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Abstract. In order to develop better touch and gesture user interfaces,

it is important to be able to measure how humans move their hands while

interacting with technical devices. The recent advances in high-speed

imaging technology and in image-based object tracking techniques have

made it possible to accurately measure the hand movement from videos

without the need for data gloves or other sensors that would limit the

natural hand movements. In this paper, we propose a complete framework

to measure hand movements in 3D in human-computer interaction situa-

tions. The framework includes the composition of the measurement setup,

selecting the object tracking methods, post-processing of the motion tra-

jectories, 3D trajectory reconstruction, and characterizing and visualizing

the movement data. We demonstrate the framework in a context where

3D touch screen usability is studied with 3D stimuli.

Keywords: high-speed video, hand tracking, trajectory processing, 3D

reconstruction, video synchronization, human-computer interaction

1 Introduction

In the human-computer interaction (HCI) research, it is necessary to accurately
record hand and finger movements of test subjects in tasks related to user
interfaces. Advances in gesture interfaces, touch screens, and augmented and
virtual reality have brought new usability concerns that need to be studied
in a natural environment and in an unobtrusive way [21]. Data gloves with
electromechanical, infrared or magnetic sensors can measure the hand and finger
location with high accuracy [5]. However, such devices affect the natural hand
motion and cannot be considered feasible solutions when pursuing natural HCI.
Consequently, image-based solutions which provide an unobtrusive way to study
and to track human movement and tenable natural interaction with the technology
have become a pronounced subject of research interest.
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Commercially available off-the-shelf measurement solutions such as Leap
Motion 3 and Microsoft Kinect 4 do not allow frame rates high enough to capture
all the nuances of rapid hand movements. Moreover, Leap Motion limits the hand
movement to a relatively small area. The field of view of the sensor is an inverted
pyramid, with an angle of 150 degrees in the left-right direction, and an angle of
120 degrees in the front-back direction, and the measurement distance ranges
from 25 mm to 60 cm above the device [6]. Kinect is sufficient for detecting
arm and full body gestures, but it is imprecise for accurate finger movement
measurements [13]. Furthermore, such commercial solutions lack the inspecting
capability of a camera-based system and do not allow further analysis of hand
pose beyond the limitations of the sensors.

An alternative approach for accurate recording of fast phenomena including
rapid and subtle hand movements is high-speed imaging. High-speed videos
provide the basis for building a system that is more versatile than the existing
black-box solutions. From the implementation viewpoint, high-speed imaging
requires more light than the conventional imaging to allow short exposure times,
which imposes additional demands on the measurement setup. Moreover, the
bright illumination can disturb the user performing the HCI experiment since
it reduces the perceived contrast and, making it difficult to see the stimulus.
Thus, careful planning of the measurement setup is important to ensure that the
conditions for the interaction are as natural as possible.

To record hand movements in 3D with a camera-based measurement, at
least two cameras with different viewing angles are required. However, a setup
consisting multiple high-speed cameras is both expensive and difficult to build.
This motivates to use of a normal-speed camera in addition to the high-speed
camera to provide the depth information for reconstructing the 3D trajectories.

Recent progress in object tracking techniques has made it possible to au-
tomatically determine motion trajectories from videos. Gray-scale high-speed
imaging is commonly used to keep illumination requirements at a reasonable
level, and consequently, the use of hand tracking methods relying specifically on
color information becomes impractical. These matters motivate the utilization
of general object trackers. For example, in [11], several object tracking methods
were compared using high-speed videos, and the best methods were found to be
suitable for the problem of measuring hand movements in the context of HCI.

The main problem with using existing object tracking methods for accurate
measurement of hand and finger movements is that they were developed for
applications where high spatial accuracy is not crucial, as the research focus
was on developing more computationally efficient and robust methods. For these
methods, losing the target is considered a much more severe problem than a
small spatial shift of the tracking window. This is not the case in hand trajectory
measurement based on high-speed videos where small hand movements between
the frames and a controlled environment help to achieve robustness. Thus, high
spatial accuracy is the main concern. Even small errors in the spatial locations

3 Leap motion: https://www.leapmotion.com/product
4 Microsoft Kinect: http://www.xbox.com/en-US/kinect
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can lead to large fluctuations in the speed and acceleration determined from the
location data. Therefore, existing tracking algorithms alone are insufficient for
the accurate measurements of hand movements and further processing of the
hand position data is needed.

Raw trajectory data contain small spatial location fluctuations that can make
calculation of accurate velocities and accelerations impossible. Smoothing raw
trajectory data with an appropriate filtering method provides a solution for small
irregularities in the trajectory data without compromising the tracking results [16].
After smoothing, it is possible to compute the velocities and accelerations, i.e.,
the first and second derivatives of the position, with greater accuracy.

To process large amounts of video data, it is advantageous to automatically
detect tracking failures, i.e., cases where the tracking is lost or the tracking
window drifts from the target. When a failure is detected, either the tracking can
be repeated with a different tracking method, or the incorrect trajectory can be
excluded from further analysis. A common approach to detect failures is to use
backtracking and compare the tracked target to an earlier sample of the object
(e.g., [12,23,7]). Such methods perform well when the tracking is lost, causing
large displacements between the tracking result and the actual object location.
However, when a tracker slowly drifts away from the target, failure detection
with backtracking methods becomes more challenging.

To address the above issues and requirements, we present a multi-camera
framework for measuring hand movements in HCI studies, focusing on touch and
gesture user interfaces. The framework is developed for a measurement setup
consisting of a high-speed camera and a normal-speed camera with different
viewing angles. The high-speed camera makes it possible to detect fast and
subtle changes in the trajectories while the normal-speed camera provides the
necessary additional information to construct the 3D trajectories. The framework
includes the construction of the measurements setup, selection of object tracking
methods, detection of tracking failures, post-processing of the trajectories, and
characterization and visualization of the movement data. The framework is
generic in nature, and in this work, it is demonstrated with an application in
which 3D touch screen usability is studied with 3D stimuli.

2 Overview of the framework

An overview of the proposed hand movement measurement framework for the HCI
studies is shown in Fig. 1. The dashed line in the figure represents the use of the
camera calibration results in the computation of the real-world features. The first
step is to design and to build the measurement setup which comprises cameras,
illumination, a display, and other interacting devices, and the required hardware
for triggering and storing recordings. The main considerations when designing
a HCI measurement setup are that it should not interfere with the usability
of the user interface and that it should offer a natural setting for test subjects
performing the selected HCI task. This aspect is particularly important in design
of the illumination because high-speed imaging setup requires a lot of light and
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bright illumination can disturb test subjects. Moreover, the illumination should
not result in flickering on the recorded videos so the available flicker-free light
sources should be used, including LED light panels with reliable and constant
power sources and Hydrargyrum medium-arc iodide (HMI) lamps where flicker
can be avoided by using electronic ballast that operate at high frequencies.

Building the

Measurement

Setup

Camera

Calibration
Tracking Filtering

Computing

Real-World

Features

Failure

Detection Failed

Imaging
Detection /

Initialization

Combine 

results from 

2 views

Fig. 1: Overview of the measurement framework.

The second step in the framework is to geometrically calibrate the cameras by
determining the intrinsic and extrinsic camera parameters to obtain the mapping
from the image point locations to the real-world coordinates. The pinhole camera
model parameters can be determined by using known and imaged interest point
coordinates of an imaging target designed for calibration. These parameters can
then be used to transform the image point locations to real-world coordinates
via a perspective projection. The pinhole camera model can be further enhanced
by taking into account the lens and sensor distortions.

After imaging the object of interest, the object needs to be detected before
its movement can be tracked. In a typical controlled HCI study, the hand or
finger movement starts from a static trigger box or another predefined location.
However, if the initial position is unknown, a detection component is needed
before tracking. The detection can be performed using state-of-the-art detection
methods, such as Faster R-CNN [19] or YOLO9000 [18]. If the background is
static, a simple method such as frame differencing or background subtraction
can be used for the detection. The initialization of the object position has an
important role in the tracking process since a typical tracking method utilizes
the initial position to generate the object model used for tracking.

Tracking is applied in order to follow the position of the detected or otherwise
initialized target object while it is moving. In general, the idea is to repeatedly
estimate the transformation of an object from time step t to t + 1, i.e., from one
image frame to the next one. In most cases, the transformation is simply the
translation of an object. However, there are situations where a more advanced
motion model is required that takes into account, e.g., rotation, skew, and scale
changes. An extensive comparison of object tracking algorithms for measuring
hand movements in the HCI study is presented in [16] with the high-speed videos
and in [17] with the normal-speed videos.

Extracting higher level features from the tracking results can be challeng-
ing [16]. Although a list of center locations of an object over time produced by
tracking is usable for tasks such as checking the position of an object at a certain



5

time, sub-pixel accuracy is preferred when derived quantities such as velocity or
acceleration are required. Typical object trackers operate at the pixel level and
the resulting trajectory often contains noise. The desired level of spatial accuracy
and the noise cause challenges for the determination of derived quantities such as
velocity and acceleration. High-speed videos can be challenging where movements
between the frames are very small (often less than a pixel). Consequently, filtering
of the trajectories is required. Finally to reconstruct hand trajectories in 3D, the
tracking results from two views obtained from the normal and high-speed videos
are combined and various features of the trajectories are computed.

3 Stereoscopic 3D touch display experiment

The framework is demonstrated with a HCI experiment using a stereoscopic 3D
touch screen setup. In the experiment, test subjects were advised to perform
intentional single finger pointing actions from a trigger-box toward a target that
was on a different parallax than others on the touch screen. Hand movements were
recorded with a high-speed camera and normal-speed camera. The trigger-box
and the touch screen were placed on a table as shown in Fig. 2. The flow of the
experiments was controlled by a middleware program specially coded for the
experiments. A detailed description of the setup can be found in [15].

Similar to earlier pointing action research, e.g., [3], the experiment focused
on studying intentional pointing actions. The stimuli were generated by a 3D
display with the touch screen to evaluate the effect of different parallaxes, i.e.,
perceived depth. This arrangement enables study of (potential) conflict between
visually perceived and touch-based sensations of depth.

The 3D stereoscopic touch screen experiment was executed as follows. 20
test subjects conducted 4 different sessions of pointing actions with different
parameters. These were divided into nine blocks. The test image contained a
fixation cross in the middle of the screen and 10 rectangular blocks around it in
a circle formation. The aim of the experiment was to locate and touch the target
that appears on a different parallax to the others in the test image.

The high-speed videos were recorded at 500 fps and 800×600 resolution.
The normal-speed videos were recorded using interlaced encoding with 50 field
rate and 1440×1080 (4:3) resolution. For deinterlacing the normal-speed videos
the yet another deinterlacing filter (yadif) [1] was utilized with field-to-frame
conversion producing double frame rate (50 fps) videos. In total, 2597 pointing
actions were recorded with the both cameras.

3.1 Camera calibration

To calibrate the cameras, a standard calibration board with 26.5 mm checker-
board patterns was used. A set of calibration images was captured and used
to compute the intrinsic camera parameters. The Camera Calibration Toolbox
for Matlab [2] was used to perform the calibration, as it is a robust and well-
established calibration tool, based on [24] and [9].
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Fig. 2: 3D touch display experiment.

3.2 Hand tracking

Since trackers specifically designed for hand tracking rely on color information
whereas gray-scale imaging is used in this work the selected state-of-the-art
general object trackers were utilized. Based on the comprehensive evaluation on
the same video dataset reported in [16], Kernelized Correlation Filters (KCF)
based tracker [10] was selected for tracking in high-speed videos. The tracking
window was initialized by a manually placed initial bounding box on the trigger
box button image.

The normal-speed videos were processed with motion detection near the
monitor area. The motion detection was performed using background subtraction
(frame differencing). The detected motions were used to obtain the location of
the finger tip which was further used to initialize the tracking window for the
normal-speed videos. Comprehensive evaluation of state-of-the-art object trackers
for finger tracking from normal-speed videos with the presented experimental
setup has been provided in [17]. Based on the results, the KCF tracker extended
by a scale estimation and color-names features (KCF2) [22] was selected as a
normal-speed video tracker for the final measurement framework.

3.3 Trajectory post-processing

Failure detection In situations where a highly robust tracking system is
required or massive datasets are processed, there is a need for a failure detection
system to identify failed trajectories as it was identified in [14]. One of the methods
to detect tracking failures is to use backtracking to estimate the trajectory from
the current point to the beginning of the tracking, or another earlier point of
time, and to check if the backtracked trajectory matches the original “forward-
tracked” trajectory [7]. Other methods include gathering samples of the earlier
appearances of the object and comparing them to the currently tracked window
using similarity measures [12,23].

Typically, failures are easier to detect when the drift is large. However, when
the tracker slowly drifts off the target, it is more difficult to detect the failure,
and the above-mentioned methods become unreliable, especially if high spatial
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accuracy is desired. In HCI studies, the end point of the trajectory is often known.
Moreover, in some studies also the start point of the trajectory is known, for
example, a trigger-box button. In the touch screen experiment, for example, the
point on the screen that the test subject touches is known, and this information
can be used to implement a reliable method to detect failures in tracking. When
failures are detected, either the tracking can be repeated with another tracking
method, or the incorrect trajectory can be excluded from the further analysis.

If the end position of the trajectory is unknown a reliable backtracking or
drifting detection method should be applied. In the HCI studies, methods such as
good features to track [20] and metrics for the performance evaluation of video
object segmentation and tracking without the ground-truth [4], based on earlier
templates of an object, work relatively well since the target object that is usually
a hand or a finger. These objects contain well identifiable features that can be
used to detect if the tracker loses the target. Moreover, the object detection
methods used for the tracker initialization can be applied for the last frames to
test if the end point of the tracked trajectory contains the correct object.

It should be noted that many of the tracking failure cases could be avoided
by giving the test subjects precise instructions and by ensuring sufficient practice
before the actual data collection so that the test subjects are comfortable with
the task. Erroneous behavior by test subjects can include, for example, test
subjects withdrawing their hand from the touching position before the recording
ends, incorrect positioning of the hand in the beginning of an individual test,
and obstruction of the pointing finger with other fingers.

In the 3D touch display experiment, the tracking failure detection method
needed to be able to reliably process a large amount of trajectories. The imple-
mented failure detection system was based on the fact that the trajectory had
to end within a specific area of the projected touch screen point. If the correct
end point was not reached with the default gray-level features used by the KCF
tracker, the tracking was repeated with more computationally demanding HOG
features. If the tracking failed again, the trajectory was considered as incorrect
and was excluded from the further analysis.

Trajectory filtering Based on the results of the high-speed trajectory filtering
in [16] the LOESS filter was selected also for the normal-speed trajectories. The
filtering window size was selected to be the same 80 milliseconds as in high-speed
case. This translates into 4 samples window size with 50 fps. Comparison between
different window sizes can be found in [17].

Video synchronization In order to automatically align the normal-speed
videos with the high-speed videos, the ratio of the framerates and the delay
(difference between the camera-produced time information) were determined
in [15]. The synchronization process uses timestamps from the high-speed videos
and known starting time of the normal-speed videos to coarsely align the videos
and to identify blocks of corresponding actions from both videos. The known
location from the both views are used to set up an event which can be then used
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to align the video sequences accurately. A more detailed explanation of the video
synchronization method is given in [15].

Reconstruction of 3D trajectories To obtain a 3D trajectory, the 2D
trajectories estimated using the calibrated cameras with a different viewpoint
need to be combined. The task of computing a 3D trajectory from multiple 2D
trajectories is essentially equivalent to the process of 3D scene reconstruction. For
this purpose, we utilized the 3D reconstruction method presented in [8]. Detailed
explanation of the 3D reconstruction and results are available in [17] and [15].

4 Data analysis

4.1 3D trajectory reconstruction

The success rate of the finger tracking was measured as the proportion of trajec-
tories which reached the predefined end points. For the high-speed videos, the
end points were the touch target areas re-projected onto the image plane, and
for the normal-speed videos, the defined end point was the trigger-box button.
77% of point actions were tracked correctly from the high-speed videos and 69%
from the normal-speed videos. In total, 1237 (62%) of the pointing actions were
correctly tracked from the both videos and were aligned correctly. Since there
was no ground truth for the 3D trajectories, the 3D reconstruction accuracy was
assessed by using the re-projection error measure [8]. The mean re-projection
error over all the trajectory points used from 1172 videos in the 3D reconstruction
experiment was 31.2 pixels. This corresponds to approximately 10 millimeters in
the real world.

4.2 Trajectory features

When hand movements are considered in HCI studies, the most important
measurements are the velocities and accelerations of the hand [3]. Velocity and
acceleration can be computed as the first and second derivatives of the position
with respect to time using the tracked hand trajectories and Euclidean distances.
Trajectory filtering makes it possible to compute the velocity using differences
in consecutive trajectory points, and the acceleration can be computed using
consecutive filtered velocity points.

For visualization purposes, velocity and acceleration curves can be plotted with
respect to either time or position. For example, in the 3D touch screen experiment,
the distance of the fingertip to the monitor surface is a useful measurement. It
should be noted that this measurement fails to capture movement that occurs
in a plane parallel to the screen which is not crucial when simple intentional
pointing actions are studied.

In a typical experiment, individual movement trajectories vary considerably.
To detect small recurring events and phenomena, as well as to identify inter-
subject behavioral differences in slightly different tasks, it is important to be
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able to analyze and visualize a large number of trajectories. One option is to
determine the average position, velocity, and acceleration curves. In order to do
this, the different trajectories need to be normalized in such a way that the mean
values can be computed for a certain moment of time or a certain position.

In the 3D touch screen experiment, the trajectories were normalized so that
all of them were at a distance of 250 mm from the touch screen measured from
the initial finger position at the trigger-box. The visualization of the grouped
acceleration and speed plots was used to detect submovement intervals of the
trajectories similarly to [3]. The primary submovement starts with the initial
acceleration, and ends when there is a sign change from negative to positive.
This is the starting point of the secondary submovement of intentional pointing
actions where minor adjustments to the trajectory are made and the movement
is fixed to the final target position. Similar submovement events can be seen
in the visualization of the 3D touch screen experiment in Fig. 3. The results
indicate that differences in acceleration and speed of the pointing actions when
using different parallaxes are small, but nevertheless observable. Fig. 4 shows
the velocity and acceleration curves for the last 25 mm before the touch display.
There are small differences in velocities and accelerations on movements towards
different disparities so parallax information seems to affect the hand trajectories
slightly.
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Fig.3: Averaged results of all test subjects performing the 3D touch screen
experiment with disparities -6, -2, 2, and 6.

In [15], eleven features were computed from the obtained trajectories: the
mean velocity, median velocity, maximum velocity, maximum velocity during the
2nd submovement, maximum acceleration during the 2nd submovement, mean
velocity during the 2nd submovement, and mean acceleration during the 2nd
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submovement. Moreover, a two sample T-test, with 5% significance level, was
used to analyze the trajectory features. As expected, it was concluded in [15]
that the smaller disparity changes 2 and -2 had only minor impact to the hand
movements according to the computed features whereas the disparity values
6 and -6 had more significant impact to the movements. Moreover, the large
positive disparity 6 (the target object in front of the screen) seemed to have a
more prominent effect on the pointing actions than the others. Furthermore, the
velocity features seem to be better than the acceleration features to distinguish
the pointing actions towards different disparity values.

5 Conclusion

A framework for measuring hand movements, in particular pointing actions, in
human-computer interaction situations using a multiple camera system containing
a high-speed and normal-speed cameras was introduced. Suitable object trackers
to perform the finger tracking in both high and normal-speed videos were proposed
based on earlier comprehensive studies. Selected KFC tracker for high-speed
videos and KFC2 for normal-speed videos perform well in the given hand tracking
task, achieving low error rates and operating at high processing speeds. In order
to process large amounts of videos, we proposed a tracking failure detection
method that excludes incorrect trajectories from further analysis, including cases
where the test subject failed to follow the given instructions. By using trajectory
filtering, the tracked trajectories could be smoothed to obtain reliable acceleration
and velocity curves for visualization purposes. Finally, a method to construct 3D
trajectory from the two 2D trajectories was proposed. The framework provides
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real-time processing speeds. Including video loading, tracking, filtering and
visualization, the processing speed of the framework was on average around 100
fps for high-speed videos. The framework was demonstrated in a context where
3D touch screen usability was studied with 3D stimuli. Some feature correlation
with different parallaxes were already detected, but deeper analysis of the effects
of different parallaxes on the trajectories is planned for the future research. The
work provides valuable information about the suitability of general object tracking
methods for high-speed hand tracking while producing appropriate velocity and
acceleration features computed from filtered tracking data.
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