simplified to five steps 
since the author realized that three of the steps could be removed without likely having a noticeable impact 
on the obtained solution and corresponding classification accuracy.  
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Figure 4.1: Step-by-step process underlying the similarity classifier with multiple ideal vectors 
[modified from Publication III] 
 
The first step is the data pre-processing. In Publication III, two forms of pre-processing 
were examined – first, the standardization of the original data to the compact interval 
[0,1] and, second, the normalization using the z-score in combination with principal 
component analysis (PCA) to extract new features and a subsequent standardization to 
[0,1]. It shall be noted that both approaches include a standardization to the compact 
interval [0,1] since the data need to be scaled into this interval so that the similarity 
classifier can be applied to them. For the second variant of pre-processing, a suitable 
number of principal components has to be selected since the first several principal 
components are commonly sufficient to explain the majority of the variance in the data 
(Cangelosi and Goriely, 2007). In the literature there exist several methods for this task, 
including the modified broken stick model (Cangelosi and Goriely, 2007), the Guttman-
Kaiser criterion (Guttman, 1954; Kaiser, 1961), the SCREE test (Cattell, 1966), the 
minimum average partial (MAP) test (Velicer, 1976), Bartlett’s test (Bartlett, 1950) and 
parallel analysis (PA) (Horn, 1965). For different data structures, MAP and PA showed 
the highest performance of the tested methods (Zwick and Velicer, 1982, 1986; 
O’Connor, 2000). Hence, the PCA-based pre-processing follows the recommendation by 
O’Connor (2000b) to use a combination of the MAP test and PA to determine a suitable 
number of principal components.  
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The second step represents the data division into a training set to build the classification 
model and a test set to determine the out-of-sample classification accuracy of that model. 
The data can, for instance, be divided using the holdout method, with a split of 70% of 
observations for the training data and 30% of observations for the test set.  
The third step consists of the actual clustering of the observations in each of the classes. 
This clustering is performed for 1 to 𝐾𝑚𝑎𝑥 clusters, where 𝐾𝑚𝑎𝑥 is the user-specified 
maximum number of clusters used within a class. Each clustering is conducted for a 
certain number of clusters K (with 1 ≤ 𝐾 ≤ 𝐾𝑚𝑎𝑥) so that the outcome of the clustering 
is K cluster centres denoted as 𝑐1, … , 𝑐𝐾. This step is the prerequisite for the next step (the 
fourth step), where the results of the clustering for the different number of clusters are 
needed to determine the optimal number of clusters for each class. Therefore, in this step, 
for each number of clusters K, the so-called estimated average distortions between the 
observations in a cluster to their corresponding cluster centre are calculated (Sugar and 
James, 2003). 
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 (4.1) 
In the above equation, 𝑥𝑗 is the j-th observation, p is the number of features
6 and 𝑐𝑘 is the 
k-th cluster centre (from k = 1 to K) for a class. The notation Γ−1 refers to the inverse of 
the covariance matrix of the observations belonging to the k-th cluster (Sugar and James, 
2003). For simplicity, instead of using the covariance matrix, the identity matrix can be 
used so that the calculation determines the mean squared error (Sugar and James, 2003). 
The notation 𝑢𝑗𝑘 denotes the crisp membership of the observation 𝑥𝑗 to the cluster centre 
𝑐𝑘. This membership can be formalized as: 
 
𝑢𝑗𝑘 = {
 1 𝑖𝑓 ‖𝑥𝑗 − 𝑐𝑘‖
2
< ‖𝑥𝑗 − 𝑐𝑘′‖
2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘′ ≠ 𝑘
 0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       
, (4.2) 
where the membership of 𝑥𝑗 to 𝑐𝑘 is one if 𝑥𝑗 is closer to the cluster centre 𝑐𝑘 than to any 
other cluster centre 𝑐𝑘′ for ∀ 𝑘
′ ≠ 𝑘 and zero otherwise. The estimated average distortion 
?̂?𝐾 is the sum of the distortions over all K clusters and averaged over all n observations. 
After the third step, for each class the estimated average distortion for 1 to 𝐾𝑚𝑎𝑥 clusters 
is known. Also, all clustering results are saved, including the cluster centres and cluster 
memberships for each number of clusters for each class.  
The fourth step is the identification of the optimal number of clusters for each class. For 
this step, the estimated average ‘distortions’ for the different number of clusters from the 
                                                 
6 Denoting the number of features with p follows the notation in Sugar and Gareth (2003) for the Jump 
method. Since the dimensionality p has an important meaning in their paper, the author refrained from 
changing the notation for this particular equation. However, in general, the number of features is denoted 
by D throughout the remaining dissertation to be consistent with the corresponding publications. 
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previous step are required. Based on these distortions the optimal number of clusters is 
determined via the Jump method (Sugar and James, 2003). To calculate the ‘jump’ 
between the distortions of two consecutive numbers of clusters, the following Equation 
is applied: 
 𝐽𝐾 =  ?̂?𝐾
−𝑌 − ?̂?𝐾−1
−𝑌 , (4.3) 
where 𝐽𝐾 denotes the jump in the distortion from K-1 to K clusters and Y the 
transformation power in the exponent of the distortions. The optimal number of clusters 
for a class is the number of clusters K where the largest jump 𝐽𝐾 occurred. Since the 
average distortion decreases as more cluster centres are deployed, the largest jump 
represents the number of clusters that had the largest incremental decrease in average 
distortion. Hence, according to the Jump method, the number of clusters for which the 
largest jump occurs is the optimal number of clusters. After having applied the Jump 
method the optimal number of clusters, the associated cluster centres and the cluster 
memberships are saved. The cluster centres for each class constitute the ideal vectors that 
represent this class. Thus, they embody the class representatives that observations are 
compared to in order to assign observations to classes. The third and fourth steps are 
conducted for each class. 
The fifth step is the performance evaluation of the similarity classifier using multiple 
ideal vectors. After having repeated the third and fourth steps for each class, O ideal 
vectors were determined, and each is one of the representatives of a class. Since this 
extension of the similarity classifier allows multiple ideal vectors per class, the number 
of ideal vectors 𝑂 ≥ 𝑁, where N is the number of classes. To assign observations to 
classes, they are initially compared with all O ideal vectors. For a feature d and an 
observation denoted by 𝑥𝑗, the similarity of this observation’s d-th feature value with the 
d-th feature value of the ideal vector o is computed as (see also Equation (2.15)): 
 
𝑆(𝑥𝑗,𝑑, 𝑣𝑜,𝑑) = √(1 − |𝑥𝑗,𝑑
𝑝 − 𝑣𝑜,𝑑
𝑝 |)
𝑝
, (4.4) 
where 𝑣𝑜,𝑑 denotes the d-th element of the o-th ideal vector. The similarity of the entire 
observation 𝑥𝑗 with the o-th ideal vector 𝑣𝑜 is calculated as the average value over all D 
features. 
 
𝑆(𝑥𝑗 , 𝑣𝑜) = (
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1
𝑚
, (4.5) 
where m is the parameter for the generalized mean function. In the same way, the 
observation 𝑥𝑗 is compared to all O ideal vectors and then assigned to the cluster that it is 
most similar to. 
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 𝐶𝑙(𝑥𝑗) = arg max
𝑜=1,….𝑂
𝑆(𝑥𝑗 , 𝑣𝑜) (4.6) 
Finally, the observation is assigned to the class that corresponds to the cluster this 
observation is most similar to. This is executed in terms of a simple mapping from the 
cluster to the corresponding class. 
 𝐶(𝑥𝑗) = 𝑓 (𝐶𝑙(𝑥𝑗)) (4.7) 
The performance evaluation is then implemented by comparing the predicted class label 
of the observations in the test set with the actual class labels and calculating the 
corresponding classification accuracy. 
4.3 Application to Artificial Data 
To demonstrate the ability of the novel similarity classifier with multiple ideal vectors to 
detect and represent multiple decision regions for each class, three artificial examples 
were created. Each example is characterized by multiple decision regions for each class 
in a two- or three-dimensional setting. All three examples are visualized in Figure 4.2. 
  
 
Figure 4.2: Artificial datasets for the similarity classifier with multiple ideal vectors [reproduced 
from Publication III with the permission of the publisher] 
 
The observations for each grouping in the first example are drawn from a multivariate 
normal distribution without covariance. Each of the three classes are characterized by 
three almost entirely non-overlapping groups of observations in two-dimensional space. 
It is apparent that a single ideal vector for each class would neither be representative of 
the class nor would it support the classification of new observations. The second example 
is generated from a uniform distribution and illustrates a three-dimensional numerical 
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XOR problem with two classes. This example is composed of two distinct decision 
regions for each of the two classes and, hence, cannot be represented well by one ideal 
vector per class. The last example is another three-dimensional classification task. It 
differs from the previous two examples in two aspects. First, its observations are drawn 
from a multivariate normal distribution with different variances for different clusters. 
Second, it is a four-class problem, and the groups of observations are rather well separated 
and non-overlapping. Once more, none of the four classes can be represented well by a 
single ideal vector. On top of that, this example was selected to highlight that the 
difference in variance does not pose a problem for the novel similarity classifier with 
multiple ideal vectors when the classes are separated well enough.  
As mentioned in above Section 4.2, the novel similarity classifier with multiple ideal 
vectors can be used with two different pre-processing versions. The first is a simple 
standardization of the features into the unit interval. The second approach is using the z-
score and conducting a PCA, selecting a suitable number of principal components and 
subsequently standardizing them. Both approaches are implemented for the three artificial 
datasets for the novel similarity classifier, and the outcome is also contrasted with the 
original similarity classifier with a single ideal vector per class. The results are 
summarized in Table 4.1 to Table 4.3. 
 
Classifier 
Number of 
PCs (PCA) 
Mean 
Accuracy 
Variance 
Transformation 
Power Y 
Standard - 0.3247 0.0037 - 
Standard - PCA 2 0.3116 0.0039 - 
Novel - 0.9697 0.0001 p/2 
Novel - PCA 2 0.9912 0 p/2 
Novel - 0.9687 0.0001 1 
Novel - PCA 2 0.9913 0 1 
Table 4.1: Classification accuracy of the similarity classifier with multiple ideal vectors on the 
first artificial example. ‘Standard’ refers to the standard similarity classifier, ‘Novel’ to the novel 
similarity classifier with multiple ideal vectors and ‘Standard-PCA’ and ‘Novel-PCA’ to the 
combination of each of these classifiers and the principal components from PCA [modified from 
Publication III] 
 
The mean classification accuracies for the first example show that the standard similarity 
classifier with a single ideal vector and any of the two pre-processing approaches fails to 
classify the observations well. It is obvious that, for this three-class problem, the mean 
accuracy is not significantly different from a random assignment. In contrast, all setups 
of the novel similarity classifier with multiple ideal vectors, with and without PCA and 
with a transformation power of p/2 (dimensionality of the data divided by 2) or 1, achieve 
a significantly higher mean accuracy close to 1.  
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Classifier 
Number of 
PCs (PCA) 
Mean 
Accuracy 
Variance 
Transformation 
Power Y 
Standard - 0.5142 0.0006 - 
Standard - PCA 3 0.4824 0.0005 - 
Novel - 0.9049 0.0009 p/2 
Novel - PCA 3 0.9028 0.0011 p/2 
Novel - 0.9653 0.0004 1 
Novel - PCA 3 0.9613 0.0001 1 
Table 4.2: Classification accuracy of the similarity classifier with multiple ideal vectors on the 
second artificial example. ‘Standard’ refers to the standard similarity classifier, ‘Novel’ to the 
novel similarity classifier with multiple ideal vectors and ‘Standard-PCA’ and ‘Novel-PCA’ to 
the combination of each of these classifiers and the principal components from PCA [modified 
from Publication III] 
 
In the second artificial example, a similar result as in the first example can be observed. 
The similarity classifier with a single ideal vector in both setups achieves an accuracy of 
around 50%. In contrast, all novel similarity classifiers with multiple ideal vectors achieve 
mean accuracies of more than 90%. In addition, using a transformation power of 1 instead 
of p/2, meaning in this example 3/2, results in an approximately 6 percentage points 
higher mean accuracy. 
 
Classifier 
Number of 
PCs (PCA) 
Mean 
Accuracy 
Variance 
Transformation 
Power Y 
Standard - 0.3493 0.0081 - 
Standard - PCA 3 0.3135 0.0085 - 
Novel - 1 0 p/2 
Novel - PCA 3 1 0 p/2 
Novel - 1 0 1 
Novel - PCA 3 1 0 1 
Table 4.3: Classification accuracy of the similarity classifier with multiple ideal vectors on the 
third artificial example. ‘Standard’ refers to the standard similarity classifier, ‘Novel’ to the novel 
similarity classifier with multiple ideal vectors and ‘Standard-PCA’ and ‘Novel-PCA’ to the 
combination of each of these classifiers and the principal components from PCA [modified from 
Publication III] 
 
The third example once more highlights the inability of a single ideal vector to classify 
observations for a class with multiple decision regions well. While the novel similarity 
classifier uses clustering to find the decision regions of each class and assigns 
observations to classes without any misclassification, the standard classifier achieves an 
accuracy of only 31 to 35%. The weak performance of the similarity classifier is premised 
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on the fact that the ideal vector of all four classes is around the centre of the graph 
(0.5,0.5,0.5) so that even a small variation in the data can completely change the class 
assignment. Certainly, this is not desired and stresses that the standard algorithm cannot 
account for data structures more complex than a single decision region per class. The 
standard similarity classifier can only perform well in an environment where the classes 
are well separated from each other, and each class forms a single decision region.  
The three presented artificial examples clearly emphasize the ability of the similarity 
classifier with multiple ideal vectors to account for multiple decision regions. With both 
pre-processing setups, it demonstrated that it can classify the observations in a multi-
decision region problem better than the standard similarity classifier, which relies solely 
on a single ideal vector.  
4.4 Application to Credit Risk Data 
The similarity classifier with multiple ideal vectors is also applied to three credit risk 
datasets to demonstrate its ability to perform well in a real-world data setting. All three 
datasets were obtained from the UCI Machine Learning Repository (Lichman, 2013) and 
address the credit approval decision or the quality of borrowers. Such problems are 
relevant for financial institutions since these institutions need methods to support their 
decision making for lending to and monitoring their borrowers (Tsaih et al., 2004; West, 
Dellana and Qian, 2005). A related problem is credit card fraud, another topic that is of 
pivotal interest for financial institutions (Maes, Tuyls and Vanschoenwinkel, 2002; Pun 
and Lawryshyn, 2012).  
The first dataset is the ‘Credit Approval Data Set’, which is a binary classification task 
related to the acceptance and rejection of credit applications. The dataset contains 690 
observations of 15 features that characterize the loan applicant and the loan application 
itself. Incomplete observations with missing values were removed so that 653 complete 
observations remained for the analysis.  
The second dataset is the ‘Statlog (German Credit Data) Data Set’ in its adjusted version, 
where categorical variables were transformed into integer-valued ones. The binary classes 
embody whether a borrower is considered a good or bad debtor. The dataset contains 
1000 complete observations of 24 numeric features in which the classes are unbalanced 
– with 70% of borrowers belonging to the non-defaulting borrowers and the remaining 
30% to the defaulted creditors.  
The third dataset is an adjusted version of the first dataset and is referred to as the ‘Statlog 
(Australian Credit Approval) Data Set’. It represents a binary classification problem 
concerning the acceptance or rejection of credit card applicants. It encompasses 690 
complete observations of 14 features that characterize the credit card applicant and his/her 
application details.  
For these three datasets, the standard similarity classifier with a single ideal vector and 
the novel similarity classifier with multiple ideal vectors are contrasted against several 
well-known classification methods. These include the K-nearest neighbour classifier 
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(Cover & Hart, 1967), the naive Bayes classifier (Russell and Norvig, 2009), a decision 
tree (Quinlan, 1986) and the ensemble classifier random forest, which consists of multiple 
decision trees (Breiman, 2001).  
The results for the first dataset, the ‘Credit Approval’ data, are illustrated in Table 4.4. 
 
Classification Algorithm Mean Accuracy Variance 
Mean Mean 
p m Y 
FNR FPR 
Standard Similarity Classifier 0.8599 0.0004 0.196 0.072 6 4 - 
Standard Similarity Classifier (PCA, 4 PCs) 0.8057 0.0005 0.01 0.284 1 1 - 
Novel Similarity Classifier 0.8525 0.0005 0.133 0.160 1 1 p/2 
Novel Similarity Classifier 0.8706 0.0005 0.056 0.190 6 5 1 
Novel Similarity Classifier (PCA, 4 PCs) 0.7716 0.0008 0.243 0.216 1 2 p/2 
Novel Similarity Classifier (PCA, 4 PCs) 0.8076 0.0005 0.324 0.085 4 4 1 
K-Nearest Neighbour, k = 1 0.8184 0.0005 0.207 0.161 - - - 
K-Nearest Neighbour, k = 10 0.8608 0.0004 0.142 0.137 - - - 
K-Nearest Neighbour, best k = 1 0.8184 0.0005 0.207 0.161 - - - 
Naive Bayes (Normal Gaussian distribution) 0.8039 0.0006 0.321 0.093 - - - 
Naive Bayes (Kernel with normal smoothing) 0.6823 0.0012 0.425 0.230 - - - 
Random Decision Forest (Min leaf size = 1) 0.8733 0.0004 0.129 0.125 - - - 
Random Decision Forest (Min leaf size = 10) 0.8708 0.0004 0.126 0.132 - - - 
Decision Tree (Min leaf size = 1) 0.8322 0.0007 0.194 0.147 - - - 
Decision Tree (Min leaf size = 10) 0.8561 0.0005 0.157 0.133 - - - 
Table 4.4: Classification results for the ‘Credit Approval’ dataset [modified from Publication III] 
 
The results indicate that on the first dataset the standard and the novel classifier perform 
considerably better in terms of mean accuracy when the pre-processing is implemented 
via standardization instead of using the z-score combined with a PCA. The classification 
accuracy of the novel similarity classifier (with Y = p/2) is at 87.06% – higher than the 
85.99% accuracy achieved with the standard classifier. Using the one-sided Welch’s test, 
it can be demonstrated that the mean performance of the novel classifier is significantly 
larger (p-value < 0.01) than that of the standard similarity classifier.  
In comparison with the other well-known classification algorithms, the performance of 
the similarity classifier with multiple ideal vectors is competitive. Comparing the novel 
algorithm using transformation power Y = 1 with the K-nearest neighbour classifiers, 
naive Bayes and decision trees highlights that it has the highest mean accuracy for all 
these single classifiers. In particular, the positive difference in the mean accuracy of the 
novel similarity classifier with multiple ideal vectors to these algorithms is highly 
significant. In addition, the mean performance of the novel algorithm with transformation 
power Y = 1 has an accuracy of 87.06% – competitive with the result achieved by the 
ensemble classifier random forest, which achieved with 87.33% and 87.08% the best 
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mean accuracies for this example. This is remarkable since the random decision forest is 
a classifier ensemble containing multiple classifiers (here: 50 decision trees). Opposed to 
that, the similarity classifier with multiple ideal vectors is only a single classifier but still 
achieves competitive results. 
Contrasting the mean accuracies for the standard and the novel similarity classifier for 
both pre-processing procedures, it is apparent that using PCA and selecting four principal 
components underperforms simple standardization by 5.42 percentage points to 8.09 
percentage points. 
The results obtained for the second real-world dataset, the ‘German Credit’ data, are 
summarized in Table 4.5. 
 
Classification Algorithm Mean Accuracy Variance 
Mean Mean 
p m Y 
FNR FPR 
Standard Similarity Classifier 0.7263 0.0003 0.099 0.683 4 1 - 
Standard Similarity Classifier (PCA, 8 PCs) 0.7299 0.0004 0.142 0.570 3 5 - 
Novel Similarity Classifier 0.6822 0.0005 0.158 0.691 8 1 p/2 
Novel Similarity Classifier 0.7314 0.0003 0.095 0.674 4 1 1 
Novel Similarity Classifier (PCA, 8 PCs) 0.6966 0.0008 0.281 0.355 3 1 p/2 
Novel Similarity Classifier (PCA, 8 PCs) 0.6998 0.0006 0.298 0.304 2 1 1 
K-Nearest Neighbour, k = 1 0.6715 0.0005 0.237 0.543 - - - 
K-Nearest Neighbour, k = 10 0.7164 0.0005 0.162 0.568 - - - 
K-Nearest Neighbour, best k = 1 0.6715 0.0005 0.237 0.543 - - - 
Naive Bayes (Normal Gaussian distribution) 0.7233 0.0006 0.229 0.388 - - - 
Naive Bayes (Kernel with normal smoothing) 0.7068 0.0001 0.013 0.947 - - - 
Random Decision Forest (Min leaf size = 1) 0.7584 0.0003 0.096 0.581 - - - 
Random Decision Forest (Min leaf size = 10) 0.7516 0.0003 0.069 0.668 - - - 
Decision Tree (Min leaf size = 1) 0.6946 0.0007 0.218 0.510 - - - 
Decision Tree (Min leaf size = 10) 0.7197 0.0006 0.167 0.545 - - - 
Table 4.5: Classification results for the ‘German Credit’ dataset [modified from Publication III] 
 
Once more, the highest mean accuracy is achieved with the random forest classifier with 
75.84% and 75.16% for the two different minimum leaf sizes. For the remaining 
algorithms that rely on a single classifier, the similarity classifier with multiple ideal 
vectors and Y = 1 reaches the highest mean accuracy of 73.14%. Using the Welch’s test, 
the null hypothesis that the population mean accuracy for the novel classifier is equal to 
or smaller than the one for the standard similarity classifier can be rejected with a 
significance level of 5%. It is noteworthy that the performance of the standard similarity 
classifier improves when the pre-processing is switched to PCA, whereas for the novel 
similarity classifier it deteriorates by about 3 percentage points compared to the best setup 
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with Y = 1. Another point of interest is that the standard similarity classifier with a single 
ideal vector performs well for this classification task and is characterized by a higher 
mean accuracy than the K-nearest neighbour classifier, naive Bayes and the decision tree 
classifier. 
The classification accuracies for the third and last credit dataset, the ‘Australian Credit’ 
dataset, are presented in Table 4.6. 
 
Classification Algorithm Mean Accuracy Variance 
Mean Mean 
p m Y 
FNR FPR 
Standard Similarity Classifier 0.8727 0.0004 0.144 0.114 3 3 - 
Standard Similarity Classifier (PCA, 3 PCs) 0.8283 0.0005 0.268 0.094 1 2 - 
Novel Similarity Classifier 0.8469 0.0005 0.151 0.155 1 1 p/2 
Novel Similarity Classifier 0.8737 0.0004 0.118 0.133 2 3 1 
Novel Similarity Classifier (PCA, 3 PCs) 0.7940 0.0006 0.273 0.152 1 3 p/2 
Novel Similarity Classifier (PCA, 3 PCs) 0.8273 0.0004 0.228 0.128 1 1 1 
K-Nearest Neighbour, k = 1 0.7997 0.0005 0.223 0.182 - - - 
K-Nearest Neighbour, k = 10 0.8513 0.0004 0.177 0.126 - - - 
K-Nearest Neighbour, best k = 1 0.7997 0.0005 0.223 0.182 - - - 
Naive Bayes (Normal Gaussian distribution) 0.8016 0.0005 0.329 0.093 - - - 
Naive Bayes (Kernel with normal smoothing) 0.6877 0.0015 0.417 0.228 - - - 
Random Decision Forest (Min leaf size = 1) 0.8676 0.0004 0.143 0.124 - - - 
Random Decision Forest (Min leaf size = 10) 0.8653 0.0004 0.153 0.12 - - - 
Decision Tree (Min leaf size = 1) 0.8307 0.0006 0.194 0.149 - - - 
Decision Tree (Min leaf size = 10) 0.8483 0.0005 0.164 0.142 - - - 
Table 4.6: Classification results for the ‘Australian Credit’ dataset [modified from Publication 
III] 
 
For this dataset, the novel similarity classifier with Y = 1 demonstrates with 87.37% the 
highest mean accuracy of all classification models – including both random forest setups. 
It is remarkable that the difference in mean accuracy of the novel similarity classifier with 
Y = 1 to the random forest is even highly significant. In general, this algorithm 
outperforms all classifiers by a highly significant margin, with the sole exception of the 
runner-up, which is the standard similarity classifier with a mean accuracy of 87.27%. 
Once more, the pre-processing deploying a subset of the principal components results in 
lower mean accuracies than a simple standardization. Moreover, for all three examples, 
selecting a transformation power of Y = 1 outperforms the parameter value Y = p/2.  
Looking at the results computed for all three real-world financial datasets, the similarity 
classifier with multiple ideal vectors (and Y = 1) performed at least as good as the 
similarity classifier with a single ideal vector. For one dataset, the ‘Australian Credit’ 
dataset, the novel similarity classifiers accomplished ‘only’ comparable results. For the 
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remaining two datasets, the ‘Credit Approval’ and ‘German Credit’ datasets, the 
similarity classifier with multiple ideal vectors (and Y = 1) outperformed the standard 
similarity classifier with a highly significant difference for the former and a significant 
difference for the latter. Contrasting the results of the novel algorithm (and Y = 1) with 
the well-known classification algorithms included in this study, it demonstrated, in the 
majority of cases, competitive results. In particular, it outperformed the K-nearest 
neighbour classifiers, naive Bayes and the decision trees for all presented examples. 
4.5 Conclusion and Limitations of the Novel Similarity Classifier 
As pointed out by Luukka and Lampinen (2015), simple distance-based techniques may 
experience difficulties with more complex data structures composed of multiple decision 
regions for each class. The novel similarity classifier with multiple ideal vectors was 
introduced to address such complex data structures. The suggested algorithm for the 
similarity classifier with multiple ideal vectors incorporates intra-class K-means 
clustering in combination with the Jump method to determine the optimal number and 
position of the cluster centres. These cluster centres function as ideal vectors that are 
deployed as class representatives in the novel classifier. This is related to the research 
need formulated by Luukka and Lampinen (2015) for the MVDE algorithm for which the 
number of ideal vectors needs to be user-specified. In addition, these authors remarked 
that, for their datasets, a deviation from the optimal number of clusters eventuated in rapid 
declines in their classification results.  
In response to this problem, the methodology for the similarity classifier with multiple 
ideal vectors incorporates a clear framework how clustering and algorithms to determine 
the optimal number of clusters can be deployed to select a suitable number of class 
representatives and their coordinates. For a distance- or similarity-based classifier, the 
cluster centres can function as the ideal vectors that represent the groups discovered 
within each of the classes. Certainly, if desired, the class representatives can also be 
selected in any other way based on the partitioning of a cluster algorithm. 
The novel similarity classifier enables the use of multiple ideal vectors instead of just a 
single one for the case where two or more distinct decision regions are present within a 
class. Aside from that, the novel algorithm with multiple ideal vectors demonstrated on 
three artificial example datasets with multiple decision regions per class the consistent 
ability to outperform the standard similarity classifier. The two forms of pre-processing 
demonstrated no clear difference for these three examples.  
For the real-world datasets, using the novel similarity classifier with simple 
standardization and a transformation power Y = 1 led in all cases to the best mean 
classification accuracy of all similarity-based classifiers. In particular, in five out of six 
setups, the novel similarity classifier performed better with simple standardization than 
with a selected number of principal components. For this reason, it is suggested to apply 
only the simple standardization for the similarity classifier and the transformation power 
Y = 1 for the Jump method. The deployment of other transformation powers for the Jump 
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method can be examined in future research and is dependent on the distribution of the 
clusters in the data.  
It is also noteworthy that, with exception of the ensemble learning algorithm random 
forest, the similarity classifier with multiple ideal vectors and Y = 1 outperformed all 
benchmark algorithms, often by a highly significant margin. In comparison with the 
random forest setups, the novel similarity classifier was in one case comparably accurate, 
in the second it underperformed by a margin of 2 percentage points and another time even 
outperformed it.  
The similarity classifier with multiple ideal vectors addresses one of the main limitations 
of the similarity classifier, which is the inherent assumption that a single data point can 
represent a class well. However, using a Euclidean distance-based clustering approach, 
such as the standard K-means algorithm, as well as measuring similarity without 
incorporating the covariance structure of the data are the main limitations of the novel 
classifier. These two limitations are directly related. Both illustrate that the novel 
similarity classifier can in future work be extended to incorporate the level of variation 
and correlation in the data for a more effective clustering and classification of complex 
data structures. Moreover, different clustering algorithms can be applied that are more 
effective in the context of non-convex clusters. Other methods to determine the optimal 
number of clusters can be applied as well. As a last point, the idea to combine clustering 
with a method to select the optimal number of clusters to find one or more suitable class 
representatives can also be extended to the context of supervised feature selection. 
89 
5 Clustering One Less Dimension (COLD) Feature 
Selection 
5.1 Introduction and Reasoning 
The differentiation between univariate and multivariate feature selection methods 
highlights that feature selection can be conducted either with a focus on each feature 
separately or by considering feature interactions. This is pivotal when considering that 
the subset of the k most relevant features (univariate) does not need to be the same as the 
best subset of k features (Cover, 1974). For redundant features, this appears obvious. The 
best subset of two features is evidently not a subset containing two redundant features, 
which are each by themselves the best standalone feature (Cover, 1974). Instead, for 
instance, the best single feature together with any other feature that adds at least marginal 
additional information and supports the discrimination between the classes would be 
preferable. However, this is not the only case where the best k features are not necessarily 
the best subset of k features. Elashoff, Elashoff and Goldman (1967) demonstrate this 
circumstance also for (conditionally) independent features. In addition, Toussaint (1971) 
extends this finding by illustrating that the subset of the k best features does not 
necessarily contain the univariate best feature and can even consist of the two worst 
univariate features. Guyon and Elisseeff (2003) present simple two-dimensional 
examples and show how independent as well as highly correlated features can together 
separate the two-dimensional space linearly even though each feature by itself is 
completely useless. This illustrates a somewhat extreme example – but it exemplifies a 
valid point. For their example, adding a feature that only partially overlaps for the two 
classes and that could reach high classification accuracies close to 100% should not be 
contained in the best subset of two features. Rather, two features that are essentially 
useless by themselves due to high correlation should be selected for the best subset of two 
features since they can jointly separate the classes linearly. Notwithstanding, each of these 
features alone will result in an accuracy of about 50%, which is the same as a random 
class assignment for a balanced two-class problem. Thus, Guyon and Elisseeff (2003) 
reached the conclusion that feature selection methods evaluating features with a 
univariate approach are not suitable for determining the best feature subset for such data 
structures. For certain applications, simply selecting the feature subset with a univariate 
or multivariate method can result in the same best feature subset. However, the depicted 
findings and examples indicate that multivariate feature selection methods considering 
the dependencies between two or more features can in other applications suggest better 
feature subsets. As a consequence, a feature selection algorithm should not evaluate 
features without factoring in the dependencies among features for the selection of the best 
feature subset. 
Hence, the objective of the heuristic feature ranking method proposed in this section is to 
be able to account for the dependencies among features to find the best feature subset. 
Before going into detail about the way the so-called COLD algorithm functions, it should 
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be shown how the novel algorithm is linked to the research highlighted in previous 
sections of this dissertation. As explained in detail in Section 3, using the distance 
between class representatives, as implemented in the FSAE, can render the feature 
selection more effective and lead to more intuitive feature removal decisions. In the 
COLD algorithm, this logic is coupled with the concept of multiple ideal vectors per class 
from the novel similarity classifier (see Section 4). This means that instead of using a 
single class representative, as in the FSAE, COLD will deploy multiple class 
representatives to determine which features are relevant. As in the similarity classifier 
with multiple ideal vectors, these class representatives are identified using class-wise 
clustering. Since Guyon and Elisseeff (2003) highlight several challenges that relate to 
the dependency among features caused by correlation, the covariance structure of the 
clusters is also considered. This provides additional information on the shape of each 
cluster beyond the knowledge of one representative centre point. 
The acronym COLD stands for ‘clustering one less dimension’ and hints at the logic 
underlying this algorithm (Publication III). As the name indicates, one defining 
characteristic of this supervised feature selection algorithm is that it deploys clustering. 
In the algorithm, clustering is conducted for each class separately. The clustering is 
implemented using all features to determine groupings within each class. Each of these 
groupings can be represented by an ideal vector (cluster centre) and the covariance matrix 
that defines the distribution of observations in that cluster. The second part of the name, 
‘one less dimension’, refers to how the feature relevance is determined accounting for 
dependencies among features. First, the separation in terms of the Mahalanobis distance 
between each of the clusters of a class to all other classes’ clusters is calculated, which is 
based on the complete set of features. For this purpose, the Mahalanobis distance accounts 
for the ideal vector values of each cluster and the corresponding covariance matrices. 
Subsequently, the separation among the same clusters is measured excluding a certain 
feature from the full set of features. This step is repeated for each feature, always looking 
at the entire feature set excluding only the feature currently under consideration. Then, 
the separation between the clusters of the classes with the complete set of features is 
compared to the separation achieved with the feature subset without a certain feature. The 
interpretation of the comparison is straightforward. If the clusters from different classes 
without a certain feature are overall closer, meaning the classes are less well separated, 
then the feature is by itself or together with one or more of the features in the dataset 
relevant and contributes to the separation of the classes. It is noteworthy that pursuing 
this approach is not dependent on whether there is a dependency between two features or 
among several ones. If a feature is dependent on one or multiple features that contribute 
to the separation among classes, then removing such a feature will deteriorate the 
separation of the classes in terms of distance. In contrast, if the separation between the 
classes remains unchanged or improves after the feature removal, the feature is irrelevant. 
On top of that, this feature might even act as noise in the data, which renders the 
discrimination between classes more challenging.  
Since the general idea of using clustering for feature selection is not entirely new, the 
approach of the COLD algorithm has to be contrasted with other algorithms in the 
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scientific literature to understand how the COLD algorithm differs from them and why it 
was conceptualized in that way. The existing research on feature selection includes 
clustering for unsupervised (Mitra, Murthy and Pal, 2002) as well as supervised feature 
selection (Martínez Sotoca and Pla, 2010; Sahu, Dehuri and Jagadev, 2017; Chormunge 
and Jena, 2018). For supervised feature selection, meaning the domain in which also the 
COLD algorithm is applied, the existing research centres on using clustering of features. 
This refers to the grouping of features to find representatives for similar features and to 
keep only a subset of representative features (Martínez Sotoca and Pla, 2010; Sahu, 
Dehuri and Jagadev, 2017; Chormunge and Jena, 2018). In this way, the identified subset 
of features contains those features that may represent several features that are similar, 
meaning that they are considered (potentially) redundant. In addition, in Chormunge and 
Jena (2018), features that do not fit any cluster are considered irrelevant and removed as 
well. A different approach is taken by Martínez Sotoca and Pla (2010), who interpret one 
cluster as the cluster of the ‘residual features’ since it shares the least amount of 
information with the class label and discard all features in that cluster entirely. 
The COLD algorithm differs from all these approaches for supervised feature selection 
using clustering in three distinct aspects. 
1. Clustering of observations: The COLD algorithm clusters the observations in the 
data, where the features are the characteristics that lead to the formation of clusters. In 
the approaches found in the existing research, the features themselves are clustered and 
not the observations. This difference is premised on the fact that the aim is not to find 
groups of features to simply take a representative of each feature but to find groups of 
observations and the representatives of these groups to later determine which features 
contribute to the separation of these groups from each other.  
2. Clustering of each class separately: To determine representatives for each class, 
‘pure’ clusters are needed that only contain observations from one class. It is obvious that 
not for every data structure clustering of all observations will end up with such ‘pure’ 
clusters. Hence, it seems natural to cluster each class separately. Using class-wise 
clustering, a representative of each cluster specifically embodies a group of observations 
of only a single class. Also, the covariance matrix for that cluster is based only on 
observations of the same class. Finally, clustering for each class can capture more 
complex data structures/groupings for each class and can represent these with several 
class representatives (and the corresponding covariance matrices) instead of a single 
representative. The idea behind this is that for complex data structures, allowing multiple 
class representatives will be more suitable than a single representative to capture the 
structure of each of the classes in the data.  
3. Integration of the clusters into the feature selection algorithm: In the approaches 
presented in the literature, clustering is directly deployed to discard features. This is 
accomplished either by keeping only a representative feature for each cluster, by 
discarding features that do not fit any of the clusters, by removing features that are highly 
correlated or by discarding all features that belong to a cluster of ‘residual features’. In 
5 Clustering One Less Dimension (COLD) Feature Selection 92 
contrast, COLD takes the clustering result as a starting point to determine each feature’s 
contribution to the separation of the clusters of the classes. Since COLD aims to determine 
a feature’s multivariate relevance, the algorithm compares the cluster separation with all 
features to the separation without each of the features. In this way, the impact of a certain 
feature on the set of features can be measured.  
Based on these points, it is apparent that the COLD algorithm takes an approach to using 
clustering for feature selection entirely different from the algorithms presented in the 
literature. In the next section, the detailed step-by-step algorithm that implements the 
logic behind COLD will be depicted. 
5.2 Step-by-Step Algorithm of COLD Feature Selection 
The COLD algorithm can be divided into five distinct steps, which start with the pre-
processing and end with the COLD scores as well as the feature ranking. The steps are 
outlined in Figure 5.1 and explained in detail below. 
 
Figure 5.1: Step-by-step process underlying the COLD feature selection 
 
The first step is the pre-processing of the data. Initially, the data are scaled into the 
compact interval [0,1]. Thereafter, redundant features are removed. The term ‘redundant’ 
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for a feature is interpreted as a feature that can be perfectly represented by another feature 
or a linear combination of multiple other features in the data. Fortunately, such linearly 
dependent features can be determined with a rank-revealing QR factorization (Chan, 
1987) and then discarded. Hence, only linearly independent features are kept in the data 
for the subsequent steps. For the final feature ranking, these discarded features will be 
ranked last.  
The second step concerns the clustering of the data and the choice of the number of 
clusters for each class. The clustering is conducted for each class using the K-medoids 
clustering algorithm (Bishop, 2006). K-medoids is a generalization of the K-means 
clustering algorithm, which is one of the most widely applied and popular hard clustering 
algorithms (Koutroumbas and Theodoridis, 2003; Dougherty, 2013). There are two main 
differences between K-medoids and K-means, which are the reason for the choice of K-
medoids clustering for the COLD algorithm. The first is that K-means requires numerical 
features, whereas K-medoids can also handle categorical features (Hastie, Tibshirani and 
Friedman, 2009). The second reason is that K-means is sensitive to outliers, which impact 
the centroids used in K-means. In contrast, K-medoids is robust to outliers and noise since 
it utilizes medoids (Hastie, Tibshirani and Friedman, 2009; Sammut and Webb, 2017). It 
is well known that for clustering algorithms such as K-medoids or K-means, the number 
of clusters has to be user-specified ahead of clustering. In other words, the number of 
groups in the data to be assumed for the clustering has to be defined in advance. It is 
apparent, that this is rarely known in advance. Without an investigation of the data, it may 
not be possible for a user to specify what a suitable number of clusters is. In particular, 
high-dimensional data are extremely difficult, if not impossible, to investigate visually to 
determine a suitable number of clusters. Fortunately, there are several methods discussed 
in the scientific literature that aim to determine the optimal number of clusters for a given 
dataset. Some numerical and commonly used methods include the GAP-statistic 
(Tibshirani, Walther and Hastie, 2001), the Silhouette method (Rousseeuw, 1987), the 
Calinski-Harabasz index (Calinski and Harabasz, 1974) or the Jump method (Sugar and 
James, 2003). For the COLD algorithm, the Silhouette method was selected. The 
Silhouette method is, in the author’s view, a highly intuitive method, and it also 
determines the number of clusters independently of the clustering algorithm but based on 
the partitioning of the data. In other words, it can be used with any clustering algorithm, 
and the optimal number of clusters depends only on the clusters suggested by the 
deployed clustering algorithm. In addition, in a comparison of several methods to 
determine the optimal number of clusters, the Silhouette method has demonstrated on 
average a very good performance, which was even significantly higher than that of several 
other methods (Arbelaitz et al., 2013).7  
                                                 
7 The Jump method that was deployed in the similarity classifier with multiple ideal vectors to determine 
the optimal number of clusters was not considered. The reason for this choice is that the Jump method 
requires the specification of the transformation power Y. The results presented in the previous section 
indicated that the transformation power of Y = p/2 proposed by Sugar and James (2003) did not perform 
well for the real-world datasets. Thus, the author decided to use the Silhouette method, which does not 
require the specification of a parameter and demonstrated good performance in the existing literature.  
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For the Silhouette method, the candidates for the optimal number of clusters need to be 
user-specified. For this purpose, 1 to K clusters are determined as candidates, where K 
can, for instance, be set to 10 (or based on the sample size). For the COLD algorithm, 
both the K-medoids clustering and the Silhouette method are implemented using 
Mahalanobis distance as the distance measure. In contrast to certain other distance 
measures, such as Euclidean distance, the covariance information is included in the 
calculation of Mahalanobis distance. In this way, the covariance among features and 
differences in variance can be accounted for. To calculate the Mahalanobis distance 
between two cluster centres, the covariance matrix has to be invertible. For the entire 
dataset, the QR factorization ensures that all features are linearly independent, which 
guarantees that the covariance matrix is invertible. However, this is not necessarily true 
for the clusters, which obviously contain only a subset of the observations. Thus, the 
clustering can suggest one or more clusters that have a covariance matrix that is not 
invertible. For instance, a feature can be constant in one or several of the clusters. 
However, such a feature can still be desirable for the classification. A simple example 
would be that for one class, all clusters contain one feature that is constantly ‘0’, whereas 
for the other class it is constantly ‘1’. Obviously, this feature can by itself perfectly 
discriminate between the classes. Nonetheless, such a feature eventuates in non-invertible 
(singular) covariance matrices of the clusters. A remedy for this problem is ridge 
regularization (Warton, 2008) of the singular covariance matrices. 
 Σ𝑘 = (1 − 𝛼)Σ𝑘 + 𝛼𝐼 (5.1) 
In Equation (5.1), I stands for the identity matrix (a diagonal matrix with ones on the 
diagonal and zeros as all off-diagonal elements). The parameter 𝛼 controls how much of 
the identity matrix is added to the singular covariance matrix to ensure that it is invertible. 
The regularization is applied only to singular covariance matrices. All other covariance 
matrices can remain unaltered for the calculation of the Mahalanobis distance. The 
covariance matrix is 𝐷 × 𝐷 dimensional, where D is the number of features that remain 
after step one and the removal of redundant features.  
The result of the second step and using K-medoids with the Silhouette method is the 
knowledge of the cluster centres (ideal vectors) for the optimal number of clusters for 
each class, the cluster membership of observations to these clusters and the (regularized) 
covariance matrices of these clusters. The second step is repeated for each class so that 
the ideal vectors, covariance matrices and cluster memberships are known for each class’s 
clusters.  
In the third step the distances between clusters of different classes are calculated. For 
this purpose, let us denote the cluster indices by o = 1 to O, where O is the overall number 
of clusters for all classes combined. In addition, the set of cluster indices that belong to 
the same class as cluster o are denoted by 𝐶𝑜. The complement, meaning all clusters that 
belong to any class other than cluster o is denoted by 𝐶?̅?. A simple example would be if 
the first cluster belongs to class 1, where class 1 contains the clusters {1,2}, class 2 
encompasses cluster {3} and class 3 comprises clusters {4,5}. In this example, 𝐶1 refers 
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to the set containing {1,2}, and 𝐶1̅ encompasses the remaining clusters {3,4,5} belonging 
to the remaining classes 2 and 3. The notation for features are selected in a similar manner. 
The number of features is D, and a single feature can be denoted by d. The complement 
of d is denoted by ?̅? and contains all features with the exception of d, which are obviously 
the remaining D-1 features. The cluster centre of the o-th cluster is denoted by 𝑣𝑜, which 
is consistent with the notation used for the similarity classifier with multiple ideal vectors. 
The Mahalanobis distance between a cluster centre 𝑣𝑜 and the cluster centre 𝑣𝑚 of another 
class measured from the perspective of 𝑣𝑜 and its covariance matrix is: 
 S(𝑣𝑜 , 𝑣𝑚) = (𝑣𝑜 − 𝑣𝑚)
𝑇Σ𝑜
−1(𝑣𝑜 − 𝑣𝑚) (5.2) 
This calculation is repeated for each combination of ideal vectors o and m, for which o 
and m belong to different classes. It is essential to highlight that all computations in this 
step include the entire set of D features and that both 𝑣𝑜 and 𝑣𝑚 are D-dimensional 
vectors.  
The fourth step consists of the calculation of the distance between clusters without one 
of the features. The calculation is similar to the one conducted in the third step but does 
not incorporate all D features. In particular, for a feature d the separation between clusters 
of different classes without this feature is computed as: 
 S(𝑣𝑜,?̅?, 𝑣𝑚,?̅?) = (𝑣𝑜,?̅? − 𝑣𝑚,?̅?)
𝑇
Σ𝑜,?̅?
−1 (𝑣𝑜,?̅? − 𝑣𝑚,?̅?), (5.3) 
where 𝑣𝑜,?̅? and 𝑣𝑚,?̅? denote the o-th and m-th cluster centres, respectively, with all 
features except for feature d – which simply means the cluster centres 𝑣𝑜 and 𝑣𝑚 without 
their d-th element. Hence, 𝑣𝑜 and 𝑣𝑚 are both (D-1)-dimensional vectors. The covariance 
matrix Σ𝑜,?̅? does not include the d-feature, either. This means that it is the covariance 
matrix Σ𝑜 without the d-th row and column and, hence, is of dimension (D-1)×(D-1). As 
in the third step, 𝑣𝑜 and 𝑣𝑚 belong to two different classes. This calculation is repeated 
for each feature d and each combination of ideal vectors o and m, for which o and m 
belong to different classes. 
The fifth step is the calculation of the COLD score and the assignment of the 
corresponding feature rank. This step centres on the change in the distances between 
clusters of different classes with the entire feature set and the set of features without the 
d-th feature. The first sub-step is the calculation of the ratio of the Mahalanobis distance 
between two clusters without the d-th feature to the distance with the complete feature 
set. For cluster centres 𝑣𝑜 and 𝑣𝑚, this ratio is computed as: 
 
𝑟𝑜,𝑚,𝑑 =
S(𝑣𝑜,?̅? , 𝑣𝑚,?̅?)
S(𝑣𝑜 , 𝑣𝑚)
, (5.4) 
5 Clustering One Less Dimension (COLD) Feature Selection 96 
where 𝑟𝑜,𝑚,𝑑 refers to the ratio of the Mahalanobis distances, with 𝑟𝑜,𝑚,𝑑 ≥ 0 since the 
Mahalanobis distance cannot be negative. There are three possible cases for values that 
𝑟𝑜,𝑚,𝑑 can take, as follows: 
𝒓𝒐,𝒎,𝒅 > 𝟏 : This case means that the distance between the cluster centres 𝑣𝑜 and 𝑣𝑚 
without the d-th feature as denoted by S(𝑣𝑜,?̅? , 𝑣𝑚,?̅?) is larger than S(𝑣𝑜 , 𝑣𝑚), the distance 
with all features. This indicates that the d-th feature in the context of 𝑣𝑜 and 𝑣𝑚 is 
irrelevant and even noisy since it is easier to separate the clusters without this feature than 
including it.  
𝒓𝒐,𝒎,𝒅 = 𝟏 : This case embodies no change in the distance between the two clusters with 
and without the d-th feature. Hence, the feature is irrelevant for the separation of these 
two clusters since the feature does not contribute to it (neither in a positive nor a negative 
way). 
𝒓𝒐,𝒎,𝒅 < 𝟏 : This result represents the case when the distance S(𝑣𝑜,?̅? , 𝑣𝑚,?̅?) between 𝑣𝑜 
and 𝑣𝑚 decreases compared to S(𝑣𝑜 , 𝑣𝑚) when the d-th feature is removed from the 
complete set of features. Therefore, the separation between the clusters deteriorates when 
the d-th feature is not present in the data. This suggests feature d is relevant for the 
separation of 𝑣𝑜 and 𝑣𝑚 since it supports the discrimination between the two clusters. 
The value for 𝑟𝑜,𝑚,𝑑 indicates if the removal of the d-th feature contributes to the 
separation of two cluster centres 𝑣𝑜 and 𝑣𝑚. But for each cluster centre 𝑣𝑜 and a certain 
feature d, it is important to determine how the separation changes in regard to all clusters 
of other classes 𝐶?̅? since in the majority of cases there are multiple classes and/or multiple 
clusters of different classes. It is pivotal to measure the change in the distance between 
𝑣𝑜 with any cluster of another class. In addition, it is undoubtedly more important for the 
separation of the classes if a cluster that is closer to 𝑣𝑜 changes its distance to 𝑣𝑜 than the 
change of clusters comparably distant to 𝑣𝑜. Hence, when aggregating the ratio values 
𝑟𝑜,𝑚,𝑑 for a given cluster centre 𝑣𝑜 to all other clusters of different classes 𝐶?̅?, these ratios 
are weighted to give closer clusters a higher weight than more distant ones. 
 
𝑤𝑜,𝑚 = {
1                              𝑖𝑓 𝑐𝑎𝑟𝑑(𝐶?̅?) = 1
1 −
S(𝑣𝑜 , 𝑣𝑚)
∑ S(𝑣𝑜 , 𝑣𝑚)𝑚𝜖?̅?𝑜
     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,
 (5.5) 
where 𝑤𝑜,𝑚 𝜖 [0,1] and equals one if there is solely a single cluster from another class, 
meaning that the cardinality of the set of clusters of other classes is 1. In a case where 
there are multiple other clusters from all other classes, then the weight corresponds to one 
minus the ratio of the distance of 𝑣𝑜 to a cluster 𝑣𝑚 divided by the sum of the distances 
of 𝑣𝑜 to all other clusters from other classes. Therefore, the weight of closer clusters is 
higher than that of distant clusters. This means that changes in closer clusters have a 
higher impact on the evaluation of how much a feature contributes to the separation of 
the classes. Using the weights 𝑤𝑜,𝑚 together with the corresponding ratios of the distances 
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𝑟𝑜,𝑚,𝑑, the weighted change in the distances between 𝑣𝑜 and all clusters of the other classes 
for the removal of the d-th feature can be computed. 
 
𝑟𝑜,𝑑 =
∑ 𝑤𝑜,𝑚𝑚𝜖?̅?𝑜 ∗ 𝑟𝑜,𝑚,𝑑
∑ 𝑤𝑜,𝑚𝑚𝜖?̅?𝑜
 (5.6) 
In a case where there are more than two clusters from other classes, the sum of the weights 
is not equal to one. Thus, the denominator in Equation (5.6) is the sum of the weights. 
The meaning of 𝑟𝑜,𝑑 is essentially the same as for 𝑟𝑜,𝑚,𝑑, with the sole exception that it 
accounts for a given cluster for all clusters of the remaining classes and not just a single 
one. Hence, 𝑟𝑜,𝑑 values larger than 1 indicate an irrelevant and even noisy feature, values 
of exactly one indicate irrelevant features and 𝑟𝑜,𝑑 values smaller than 1 embody features 
that are relevant for the separation of cluster 𝑣𝑜 from the clusters of all other classes. 
Going one step further, to aggregate the information over all clusters for a certain feature, 
the COLD score can be computed as one minus the average 𝑟𝑜,𝑑 value. 
 
𝐶𝑂𝐿𝐷𝑑 = 1 −
∑ 𝑟𝑜,𝑑𝑜
𝑂
 (5.7) 
The mean of the 𝑟𝑜,𝑑 values represents the average (weighted) change in the cluster 
separation for a specific feature d. Changes smaller than 1 are more desirable than changes 
larger than 1 since they indicate an improvement in the average separation of the clusters. 
Threfore, the mean of 𝑟𝑜,𝑑 is subtracted from 1. This converts the average change in the 
separation into an intuitive result. As a consequence, higher COLD scores represent more 
relevant features than low scores. The COLD score for any feature d is ≤ 1, with the 
following meaning for the corresponding feature: 
𝑪𝑶𝑳𝑫𝒅 > 𝟎 : A relevant feature. Such a COLD score indicates a feature that contributes 
to the separation of the clusters of different classes.  
𝑪𝑶𝑳𝑫𝒅 = 𝟎 : An irrelevant feature. The feature neither contributes to the separation of 
the clusters nor does it deteriorate the discrimination, which a noisy feature would do. 
𝑪𝑶𝑳𝑫𝒅 < 𝟎 : An irrelevant and noisy feature. The feature does not contribute to the 
separation of the clusters and even on average deteriorates the distance between clusters 
of different classes. 
Based on the COLD scores, the features can be ranked from the highest to the lowest 
score. Based on these scores, the user can decide how many of the highest-ranked features 
to keep. All features with a COLD score of less than or equal to zero can be discarded 
since they deteriorate the cluster separation for the classes or do not impact them. 
Concerning removing features in addition to those having negative or zero COLD scores, 
it can be noted that the impact of discarding features with comparably small positive 
COLD scores on the overall separation of classes will likely also be negligible. 
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5.3 Application to Artificial Data 
To illustrate and demonstrate the ability of the COLD algorithm to rank features 
according to their contribution to the separation of the classes, four artificial examples 
were constructed that represent different data structures.  
The first artificial example (Figure 5.2) is a binary classification task with three 
normally distributed features. The first two features embody a numerical XOR problem, 
where the two data groups of each class are not separable by one linear function but form 
distinct decision regions for each class. The third feature, as well as the first two features, 
is not correlated with any of the remaining features. Moreover, it overlaps moderately for 
both classes. In contrast, the first and second feature by itself overlaps entirely for both 
classes and is essentially irrelevant from the univariate perspective. Hence, the univariate 
evaluation will rank the third feature highest. Nonetheless, the best subset of two features 
should contain the first and second feature, which can together linearly separate the 
feature space.  
 
Figure 5.2: First artificial example of COLD [modified from Publication IV] 
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The second artificial example is a simple extension of the first example with an 
additional uncorrelated normally distributed feature that has identical mean values and 
variance for both classes. Thus, this additional feature is irrelevant by itself and also from 
a multivariate perspective since it does not contribute to the separation of the classes for 
any set of features.  
The third artificial example consists of another three-dimensional classification 
problem with binary classes. All three features are normally distributed. In contrast to the 
previous two examples, each class consists of a single cluster. The cluster formed in the 
first and second dimension is elongated due to the high variance of the second feature and 
rotated due to the high negative covariance between these two features. The third feature 
is uncorrelated with the first two features and overlaps only to a small extent for both 
classes – making it the best univariate feature. In marked contrast to the third feature, the 
first and second feature overlap from a moderate to high extent and are each by 
themselves clearly less discriminant than the third feature. Nonetheless, the set of the first 
two features is capable of linearly separating the two classes. This is another example of 
features where the best single feature is not contained in the best subset of two features. 
Also, it illustrates that features that appear not or only slightly useful by themselves can 
be highly relevant for the separation of the classes if used together with another feature 
or a set of features. This example, as displayed in Figure 5.3, is related to the fourth 
example, presented by Guyon & Elisseeff (2003).  
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Figure 5.3: Third artificial example of COLD [modified from Publication IV] 
 
The fourth artificial example is the same type of extension for the third example as 
example two was for the first example – a normally distributed feature with equal mean 
and variance was added that is uncorrelated with any of the remaining features. It is 
apparent that this feature is irrelevant for the separation of the classes.  
The first and third artificial examples are both only three-dimensional, which simplifies 
the visualization of the classification problem they pose and the solution that COLD 
reaches. The logic behind COLD for the first artificial example is displayed in Figure 5.4, 
which shows the theoretical solution using COLD when the generated data points exactly 
resemble the specified mean values and covariance matrices (and the observations are not 
scaled to [0,1]). This representation was selected because of the simplicity of the 
calculation and values obtained. It is noteworthy that the covariance information is 
incorporated into COLD so that the scaling will not alter the results. The actual COLD 
scores for this example are very similar to the ones presented in this slightly simplified 
solution with COLD.  
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Figure 5.4: Theoretical COLD scores for the first artificial example 
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The figure illustrates that in the three-dimensional space, the clusters of different classes 
(in blue and red) are all 95 units away from each other. It is apparent that the first and 
second feature contribute most to the separation of the classes. However, it is also obvious 
that the third feature contributes slightly to the separation since the blue clusters are 
situated slightly lower than the red ones. The removal of the first or second feature always 
moves two of the clusters of each class closer together in the two-dimensional 
representation. Consequently, these clusters start to overlap and reduce the Mahalanobis 
distance between them to 5. The second pair of clusters (for instance 𝑣1 and 𝑣3 for the 
first example) remain distant to each other solely on account of the one remaining feature 
of the first two features. Hence, for the removal of the first or second feature, the average 
distance between clusters of different classes is reduced to 52.5% of the original distance 
with all three features. In contrast, the removal of the third dimension impacts all cluster 
distances by an equally small magnitude. The weighted average ratio remains with 0.95 
(meaning 95%) largely unchanged. This shows that the third feature did contribute to the 
separation of the clusters of different classes but only to a small extent compared to the 
first two features. Overall, the COLD score of 0.475 for each of the first two features and 
only 0.05 for the third feature represents this difference. The corresponding feature 
ranking places the first and second feature on the first two ranks (with equal COLD scores 
the order can be arbitrary) and the third feature last.  
The feature ranking for this example of COLD was compared with the ReliefF algorithm, 
the feature selection by Luukka (2011), the FSAE, the Laplacian score and the Fisher 
score. In addition to the scaling or normalization conducted within each filter method, 
there is no initial scaling or normalization applied to the artificial examples.8 The results 
of the comparison are summarized in Table 5.1. 
  
                                                 
8 The ReliefF setups, the feature selection of Luukka (2011), FSAE and COLD all explicitly incorporate 
some form of scaling or normalization within their algorithms. This is not the case for the Laplacian score 
and the Fisher score, which in their algorithms do not explicitly include a scaling or normalization (e.g. into 
the unit interval). However, both algorithms incorporate some form of measuring distances/similarities and 
divide these values by some form of variance (which is to a certain extent similar to a z-score). 
Notwithstanding, the ranking for the Laplacian score for these four examples will change (with a tendency 
to emulate the univariate results of, e.g., the Fisher score) if a scaling into the unit interval is initially 
conducted. 
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Filter Method Feature 1 Feature 2 Feature 3 
Actual Structure Ranks 1 & 2 Rank 3 
ReliefF (10 nearest hits/misses) Rank 1 Rank 2 Rank 3 
ReliefF (70 nearest hits/misses, sigma = 20) Rank 1 Rank 2 Rank 3 
FS Luukka (2011) Rank 3 Rank 1 Rank 2 
FSAE (De Luca & Termini entropy, l = 1) Rank 3 Rank 1 Rank 2 
COLD Rank 1 Rank 2 Rank 3 
Laplacian Score Rank 2 Rank 1 Rank 3 
Fisher Score Rank 3 Rank 1 Rank 2 
Table 5.1: First artificial example feature rankings [modified from Publication IV]9 
 
It is apparent that the univariate filter methods that evaluate each feature separately rank 
the third univariate best feature first and fail to detect that the first and second feature can 
jointly separate the feature space without misclassification. Opposed to that, both versions 
of ReliefF and the COLD algorithm as well as the Laplacian score correctly rank these 
two features first. The difference that these rankings lead to is apparent when the feature 
subsets of the two highest-ranked features are selected, and the mean accuracy for the 
classification task is compared. The mean classification accuracies for this purpose are 
the mean values of the accuracies achieved by a K-nearest neighbour classifier (k = 10), 
a decision tree (minimum leaf size = 10) and (one-versus-all) support vector machines 
(with radial basis function). All multivariate feature selection methods, including COLD, 
were able to maintain or improve their mean accuracies to about 100% due to the removal 
of the third-ranked feature. At the same time, the feature subsets of the univariate methods 
lead to a decrease in the classification accuracy to on average about 87.9%, which is 
significantly (p < 0.01) smaller. It is unsurprising that this situation would reverse in the 
case where two features are discarded, and only a single feature is retained. In this case, 
the feature subset of the univariate methods outperforms the subset of the multivariate 
methods by a significant margin. The reason is that a univariate algorithm aims to find 
the single best feature(s), whereas the multivariate algorithm determines the feature that 
is jointly with one or more features most relevant. This obviously does not have to be the 
same in the case of dependencies between features. For this artificial example, it also 
highlights that the set of the best two features does not contain the single best feature.  
                                                 
9 The rankings for the feature selection method by Luukka (2011) and the FSAE differ from those presented 
in Publication IV since in the original source no scaling to the unit interval was conducted, which is 
necessary for both algorithms to calculate the similarities correctly. This is true for all four artificial 
examples so that the results for these two benchmark algorithms differ in most cases to those reported in 
the original publication. It should be noted that this alters neither the results of the remaining feature 
selection methods, including COLD, nor the conclusions made in Publication IV concerning the COLD 
algorithm. In particular, it does not alter the conclusion that COLD is the only algorithm that consistently 
ranks features according to the best feature subset. Moreover, this error only occurred in the artificial 
datasets. For the real-world datasets, the scaling into the unit interval was incorporated in the ranking 
conducted by the feature selection of Luukka (2011) and the FSAE. 
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The rankings for all filter methods for the second artificial example are displayed in Table 
5.2. 
Filter Method Feature 1 Feature 2 Feature 3 Feature 4 
Actual Structure Rank 1 & 2 Rank 3 Rank 4 
ReliefF (10 nearest hits/misses) Rank 2 Rank 1 Rank 3 Rank 4 
ReliefF (70 nearest hits/misses, sigma = 20) Rank 2 Rank 1 Rank 3 Rank 4 
FS Luukka (2011) Rank 4 Rank 3 Rank 2 Rank 1 
FSAE (De Luca & Termini entropy, l = 1) Rank 3 Rank 4 Rank 2 Rank 1 
COLD Rank 1 Rank 2 Rank 3 Rank 4 
Laplacian Score Rank 1 Rank 2 Rank 3 Rank 4 
Fisher Score Rank 3 Rank 2 Rank 4 Rank 1 
Table 5.2: Second artificial example feature rankings [modified from Publication IV] 
 
For the second artificial example, the same approaches as those used in the first example 
are able to attain the desired correct ranking. Also, those approaches that incorrectly 
ranked features previously do not improve their ordering. It is noteworthy that the 
approach by Luukka (2011) ranks the new irrelevant normally distributed feature first, 
whereas the FSAE and the Fisher score do not rank it last.10 One could argue that from 
the univariate view, ranking the third feature first and the remaining features in any order 
is plausible given that the third feature is univariately the single best feature and that, 
from a one-dimensional perspective, all remaining features are similarly irrelevant. 
However, it is apparent that the fourth feature should even according to a univariate 
approach not be ranked first. Without going into detail, it can be stated that for the filter 
method by Luukka (2011), this result is obtained due to the fact that the feature is 
normally distributed and completely overlapping. Because of this, many observations will 
show a similarity of close to one to their own class’s representative as well as the 
representative of the other class. Unfortunately, this corresponds to a low entropy value, 
which indicates a relevant feature in this feature selection method. Finally, for an 
irrelevant uniformly distributed feature, such a behaviour would not be observed. 
Before discussing the actual results for the third example, the conceptual solution with 
COLD for this example is illustrated in Figure 5.5 and highlights how COLD determines 
the multivariate relevance of the first and second feature. This solution assumes that the 
generated samples perfectly resemble the specified means and covariance matrices, that 
                                                 
10 As mentioned previously, for this task the lack of scaling for the feature selection of Luukka (2011) and 
the FSAE also changed the ranking. From a univariate standpoint, the fourth, irrelevant feature does not 
necessarily have to be ranked last since the first and second feature are from that perspective also irrelevant. 
In general, this makes the ranking (of all features with the exception of the third one) dependent on minor 
variations in the observations. The statement in Publication IV that all filter methods ranked the additional 
irrelevant feature last was inaccurate.  
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no scaling is conducted and that the clustering algorithm in COLD finds exactly these 
two cluster centres. 
 
 
Figure 5.5: Theoretical COLD scores for the third artificial example 
 
The contour lines for the first and second feature indicate that these two features are 
capable of linearly separating the two elongated clusters. If either the first or second 
feature are removed, the classes start to overlap to a small extent. In addition, the 
Mahalanobis distance between the clusters decreases from 77.5 with all features to 12.7 
and 17, respectively. This demonstrates that the first and second feature are both strongly 
contributing to the class separation. Their high COLD scores of 0.836 and 0.781, 
respectively, reflect this. The third feature, which is univariately the best feature, 
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contributes less to the separation of the clusters. Hence, the distance between the clusters 
is only reduced from 77.5 to 65. This deterioration is considerably less severe than for the 
first two features. Moreover, the two classes remain linearly separable even after the 
removal of the third feature. The COLD score reflects the small but existing contribution 
of the third feature with a comparably low positive COLD score of 0.161. The 
corresponding feature ranking emphasizes that the first and second feature contribute 
more to the cluster separation, and, hence, they are ranked first and second. The best 
univariate feature only ranks third. Once more, the best subset of two features does not 
contain the univariately best feature. 
The rankings for the actual third artificial example with one correlated elongated cluster 
for each class are presented in Table 5.3. 
 
Filter Method Feature 1 Feature 2 Feature 3 
Actual Structure Rank 1 & 2 Rank 3 
ReliefF (10 nearest hits/misses) Rank 1 Rank 3 Rank 2 
ReliefF (70 nearest hits/misses, sigma = 20) Rank 1 Rank 3 Rank 2 
FS Luukka (2011) Rank 2 Rank 1 Rank 3 
FSAE (De Luca & Termini entropy, l = 1) Rank 3 Rank 1 Rank 2 
COLD Rank 1 Rank 2 Rank 3 
Laplacian Score Rank 1 Rank 3 Rank 2 
Fisher Score Rank 3 Rank 1 Rank 2 
Table 5.3: Third artificial example feature rankings [modified from Publication IV]  
 
It is apparent that for this example, the ranking according to the best subset of two features 
is only accomplished by COLD and the approach by Luukka (2011). However, since the 
approach by Luukka (2011) is a univariate approach, it is obvious that the correct ranking 
is not due to its ability to account for the complementarity of the first and second feature. 
Rather, the algorithm has determined that the first and second feature are univariately the 
best two features. This is clearly not representative of their univariate ability to 
discriminate the data. Both features have almost identical means and overlap essentially 
completely. Once again, the overlapping features are univariately ranked high by this 
approach since most similarities of observations with any ideal vector are close to 1. This 
leads to low entropy values, falsely indicating a relevant feature. Hence, COLD is 
effectively the only algorithm that correctly detects and ranks the complementarity11 of 
the first and second feature. However, it does not score the features exactly as 
theoretically expected. The K-medoids algorithm divides these strongly elongated 
clusters into two less strongly elongated clusters. Still, the corresponding ranking remains 
                                                 
11 The term ‘complementarity’ is used in Guyon and Elisseeff (2003) to indicate a ‘perfect separation’ that 
can be accomplished by a set of (two) variables.  
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unchanged compared to its theoretical counterpart, and also the third feature is clearly 
ranked last, with a COLD score that is considerably lower than for either of the first two 
features. Regardless, due to the subdivision of clusters, the first feature received a 
considerably higher score than the second. This stresses the reliance of COLD on the 
clustering partition even though this example illustrated that the ranking can be unaltered, 
especially for such clear differences in the contribution of features to the separation of 
classes. 
The multivariate filter methods, such as ReliefF and the Laplacian score, which do not 
rely on a distance or similarity measure that incorporates a mixture of locality and 
covariance information, fail to end up with the correct feature ranking. As a consequence, 
only COLD and the filter by Luukka (2011) and their two-feature subsets obtain a mean 
accuracy of close to 100%. In contrast, the feature subsets suggested by the remaining 
filter methods deteriorate the performance to about 96%, which is significantly smaller 
than with COLD (p-value < 0.01). This decrease in performance is due to the small 
overlap that occurs if either the first or second feature is removed.  
Finally, the rankings of all filter methods for the fourth and last artificial example are 
displayed in Table 5.4.  
 
Filter Method Feature 1 Feature 2 Feature 3 Feature 4 
Actual Structure Rank 1 & 2 Rank 3 Rank 4 
ReliefF (10 nearest hits/misses) Rank 1 Rank 3 Rank 2 Rank 4 
ReliefF (70 nearest hits/misses, sigma = 20) Rank 1 Rank 3 Rank 2 Rank 4 
FS Luukka (2011) Rank 4 Rank 2 Rank 1 Rank 3 
FSAE (De Luca & Termini entropy, l = 1) Rank 3 Rank 4 Rank 2 Rank 1 
COLD Rank 1 Rank 2 Rank 3 Rank 4 
Laplacian Score Rank 1 Rank 2 Rank 3 Rank 4 
Fisher Score Rank 3 Rank 1 Rank 2 Rank 4 
Table 5.4: Fourth artificial example feature rankings [modified from Publication IV] 
 
Once again, COLD successfully ranks the features according to their contribution to the 
separation of the classes. For this example, the Laplacian score is also able to rank the 
features correctly. The multivariate ReliefF and the univariate Fisher score do not rank 
all features correctly but recognize the fourth irrelevant feature as the least relevant one. 
FSAE ranks the third univariately best feature first but ranks the fourth irrelevant 
normally distributed feature second. The least desirable result is obtained for the 
univariate feature selection method by Luukka (2011), where the irrelevant feature is 
ranked first and the univariately best feature last. This problem once more originates in 
the fact that the samples of the irrelevant fourth feature are normally distributed, so most 
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observations of either class will have high similarities with their own and the competing 
class’s ideal vector, which is an indication of a relevant feature.  
Overall, only COLD demonstrated the consistent ability to rank features according to 
their contribution to the separation of the classes. As a last point, it should be noted that 
the rankings obtained by all filter methods remain unchanged for 500 iterations for each 
of the artificial examples. 
5.4 Application to Medical Data 
The COLD algorithm demonstrated for all four artificial examples the ability to rank each 
feature’s relevance according to its contribution to the separation of the classes. To 
additionally show its ability to conduct feature selection successfully in a real-world 
context, it will here be applied to two medical real-world datasets from the UCI Machine 
Learning Repository (Lichman, 2013). The first dataset is the Dermatology Data Set (Ilter 
and Guvenir, 1998), which was mentioned and used in Section 3.5 as well. It has 358 
observations of 34 features and constitutes a 6-class problem. The second medical dataset 
is the Arrhythmia dataset, which differentiates the presence and absence of cardiac 
arrhythmia (Guvenir, Acar and Muderrisoglu, 1998). The dataset consists of 420 
observations of 258 non-constant features. 
The performance of COLD and that of the competing filter methods was evaluated by the 
following three classifiers: a K-nearest neighbour classifier (with 10 neighbours), a 
decision tree (with minimum leaf size of 10) and (one-versus-all) support vector machines 
(with radial basis function). For the Dermatology dataset, the mean accuracies (over 500 
runs) for all filter methods and feature subset sizes are displayed in Figure 5.6. 
 
 
Figure 5.6: Comparison of filter feature selection on the Dermatology dataset 
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At first glance, it is apparent that COLD outperforms the remaining feature selection 
algorithms for a wide range of feature subsets. Besides that, COLD achieved for the K-
nearest neighbour (KNN) classifier the highest mean accuracy of 97.9%. Using the one-
sided Welch’s test with unequal variances, it can be highlighted that for the KNN 
classifier, the outperformance of the feature subset of COLD compared to that of all other 
filter methods in this study is highly significant (p-value < 0.01) for 7 to 29 feature 
removals. For the decision tree, the highest performance of 93.83% is accomplished with 
ReliefF (k = 70, sigma = 20) for 12 removed features. COLD achieved with 17 removed 
features a competitive result of 93.48%. Moreover, COLD eventuates in a mean accuracy 
of over 90% until the removal of 29 out of 34 features. At this point, the strongest 
competitors, the two ReliefF setups, are already at a mean classification accuracy of close 
to 75%. Unsurprisingly, the outperformance of COLD’s mean accuracy between 17 to 29 
feature removals is highly significant (p-value < 0.01) compared to the remaining filter 
methods. A similar picture to that from the KNN classifier is obtained for the support 
vector machines. The highest performance of 98.19% is accomplished with the Fisher 
score and 13 removed features. However, the highest classification accuracy with COLD 
of 97.86% is not far off, and the subsequent mean accuracies with COLD remain at a 
level of over 90% accuracy for a much longer time. The mean accuracy with COLD for 
14 to 29 features is highly significantly larger than that of the Fisher score and all other 
filter approaches. A remarkable result for COLD’s ability to select relevant feature 
subsets can be seen for the removal of 29 out of 34 features. The classification accuracy 
related to this subset of five features still exceeds 95%, whereas the runner-up ReliefF is 
already below 80% and the Fisher score even below an accuracy of 40%. 
For the Arrhythmia dataset, the mean accuracies for the three classifiers are illustrated in 
Figure 5.7. 
 
 
Figure 5.7: Comparison of filter feature selection on the Arrhythmia dataset 
 
5 Clustering One Less Dimension (COLD) Feature Selection 110 
For this dataset, the KNN classifier demonstrates for all filter methods and a wide range 
of feature removals a performance between 61% and 65%. For up to 200 feature 
removals, the mean classification accuracies of all filter methods appear very similar in 
magnitude. Subsequently, the Fisher score clearly performs best and reaches an accuracy 
of 70.1% with 242 features removed. This is the highest mean accuracy observed for the 
KNN classifier on this dataset. All feature selection algorithms successfully conduct 
feature selection since they are all capable of discarding (a large share of) features and 
reach a comparable or even improved classification accuracy compared to using the 
complete set of features. It is noteworthy that for KNN, the single best feature according 
to all algorithms still reaches an accuracy between 58.2% and 60.4%. This is only slightly 
less than the mean accuracy of about 60.7% for all 258 features. Moreover, the highest 
performance, of 60.4%, for a single feature is reached with the Fisher score. This 
univariate approach outperforms the remaining approaches, even COLD and ReliefF, on 
this dataset. This indicates that it may be unnecessary to use a multivariate approach for 
this classification task. Moreover, it shows that a univariate evaluation of the features 
leads to even better results on this dataset. The comparison of the filter methods for the 
decision tree is similar to that of KNN with the main exception that the best mean 
accuracy of 72.66% is accomplished with COLD and 71 removed features. Even though 
COLD remains competitive compared to the other filter methods for the remaining feature 
removals, it is also for the decision tree apparent that the univariate Fisher score overall 
performs at least as good as the multivariate approaches. It reaches a performance of about 
72.5% for 232 discarded features and, eventually, also selects the single best feature. The 
same outcome for the Fisher score is observed using support vector machines. The Fisher 
score selects the best feature subset with 225 discarded features, resulting in a mean 
accuracy of 73.83%. In addition, once more this algorithm selects the single best 
performing feature. For the second medical dataset, Arrhythmia, the univariate Fisher 
score performs overall very well and appears to be the most suitable algorithm for this 
dataset. This indicates that a multivariate method is not necessary on this dataset. There 
might not be any dependencies among the features that are adding any contribution to the 
separation of the classes. Besides that, it is noteworthy that COLD reaches competitive 
results for this dataset and that for the decision tree classifier it selects the best-performing 
feature subset. COLD is capable of improving the mean accuracy on the dataset by a few 
percentage points for about 200 discarded features and achieves a performance similar to 
that with the entire feature subset with less than 8 out of 258 features. 
5.5 Conclusion and Limitations of the COLD Algorithm 
This section discussed a novel multivariate supervised filter method named COLD. The 
algorithm ranks features according to their contribution to the separation of the 
groups/clusters of different classes. It deploys class-wise clustering of the observations to 
initially find the groups that each class is composed of and determine their characteristics 
represented in terms of their cluster centres and covariance matrices. Only linearly 
independent features are considered for the clustering since linearly dependent features 
can be expressed in terms of one or more other features, which renders them redundant. 
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After the clustering, the relevance of each feature is determined by measuring their 
contribution to the separation of the clusters belonging to different classes. In this context, 
contribution is interpreted as the change in the Mahalanobis distance between the clusters 
of different classes when a feature is removed from the complete set of features. Hence, 
the contribution of a feature is not restricted to its univariate impact on the cluster 
separation but on how it contributes to the separation together with all other features. 
Thus COLD accounts for the dependencies and complementarity of features 
(multivariate).  
COLD and several other filter methods were tested on four artificial examples, which 
were constructed specifically in a way such that the set of the two best features does not 
contain the univariate best feature. This was accomplished by either designing a 
numerical XOR-like problem with two distinct decision regions for each class or by 
generating elongated, correlated clusters that overlap along the first two dimensions. For 
all four examples, only COLD consistently ranked the features according to the highest-
performing feature subset by accounting for the joint relevance of the two univariate less 
relevant or even irrelevant features. It is apparent that the difference in the mean accuracy 
for those approaches that did not detect this complementarity of the first two features is 
highly significantly smaller than using COLD. Additionally, COLD also correctly 
acknowledged the additional overlapping feature as irrelevant and ranked it last. 
For the two medical real-world datasets, the COLD algorithm demonstrated at least 
competitive results compared to the remaining six filter methods in this study. For both 
datasets, COLD demonstrated the ability to remove irrelevant variables and improve the 
classification accuracy for the three classifiers deployed for the comparison – the KNN 
classifier, a decision tree and support vector machines. For the Dermatology dataset, the 
feature ranking suggested by COLD outperformed the ranking of the remaining filter 
methods for a large range of features by a highly significant margin.  
One limitation of the COLD algorithm is that it is computationally expensive in 
comparison to the other filter methods in this study. It is apparent that this limitation 
originates from the fact that it evaluates features in a multivariate way. Moreover, it 
incorporates the K-medoids algorithm for clustering, which functions well for categorical 
and noisy data but is more complex than several other clustering algorithms, such as its 
numerical counterpart K-means. Another limitation is that the algorithm’s ranking 
depends on the clustering result and the covariance matrices determined during the 
clustering. If the clusters are close to each other and have a difficult data structure/shape 
(e.g. non-convex), or very few observations make up a cluster so that the covariance 
matrix is based on only a few observations, COLD may face difficulties in ranking all 
features according to their contribution to the class separation. This behaviour as well as 
COLD’s ability to cope with a large number of irrelevant features in artificial and 
additional real-world cases has to be investigated in future research. Finally, a univariate 
but less complex version of COLD as well as an unsupervised setup for COLD could be 
developed in prospective publications and research studies. 
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6 Conclusion, Limitations and Future Work 
The focus of this dissertation is on heuristic filter methods, in particular those using 
distance and information evaluation criteria. For this purpose, initially the univariate 
information-based filter method by Luukka (2011) was discussed. On one hand, its ability 
to improve the classification accuracy on selected datasets while using a subset of the 
original features was highlighted. On the other hand, an emphasis was placed on its 
vulnerabilities with respect to the use of a single ideal vector per class and the 
combination of similarity and entropy for certain data structures. The representation of a 
class by a single ideal vector is not suitable for more complex data structures in a class. 
That said, it is an intentional simplification, which is part of a trade-off with respect to 
the computational time and complexity of the algorithm. However, the vulnerability of 
this algorithm to highly overlapping features does not reflect any trade-off. It was clearly 
demonstrated and explained how measuring the similarity of observations to the ideal 
vector of the same and competing class and using the similarity values for the entropy 
calculation can result in a completely overlapping feature being preferred to a feature that 
separates classes well and has small to moderate variance. On account of this 
vulnerability, the ‘Fuzzy Similarity and Entropy’ (FSAE) feature selection method was 
introduced. It is a univariate, information-based filter premised on the approach by 
Luukka (2011). The FSAE incorporates a class- and feature-specific scaling factor that 
accounts for the distance between the ideal vectors of the classes within each feature. For 
the three artificial examples on which the vulnerability of the feature selection by Luukka 
(2011) was highlighted, the FSAE showed intuitive feature scores and feature removal 
decisions. The FSAE was compared to the feature selection by Luukka (2011) in regard 
to its filter and wrapper form as well as to several distance- and information-based 
heuristic filter methods (univariate and multivariate) on five real-world medical datasets. 
In both feature selection types, FSAE accomplished at least comparable classification 
results, often with fewer features than the approach by Luukka (2011). Moreover, it 
achieved competitive results compared to the remaining filter methods.  
Subsequently, the FSAE was implemented together with different classification 
algorithms on a custom financial dataset constructed by the author of this dissertation for 
the prediction of the S&P500 intraday return. Using FSAE and a random forest, a four-
class classification model was successfully developed. On top of that, several simple 
trading strategies based on different predictions of this classification model were tested. 
One important finding showed that the best feature selection- and classification-based 
trading strategy outperformed a passive buy-and-hold strategy after small to moderate 
transaction costs. Another contribution in this context was highlighted in the analysis of 
the actual returns associated with the predicted return classes. For this dataset, the average 
return of the ‘strong positive’ and ‘strong negative’ classes was higher than that of the 
two classes for ‘slightly positive’ and ‘slightly negative’ returns even when 
misclassifications were included. 
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All these results indicate that the FSAE is a clear improvement over the approach by 
Luukka (2011), that it leads to intuitive results, that it demonstrated the ability to 
successfully conduct feature selection and that it is a fast filter method due to its univariate 
evaluation. The univariate evaluation of features and the single ideal vector per class are 
two trade-offs made to keep the computational complexity low. Notwithstanding, these 
two aspects as well as leaving out covariance information can be regarded as limitations 
of this filter method with respect to determining the optimal feature subset. 
Before addressing the limitation of using a single ideal vector, leaving out covariance 
information and the univariate evaluation of features in the context of feature selection, a 
framework to determine multiple ideal vectors per class was discussed in the context of 
the similarity classifier. Using a single ideal vector to represent a class is not suitable for 
classes with multiple distinct decision regions, neither with respect to classification nor 
for feature selection. Hence, in the context of classification, the novel similarity classifier 
with multiple ideal vectors was proposed. Using K-means clustering together with the 
Jump method ensured that a suitable number of clusters for each class as well as each 
corresponding centroid per cluster can be determined. These centroids can function as the 
ideal vectors, meaning the cluster representatives, for each class. The similarity classifier 
using these multiple ideal vectors demonstrated on artificial examples with multiple 
distinct decision regions per class the consistent ability to acknowledge and represent 
these regions. Moreover, it made use of the corresponding centre points to classify 
observations with a highly significant outperformance compared to the original classifier. 
On the real-world financial datasets, the similarity classifier with multiple ideal vectors 
(Y = 1) was the similarity-based classifier with the highest mean accuracy in all examples. 
Nonetheless, it is noteworthy that the similarity classifier with a single ideal vector also 
performed well, especially on the Australian Credit dataset. This indicates that allowing 
multiple decision regions per class can improve the classification results in some cases, 
but it is not always necessary or beneficial for classification accuracy.  
After demonstrating that deploying clustering to find and characterize multiple distinct 
decision regions can benefit the classification of observations, this concept was also 
deployed in the context of feature selection. In addition to allowing multiple ideal vectors 
per class, covariance information for each cluster was included to incorporate differences 
in the variance of different features and to account for correlation. The suggested 
distance-based COLD filter algorithm emphasized the contribution of a feature to the set 
of features with respect to the separation of the clusters of different classes. Following 
this idea, the evaluation is multivariate since the dependencies among multiple features 
can be accounted for. In a comparison of COLD with several univariate and multivariate 
distance- and information-based filter methods for several artificial examples, only 
COLD demonstrated the consistent ability to rank the features according to their joint 
relevance. The results indicate that even in a setting where the subset of the best two 
features does not contain the single best feature, the remaining multivariate algorithms 
were not capable of ranking the features accordingly. On two real-world medical datasets, 
COLD demonstrated at least competitive results compared to the benchmark filter 
methods. Moreover, in one case it clearly outperformed all competing filter methods for 
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a large range of feature removals. Overall, this suggests that COLD’s premise of 
measuring the contribution of a feature to the set of features can account for conditional 
dependencies among features that other algorithms cannot capture.  
The results with COLD and the similarity classifier with multiple ideal vectors indicate 
that it can be beneficial to apply clustering and, subsequently, combining the information 
on the discovered decision regions for feature selection and classification. It is apparent 
that the drawback of this approach is its computational complexity. Hence, future work 
will focus on finding more efficient ways to determine (approximations) of the distinct 
decision regions and their representatives. Currently, approaches such as FSAE and 
COLD are very different from each other given that the former is univariate, more 
simplistic and fast, whereas the latter is multivariate and more computationally expensive. 
Hence, it seems intuitive to aim at finding either extensions of the FSAE to allow a 
competitive multivariate evaluation of features or improve COLD to achieve stable, clear 
clustering partitions in a more efficient way. Both enhancements can certainly contribute 
to a more efficient and effective feature selection overall. 
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a b s t r a c t 
Large amounts of information and various features are in many machine learning applications available, 
or easily obtainable. However, their quality is potentially low and greater volumes of information are not 
always beneficial for machine learning, for instance, when not all available features in a data set are rel- 
evant for the classification task and for understanding the studied phenomenon. Feature selection aims 
at determining a subset of features that represents the data well, gives accurate classification results and 
reduces the impact of noise on the classification performance. In this paper, we propose a filter feature 
ranking method for feature selection based on fuzzy similarity and entropy measures (FSAE), which is 
an adaptation of the idea used for the wrapper function by Luukka (2011) and has an additional scaling 
factor. The scaling factor to the feature and class-specific entropy values that is implemented, accounts 
for the distance between the ideal vectors for each class. Moreover, a wrapper version of the FSAE with 
a similarity classifier is presented as well. The feature selection method is tested on five medical data 
sets: dermatology, chronic kidney disease, breast cancer, diabetic retinopathy and horse colic. The wrap- 
per version of FSAE is compared to the wrapper introduced by Luukka (2011) and shows at least as 
accurate results with often considerably fewer features. In the comparison with ReliefF, Laplacian score, 
Fisher score and the filter version of Luukka (2011), the FSAE filter in general achieves competitive mean 
accuracies and results for one medical data set, the breast cancer Wisconsin data set, together with the 
Laplacian score in the best results over all possible feature removals. 
© 2018 Elsevier Ltd. All rights reserved. 
1. Background 
In the field of machine learning, researchers and practitioners 
are commonly faced with classification problems, which is assign- 
ing observations to discrete classes premised on the characteristics 
of the observations ( Bishop, 2006 ). The classification is conducted 
based on the features, where the term ‘feature’ can in general refer 
to a variable, attribute or aspect in the data set that was observed 
and recorded (e.g. height of a person) or constructed from other 
variables (such as a principal component score in principal compo- 
nent analysis). The objective of the classification is to obtain deci- 
sion regions of the feature space for each class ( Luukka, 2008 ). The 
class refers to the group that an observation belongs to, which can 
be intuitively defined (e.g. positive or negative diagnosis) or de- 
fined in another way by the data analyst. In many machine learn- 
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Sabuka), tuomo.kauranne@lut.fi (T. Kauranne). 
ing applications, information and features are available in large 
volumes, or easily obtainable, but are potentially of low quality 
( Blum & Langley, 1997 ). Moreover, increased amounts of informa- 
tion are not always beneficial ( Chandrashekar & Sahin, 2014 ), for 
example, when using data sets in which not all the available fea- 
tures are relevant for understanding the studied phenomenon and 
carrying out the classification task ( Luukka, 2007 ). Classification 
refers to the assignment of observations into discrete categories, 
called classes ( Bishop, 2006 ). If the information required for effec- 
tive classification can be obtained with fewer features, the classifi- 
cation process becomes less computationally expensive and irrele- 
vant features, which may be a source of undesirable noise, can be 
eliminated ( Chandrashekar & Sahin, 2014 ). In other words, the in- 
clusion and use of irrelevant features can lead to bias and reduce 
classification accuracy ( Chandrashekar & Sahin, 2014; Dougherty, 
2013 ). Consequently, only those features should be selected for a 
model that are relevant for the classification and lead to quali- 
tatively good classification results ( Luukka & Leppälampi, 2006 ). 
Such feature selection aims to determine a subset of features that 
represents the data well, reduces the effect of noise and gives ac- 
curate classification results ( Chandrashekar & Sahin, 2014 ). Theo- 
https://doi.org/10.1016/j.eswa.2018.06.002 
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retical study has demonstrated that by concentrating on a small 
subset of the features of a data set, the generalization ability of the 
classifier, i.e. the performance of the classifier on previously unseen 
observations, can be improved ( Blumer, Ehrenfeucht, Haussler, & 
Warmuth, 1987 ). The objective of feature selection thus becomes 
to choose a feature subset that can augment the performance of 
the classifier or, at a minimum, remove features that lead only 
to a minimal performance degradation ( Liang, Yang, & Winstanley, 
2008 ). 
When discussing such data treatment, it is imperative to dis- 
criminate feature selection from techniques that conduct feature 
extraction. Feature extraction also relates to dimensional reduc- 
tion of the feature space, but it does so by creating new features. 
Feature selection, on the other hand, is a dimensional reduction 
technique in which a subset of existing features is selected ( Kittler 
& Mardia, 1994 ). Feature selection exists in both, supervised and 
unsupervised forms, i.e. where the associated class label for the 
observations is known (supervised feature selection) or unknown 
(unsupervised feature selection) ( Liang et al., 2008 ). In this paper, 
we focus on supervised feature selection. 
Feature selection methods are commonly divided into three 
types: filter techniques, wrapper functions and embedded func- 
tions ( Blum & Langley, 1997 ). Filter techniques do not use the clas- 
sifier during feature selection. They are applied in the feature pre- 
processing step ( Luukka, 2011 ). The aim of such filter techniques 
is to filter out features based on their characteristics and consis- 
tency ( Blum & Langley, 1997; Junttila, Maltamo, & Kauranne, 2008; 
Seo & Oh, 2012 ). The wrapper approach is also applied during 
preprocessing but includes the classifier in the feature selection 
( Luukka, 2011 ). The classification accuracy of the classifier takes 
the role of the feature selection criterion ( Chandrashekar & Sahin, 
2014; Seo & Oh, 2012 ). The feature subset is chosen that leads to 
the best test performance with the classifier. Using the classifier 
to find the optimal feature subset provides superior performance 
compared to a simple filter technique but is also computation- 
ally more expensive ( Blum & Langley, 1997; Seo & Oh, 2012 ). It 
should be noted that the classifier deployed after feature selection 
should be the same as during feature selection, because the fea- 
ture selection is optimized with respect to the particular classifier 
( Liang et al., 2008 ). The last type of feature selection techniques 
are the embedded methods. Embedded methods are incorporated 
into the training process and search for the optimal feature sub- 
set during the training ( Chandrashekar & Sahin, 2014; Seo & Oh, 
2012 ). The reasoning behind this approach is to decrease the com- 
putational time required by deploying the classifier only during the 
training process ( Chandrashekar & Sahin, 2014 ). It must be kept in 
mind that the chosen feature subset is also optimized for a given 
classifier ( Seo & Oh, 2012 ). 
The supervised feature selection method discussed in this 
paper is an adaptation of the wrapper method introduced by 
Luukka (2011) in which a combination of entropy measures and a 
similarity classifier is used to determine the least relevant features 
in the dataset. This feature selection method has demonstrated to 
be capable of reducing the number of features to a subsets that 
gives an improvement in classification performance or only a small 
degradation in classification accuracy ( Luukka, 2011 ). The method 
that will be discussed in this paper is conceptually a feature rank- 
ing method (filter). However, it can also be used as a wrapper 
method, for instance with a similarity classifier as the method by 
Luukka (2011) . A similarity classifier is a suitable choice for the 
wrapper version of the adapted method presented in this paper 
since it has demonstrated high classification accuracy in several 
applications with medical data sets ( Luukka, 2008; Luukka & Lep- 
pälampi, 2006 ). 
On these data sets it was shown that a similarity classifier can 
outperform other machine learning techniques such as linear dis- 
criminant analysis, multi-layer perceptrons and the C4.5 algorithm 
( Quinlan, 1992 ). The main advantages of this classifier type are 
that it requires a comparably small computational time and can ac- 
complish high classification accuracy with a small number of sam- 
ples ( Luukka, 2008 ). Recent research on a similarity classifier with 
multiple ideal vectors also indicated the competitive performance 
of a similarity classifier with other machine learning techniques 
( Lohrmann & Luukka, 2018 ). 
2. Objectives 
The objective of this paper is to point out a clear deficiency of 
the feature selection algorithm by Luukka (2011) that occurs for 
certain data structures, demonstrate a measure that helps to detect 
such data structures and address this deficiency with an adapted 
feature selection algorithm. Moreover, the feature selection method 
will be introduced as a supervised filter method. However, we 
will also present the application as a wrapper method together 
with a similarity classifier that uses backward elimination of fea- 
tures, which is the process behind the initial algorithm proposed 
by Luukka (2011) . In the work, we first show that the feature se- 
lection technique developed by Luukka (2011) may remove essen- 
tial features of a data set and, thus, lead to performance degra- 
dation. This deficiency derives from the inadequate consideration 
of the difference between ideal vectors in the feature selection al- 
gorithm. The idea is that good class separability is, beside other 
factors, also dependent on the length of the interclass distances, 
which is a notion also found in filter techniques such as CScore 
( Seo & Oh, 2012 ). A simple measure based on the standard devia- 
tion of class means of a feature from the feature mean is presented 
that supports the detection of the cases where the feature selec- 
tion by Luukka (2011) will have this deficiency. To overcome this 
weakness, an adjusted version of the feature selection algorithm is 
introduced, where a scaling factor to the feature and class-specific 
entropy values is used to account for the distance between the 
ideal vectors for each class. The goal is to avoid the removal of es- 
sential features and achieve a better classification performance or 
as small performance degradation as possible. The proposed fea- 
ture selection method is tested on three simple artificial tasks and 
five real-world medical data sets. 
3. Methods 
3.1. Entropy measures 
Entropy can be regarded as a “measure of the degree of fuzzi- 
ness” ( De Luca & Termini, 1972 ). Additionally, De Luca and Ter- 
mini (1972) describe it as the average information contained in 
data that is available for making a decision, e.g. to classify objects. 
An entropy measure for input ∈ [0,1] has to satisfy at least the fol- 
lowing properties ( De Luca & Termini, 1972 ): 
(1) Entropy = 0 if the input value is 0 or 1 
(2) The maximum entropy value is obtained for an input of 0.5 
(3) The entropy of input f has to be greater or equal to the entropy 
of f ∗where f ∗is any “sharpened” version of f , which is any fuzzy 
set such that f ∗( x ) ≥ f ( x ) if f ( x ) ≥ 0.5 and f ∗( x ) ≤ f ( x ) if f ( x ) ≤
0.5 
In this paper, the entropy measures developed by De Luca and 
Termini (1972) and Parkash, Sharma, and Mahajan (2008) are ap- 
plied to feature selection. The entropy introduced by De Luca and 
Termini (1972) can be described as follows: 
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H ( A ) = −
n ∑ 
i =1 
[ μA ( x i ) log μA ( x i ) + ( 1 − μA ( x i ) ) log ( 1 − μA ( x i ) ) ] 
(1) 
where μA ( x i ) ∈ [0, 1] is the membership degree of x i to the fuzzy 
set A. 
The entropy measures developed by Parkash et al. (2008) are 
related to the concept of weighted entropy ( Belis & Guiasu, 1968 ) 
and are defined in the following way: 
H 1 ( A ) = 
n ∑ 
i =1 
w i 
[ 
sin 
πμA ( x i ) 
2 
+ sin π( 1 − μA ( x i ) ) 
2 
− 1 
] 
(2) 
H 2 ( A ) = 
n ∑ 
i =1 
w i 
[ 
cos 
πμA ( x i ) 
2 
+ cos π( 1 − μA ( x i ) ) 
2 
− 1 
] 
(3) 
The entropy measures are applied to classification tasks since 
small entropy values signal regularities and structure in the data, 
whereas high entropy values indicate randomness ( Yao, Wong, & 
Butz, 1999 ). Thus, entropy can show whether the data is informa- 
tive or whether it is characterized by uncertainty ( Luukka, 2007 ). 
More specifically, fuzzy entropy measures can be used to deter- 
mine the relevance of features in a data set ( Luukka, 2011 ). Since 
both entropy measures of Parkash et al. (2008) lead to the same 
entropy values, only the first entropy measure will in the follow- 
ing be deployed. 
3.2. Feature selection algorithm using a similarity classifier and 
entropy measures 
Feature selection using a combination of a similarity classi- 
fier and entropy measures was introduced by Luukka (2011) . This 
wrapper feature selection algorithm uses fuzzy entropy measures 
to determine the importance of features. Similarity values are de- 
ployed as input to the entropy measure. As mentioned in the pre- 
vious section, similarity S ∈ [0, 1], where 0 indicates that an ob- 
servation is completely dissimilar from the ideal vector and 1 indi- 
cates the highest possible degree of similarity. The corresponding 
entropy values for similarities 0 or 1 are low and represent high in- 
formativeness. On the other hand, a similarity that is close to 0.5 is 
characterized by the highest entropy value and signals uncertainty. 
Luukka (2011) utilized this idea to calculate entropy values for 
the similarities of features with the ideal vector of each class. The 
entropy values are summed over all observations and classes to 
obtain a single entropy value for each feature d . Given that high 
entropy values represent uncertainty, during each step of feature 
selection, the feature with the largest entropy value is removed. 
The underlying assumption is that the feature removed does not 
contribute to the difference between the classes ( Luukka, 2011 ). 
The accuracy of the classification with the similarity classifier is 
examined after each feature removal, and the procedure is stopped 
when performance degrades. Essentially, this procedure operates as 
a wrapper function with stepwise backward elimination. The pro- 
cedure for the removal of a feature is illustrated in Fig. 1 for a 
three-class case with two features. 
The corresponding pseudocode for the feature removal proce- 
dure can be found in Luukka (2011) . The process as depicted by 
Luukka (2011) can be separated in four distinct steps. 
The first step is the division of the data into training and test 
data, and calculation of the ideal vector for the training data. The 
ideal vectors can, for instance, be calculated by using generalized 
means over the samples for particular classes. With these ideal 
vectors, the performance of the similarity classifier on the test set 
is computed (before the removal step). 
The second step is to determine the similarity S of feature d of 
an observation x j of the training set with that of the ideal vector 
of class i , which can be stated as: 
S 
(
x j,d , v i,d 
)
= p 
√ (
1 −
∣∣x p 
j,d 
− v p 
i,d 
∣∣) (4) 
where the parameter p during the feature selection is set to 1. This 
formula is used for each sample x j of the training data X for each 
feature d and class i . The result is a n ∗( DN) matrix, where n is the 
number of samples, D the number of features and N the number 
of classes as illustrated in Fig. 1 . 
The third step is concerned with the calculation of the entropy 
value for each feature. The equation to determine the entropy H 
for a feature d can subsequently be defined as: 
H d = 
N ∑ 
i =1 
n ∑ 
j=1 
H 
(
S 
(
x j,d , v i,d 
))
(5) 
where the similarity for feature d of an observation x j with the 
ideal vector of class i is summed over all observations ( j = 1,…, n ) 
and classes ( i = 1,…, N ). 
The fourth step is the feature removal. The feature with the 
highest entropy value is removed from the data set. Subsequently, 
the performance of the similarity classifier with the test data set 
before and after the removal of this feature is compared. The clas- 
sifiers performance on the test set before removal was already ob- 
tained in the first step and solely the classfication accuracy on the 
test set without the removed feature has to be computed. Note, 
that the ideal vectors for the classes do not change, only the ele- 
ment the element in the ideal vector related to the removed fea- 
ture is excluded. If the performance of the classifier is improved 
or the stopping criterion is not met, the subsequent steps are re- 
peated. After the stopping criterion is met, the feature subset that 
led to the highest test performance will be selected. 
Luukka (2011) applied this feature selection method to four 
different medical datasets from the UCI Repository of Machine 
Learning Database and compared its performance with the per- 
formance of the similarity classifier without feature removal. 
The entropy measures by De Luca and Termini (1972) and 
Parkash et al. (2008) were chosen as entropy measures. Removal 
of features using this feature selection algorithm led to inproved 
classifier performance for some data sets, and resulted in a compa- 
rable classification result, while using fewer features, for the other 
data sets ( Luukka, 2011 ). 
3.3. Fuzzy similarity and entropy measure (FSAE) feature selection 
In this work, an adaptation to the wrapper feature selection al- 
gorithm of Luukka (2011) is proposed that is referred to as ‘fuzzy 
similarity and entropy’ (FSAE) feature selection. In particular, two 
changes to the original method are presented: First, a scaling fac- 
tor for the distance between ideal vectors of classes, and, second, 
the conceptualization of this adapted method as a feature ranking 
filter method. 
The first proposed adaptation is the scaling factor that empha- 
sizes the distance between the ideal vectors of the classes by scal- 
ing the entropy measure for each class and feature. It is suggested 
that a measure of distance for each feature and class should be 
used that in its logic is related to similarity. The form of the scal- 
ing factor SF can be presented in generalized form as: 
S F i,d = 1 −
(∑ 
i �= j 
∣∣v i,d − v j,d ∣∣l ) 1 l 
N − 1 (6) 
The numerator determines the sum of the absolute distances of 
the ideal vector value for feature d for class i to all other classes 
(in the most simple case with l = 1). In simple terms, the nomina- 
tor measures how far the mean value of the feature of a class is 
from the means of all the other classes. To obtain a value within 
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Fig. 1. Feature selection with a similarity classifier and entropy measures. 
[0,1], the numerator is divided by N-1 , where N is the number of 
classes. The denominator is N-1 since a class is compared to all 
other classes ( N-1 classes). The distance between two means can- 
not exceed 1 since the ideal vectors can only take values ∈ [0,1]. 
Therefore, the quotient is also within [0, 1]. Since a large distance 
to other ideal vectors is desirable, multiplying the entropy with 
this quotient will have the opposite of the desired effect. It would 
lead to higher scaled entropy values for ideal vectors that are far 
from and, therefore, distinct from other ideal vectors. Thus, the 
quotient is subtracted from 1, leading to a scale factor within [0,1] 
but also with the desirable property that distinct ideal vectors for 
a feature decrease the entropy value for that feature, while entropy 
values of features where the ideal vectors are close remain at their 
initial level or are only slightly decreased. In simple terms: if the 
feature in a class takes on average largely different values than in 
other classes, then this leads to smaller entropy values. The scaled 
entropy SE for a feature d for all classes is: 
S E d = 
N ∑ 
i =1 
(
H i,d ∗ S F i,d 
)
(7) 
The second change from the initial approach of Luukka (2011) is 
the introduction of this adapted feature selection method as a fil- 
ter, in particular, a feature ranking method. The use of the scaled 
entropy values for the feature ranking is straight forward. Small 
scaled entropy values characterize good features that are informa- 
tive from information theory point of view and that have ideal vec- 
tors that are on average far from another. In contrast to that, large 
scaled entropy values are found for features that have low informa- 
tiveness in terms of entropy, and ideal vectors that are on average 
close to each other. Therefore, a ranking could be implemented di- 
rectly by sorting the features by their scaled entropy in ascending 
order, starting from the most important feature with the smallest 
scaled entropy down to the least relevant feature with the highest 
scaled entropy. A disadvantage of this approach is that the magni- 
tude of the scaled entropy values per feature can be very high and 
also difficult to interpret relative to each other in a precise manner. 
For that reason, scaling the scaled entropy values into the compact 
interval [0,1] fixes the range of the variable importance values for 
the variable ranking. In order to obtain an intuitive result, the au- 
thors suggest to subtract the standardized scaled entropy values 
[0,1] from 1. With this scaling, the most relevant feature is set to 
1 and the least relevant to 0. Every other feature possesses a value 
between 0 and 1, which can be regarded as a ratio of how relevant 
the feature is in comparison to the most important feature. In the 
authors view, this makes this additional scaling more useful for the 
interpretation of the results than a simple ranking based on the SE 
values directly. 
Obviously, the logic underlying this feature ranking method can 
also be used in a wrapper function. The implementation of the 
adapted method as a wrapper is presented since the initial ap- 
proach was conceptualized as a wrapper function and a compar- 
ison is simpler this way. Moreover, it presents a clear framework 
for those that attempt to improve their classification performance 
since, as mentioned above, wrapper functions, due to their iterative 
process, often result in a better performance than the filter coun- 
terpart. Also, the question of how many of the features to main- 
tain is directly answered in the wrapper function itself. The overall 
wrapper feature selection procedure is illustrated in Fig. 2 for a 
three-class case with two features. 
The step by step process for the FSAE wrapper is as follows: 
The first step is the division of the data into training and test 
data, the calculation of the ideal vectors for each class and the test 
set performance before removal. This is equal to the first step of 
the original method of Luukka (2011) . 
The second step of the new feature selection algorithm is ex- 
actly the same as in the original one of Luukka (2011) . At the end 
of this step, the similarity of every sample for each feature of all 
ideal vectors for the classes was determined. 
The third step consists of the calculation of the scaling factor 
for each feature and class, denoted by SF i,d , as defined in Eq. (6) , 
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Fig. 2. Adapted feature selection with a similarity classifier and entropy measures. 
and the computation of entropy for each feature and class as: 
H i,d = 
n ∑ 
j=1 
H 
(
S 
(
x j,d , v i,d 
))
(8) 
The difference of Eq. (8) to Eq. (5) is that there is no summation 
over the classes. 
The fourth step is characterized by the calculation of the scaled 
entropy. The class- and feature-specific entropy and scaling factors 
are multiplied with each other and summed over the classes as 
stated in Eq. (7) . The result is a scaled entropy value for each of 
the D features. 
The fifth step is equivalent to the fourth step of the original 
algorithm of Luukka (2011) . The feature with the highest (scaled) 
entropy is removed, the test set performance calculated and com- 
pared to the one without the removal in this iteration of the al- 
gorithm. All steps are repeated until a stopping criterion such as a 
performance degradation is met. 
3.4. Measure for detecting variation of class means 
The objective of the new algorithm for feature selection is to 
overcome the deficiency of the original method to incorporate the 
difference of class means into the classification. In order to high- 
light features with class means that have large (Euclidean) distance 
between them, a suitable measure for the variation of class means 
is required. The idea behind such a measure is that class means 
for features that are far from each other on average also deviate 
from the overall feature mean. Therefore, a simple measure based 
on the well-known formula for the standard deviation of a popu- 
lation can be used. The difference in the calculation is that not the 
deviation of a feature value from its mean is calculated but the de- 
viation from the class mean of a feature from the overall mean of a 
feature. In simple terms, it measures the standard deviation of the 
average value that a feature takes for the classes from the overall 
average of the feature. 
M d = 
( ∑ N 
i =1 
(
x¯ i,d − x¯ d 
)2 
N 
) 1 
2 
(9) 
Where d is a feature, x¯ i,d is the mean of feature d for class i, and 
x¯ d is the mean of feature d . This measure M d is specific to feature 
d and takes large values, when the class means for the feature de- 
viate much from the feature mean. Vice versa, low values for M d 
point out that the class means do not deviate much from the fea- 
ture mean, which means that the class means are on average close 
to one another. 
In order to obtain an indication whether for all features on av- 
erage the class means vary strongly, the mean of the standard de- 
viations can be calculated. The overall formula for this measure, 
which results in a single number for a dataset, is presented in 
Eq. (10) : 
M = 
D ∑ 
d=1 
(∑ N 
i =1 ( ¯x i,d −x¯ d ) 
2 
N 
) 1 
2 
D 
(10) 
This is essentially the mean of M d . The idea is that a high value 
for this measure M indicates that the class means of features in the 
dataset are on average far from each other, whereas a small value 
signals that they are close. 
Assuming a simplified case where two features have the same 
or comparable variation of the samples in each class. The feature 
with the larger standard deviation between the class means as 
measured by M d will likely be more discriminative and result on 
its own in a superior classification accuracy than the other feature 
alone. When this less discriminative feature, which possesses a low 
value of M d is removed from the data set, the average standard de- 
viation of class means for all features, as measured by M , should 
decrease. This case can be generalized to several features. If one or 
several features have low values for M d and the variation of sam- 
ples in the classes do not differ strongly from other features, fea- 
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Table 1 
Features of the dermatology data set ( Ilter & Guvenir, 1998 ). 
Clinical Attributes (values: 0, 1, 2, 3, 
unless otherwise indicated) 
Hispathological Attributes (take values 0, 1, 2, 3) Class Instances 
1. Erythema 12. Melanin incontinence Psoriasis 112 
2. Scaling 13. Eosinophils in the infiltrate Seboreic dermatitis 61 
3. Definite borders 14. PNL infiltrate Lichen planus 72 
4. Itching 15. Fibrosis of the papillary dermis Pityriasis rosea 49 
5. Koebner phenomenon 16. Exocytosis Chronic dermatitis 52 
6. Polygonal papules 17. Acanthosis Pityriasis rubra pilaris 20 
7. Follicular papules 18. Hyperkeratosis 
8. Oral mucosal involvement 19. Parakeratosis 
9. Knee and elbow involvement 20. Clubbing of the rete ridges 
10. Scalp involvement 21. Elongation of the rete ridges 
11. Family history (0 or 1) 22. Thinning of the suprapapillary epidermis 
34: Age (linear) 23. Spongiform pustule 
24. Munro microabscess 
25. Focal hypergranulosis 
26. Disappearance of the granular layer 
27. Vacuolation and damage of basal layer 
28. Spongiosis 
29. Saw-tooth appearance of retes 
30. Follicular horn plug 
31. Perifollicular parakeratosis 
32. Inflammatory mononuclear infiltrate 
33. Band-like infiltrate 
ture selection should discard these features, which would improve 
the classification accuracy. At the same time, this would increase 
the average standard deviation of class means of a feature to the 
feature mean, as expressed by measure M . Therefore, effective fea- 
ture selection will likely remove a feature d or multiple features 
with a low value of the feature-specific M d and by doing this, ele- 
vate M . 
It has to be remarked, that the removal of features depends also 
to a large extent on variation of data as measured by e.g. standard 
deviation or with support of an entropy measure. Thus, it is not 
necessarily true that the features with low M d will be removed and 
M improved. 
3.5. Data 
The data sets that are utilized in this paper are taken from 
the UCI Repository of Machine Learning Database ( Lichman, 2013 ). 
Classification is performed for five medical datasets: the derma- 
tology data set ( Ilter & Guvenir, 1998 ), the chronic kidney disease 
data set ( Soundarapandian & Rubini, 2015 ), the breast cancer Wis- 
consin (original) data set (Wolberg, 1992), the diabetic retinopathy 
Debrecen data set ( Antal & Hajdu, 2014 ) and the horse colic data 
set ( McLeish & Cecile, 1989 ). 
3.5.1. Dermatology data set 
The dermatology data set ( Ilter & Guvenir, 1998 ) was donated in 
1998 and relates to differential diagnosis of erythemato-squamous 
diseases, which is considered a complicated problem in dermatol- 
ogy. The diseases in this group are: (1) psoriasis, (2) seboreic der- 
matitis, (3) lichen planus, (4) pityriasis rosea, (5) cronic dermatitis, 
and (6) pityriasis rubra pilaris. The data set contains 34 explana- 
tory variables, of which 12 are clinical features acquired on the 
basis of a clinical evaluation and 22 are histopathological features 
obtained from skin samples. The data set contains six class labels. 
The features and classes are given in Table 1 . The features in the 
table are referred to as ‘Attributes’ since this term is used in the 
original description of this data set. The dataset initially contained 
366 observations. Observations for which any of the feature values 
were missing were removed manually, which narrowed down the 
number of complete observations for the classification task to 358. 
Table 2 
Features and class of the chronic kidney disease data set ( Soundarapandian 
& Rubini, 2015 ). 
Attribute and Class Scale 
1. Age (numerical) age in years 
2. Blood pressure (numerical) in mm/Hg 
3. Specific gravity (nominal) (1.005,1.010,1.015,1.020,1.025) 
4. Albumin (nominal) (0,1,2,3,4,5) 
5. Sugar(nominal) (0,1,2,3,4,5) 
6. Red blood cells (nominal) (normal, abnormal) 
7. Pus cell (nominal) (normal, abnormal) 
8. pus cell clumps (nominal) (present, notpresent) 
9. Bacteria (nominal) (present, notpresent) 
10. Blood glucose random (numerical) in mgs/dl 
11. Blood urea (numerical) in mgs/dl 
12. Serum creatinine (numerical) in mgs/dl 
13. Sodium (numerical) in mEq/L 
14. potassium (numerical) in mEq/L 
15. Hemoglobin (numerical) in gms 
16. Packed cell volume (numerical) –
17. White blood cell count (numerical) in cells/cumm 
18. Red blood cell count (numerical) in millions/cmm 
19. Hypertension (nominal) (yes, no) 
20. Diabetes mellitus (nominal) (yes, no) 
21. Coronary artery disease (nominal) (yes, no) 
22. Appetite (nominal) (good, poor) 
23. Pedal edema (nominal) (yes, no) 
24. Anemia (nominal) (yes, no) 
25. Class (nominal) (ckd, no ckd) 
3.5.2. Chronic kidney disease data set 
The chronic kidney data set ( Soundarapandian & Rubini, 2015 ) 
was donated in 2015. According to UCI Machine Learning Repos- 
itory, at the time of conducting this research, no papers directly 
relevant to the subject of our study have been published that use 
this data set. The dataset contains 24 variables, of which 11 are nu- 
meric and 13 are nominal. The classification task for this dataset is 
binary, with the distinction being between patients with and with- 
out chronic kidney disease. The features and the scale of the data 
are presented in Table 2 . The features in the table are also referred 
to as ‘Attributes’ since this term is used in the original descrip- 
tion of this data set. The dataset initially contained 400 observa- 
tions. Observations for which any of the feature values were miss- 
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Table 3 
Features and class of the breast cancer Wisconsin (Original) 
data set (Wolberg, 1992). 
Features Class 
1. Sample code number / ID number 2 - benign 
2. Clump thickness (from 1 to 10) 4 - malignant 
3. Uniformity of cell size (from 1 to 10) 
4. Uniformity of cell shape (from 1 to 10) 
5. Marginal adhesion (from 1 to 10) 
6. Single epithelial cell size (from 1 to 10) 
7. Bare nuclei (from 1 to 10) 
8. Bland chromatin (from 1 to 10) 
9. Normal nucleoli (from 1 to 10) 
10. Mitoses (from 1 to 10) 
Table 4 
Features and class of the Diabetic retinopathy Debrecen data set. 
Features Class 
1. Quality assessment (0 = bad quality, 1 = sufficient 
quality) 
0 = No sign of DR 
2. Pre-screening result (0 = no abnormality, 1 = severe 
retinal abnormality) 
1 = Signs of DR 
3.–8. MA detection result (confidence level 0.5 to 1) 
(numeric) 
9.–16. MA detection result for exudates (confidence 
level 0.5 to 1) (numeric) 
17. Euclidean distance center of macula to center of 
optic disc 
18. Diameter of optic disc 
19. AM/FM-based classification {0,1} 
ing were removed manually, which reduced the number of com- 
plete observations for the classification task to only 156. 
3.5.3. Breast cancer Wisconsin (Original) data set 
The breast cancer Wisconsin (Original) data set (Wolberg, 1992) 
was donated in 1992. It consists of samples on breast cancer pa- 
tients that were reported periodically. The data set contains 10 
variables and a binary class label indicating whether a breast can- 
cer is benign or malignant. The first feature is the ID number while 
the remaining features represent medical information related to 
the patient and the cancer. All features and the class labels are 
enumerated in Table 3 . The dataset initially contained 699 observa- 
tions. Observations for which any of the feature values were miss- 
ing (indicated by a ‘?’) were removed manually, so that the number 
of complete observations for the classification task was reduced to 
683. The first feature, the ID number, was removed from the data 
set for the classification since it is not directly related to the cancer 
and has no meaning for the classification task. 
3.5.4. Diabetic retinopathy Debrecen data set 
The diabetic retinopathy Debrecen data set ( Antal & Ha- 
jdu, 2014 ) encompasses features that were extracted from the Mes- 
sidor image set for the prediction of diabetic retinopathy from im- 
ages. Each of the 19 features relates to a detected lesion, a feature 
depicting the anatomy or is a descriptor of the image level ( Antal 
& Hajdu, 2014 ). The class label is binary for samples that contain 
signs of diabetic retinopathy and those that do not contain such 
signs. All features and the class labels are enumerated in Table 4 . 
The data set contains 1151 observations without any missing val- 
ues. Moreover, with 611 instances of signs for diabetic retinopathy 
and 540 without such signs, the classes are quite well balanced. 
3.5.5. Horse colic data set 
The horse colic data set contains medical features of horses 
including those that suffered from certain types of lesions 
( McLeish & Cecile, 1989 ). The data contained initially 27 features 
and a binary class label indicating whether a lesion was surgical 
Table 5 
Features and class of the Horse colic data set. 
Features Class 
1. Surgery (1 = yes, 2 = no) 1 = Surgical lesion 
2. Age (1 = Adult, 2 = Young ( < 6 months)) 2 = Not surgical lesion 
3. Hospital ID (numeric) 
4. Rectal temperature (numeric) 
5. Pulse (numeric) 
6. Respiratory rate (numeric) 
7. Temperature of extremities (categorical from 
1 to 4) 
8. Peripheral pulse (categorical from 1 to 4) 
9. Mucous membranes (categorical from 1 to 6) 
10. Capillary refill time (1 = ’ < 3 seconds’, 
2 = ’ ≥3 seconds’ 
11. Pain level (categorical from 1 to 5) 
12. Peristalsis (categorical from 1 to 4) 
13. Abdominal distension (categorical from 1 to 
4) 
14. Nasogastric tube (1 = none, 2 = slight, 
3 = significant) 
15. Nasogastric reflux (1 = none, 2 = ’ > 1 liter’, 
3 = ’ < 1 liter’) 
16. Nasogastric reflux pH (numeric) 
17. Rectal examination (categorical from 1 to 4) 
18. Abdomen (categorical from 1 to 5) 
19. Packed cell volume (numeric) 
20. Total protein (numeric) 
21. Abdominocentesis appearance (1 = clear, 
2 = cloudy, 3 = serosanguinous) 
22. Abdomcentesis total protein (numeric) 
23. Outcome (1 = lived, 2 = died, 3 = was 
euthanized) 
24. Type of Lesion (First Lesion) 
25. Type of Lesion (Second Lesion) 
26. Type of Lesion (Third Lesion) 
27. CP Data (1 = Yes, 2 = No) 
(retrospectively). All features and the class labels are depicted in 
Table 5 . 
The data set (including the ‘horse-colic.test’ data set) contains 
27 features of 368 observations. The ‘Hospital ID’ (3) and the ‘CP 
data’ (27) were removed since they are not relevant. The features 
‘Nasogastric reflux PH’ (12) , ‘Abdominocentesis appearance’ (21) 
and ‘Abdomcentesis total protein’ (22) were removed since the ma- 
jority of their values was missing. Besides that, horses can have 0 
to 3 lesions (as indicated by feature 25 to 27, showing whether a 
lesion is present). The details of the lesion are presented in form of 
a digit code indicating its site, type, subtype, and specific code. If 
a horse had more than 1 lesion (feature 26 and/or 27 were not ze- 
ros), the sample was duplicated so that each sample only encom- 
passes one lesion. One sample has the first lesion and the second 
sample the second lesion, and so on. Furthermore, the digit code of 
the lesion was split into four categorical features indicating the site 
(12 categories), the type (4 categories), the subtype (3 categories) 
and a specification (11 categories). We interpolated missing values 
by using basic mean /mode interpolation. As a consequence, the 
final data set contains 23 features and 379 complete observations. 
3.6. Feature selection and training procedure 
The training and testing during both, the filter and wrapper 
feature selection is conducted with the holdout method. The first 
calculations are conducted to compare the wrapper method of 
Luukka (2011) with the wrapper version of the proposed adapted 
algorithm termed FSAE. The complete training and testing proce- 
dure for the FSAE wrapper is illustrated in Fig. 3 . The main idea for 
the wrapper feature selection is to iteratively remove the feature 
with the highest entropy value. The procedure is stopped when 
the test set performance deteriorated by more than 3% compared 
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Fig. 3. Training procedure for FSAE Wrapper. 
to the previous step. Afterwards, the decision, which features re- 
main, is conducted based on the highest test set performance after 
all removal steps that occurred before the procedure was stopped 
and the features removed to reach this performance are noted. 
For the supervised filter methods, the FSAE filter is compared to 
the well-known ReliefF algorithm, the Laplacian Score, the Fisher 
Score and the feature selection by Luukka (2011) implemented 
with its logic as a feature ranking method. The ReliefF algo- 
rithm is an extension of the Relief algorithm of Kira and Ren- 
dell (1992a) that is filter feature selection method suitable for 
multi-class problems that can even handle noise and incomplete 
data ( Kononenko, Simec, & Robnik-Sikonja, 1997 ). This algorithm 
adjusts iteratively its weights, which are initially set to zero, to de- 
termine how relevant a feature is ( Kononenko et al., 1997; Souza, 
Matwin, & Japkowicz, 2006 ). The relevance of a feature is deter- 
mined by the k Near-hit and Near-miss instances, so the clos- 
est observations (based on Euclidean distance) from the same and 
other classes ( Kira & Rendell, 1992b; Kononenko et al., 1997 ). The 
contribution of each k instances is averaged and the averaged 
weights for each feature ∈ [ −1, 1] indicate the relevance of the 
features ( Kononenko et al., 1997 ). A value that is larger than zero 
is expected for relevant features and irrelevant features should 
end up with negative values or values close to zero ( Kira & Ren- 
dell, 1992b ). Now, either a user-specified number of features with 
the largest weights or all those features larger than a threshold τ
can be chosen ( Kira & Rendell, 1992b; Souza et al., 2006 ). 
The Laplacian score introduced by He et al. (2005) is a 
similarity-based unsupervised feature selection method that can 
also be used as a supervised method when the class labels are 
available. In the unsupervised version, only the k-nearest neigh- 
bours - independent of the class label - are considered whereas in 
the supervised version only the observations with the same class 
label are considered for the calculation for the weight matrix S 
(also called affinity matrix) (He et al., 2005; Li et al., 2017). The 
value for an element S f,j in the weight matrix S for two observa- 
tions x f and x j is: 
S f, j = e 
‖ x f −x j ‖ 2 
t (11) 
if f and j belong to the same class, and where t is a ‘suitable’ 
constant. For all combinations of elements in the weight matrix 
S that do not belong to the same class, the value for S f,j is set to 
zero. Subsequently, a diagonal matrix D is calculated where an el- 
ement D(f,f) is defined as 
∑ n 
j=1 S f, j and the so-called ‘graph Lapla- 
cian’ is calculated as L = D – S (Li et al., 2017). In order to calculate 
the Laplacian score, ˜ xd is determined as (He et al., 2005; Li et al., 
2017): 
˜ xd = x d −
x t 
d 
D 1 
1 t D 1 
1 (12) 
Where x d is the column vector of feature d (in the reference liter- 
ature denoted by f r for the r-th feature), 1 is a column vector of 
ones, and t denotes the transpose (He et al., 2005). The Laplacian 
score for a feature d can then be determined as: 
Laplacian Scor e d = 
˜ xt 
d 
L ˜  xd 
˜ xt 
d 
D ˜  xd 
(13) 
Based on this weight matrix, the Laplacian matrix can be com- 
puted and the k features with the smallest Laplacian scores shall 
be retained (Li et al., 2017). For further details on the method, 
please see He at al. (2005). 
The Fisher Score is a similarity-based supervised feature selec- 
tion method (Duda et al., 2012). It uses the squared distances be- 
tween the mean of a feature and the mean of the feature in a class, 
the standard deviations for the feature in the class and the number 
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Table 6 
Artificial example tasks. 
Features Task 1 Task 2 Task 3 
Feature 1 All classes mean 50 with normal noise (0, 
0.01) 
All classes mean 50 with normal noise (0, 
0.01) 
Mean 80, 100, 120 with normal noise (0, 10) –
Overlapping 
Feature 2 Mean 10, 50, 100 with normal noise (0, 0.01) Mean 10, 50, 100 with normal noise (0, 1) Mean 10, 20, 30 with normal noise (0, 1) –
Non-Overlapping 
of observations in a class as a weight to determine the importance 
of a feature. The Fisher score for a feature d can be defined as: 
F isher Scor e d = 
N ∑ 
i =1 
n i 
(
x¯ i,d − x¯ d 
)2 
N ∑ 
i =1 
n i σi,d 
(14) 
Where d is a feature, x¯ i,d is the mean of feature d for class i , x¯ d 
is the mean of feature d, σ i,d is the standard deviation of feature 
d in class i, N is the number of classes and n i is the number of 
observations in class i . For the Fisher score, the k variables with 
the largest value of the Fisher score are chosen as feature subset 
(Li et al., 2017). 
The choice of the number of features to retain for the feature 
ranking methods is based on the threshold for the ReliefF algo- 
rithm and the result obtained from the FSAE wrapper method pre- 
viously. In general, the number of features to keep can be user- 
specified and the suggested approach is used for simplicity since 
for ReliefF there are suggested procedures for the choice of a 
threshold to determine which features to keep. First, all variables 
with a positive ReliefF weight are chosen for the first feature sub- 
set. Second, the features are selected according to the threshold 
determined by τ = 1 √ 
αm 
( Robnik-Šikonja & Kononenko, 2003 ). In 
particular, the threshold is used with α = 1 (not strict) and m equal 
to the training set size of 70% of the sample points. 
The third way is premised on the same number of features 
that lead to the best mean accuracy of the FSAE wrapper, which 
will be calculated at that time. The authors want to stress, that 
these approaches to select the number of features to retain are 
simply suggestions and another number for k could be chosen. 
After the removal of features for each of the wrapper and filter 
techniques, the parameters of the similarity classifier are deter- 
mined with an optimal value search for the remaining features to 
accomplish the highest mean accuracy of the given dataset. It is 
important to note that the performance achieved before the opti- 
mal value search is independent of the tuning of the parameters 
p and m ( Luukka, 2008 ). All calculations were implemented with 
MATLAB TM - software. 
4. Results 
4.1. Weaknesses of the feature selection algorithm 
Three simple classification tasks were constructed to illustrate 
the weakness in the benchmark feature selection technique as re- 
gards accounting for the inter-class distance. Two features were 
generated for each task as illustrated in Table 6 . The corresponding 
visual illustration of the tasks can be regarded in Fig. 4 . 
The feature selection and classification results are presented in 
Table 7 . For the first task, one feature was generated that is ap- 
proximately the same for all classes and contains a small amount 
of noise (or variation), and one feature with means considerably 
different in magnitude and the same small level of noise. Obvi- 
ously, the first feature is not suitable for discrimination between 
classes, whereas the second feature does not overlap, is precise, 
and discriminates well between the classes. 
When applied to the first task, the feature selection algorithm 
presented by Luukka (2011) resulted in removal of the second fea- 
ture, which leads to a significant performance decline. The FSAE 
algorithm and the other feature ranking methods chose the first, 
clearly less discriminant feature as the feature to be removed. 
When applied to the second task, where the first feature is con- 
structed as in the first task and the second feature is degraded 
by more noise (or simply possesses more variation), the choice of 
the feature to be removed remained the same for all algorithms 
compared to the first task. The result acknowledges that the sec- 
ond feature is still highly discriminatory since feature values of the 
classes do not overlap. 
The third task had one feature with large absolute mean dif- 
ferences and large absolute normal noise and one feature with 
smaller absolute mean difference and less absolute noise. However, 
it should be remarked, that for the first feature the difference be- 
tween class means is only two standard deviations, so the classes 
overlap to a certain extent. On the other hand, for the second fea- 
ture the mean values are at least 10 standard deviations from one 
another so that the features do not overlap for the classes. This 
makes this second feature more discriminative than the first fea- 
ture, where the feature values between classes overlap. Therefore, 
removal of the second feature will still lead to a classification rate 
of 100%, whereas false removal of the first feature, as found when 
using the original feature selection technique, will reduce the ac- 
curacy to less than 80%. 
The results indicate that the FSAE feature selection algorithms, 
but also the other tested feature ranking methods, more suc- 
cessfully distinguish between highly discriminant and less/non- 
discriminant features than the approach by Luukka (2011) . Despite 
the inability of the benchmark feature selection algorithm to over- 
come the scaling issue and account for the effect of the inter-class 
distance, the algorithm resulted in high classification accuracies in 
other applications (see Luukka, 2011 ). 
As part of this study, we additionally investigated the effect of 
different l values up to 10 and found that the removal decision is 
not altered but the difference between the original algorithm and 
the proposed scaled version decreases gradually with increase in 
l . Therefore, only parameter values of l = 1 and l = 2 are applied in 
subsequent calculations. 
4.2. Dermatology data sets 
For the application on the real-world data sets, we ini- 
tially compare the original wrapper feature selection method of 
Luukka (2011) with our adapted approach, the FSAE, in its wrapper 
version. Feature selection and classification results for the derma- 
tology data set are presented in Table 8 . Results for the classifica- 
tion appear very good for almost all classifiers and feature selec- 
tion techniques, ranging from mean accuracy of 96.72% to 98.36%. 
The most accurate result of 98.36% was obtained with the FSAE 
wrapper method with l = 1, DeLuca & Termini entropy and 29 out 
of 34 features. The second highest performance was found with the 
benchmark feature selection method by Luukka (2011) with the 
entropy measure of Parkash et al. (2008) and 33 features. These 
two results are the only cases that exceed the performance accu- 
racy of the entire set of features of 98.11%. 
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Fig. 4. Artificial example cases. 
Table 7 
Example cases for weakness of original feature selection. 
Task Classifier Perf. Before 
Removal (%) 
Entropy / Score 
Feature 1 
Entropy / Score 
Feature 2 
Removal Perf. After 
Removal (%) 
1 FS (Entropy Parkash et al.) 10 0.0 0 428.1 491.4 Feature 2 33.92 
FSAE (Entropy Parkash et al., l = 1) 10 0.0 0 1024.5 430.3 Feature 1 10 0.0 0 
FSAE (Entropy Parkash et al., l = 2) 10 0.0 0 1022.8 622.1 Feature 1 10 0.0 0 
Laplacian Score 10 0.0 0 0.0351 0.999 Feature 1 10 0.0 0 
ReliefF 10 0.0 0 0.0 0 01 0.666 Feature 1 10 0.0 0 
Fisher Score 10 0.0 0 0 1555.4 Feature 1 10 0.0 0 
2 FS (Entropy Parkash et al.) 10 0.0 0 393.6 562.3 Feature 2 33.48 
FSAE (Entropy Parkash et al., l = 1) 10 0.0 0 904.3 532.4 Feature 1 10 0.0 0 
FSAE (Entropy Parkash et al., l = 2) 10 0.0 0 907 740.8 Feature 1 10 0.0 0 
Laplacian Score 10 0.0 0 0.0351 0.999 Feature 1 10 0.0 0 
ReliefF 10 0.0 0 0.0024 0.601 Feature 1 10 0.0 0 
Fisher Score 10 0.0 0 0 14.0716 Feature 1 10 0.0 0 
3 FS (Entropy Parkash et al.) 10 0.0 0 615.7 686.2 Feature 2 78.90 
FSAE (Entropy Parkash et al., l = 1) 10 0.0 0 1057.2 813 Feature 1 10 0.0 0 
FSAE (Entropy Parkash et al., l = 2) 10 0.0 0 1152.9 1022.6 Feature 1 10 0.0 0 
Laplacian Score 10 0.0 0 0.7409 0.9848 Feature 1 10 0.0 0 
ReliefF 10 0.0 0 0.0738 0.4374 Feature 1 10 0.0 0 
Fisher Score 10 0.0 0 0.2628 2.4402 Feature 1 10 0.0 0 
Table 8 
Performance on dermatology data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
Sim – 34 None 98.11 – 0.0110 0.2 0.1 
Sim + FS 
Luukka (2011) 
De Luca and 
Termini 
31 4, 19, 16 96.72 95.02 0.0195 0.7 0.3 
Sim + FS 
Luukka (2011) 
Parkash et al. 33 16 98.20 97.17 0.0119 0.2 0.1 
Sim + FSAE l = 1 De Luca and 
Termini 
29 32, 18, 19, 1, 17 98.36 95.73 0.0112 0.3 2 
Sim + FSAE l = 1 Parkash et al. 27 19, 32, 18, 2, 3, 17, 
1 
98.01 95.28 0.0118 0.5 3 
Sim + FSAE l = 2 De Luca and 
Termini 
30 19, 3, 4, 17 97.03 96.23 0.0198 0.6 0.3 
Sim + FSAE l = 2 Parkash et al. 30 19, 4, 3, 32 97.36 95.28 0.0215 0.2 0.1 
The impact of the scaling factor for the improvement of the re- 
sult from the original classifier compared to the best performing 
FSAE wrapper method can be regarded in Fig. 5 . The figure shows 
that the features that were removed, as indicated in blue, show 
in general comparably small values for the measure of M d . Since 
their removal resulted in a slight improvement of the classifier, it 
is probable that the variation of the class means contributed to 
this effect on the mean accuracy. The value for M , which is the 
mean over the feature-specific M d , increased from 0.2079 before 
the removal to 0.2266 after the removal, showing that on average 
the difference between class means was elevated. The result of the 
optimal parameter value search for FSAE wrapper with l = 1 and 
DeLuca & Termini entropy is illustrated in Fig. 6 . 
Overall, the adapted FSAE feature selection method (with 
l = 1) is equally accurate to the algorithm presented by 
Luukka (2011) but leads to the removal of more features. In 
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Fig. 5. Feature specific measure M d for the Dermatology data set. 
the next step, the FSAE filter will be deployed and compared 
with ReliefF, the Laplacian Score, Fisher Score and the method of 
Luukka (2011) implemented as a feature ranking filter method. 
First, the ReliefF algorithm will be used with all features that 
have positive weights as well as with a threshold based on the 
formula presented above. With the same number of features, 
12 and 3 respectively, all feature ranking methods are used. The 
classification accuracy was determined with a similarity classifier, 
as used by Luukka (2011) . The results are presented in Table 9 . 
The ReliefF algorithm shows with 12 and 3 features the best 
performance among all filter methods for this data set. Other filter 
methods only show performances between 85.17% and 83.45% for 
12 features and 66.38% and 50.91% for 3 features respectively. It 
is noticable, that for 12 features, the performances of the Lapla- 
cian Score, the Fisher Score, the approach by Luukka (2011) as a 
filter and the FSAE filter are very close in their mean accuracies. 
Especially the fact that the approach by Luukka (2011) performes 
well given its obvious deficiencies that were highlighted above, is 
remarkable. For only 3 features, the Laplacian Score and the Fisher 
Score end up with mean accuracies of 55.64% and 50.91%, which 
are well below the performance of the FSAE filter as well as the 
filter version of the feature selection by Luukka (2011) of 66.38% 
and 66.34%. 
In order to gain a better understanding of the dependence of 
the mean accuracies on the number of features removed by each 
algorithm, the performance was recorded for all possible numbers 
of features to keep based on the variable importance values de- 
termined on the entire data set. The mean performances for the 
filter methods and standard parameters p = 1 and m = 1 are dis- 
played in Fig. 7 . It is apparent, that on this data set the ReliefF 
algorithm performs best for most numbers of features. Only ini- 
tially and for the choice of only a single feature, the performance 
of ReliefF is lower than that of at least one other filter method. The 
performance of FSAE, the method by Luukka (2011) , the Laplacian 
score and the Fisher score appears initially very similar, with the 
Fisher score being for the removal the best approach from these 4 
methods. While Luukka (2011) and FSAE drop in performance few 
features earlier, their drop is not as severe as the one by the Lapla- 
cian score and Fisher score. In other words, for the initial removals, 
Fisher and Laplacian Score perform comparable to FSAE and the 
filter version of Luukka (2011) . In the medium range of removed 
variables, Fisher score and Laplacian score seem to result in bet- 
ter accuracies than FSAE and the approach by Luukka (2011) but 
for the choice of only few variables, FSAE and Luukka (2011) are 
more capable to retain suitable features, with accuracies of above 
50% for 11 to 2 features, while the other two approaches in that in- 
terval drop well below 40%. The performance for a single feature, 
Fig. 6. Accuracies and variance w.r.t. to parameter p and m (dermatology data set). 
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 227 
Table 9 
Performance with filter feature selection on dermatology data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
ReliefF t = 0, k = 10 12 10, 3, 18, 23, 11, 24, 
25, 8, 27, 12, 26, 6, 
1, 29, 17, 32, 34, 9, 
2, 19, 20, 4 
95.52 93.91 0.0284 0.2 0.1 
ReliefF t = 0.0632, 
k = 10 
3 10, 3, 18, 23, 11, 24, 
25, 8, 27, 12, 26, 6, 
1, 29, 17, 32, 34, 9, 
2, 19, 20, 4, 30, 33, 
21, 16, 31, 7, 13, 28, 
5 
74.40 66.50 0.0343 0.1 0.1 
Laplacian Score – 12 30, 9, 10, 28, 16, 
24, 7, 26, 4, 11, 14, 
5, 3, 23, 19, 2, 18, 
13, 17, 1, 32, 34 
85.15 81.29 0.0107 0.5 0.2 
Laplacian Score – 3 6, 12, 29, 20, 25, 
22, 15, 8, 21, 30, 9, 
10 28, 16, 24, 7, 26, 
4, 11, 14, 5, 3, 23, 
19, 2, 18, 13, 17, 1, 
32, 34 
55.64 38.46 0.0077 1 0.1 
Fisher Score – 12 30, 28, 9, 7, 16, 10, 
24, 14, 26, 5, 4, 3, 
23, 11, 19, 2, 34, 1, 
13, 18, 17, 32 
85.17 81.07 0.0098 0.2 0.1 
Fisher Score – 3 12, 33, 25, 31, 20, 8, 
15, 22, 21, 30, 28, 9, 
7, 16, 10, 24, 14, 26, 
5, 4, 3, 23, 11, 19, 2, 
34, 1, 13, 18, 17, 32 
50.91 41.89 0.0 0 0 0 0.8 0.1 
FS Luukka – De Luca and 
Termini 
12 24, 20, 23, 11, 13, 
26, 10, 9, 21, 14, 1, 
5, 17, 32, 34, 2, 18, 
28, 3, 19, 16, 4 
83.49 75.05 0.0247 0.8 0.1 
FS Luukka – Parkash et al. 12 13, 23, 20, 24, 11, 
26, 10, 9, 21, 14, 1, 
17, 5, 32, 34, 2, 18, 
28, 3, 19, 16, 4 
83.77 74.86 0.0258 0.8 0.1 
FS Luukka De Luca & Termini, 
Parkash et al. 
3 6, 27, 30, 29, 12, 7, 
8, 25, 22, 13, 23, 
20, 24, 11, 26, 10, 9, 
21, 14, 1, 17, 5, 32, 
34, 2, 18, 28, 3, 19, 
16, 4 
66.34 50.85 0.0183 1 0.1 
FSAE l = 1 & l = 2 De Luca and 
Termini 
12 22, 20, 11, 24, 23, 
21, 9, 13, 10, 26, 14, 
5, 28, 16, 1, 17, 34, 
4, 2, 3, 32, 19, 18 
83.45 74.88 0.0241 0.8 0.1 
FSAE l = 1 & l = 2 Parkash et al. 12 20, 11, 24, 23, 13, 
21, 9, 10, 26, 14, 5, 
28, 1, 16, 17, 34, 2, 
32, 4, 3, 18, 19 
83.89 75.06 0.0244 0.8 0.1 
FSAE l = 1 & l = 2 De Luca & Termini, 
Parkash et al. 
3 6, 27, 29, 30, 12, 8, 
7, 25, 22, 20, 11, 24, 
23, 21, 9, 13, 10, 26, 
14, 5, 28, 16, 1, 17, 
34, 4, 2, 3, 32, 19, 
18 
66.38 50.94 0.0245 1 0.1 
however, is best for the Fisher score, the second best by FSAE and 
ReliefF, and third by Luukka (2011) and Laplacian Score. 
Comparing the filter results with the wrapper performances, it 
is apparent that the FSAE wrapper performs better than the fil- 
ter methods, even better than the ReliefF algorithm with 12 and 3 
suggested removals respectively. However, FSAE wrapper requires 
more features than ReliefF for the higher mean accuracy. 
4.3. Chronic kidney disease data set 
Feature selection and classification results for the chronic kid- 
ney data set are presented in Table 10 . The highest mean accu- 
racy was obtained with the FSAE feature selection method with 
l = 2 and DeLuca & Termini entropy and only 4 out of 24 fea- 
tures. In most cases, the FSAE methods led to only a small degra- 
dation in classification performance for the removal of 12 to 21 
features. Moreover, the algorithms achieved accuracies between 
99.42–10 0.0 0%. In contrast, feature selection using the benchmark 
feature selection approach by Luukka (2011) achieved accuracies 
between 96.92–10 0.0 0%. Besides that, the highest performance of 
10 0.0 0% accuracy for the benchmark feature selection method of 
Luukka (2011) was achieved with 18 features, while the FSAE (with 
l = 2 and DeLuca & Termini entropy) needed only 4 features and, 
with the same entropy measure, produced an equivalent result. Us- 
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Table 10 
Performance on chronic kidney disease data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
Sim – 24 None 99.90 – 0 0.5 0.1 
Sim + FS 
Luukka (2011) 
De Luca and 
Termini 
18 3, 18, 13, 15, 16, 10 10 0.0 0 97.83 0 0.4 0.1 
Sim + FS 
Luukka (2011) 
Parkash et al. 5 3, 18, 13, 16, 15, 1, 
4, 8, 20, 24, 12, 7, 
11, 6, 21, 2, 10, 22, 
9 
96.92 97.83 0.0355 5 1.4 
Sim + FSAE l = 1 De Luca and 
Termini 
12 1, 2, 13, 16, 15, 10, 
3, 18, 17, 11, 12, 23 
99.84 95.65 0 0.5 0.1 
Sim + FSAE l = 1 Parkash et al. 3 2, 1, 3, 13, 16, 18, 
15, 12, 17, 10, 5, 9, 
11, 24, 8, 23, 21, 22, 
6, 20, 19 
99.42 97.83 0.0123 0.4 0.1 
Sim + FSAE l = 2 De Luca and 
Termini 
4 1, 13, 2, 16, 3, 11, 
18, 15, 17, 10, 12, 6, 
23, 8, 22, 9, 21, 24, 
5, 14 
10 0.0 0 95.72 0 0.9 0.1 
Sim + FSAE l = 2 Parkash et al. 12 13, 2, 1, 16, 3, 18, 
15, 12, 11, 17, 8, 6 
99.98 97.83 0.0 0 04 5.9 0.1 
Fig. 7. Comparison of filter methods (dermatology data set). 
ing exhaustive search to determine if it is possible to reach 10 0.0 0% 
accuracy with any combination of fewer features, showed, that 3 
features can be enough to reach the best mean accuracy in the 
test set. Therefore, the result of the FSAE in the setup mentioned 
above was fairly close to the optimal result of 10 0.0 0% accuracy 
with 3 features. 
The values of the feature specific measure M d for the best per- 
forming FSAE wrapper are illustrated in Fig. 8 . The figure highlights 
that all features despite the four features with the clearly high- 
est M d values were removed. The performance after the removal 
of 20 out of 24 features reached 10 0.0 0%, which is an indication 
that all removed features were irrelevant for the classification task. 
Since all features with small and medium values for M d were re- 
moved, it is unsurprising that the value for M strongly increased 
from 0.2024 to 0.3965, highlighting a larger average difference of 
class means. The fact that comparably many features of the Kidney 
data set could be removed, indicates that the difference in means 
is highly relevant for the discrimination of the classes for this data 
set. The result of the optimal parameter value search for this al- 
gorithm and DeLuca & Termini entropy is illustrated in Fig. 9 . It is 
Fig. 8. Feature specific measure M d for the Kidney data set. 
noteworthy that a high mean accuracy can be achieved with sev- 
eral variations of the p and m parameters. 
The results for all discussed filter methods on the chronic kid- 
ney disease data are presented in Table 11 . The ReliefF algorithm 
suggests 12 and 17 features respectively, which results in both 
cases in an accuracy of 10 0.0 0%. All other filter methods also re- 
sult in 10 0.0 0% accuracies with 12 features. Since with the FSAE 
wrapper, a mean accuracy of 10 0.0 0% could be achieved with only 
4 features, this number of ranked features is also tested with all 
filter methods. With 4 features, ReliefF, Laplacian score and Fisher 
score result in 10 0.0 0% accuracy and the FSAE filter in 99.50% 
(for both entropies and l = 1 and l = 2). Only the performance of 
Luukka (2011) deteriorates considerably with 4 features compared 
to 12. The mean accuracy for this approach decreases to 97.25% and 
95.69% respectively. 
The mean performances for the filter methods and standard pa- 
rameters p = 1 and m = 1 are displayed in Fig. 10 . The compari- 
son of the filter methods shows that ReliefF performs again very 
well from the beginning up to the removal of 19 features. Be- 
tween the removal of 1 to 19 features, the performance of the 
Laplacian score and FSAE is largely comparable, whereas the ap- 
proach of Luukka (2011) first underperforms, then outperforms and 
then clearly underperforms the performance of these two filter 
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Fig. 9. Accuracies and variance w.r.t. to parameter p and m (chronic kidney disease data set). 
Fig. 10. Comparison of filter methods (kidney data set). 
methods. For the standard parameters, FSAE shows the highest 
mean performance for 4 out of 24 features. In general, when 5 
to 2 features remain, all filter methods perform comparably. To- 
wards the end, ReliefF and the Fisher score perform slightly better 
than the other filter methods. At the same time, the approach by 
Luukka (2011) leads to a considerable decrease in the classification 
performance to less than 70% with a single feature whereas the re- 
maining filter approaches still result in a mean accuracy of about 
and more than 95%. 
In comparison with the FSAE wrapper, all filter methods can 
also lead to a feature subset selection of 4 features that are ca- 
pable to reach a mean accuracy of 100%. However, it is for the 
feature ranking methods not obvious that 4 features are sufficient 
to reach this performance. For ReliefF, 12 and 17 features are sug- 
gested. Clearly, this number of features also leads to an accuracy 
of 10 0.0 0% but it is three or even more than four times the num- 
ber of features that are sufficient to end up with the same result. 
For this data set, the FSAE wrapper as well as the FSAE filter show 
competitive results to their benchmark algorithms. 
4.4. Breast cancer Wisconsin (Original) data set 
The feature selection and classification results for the breast 
cancer Wisconsin data set are presented in Table 12 . Without any 
feature selection, a performance of 97.61% can be accomplished. 
The wrapper approach from Luukka (2011) with both entropies in- 
dicates that no feature removal should be conducted. Opposed to 
that, the FSAE wrapper for both entropies and l = 1 as well as l = 2 
leads to the removal of four features. With 5 out of 9 features, still 
a performance of over 97% can be achieved, which indicates that 
these features were not important for the classification. 
The values of the feature specific measure M d for the best per- 
forming FSAE wrapper feature selection method are illustrated in 
Fig. 11 . The figure shows that all features despite the four features 
with the highest M d values and one feature with the lowest value 
were removed. The performance after the removal of 4 out of 9 
features reached with 97.30% a comparable performance than the 
97.61% without feature selection. Since all removed features have 
lower values of M d than 4 out of 5 of the remaining features, it is 
unsurprising that the value for M increased from 0.2475 to 0.2649. 
The fact that four out of 5 of the remaining features are the ones 
with the largest difference in class means indicates that the dif- 
ference in means appears to be relevant to discriminate between 
the classes in the Breast cancer Wisconsin data set. The result of 
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Table 11 
Performance with filter feature selection on chronic kidney disease data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
ReliefF t = 0, k = 10 17 23, 1, 14, 24, 21, 5, 
11 
10 0.0 0 96.85 0 0.1 0.1 
ReliefF t = 0.0957, 
k = 10 
12 23, 1, 14, 24, 21, 5, 
11, 2, 12, 9, 10, 13 
10 0.0 0 97.42 0 0.1 0.1 
ReliefF k = 10 4 7, 3, 16, 15, 17, 22, 
18, 8, 13, 10, 9, 12, 
2, 11, 5 21, 24, 14, 
1, 23 
10 0.0 0 95.04 0 1 0.1 
Laplacian Score – 12 12, 14, 11, 10, 3, 16, 
15, 18, 1, 13, 17, 2 
10 0.0 0 90.69 0 1 0.1 
Laplacian Score – 4 20, 24, 22, 23, 6, 9, 
8, 21, 5, 12, 14, 11, 
10, 3, 16, 15, 18, 1, 
13, 17, 2 
10 0.0 0 94.17 0 0.9 0.1 
Fisher Score – 12 18, 8, 11, 9, 21, 13, 
5, 10, 17, 1, 2, 14 
10 0.0 0 95.50 0 1 0.1 
Fisher Score – 4 22, 23, 3, 16, 6, 15, 
24, 12, 18, 8, 11, 9, 
21, 13, 5, 10, 17, 1, 
2, 14 
10 0.0 0 94.67 0 1 0.1 
FS Luukka (2011) De Luca and 
Termini 
12 22, 23, 10, 11, 2, 12, 
1, 13, 15, 16, 18, 3 
10 0.0 0 90.46 0 1 0.1 
FS Luukka (2011) De Luca and 
Termini 
4 21, 7, 17, 8, 20, 4, 
24, 6, 22, 23, 10, 11, 
2, 12, 1, 13, 15, 16, 
18, 3 
97.25 94.60 0.0315 6 1.2 
FS Luukka (2011) Parkash et al. 12 2, 24, 6, 12, 1, 22, 
23, 13, 15, 16, 18, 3 
10 0.0 0 92.40 0 0.8 0.1 
FS Luukka (2011) Parkash et al. 4 9, 21, 10, 7, 4, 11, 8, 
20, 2, 24, 6, 12, 1, 
22, 23, 13, 15, 16, 
18, 3 
95.69 94.69 0.0572 7.7 4.9 
FSAE l = 1 & l = 2 De Luca and 
Termini 
12 5, 12, 3, 11, 17, 10, 
16, 15, 18, 13, 2, 1 
10 0.0 0 91.38 0 1 0.1 
FSAE l = 1 & l = 2 Parkash et al. 12 8, 17, 12, 10, 11, 3, 
15, 16, 18, 13, 2, 1 
10 0.0 0 90.25 0 1 0.1 
FSAE l = 1 & l = 2 De Luca & Termini, 
Parkash et al. 
4 20, 22, 23, 5, 6, 9, 
21, 24, 8, 17, 12, 10, 
11, 3, 15, 16, 18, 13, 
2, 1 
99.50 96.56 0.0080 1.3 0.1 
Table 12 
Performance on breast cancer Wisconsin (original) data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
Sim – 9 None 97.61 94.55 0.0070 0.3 0.8 
Sim + FS 
Luukka (2011) 
De Luca & Termini 
Parkash et al. 
9 None 97.64 94.62 0.0082 0.6 0.3 
Sim + FSAE l = 1 & l = 2 De Luca & Termini 
Parkast et al. 
5 7, 1, 5, 4 97.30 94.93 0.0072 0.6 0.2 
Table 13 
Performance with filter feature selection on breast cancer data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
ReliefF t = 0.0457, 
k = 10 
7 7, 9 97.70 95.40 0.0076 1 0.2 
ReliefF k = 10 5 5, 2, 7, 9 97.59 94.73 0.0071 1.3 0.2 
Laplacian Score – 7 1, 9 97.39 95.18 0.0063 0.7 0.2 
Laplacian Score – 5 7, 5, 1, 9 97.05 94.68 0.0097 0.5 0.4 
Fisher Score – 7 5, 9 97.61 95.12 0.0097 0.8 0.2 
Fisher Score – 5 7, 1, 5, 9 96.95 94.77 0.0074 0.6 0.3 
FS Luukka (2011) – De Luca & Termini, 
Parkash et al. 
7 7, 1 97.14 94.33 0.0133 0.8 0.2 
FS Luukka (2011) De Luca & Termini, 
Parkash et al. 
5 4, 3, 7, 1 97.33 93.36 0.0101 0.8 0.2 
FSAE l = 1 & l = 2 De Luca & Termini, 
Parkash et al. 
7 1, 7 97.25 94.34 0.0077 0.7 0.2 
FSAE l = 1 & l = 2 De Luca & Termini, 
Parkash et al. 
5 4, 5, 1, 7 97.40 94.94 0.0085 0.5 0.2 
C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 231 
Table 14 
Performance on diabetic retinopathy Debrecen data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
Sim – 19 – 59.57 – 0.0647 0.2 0.1 
Sim + FS 
Luukka (2011) 
De Luca and 
Termini 
12 19, 7, 6, 5, 8, 4, 2 61.05 58.22 0.0398 2.0 1.5 
Sim + FS 
Luukka (2011) 
Parkash et al. 15 19, 7, 6, 5 60.53 59.49 0.0677 0.3 0.1 
Sim + FSAE l = 1 & l = 2 De Luca & Termini, 
Parkast et al. 
14 19, 7, 6, 5, 8 61.09 60.22 0.0419 0.8 0.2 
Fig. 11. Feature specific measure M d for the Breast Cancer data set. 
the optimal parameter value search for FSAE wrapper and Parkash 
et al. entropy is illustrated in Fig. 12 . 
Subsequently, the results for the filter methods on the breast 
cancer Wisconsin data are presented in Table 13 . For ReliefF, all 
features possess positive weights, which makes the approach of 
using only the features with weights larger zero equivalent to con- 
ducting no feature selection. In contrast to that, using the formula 
for the threshold for the ReliefF algorithm suggests using 7 fea- 
tures. In addition, the knowledge from the previous comparison 
of wrappers indicates that 5 features can result in a performance 
comparable to using all features. The performances for all filter 
methods with 7 and 5 features are very close to each other, only 
ranging from 96.95% to 97.70%. There appears to be no clear differ- 
ence in the performance for these two numbers of features among 
the filter methods. 
The mean accuracies for the filter methods with standard pa- 
rameters p = 1 and m = 1 are displayed in Fig. 13 . Three aspects 
of these results are remarkable. First, the ReliefF, Laplacian score, 
Fisher score and FSAE perform comparable over the entire range 
of removals. Second, FSAE but also the Laplacian score and Fisher 
score perform at least as good as ReliefF. For only 3 remaining 
features (6 removals) they even perform about 1% better than 
ReliefF. It is apparent that FSAE and the Laplacian score peform 
best for this data set. The third point is that the approach by 
Luukka (2011) starts right from the beginning to continuously in- 
crease the difference in performance to the remaining 4 filter ap- 
proaches. Until the removal of 7 out of 9 features, there is al- 
ready a difference of more than 3% in the mean performance to 
the other filters but with only a single feature the approach by 
Luukka (2011) shows a performance of around 79% whereas the 
remaining approaches achieve a mean accuracy of more than 90%. 
Finally, the results from the FSAE wrapper and the filter meth- 
ods are comparable in terms of mean accuracy and variance. Once 
more, the main consideration is that the FSAE wrapper incorpo- 
rates the choice of the number of features whereas the filter rank- 
ing methods do not – and ReliefF suggest to retain more features 
than the FSAE wrapper. 
4.4.1. Diabetic retinopathy Debrecen data set 
The results for classification with and without feature selection 
for the diabetic retinopathy Debrecen data set are presented in 
Table 14 . The mean accuracy with all features is the lowest, indi- 
cating that all feature selection techniques were capable to remove 
irrelevant features and improve the performance. The two best re- 
sults were accomplished with the wrapper of Luukka (2011) and 
the FSAE wrapper (for both entropies and l parameter values). The 
feature selection of Luukka (2011) uses between 12 and 15 fea- 
tures for the classification whereas the result of FSAE is more sta- 
ble with 14 features for all setups. Besides that, the wrapper of 
Luukka (2011) requires the smallest amount of features to achieve 
the second highest result. However, at the same time, it has the 
lowest result before the optimal value search for the p and m pa- 
rameter. 
The values of the feature specific measure M d for the best per- 
forming FSAE wrapper are displayed in Fig. 14 . The figure shows 
that the features that were removed had medium to large val- 
ues for M d . Besides that, the two largest M d values of the third 
and fourth feature were not removed, indicating that at least in 
these cases the variation in the means were relevant for the clas- 
sification. Given that the performance after the removal of 5 fea- 
tures improved by about 1.5% points, the variation in means for 
these features was irrelevant for the classification. Their irrelevance 
might be on account of larger variation in these features. This data 
set embodies the only case in this research, where the value for M 
decreased after feature selection from 0.0182 to 0.0133. It should 
be noted that the variation in the means M d is in this data set 
considerably lower than in the previous data sets, by a factor of 
more than 10. Therefore, other factors such as variance could have 
impacted the discriminative ability of the features more easily. The 
result of the optimal parameter value search for FSAE and DeLuca 
& Termini entropy is illustrated in Fig. 15 . 
The results for the filter methods on the diabetic retinopathy 
Debrecen data are presented in Table 15 . For ReliefF, all features 
possess positive weights. Therefore, using the rule to select for 
the feature subset only the features with weights larger zero is 
equivalent to conducting no feature selection at all. Moreover, us- 
ing the threshold formula depicted before, suggests removing all 
features, which is also not suitable for feature selection. As a con- 
sequence, only the performance on 14 features, as suggested by the 
FSAE wrapper, will be compared. The FSAE filter method for both 
entropies and l parameters results in the same feature removal 
and the highest mean performance. Moreover, using the similar- 
ity classifier only with standard parameters on the feature subset 
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Fig. 12. Accuracies and variance w.r.t. parameter p and m (breast cancer data set). 
Table 15 
Performance with filter feature selection on diabetic retinopathy Debrecen data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
ReliefF k = 10 14 13, 18, 2, 1, 17 59.71 57.07 0.0466 0.1 0.7 
Laplacian Score – 14 16, 13, 17, 18, 1 59.39 56.92 0.0563 0.2 0.1 
Fisher Score – 14 1, 11, 18, 17, 10 59.64 56.90 0.0438 0.2 0.1 
FS Luukka (2011) De Luca & Termini, 
Parkash et al. 
14 4, 5, 6, 7, 19 59.51 56.46 0.0418 0.2 0.5 
FSAE l = 1 & l = 2 De Luca & Termini, 
Parkash et al. 
14 8, 5, 6, 7, 19 61.06 60.11 0.0470 0.5 0.2 
Fig. 13. Comparison of filter methods (breast cancer data set). 
obtained by the FSAE still outperforms the remaining approaches 
after the optimal value search for the p and m parameter. 
Fig. 14. Feature specific measure M d for the Diabetic retinopathy Debrecen data set. 
The mean accuracies for the filter methods with standard pa- 
rameters p = 1 and m = 1 are illustrated in Fig. 16 . The comparison 
highlights, that the FSAE filter performs best for the removal of 
up to 5 features. It shows with over 60% mean accuracy for the 
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Fig. 15. Accuracies and variance w.r.t. parameter p and m (diabetic retinopathy Debrecen data set). 
Fig. 16. Comparison of filter methods (Diabetic retinopathy Debrecen data set). 
standard parameters the highest performance for all approaches 
and removal decisions overall. Between 6 to 13 features, ReliefF, 
Laplacian score and Fisher score show about 2% higher mean ac- 
curacies. However, after 13 removed features, ReliefF experiences a 
strong decline in performance, which makes it the worst approach 
for the removal of the last features. Towards, the end, the Fisher 
score performs best while FSAE, Laplacian score and the approach 
of Luukka (2011) demonstrate comparable performance. 
In comparison with the FSAE wrapper, the FSAE filter ends up 
with the same feature subset and performance. For the diabetic 
retinopathy Debrecen data set overall, the FSAE wrapper demon- 
strates good and stable results, whereas the FSAE filter obtains the 
best results compared to ReliefF, Laplacian score, Fisher score and 
Luukka (2011) . 
4.5. Horse colic data set 
The feature selection and classification results for the Horse 
colic data set are presented in Table 16 . Once more, both fea- 
ture selection methods demonstrate an improvement of the mean 
classification accuracy after feature removal. The FSAE wrapper to- 
gether with the approach by Luukka (2011) eventuate in the high- 
est mean accuracies of 87.70%, which is an improvement of about 
1% compared to no feature selection. The feature subset selected 
by the FSAE wrapper is preferable to that of Luukka (2011) since it 
is with 12 features smaller and also leads already to a higher mean 
accuracy before optimal value search. Once more, the result of the 
FSAE is more stable since all setups of entropy and l parameter 
suggest the same feature subset. Opposed to that, the approach by 
Luukka (2011) selects a different number of features – both higher 
than those of the FSAE wrapper. 
The feature specific measures M d for the best performing FSAE 
wrapper are presented in Fig. 17 . The results show that the eleven 
removed features show only small to medium values for the vari- 
ation of the means. The features with the three largest, as well as 
numerous of the medium to large values for M d , are not removed 
from the feature set. This indicates that the difference in mean 
values is relevant for the classification. Furthermore, the removal 
led to an increase in the value for M from 0.0753 to 0.0940. The 
performances of the optimal parameter value search for the FSAE 
wrapper and DeLuca & Termini entropy is illustrated in Fig. 18 . 
The performances of the filter methods on the horse colic data 
set are depicted in Table 17 . The performances for all approaches 
are tested for 21 features, as suggested by all positive ReliefF 
weights, with 14 features, as indicated with the FSAE wrapper, and 
with 6 features based on the threshold formula for ReliefF. The 
mean accuracies with 21 features are highly comparable among all 
approaches, ranging from 86.77% to 87.37%. With 12 features, the 
FSAE filter with Parkash et al. entropy is the best performing ap- 
proach with a mean accuracy of 89.05%. It even demonstrates the 
highest mean accuracy of all options and number of features. On 
top of that, this performance for 12 features is higher than that of 
234 C. Lohrmann et al. / Expert Systems With Applications 110 (2018) 216–236 
Table 16 
Performance Horse colic data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
Before 
Optimization 
Variance 
(in %) 
p m 
Sim – 23 – 86.72 – 0.0576 0.7 0.4 
Sim + FS 
Luukka (2011) 
De Luca and 
Termini 
18 12, 7, 19, 8, 6 87.41 84.38 0.0821 0.6 0.5 
Sim + FS 
Luukka (2011) 
Parkash et al. 16 15, 19, 7, 18, 6, 12, 
8 
87.70 83.40 0.0578 1 0.5 
Sim + FSAE l = 1 & l = 2 De Luca & Termini, 
Parkash et al. 
12 18, 6, 19, 8, 15, 7, 
22, 9, 12, 13, 14 
87.70 85.16 0.0667 0.7 0.4 
Fig. 17. Feature specific measure M d for the Horse colic data set. 
the best performing wrapper approach. In contrast to that, the ap- 
proach of Luukka (2011) is characterized by the worst performance 
for 12 features and also overall. Finally, with 6 features, the FSAE 
is not performing as strong as ReliefF, Laplacian score and Fisher 
score but is still clearly outperforming Luukka (2011) . 
The mean accuracies for the filter methods with standard pa- 
rameters p = 1 and m = 1 are diagrammed in Fig. 19 . All filter 
methods perform for the removal of up to 10 features without 
any considerable decline in performance. Initially, the approach by 
Luukka (2011) performs best but subsequently is ranked only sec- 
ond after FSAE, which is up to the removal of 14 features perform- 
ing better than the Fisher score, Laplacian score and ReliefF. The 
difference to ReliefF are in this range even several % points more 
accurate. However, towards the removal of the last features, these 
approaches again perform better. The method of Luukka (2011) ex- 
periences a clear performance drop after the removal of 11 features 
and continues to decline in mean accuracy for most subsequent re- 
movals. With 10 out of 23 features it is already about 15% points 
less accurate than all other feature selection methods, whereas at 
1 remaining feature its performance is already approximately 30% 
points worse. 
Overall, the FSAE approaches achieve on the horse colic data 
set very good results. The FSAE wrapper accomplishes the same 
performance than the wrapper of Luukka (2011) with 4 features 
less. At the same time, the FSAE filter achieves the highest mean 
accuracy of all approaches, including the wrapper approaches, with 
12 out of 23 features. 
Fig. 18. Accuracies and variance w.r.t. parameter p and m (Horse colic data set). 
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Table 17 
Performance filter feature selection Horse colic data set. 
Approach Parameters Entropy No. 
Features 
Features Removed 
(not ordered) 
Avg. 
Performance 
(%) 
Before 
Optimization 
(%) 
Variance 
(in %) 
p m 
ReliefF t = 0, k = 10 21 6, 9 86.79 81.02 0.0643 0.8 0.2 
ReliefF k = 10 12 15, 11, 5, 13, 8, 4, 2, 
17, 3, 6, 9 
88.25 81.44 0.0700 0.9 0.5 
ReliefF t = 0.0614, 
k = 10 
6 18, 12, 7, 16, 14, 10, 
15, 11, 5, 13, 8, 4, 2, 
17, 3, 6, 9 
88.24 85.10 0.0760 0.5 0.2 
Laplacian Score – 21 13, 3 86.77 79.95 0.0741 0.9 0.5 
Laplacian Score – 12 20, 4, 6, 2, 9, 18, 17, 
22, 5, 13, 3 
86.57 81.20 0.0838 0.8 0.4 
Laplacian Score – 6 19, 15, 11, 10, 14, 8, 
20, 4, 6, 2, 9, 18, 17, 
22, 5, 13, 3 
87.97 82.44 0.0610 0.5 0.2 
Fisher Score – 21 3, 13 86.79 80.10 0.0649 1.1 0.4 
Fisher Score – 12 6, 4, 5, 8, 17, 9, 18, 
2, 22, 3, 13 
87.52 82.47 0.0561 0.6 0.5 
Fisher Score – 6 20, 11, 7, 14, 19, 15, 
6, 4, 5, 8, 17, 9, 18, 
2, 22, 3, 13 
87.43 84.19 0.0689 0.7 0.3 
FS Luukka (2011) De Luca & Termini, 
Parkash et al. 
21 12, 7 87.37 82.88 0.0538 0.3 0.5 
FS Luukka (2011) De Luca & Termini, 
Parkash et al. 
12 23, 1, 10, 16, 8, 18, 
15, 6, 19, 12, 7 
81.67 68.21 0.0598 0.1 0.1 
FS Luukka (2011) De Luca & Termini, 
Parkash et al. 
6 13, 21, 11, 22, 9, 14, 
23, 1, 10, 16, 8, 18, 
15, 6, 19, 12, 7 
82.15 63.86 0.0525 0.4 0.2 
FSAE l = 1 & l = 2 De Luca & Termini, 
Parkash et al. 
21 6, 18 86.86 80.35 0.0603 0.8 0.4 
FSAE l = 1 & l = 2 De Luca and 
Termini, 
12 14, 13, 12, 9, 22, 7, 
15, 8, 19, 6, 18 
87.40 85.15 0.0691 0.6 0.1 
FSAE l = 1 & l = 2 Parkash et al. 12 16, 13, 9, 22, 12, 15, 
7, 8, 19, 6, 18 
89.05 82.31 0.0746 0.6 0.2 
FSAE l = 1 & l = 2 De Luca & Termini, 
Parkash et al. 
6 23, 4, 21, 11, 10, 16, 
14, 13, 12, 9, 22, 7, 
15, 8, 19, 6, 18 
84.20 81.75 0.0828 0.3 0.1 
Fig. 19. Comparison of filter methods (Horse colic data set). 
5. Conclusions 
In this paper, an adapted version of the wrapper by 
Luukka (2011) was introduced that is termed fuzzy similarity and 
entropy (FSAE) feature selection. This approach is intended as a fil- 
ter method, in particular, a feature ranking method, but is also pre- 
sented as a wrapper method that is used together with a similar- 
ity classifier. The results for the FSAE feature selection method are 
three-fold. First, the FSAE wrapper approach can achieve at least 
comparable results to the benchmark feature selection method 
presented by Luukka (2011) but with on average fewer features. 
In several cases, they can even outperform the original feature se- 
lection wrapper method with a significant reduction in the num- 
ber of features. Second, the FSAE filter achieves results that are 
at least comparable but often better than that of the method of 
Luukka (2011) implemented as a feature ranking method. For the 
first real-world data set, the dermatology data set, and the diabetic 
retinopathy Debrecen data no considerable difference can be ob- 
served. However, for the chronic kidney disease, the breast can- 
cer Wisconsin data set, and the Horse colic data, the mean per- 
formance of the approach by Luukka (2011) declines considerable 
after a certain amount of removals. For the chronic kidney data 
set, this deterioration in the accuracy is present especially in the 
choice of the last feature to retain. For the breast cancer Wiscon- 
sin data set and the Horse colic data, the performances consis- 
tently deteriorated for each removal, ending up with mean perfor- 
mances that are more than 10% and 30% lower for a single fea- 
ture than of all other filter methods in this study. Third, the re- 
sults of the FSAE filter is often competitive to those by the other 
four feature selection techniques. For the first data set, the ReliefF 
clearly outperforms the remaining filter methods for a large range 
of feature removals. However, of the remaining four approaches 
non is clearly better throughout the entire range of removals. For 
the chronic kidney disease, the performance of FSAE for the initial 
removals and the last removals is comparable with the remaining 
approaches whereas for the removal of 3 to 18 features the mean 
accuracy is worse. For the third data, the breast cancer Wiscon- 
sin data set, the filter FSAE leads together with the Laplacian score 
to the highest mean accuracies throughout all the removals. For 
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the diabetic retinopathy Debrecen data, the FSAE wrapper leads to 
good and stable results, whereas the FSAE filter achieved the high- 
est mean accuracy of all filter methods. For the last data set, the 
horse colic data, the FSAE wrapper reaches the same high perfor- 
mance as the method by Luukka (2011) but accomplishes this with 
4 features less. For the filter methods, FSAE shows competitive re- 
sults, being for many removals few percentage points better than 
ReliefF and clearly better than the filter version of Luukka (2011) . 
For the five medical data sets in almost all cases the results for 
l = 1 and l = 2 are the same, suggesting the same features for re- 
moval. Overall, the results clearly demonstrate that the FSAE algo- 
rithms can find irrelevant features in the data well, while retaining 
the discriminating features. At a minimum, performance degrada- 
tion is low compared to the use of no feature selection. However, 
in many cases the performance accuracy can be improved com- 
pared to the wrapper feature selection by Luukka (2011) or no 
feature selection, and, moreover, the results to the regarded filter 
methods are comparable. 
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a b s t r a c t
Stock markets can be interpreted to a certain extent as prediction markets, since they
can incorporate and represent the different opinions of investors who disagree on the
implications of the available information on past and expected events and trade on their
beliefs in order to achieve profits.Many forecastmodels have beendeveloped for predicting
the future state of stockmarkets, with the aim of using this knowledge in a trading strategy.
This paper interprets the classification of the S&P500 open-to-close returns as a four-
class problem. We compare four trading strategies based on a random forest classifier
to a buy-and-hold strategy. The results show that predicting the classes with higher
absolute returns, ‘strong positive’ and ‘strong negative’, contributed themost to the trading
strategies on average. This finding can help shed light on the way in which using additional
event outcomes for the classification beyond a simple upward or downward movement
can potentially improve a trading strategy.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
1. Introduction
1.1. Background
The ability to predict the stock market accurately is of
pivotal interest to investors, stakeholders, researchers and
even governments (Fadlalla & Amani, 2014). For instance,
investors use forecasts as a tool for making investment de-
cisions (Lu &Wu, 2011), to identify opportunities and chal-
lenges in a market (Enke, Grauer, & Mehdiyev, 2011) and
to generate trading strategies (Krauss, Do, & Huck, 2017;
Leigh, Purvis, & Ragusa, 2002; Leung, Daouk, & Chen, 2000).
Many forecastmodels assume that the past can be analyzed
in order to approximate future stock market movements
(Guerard Jr., 2013). The two main forms of analysis that
∗ Correspondence to: Lappeenranta University of Technology, School
of Engineering Science, Skinnarilankatu 34, 53850 Lappeenranta,
Finland.
E-mail addresses: christoph.lohrmann@student.lut.fi (C. Lohrmann),
pasi.luukka@lut.fi (P. Luukka).
are deployed for generating investment strategies are tech-
nical and fundamental analysis. Technical analysis focuses
on the market price dynamics and trading volume behav-
ior in order to predict the future behavior of a stock or
financialmarket (Leigh et al., 2002). The technical approach
follows the assumption that the price patterns that have
occurred in the past repeat and will continue to occur in
the future and, therefore, can beused to predict future price
movements (Bodie, Kane, &Marcus, 2009; Fama, 1965b). It
can be regarded as a pattern recognition problem (Felsen,
1975; Guo, Wang, Liu, & Yang, 2014). In contrast, funda-
mental analysis assumes that stock prices are predicated
on fundamental data. Fundamental analysis uses infor-
mation such as company-specific earnings and prospects
to predict future cash flows and the company’s value to
forecast future stock price movements (Bodie et al., 2009;
Leigh et al., 2002).
However, the efficient market hypothesis (EMH) states
that market prices follow a random walk and therefore
cannot be forecasted based on past market movements
and behaviors (Leigh et al., 2002). The efficient market
hypothesis (EMH), introduced by Eugene Fama in 1970,
https://doi.org/10.1016/j.ijforecast.2018.08.004
0169-2070/© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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defines a financial market as ‘efficient’ if it reflects the
available information fully (Fama, 1970). One form of fi-
nancial market that is related to stock markets via the
concept of information efficiency is the prediction market,
which can be regarded as a new form of betting market
(Page, 2012), as traders on prediction markets are effec-
tively betting on the outcome of a certain event. The pay-
off from this bet depends on the outcome of that future
event (Wolfers & Zitzewitz, 2004). The price setting oc-
curs between traders, as on a financial market, and in the
case of well-calibrated traders may be considered as an
estimate of the probability of the event (Page, 2012). A
central aspect for financial markets, including prediction
markets, is information efficiency, which refers to the fact
that information is incorporated in and reflected by a price,
and that no market participant is able to influence the
market price directly (Vaughan Williams & Reade, 2016).
However, prediction markets also show irrationality and
anomalies that are common for other financial markets,
such as price misalignments (Rothschild & Pennock, 2014)
and the tendency to overweight low-probability events
and underweight events that are almost certain to occur
(Wolfers & Zitzewitz, 2004). Consequently, predictionmar-
kets show many parallels to financial stock markets. To
a certain extent, stock markets can also be interpreted as
prediction markets, because, according to Fama (1965a),
they reflect the effects of information onpast events aswell
as events that are expected to happen. Moreover, Fama
(1970) stated that market efficiency does not have to be
violated by the fact that investors disagree on the impli-
cations of the available information, as long as no investor
can consistently beat the market. As a consequence, a fi-
nancial market such as a stock market can incorporate and
represent the different opinions of investors who disagree
on the implications of the available information and trade
on their beliefs in order to achieve a profit.
Various different strategies have been developed over
the years for forecasting stock prices and returns. These
strategies include support vector machines (Guo et al.,
2014; Guo-qiang, 2011), neural network models (Altay &
Satman, 2005; Fadlalla & Amani, 2014), the random sub-
space classifier (Zhora, 2005), systems incorporating ge-
netic algorithms (Kim, Han, & Lee, 2004; Leigh et al., 2002)
and case-based reasoning (Chun & Park, 2005). Cao and Tay
(2001) use a support vectormachine to forecast the S&P500
daily index between 1993 and 1995 by transforming the
data into five-day relative difference in percentage (RDP)
values, and use lagged RDP values and technical indicators
for the prediction. Their model obtains better forecasting
results in terms of normalizedmean squared errors (NMSE)
than a backpropagation neural network. Kim (2003) also
used support vector machines on daily data from the Ko-
rean stock exchange (KOSPI) from 1989 to 1998. He de-
ployed 12 common technical indicators and found the SVM
to outperform the benchmark neural network and the CBR
model, obtaining results that were compatible with those
of Cao and Tay (2001). Kim et al. (2004) used a hybrid
integrationmechanismwith a fuzzy genetic algorithm that
encompasses nine technical indicators such as the moving
average, the relative strength index (RSI) and the stochastic
%D. Their approach can generate accurate results for the
prediction of the Korean stock index KOSPI. Subsequent
research by Kim, Min, and Han (2006) used five technical
indicators from weekly KOSPI index data from 1990 to
2001 to address this as a four-class classification problem.
They combined knowledge obtained fromaneural network
and human experts for a genetic algorithm and were able
to outperform the benchmark methods. However, the data
set used for this research was rather small, with only 312
weekly observations. Teixeira and De Oliveira (2010) built
amethod for automatic stock trading based on a k-nearest-
neighbor classifier, with the inputs to the model including
closing prices, trading volumes and technical indicators
such as moving averages, the RSI, stochastics and Bollinger
bands. For daily data from 1998 to 2009 for 15 stocks from
the Sao Paulo stock exchange, they managed to achieve
profits after transaction costs for 12 of the 15 stocks. For
the two-class problem, they accomplished these profits
even though the accuracy of the KNN classifier was well
below 50%. Nyberg (2013) usedmonthly data from 1957 to
2010, encompassing both technical and fundamental data
(e.g. industrial production and unemployment), to predict
bear and bull markets for the S&P500. Using a dynamic
probit model, they were able to produce predictions for
these two types of market sentiments that were superior
to those from a static model. Bhaduri and Saraogi (2010)
investigated stock and bond markets with a probit model
with the aim of identifying bull and bear markets and
finding a relationship between yield spreads and these
market states. They use a proxy for the Indian stockmarket
from 1996 to 2008 (monthly) to find entry and exit points
to the market, and achieve returns in excess of those of a
conventional buy-and-hold strategy. Guo et al. (2014) used
39 features, including the open price, high price, low price,
moving averages, momentum terms, RSI, stochastic %K and
%D, MACD, momentum and other technical indicators, to
forecast the Shanghai stock market and the Dow Jones in-
dex. Their model outperformed the two other models that
they compared their classifier with. Fadlalla and Amani
(2014) used 10 features to predict the Qatar Stock Ex-
change closing price, including simple and weighted mov-
ing averages, RSI, MACD, stochastic %K and %Dmomentum,
and the commodity channel index. Their neural network
outperformed an ARIMA model on the given dataset. The
study by Karymshakov and Abdykaparov (2012) on fore-
casting price movements of the Istanbul Stock Exchange
(ISE) included a currency exchange rate, the gold price,
common technical indicators such as moving averages and
price information such as the high and low prices of the
ISE during a trading day. O’Connor and Madden (2006)
constructed a neural network for forecasting theDow Jones
Industrial Average Index and incorporated fundamental
factors including currency exchange rates and commodity
prices (crude oil). They report an accurate model perfor-
mance. Research by Lendasse, De Bodt, Wertz, and Ver-
leysen (2000) deployed external variables such as other
stock market indices, exchange rates and interest rates,
combined with technical indicators of the daily Belgian
Bel 20 stock index, to predict the sign of the change up
to five days in the future. Niaki and Hoseinzade (2013)
included 27 financial and economic factors in their analysis
for forecasting the direction of the daily S&P500 and were
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able to outperform a buy-and-hold strategy. Moreover,
Zhong and Enke (2017) included the factors of Niaki and
Hoseinzade (2013) among the variables in their study for
forecasting the direction of the closing price of the SPDR
S&P 500 ETF. Their variables encompassed 60 financial
and economic factors, including the trading volume of the
SPDR S&P 500 ETF, interest and exchange rates, commodity
prices, other stock market indices and common technical
indicators. Their results show that they are able to outper-
form the benchmarks, including a buy-and-hold strategy,
significantly in terms of risk-adjusted returns.
Some authors attempted to identify a pattern for the
classification of transformed technical indicators into fea-
tures that represent a trading signal/ strategy in order
to better classify returns. Leigh et al. (2002) deployed
a combination of a genetic algorithm and a neural net-
work that attempted to use the ‘‘bull flag’’ pattern to
predict the NYSE Composite Index. They forecast stock
prices successfully and showed a violation of the weak-
form EMH. Chang and Wu (2015) used daily data from 15
US stocks between 2008 and 2012 to compute 32 tech-
nical indicators. Using kernel-based feature extraction to
identify trading signals, and their stock tradingmodel with
SVR, they reached a higher profitability than the other
dimensionality-reduction methods with this classifier. Pa-
tel, Shah, Thakkar, and Kotecha (2015) extracted trend
deterministic data from 10 technical indicators for two
stocks and two stock indices (CNX Nifty and S&P Bombay
Stock Exchange Sensex) from daily data from 2003 to 2012.
They showed that the performances of all of the prediction
models in their study improved when the technical indica-
tors were converted into trend deterministic data.
Overall, previous research and momentum anomalies
(Leigh et al., 2002) have indicated that both fundamental
factors and technical indicators can be integrated success-
fully into a trading strategy.
1.2. Objectives
The objective of this paper is to use feature selection
together with the ensemble classifier random forest to
build a classification model for predicting the open-to-
close returns of one of themain equity indices, the S&P500,
in a four-class setting. Subsequently, a more detailed anal-
ysis of the feature importance will be conducted to gain a
better understanding of which features are relevant for the
prediction task. The classifier and its result on the feature
subset from the feature selection will then be used as the
basis of several trading strategies. These trading strate-
gies will be derived from the four classes related to the
magnitude of the S&P500 open-to-close returns, and their
performanceswill be benchmarked against a buy-and-hold
strategy. Finally, the contributions of the four classes in the
prediction to the trading strategies will be investigated.
The remaining paper is structured as follows: Section
2 discusses the methods, including the feature selection
algorithm, and Section 3 depicts the data set and the ap-
plication of the methodology to it. Section 4 presents the
results for the random forest classifier and the analysis
of the feature importance and the investment strategies,
which are evaluated critically with respect to the buy-and-
hold strategy and the contributions of the predicted classes
to the returns in Section 5.
Table 1
Example observations.
Observation Feature 1 Feature 2 Class
X1 5 10 1
X2 5.2 30 1
X3 5.1 50 2
X4 4.9 70 2
2. Methodology
2.1. Entropy measures
Entropy can be regarded as a ‘‘measure of the degree of
fuzziness’’ (De Luca& Termini, 1972). Furthermore, De Luca
and Termini (1972) described it as the average information
contained in a dataset that is available when making a
decision.
This paper will apply the entropy measures defined
by De Luca and Termini (1972) and Parkash, Sharma, and
Mahajan (2008) for feature selection. This entropymeasure
can be defined as (De Luca & Termini, 1972):
H (A) = −
n∑
i=1
[µA (xi) logµA (xi)
+ (1− µA (xi)) log (1− µA (xi))] , (1)
whereµA (xi) ∈ [0, 1] is themembership degree of xi to the
fuzzy set A. The entropy measures introduced by Parkash
et al. (2008) are related to the concept of weighted entropy
(Belis & Guiasu, 1968), and are defined as follows:
H1 (A) =
n∑
i=1
wi
[
sin
πµA (xi)
2
+ sin π (1− µA (xi))
2
− 1
]
(2)
H2 (A) =
n∑
i=1
wi
[
cos
πµA (xi)
2
+ cos π (1− µA (xi))
2
− 1
]
.
(3)
The shape of the entropy function values is illustrated
in Fig. 1. The characteristic that all three entropy measures
share is that they reach their maximums at an input of 0.5,
while their minimums are reached at inputs of 0 and 1. The
idea of an entropy measure is that a small entropy value,
which is reached with an input close to 0 or 1, represents
certainty and structure, while high entropy values, which
occur for inputs close to 0.5, suggest uncertainty and a
low level of informativity (Yao, Wong, & Butz, 1999). This
aspect can be used for classification tasks in combination
with similarity. Since the outputs obtained with both en-
tropy measures of Parkash et al. (2008) are the same for
the same input values, it is sufficient to consider only the
first measure (see Eq. (6)) in what follows.
Imagine a simple classification problem where four ob-
servations are available. The observations belong to one of
two classes and contain two features that are independent
of each other, as is presented in Table 1.
After scaling the observation values of each feature to
the unit interval with max–min-scaling, the observations
and ideal vectors can be illustrated as in Fig. 2. It is apparent
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Fig. 1. Comparison of different entropy measures.
from Fig. 2 that the scaled feature values vary strongly
within each class for the first feature and considerably
less for the second feature. Moreover, the classes for the
first scaled feature overlap, whereas those for the second
feature take values in a different range of values.
Following the logic of the feature selection algorithm
proposed by Luukka (2011), the first step is to calculate an
ideal vector for each class that aims to characterize each
class well (Luukka, Saastamoinen, & Könönen, 2001). An
ideal vector should differ between classes so that it can
discriminate between these classes well.
There exist several ways of computing ideal vectors,
with the arithmetic mean being one of the earliest meth-
ods. An ideal vector can also be calculated with more gen-
eralized mean operators such as the generalized mean, the
Bonferroni mean or ordered weighted averaging (OWA).
Using the generalized mean, the ideal vector vi for a
class Ci is:
vi,d =
⎛⎝ 1
#Xi
∑
x∈Xi
xdm
⎞⎠ 1m , ∀d = 1, . . . ,D, (4)
where vi,d is the value of the ideal vector for class i for
feature d and #Xi refers to the number of observations that
belong to class i. For this simple example, m = 1, so that
the ideal vector is simply the class mean for each feature.
The second step is the calculation of the similarity be-
tween each ideal vector vi and each observation xj, with
j = 1 to n. This is carried out by computing the similarities
between the observation and the ideal vector:
S
(
xj,d, vi,d
) = p√1− ⏐⏐xj,dp − vi,dp⏐⏐, (5)
where, for simplicity, p is set to 1. Using Eq. (1) for De Luca
and Termini entropy, entropy values for each feature d can
be obtained as
Hd =
N∑
i=1
n∑
j=1
H
(
S
(
xj,d, vi,d
))
. (6)
The entropy value Hd for each feature, which is the sum
of the two entropy values for that feature in the two classes,
Fig. 2. Scaled example observations.
indicates which feature should be removed. The removal
decision is based on the idea that small entropy values
refer to regularities and structure in a dataset, while high
entropy values indicate randomness (Yao et al., 1999). This
means that entropy can show whether data are character-
ized by uncertainty or are informative (Luukka, 2007).
More specifically, fuzzy entropy measures can be used
to determine the relevance of features (Luukka, 2011). For
feature removal, the feature that has the highest entropy
value and, therefore, is assumed to be least informative,
will be removed; thus, for the given example, feature 2
would be removed (see Table 2).
This example illustrates how entropy can be included
in the feature selection so as to remove less informative
features. However, a closer look suggests that the proposed
feature removal for the given example is not a good choice
with respect to the classification accuracy. Assuming that
the observations in this example are a representative sam-
ple of the underlying population, it is obvious that the
feature space for feature 2 can be split into distinct regions
for the decision making, whereas feature 1 shows a clear
overlap in the values that this feature takes in the two
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Table 2
Example similarity and entropy values.
Similarity Feature 1 Feature 2 Class
S(x1, v1) 0.67 0.83 1
S(x2, v1) 0.67 0.83 1
S(x3, v1) 1.00 0.50 1
S(x4, v1) 0.33 0.17 1
S(x1, v2) 1.00 0.17 2
S(x2, v2) 0.33 0.50 2
S(x3, v2) 0.67 0.83 2
S(x4, v2) 0.67 0.83 2
H(d, Class1) 1.91 2.04 1
H(d, Class 2) 1.91 2.04 2
H(d) 3.82 4.09
Table 3
Example of scaled entropy.
Entropy Feature 1 Feature 2
H(d) 3.82 4.09
SE(d) 2.55 1.36
different classes. In simple terms, the second feature allows
an observation to be assigned to one of the classes with-
out uncertainty, but the first feature does not. Thus, the
removal of the second feature will lead to a deterioration
in the classification with these observations. However, as
this simple example has illustrated, this shortcoming can
be overcome by using a scaling factor for the entropies that
takes into account the distance between a feature value
of one ideal vector and the corresponding feature values
of all other ideal vectors (Lohrmann, Luukka, Jablonska-
Sabuka, & Kauranne, 2018). Feature selection based on
fuzzy similarity and entropy measures (FSAE), which uses
a scaling factor for the entropy values, is discussed in more
detail in the subsequent section.
2.2. Fuzzy similarity and entropy measure (FSAE) based fea-
ture selection
Feature selection using fuzzy similarity and entropy
measures (FSAE) using scaled entropy was introduced by
Lohrmann et al. (2018), and has its origin in the algorithm
developed by Luukka (2011). This feature selection algo-
rithm is designed as a filter method, and in particular a
feature rankingmethod, but can also be used as a wrapper;
for instance, together with a similarity classifier. It is based
on the idea of using scaled fuzzy entropy measures on
similarity values to determine the importance of features.
First, the similarity S ∈ [0, 1] is calculated, where 0 im-
plies complete dissimilarity of an observation to the ideal
vector while 1 emphasizes the highest degree of similarity.
Second, the entropy values for similarities are computed.
Similarities of 0 or 1will lead to the lowest entropies,which
emphasizes high informativeness. On the other hand, a
similarity close to 0.5 results in the highest entropy value
and signals uncertainty. This idea is applied to a classifica-
tion problem in order to calculate the similarity of features
from observations with the ideal vector of each class and
determine their entropy values. This entropy value will be
low if the feature is highly informative and high if the un-
certainty of the feature is high (Luukka, 2011). In addition,
a scale factor for the entropy values is used to emphasize
the distances among the ideal vectors of the classes. Using
the scale factor on the entropy has the desirable property
that distinct features of ideal vectors decrease the entropy
value, while the entropy values of features where the ideal
vectors are close remain at their initial level or decrease
only slightly. In other words, if a feature on average has
largely different values in one class from those in all other
classes, this results in a smaller entropy value. In this case,
the scaled entropy will indicate that the feature is more
informative.
In generalized form, the scaling factor SF can be denoted
as
SF i,d = 1−
(∑
o̸=j
⏐⏐vi,d − vo,d⏐⏐l) 1l
N − 1 . (7)
The numerator determines the sum of the absolute dis-
tances of the ideal vector value for feature d for class i to all
other classes (in the most simple case with l = 1).
The scaled entropy SE for a feature d for all classes is
calculated based on Eq. (6) for the entropy and Eq. (7) for
the scaling factor:
SEd =
N∑
i=1
⎛⎝ n∑
j=1
H
(
S
(
xj,d, vi,d
))⎞⎠
∗
⎛⎜⎜⎝1−
(∑
o̸=j
⏐⏐vi,d − vo,d⏐⏐l) 1l
N − 1
⎞⎟⎟⎠ . (8)
The result of the FSAE filter is a scaled entropy value for
each feature. Since high scaled entropy values indicate un-
certainty, the features with the lowest scaled entropy val-
ues aremost important for distinguishing between classes.
For the feature selection, the user specifies which number
of features (denoted k) should be kept, and subsequently
only uses the k features with the lowest scaled entropy
values. The underlying assumption is that this removes
features that do not contribute to the deviation among
classes (Luukka, 2011).
For the simple example presented in Section 2.1, the
use of the scaled entropy (SE) changes the feature removal
from feature 2 to feature 1 (see Table 3).
The second feature has a higher degree of informativity
than the first, since the distance between the values of the
ideal vectors of the two classes is larger for this feature
than for the first feature. The scaling factor accounts for
this interclass distance,which led to the decision to remove
feature 1 instead.
The feature importance based on the scaled entropy val-
ues determined by the FSAE filtermethod can be presented
in an intuitive form between [0,1] by dividing the scaled
entropy by the sum of scaled entropy values, subtracting
this value from 1, and standardizing the resulting feature
importance vector to [0,1].
FId = 1− SEd∑D
d=1 SEd
. (9)
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The feature importancewill be close to one for informa-
tive features, while uninformative and irrelevant features
will show feature importance values of close or equal to
zero.
This feature selection method was chosen because it
showed results that were competitive with those of the
most common feature selection methods, is intuitive in its
use and is computationally inexpensive (Lohrmann et al.,
2018). Moreover, using a feature ranking method allows
the feature importance values to be analyzed for a single
feature as well as for a group of features.
3. Application of our methodology to the data
3.1. Data
The dataset that is analysed in this paper consists of
time series obtained from Yahoo Finance (2017). The time
horizon for the training and testing of the classifier is
from 10/11/2010 to 04/29/2016, and the time period
selected for the out-of-sample forecast is from 05/2/2016
to 3/28/2018 . The dependent variable is the daily open-to-
close return of the S&P500 index from the opening price to
the closing price of a single trading day. The feature dataset
includes seven financial market indices, two market ETFs,
six indices and ETFs related to sectors and commodities,
three currency time series, seven time series related to
interest rates, yields and yield spreads, nine technical in-
dicators, and the VIX index. The seven financial market
indices encompass large indices such as the S&P500 (US),
the STOXX50 (EU), the Hang Seng (C), the Nikkei225 (J), the
FTSE100 (UK), and the DAX (GER). Moreover, it contains
the Russel 2000, which is an index premised on firms
with small market capitalization in the US. The two mar-
ket exchange traded funds (ETF) are intended to repre-
sent large- andmedium-capitalized emergingmarket com-
panies (iShares MSCI Emerging Markets; see BlackRock,
2017a), and to track the performances of large-, medium-
and small-capitalized firms worldwide (Vanguard Total
World Stock ETF; see Morningstar, 2017).
Commodities and materials are represented by the
United States Commodity Index and the SPDR S&P U.S.
Materials Select Sector UCITS ETF, respectively. The former
is supposed to reflect the performance of a portfolio of
commodity futures, which represents the energy, precious
metals, industrial metals, grains, livestock and softs sec-
tors (USCF, 2017). The latter aims to track the perfor-
mance of American large-capitalized material firms within
the S&P500 (State Street Global Advisors (SPDR), 2017b).
These features are intended to capture the influence of
the commodities and materials sector on the American
economy, and thus, on the American stock market. The
SPDR Gold Shares ETF is the largest physically backed gold
ETF, and tracks mainly long exposure to gold. This ETF is
included because commodities, especially gold, can indi-
cate future inflation, and their price volatility is believed
to have negative consequences for financial markets (Baur,
2012), whichmay have a severe impact on the US economy
(Gokmenoglu & Fazlollahi, 2015). The iPath S&PGSCI Crude
Oil Total Return Index concentrates its exposure on the S&P
GSCI Crude Oil Total Return Index, which is a benchmark
for the total return accomplished in the crude oil market
(S & P Dow Jones Indices, 2017). This index is used to
incorporate the impact of changes in the crude oil market
on financial markets, as the oil price can have an extensive
impact on both the economy and financial markets (Gok-
menoglu & Fazlollahi, 2015). Three additional factors are
the exchange rates of the USD to the Yen (Japan), the Euro
(EU) and the Yuan (China), which reflect the attractiveness
of US exports and its purchasing power with respect to
imports for the US economy relative to its largest trading
partners. We also integrate the relevance of the financial
sector for the S&P500 index by including the Financial
Select Sector ETF and the iShares MSCI Europe Financials.
The former is supposed to track the investment results of
large financial companies in the US that are listed in the
S&P 500 (State Street Global Advisors (SPDR), 2017a), while
the latter attempts to track the performance of an index
of European equities in the financial sector (BlackRock,
2017b).
The category encompassing interest rates and yields
contains the CBOE 10-year interest rate, the 30-year Trea-
sury yield (US), the 5-year Treasury yield (US) and the 13-
week Treasury bill (US). The CBOE 10-year interest rate is
a time series of the Chicago Board Options Exchange that
represents interest rate options for the 10-year Treasury
note (Chicago Board Options Exchange, 2017). The short-
term 13-week Treasury bill (US) will also be used as a
proxy for the 13-week yield for the calculation of two of the
yield spreads. From the three yield curves, the 30-year-to-
5-year yield spread, the 30-year-to-13-weeks yield spread,
and the 5-year-to-13-weeks yield spread are computed as
additional time series. No 10-year yield curve is available
from Yahoo Finance, but a 30-year yield curve and a 5-year
yield curve are used instead, in addition to the 13-week
one. This follows the convention of using a short-term
government yield curve and a long-term one of at least
several years for the calculation of yield spreads (Bhaduri &
Saraogi, 2010;Nyberg, 2013; Rudebusch&Williams, 2009).
Research has indicated that yield spreads contain useful
information in relation to the contraction and expansion of
the economy, and therefore theymight also be of relevance
for predicting a stockmarket index (Rudebusch&Williams,
2009). Finally, the authors use the VIX as an additional
financial time series to represent the market sentiment.
The volatility index VIX is included in the features because
it can be regarded as a barometer for investor sentiment in
the market (Rossilo, Giner, & de la Fuente, 2014).
In general, our choice of features is in line with previous
research that has used at least a subset of these features,
such as lagged index data, technical indicators, the oil price,
exchange rates, the gold price, or short- and long-term
interest rates/yields (Krollner, Vanstone, & Finnie, 2010).
For each of these time series, the closing and opening
prices, daily high and low values and volumes are down-
loaded if available. These data are included in the feature
dataset because price and volume information are the ma-
jor components in technical analysis (Achelis, 1995).More-
over, the daily range values of the indices are derived from
their daily high and low values. The range indicates the
maximum daily variation in the price series. For each time
series, we also calculate the returns between the opening
396 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Table 4
List of features.
Dependent variable
S&P500 Open-close return
Features
Time series
S&P500 – Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
DAX Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
Nikkei225 Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
iShares MSCI Emerging Markets Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
Vanguard Total World Stock ETF Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
Hang Seng Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
FTSE 100 Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
STOXX 50 Open-close return Close-open return – - – –
Russell 2000 Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
VIX S&P500 Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
SPDR Gold Shares ETF Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
United States Commodity Index Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
Materials Select Sector SPDR ETF Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
iPath S&P GSCI Crude Oil Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
Financial Select Sector Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
iShares MSCI Europe Financials Open-close return Close-open return ∆ (%) High ∆ (%) Low ∆ (%) Volume ∆ (%) Range
CBOE Interest Rate 10 Year Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
Treasury Yield 30 Years Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
Treasury Yield 5 Years Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
13 Week Treasury Bill Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
JPY/USD Exchange Rate Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
EUR/USD Exchange Rate Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
CNY/USD Exchange Rate Open-close return Close-open return ∆ (%) High ∆ (%) Low – ∆ (%) Range
Technical indicators and yield spreads
∆ (%) Spread Treasury 30y – 5y ∆ (%) momentum (1d) MACD (26d, 12d, Signal 9d) Mov.Avg. (5d)
∆ (%) Spread Treasury 30y – 13w ∆ (%) momentum (3d) Bollinger (2 Std) Mov.Avg. (10d)
∆ (%) Spread Treasury 5y – 13w ∆ (%) momentum (5d) RSI (14d)
∆ (%) momentum (10d)
and the respective closing prices, which are the changes
that occur during the trading day, as well as the returns
between the closing andopeningprices, reflecting the price
changes during the times when no trading is occurring.
Table 4 lists all features for the classification problem.
The remaining features are technical indicators, includ-
ing the changes in the 1-, 3-, 5- and 10-day momen-
tums, the relative strength index (RSI), the moving average
convergence–divergence (MACD), moving averages (MA)
andBollinger bands (Di Lorenzo, 2013;Hurwitz &Marwala,
2011). The technical indicators MACD, RSI and Bollinger
bands are transformed into trading signals instead of just
using their values directly. A comparable approach was
pursued by Patel et al. (2015), who referred to this as
trend deterministic data and found that this transforma-
tion led to a significantly higher classification accuracy
than using the technical indicators in their original form.
The transformation into signals follows common trading
rules. An RSI of less than 30 takes a value of 1 (oversold/buy
signal), an RSI of over 70 takes a value of 0 (overbought/sell
signal), and an RSI between 30 and 70 takes a value of
0.5. For the MACD, the feature is assigned a value of 1 if
the MACD (26 days EMA/12 days MA) is smaller than the
signal line (exponential moving average (EMA), 9 days),
which indicates to buy, and a value of zero if the MACD
exceeds the signal line. If the MACD equals the signal line,
the feature takes on a value of 0.5 (Achelis, 1995).
Lastly, the Bollinger bands feature is assigned a value of
1 if the signal line crosses the lower Bollinger band from
below (buy signal), a value of 0 if the signal line crosses the
upper Bollinger band from above (sell signal), and 0.5 if the
signal line is within the lower and upper Bollinger bands
(Di Lorenzo, 2013).
When the initial time series are downloaded from Ya-
hoo Finance, volume time series for which no information
can be downloaded andwhere the entire feature download
consists of zeros are removed. For the remaining features,
missing values are replaced by the last previously known
value to avoid biasing the time series with future values
that are yet unknown (e.g. through interpolation). More-
over, the rank of the data set is calculated in order to
check the features for multicollinearity, with the objective
of removing features that are highly correlated with other
features in the dataset, which essentially means that this
feature does not provide any additional information for the
classification. However, no features have to be removed
here since no multicollinearity is present in the dataset.
After this procedure, the training and testing dataset
contains 1373 observations and the dataset for the
forecasting period consists of 481 observations for all 136
features. Finally, the features are normalized to the unit in-
terval [0, 1]. The time series to be classified is the open-to-
close return of the S&P 500. The open-to-close returns are
split into four classes according to their daily magnitudes.
Table 5 lists the classes for both the training/testing and
forecast periods.
The idea is to create distinct groups for ‘strong positive’,
‘slightly positive’, ‘slightly negative’ and ‘strong negative’
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Table 5
Classes for the S&P 500 closing returns.
S&P 500 closing return Class Training and testing Forecast period
Observations in % Observations in %
Larger than 0.5% 1 345 25.13% 59 12.27%
Between 0.5% and 0.0% 2 399 29.06% 199 41.37%
Between 0.0% and –0.5% 3 339 24.69% 172 35.76%
Smaller than –0.5% 4 290 21.12% 51 10.60%
returns. The proportions of the four classes are similar in
the training and testing data, but more unbalanced in the
forecast period, with slightly positive and slightly negative
returns being the majority classes and higher-magnitude
returns having smaller numbers of observations. The clas-
sification of the daily S&P data into four classes is one
of the aspects that differentiates the approach pursued in
this paper from most of the existing literature. Kim et al.
(2006) used a four-class approach, but on weekly data for
the Korean KOSPI index. Patel et al. (2015) worked with
their trenddeterministic features on a binary class case, but
mentioned that a settingwithmore categories is alsoworth
exploring.
Another aspect that is worth mentioning is that all of
the information presented can be downloaded without
cost, and is available easily to potential investors and re-
searchers.
3.2. Training procedure
The first step is feature selection for the initial 136
features in the data set, and for that purpose we use the
FSAE filter method. Each feature is ranked according to
FSAE based on its scaled entropy value (in ascending or-
der). Initially, we calculate the performance using a simple
similarity classifier with all features, and one feature will
be removed in each step, that with the next lowest rank.
This procedure is conducted using the FSAE with different
combinations of entropy measures and l-parameters. Each
setup is tested for different values of the p (from 1 to 8) and
m (from 1 to 6) parameters, and we report only the accu-
racies for the p andm values that lead to the highest mean
accuracy for each combination of entropy and l-parameter.
Finally,we choose the setup of the entropy and l-parameter
that appears most suitable in terms of performance and
number of features removed.
With this setup, the main classifier in this study, the
random forest (Breiman, 2001), will be used together with
the FSAE to determine which features should be removed.
The random forest is an ensemble classifier that trains
multiple decision trees and combines their results in order
to assign observations to a class (Adele, Cutler, & Stevens,
2012). This procedure is supposed to avoid the common
problem of single decision trees, which tend to overfit data
easily if their parameters are not set suitably. Other advan-
tages of this model include its ability to model interactions
between features and its robustness to outlier values for
features (Hastie, Tibshirani, & Friedman, 2009). Here, the
random forest will consist of 50 decision trees. As was
demonstrated by Breiman (2001), the choice of the number
of decision trees can be as desired, since the generalization
error is converging to a limit. Random forests have been
applied successfully in a variety of different applications
(Adele et al., 2012), including the classification of financial
time series. Khaidem, Saha, and Dey (2016) used a random
forest in a context comparable to that in this paper, using
technical indicators but considering the prediction of stock
returns, and reported high classification results. Recently,
Zhang, Cui, Xu, Li, and Li (2018) used a random forest
in their stock price trend prediction system and demon-
strated its ability to outperform a KNN classifier, support
vector machines and an artificial neural network.
In order to find a model with limited complexity and
a good generalization ability for previously unseen obser-
vations, noise can be added during the training procedure
(Özesmi, Tan, & Özesmi, 2006). Since noise is supposed to
prevent a model from being overfitted to the given obser-
vations, adding noise should make the learning algorithm
less sensitive to the variation in the features for reasonable
amounts of noise, thus preventing overfitting (Matsuoka,
1992; Özesmi et al., 2006). In this paper, the authors add
independently and uniformly distributed noise to the fea-
tures before using the random forest algorithm with FSAE
for the feature selection. The idea behind this proceeding
is that using a certain amount of noise should make the
choice of features more robust and reliable.
Oncemore, the classifier, in this case the random forest,
will be used first with all features, then features will be
removed iteratively based on their ranking from the FSAE
feature selection. For this purpose, the entire testing and
training time series (with 1373 observations) is split using
the hold-out method into 70% of observations for training
and the remaining 30% for testing. The use of stratified
sampling ensures that the training and test data consist
of observations from all four return classes and in pro-
portions that represent the classes. Noise is added to the
training data solely to ensure that the result generalizes
to the actually observed test data, not to fit the perturbed
data. The magnitude of the noise added at each iteration
is varied from +/– 0 standard deviations (Std) up to +/– 4
Std, by steps of 1 Std. The standard deviation is determined
based on the feature values of all observations. The level
of noise that is added is random, but is limited in each
step to +/– the number of standard deviations for that level
of noise. The only exception is when adding noise to the
technical indicators and the trading strategies premised
on these indicators. Since these indicators all depend on
the price series, it would be inconsistent and implausi-
ble to perturb them separately rather than perturbing the
underlying stock price series. Thus, we inject the trading
strategies with noise by perturbing the underlying S&P500
closing price series according to the standard deviation of
the S&P500 index (from +/– 0 up to +/– 4 Std), then deter-
mine the technical indicators and trading strategy values
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Table 6
Classification results with feature selection (before noise injection).
Approach Parameter Entropy No. of
features
Features
removed
Avg.
performance
Variance
(in %)
p m
Sim – 136 None 44.73% 0.05% 2 2
Sim + FSAE l = 1 De Luca & Termini 121 15 44.78% 0.03% 5 3
Sim + FSAE l = 1 Parkash et al. 64 72 44.38% 0.05% 3 1
Sim + FSAE l = 2 De Luca & Termini 119 17 43.06% 0.06% 2 2
Sim + FSAE l = 2 Parkash et al. 120 16 42.91% 0.05% 3 2
Fig. 3. Results for FSAE setups.
afterwards. In each iteration, and therefore for each feature
subset, the data set is split 20 times and for each split, the
perturbed training data is used for the FSAE feature ranking
and the noise-free testing set with the random forest is
used for the evaluation of the performance for the feature
subset. The test accuracy is averaged over the 20 runs for
a feature subset. After removing the features iteratively
according to their ranks and computing themean accuracy
for each of these subsets, we select the feature subset that
results in the highest mean accuracy on the test data.
The second step of the training procedure is classifi-
cation. The feature subset determined previously will be
deployed for the classification with the random forest,
while four other classification algorithms, the k-nearest
neighbour algorithm (KNN; see Cover & Hart, 1967), the
naive Bayes classifier (Russell & Norvig, 2009), decision
trees (Breiman, Friedman, Stone, & Olshen, 1984) and a
similarity classifier (Luukka et al., 2001), will be applied
as benchmarks for the classification accuracy. The classifier
with the highest classification accuracy will be used as the
basis for the evaluation of four different strategies that
are conceptualized according to the four classes that were
created for the classification problem. These strategies are
depicted in detail in the next section. The returns gen-
erated with these strategies (after transaction costs) are
then determined for the test set and validated with the
separate data set for the forecast period. The out-of-sample
forecast data set is used with the trading strategies that
are premised on the best classification model’s predictions
in order to validate the performance against a buy-and-
hold strategy. All of the calculations are implemented using
MATLABTM software.
4. Results
The results for the different setups of the FSAE filter for
feature selection show that most algorithms are capable
of identifying features that are redundant or of small rel-
evance for the classification. Table 6 lists the results with
the similarity classifier for the choice of the FSAE setup. The
best performance accuracy, 44.78%, is accomplished with
the entropy measure of De Luca and Termini (1972) and
an l-parameter of 1. However, the combination of Parkash
C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407 399
Table 7
FSAE results with random forest and noise.
Perturbation 0 Std. 1 Std. 2 Std. 3 Std. 4 Std.
Remaining features 129 117 98 105 127
Mean accuracy 47.16% 47.51% 47.78% 47.60% 47.76%
Variance (in %) 0.07% 0.07% 0.07% 0.08% 0.08%
Table 8
Comparison of classifiers on the feature subset.
Approach Setup and parameters Avg. performance Variance (in %)
Similarity classifier p = 3,m = 1 44.04% 0.03%
Random forest Min leaf size= 1 43.63% 0.04%
Random forest Min leaf size= 10 44.72% 0.03%
KNN k = 1 32.36% 0.04%
KNN k = 10 36.80% 0.05%
Naive Bayes Normal kernel 38.85% 0.07%
Decision tree Min leaf size= 1 34.89% 0.04%
Decision tree Min leaf size= 10 37.47% 0.06%
et al. (2008) entropy and l = 1 leads to a comparable ac-
curacy of 44.38%, but with only 64 features instead of 121.
Since almost the same performance as the most accurate
approach can be achieved with only slightly over half the
number of features, the approachwith Parkash et al. (2008)
entropy and l = 1 is more suitable for further analysis.
Fig. 3 shows that, for all FSAE setups, the performance
initially decreases, but then has a peak or secondary peak
at around 70 removed features. This stresses that all setups
work well, but using Parkash et al. (2008) entropy and
l = 1, which found the best performance at this peak of
around 70 removed features, is the most suitable choice of
these setups.
In the next step, we conduct the actual feature selec-
tion with the classifier random forest (based on 50 deci-
sion trees) as the evaluation criterion and the FSAE with
Parkash et al. (2008) entropy and l = 1, which was the
setup selected in the previous step. The feature selection
is conducted with and without noise, and the results are
displayed in Table 7.
This procedure shows that the most accurate mean
accuracy on the test set is achieved with noisy features
with two standard deviations. Moreover, this accuracy is
achieved on the smallest subset with 98 remaining fea-
tures. Unlike the initial step with the choice of the FSAE
setup, it can be seen that the number of features removed
can vary depending on the classification algorithm used
for the evaluation, but that their order does not. With the
random forest, only 38 features are removed, but the per-
formance of 47.78% is not only higher than the 44.38% after
FSAE and the similarity classifier, but also considerably
higher than the 44.73%with the similarity classifier and the
entire data set.
In what follows, the feature subset that results from
the feature selection with the random forest is deployed
with different classifiers in order to determine whether
the random forest is the most accurate classifier on this
feature subset. The results of the comparison are presented
in Table 8.
The results demonstrate that the random forest with
a minimum leaf size of 10 is the most accurate classifier
of the eight classifier setups presented. The minimum leaf
size is a parameter that sets the minimum number of
observations that must be in a ‘‘branch’’ of a decision tree.
Aminimum leaf size that is too lowmay lead to overfitting,
since it allows overly complex models, whereas a value for
theminimum leaf size that is too high can oversimplify the
model andmake it unable to capture certain patterns in the
data. Both theminimum leaf size parameter (random forest
and decision tree) and the k-parameter (KNN) are varied
from 10 to 100, by steps of 10. For each of these algorithms,
the value of the parameterwas chosen based on the highest
mean training performance, and the corresponding mean
accuracy on the test set is reported. This procedure avoids
overfitting the parameters to the test set, since they are
chosen based on the training set.
Since the random forest with a minimum leaf size of
10 has been shown to be the most accurate classifier with
this feature subset, the performance of this classifier will
be examined in more detail, including with respect to the
out-of-sample forecast data set. Table 9 presents the clas-
sification of this setup on one random split of the training
and test data, and on the forecast data. The classification
rates of 46.3% and 41.0% for the random test set and the
given forecast data set do not seem very high; however,
low classification results do not have to mean a low ability
to generate excess returns with a strategy based on this
classifier (Teixeira & De Oliveira, 2010).
The correct classification rates between the classes
range from 28.8% to 62.1% within the test data. Class 1
shows the highest correct classification rate, and is the only
class to exceed 60.0%. Clearly, theworst classification result
is obtained for Class 3, which addresses ‘slightly negative’
returns. The returns for the positive classes, Class 1 and
Class 2, are the highest in the test set. For the validation
dataset, the accuracies range between 23.8% for Class 3
and 55.8% for Class 2. Only for the ‘strong positive’ Class
1 is the classification accuracy considerably lower than
on the test set, at 40.7% compared to 62.1%. Simplifying
things by considering the results from the perspective of
an investor, who will probably focus mainly on whether
the predicted returns are positive or negative, the correct
classification rates can differ considerably from those of the
single classes. The correct classification rates for positive
and negative returns for the data are 75.2% and 35.9%. This
is worse than the result for the test data, and indicates a
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Fig. 4. Top 10 lowest scaled entropy values.
Table 9
Classification results for test and forecast data.
Test Class 1 Class 2 Class 3 Class 462.1% 54.6% 18.8% 48.3%
46.3% Positive Negative82.40% 50.00%
Forecast Class 1 Class 2 Class 3 Class 440.7% 55.8% 23.8% 41.2%
41.0% Positive Negative75.2% 35.9%
clearly higher ability of the classifier to predict positive
returns correctly. The low negative prediction is burdened
by the low classification rate in Class 3, which accounts for
more than three times as many observations as Class 4. In
conclusion, the classifier for the validation dataset seems
to be more accurate at determining positive returns, but
performs more poorly at predicting the negative return
classes.
We will attempt to obtain a better understanding of the
decision-making abilities of the classifier by discussing the
features with the lowest scaled entropy values, since low
entropy corresponds to high informativity. As Fig. 4 illus-
trates, the S&P500 Momentum terms, currency exchange
rates, the European stock market and the United States
Commodity Index (USCI) possess the highest information
content. Three of the top four features for predicting the
S&P500 open-to-close return are related to the change
in momentum. The remaining features consist of the ex-
change rates USD/Yuan andUSD/EUR, the European STOXX
50 open-to-close return and the change in the low value of
the USCI.
We examine patterns for a certain type of information
that may potentially be relevant for the prediction of the
S&P500 open-to-close return by investigating in more de-
tail the results of the variable importance obtained from
FSAE with the random forest as the evaluation criterion.
The results illustrated in Fig. 5 show that the momentum
terms of the S&P500 are characterized by the largest vari-
able importance, and that the currencies on average show
a large importance for the classification task related to
the S&P500. On the othter hand, the relevance of spreads
appears to be low, since the variable importance has a
low average value and comparatively low values for the
whiskers. The range features show the longest whisker,
indicating that some of the range values are relevant for
this classification. It is noteworthy that the minimum for
the indicators (excluding outliers) is the largest of all tech-
nical feature groups except the momentum group. This,
together with one of the highermean values, indicates that
technical indicators do possess an elevated relevance for
the classification overall.
The analysis of the feature importance grouped by fi-
nancial market indices as displayed in Fig. 6 reveals that,
according to these results, the S&P500 related information
(which also includes the momentum terms) is the most
relevant group of information for the classification. The
groups with the second and third largest mean importance
are the Nikkei225 and the STOXX50 group. This appears to
be in line with the fact that the STOXX50 open-close return
is the only non-S&P500 financial market feature in the top
10 lowest scaled entropies presented earlier.
Since grouping according to the remaining features such
as gold, oil or sectors only resulted in lower to medium
importance values that could not be distinguished clearly,
these results will not be presented or discussed here in
detail.
After analyzing the features and the classification re-
sults for the four-class problem,we consider various differ-
ent trading strategies based on this FSAE and the random
forest results. We derive four distinct trading strategies,
which represent different levels of risk tolerance of the
investor (e.g. willingness to ‘‘short’’ (sell) the index) and
varying levels of confidence in the model (e.g. willingness
to invest solely for strongly positive or negative predic-
tions). The benchmark strategy in this paper is a classic
buy-and-hold strategy (passive management), where the
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Fig. 5. Feature importance for technical features.
Fig. 6. Feature importance for financial market indices.
Table 10
Investment strategies.
No Strategy
1 Strongly positive or positive returns predicted (Classes 1 & 2) - Long (buy) the index
Strongly negative or negative returns predicted (Classes 3 & 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
2 Strongly positive returns predicted (Class 1) - Long (buy) the index
Strongly negative returns predicted (Class 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
3 Strongly positive returns predicted (Class 1) - Long (buy) the index
Strongly negative or negative returns predicted (Classes 3 & 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
4 Strongly positive or positive returns predicted (Classes 1 & 2) - Long (buy) the index
Strongly negative returns predicted (Class 4) - Short (sell) the index
After decision: Remain long or short until next decision requires a change
5 Benchmark: buy-and-hold - Long (buy) the index at start of period and retain
index is bought and then held over the respective invest-
ment period. All investment strategies are enumerated in
Table 10.
It is important to mention that only the index returns
are regarded in the subsequent analysis of the returns; no
dividends of the underlying stocks are included.
For the comparison to a buy-and-hold strategy, various
different levels of transaction costs are considered. Trans-
action costs can be incorporated either as a percentage of
the underlying trade (e.g. Pätäri &Vilska, 2014) or as a fixed
amount in a certain currency (e.g. Teixeira & De Oliveira,
2010), and can vary considerably from country to country
(Domowitz, Glen, & Madhavan, 2001). In this study, both
approaches will be used – a fixed amount in US dollars that
can be expected to be paid to a broker in the US, as well
as a low percentage of the underlying trade value. Using
both approaches ensures that our results can be compared
to other existing and future findings more easily. For the
402 C. Lohrmann and P. Luukka / International Journal of Forecasting 35 (2019) 390–407
Fig. 7. Performances of trading strategies out-of-sample (with transaction costs).
first approach, the transaction cost varied between $10
and $20, which is within the range of transaction costs
that an investor can expect for an order at a broker to
purchase a stock or financial instrument (Nasdaq, 2017).
The percentage-based transaction costs are set at 0.1%,
0.2%, 03% and 0.4%, to incorporate low to medium levels
of transaction costs.
In addition, it is assumed that no capital or gains are
withdrawn during the investment period considered. Since
the S&P500 open-to-close return is the dependent variable,
the results of the strategies assume that the financial in-
struments used track the S&P500 as closely as possible.
This may be by buying all, or at least the majority, of the
shares in the proportions that represent the firms in the
S&P500, by investing in an exchange traded fund (ETF)
that attempts to replicate the behavior of the S&P500, or
potentially by using a suitable financial derivative. An ETF
is an inexpensive alternative for tracking a certain market
or sector, and can also be bought at a broker (Bodie et al.,
2009). It is crucial for some of the strategies presented here
that ETFs can be sold short (Bodie et al., 2009). If an investor
deploys an ETF to follow one of the strategies presented
here, it must be taken into account that, in addition to
broker costs for the purchase of the ETF, costs are also
incurred for the ETF itself. Thus, investors should consider
that the performance numbers presented here need to be
reduced by any additional cost such as the total expense
ratio (TER) of the ETF,which is commonly rather low (Bodie
et al., 2009).
The performances of the buy-and-hold strategy and the
four strategies considered here are illustrated in Fig. 7 for
an investment of $10,000 and transaction costs of 0.1% for
the forecast data set.
The graph highlights the fact that all strategies based
on the classifier results can outperform the buy-and-hold
strategy after transaction costs out-of-sample in the
forecast period. The results show that, for transaction costs
of 0.1%, investment strategy 4 is characterized by the high-
est performance of 44.09% for the forecast period (21.09%
p.a.), while the buy-and-hold strategy returns 26.13%
(12.93% p.a.). With respect to the classification results, this
is not surprising. Strategy 4 does not initiate a transaction
if the prediction is Class 3, which is the class with by far the
lowest classification accuracy. Thus, it leaves out the class
that the model predicts worst and that is associated with
low absolute returns even when it is classified correctly,
since it is the lownegative return class. Investment strategy
2, which also does not use the Class 3 predictions, performs
well too, but it does worse than strategy 4 since it does not
conduct transactions based on Class 2 predictions, though
this was the class with the highest prediction accuracy.
The performances of the other investment strategies range
between 30.16% (14.81% p.a.) and 31.28% (15.33% p.a.).
The results show that higher percentage-based transaction
costs affect the performances of the trading strategies
adversely, since they make using these strategies more
expensive. The first strategy, which shows with the largest
return without transaction costs, at 60.14% (27.98% p.a.),
is affected most by higher transaction costs, since it uses
all four class predictions as signals to conduct transactions
if possible. Since it therefore conducts two to three times
as many transactions as any of the other trading strate-
gies, it underperforms the buy-and-hold strategy even for
transaction costs of only 0.2%. The remaining strategies,
which initiate trades premised only on a subset of the
classes, show fewer transactions and are therefore less
sensitive to changes in the transaction costs. For invest-
ments of $10.000 and $50.000, the performances again
depend on the transaction costs, with the returns logi-
cally being higher the lower the value of the transaction
costs, as the costs are in proportion to the investment
amount.
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Table 11
Performances of the investment strategies for all datasets.
Test
(410 Obs.)
Transactions 1 150 58 60 88
– 0 16.88% 311.73% 543.19% 520.14% 322.68%
– 0.1% 16.83% 254.35% 506.93% 484.01% 287.06%
– 0.2% 16.83% 204.93% 472.68% 449.95% 254.41%
– 0.3% 16.83% 162.35% 440.33% 417.85% 224.48%
– 0.4% 16.83% 125.69% 409.78% 387.59% 197.05%
10,000 10 16.76% 287.61% 530.36% 506.92% 310.65%
10,000 20 16.65% 263.50% 517.52% 493.70% 298.62%
50,000 10 16.86% 306.91% 540.63% 517.50% 320.28%
50,000 20 16.83% 302.09% 538.06% 514.86% 317.87%
Forecast
(481 Obs.)
Transactions 1 201 64 68 89
– 0 26.39% 60.14% 39.97% 39.33% 57.51%
– 0.1% 26.13% 30.97% 31.28% 30.16% 44.09%
– 0.2% 26.13% 7.09% 23.13% 21.60% 31.80%
– 0.3% 26.13% –12.46% 15.48% 13.58% 20.55%
– 0.4% 26.13% –28.45% 8.30% 6.09% 10.25%
10,000 10 26.26% 35.22% 32.62% 31.57% 46.59%
10,000 20 26.13% 10.31% 25.28% 23.81% 35.68%
50,000 10 26.36% 55.15% 38.50% 37.78% 55.33%
50,000 20 26.34% 50.17% 37.03% 36.22% 53.14%
Table 11 displays the detailed results for all strategies
for the test and forecast periods. It is apparent that the
differences between the performances on the test and fore-
cast data sets are considerable.
However, this difference can be explained based on the
data and the class imbalance. The test data set possesses a
standard deviation of returns of 0.96%, while in the fore-
cast set this value is about one third lower, at 0.63%. The
same is true for the standard deviation as a measure of
the volatility in the returns that were classified as positive
(Classes 1 and 2), with values of 0.84% and 0.54% for the
test and forecast data, respectively, as well as for those
observations classified as negative (Classes 3 and 4), with
values of 0.98% and 0.82%, respectively. Moreover, in both
data sets the average returns for observations that are
classified as Classes 1 and 4 are particularly distinct. In the
test set, the average return for Class 1 predictions is 0.57%,
whereas that in the forecast data is only 0.26%, which is
not even half. We find comparable results for the average
return for Class 4 predictions, with –0.73% on the test set
versus –0.20% on the forecast set, which is not even a third
of the magnitude. This discrepancy between the results
in the test and forecast data sets is due to the fact that
the predictions in Classes 1 and 4 contribute most to the
returns achieved by any of the trading strategies depicted.
The effect is amplified by the fact that the forecast data
set is more unbalanced, with fewer observations in Classes
1 and 4, whose correct prediction could boost the returns
of the strategy. As a consequence, the difference between
the results in the test and forecast sets is considerable, but
plausible after further investigation. Moreover, the returns
achieved by the trading strategies clearly depend on the
market volatility and returns.
The next step is an analysis of the performances of
strategies in the forecast period solely for the forecasted
open-to-close returns (without transaction costs). Strategy
4 is characterized by average daily returns of 0.076%, while
the buy-and-hold strategy performs more than 40% worse,
with average daily returns of 0.044%. However, an optimal
strategy, namely a strategy that always foresees positive
and negative returns correctly and invests accordingly,
would achieve a daily return of 0.411% in the forecast
period, outperforming any of the presented investment
strategies considerably. All average daily returns are pre-
sented in Fig. 8. Even though the best investment strategy,
strategy 4, clearly underperforms the optimal strategy, it
still notably outperforms the passive buy-and-hold strat-
egy.
Fig. 9 highlights the average returns for positive and
negative predictions, as well as for returns related to class-
specific predictions following the logic of the trading strat-
egy of buying in the case of a Class 1 or Class 2 classification
and selling short in the case of a predicted Class 3 or Class
4. The first graph shows that the prediction of the negative
classes (Class 3 and Class 4) accounts for a higher average
return than the positive classes in the forecast period.
Moreover, it stresses that the correct prediction of the
positive and negative classes (0.36% and 0.48%) is higher
in magnitude than the average return of misclassifying the
direct counterparts of these two return directions (–0.33%
and –0.37%).
The second graph in Fig. 9 highlights the average class-
specific returns overall, in the cases of both correct clas-
sification and misclassifications. The graph illustrates two
relevant aspects of the classification result. The first is that,
for all classes, the returns are higher in magnitude in the
case of correct classification than when a misclassification
occurs. This contributes to the fact that the average return
overall is positive for all classes. In particular, all predicted
classes lead to positive returns on average. In simple terms,
if the classifier predicts a class for a daily return, following
this prediction will lead to a positive return on average –
even though the prediction may be incorrect.
The second aspect that this graph highlights is the dif-
ference between the average returns for the classes with
‘strong positive’ (Class 1) and ‘strong negative’ (Class 4)
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Fig. 8. Average daily open-to-close returns (without transaction costs).
Fig. 9. Performances for all predictions for trading (Strategy 1).
predicted returns, as opposed to those with ‘slightly pos-
itive’ and ‘slightly negative’ returns (Classes 2 and 3). In
the case of correct classifications, the average returns of
Classes 1 and 4 (at 0.84% and1.24%) are considerably higher
than those of the two other classes. This result is intuitive,
given that correct classification means that the returns
for Classes 1 and 4 are respectively larger than 0.5% and
smaller than –0.5% (larger than 0.5% for the trading strat-
egy that sells short). The noticeable impact of this higher
average return is that the negative return in the case of a
misclassification apparently does not entirely compensate
for the positive return from a correct classification. This
results not only in positive average returns for Classes 1
and 4 overall (independently of whether the classification
is correct or not), but also in considerably higher average
returns than those for Classes 3 and 4. Predicting ‘strong
positive’ returns (Class 1) leads to more than double the
average return of ‘slightly positive’ returns (Class 2). The
pattern is seen even more strongly for negative returns,
where the prediction of ‘strong negative’ returns (Class 4)
results in an average return that is more than 6 times that
of a classification of ‘slightly negative’ returns (Class 3). The
considerably smaller numbers of observations fromClasses
1 and 4 in the forecast data set are part of the reason why
the average returns for the positive and negative returns in
the first graph are positive but considerably lower than the
average returns for these classes.
Overall, this analysis has demonstrated that it is plau-
sible for trading strategies without transaction costs, or
even up to a certain level of transaction costs, to result
in considerably higher positive returns than the buy-and-
hold benchmark strategy. These results indicate that our
trading model with FSAE feature selection and a random
forest can result in superior returns after transaction costs.
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It should be noted, though, that no taxes, slippage costs, or
adjustments for risk are considered, and no statement con-
cerning the validity of the efficient market hypothesis can
be made without these aspects being included. However,
this was not an objective of the current study.
5. Discussion
This paper has classified the S&P500 open-to-close re-
turns (intraday) as a four-class problem that incorporates
‘strong positive’, ‘slightly positive’, ‘slightly negative’ and
‘strong negative’ return classes. A variety of features from
stock markets, related to currencies and commodities and
technical indicators, were incorporated for the prediction.
With regard to three of the technical indicators, namely
the RSI, the MACD and the Bollinger bands, we did not use
their values, but transformed them into trading strategies,
which were then used as the features. The feature sub-
set for the classification was determined using the FSAE
feature ranking method with noise injection in order to
make the feature subset selection more robust. The subse-
quent analysis of the feature importance indicated that the
changes in themomentum terms embody the highest level
of information for the classification of the S&P500, while
currencies rank second overall. Technical indicators such
as the moving averages and the trading strategies based
on RSI, MACD and Bollinger bands showed only medium
to high relevance. In terms of markets, the S&P500-related
information, including momentum, shows the highest im-
portance of information from all markets regarding the
prediction of the S&P500 returns. The second and third
most important markets were the Japanese Nikkei 225
and the European STOXX50. In previous research studies,
features (with and without feature extraction and selec-
tion) have commonly been used simply for classification,
without examining in more detail their feature impor-
tance for the class labels/event prediction for the future
state of the financial market. In future research, our results
for the feature importance must be validated and ana-
lyzed with respect to their generalizability to other equity
markets.
The classification of the feature subset was conducted
using the random forest classifier, and contrasted with the
performances of different setups of the KNN algorithm,
decision trees, naive Bayes and the similarity classifier. The
mean classification accuracy was demonstrated to be the
highest for the random forest model. It is noteworthy that
the prediction rates for the four classes differ considerably.
The subsequent use of four different trading strategies
showed that trading based on only a subset of the predicted
classes can be more profitable than following all predic-
tions. In particular, using only predictions of Classes 1, 2
and 4 led to the highest return for the forecasting period,
since the classification accuracy for Class 3 was clearly the
lowest and the average return from using this class predic-
tion was also comparatively low. Another essential finding
of this research is that the contributions of the classes to
the returns of the trading strategies vary. Predictions on a
‘buy’ decision for the ‘strong positive’ Class 1 or a ‘sell’ for
the ‘strong negative’ Class 4 have overall (correct classifica-
tions and misclassifications) multiple times higher returns
than those on the ‘slightly positive’ and ‘slightly negative’
return classes (Classes 2 and 3). In other words, using the
two extreme classes with returns that are far from zero in
absolute terms contributes most to the trading strategies
on average. Sincemost previous research has simply used a
binary classification problemwith only upward and down-
wardmovements being considered, this finding can help to
shed light on the way in which usingmore event outcomes
for the classification, rather than merely simple upward
or downward movements, can improve the benefit of a
trading strategy (or a bet on an event). This finding needs
to be validated in future research. It will be also of interest
to see whether this pattern is observed for the forecasts
of other financial markets and whether the prediction of
the extreme classes can result in higher average returns or
payoffs in other contexts too.
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A B S T R A C T
In the literature, researchers and practitioners can find a manifold of algorithms to perform a classification task.
The similarity classifier is one of the more recently suggested classification algorithms. In this paper, we suggest
a novel similarity classifier with multiple ideal vectors per class that are generated with k-means clustering in
combination with the jump method. Two approaches for pre-processing, via simple standardization and via
principal component analysis in combination with the MAP test and Parallel Analysis, are presented. On the
artificial data sets, the novel classifier with standardization and with transformation power Y=1 for the jump
method results in significantly higher mean classification accuracies than the standard classifier. The results of
the artificial data sets demonstrate that in contrast to the standard similarity classifier, the novel approach has
the ability to cope with more complex data structures. For the real-world credit data sets, the novel similarity
classifier with standardization and Y=1 achieves competitive results or even outperforms the k-nearest
neighbour classifier, the Naive Bayes algorithm, decision trees, random forests and the standard similarity
classifier.
1. Introduction
1.1. Background
One common type of problem in machine learning is classification,
which means using characteristics of observations to assign these ob-
servations to discrete classes [4]. Classification algorithms support the
decision-making for enterprises and individuals in numerous applica-
tions, including medical diagnostics [28], product positioning [26],
recommendation systems [21] and sentiment analysis in social media
[13]. A common interest in these algorithms in finance is with respect
to the evaluation of the creditworthiness of customers and for the credit
granting decision [13,19,42].
In the literature, researchers and practitioners can find a manifold of
algorithms to conduct a classification tasks, which include, but are not
limited to, the well-known neural networks, support vector machines,
decision trees, k-nearest neighbours, random forests and numerous
more. One of the more recently developed and applied classifiers is the
similarity classifier [33]. The first results for the similarity classifier
were published in Luukka et al. [33]. Since then, the classifier has been
applied to several medical data sets [28,32] and to two bankruptcy data
sets [30], showing high classification accuracies. Moreover, Luukka &
Leppälampi [32] demonstrated that the similarity classifier outperforms
classifiers such as linear discriminant analysis, the C4.5 algorithm [36]
and multi-layer perceptron neural networks on the medical data sets in
their study. Luukka [29] even deployed the classifier on linguistic
statements that were transformed into fuzzy numbers. Overall, the
advantages of the similarity classifier are that it is comparably com-
putationally inexpensive and requires only a small amount of ob-
servations to achieve high classification results [28].
The similarity classifier is premised on the idea to represent each
class in the data by one so-called ideal vector, which can be, for in-
stance, determined with a generalized mean. Each ideal vector is es-
sentially a point in the feature space and the class assignment is con-
ducted based on the highest similarity of an observation with one of
these points that represent the classes. The idea of similarity is closely
related to the concept of distance [14] and the similarity classifier can
be regarded as a distance-based technique. Luukka & Lampinen [31]
pointed out that distance-based techniques may face difficulties to
classify complex data structures. Hence, Luukka & Lampinen [31] in-
troduced the differential evolution based multiple vector prototype
classifier (MVDE). Their approach included defining multiple vectors
that represent each class. This approach demonstrated to be able to
handle data structures for which a simple distance-based technique was
not sufficient [31]. However, Luukka & Lampinen [31] highlighted that
the choice of the number of vectors per each class is pivotal for the
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accuracy of the classifier performance. The reason behind this is that
too few ideal vectors per class may not be sufficient to appropriately
capture the data complexity while too many will result in overfitting. As
a final remark, these authors stated that a subject for future research is
to optimize for a given data structure a suitable number of re-
presentative class vectors.
1.2. Objectives
In this paper, the idea of using multiple representatives, as pre-
sented in Luukka & Lampinen [31] in the context of their MVDE clas-
sifier, will be transferred to the context of the similarity classifier. The
aim is to define a novel similarity classifier that uses multiple ideal
vectors for the classification. This should enable to classify more com-
plex data structure, including those that are characterized by multiple
decision regions for each class, better than the standard similarity
classifier as presented in Luukka et al. [33]. As a second contribution,
the authors in this paper clearly address the research need mentioned
by Luukka & Lampinen [31] to provide a framework for the choice of
the number of representatives of a class, which is in case of the simi-
larity classifier the number of ideal vectors. The number and position of
these ideal vectors is pivotal for the classification since the distance-
based classifier's ability to capture complex data structures but at the
same time not to overfit the data depends on it. In this paper, a novel
approach for the similarity classifier will be presented, where k-means
clustering in combination with the jump method is conducted to de-
termine suitable multiple deal vectors for each class. The multiple ideal
vectors are then used within the similarity classifier to assign class la-
bels to observations. The novel similarity classifier aims to overcome
the problem of classifying observations with complex data structures.
In particular, we will illustrate the inability of the standard simi-
larity classifier to cope with more complex data structures with artifi-
cial data sets and contrast its result to the novel similarity classifier.
The remaining paper is structured as follows: in Section 2 the
methods deployed for the novel similarity classifier approach will be
introduced and the artificial and real-world data sets will be depicted,
on which the standard and the novel classifier are applied in order to
compare their performances. Moreover, the training procedure for the
classifiers will be described. In Section 3, the results of the comparison
will be presented, which will subsequently be discussed in detail in
Section 4.
2. Methods
2.1. K-means clustering
Clustering in general is concerned with finding clusters that en-
compass observations that are similar to one another and dissimilar to
those observations in other clusters [11]. In other words, observations
in a cluster have small inter-point distances in relation to the distance to
observations in other clusters [4]. The k-means clustering algorithm is
one of the first and widely applied hard clustering algorithms [11,24].
The process behind k-means clustering is rather simple. Initially, one
observation for each cluster is chosen randomly and used as the cen-
troid for the initial cluster [11]. In an iterative procedure, each ob-
servation is assigned first to the nearest cluster and, second, the cluster
centre is adjusted to represent all observations in the cluster [4]. The
assignment of an observation i to the cluster with the closest cluster
centre can be expressed as [4,12]:
= ⎧⎨⎩
− < − ′ ≠′u if x μ x μ for all j j
Otherwise
1 ‖ ‖ ‖ ‖
0
ij
i j i j
2 2
(1)
For the second step, the centre of the closest cluster is adapted for
the new additional observation. A cluster centre μj is updated as [4]:
= ∑∑μ
u x
uj
i ij i
i ij (2)
The objective function that will be minimized with respect to the
membership coefficients and cluster centres is [4,24]:
∑∑= −
= =
J u x μ
i
N
j
k
ij i j
1 1
2
(3)
This function represents the sum of squared distances of each ob-
servation to its cluster centre [4].
2.2. Jump method
An essential aspect of the k-means algorithm is that the data is
partitioned into K clusters. However, K, the number of clusters, has to
be specified in order to conduct the clustering and the choice of K is
nontrivial [4]. The problem for choosing K arises from the fact that the
total squared distance, which is commonly used in the evaluation of a
clustering, will always prefer more clusters to less. Therefore, using this
way of evaluating clusters will end up choosing as many clusters as
observations are available [47]. In the literature, many approaches to
determine a suitable number of clusters can be found. These include the
‘Elbow method’, the ‘Gap statistic’ [40], the ‘Jump method’ [39] and
the ‘Calinski-Harabasz index’ [6]. For the novel similarity classifier, the
k-means with the jump method is chosen since this approach is theo-
retically motivated, applicable for a wide range of problems and mix-
ture distributions, and even performs well when clusters are over-
lapping to a large extent [39]. The ‘jump method’ developed by Sugar &
Gareth [39] is related to rate distortion theory. Distortion is a measure
for the dispersion within clusters [11]. The minimum distortion dk
obtainable with K cluster centres is [39]:
= − −… −d p E X c X c
1 min [( ) Γ ( )]K
c c
X
T
X
, ,
1
K1 (4)
where X is a p-dimensional random variable with a mixture distribution
with G components and covariance matrix Γ for X. In addition, c1,…, cK
are the candidates for the K cluster centres, cX is the cluster centre that
is closest to X, and T indicates the transpose. For the use in practice, the
distortion dK can be estimated based on the minimum distortion dK
obtained in the k-means clustering [39]. The covariance matrix Γ might
in practice not be known. However, Sugar & Gareth [39] stress that the
identity matrix can be used as a simplification, which makes dK the
mean squared error. They deployed this approach and found it to be
robust concerning the shape of the distortion curve for different cov-
ariance matrices [39]. Consequently, the minimum distortions can ea-
sily be obtained given the observations and K clusters. The ‘jump
method’ can be stated as follows [39]:
1. Conduct k-means clustering with a different number of clusters from
1 to K and determine the values for dK , the distortions that corre-
spond to the number of clusters
2. Choose the parameter called ‘transformation power’ denoted by Y,
where Y > 0, which is required for the calculation of the ‘jumps’ in
the next step. A common choice is Y=p/2
3. Transform the distortions with the transformation power Y by
computing −dK Y . Calculate ‘jumps’ as JK=  −− −−d dK Y K Y1 , which is the
difference between the transformed distortions of k-means clus-
tering with K clusters compared to K-1 clusters
4. Determine the estimated number of clusters denoted K∗ as the k
corresponding to the largest ‘jump’, which is the maximum JK. In
order to be able to obtain as a result K=1, the distortion for no
clusters is defined as  =−d 0Y0
The choice of the Y parameter, the transformation power, is no
straight forward. For uncorrelated features and Gaussian clusters, Sugar
C. Lohrmann, P. Luukka Decision Support Systems 111 (2018) 27–37
28
& Gareth [39] suggest choosing Y=p/2, where p is the number of
dimensions of the data. However, features are often correlated to a
certain extent and do not need to be in Gaussian clusters. If it is im-
practical to analyse the cluster distribution, Sugar & Gareth [39] re-
commend to either use a relatively low value for the transformation
power Y (e.g. 1 or even lower) or to determine Y with the help of the
‘effective’ dimension of the data set. In this paper, two approaches will
be considered, selecting Y premised on the ‘effective’ dimensionality or
simply setting it to 1.
2.3. ‘Effective dimensionality’
In an example, Sugar & Gareth [39] explain that the effective di-
mensionality of a data set is lower than the dimensionality of the fea-
ture space if there are features that are highly correlated. In this paper,
we will use principal component analysis to transform the data into
uncorrelated principal components [1,20]. We will keep only a subset
of all principal components, since the first principal components are
often enough to represent the overall data set and its variance well
[11]. Since the new features are uncorrelated, their effective dimension
should be equal to their dimension. Yet, the choice of how many of the
principal components should be retained is not trivial [35,43]. Ex-
tracting too few principal components will result in a loss of informa-
tion while extracting too numerous principal components might include
irrelevant information or noise [7,51].
In the literature, various methods to determine a suitable number of
principal components can be found [7]. These methods include, but are
not limited to, the modified broken stick model [7], the Guttman-Kaiser
criterion [17,22], the SCREE test [8], the Minimum Partial Average
(MAP) test [43], Bartlett's test [2] and Parallel Analysis [18]. Of these
methods, the MAP and Parallel Analysis demonstrated the highest
performance across different data complexities [35,50,51]. The
minimum average partial (MAP) test is based on conducting a PCA and
subsequently analyse the matrix of partial correlations [7,35,43,50].
The idea behind this procedure is that the average squared partial
correlation will decline until a ‘unique’ component would be removed
[43,50]. Therefore, the stopping point is reached at the minimum
average squared partial correlation [44,50]. According to Velicer [43]
the method results in an exact stopping point for the selection of
principal components. Velicer et al. [44] find that the average of the
partial correlations to the fourth power outperforms the initial ap-
proach with average squared partial correlations for continuous data. A
disadvantage of the MAP is that it can in certain situations under-
estimate the number or principal components to select [50].
The second highly recommended approach is Parallel Analysis de-
veloped by Horn [18] [44,50]. It is based on the criticism that the proof
for another well-known approach for choosing the number of principal
components, the Guttman-Kaiser criterion (also referred to as K1 rule),
is concerned with population statistics and, therefore, not applicable for
samples [15,18]. Essentially, Parallel Analysis is concerned with finding
those principal components that account for a larger amount of var-
iance than a counterpart based on random data [35]. An alternative
approach for Parallel Analysis is to deploy an upper percentile (com-
monly the 95th) for the distribution of the eigenvalues as explained by
Glorfeld [16]. Using this approach decreases the tendency of Parallel
Analysis to extract too numerous components [16].
MAP and Parallel Analysis usually lead to the selection of the same
principal components to retain [35]. However, since results may differ,
applying both approaches is beneficial since MAP and Parallel Analysis
complement each other given that the first may extract too few com-
ponents and the second too many [35,51].
2.4. Novel classification algorithm
The idea of the similarity classifier originates in fuzzy theory. Fuzzy
theory is based on the idea that a number of non-mathematical
properties cannot be reflected by crisp sets since they solely indicate
whether a certain property is present or not [23]. In contrast to that,
fuzzy sets reflect a membership degree to a class or property [49]. Using
membership degrees allows to model partial memberships. This is of
interest for classification since it allows partial membership of an ob-
servation to classes [33]. As a consequence, the similarity measure can
be used as a classifier using the partial membership values of an ob-
servation to classes in order to assign an observation to the class it is
most similar to. This type of classification is referred to as supervised
classification since the class label of observations is known [4,45].
The similarity classifier presented by Luukka et al. [33] was pre-
mised on the idea to compute for each class one so-called ‘ideal vector’
that is supposed the represent that class well. There are several ways of
computing ideal vectors, of which arithmetic mean is one of the earliest
methods used. To classify an observation, it is compared to the ideal
vector of each class and, eventually, a similarity value is calculated. The
similarity embodies a membership degree for an observation to a class.
The class assignment is then simply conducted based on the highest
similarity, meaning that the observation is assigned to the class for
which is shows the highest membership degree (between [0,1]). For
more details, please see Luukka et al. [33] and Luukka [28].
The novel similarity classifier algorithm is premised on the idea to
represent each class by multiple ideal vectors. The k-means clustering
algorithm with the jump method will be deployed in order to determine
the ideal vectors per class and gives a clear answer to the question how
many ideal vectors per class should be constructed. An observation is
then assigned to the class that corresponds to the ideal vector it is
closest to. This approach seems suitable in case that classes have one or
more decision regions that can be represented by one or more clusters.
It should be even adequate when the clusters representing the decision
regions overlap since using the jump method has demonstrated to
perform well even when clusters overlap to a large extent [39]. The idea
is related to the K-Nearest Neighbour (KNN) algorithm but attempts to
be more robust for classification by finding the nearest cluster instead of
the nearest neighbours to conduct the class assignment. Opposed to
KNN, it is not necessary to define the number of nearest neighbours/
clusters, since the nearest cluster aims at representing the nearest re-
gion where observations of a class are located.
The novel algorithm can be characterized by several distinct steps,
which are illustrated in a flow chart in Fig. 1 and depicted in detail
subsequently.
Step 1: Data pre-processing. Before the novel similarity classifier algo-
rithm is applied, the input data require pre-processing. We examined
two different setups: one based on simple standardization to the com-
pact interval [0,1] and using the original features of the data set, and, a
second one, based on normalization of the raw data, so that that they
follow a standard normal distribution and using PCA to extract new
features from the existing features in the data. For the second approach,
a combination of MPA and PA can be used to select a suitable number of
principal components, as recommended by O'Connor [35], and subse-
quently standardize them to the compact interval [0,1] in order for the
similarity classifier to be applicable.
Step 2: Division of the data set. The available data is divided into a
training set and a test set via the hold-out method (e.g. 70% training
samples and 30% test samples).
Step 3: Conduct k-means clustering for each class. For the training
data, the k-means clustering is performed for each class. The clus-
tering is performed for each suggested number of clusters from 1 to
K, where K is a user-specified number. For each number of clusters
K, the average distortion over the observations xi from i=1 to N is
estimated as:
 ∑∑= − −
= =
∗ −
d
N
u x c x c
p
1 ( ) Γ ( )
K
i
N
k
K
ik i k
T
i k
1 1
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where uik shows the membership of an observation xi to cluster ck,
which takes for the cluster with the closest cluster centre the value 1
and otherwise 0:
= ⎧⎨⎩
− < − ′ ≠′u if x c x c for all k k
Otherwise
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0ik
i k i k
2 2
(6)
This notation differs in certain elements from the one presented
above from Sugar & Gareth [39]. First, the minimization of the dis-
tortion with respect to the cluster centres for a given K is conducted
already in the k-means algorithm, so that is not present in this formula
any more. Second, we use the membership to a cluster in our formula
and include all clusters in it since it appeared more straight-forward for
the implementation then using cX for the notation as the closest cluster
centre. The xi denotes a p-dimensional observation and Γ is the covar-
iance matrix for X, the data set, but can for reasons of simplicity be the
identity matrix, as explained before. The cluster centre candidates are
denoted c1,…, cK and T indicates the transpose. The distortion estimatedK is obtained by summing for each observation xi over the cluster
centres from 1 to K and then summing over the observations themselves
and taking the average over the observations. The outcome for the
class-specific clustering is a distortion vector with each element being a
value of dK corresponding to a specific number of clusters K.
Step 4: Determine optimal number of clusters for each class. For the
jump method, the transformation power Y is then used in the ex-
ponent of the distortions dK to obtain −dK Y . Afterwards, the ‘jumps’,
meaning the differences between subsequent values of these trans-
formed distortions −dK Y , are calculated as:
 = −− −−J d dK K Y K Y1 (7)
where JK is the jump between the distortions of using K and K-1 clusters
on the training data. The number of clusters where the maximum jump
JK can be observed, is the candidate for the optimal number of clusters.
The cluster centres that correspond to the candidate for the optimal
number of clusters is recorded/saved. To choose the optimal number of
clusters for each class, the k-means clustering (Step 3) and the Jump
method (Step 4) are repeated n times (e.g. n=10). This eventuates in n
candidates for the optimal number of clusters for the class. The number
of clusters for a class is then chosen as the most frequent candidate
number of clusters suggested (mode-value).
Step 5: Record ideal vector candidates. For future steps, the cluster
centres of all of the n repetitions of Step 3 and Step 4 that also led to
the optimal number of clusters are recorded/saved. Therefore, for
each class, there are one or more sets of ideal vector candidates.
Step 6: Training with ideal vector candidates. For each class, a
randomly selected set of ideal vector candidates from those saved in
the previous step is chosen and they are used together for the si-
milarity classifier. The calculations in this step correspond to a large
extent to those of the original similarity classifier with the difference
that each set of ideal vector candidates contains multiple ideal
vectors. First, for each feature d the similarity between each ideal
vector candidate vo and each sample (vector), for simplicity of the
index notation denoted x instead of xi, of the training set is calcu-
lated as:
= − −S x v x v( , ) 1 | |d o d dp o dp, ,p (8)
where xd denotes the d-th element of the vector of observation x and vo,
d is the d-th element of the ideal vector vo. Moreover, p is a parameter
for the similarity that is in the most basic case set to 1. Afterwards, the
generalized mean from this similarity vector is computed by summing
over all features d and then dividing by the number of features denoted
by D to obtain the similarity of the observation x with the entire ideal
vector candidate vo:
∑= ⎛
⎝⎜
⎞
⎠⎟=
S x v
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d o d
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where m is a parameter for the applied mean function and S(x,vo) re-
presents the scalar similarity value of the observation x with the ideal
vector vo. This is repeated for all ideal vectors to obtain for the ob-
servation x the similarity with all clusters (for all classes). Finally, ob-
servation x is assigned to a cluster based on the highest similarity value
that the observation has with the ideal vector (candidate) of a cluster:
=
= …
Cl x S x v( ) arg max ( , )
o O
o
1, . (10)
Since the cluster to which x is assigned, belongs to one of the
classes, the observation is assigned to the corresponding class. This can
be formally expressed as a simple mapping from the cluster Cl of the
observation x to the class C:
=C x f Cl x( ) ( ( )) (11)
Repeating these calculations of Step 6 for each observation gives all the
predicted class labels. These are compared to the target class labels in the
training data set and the classification accuracy (or another evaluation
criterion) is calculated. The evaluation criterion can be specified by the user,
for instance also the False-Positive-Rate (FPR) or the False-Negative-Rate
(FNR) on the training set can be chosen as evaluation criterion. For the
given combination of sets of ideal vector candidates for each class, this
evaluation criterion is computed. The calculations in this step are repeated
(e.g. 50 times) and for each run a different combination of sets of ideal
vectors are used and the value for the evaluation criterion and the corre-
sponding ideal vector candidates (for all classes) are recorded.
Fig. 1. Flowchart of the similarity classifier with multiple ideal vectors.
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Step 7: Choice of ideal vectors. The combination of sets of ideal
vector candidates that resulted in the best value for the evaluation
criterion for the training set, e.g. the highest performance, are
chosen as the ideal vectors for the similarity classifier. This allows to
customize the choice of ideal vectors to the evaluation criterion. The
authors suggest for instance to choose the ideal vectors to maximise
the mean accuracy or minimize the False-Negative-Rate or False-
Positive-Rate, depending on the application and objective.
Step 8: Calculation of the test set performance. The ideal vectors
obtained from the previous Step 7 are deployed with the similarity
classifier on the test data set from Step 2. The calculation of the
similarities, the assignment of classes and of the performance are
conducted with the formulas (8) to (11) from Step 6.
2.5. Data
For this paper, three artificial data sets are generated to investigate
the difference between the original and novel similarity classifier ap-
proaches. In addition to that, three real-world data sets were obtained
from the UCI Machine Learning Repository [27] to compare the per-
formance of these approaches with other well-known supervised clas-
sification algorithms.
The three artificially composed data sets are all characterized by
multiple decision regions for each class. This setup is supposed to de-
monstrate the novel similarity classifier's ability to use multiple ideal
vectors to cope with more complex decision regions than the original
similarity classifier using only a single ideal vector. Moreover, the
performance with different pre-processing and Y parameters is in-
vestigated. The specific features for each of the three artificial datasets
A, B and C is depicted in Table 1.
The first data set, Case A, normally distributed features with small
variations are generated that form two-dimensional clusters for each
class. In this data set small overlap of classes is present, but the feature
space can almost distinctly be divided into the multiple decision regions
for each class. The second artificial data set, referred to as Case B, is
related to the binary XOR problem with the three-dimensional feature
space being divided into two distinct decision regions for each class
(overall 4 decision regions). The last case, Case C, is characterized by a
three-dimensional feature space for a 4-class classification problem. For
each class, there exist two clusters, one cluster with small variation in
the data and the other with moderate variation. None of the clusters
shows an overlap with another cluster of the same or another class. All
features are scaled into the compact interval [0,1]. The three artificial
data sets are plotted in Fig. 2.
The real-world data sets discussed in this paper are all related to the
approval and quality of credit borrowers. It seemed reasonable to use
these data sets since we assumed that distinct decision regions for good
and bad applicants exist and that they can be characterized rather well
in form of multiple clusters. Moreover, the class imbalance that is
common for many credit default/approval problems, meaning that one
class can be considerably larger than the other, is assumed to be more
effectively addressed with a classifier based on clusters than e.g. simply
based on nearest neighbours. However, we want to remark, that our
selection for real-world data sets is by no means exhaustive and
knowing in advance in what real-world data sets this is useful is not
possible.
The subject of credit approval is essential for financial institutes
since they require approaches to support the decision-making for loan
applications as well as for the ongoing monitoring of the financial si-
tuation of their clients [42,46]. The credit granting decision copes with
the risk of granting credits to not suitable applicants and the non-ac-
ceptance of credits for solvent clients [25]. The classification of clients
is particularly important since a credit scoring that is conducted ef-
fectively will most likely lead to savings in the future [48].
The first credit data set is available at the UCI Machine Learning
Repository as ‘Credit Approval Data Set’. It is listed as a ‘Financial’ data
set and neither the date of donation nor the author is known. The data
set contains 690 observations of 15 features related to credit card ap-
plications. Six features are continuous. The remaining attribute values
in the data set have been adjusted to meaningless symbols by the donor.
We changed these symbols for the similarity classifier into discrete in-
teger values. The class label is binary and indicates whether a credit
was granted to a client or if the credit proposal was rejected. The fea-
tures characterize the client and represent properties of the credit de-
cision. The ‘Credit Approval’ data set contains missing values, which
have been removed for this study, which leaves 653 complete ob-
servations for the classification task.
The second real-world data set is the numeric version of the ‘Statlog
(German Credit Data) Data Set’. The original data set was donated by
Professor Dr. Hans Hofmann in 1994 and adjusted by Strathclyde
University by changing categorical features into numeric integer-valued
ones. This data set encompasses 1000 observations with 24 numeric
features. It does not contain any missing values. The data are char-
acterized by two classes, which represent the evaluation if a person is a
good or bad credit-taker and the 24 features embody characteristics of
the credit borrower. In contrast to all other data set, the imbalance in
this data set was high with 70% belonging to the first group and 30% to
the second.
The third and last real-world data set is the ‘Statlog (Australian
Credit Approval) Data Set’, which is an adapted form of the ‘Credit
Approval Data Set’. Neither the donor nor the date of donation for this
data set is known. This financial data set is also related to credit card
applications. The data set contains 690 observations without missing
values. The 14 features, of which 6 are continuous and 8 are discrete,
represent the characteristics of a credit applicant. The binary class label
indicates whether the credit decision was positive or negative.
2.6. Data pre-processing and training process
As mentioned above, one out of two approaches for the pre-pro-
cessing in this paper is based on principal component analysis and
choosing a suitable number of principal components as new features.
For the choice of the number of principal components, Parallel Analysis
(with 1000 random data sets) as the upper bound for the number of
components, and MAP will be used. If the result differs between MAP
[44] and PA, it will be investigated whether the MAP decision was
‘close’. Since the authors did not find a specification for what con-
stitutes a ‘close call’ [35], it is defined as an increase of the average
Table 1
Characteristics of the three artificial data sets.
Cases Observations Class Feature 1 Feature 2 Feature 3
Case A 900 1 N(1,0.2) N(1,0.2) –
1 N(2,0.2) N(2,0.2) –
1 N(3,0.2) N(3,0.2) –
2 N(3,0.2) N(2,0.2) –
2 N(2,0.2) N(1,0.2) –
2 N(1,0.2) N(3,0.2) –
3 N(3,0.2) N(1,0.2) –
3 N(1,0.2) N(2,0.2) –
3 N(2,0.2) N(3,0.2) –
Case B 1000 1 [0, 0.5) [0, 0.5) [0, 1]
1 [0.5, 1] [0.5, 1] [0, 1]
2 [0, 0.5) [0.5, 1] [0, 1]
2 [0.5, 1] [0, 0.5) [0, 1]
Case C 1000 1 N(2,0.1) N(2,0.1) N(2,0.1)
1 N(6,0.5) N(6,0.5) N(6,0.5)
2 N(6,0.1) N(6,0.1) N(2,0.1)
2 N(2,0.5) N(2,0.5) N(6,0.5)
3 N(2,0.5) N(6,0.5) N(2,0.5)
3 N(6,0.1) N(2,0.1) N(6,0.1)
4 N(6,0.5) N(2,0.5) N(2,0.5)
4 N(2,0.1) N(6,0.1) N(6,0.1)
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partial correlations per step of< 70% points. The reasoning behind this
choice is that in the regarded cases in this paper, changes per additional
component that showed a difference of up to 70% points appeared
small compared to larger changes that were characterized by increases
of at least 100% for an additional component. Therefore, the 70%
points threshold for an additional component appears to be justified.
For the k-means clustering, we suggest K, the maximum number of
clusters that k-means is performed with, to be set as the maximum of,
first, 10 clusters and, second, of the number of observations contained
in the smallest class divided by 20. This should ensure that the number
of clusters K is only set larger than 10 if on average 20 or more ob-
servations will be contained in a cluster. If the data set is small or the
minority class(es) encompass few observations, the minimum number
of clusters might have to be reduced below 10 to avoid a potential
overfit. On the other hand, if the data set is large, the average number
of observations per cluster to allow additional clusters can be set higher
to capture all pattern contained in the data.
For the classification, the data is divided with the holdout method
and using stratified sampling. For all algorithms in this paper the ob-
servations were split into 70% training data and the remaining 30% for
testing. For all classifiers, despite the standard and novel similarity
classifiers, 1000 iterations are performed during the training of the
classifiers.
For the standard and novel similarity classifiers, the entire algo-
rithm is run for different combinations of the p- (varied from 1 to 8) and
m-parameter (varied from 1 to 6) to find the values for p and m with
which highest mean accuracy for the given dataset can be reached. This
is referred to as ‘optimal value search’ and for each combination of p
and m, 100 iterations of the algorithm are performed before the mean
performances are computed. In general, conducting the optimal value
search increases the number of required computations to improve the
mean classification accuracy. In order to avoid increasing the compu-
tational complexity notably, 100 iterations are conducted with optimal
value search as opposed to 1000 iterations for the remaining classifi-
cation algorithms.
For the novel similarity classifier, the number of clusterings n (in
Step 3 and 4 of the algorithm) was set to 10 and the random combi-
nations for the ideal vector candidates was chosen to be 50 (Step 6 of
the algorithm).
For the simplified artificial data sets with known structure using the
standard parameters p= 1 (parameter for similarity) and m=1
(parameter for the generalized mean) for all similarity classifiers is
sufficient, since the data structures are simple enough to find very good
solutions without an optimal value search. For the real-world data sets,
the performance of the novel and original similarity classifiers is
compared to the K-nearest neighbour algorithm [10], the Naive Bayes
classifier [38], decision trees [37] and the ensemble learning algorithm
called random forest [5]. All calculations are implemented with the
MATLAB™- software. The code for the MAP and PA are based on Ma-
tlab-files provided by O'Connor [34].
3. Results
3.1. Results for the artificial data sets
First, the results for the artificial datasets are presented in Table 2.
For the first artificial dataset, Case A, the standard classifier in the
three-class problem shows a mean accuracy of only 32.47%. In contrast
to that, the mean accuracy of the novel similarity classifiers is 96.97%
and 96.87% respectively. It has to be stressed, that for the two-di-
mensional Case A transformation power Y=p/2 is also equal 1 (since p
is in the context of the jump method the dimensionality). Consequently,
the results in Case A are for both novel classifiers essentially equal.
Using the one-sided version of the Welch's test with unequal variance to
test whether one population mean is larger than another, the means for
the novel similarity classifier with both transformation powers are
highly significantly larger than that of the standard classifier (with>
99.99% confidence). Clearly, for the two remaining 3-dimensional
cases, Y=p/2 and Y=1 do not take the same values. For Case B the
highest result is accomplished with the novel similarity classifier with
Y=1 with 96.53%. For the novel similarity classifier with transfor-
mation power of Y=p/2 the mean accuracy is 90.49%, which is highly
significantly lower than that of the same classifier with Y= 1. How-
ever, only the standard classifier reaches a mean accuracy of close to
50%. On account of this, the novel similarity classifiers both perform
highly significantly better on Case B than the original similarity clas-
sifier with a single ideal vector. For the last data set, Case C, the
Fig. 2. Artificial data sets.
Table 2
Performance for artificial data sets with standard parameters.
Data set Similarity Mean accuracy Variance runs Y
Case A Standard 0.3247 0.0037 100 –
Case A Novel 0.9697 0.0001 100 p/2
Case A Novel 0.9687 0.0001 100 1
Case B Standard 0.5142 0.0006 100 –
Case B Novel 0.9049 0.0009 100 p/2
Case B Novel 0.9653 0.0004 100 1
Case C Standard 0.3493 0.0081 100 –
Case C Novel 1 0 100 p/2
Case C Novel 1 0 100 1
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standard similarity classifier reaches for the four-class problem a mean
accuracy of 34.93% while the novel similarity classifier with Y= 1 and
Y=p/2 accomplishes a 100% performance on the non-overlapping
class clusters of the data set. This result is once again highly significant
compared to the standard classifier (with>99.99% confidence).
The performance of the novel similarity classifier and the standard
similarity classifier are also tested with the suggested pre-processing
with PCA. The mean accuracies obtained with this pre-processing are
highlighted in Table 3. The magnitude of the performances for the ar-
tificial data sets is comparable with those without PCA. For Case 3 both
transformation powers for the novel classifier eventuate in a 100%
mean accuracy. Overall, the results for all artificial data sets show that
the novel similarity classifier with and without PCA as pre-processing
clearly outperforms the standard similarity classifier with the mean
accuracy being in all cases highly significantly larger (with>99.99%
confidence). However, the difference in the performances with the two
transformation powers Y can be significant, as was observed for Case B.
Overall, these artificially created classification problems clearly show
the advantage of the proposed novel method compared to the standard
similarity classifier.
The results for the artificial data sets are calculated only for the
default parameters for the similarity of p=1 and m=1, since the
results of the novel similarity classifier are already high and only a
marginal improvement could be expected for these data sets.
3.2. Results for the real-world data sets
In this next step, the results of the real-world credit data sets
achieved with the similarity classifiers and different pre-processing
methods are presented and compared with the performances of the
KNN algorithm, the Naive Bayes classifier, decision trees and random
forests on these credit data sets.
The performance of all classifiers on the first real-world data sets,
the ‘Credit Approval’ data set, is highlighted in Table 4. The first seven
classifiers presented there are the standard and novel similarity classi-
fier with different pre-processing methods. The remaining 9 classifiers
are different setups for the remaining benchmark algorithms. For KNN
the result on the test set with a single nearest neighbour, the 10 nearest
neighbours and for the optimal number k are displayed. To obtain the
optimal number for k, the KNN algorithm was run for all k from 1 to the
training sample size and the result on the test data set for the setup
leading to the best mean accuracy on the training data set was chosen
and is displayed in the table. For the Naive Bayes classifier two setups
were used: the first assumed normal Gaussian distributions, the second
used a kernel with normal smoothing. The random forest is composed
of 50 decision trees and is implemented in the first setup with minimum
leafsize of 1. The second setup displays the mean performance on the
test data set based on the minimum leafsize (from 10 to 100 by steps of
10) that showed the highest mean training performance. The same
procedure was deployed for the two decision tree setups. The different
leafsizes are tried since too small leafsizes may incorporate noise and
harm the generalization ability while too large leafsizes can result in a
classifier that only captures the broadest patterns.
For the ‘Credit Approval’ data set, the highest performance of
87.33% is reached with the ensemble learning algorithm random de-
cision forest with minimum leafsize= 1. This performance is closely
followed by the random decision forest with minimum leafsize= 10
with mean accuracy 87.08% and the novel similarity classifier with
transformation power Y= 1 leading to mean performance of 87.06%.
Three aspects of this result are noteworthy. First, the novel similarity
classifier with Y= 1 achieves a performance that is competitive to the
one of the ensemble learning algorithm, random forest, and possesses
the highest mean accuracy for all classifiers that are based on a single
learning algorithm. Second, using the Welch's test (with unequal var-
iances), it can be demonstrated that the mean accuracy accomplished
with the novel similarity classifier with Y=1 is highly significantly
larger than that of the standard similarity classifier (p-value < 0.001).
Thirdly, in comparison with all other single learning algorithm-based
classifiers, the mean accuracy of the novel similarity classifier with
Y=1 shows a highly significant positive difference in the mean per-
formance. The classifier mean accuracies with the 4 selected principal
components (PCs) in the pre-processing are between 5.42% to 8.09%
lower than its direct counterpart without PCA and only standardized
initial features.
In credit scoring and for the evaluation of credit applications, the
consequences of misclassification are unequal. Consequently, it appears
suitable to evaluate the classifiers' performances also with respect to the
False-Negative-Rate (FNR) and the False-Positive-Rate (FPR). For all
real-world data sets, the FNR represents the proportion of falsely re-
jected customers to the sum of falsely rejected customers and the
rightfully accepted customers. In other words, it is the share of custo-
mers that is falsely classified as bad compared to all customers that are
actually good. Opposed to that, the FPR is the proportion of falsely
accepted customers to the sum of falsely accepted customers and the
rightfully rejected ones. The FPR is with respect to credit decisions
more relevant than the FNR. In particular, classifying a bad customer
falsely as a good one and giving him/her a credit that may not be repaid
(as focused on by FPR) outweighs the potential forgone profit of as-
signing a good customer to the bad customer class (as emphasized by
FNR) [3,9,41].
Since the FPR is of additional relevance for credit scoring, for each
real-world data set one novel similarity classifier was customized in the
choice of ideal vectors with respect to the FNR rate. This classifier is
referred to as ‘Novel Similarity Classifier (Minimize FPR)’. The lowest
FPR rate for the ‘Credit Approval’ data set of 7.2% is achieved for the
standard similarity classifier. On the other hand, the FNR for this setup
belongs with 19.6% to one of the higher rates and is above the mean
and median of all classifiers. The FNR of the novel similarity classifier
with Y= 1 is with 5.6% one of the lowest, while the FPR with 19.0% is
above the median of all algorithms. Comparing FPR and FNR stressed
that the novel similarity classifier with Y=1 performs very well with
respect to avoiding allocating good customers in the ‘bad’ class and
foregoing profits but worse than the average in recognizing customers
that should not be assigned to the ‘good’ class and, therefore, avoiding
credit default. The ‘Novel Similarity Classifier (Minimize FPR)’ with
Y=1 leads to a slight improvement of the FPR from 19.0% to 15.5%
compared to the novel similarity classifier with Y=1 that was custo-
mized with respect to the mean accuracy. This improvement in FPR was
accomplished as a trade-off to the mean accuracy. However, for this
data set the ensemble learner random forest still achieved a better FPR
and at the same time a higher classification accuracy. The result of the
optimal parameter value search for the ‘Credit Approval’ data set with
the novel similarity classifier with Y= 1 is illustrated in Fig. 3.
The surface for the mean accuracy for the novel similarity classifier
appears smooth and high accuracies are achieved and seem robust with
respect to several different setups of the p and m parameter.
The classification performances for the ‘German Credit’ data set are
presented in Table 5. The best mean accuracy for the ‘German Credit’
Table 3
Performance for artificial data sets after optimal value search.
Data set Similarity PC Mean accuracy Variance Y
Case A Standard-PCA 2 0.3116 0.0039 –
Case A Novel - PCA 2 0.9912 0.0000 p/2
Case A Novel - PCA 2 0.9913 0.0000 1
Case B Standard-PCA 3 0.4824 0.0005 –
Case B Novel - PCA 3 0.9028 0.0011 p/2
Case B Novel - PCA 3 0.9613 0.0001 1
Case C Standard-PCA 3 0.3135 0.0085 –
Case C Novel - PCA 3 1 0 p/2
Case C Novel - PCA 3 1 0 1
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data set of 75.84% is again reached with the random forest algorithm.
Notwithstanding, the highest classification accuracies of single classi-
fier algorithms is once more accomplished with the novel similarity
classifier with Y=1. Compared to the remaining single classifier al-
gorithms, the novel similarity classifier's mean classification accuracy is
highly significant with the single exception of the standard similarity
classifier based on 8 PCs. Notably, the performance of the standard
similarity classifier with and without PCA belongs to the best mean
accuracies for all algorithms on this data set. However, the novel si-
milarity classifier's mean accuracy is significantly larger than that of the
standard similarity classifier (p-value= 0.0193).
For the ‘German credit’ data set, the novel similarity classifier with
Y= 1, eventuates in a FPR of 67.4%, which is in absolute terms high
but compared to all other algorithms not far from the mean FPR. For the
FNR, this classifier ends up with a value of 9.5%, which belongs to the
better results for FNR, being well below the median value. The most
accurate classifiers, the random forests, show FPR values of 58.1% and
66.8%. The tendency of most algorithms to result in high FP rates and
lower FN rates appears to be the consequence of the high class im-
balance with the positive class being with 70% the apparent majority.
However, the novel similarity classifier that was customized to result in
lower FPR values shows the opposite behaviour, being with a low FPR
of 17% good at avoiding to give credits to ‘bad’ customers while with
53.5% FNR being worse at not giving credits to ‘good’ customers. Given
that the FPR for credit decisions is of higher relevance, this algorithm
seems very suitable to reduce potential losses. The result of the optimal
parameter value search for the ‘German Credit’ data set of the novel
similarity classifier with Y= 1, is illustrated in Fig. 4. It again shows a
rather stable and smooth surface for the mean classification depending
on the p and m parameter showing that good classification perfor-
mances can be reached with different setups of these parameters.
The classification results on the third real-world data set, the
‘Australian Credit’ data set, are presented in Table 6. The highest mean
accuracy on the ‘Australian Credit’ data set is 87.37%, which is
achieved with the novel similarity classifier with transformation power
Y=1. The performance of the standard similarity classifier with
87.27% embodies the second highest mean accuracy. It is remarkable,
that the mean performance of the novel similarity classifier with Y=1
not only exceeds the mean performance of the ensemble learner
random forest, but this difference is even highly significant. On top of
that, the mean accuracy of the novel similarity classifier with Y=1 is
highly significantly larger than that of almost all other algorithms - the
KNN classifiers, decision trees, random decision forests, Naive Bayes
and the novel similarity classifiers – with the sole exception of the
standard similarity classifier.
The lowest FPR rate for the ‘Credit Approval’ data set of 9.0% is
accomplished with the novel similarity classifier that was customized to
result in low FPR rates. Also, this algorithm still leads to a performance
that is competitive or higher than that of the KNN algorithms, the Naive
Bayes and the decision trees. The novel similarity classifier with Y=1,
the best performing algorithm on this data set, is with a FPR of 13.3%
still below the average FPR rate of all classifiers. The FPR of the random
forests is with 12.4% and 12.0% in magnitude comparable to that of the
novel similarity classifier with Y= 1. The result of the optimal para-
meter value search for the ‘Australian Credit’ data set and the novel
similarity classifier with Y= 1 is illustrated in Fig. 5.
Overall, the novel similarity classifier achieved for all artificial data
sets superior classification results to the standard similarity classifier
Table 4
Results for the ‘Credit Approval’ data set (the highest mean accuracy, the lowest FNR and the lowest FPR are highlighted in bold).
Classification algorithm Mean accuracy Variance Mean FNR Mean FPR p m Y
Standard similarity classifier 0.8599 0.0004 0.196 0.072 6 4 –
Novel similarity classifier 0.8525 0.0005 0.133 0.160 1 1 p/2
Novel similarity classifier 0.8706 0.0005 0.056 0.190 6 5 1
Novel similarity classifier (minimize FPR) 0.8615 0.0003 0.119 0.155 2 6 1
Standard similarity classifier (PCA, 4 PCs) 0.8057 0.0005 0.010 0.284 1 1 –
Novel similarity classifier (PCA, 4 PCs) 0.7716 0.0008 0.243 0.216 1 2 p/2
Novel similarity classifier (PCA, 4 PCs) 0.8076 0.0005 0.324 0.085 4 4 1
K-nearest neighbours, k= 1 0.8184 0.0005 0.207 0.161 – – –
K-nearest neighbours, k= 10 0.8608 0.0004 0.142 0.137 – – –
K-nearest neighbours, best k= 1 0.8184 0.0005 0.207 0.161 – – –
Naive Bayes (normal Gaussian distribution) 0.8039 0.0006 0.321 0.093 – – –
Naive Bayes (kernel with normal smoothing) 0.6823 0.0012 0.425 0.230 – – –
Random decision forest (min leafsize= 1) 0.8733 0.0004 0.129 0.125 – – –
Random decision forest (min leafsize= 10) 0.8708 0.0004 0.126 0.132 – – –
Decision tree (min leafsize= 1) 0.8322 0.0007 0.194 0.147 – – –
Decision tree (min leafsize= 10) 0.8561 0.0005 0.157 0.133 – – –
Fig. 3. Optimal value search for the novel similarity classifier with Y= 1 (‘Credit Approval’ data set).
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with only a single ideal vector per class. For the real-world data sets, the
novel similarity classifier with Y=1 was performing at least as accu-
rate as the standard classifier, in two data sets it was significantly more
accurate than the standard similarity classifier, in one of them the
difference was even highly significant. Compared to the remaining
benchmark algorithms, the novel similarity classifier showed in most
cases competitive result, often even outperforming the benchmark
classifiers.
4. Discussion
In this paper, the authors designed a novel similarity classifier based
on k-means clustering. The k-means clustering is deployed in combi-
nation with the jump method to determine the number of clusters and
also the cluster centres themselves for each class. These clusters are
then used as the multiple ideal vectors for each class in the similarity
classifier. It is also possible to a certain extent to customize the classifier
Table 5
Results for the ‘German Credit’ data set (the highest mean accuracy, the lowest FNR and the lowest FPR are highlighted in bold).
Classification algorithm Mean Accuracy Variance Mean FNR Mean FPR p m Y
Standard similarity classifier 0.7263 0.0003 0.099 0.683 4 1 –
Novel similarity classifier 0.6822 0.0005 0.158 0.691 8 1 p/2
Novel similarity classifier 0.7314 0.0003 0.095 0.674 4 1 1
Novel similarity classifier (minimize FPR) 0.5750 0.0012 0.535 0.170 2 6 1
Standard similarity classifier (PCA, 8 PCs) 0.7299 0.0004 0.142 0.570 3 5 –
Novel similarity classifier (PCA, 8 PCs) 0.6966 0.0008 0.281 0.355 3 1 p/2
Novel similarity classifier (PCA, 8 PCs) 0.6998 0.0006 0.298 0.304 2 1 1
K-nearest neighbours, k= 1 0.6715 0.0005 0.237 0.543 – – –
K-nearest neighbours, k= 10 0.7164 0.0005 0.162 0.568 – – –
K-nearest neighbours, best k= 1 0.6715 0.0005 0.237 0.543 – – –
Naive Bayes (normal Gaussian distribution) 0.7233 0.0006 0.229 0.388 – – –
Naive Bayes (kernel with normal smoothing) 0.7068 0.0001 0.013 0.947 – – –
Random decision forest (min leafsize= 1) 0.7584 0.0003 0.096 0.581 – – –
Random decision forest (min leafsize= 10) 0.7516 0.0003 0.069 0.668 – – –
Decision tree (min leafsize= 1) 0.6946 0.0007 0.218 0.510 – – –
Decision tree (min leafsize= 10) 0.7197 0.0006 0.167 0.545 – – –
Fig. 4. Optimal value search for the novel similarity classifier with Y=1 (‘German Credit’ data set).
Table 6
Results for the ‘Australian Credit’ data set (the highest mean accuracy, the lowest FNR and the lowest FPR are highlighted in bold).
Classification algorithm Mean accuracy Variance Mean FNR Mean FPR p m Y
Standard similarity classifier 0.8727 0.0004 0.144 0.114 3 3 –
Novel similarity classifier 0.8469 0.0005 0.151 0.155 1 1 p/2
Novel similarity classifier 0.8737 0.0004 0.118 0.133 2 3 1
Novel similarity classifier (minimize FPR) 0.8478 0.0005 0.229 0.090 2 6 1
Standard similarity classifier (PCA, 3 PCs) 0.8283 0.0005 0.268 0.094 1 2 –
Novel similarity classifier (PCA, 3 PCs) 0.7940 0.0006 0.273 0.152 1 3 p/2
Novel similarity classifier (PCA, 3 PCs) 0.8273 0.0004 0.228 0.128 1 1 1
K-nearest neighbours, k= 1 0.7997 0.0005 0.223 0.182 – – –
K-nearest neighbours, k= 10 0.8513 0.0004 0.177 0.126 – – –
K-nearest neighbours, best k= 1 0.7997 0.0005 0.223 0.182 – – –
Naive Bayes (normal Gaussian distribution) 0.8016 0.0005 0.329 0.093 – – –
Naive Bayes (kernel with normal smoothing) 0.6877 0.0015 0.417 0.228 – – –
Random decision forest (min leafsize= 1) 0.8676 0.0004 0.143 0.124 – – –
Random decision forest (min leafsize= 10) 0.8653 0.0004 0.153 0.120 – – –
Decision tree (min leafsize= 1) 0.8307 0.0006 0.194 0.149 – – –
Decision tree (min leafsize= 10) 0.8483 0.0005 0.164 0.142 – – –
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by the choice of the evaluation criterion during the training to focus on
the mean accuracy, the False-Positive-Rate (FPR) or another metric. In
this research, two methods for pre-processing and for the choice of the
transformation power Y are proposed. The first one is premised on a
simple standardization to [0,1] and using simple transformation power
Y= 1. This method led on the artificial and real-world data sets in most
cases to the highest performance accuracy. The second approach based
on the ‘effective dimensionality’ eventuated in the majority of cases in
lower mean accuracies than the first method. Therefore, the authors
suggest, premised on the observed results, to use the novel similarity
classifier on standardized data with transformation power Y=1 since it
showed superior results compared to the standard similarity classifier.
On the real-world data sets, the novel similarity classifier with trans-
formation power Y set to 1 achieved in most cases competitive mean
accuracies and on the Australian Credit Data set even the highest mean
accuracy. Except for the ensemble learning technique random forest,
the novel similarity classifier with Y=1 was often significantly or
highly significantly more accurate than the benchmark algorithms in
this study. Moreover, the novel similarity classifier customized to
achieve small FPR reached comparably low FPR values, in two out of
three cases even accomplishing the lowest FPR of all algorithms.
Finally, a future research need is a systematic analysis of the transfor-
mation power for the novel similarity classifier for different data sets.
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