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Abstract—Non-uniform, event-driven sampling of signals can
be advantageous for different applications. In this paper, we
focus on event-based sampling strategy for electricity metering
purposes. Specifically, we propose an improvement in the en-
hanced event-driven metering (EDM) technique introduced by
Simonov et al. Our solution provides additional flexibility on
the types of measurements to be sent, by including the option
to reduce the sending of consecutive measurements. Numerical
results are presented for 4 different open databases of electricity
consumption and consistently show that, in relation to the other
options, our proposed strategy leads to both: (i) reduction in
the amount of measurements sent, and (ii) improvements on
the signal reconstruction by decreasing its reconstruction error.
These two aspects are extremely useful in a scenario of massive
deployment of measurement devices.
Index Terms—Event-based measurement, smart grids, electric-
ity metering.
I. INTRODUCTION
The event-based approach in signal processing, commu-
nications and control is an established research field that
provides advantages to the widespread time-based approaches
for specific classes of signals [1]. The core idea behind the
concept is clearly stated in [2]: (...) event-based sampling, in
which a sample is produced only when something significant
(an “event”) occurs in the signal. In this sense, the sampling
is non-uniform, in contrast to the usual periodic sampling;
however it is also not random. Events are related to variations;
for instance, the signal is sampled whenever it crosses a
predetermined threshold. Similarly, it can be sampled when
it varies too fast by using a threshold in the derivative of the
signal; or it can be also sampled when the cumulative value
crosses a threshold (integral of the signal).
This kind of quantization has advantages not only in signal
processing as shown in [3], [4] but also in communications
[1], [5], [6] and process control [7]–[9]. Detection of spikes,
higher-order variation or the cumulative values are important
for different classes of applications. They range from cardiac
monitoring [10] to multi-agent Internet of Things (IoT) en-
abled systems [11]. One example, which is the focus of this
paper, is the application of event-based techniques in modern
energy systems (the so-called smart grid) as the "enhanced
event-driven metering", proposed and developed by Simonov
in [12]–[14]. This approach is itself a derivation of the change
and transmit strategy proposed by Li et al [15], where the
information about the measure of interest is sent only when
a given variation threshold is exceeded. If an adequate value
is chosen (for example, above the noise level), high levels of
compression are achievable because the information below the
threshold is discarded instead of being sent, with low impact
on the reproduction of the signal.
This is especially useful for signals with slow variation
taken from several remote measurement devices (such as
electricity meters). The potential savings in communications
infrastructure, bandwidth and storage can be huge, while
adding little complexity to the measurement devices [16]–[18].
As those contributions have shown, electricity measurement
can benefit greatly from this technique since is mostly constant
over time, except for short (but usually sharp) variations.
The compression gains allowed by event-based techniques
in signal processing have a positive impact in the so-called
massive machine-type communications (mMTC) as part of IoT
and 5G wireless systems [19]. For instance, in [17], the authors
studied how event-based metering could be implemented in
Low-Power Wide-Area Networks (LPWAN) communication
systems. Those results have shown the advantage of the
event-based technique, while also studying the impact of
simulated packet reception outages (communication errors) in
the reconstruction error of the signal. However, in that paper
and in the original EDM proposal, there was no heuristics
to look for solutions that compare the performance of the
different techniques considering a similar amount of data
points. The authors studied this in [18], demonstrating a
consistent advantage of EDM.
Although these existing results are relevant, the EDM can
still be improved by, for example, discarding redundant sam-
ples before they are sent to the receptor. Our results show how
the proposed scheme keeps the amount of measurements close
to the desired value, and the filtering of redundant measure-
ments further increases the compression, at the expense of a
slightly increased error. On the other hand, this increased error
is still better than the equivalent time-based reference values.
The remainder of the paper is organized as follows: Sec-
tion II presents a brief explanation of the event-driven metering
technique, as well as our proposed modifications, Section III
gives an overview of the datasets used in this study. Section IV
shows simulations and compare the results of the proposed
modifications against both the original technique and reference
values from time-based measurements for selected houses.
Section V summarize the results and shows improvements that
can be made in subsequent studies.
2II. EVENT-BASED METERING TECHNIQUE
In this section, we will first review the original work in
event-driven electricity metering done by Simonov et al. We
will also present our proposed extension, while discussing how
each one of the options work.
A. Simonov’s contribution
Let us first revisit the parameters utilized by Simonov [12]–
[14] about the event-driven metering (EDM). The proposed
EDM implementation is composed of three criteria (events):
1) A sudden variation (increase or decrease) in power
demand, which is bigger than a set limit ∆P , in Watts;
2) A cumulative power variation over time, denoted here
as ∆Pslow, which can be set independently of ∆P ;
3) A time-based measurement, to be sent every time inter-
val T (starting from 00:00:00 of a given day), indepen-
dent of the other two measurements (Tfixed).
The first event is straightforward: every time the instant
power variation goes over a given threshold ∆P , a mea-
surement (sample) is acquired and sent, which is useful for
tracking large changes in power. The ∆Pslow parameter mon-
itors the power variation from the present moment in relation
to the last measurement sent. In this way, the authors dealt
with the small cumulative power variations (such as in fuzzy-
controlled loads, or the switching of small electric devices over
time) that, when combined, might exceed the ∆P threshold,.
Lastly, the time-based measurement is used to keep backwards
compatibility with legacy metering and billing.
B. Proposed extension
In this section, we describe how we extend Simonov’s EDM
and our rationale behind it. Specifically, we implemented the
EDM algorithm as described in [12]–[14] with the following
modifications:
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Fig. 1. Consecutive measurements filter. It filters out consecutive measure-
ments before sending. In this time window, the number of measurements went
from 11 to 6, with almost negligible impact on the signal reconstruction.
1) We included a timeout parameter in addition to the
original fixed-interval timed measurements;
2) We implemented a filter to prevent sending consecutive
measurements which both exceed the ∆P threshold;
3) We also included a filter for removing "spikes" from the
sent measurements.
The timeout parameter guarantees that we have at least one
measurement every T units of time after the last measurement.
This helps tracking periods of extremely low power con-
sumption that might not trigger ∆P or ∆Pslow. The timeout
parameter also helps with detecting problems: if no measure
arrives after the time T, it means that there was either a
communication error, meter fault, or energy interruption.
The consecutive measurements filter aims to reduce the
amount of measurements to be sent. The idea is to deal with
consecutive measurements that point in the same direction (up-
wards or downwards). In almost every case, two consecutive
measurements that both exceed the ∆P threshold belong to
the same event (for example, the switching of a high-powered
appliance such as a heater). This is also due to the effect of the
sampling frequency, since the power measurements in use in
this study are taken every second, while the appliances usually
aren’t switched exactly after the beginning of the sampling
interval. Figure 1 shows its behavior.
The spike filter deals with sudden power variations that
occur briefly and then return to their steady-state value (e.g.,
the starting of a fridge’s compressor). This filter reduces the
amount of measurements sent while having slow impact on
the reconstruction quality – since the spike, although having
a high value, is so short that it does not consume a significant
amount of energy – and also prevents one possible situation in
which the ∆P threshold is set to a value high enough that the
positive part of the spike triggers an event (and sends an update
in the demand to the utility), while its negative part stays
below the detection threshold and is not registered, causing
a considerable error in the power estimation. Figure 2 shows
the result of said filtering.
18:14:50 18:14:55 18:15:00 18:15:05 18:15:10 18:15:15 18:15:20
0
500
1000
1500
2000
Original consumption
EDM [50] W
EDM [50] W, filtered
last measurement +- [50] W
Fig. 2. Example of spike caused by a fridge’s compressor, and result of the
filtering being applied.
3TABLE I
OVERVIEW OF THE DATASETS
No. No. avg. Pmin Pmax Pavg
DB/house Days empty meas (kW) (kW) (kW)
UKDALE
1 643 0 86196 0.002 11.564 0.371
2 110 0 85540 0.006 6.747 0.337
5 137 0 85182 0.257 8.554 0.73
UMASS
A 92 0 85471 0.256 10.792 1.368
B 81 0 86400 0.138 10.406 0.684
C 81 0 86398 0 21.72 0.685
RAE 1 62 0 86343 0.225 17.206 1.1042 59 0 85020 0.001 7.753 0.344
REDD
1 36 14 67898 0.091 12.333 0.384
2 35 19 70502 0.032 3.253 0.23
3 45 20 54896 0.001 8.06 0.446
4 48 23 64609 0 4.105 0.351
5 44 36 33569 0.157 12.129 0.623
6 24 3 40339 0.157 11.159 0.476
III. OVERVIEW OF DATABASES
In this paper, we analyzed residential consumption data
from several freely available databases, namely:
‚ UK Domestic Appliance-Level Electricity dataset (UK-
DALE) [20]
‚ UMass Smart* Data Set for Sustainability [21]
‚ The Rainforest Automation Energy Dataset (RAE) [22]
‚ Reference Energy Disaggregation Dataset (REDD) [23]
The use of different houses/databases is desirable to test the
performance of the proposed method since each house has a
unique power profile due to different appliances, number of
occupants, and locations (the RAE database is from Canada,
UK-DALE is from Great Britain, and both REDD and Smart*
datasets are from USA). In this way, we believe we can show
the generality and consistency of our contribution.
Table I presents an overview of the houses in the databases.
We can see that some houses have lots of missing measure-
ments, and completely missing days. This is especially true
for the REDD houses 5 and 6.
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Fig. 3. Ordered ∆P percentage (main plot), and detail from r0.1, 10s ˚
r1, 1000sp%,W q (lower-left corner).
IV. CONFIGURATION AND SIMULATIONS
Before the simulations are run, we need to define some
parameters, namely, the ∆P and timeout parameters, which
give us the baseline for the number of measurements.
A. ∆P threshold estimation
To estimate the parameters used on the EDM strategy,
some data manipulation is needed. Remembering Section II,
the main purpose of the EDM measurements is the tracking
of relevant instant power variations (∆P ). To estimate this
parameter, we employed the following procedure:
1) Extract a week’s worth of data from each house;
2) Calculate the absolute instant power variation |∆P |;
3) Order the resulting data by decreasing ∆P value.
Note that we have proceeded similarly for all houses but
some were discarded from a few plots: houses 3 to 6 from
REDD due to lack of measurements, house A from UMass due
to high noise levels, and house 1 from UK-DALE (arbitrarily
chosen so as not to overcrowd the plot). The resulting plot,
Figure 3, show us the percentage of measures smaller or
equal than a given value. We can see that most of the power
variations are in the range of just a few Watts; for basically all
of the houses, about 90% of the instant power variations are
in the range of 10W or less, while values greater than 100W
are in the range of 3% or less, which is a good indicator that
the EDM strategy can achieve good compression. The lower-
left corner of the figure gives us a more detailed view of the
region r0.1, 10s ˚ r1, 1000sp%,W q.
B. Timeout
Choosing an optimal value for the timeout is not straight-
forward, and also, having different values for each house is
not practical. Hence, we decided to fix the value in T=900s
(15 minutes). Figure 4 shows an example of the inter-arrival
rate for houses for ∆P=10W . With this threshold, two of the
houses would never hit the timeout threshold, while the rest of
them have less 1% of its measurements exceeding that value.
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Fig. 4. Inter-arrival times for all houses, ∆P “ 10W . Vertical dashed line
marks T=900s
4C. Simulated Scenarios
We selected 2 of the houses and simulated 25 scenarios for
each one of them, namely:
‚ Using only the threshold ∆P ;
‚ Original EDM approach (that is, cumulative filter ON and
Tfixed “ 900s);
‚ A scenario using the cumulative filter, the spike +
consecutive filter, no fixed time measurements (that is,
Tfixed Ñ8), and the timeout set to 900s;
‚ Same as above, but also setting Tfixed “ 3600s;
‚ A time-based signal with similar amount of measure-
ments as the expected compression rate for a given ∆P ,
for performance comparison.
Each one of the configurations was repeated for 5 different
values of instant power variation, which would result in
measurements proportional to 0.1%, 0.3%, 1%, 3%, and 10%
of the original data for that week. The results were condensed
in tables with the following columns:
‚ Threshold/target: shows the ∆P parameter obtained from
the previous week that would result in that percentage of
measurements;
‚ Options: indicate which of the options in the EDM
measurement are enabled in each one of the simulations,
namely (C)umulative measurements, spike + consecutive
(F)ilter, fixed (T)ime measurements, and (t)imeout. The
symbol ‚ indicates that the option is enabled, while
˝ indicates that it is disabled;
‚ Final %: percentage in relation to the original measure-
ments that was achieved by applying the parameters;
‚ Power and Energy MAE/RMS: We calculated the nor-
malized values of both Mean Absolute and Root Mean
Square errors to assess the quality of the signal.
The best results of each column for each one of the thresh-
olds are marked bold, while values worse than the reference
(fixed-time) values are marked in italic.
The simulations were conducted in the following way:
1) We collected measurements for a week;
2) We determined thresholds for ∆P that would result in
the desired percentage for that week;
3) We applied these results on the following week’s data.
In this way, we believe that we are closer to a real situation,
collecting data and then analyzing it to determine the param-
eters to be applied for the next period, instead of relying on
a "genie" to solve the problem.
For comparison, we also provided fixed time measurements
with roughly the same amount of points, rounded to the nearest
usual fraction of minute – that is, 15 minutes (900 seconds)
for 0.1%, 5 minutes (300s) for 0.3%, 2 minutes (120s) for 1%,
30s for 3%, and 10s for 10%.
The "Power" and "Energy" errors are both shown because
each one of them is calculated in a different way: the Power
estimation is calculated based on the current power that is
sent in the measurement (that is, the instant power value when
the event happened), while the the Energy error value is the
calculated by dividing the accumulated energy since the last
measurement by the time between the samples. One could say
that the Power error is the forecasting error, while the Energy
error is the smoothing error.
D. UMass Smart* - house B
The parameters chosen for the simulations as well as the
results are presented in Table II.
We can see that using the measurements from the previous
week to determine the thresholds for the current week yields
a number of measurements similar to the expected values, as
shown in the "Final %" column. The baseline for the event-
based strategy, marked as ˝˝˝˝, refers only to the instant ∆P
values and is provided as reference to compare how the data
collection week compares with the measuring week. Figure
5 shows the cumulative ∆P plot for the second week of the
datasets, which resembles closely the results from the previous
week, presented in Figure 3.
The original proposal for EDM (marked as ‚˝‚˝ in the ta-
bles) has fixed time measurements every 900s and cumulative
tracking of the power variation, and exceeds the amount of
measurements in all the cases. This is expected, since we are
adding a fixed amount of timed measurements to the baseline
(96 points per day, or 672 points per week), as well as some
extra measurements due to the ∆Pslow parameter. This effect
gets less pronounced as the ∆P threshold is lowered. Ap-
plying our propositions (marked as ‚‚x‚) – that is, replacing
Tfixed “ 900s for a timeout of 900s, and enabling or disabling
the fixed time measurements – consistently outperforms all the
other strategies with regards to compression, with the threshold
targeting 0.1% of the data being the exception, due to the
effect of the timeout/fixed-time measurements dominating in
this case.
TABLE II
SIMULATION RESULTS FOR UMASS HOUSE B
Threshold/ Options Final Power Energy
target C F T t % MAE RMS MAE RMS
501W
(0.1%)
˝ ˝ ˝ ˝ 0.11 0.678 0.822 0.161 0.250
‚ ˝ ‚ ˝ 0.25 0.140 0.279 0.059 0.129
‚ ‚ ˝ ‚ 0.19 0.121 0.229 0.071 0.150
‚ ‚ ‚ ‚ 0.20 0.121 0.233 0.071 0.150
900s 0.11 0.242 0.743 0.186 0.499
204W
(0.3%)
˝ ˝ ˝ ˝ 0.27 0.193 0.273 0.086 0.132
‚ ˝ ‚ ˝ 0.44 0.059 0.106 0.034 0.082
‚ ‚ ˝ ‚ 0.27 0.088 0.152 0.045 0.115
‚ ‚ ‚ ‚ 0.28 0.083 0.147 0.046 0.115
300s 0.33 0.168 0.662 0.121 0.408
33W
(1%)
˝ ˝ ˝ ˝ 0.75 0.045 0.068 0.015 0.055
‚ ˝ ‚ ˝ 1.12 0.013 0.019 0.010 0.050
‚ ‚ ˝ ‚ 0.61 0.019 0.088 0.016 0.111
‚ ‚ ‚ ‚ 0.62 0.018 0.088 0.016 0.110
120s 0.83 0.106 0.513 0.077 0.311
10W
(3%)
˝ ˝ ˝ ˝ 2.37 0.018 0.027 0.008 0.047
‚ ˝ ‚ ˝ 3.39 0.006 0.008 0.006 0.046
‚ ‚ ˝ ‚ 1.52 0.011 0.108 0.014 0.119
‚ ‚ ‚ ‚ 1.54 0.011 0.108 0.014 0.118
30s 3.33 0.043 0.296 0.031 0.180
6W
(10%)
˝ ˝ ˝ ˝ 9.78 0.007 0.014 0.006 0.043
‚ ˝ ‚ ˝ 11.60 0.003 0.004 0.005 0.039
‚ ‚ ˝ ‚ 2.47 0.010 0.119 0.014 0.114
‚ ‚ ‚ ‚ 2.50 0.010 0.119 0.014 0.114
10s 10.00 0.018 0.175 0.013 0.103
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Fig. 5. Ordered ∆P percentage for week 2
Regarding the errors in reconstruction from P and E, the
EDM strategies consistently outperform periodic sampling
with similar amount of measurements, and sometimes even
higher sampling rates. For example, the error values for the 1%
target are comparable to the sampling rate of 10s, while using
around 10 times less data. Among the different configurations,
Simonov’s approach usually has smaller error values, but
again, that comes at the expense of more data points. Our
modifications have slightly higher error rates, but achieve
better compression in every scenario.
E. RAE Dataset, house 2
House 2 from the RAE dataset, shown in Table III, have
slightly different results with regards to compression, with
most of the EDM measurements going over the target amount
of points. This is most likely due to increased activity levels
in the current week in relation to the previous one, which
was used to estimate the ∆P level for the power events.
Nevertheless, our implementation managed to be pretty close
to the target compression on average, and improving over it
when the target measurement percentage increases.
V. CONCLUSION
In this paper, we suggested improvements upon the event-
driven (EDM) technique. Our modifications achieve greater
compression compared to both the original method and the
fixed-time measurements, while having acceptable reconstruc-
tion error rates, slightly higher than the EDM strategy, but
always smaller than timed measurements with similar number
of points. This trade-off might be interesting in a scenario
of massive deployment of measurement devices with limited
battery, since our modifications result in further reduction in
the amount of measurements.
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TABLE III
SIMULATION RESULTS FOR RAE HOUSE 2
Threshold/ Options Final Power Energy
target C F T t % MAE RMS MAE RMS
923W
(0.1%)
˝ ˝ ˝ ˝ 0.14 0.387 0.714 0.225 0.379
‚ ˝ ‚ ˝ 0.27 0.192 0.368 0.080 0.217
‚ ‚ ˝ ‚ 0.18 0.236 0.427 0.149 0.301
‚ ‚ ‚ ‚ 0.19 0.232 0.424 0.149 0.300
900s 0.11 0.453 1.55 0.346 1.058
217W
(0.3%)
˝ ˝ ˝ ˝ 0.41 0.231 0.326 0.160 0.265
‚ ˝ ‚ ˝ 0.69 0.115 0.179 0.080 0.217
‚ ‚ ˝ ‚ 0.43 0.154 0.238 0.106 0.234
‚ ‚ ‚ ‚ 0.44 0.149 0.235 0.104 0.233
300s 0.33 0.295 1.286 0.236 0.857
68W
(1%)
˝ ˝ ˝ ˝ 1.41 0.077 0.145 0.048 0.197
‚ ˝ ‚ ˝ 1.92 0.034 0.052 0.034 0.187
‚ ‚ ˝ ‚ 1.00 0.045 0.134 0.039 0.204
‚ ‚ ‚ ‚ 1.02 0.044 0.134 0.039 0.204
120s 0.83 0.233 1.13 0.167 0.696
33W
(3%)
˝ ˝ ˝ ˝ 3.61 0.042 0.075 0.031 0.180
‚ ˝ ‚ ˝ 4.77 0.022 0.031 0.027 0.171
‚ ‚ ˝ ‚ 1.75 0.036 0.189 0.036 0.220
‚ ‚ ‚ ‚ 1.77 0.036 0.189 0.036 0.220
30s 3.33 0.095 0.611 0.069 0.381
14W
(10%)
˝ ˝ ˝ ˝ 9.76 0.024 0.038 0.023 0.145
‚ ˝ ‚ ˝ 11.52 0.012 0.016 0.021 0.138
‚ ‚ ˝ ‚ 3.48 0.032 0.276 0.037 0.237
‚ ‚ ‚ ‚ 3.50 0.032 0.276 0.037 0.236
10s 10.00 0.054 0.392 0.039 0.241
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