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ABSTRACT

Active magnetic bearing (AMB) supported rotor systems require advanced control strategies to meet
the increased performance requirements of more and more demanding applications. To meet the
particular requirements for the performance under changing dynamics, an adaptive control structure
is a taskworth pursuing. This paper studies adaptivemulti-input multi-output (MIMO) pole placement
applied to the control commissioning of anAMB-supported rotor system. The control tuning approach
is based on a rigid body model, and the parameter estimation is carried out with a recursive extended
least squares (RELS) based algorithm for the MIMO system. The proposed approach is studied by
simulations and validated with both a 2-degree-of-freedom (2-DOF) and a 4-DOF AMB system.

1. Introduction
Active magnetic bearings (AMBs) are replacing conven-

tional bearings in modern industrial high-speed motor sys-
tems, and they are used in applications that have become in-
creasingly demanding over the past few years and that re-
quire advanced control strategies to handle the highly dy-
namic system under disturbances. Despite the extensive de-
velopment of the control laws for AMBs, the self-tuning and
adaptive laws have not been widely addressed in the litera-
ture. Naturally, one of the main reasons for this is related to
the complex and unstable system dynamics with multiple-
inputs multiple-outputs (MIMO).

Typically, the initial control synthesis of a high-speed
motor with a magnetically supported rotor system is based
on the modeled dynamics of the AMBs combined with the
flexible rotor system obtained from the analytical tools ap-
plied in the design phase[1]. After a stabilizing controller for
levitation has been obtained, the control design procedure
turns into an iterative identification of a control problem. As
the time-consuming commissioning phase often requires a
skilled expert, there is a demand for methods and tools that
could (semi)automatize the commissioning process. Hence,
a self-tuning controller structure with proper adaptive func-
tions is worth pursuing in the case of AMB-supported rotor
systems, which can be found in several applications such as
gas turbines, compressors, and turbomachinery, to name but
a few. The second important aspect of using an adaptive
control law is related to the possible process changes, but
this problem is naturally application dependent.

There are several studies focusing on the adaptive com-
pensation functions [2], [3], [4], [5] yet only a few studies ad-
dress the self-tuning or adaptive control of an AMB system.
In [6], an adaptive control law has been proposed for a two-
degree-of-freedom (2-DOF) AMB system that is capable of
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stabilizing the closed-loop system under an unknown load
or unbalance changes. Similarly, in [7], an adaptive control
law has been proposed for a 1-DOF system that is based on a
backstepping controller with an observer. Another approach
has been introduced in [8], where an adaptive state space
control is derived for a 4-DOF AMB system using an inno-
vations model in the state estimation routine. The proposed
approach, however, does not properly handle the estimation
of the parameters if the routine is not initialized correctly,
and thus, suffers from some stability issues. A similar idea
has been introduced in [9], where a least squares (LS) based
estimator is used to estimate the cross-coupling stiffness of a
rigid rotor. In [10], a baseline PID controller combined with
an adaptive control law to compensate the changing cross-
coupling stiffness is proposed. The reported studies are nu-
merical ones obtained by simulations, and so far, there are
only a few studies that have shown the implementation of
the approaches in an actual AMB application. In [11], an
all-coefficient adaptive control law for a flexible rotor sys-
tem has been introduced and experimentally validated on a
test rig.

Motivated by the features of the adaptive state space con-
troller approach reported in [8], which is based on [12], the
objective of this paper is to propose an adaptive state space
control law for an AMB system. The approach presented
here is different from [8] in four respects. First, a separate
state estimation routine is considered that updates the esti-
mator with parameters provided by the identification algo-
rithm. This is a more stable approach, as is stated in [13].
Second, instead of an innovations-model-based parameter
estimation routine, a recursive extended LS (RELS) algo-
rithm [14] is applied to the MIMO system identification to
reduce the bias in the estimates. More importantly, instead
of placing the poles in the same location, as is typically pro-
posed in the literature [8], [15], a design-polynomial-based
approach is considered to achieve more specific control ob-
jectives. Finally, the approach presented here is based on the
adaptation of the whole control structure, whereas previous
papers have mostly focused on the adaptive cross-coupling
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terms. The proposed adaptive state space control approach
is derived for both 2-DOF and 4-DOF AMB systems and
experimentally validated on laboratory test rigs.

2. Problem Statement
First, an adaptive pole-placement-based control law is

derived for a 2-DOF AMB system, and after that, it is ex-
tended to a 4-DOF system. The derivation is started from the
modeling of the 2-DOF system, and a controllable canonical
state spacemodel is presented. After that, a recursive param-
eter estimation routine for the MIMO system is derived, and
finally, the state space control structure is given.

2.1. Modeling of a 2-DOF AMB System
By considering the attractive force generated by a pair

of two opposite horseshoe electromagnets depicted in Fig.
1, the force–current dependence of the electromagnets on
one coordinate axis (e.g. radial x-axis) can be approximated
as follows [16]

Fbx =
�0N2Aaircos(�)

4

( i21,x
(l0 − x)2

−
i22,x

(l0 + x)2
)

, (1)

where �0 is the permeability of a vacuum,N is the num-
ber of coil turns, Aair is the cross-sectional area of the pole,
� is the force acting angle, l0 is the nominal air gap, and i1
and i2 are the coil currents. Because of the nonlinear dy-
namics, it is desirable to limit the coil currents and include
a linearization with the bias current ibias. The coil currents
i1,x and i2,x are then written as

i1,x =

{

ibias + ic , if ic ≥ −ibias
0, if ic < −ibias

, (2)

i2,x =

{

ibias − ic , if ic ≤ ibias
0, if ic > ibias

. (3)

The force relation in the selected linearization point can
be expressed as

Fbx = kiix,c + ksx, (4)

where ki is the current stiffness and ks is the position
stiffness, respectively. The equations for the current and po-
sition stiffnesses are

ki =
)f
)ic

|

|

|x=0,ic=0
=
�0N2ibiasAaircos(�)

l20
, (5)

ks =
)f
)x

|

|

|x=0,ic=0
=
�0N2i2biasAaircos(�)

l30
, (6)

where the linearization point is assumed to be the origin
x = 0, and the control current is zero ic = 0 with the bias

m

 
Figure 1: Basic principle of a single mass supported by an
active magnetic bearing. The dynamics can be modeled as a
2-DOF system.

current being ibias. The linearized model (4) is linear in a
large region, especially when considering ki (5) but also for
kx (6) if deviations from the origin are small.

Based on this linearization, the dynamics of a singlemass
suspended by an AMB depicted in Fig. 1 can be presented
with the following state space model

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(7)

where the state vector x = [x, y, ẋ, ẏ]T is formed from the
positions and their derivatives while the input current vec-
tor is denoted by u = [ix, iy]T. Without any cross-coupling
dynamics, the system matrix can be expressed as

A =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
ks
m 0 0 0
0 ks

m 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (8)

with the input matrix B and the output matrix C

B =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
ki
m 0
0 ki

m

⎤

⎥

⎥

⎥

⎥

⎦

, (9)

C =
[

1 0 0 0
0 1 0 0

]

, (10)

where m is the mass of the rotor, ks is the position stiffness,
and ki is the current stiffness. It is noted that the influence
of nonconservative forces such as the inner damping in the
rotor or the cross-stiffness and cross-damping in fluid seals
can be included as cross-coupling terms [17]. By discretiz-
ing (8), (9) with the sample time Ts by the following matrix
transformation, we obtain
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� = eA⋅Ts ,

� = (eA⋅Ts − I) ⋅ A−1 ⋅ B,
(11)

where� and � are the discretized system matrix and the in-
put matrix, respectively. For pole placement controller de-
sign purposes, the state spacemodel is considered in the con-
troller canonical form. It has been found that this form is use-
ful in the design of state feedback laws for MIMO systems
by pole placement [8], [12] and thus, it is also considered
here. By using the transformation matrix Tc , the discretized
systemmatrices (11) can be transformed into canonical ones
[18]

�c = Tc ⋅� ⋅ T−1c ,
�c = Tc ⋅ �,
Cc = C ⋅ T−1c .

(12)

This allows to present the system in the following general
form

�c =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−a{1,1}2 −a{1,1}1 −a{1,2}2 −a{1,2}1
0 0 0 1

−a{2,1}2 −a{2,1}1 −a{2,2}2 −a{2,2}1

⎤

⎥

⎥

⎥

⎥

⎦

,

(13)

�c =
⎡

⎢

⎢

⎢

⎣

0 0
1 0
0 0
0 1

⎤

⎥

⎥

⎥

⎦

, (14)

Cc =
[

c{1,1}2 c{1,1}1 c{1,2}2 c{1,2}1
c{2,1}2 c{2,1}1 c{2,2}2 c{2,2}1

]

, (15)

where the parameters a1, ..., a2 and c1, ..., c2 represent the
discrete parameters of the canonical matrices. It can be seen
from the state space matrices that the system dynamics is
now represented by submatrices resulting in a straightfor-
ward general form for pole placement; there are two cou-
pled second-order systems indicated by superscripts 1 and 2.
As the adaptive control algorithm is to be used in an actual
high-speed machine, the canonical form must be extended
to a 4-DOF AMB system. The canonical form for a larger
system can be generalized as �c = {'{i,j}}, �c = {
{i,j}}
and Cc = {cT {i,j}} with the indices of i, j = 1, 2, 3, 4 and
i ≠ j resulting in submatrices in the form

'{i,i} =
[

0 1
−a{i,i}2 −a{i,i}1

]

, (16)

'{i,j} =
[

0 0
−a{i,j}2 −a{i,j}1

]

, (17)

C(q-1)

A(q-1)

1
B(q-1)

u(k) y(k)

ε(k)

+

 
Figure 2: General model structure for the MIMO system mod-
eling considered in the parameter estimation routine. q−1 is
the backward shift operator.


{i,j} =
[

0 0
]T , (18)


{i,i} =
[

0 1
]T , (19)

cT{i,j} =
[

c{i,j}2 c{i,j}1

]T
, (20)

These matrices are used to build the canonical form of
the 4-DOF AMB system considered in this paper. Naturally,
the resulting system matrices describe the dynamics of four
coupled second-order systems. The 4-DOFmodel is derived
and analyzed by simulations in Section 3.

2.2. Parameter estimation algorithm
Let us assume that the MIMO plant can be modeled with

the general model structure depicted in Fig. 2, which has the
following polynomial form

A(q−1)y(k) = B(q−1)u(k) + C(q−1)�(k), (21)

where y(k) is the output vector, u(k) is the input signal vec-
tor, and �(k) is the unmeasurable noise signal vector. Note
that now the notationsA(q−1), B(q−1), andA(q−1) represent
the polynomials of the general model structure. They can be
expressed as

A(q−1) = Ip×p + A1q−1 + ... + Avq−v,
B(q−1) = B1q−1 + ... + Bvq−v,
C(q−1) = Ip×p + C1q−1 + ... + Cvq−v,

(22)

where p denotes the number of inputs and v is used to denote
the model degree. By considering an autoregressive moving
average with an exogenous terms (ARMAX) model for the
parameter estimation, the optimal one step ahead predictor
(a priori) is formed

ŷ(k + 1) = −Â(k)y(k) + B̂(k)u(k) + Ĉ(k)e(k + 1),
(23)

where the polynomials Â, B̂, and Ĉ denote the estimated
ones, and the a priori prediction error is

e(k + 1) = y(k + 1) − ŷ(k + 1). (24)
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Naturally, the parametric model is linear to the unknown pa-
rameters, but it can be used to fit any linear or nonlinear con-
trol system [19]. The predictor can be written in a linear
regression form

ŷ(k + 1) = �̂T(k)�(k). (25)

where the parameter matrix �̂ and the regression vector �̂
have the following form

�̂ = [Â1, ..., Âv, B̂1, ..., B̂v, Ip, Ĉ1, ..., Ĉv]T. (26)

� = [−yk−1, ..,−yk−v,uk−1, ..,uk−v, ek, ek−1, .., ek−v]T.
(27)

By considering the time instant k+1 when the output y(k+
1) is measured and the parameter estimate is updated, the a
posteriori estimate of the output is

ŷ◦(k + 1) = �̂T(k + 1)�(k), (28)

and thus, the corresponding a posteriori error is

ê◦(k + 1) = y(k + 1) − ŷ◦(k + 1). (29)

The following recursive least squares algorithm can be used
to solve the parameter estimation problem

�̂(k + 1) = �̂(k) + F(k)�(k)eT(k + 1), (30)

e(k + 1) = e◦(k + 1)
1 + �T(k)F(k)�(k)

, (31)

F(k+1) = 1
�1(k)

(

F(k)− F(k)�(k)�T(k)F(k)
�1(k)
�2(k)

+ �T(k)F(k)�(k)

)

, (32)

where F(k) > 0 is the covariance matrix, and �1(k) and
�2(k) are theweighting sequences forming the forgetting fac-
tor that has the limits 0 < �1(k) < 1 and 0 ≤ �2(k) < 2. In
this paper, the basic recursive algorithm with a constant for-
getting factor is used to validate the pole placement routine,
but in the adaptive control law the recursion is regulated by
considering a constant trace algorithm, that is, by including
a term

F̄(k + 1) = �1 ⋅
F(k)

tr(F(k))
+ �2I, (33)

where �1 > 0 and �2 ≥ 0 are the tuning parameters for the
constant trace algorithm. The properties of the recursion can
be changed by selecting different properties for the forgetting
factor and the constant trace [19].

2.3. State estimation
To apply the state space control, a full state information

is required. Naturally, the parameters and states can be es-
timated simultaneously, for instance by using the Boostrap
algorithms in [20] or by any other approach that estimates
states and parameters simultaneously. The basic form of a
state estimator can be expressed in the following form

x̂(k + 1) = �̂c x̂(k) + �cu(k) + L̂(y(k) − ŷ(k)),
ŷ(k) = Ĉc x̂(k),

(34)

where L̂ is the feedback gain of the estimator and x̂ is the
vector of the state estimates. The model (34) can be referred
to as an innovations model [21] if it is in a parameterized
canonical form, providing an opportunity to estimate �̂c , L̂
and Ĉc simultaneously by using the estimation approach dis-
cussed in [8]. Naturally, as a canonical form is applied, the
input matrix �c does not have to be updated. Here, the same
canonical form is considered, but the state estimation ap-
proach is based on the use of estimated state matrices and the
gain L̂ is updated independent of the parameter estimation
routine. This has been found to be an effective approach, as
stated in [13]. The AMB system is open-loop unstable, and
thus, the stabilizing state space control requires a state esti-
mator. Naturally, the estimator dynamics must be designed
to be faster than the control dynamics. Hence, the state es-
timator gain L̂ must be designed in advance, and during the
real-time update, the same condition must hold.

2.4. Pole placement
In this paper, the pole placement strategy discussed in

[12] is considered, but here more sophisticated pole loca-
tions are applied. The basic form of the state feedback law
is as follows

u(k) = −K ⋅ x(k), (35)

where the K is the state feedback gain. Based on the feed-
back law, the closed-loop poles are determined by the closed-
loop system matrix

�cl = �c − �cK, (36)

and thus, the resulting characteristic polynomial of the closed
loop is |zI − �c + �cK|. The canonical form (13)–(15)
provides an opportunity to design the state feedback coef-
ficients directly from the state space model. For example,
the following design polynomial can be used to design the
controller for each subsystem based on the estimated model
in the canonical form

G{i,i}des (z) = z
2 + �{i,i}1 z + �{i,i}2 , (37)

where �1 and �2 are used to design the desired performance
of the closed-loop controller, that is, the locations of the
closed-loop poles. By considering the generalized canon-
ical form (16), (17) the closed-loop system representation
(36) can be expressed with the submatrices

'{i,i} =
[

0 1
a{i,i}2 − k{i,i}2 a{i,i}1 − k{i,i}1

]

, (38)
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'{i,j} =
[

0 0
a{i,j}2 − k{i,j}2 a{i,j}1 − k{i,j}1

]

, (39)

when the state feedback gainK parameterized for the 2-DOF
system is

K =
[

k{1,1}2 k{1,1}1 k{1,2}2 k{1,2}1
k{2,1}2 k{2,1}1 k{2,2}2 k{2,2}1

]

. (40)

A straightforward selection for the pole locations is

k{i,j}m = a{i,j}m ,

k{i,i}m = a{i,i}m + �{i,i}2

(41)

whenm is 1, 2 in the case of the 2-DOF system. Thus, the de-
sired locations can be designed with (37), and the controller
parameters can be redesigned from the identified parameters,
that is, adapted to the changes. Obviously, the state feed-
back has certain limitations, and thus, in order to remove the
steady-state error, the state space control structure requires
an integral action. This can be obtained by adding integrat-
ing states xI to the control law

u(k) = −
[

K, KI
]

[

x(k)
xI(k)

]

, (42)

where KI is the integrator gain. In this case, the pole place-
ment is different from (41), as one degree of freedom is added
to the control structure. Thus, the design function for the
pole locations is a third-order transfer function

G{i,i}des (z) = z
3 + �{i,i}1 z2 + �{i,i}2 z + �{i,i}3 . (43)

Now, the adaptive control structure can be expressed as a
general structure as depicted in Fig. 3. The tuning of a pole
placement control for an AMB system is often a process of
trial-and-error, as in general, it is hard to select locations of
the poles for an MIMO system dynamics. For instance, the
adaptive approach in [8] was used to place all of the closed-
loop poles in the same location, more specifically, so that the
(43) discrete poles are selected as

z1,2,3 = e
−
√

ks
m ⋅Ts . (44)

based on the system parameters m and ks. This corresponds
to an eigenvalue of a spring-damper-mass system with nega-
tive stiffness. A similar tuning rule has been applied in [15],
[1] for bearingless machines. In this paper, the third-order
design polynomial is considered to achieve the desired dy-
namics for the closed-loop controller

Gdes(s) =
1

s� + 1
⋅

!2n
s2 + 2�!n + !2n

, (45)

with the following design parameters: time constant �, nat-
ural frequency !n, and damping � . These values are used
to design a controller that achieves the desired performance,
that is, the closed-loop bandwidth and the maximum sensi-
tivity peak. It is noteworthy that (45) serves as an illustrative
initial design function, and thus, the locations of the poles
are always trial-and-error tuning procedures.

A, B, C

Plant

-KI

z-1
Σ Σ 

r

Φ, Γ, C, LK

u(k)

Parameter

estimation

x(k) 

Controller

design

y(k)

Gain

update

L

Θ 

+

-

Excitation signal

Σ 
+

ru(k)

 

Figure 3: Generalized principle of the adaptive control law.
Excitation signals ru(k) are superposed to the output of the
controller to improve the parameter convergence. N.B. The
inner current loop is not depicted.

2.5. Excitation Signal
In order to obtain valid parameter estimation convergence,

the identification approach is supported by artificially gen-
erated excitation signals. The persistent excitation signal,
viz. a pseudo random binary signal (PRBS), is superposed
to the position controller output as shown in Fig. 3. In [22],
it has been shown that different excitation signals are valid
for AMB system identification. Here, the system has several
inputs, and thus, all the inputs should be excited at the same
time to guarantee the parameter convergence. In the case of
a system with several inputs, the same PRBS can be used if
it is time shifted [23] to make them statistically uncorrelated
by

ru,n(t) = An ⋅ uPRBS(t − �n), n = 1, 2, ..., p, (46)

where A is the amplitude of the signal, and the time shift
can be selected as �n = N ⋅ Tsw ⋅ (n − 1)∕p, where N is the
length of the signal with the switching time Tsw. The PRBS
is generated by an 15-cell shift register with a switching time
of Tsw = 6 ⋅ Ts when Ts = 50 �s. The amplitude selection
will be discussed in the following sections.

3. Simulations of the adaptive control
The proposed adaptive control law is studied by simula-

tions by considering a bearingless machine [1] as an exam-
ple case of a high-speed machine with a magnetically levi-
tated rotor system. First, a system model with rigid dynam-
ics is modeled, and then, a pole-placement-based state space
control law is designed. After that, the parameter estimator
properties as well as the adapting control functions are eval-
uated.

3.1. Rigid system model with 4-DOF
The AMB system with four degrees of freedom (4-DOF)

as depicted in Fig. 4 is modeled in the bearing coordinates

Niko Nevaranta et al.: Preprint submitted to Elsevier Page 5 of 10



Mechatronics

Table 1
Parameters of the Bearingless Machine

Symbol Quantity Value

Rotor mass m 11.65 kg
Rotor inertia Ix, Iy 0.232 kgm2

Resistance, levitation winding R 0.27Ω
Inductance, levitation winding L 3.27 mH
BM location a, b 107.5 mm
Position sensor location c, d 211 mm
Air gap length l� 0.6 mm
Rotor length lr 480 mm
BM lamination stack length lrl 61 mm
BM lamination diameter drl 68.8 mm
BM stator outer diameter ds 150 mm
Rotor shaft diameter drs 33 mm
Current stiffness, measured Ki 29 N/A
Position stiffness, measured Kx 672 N/mm

using the position vector qb = [xA, yA, xB , yB]T with the in-
put vector of currents u = [ixA, iyA, ixB , iyB]T. The dynam-
ics of the system can be expressed in the following general
form

Mq̈(t) + (D + ΩG)q̇(t) +Kq(t) = F(t), (47)

where M denotes the mass matrix with diagonal elements
[m,m, Ix, Iy], D is the damping matrix, G is the gyroscopic
matrix, K is the stiffness matrix, Ω is the rotational velocity,
F denotes the forces applied to the rotor, and q is the dis-
placement vector of the rotor. This model can be simplified
to a rigid rotor model, which describes the rotor movement
with respect to the center of the rotor mass. By simplify-
ing the model and considering the bearing coordinates, the
following model is obtained

Mbq̈b + ΩGbq̇b(t) = Ksqb +Kiu, (48)

where the position stiffness matrix is Ks = ks ⋅ I, and the
current stiffness matrix Ki = ki ⋅ I with I being a 4 × 4
identity matrix.

3.2. Analysis of the approach
The approach is studied by simulations using the values

given in Table 1 and under the following conditions. The
11-cell PRBSs are injected to all the control inputs with an
amplitude of 0.75 A. The same amplitude has been used for
SISO identification purposes in [1]. The poles of the position
control are placed using a design function z3 − 2.8852z2 +
2.7721z − 0.8869, and the state observer is designed to be
eight times as fast. The parameter estimation routine is ini-
tialized with the parameter matrix �init obtained from the
values given in Table 1. The covariance matrix is set to
F = 10−6 ⋅ I while �1 is set to 0.9997. The controller is
also designed based on the system values in Table 1, but the

xB

yB

ixB

iyA

ixA

xA

yA

m, Jt , Jp

iyB

 

Figure 4: General principle of a rigid rotor suspended by two
radial AMBs.

plant is modified for simulations to validate the self-tuning
when the dynamics is not perfectly known.

First, the parameter estimation routine is validated in Fig.
5. Although the estimates are changing after the transient, as
is expected in the case of recursion, the estimates are still sta-
ble after the routine is initiated at 0.1 s. Owing to the sym-
metrical system dynamics, the estimates are close to each
other. Next, the routine is connected with the control up-
date routine, and the results are shown in Fig. 6. Based on
the results, it can be observed that the transition phase from
the fixed controller to an adaptive one is smooth, and more
importantly, reasonable control parameters are estimated as
the initial ones. Here, it is worth remarking that in the ex-
perimental section, an experimental 2-DOF AMB system is
tested so that the initial model used for the control design de-
viates from the actual dynamics. Thus, for this special case,
the proposed approach is capable of retuning the controller
by adaptation.

4. Experimental Results
First, the approach is validated with an experimental 2-

DOFAMB system depicted in Fig. 7 a). The current sources
for the bearing systems are standard ASCM1 industrial fre-
quency converters manufactured by ABB, and the adaptive
control functions are implemented applying the BeckhoffTwin-
CAT environment with a Matlab/Simulink interface. The
communication is obtained through an EtherCAT fieldbus,
and the position is measured with 3300 XL NSV eddy cur-
rent sensors by Bently Nevada.

4.1. Open-loop self-tuning validation
The controller update routine is first validated without

closed-loop adaptation; to be more specific, the controller
design functions are validated based on real-time estimated
parameters. Moreover, the initial pole placement controller
gains are designed in the initial mathematical model that is
based on the physical assumption of the systems given in
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Figure 5: Parameter estimates during the open-loop identifi-
cation corresponding with the subsystems on the diagonal of
�c .

Table 2. The parameter estimation routine is initialized with
the same parameters �init and F = 10−6 ⋅ I12×12 is selected
to represent higher confidence for the unknown parameters.
The controller is designedwith (45) using!n = 280, � = 0.6
and � = 0.0015s. The amplitude of the PRBS is set to 0.2
A.

In Fig. 8, the results of the self-tuning of the state space
controller gains K and KI are shown. The estimation is ini-
tiated at 1.3 s, and the transition phase represents the param-
eter convergence transient when �1 is set to 0.9992. The in-
tegral gain is validated by designing the controller using the
whole identification experiment offline. The results show
that the integral gains are updated to similar values as the
offline-calculated ones, indicating that the online pole place-
ment routine provides valid results. Furthermore, it can be
noticed that the state feedback K is adapting and also show-
ing cross-coupling terms (parameters in the middle). This
result indicates that the self-tuning part can be straightfor-
wardly adopted as part of the self-commissioning advanced-
model-based controller. To support this observation, in Fig.
9, the parameter estimates during the identification are shown.
We can see that the transient is stable and the parameters
converge to stable values.

Next, the open-loop self-tuning case is tested with the
10 kW bearingless prototype machine, shown in Fig. 7 b),
under full levitation. The same conditions for the param-
eter adaptation are considered as in the simulations above.
The power electronics, sensors, and control software of the
experimental system are similar to the 2-DOF system. The
experimental results of controller adaptation are shown in
Fig. 11. In this case, the initial conditions of the estimator
correspond to the actual plant as in the simulations, and thus,
the change in the controller gains is not significant. This re-
sult shows that online-identifiedmodel-based controller self-

 

Figure 6: Adaptive control parameters; a) integral gains and
b) state feedback gains.

  
                                        a) 

 
b) 

I) 

II) 

III) 

IV) 

Figure 7: a) Experimental 2-DOF AMB system; I) inverters,
II) power supply, III) measurement amplifiers, and IV) AMB.
b) Bearingless 10 kW prototype machine.

commissioning or retuning is a reasonable option for a mod-
ern high-speed drive and the result corresponds well with the
simulated one in Fig. 6.

4.2. Closed-loop adaptation
The adaptive state feedback pole placement law is vali-

dated by considering similar conditions and initialization as
above in the case of the 2-DOF, but now the constant trace
algorithm is applied and the excitation signal amplitude is
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Figure 8: Experimental test of an open-loop self-tuning pole
placement controller. The integral gains are shown in the up-
per figure and the state feedback gains in the lower figure.

 

 

 

Figure 9: Parameter estimates during the open-loop self-
tuning test.

increased to 0.25 A. The experimental results of the state
space controller adaptation are shown in Fig. 10. It can be
observed that after the adaptation is turned on, the transient
is faster because of the tuning of the constant trace algorithm.
More importantly, it can be seen that stable adapting con-
troller parameters are obtained from the algorithm both for
K and KI.

 

 

Figure 10: Experimental test of the closed-loop adaptive pole
placement controller. The integral gains are shown in the up-
per figure and the state feedback gains in the lower figure.

 

Figure 11: Experimental results of the open-loop self-tuning
test in the 4-DOF case.

5. Conclusions
This paper studied the adaptive pole placement control of

a high-speed machine with active magnetic bearings. An ap-
proachwas proposed that is capable of adaptive self-commis-
sioning based on a rigid model, thus giving more options for
typically applied system identification offline commission-
ing steps. The identification approach was based on a re-
cursive extended least squares estimator that was combined
with the idea of using a canonical state space form for the
controller and the state feedback gain update.

The experimental validation indicated that a complex adap-
tive MIMO control structure applied to AMB systems is ca-
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Table 2
2-DOF AMB System Parameters Based on Physical Assump-
tions

Symbol Quantity Value

ks Position stiffness 3.7⋅105 [N/m]
ki Current stiffness 61.4 [N/A]
m Mass 1.52 [kg]
R Coil resistance 2.13 Ω
L Coil inductance 20 [mH]

pable of providing stable controller parameters under proper
system identification conditions. It is noteworthy that the
same approach can be modified so that the rigid controller
part is a fixed baseline controller, and the adaptive part is
considered for instance for flexible modes.
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