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Abstract

Granular material (GM) is the second most manipulated substance in the world and is present in most
industries either as raw materials or finished products. Often the temperature of the granular material needs to
be manipulated for example in the case of heating iron ore to induce a phase change or to be kept within a certain
temperature range in the case of pharmaceutical powders and food products. Thus a detailed understanding
of how heat is transferred in granular materials is essential. The most feasible numerical approach to study
heat transfer in granular materials is using the discrete element method (DEM), where each particle is explicitly
modeled. In terms of conductive heat transfer particle shape can be expected to have a significant effect on
the heating of granular materials, due to the nature of the grain to grain contacts and packing topology which
control the heat flow paths and the rate that heat is conducted along these. This paper considers the effect of
particle shape on heat conduction in thermally simple or low Biot number granular materials using a polyhedral
particle representation. The volume based contact model for granular heat conduction is firstly verified against
the analytical solution for solid heat conduction as well as experiment with cubic particles. The resulting model is
then used to study the effect of particle shape on the effective thermal conductivity (ETC) and heat distribution
within packed stationary beds. It was found that for irregularly shaped (polyhedral) particles the ETC does not
have a linear relationship with the packing density as found in previous studies with spherical and ellipsoidal
shaped particles. Rather that there is an exponential dependence on the micro-structural quantities of contact
area and isotropy, with non-homogeneity in the packing density resulting in complex conduction paths and dead
zones affecting conduction thru the bed.

1 Introduction
Heat transfer in granular media (GM) is almost as ubiquitous in nature as GM itself, being second only to water as
the most manipulated substance on the planet [1]. Heat affects numerous processes that include catalyst reactors
[2], energy storage, food processing, calciners and kilns. Some particle or inter-particle properties can significantly
change over moderate temperature ranges, and can directly influence inter-particle flow and heat generation, which
in turn affects granular advective heat transfer and heat energy in the system. For example, the influence of
friction on heat transfer in hopper discharge of spherical particles [3], rotary calciners using a spherical particle
system [4, 5, 6], experimental investigations into rotary drums [7], thermo-mechanical analysis of nuclear pebble
failure [8], heat transfer in dense fluid-particle systems using parallelized compute [9] have been studied. Other
parameters that influence percolation, elutration, agglomeration and flow-induced or transport mechanisms [10, 11]
may also significantly affect granular advective heat transfer. Hence, computational approaches have been developed
[12, 13, 14, 15] to improve the prediction of granular dynamics. These include taking into account microscopic
behavior at the particle scale and improved modeling of advective heat transfer and energy transfer to heat energy.
Some particle properties may change as a direct result of temperature, e.g. thermal expansion. The increase of
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a material’s volume due to an increase in temperature has been studied for 2D discs [16], and for more general
spherical particle systems [17], to determine effective thermal expansion coefficients for granular packings.

In a granular system, a number of heat transfer mechanisms are responsible for transferring heat to, from and
between particles. These include heat conduction within particles, heat conduction through the solid-solid interface
(conductance between particles), radiative transfer between particles and either other particles or the environment.
In addition, heat can be conducted from the surrounding fluids (gas or liquid) to the particles, where the fluids can
be transported by natural convection, forced convection and advection with different temperatures. In addition,
granular advection result due to the motion of the particles. Radiation transfers energy between particles through
void spaces [18], only becoming important when temperatures are at least several hundred degrees, with sufficiently
large inter-particle voids [19, 18]. Convection is strongly limited by the low permeability of the porous media until
temperature gradients are sufficiently high to overcome the strong flow resistance. Consequently, conduction is
the dominant heat transfer mechanism in granular materials at low to moderate temperatures. Conduction can be
considered thermally simple with a uniform temperature field inside particles if their Biot number is less than 0.1
in which case particle to particle temperature variations control the overall conductive heat transfer. This study is
focused on conductance between low Biot number polyhedral particles at lower temperatures allowing other transfer
mechanisms of radiation and convection to be omitted.

Generally, granular media have thermal conductivities that are orders of magnitude lower than for solids made
of the same material, resulting in a relatively low effective thermal conductivity (ETC) that is dependent on the
nature of the particle packing. The ETC of a packed bed depends on a number of parameters including the solid
volume fraction (SVF) [20], the particle thermal conductivity [21], contact pressure, particle surface roughness [22],
stiffness, translucency affecting absorption and scattering [23], particle shape [24, 25], size of the particles and how
they are packed [26, 27, 20]. Polamuri et al. [20] demonstrated that Bruggeman’s equation for ETC is within
3% - 13% for mono-dispersed spherical particles in a regular packing. Perfect mono-dispersed spheres in a regular
packing significantly simplifies the spatial void fraction description, as it is constant over the packing, resulting in
a uniform ETC. The ETC for mono-dispersed spherical steel particles, with diameters between 1 mm and 12 mm,
were found to be between 100 and 160 times smaller than for solid steel. Experimental work by [28] indicated that
the ETC of binary particles particle systems are higher than unary particle systems, due to the poor conductvity
of air between particles. For binary packings, ETC is at its maximum when the void fraction is at its minimum.
For the same volume fraction, a higher fraction of smaller particles result in a lower ETC due to an increase in
the number of small to small particle contacts that effectively increases the thermal resistance along a thermal
transmission path. Lee et al. [29] demonstrated that for binary particle systems consisting of non-homogenous
materials, large insulating particles enhance thermal conduction compared to smaller insulating particles, due to
larger insulating particles improving the interconnectivity of thermally conductive particles for the same volume
fractions. The reason being that larger insulating particles are more spatially localized, reducing the chances of
interrupting a conductive path, when compared to smaller insulating particles that are spatially more dispersed.
The effective thermal conductivity in a packed bed has contributions due to conduction, convection and radiation,
i.e. a contribution for each mode of heat transfer. Wang et al. [30] showed the role that gas convection plays in
enhancing ETC for random spherical packings. Wang et al. [18] also showed that at elevated temperatures (> 1000
K) for stagnant flows the increase in ETC with temperature was mainly due to radiation, which tends to be more
pronounced for large void fractions.

In the absence of convective and radiative heat transfer, the ETC in spherical particle systems is largely influenced
by the characteristics of i) contact domains, ii) contact positions, iii) contact angles and iv) contact stresses [31, 32,
26, 33]. Changes in particle shape significantly affects all four characteristics leading to vastly different force chain
networks that in turn affect the ETC as shown experimentally by Huchet et al. [25]. Although, the experiments
provide a reliable packed bed ETC, they cannot be utilized to provide insight into the mechanistic connections
between particle shape as characterised by micro-mechanical quantities such as the contact area, contact number,
packed bed topology, heat flow paths and the resulting rate of heat transfer. In addition, empirical relations
predicting the ETC have been derived based on these experiments but are limited to the paraamter ranges over
which the experiments were conducted [21, 34, 22, 28, 20]. Therefore, simulations are a valuable tool to provide
insight and understanding of the principles governing the ETC variation in packed beds. Unfortunately, modeling
of thermal behaviour of granular aassemblies has to-date largely been dominated by investigation of circular 2D
[35, 26, 36]. A limited number of studies have considered non-spherical particle shapes such as cubes to thermally
analyse granular systems [37], with some being limited to 2D modelling assumptions [38]. This paper considers
the effect of polyhedral particle shape represenatons on heat conduction in thermally simple or low Biot number
granular packings.
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1.1 Numerical Modeling
Thermal analysis of problems involving particles are often resolved using multiscale methods, which aim to extract
predictive macroscopic properties by resolving the geometry and physics of an underlying microstructure [39]. The
two main approaches to bridge the length scales are namely homogenization and coarse graining [40]. Homogeniza-
tion averages properties over a micro-scale structure to recover macroscopc properties [24, 41, 19, 27], while (ii)
coarse graining recovers the emergent behaviour across length scales through statistical and thermodynamical prin-
ciples [40, 42]. Mesh-based continuum approaches such as the finite element method (FEM) [43], and finite volume
method (FVM) [44], can be easily applied to estimate temperatures within irregularly shaped solids or in solids
with non-uniform thermal properties. Energy conservation is reformulated into an integral form that is then solved
in the strong or weak form by discretization resulting in a solution that satisfiesthe energy conservation equation
globally. Although the governing equations and operations are much easier to discretize using the finite difference
method (FDM) [45], their form in generalized coordinates are not. The FEM and FVM allows for the formulation of
the problem from a conservation viewpoint, which FDM does not, giving FEM and FVM more explicit control over
which quantities are enforced exactly and which ones approximately. All three approaches were originally designed
and are well suited for heat transfer within single bodies. In a multi-body context, both for static and dynamic
cases, complications arise for all three approaches, requiring contact to be resolved in order to obtain an effective
contact area required to estimate conductance between bodies.

This allows the particle system to be treated numerically as a porous medium, which is popular when the effective
macroscopic properties of the particle system can estimated from a detailed FEM or FVM thermal analysis [31]. The
high computational efficiency of this approach makes it desirable when considering large granular assemblies. On
the downside this approach is not well suited to accommodating particle level changes. Multi-scale FEM approaches
resolve these particle scale changes by solving a micro-scale model at each finite element integration point, which
comes at a significant compuational cost [46]. Meshless continuum methods such as the Lattice-Boltzmann Method
(LBM) [47] and Smoothed Particle Hydrodynamics (SPH) [48], have mainly been applied to single particle systems
or two-dimensional multiple particle systems.

In contrast, discrete approaches allow large number of particles and attempt to represent these particles indi-
vidually using simplified models. Numerous approaches have been proposed that include thermal network models
(TNM) [35], lattice element method (LEM) [49], parallel column models [50], and discrete element method (DEM)
[37] to resolve thermal problems for granular assemblies. TMN and LEM, can loosely be viewed as generalizations
of the FDM, in which each particle is modeled as an isothermal sphere. Contact pairs are modeled by an equivalent
thermal resistance pipe, reducing the thermal equations of the whole system to that of a corresponding thermal
resistance/conduction network. TNM and LEM, lack a rigorous theoretical foundation to determine thermal pa-
rameters. DEM in turn has proven to be extremely useful to estimate ETC in granular assemblies [37], and shown to
even recover FDM results for single particle internal conduction [36]. However, DEM is computationally demanding,
which consequently has seen limited applications mainly restricted to spherical particle systems [35, 26, 36].

Attempts to alleviate the computational demands of DEM include derivation of simpler models from DEM
information such as discrete thermal element model (DTEM) [31], multi-sphere unit cell model [51] or combined
FEM-DEM [52]. These simplifications may encounter difficulties or lose their computational advantages when
considering dynamic applications of particle systems that flow. As an alternative to simplifying DEM models, DEM
can be better aligned with compute devices. Performing DEM on graphical processing units (GPU) can improve
computing times by orders of magnitude. A simplified isothermal DEM model allows for effective exploitation of
multi-GPU compute without creating significant implementation drawbacks. However, a potential disadvantage of
such a simplified model is that it is only valid for particle systems with Biot numbers <‌< 1 for which the internal
heat transfer can be ignored since the temperature is fairly uniform inside the particles allowing for a “lumped”
capacitance model to be assumed. Particle systems with higher Biot numbers require the internal thermal gradient
over the particle to be resolved to maintain accurate approximations. Witt et al. [6] presented a thermal DEM
method that included a one-dimensional variation of temperature within the particles which allows the method to be
used for higher Biot number (insulating or larger particles). This method can be used in two and three dimensions
and for dynamic (flow) problems but is limited to spherical particles as the internal one-dimensional approximation
of the temperature field is only valid for spherical particles. Recently, [53]have used finite discrete element method
(FDEM) to study intra-particle heat transfer in granular assemblies allowing for complex temperature fields to
be resolved within complex shaped multi-bodied contact problems. While this does extend FEM beyond static
problems, the size of the systems that can be analyzed are still limited to a few thousand with fairly long run times.
Recent progress has been made using FDEM to model both fluid flow and heat transport [54], which again is limited
to a few particles.
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The majority of work in DEM thus far has been for packed bed problems supported by experimental studies
ranging from loose [55, 56] to dense packings [57] [58], with the aim of characterizing heat flow through the granular
beds. The modeling of thermal behaviour of granular assemblies are largely dominated by circular 2D [52], or
spherical 3D particle systems [35, 26, 36]. A limited number of studies have considered non-spherical particle shapes
to thermally analyse granular systems [37], with some being limited to 2D studies [38]. However, for real granular
systems the particle shapes can be irregular and complex, which is distinct from the ideal spherical assumptions.
As demonstrated experimentally, a dominant characteristic of granular assemblies for non-spherical, non-uniform
and irregular particles is that the packing density as well as contact network varies which significantly affect the
conduction of heat through a packing. Thermal conductance laws for discrete element models are mainly limited
to spherical particle systems [59]. Only a limited number of studies have investigated non-spherical particle shapes
using FDEM [60] to derive empirical relationships for the effective thermal conductivity [59].

This paper aims to explore the effect of particle shape on thermal conduction by approximating the contact
area between particles using the volume overlap method [61]. To the best of the authors knowledge this is the first
study to resolve the contact area between polyhedral particles to estimate the effective flux area that is known to
drive conductance. Additionally, there are no closed form relationships that relate the overlapping volume of two
contacting polyhedral particles to their thermal conductivity.

2 Computational Implementation
A caveat of DEM simulations is that tens millions of particles with process times in the order of minutes are
typically required for the simulation of industrial problems, which is beyond the computational capability of current
computers. Consider Figure 1 which depicts various particle shape approximations typically used in DEM. The
spherical approximation Figure 1(a) is the most commonly used shape with the majority of conductivity studies
to date having been performed using spheres with intangible modifications such as rolling friction to account for a
departure from sphericity [62, 63]. This approach is limited as the relationship of rolling friction to particle shape is
usually unknown requiring extensive characterization that diminishes the predictive ability of these models. Studies
that considered particle shape usually limit themselves to ellipsoids Figure 1(c) [64], multi-sphere approximations
[65], as depicted in 1(d) as depicted in Figure 1(d). A polyhedral shape representation is able to capture the particle
angularity and aspect ratio as required with such a particle shown in Figure 1(e).

Collision detection between polyhedral particles is the most time consuming part of a DEM simulation. In
Blaze-DEM [66, 67, 68] contact is split over three phases each with increasing computational cost. Contact between
particles is first detected using an efficient strategy during the “broad phase” identifying potential contact pairs
which are resolved during a computationally more demanding narrow phase to establish whether two particles
are actually in contact and if so to compute the resulting force direction and magnitude can be computed. The
broad phase for spherical and polyhedral shaped particles uses a hashing strategy such as Morton codes or spatial
decomposition such as Bounding Volume Hierarchy (BVH). Identified contact particle groups are then directly
resolved in a narrow phase for spherical particles to establish contact pairs and ultimately contact measures to
calculate force directions and magnitudes. In turn, for convex polyhedral particles the broad phase is followed by
an intermediate phase using some bounding primitive to detect contact more accurately than the broad-phase with
a much cheaper query than a full contact check. This is followed by a narrow phase to establish contact pairs and
ultimately contact measures to calculate force directions and magnitudes.

These forces can be estimated in various ways, that include estimating the penetration distance [69, 70, 71],
in vertex-face and edge-edge contact. Alternatively, the forces can be estimated from the overlapping volume
[69, 72, 73], which is the measure computed accurately in Blaze-DEM on the GPU (which is used here) that is
significantly harder than finding the overlap distance. The benefit being that the overlapping volume allows for
both the direction and magnitude to be resolved using an energy-conserving contact interaction scheme [61]. This
approach also provides us with accurate surface contact area as well as the exposed surface area of the particle
which is required for heat transfer.

To compute the overlap volume, consider the intersection of two polyhedral cubes as depicted in Figures 2(a).
It is important to note that the intersection volume between two intersecting polyhedra is given by the convex
hull formed using the vertices at the intersections between the polyhedral edges and faces. The first step is to find
the intersecting vertices as depicted in Figure 2(b), after which we define the faces that form the convex hull of
the overlap volume in Figure 2(c). The surfaces of this volume are formed by the external face of one polyhedra
with the internal faces within the other polyhedra. Once the surfaces have been identified the resultant force can
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be computed by integrating over the surfaces as depicted in Figure 2(d) with the contact area being the common
face(s) shared between the polyhedra.

Lastly, two additional contact volume properties that need to be computed are the contact Volume V and the
COM of the contact volume as these will be required to resolve the elastic contact force. Since, both V and COM
changes between contacts it is necessary to compute them efficiently on the GPU. The divergence theorem

˚

V

(∇ · F )V =

‹
S(V )

‹
F · S, (1)

allows us to transform the volume integral of an object with volume V into the surface integral around the boundary
surface S(V ) of the volume with outward-pointing normal. This can be done by appropriately choosing any vector
field F(x1, x2, x3) that has a divergence of 1 i.e. ∇ · F = 1. This then gives the volume

‹
S(V )

‹
F · S =

˚

V

V = V, (2)

as a surface integral. As an alternative, the contact volume can be computed by sub-dividing the intersection volume
into tetrahedra for which efficient closed form expressions exist in computing volumetric and inertial properties [74].
Once, these quantities have been computed the reaction force direction is calculated as

nfi =

´
A
nAi ds

|
´
A
nAi ds|

=
1∑
j A

j

∑
j

Ajn
Aj

i , (3)

which acts on particle i as shown respectively in Figures 2(d) for the two particles. Here, the direction of the
reaction forces are respectively indicated by the solid lines (red and black). In addition, the computed reaction
force acts through the COM of the overlap volume, while the magnitude of the reaction force in turn is proportional
to the volume V of the contact volume. For particle i, the elastic force associated with contact volume V , follows
the following constitutive relationship:

Fi = kV nfi , (4)

where k is a numerical stiffness coefficient. Additional forces including a viscous damping force that depends on
the relative velocity and rotation between the particles as well as the tangential forces complete the contact forces
on the particle as depcited in Figure 3.

2.1 Heat Transfer Models
The heat flux between contacting particles i and j is given by Fourier’s law as:

Qij = Hc(4Tc) (5)

where 4Tc is the apparent temperature difference between particles and Hc is the heat conductance coefficient.
The parameter Hc =

λpA
γc

is a measure of the thermal resistance of material, where λp is the material thermal
conductivity, A is the cross-section area, and γc is the distance through which the temperature gradient applies (we
denote it as γc to distinguish it from the continuous media). As there is no temperature gradient inside individual
particles, determining γc = ∆x is not straightforward. However, from the analytical solution for the spherical
particles, we know Hc = 2λp

√
A [5, 4]. Any general relation for Hc for non-spherical shapes should asymptotically

approach this as the particle shape approaches spherical. Consequently we assume the general form Hc as:

Hc = αλp
√
Ac (6)

where Ac is the contact area based on the penetration distance for spheres or the polygonal contact area. While
α = 2 in the case of spherical particles [5, 4] for polyhedra there exists no general geometric description of the
irregularly shaped contact area, hence this factor will need to be determined via experimental means. Figure 4
illustrates a polyhedron with three contacting neighbours each having a contact area Athat is calculated from
the surfaces of the overlap polyhedron that is determined in Figure 2(d). Addtionally the contact angle θ that is
required for subsquent istropy calculations is defined as the vector between the target particle center and the center
of the overlap polyhedron relative to the positive vertical axis.
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The resultant temperature change of particle i can be expressed as

Tn+1
i − Tni =

∑
j Qij

miCip
4t (7)

where Cip is the specific heat of the particle i, subscript j stands for the contacts that particle i has, and superscripts
n+1 and n are for the new and previous time steps, respectively. The main assumption of the model is that thermal
conduction inside a particle is fast enough that the temperature over a particle can be assumed uniform, meaning
that the thermal gradient over a particle is negligible since (Biot < 0.1) [16].

3 Determination of the heat transfer coefficient and model validation
We firstly aim to determine the value of the conduction coefficient α for perfectly contacting polyhedral particles
using the well-known example of heat transfer in a solid for which there is an analytical solution (time dependent
heat equation). The material used is aluminum having a conductivity of 240 W.m−1K−1 and heat capacity of
921J.kg−1.K−1. An advantage of using polyhedra is that we can create a totally solid packing of cubic particles,
which in effect is a discretisation of a continuous solid (25 cm x 30 cm x 25 cm) as depicted in Figure 5 (a). In this
case, all cubes are face contacting with an area of 0.25 cm2 and edge length of 0.50 cm. The side walls are adiabatic
with the top and bottom surfaces held at 100 and 0 oC respectively as shown in Figure 5 (b). We use the fact that
at steady state the ETC of the packed bed will be equal to the material thermal conductivity thus allowing us to
determine the relationship between α and ETC. Figure 5 (b) contains a plot of the ETC as a function of α, we
notice a linear relation with α = 0.86 corresponding to the thermal conductivity of aluminum.

Now that we have determined the value of α for this scenario we can verify the code by comparing the solution
using the heat equation to the simulated solution as a function of time. Figure 6 (a) shows the evolution of the
temperature in the bed at various vertical positions over time with Figure 6 (b) depicting the spatial distribution
of temperature at steady state. We observe a good agreement at the various time intervals indicating that both the
contact method used and the equation for heat conduction is correct. Furthermore we have demonstrated that the
unknown parameter α in the thermal resistance of contact (Equation 5) can be calibrated to a target value for the
material under investigation.

3.1 Experimental Conditions
Having verified the model for a perfect contact (conduction) scenario, we aim to validate the code experimentally.
We now need to determine the conduction coefficient α for non-perfectly contacting particles. The experimental
setup to perform the conductance heat transfer is outlined in Figure 7. An inductive heat source was used to heat
and maintain oil at 70 ± 1oC. The value of 70 oC was chosen to avoid radiative effects, vapor forming as well
as the maximum output of the source. An iron bar of dimension 250mm x 50 mm x 10 mm weighing 760 grams
was suspended on insulated wooden supports. Particles are made of milled aluminum having dimensions of 19
mm square with a thickness of 3 mm with the outside surfaces at which contacts occur been polished as depicted
in Figure 7 (b). The particles were maintained at 24.3 oC within 0.1 oC using a thermal bath to ensure uniform
initial conditions before being placed on the heated iron bar. The dimensions of the iron bar is selected to act as a
reservoir requiring 337 J to increase the temperature by 1oC, while 2.7 J of energy would increase the temperature
of an aluminum particle by 1oC. Thereby, increasing the energy of a single particle from bath temperature to
the iron bar temperature would at most result in 0.3oC change in temperature of the iron bar. A FLIR thermal
camera was used to experimentally measure the surface temperature fields of each particle over time. The FLIR
thermal camera requires a reflected background correction to compensate for environmental radiation. Before each
experiment the background temperature was compensated for and the emissivity of the FLIR thermal camera was
set for aluminum. A single particle was placed with its 3 mm face on the hot plate, supported by a thermally
insulated bracket with subsequent particles placed on top of the first particle with a weight of 1 kg placed on top
to ensure consistent contact.

3.2 Numerical Conditions
The linear-spring dashpot model described in Equation (4) was used with a normal stiffness of k = 1000 N

m , time-step
of 1× 10−5 and a coefficient of restitution (COR) of 0.40. The thermal properties of the material are the same as
the preceding section. While Equation 6 concerns itself with perfect conduction in reality for contacting bodies we
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have thermal resistance at the contact area due to imperfections in surface finish and environmental contaminants.
Thus we need to firstly determine the factor by which the previously determined conduction coefficient α needs to
be modified to account for this. As in the previous case we choose a single data point at which to calibrate α1 to
match the experimental temperature of 36.5± 0.52oC at 10s. The value of α1 between the source and particle was
calculated to be 0.20, so thermal resistance between the particle and iron plate reduces conductance by around 4x
(changing the weight on top beyond 1 kg had no effect). In order to determine α2 for contact between particles
we follow the same procedure this time matching the temperature of the top particle at 30 s which was found to
be 29.6 ± 0.18oC. The value α2 was calculated to be 0.08, hence the thermal resistance between particles reduces
conductance by around 10x. Unlike thermal conductivity for which there exists a substantial library of values
for various conditions, the data for thermal resistance is sparse existing for just a few conditions and materials.
Therefore these results should be viewed in the context of the current study as a means of validating the heat
transfer model for polyhedral particles rather than an exercise on determining the general thermal resistance for
contacting polyhedra.

3.3 Validation with Experiment
We now investigate the predictability of the code by comparing the simulated results to that of experiment for single
particle on a heated surface contact as shown in Figure 8(a) with Figure 8(b) showing the corresponding images
captured by the thermal camera. The temperatures contained in the image correspond to the heat probes on the
camera and are labeled as spot 1-3. As can be seen in Figure 8(a) there is a good match between the experiment
and numerical results with the relative error been less than one percent. Finally we compare the results for the case
of two contacting particles with the bottom particle on the heated surface. Figure 9(a) depicts the experimental
and simulation results, we again see a good match for both particles temperatures indicating that we are able to
predict the correct thermal behavior with Figure 9(b) show the images captured by the thermal camera, note that
spot 3 is the temperature of the air. We see that there is little change in the ambient temperature showing that
other heating mechanisms have negligible effects at the temperature range of the experiment.

4 Numerical study on the ETC of a packed bed
Having verified and validated the contact model and conductance laws, we now proceed to study the effect of
particle shape on the effective thermal conductivity (ETC) of packed beds. While there have been previous studies
on the ETC of packed beds for spherical particles this is the first study, to the best of the authors knowledge, to
consider polyhedral particles. The rectangular (25 × 25 × 30 cm3) packed bed under investigation is depicted in
Figure 10(a). The bed is generated by releasing particles with the same initial velocity of 1 m/s from a height of
50 cm with a uniform random orientation allowing them to settle down under gravity. Packed beds are generated
for several particle shapes as illustrated in Figure 10(b) were (1-5) are convex while (6) is a non-convex shape that
is used to demonstrate the flexibility of the code. The common geometric feature between particles was choose to
be the volume (0.125 cm3) which has been used in previous study in-order to gain shape effects between dissimilar
geometric representations. It is also should be noted that the convex shapes (items 1-4) have a similar aspect ratio
while the HexP (item 5) has an elongated width resulting in an aspect ratio of (1:8). The physical and numerical
parameters of the particles are tabulated in Table 1. In order to ensure the same height of the packed bed for all
shapes, filling was performed starting from above the 30 cm target height and any particles that were above this
height after packing was completed were removed

The temperature of particles contacting the top boundary (30 cm) is held constant at 100oC (Ttop) while those
at bottom boundary (0cm) is held constant at 0oC (Tbot). The initial temperature of the bed is set to 0oC with the
vertical walls been adiabatic in order to ensure the imposed temperature gradient is only in the vertical direction.
Once a thermally steady state condition is reached, we have:∑

j

Qij = 0 (8)

where the sum is over all particles in the system. However, the total heat fluxes to and from the top and bottom
plates are not zero. We denote the total heat flux through the top plate as Q. The heat flux through the bottom
plate is necessarily -Q since the system is at thermal steady state. As a result, the effective thermal conductivity
of packed bed is calculated as:
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λeff =
Q

A

4y
4T

(9)

where ∆y = 30 cm is the height, A = 625 cm2 the cross section area of packed bed, 4T = 100oC the temperature
gradient between the plates and Q the calculated heat flux from Equation (5).

Macroscopic Analysis The numerical parameters used for the simulations here is the same as in Section 3.2
, a representative volume from the middle of the bed was extracted to provide a qualitative view of the packing
structure as depicted in Figure 11. Table 2 lists the calculated ETC, packing density, average contact area as well as
various geometric identifiers for each shape. We firstly notice that the shape with the highest solid volume fraction
(SVF) namely cubes does not have the largest ETC, in fact there is no relationship between the SVF and ETC.
This is significant as previous studies involving spheres have found a linear relationship between the SVF and ETC,
furthermore higher average contact areas do not necessarily yield the largest ETC values either. The non-convex
shape exhibits the most striking deviation from the current understanding of ETC from packed beds of spheres,
in that it has one of the smallest average contact areas (similar to spheres) yet it has an ETC that is 68% higher.
Equally baffling is that the HexP shape which is convex, has one of the largest average contact areas but has the
lowest ETC of the polyhedral shapes. These findings demonstrate the traditional macroscopic properties of packed
beds namely SVF and contact area are insufficient to characterize the thermal conductive properties of packed beds
consisting of polyhedral shapes.

Analysis of Packing Structure To explore the packing structure the distribution of contact angles (defined in
Figure 2) relative to the vertical direction as well as the variation of contact area along the vertical axis of the bed
is shown in Figure 12 (a). From Figure 12 (a) we firstly notice that the HexP has a peak close around 12 degrees
indicating a strong ordering in the vertical direction with a lack of horizontal contacts as they have packed with
the long axis in the horizontal direction (Figure 11(e)). Secondly we notice that the CrossP particle which is non-
convex, does not have a strong peak indicating its contacts are fairly uniform resulting in the highest isotropy of all
polyhedra but still less than spheres owing to a lack of vertical contacts (< 30 degrees). The remaining polyhedra
have similar distributions peaking between 40 and 45 degrees, with the cube particle having a secondary waeker
peaks occurring at 0 and 90 degrees respectively. The corresponding contact isotropy weighted by the contact area
is listed in Table 2 and provides a single measure of the results depicted in Figure 12.

Gravity and particle shape are the two main factors that determine the distribution of contact pressures over the
height of a packed bed. Since all particle shapes have the same mass, any variations in the resulting distributions
may be attributed to particle shape. Figure 12 (b) shows how the contact area varies as a function of height. While
we observe a trend of stronger contacts at the bottom, the variation with height in the beds differs for the various
polyhedra shapes. Spherical particles have the smallest variation implying that the average contact area is the
most similar throughout the depth of the bed. This is consistent with the findings of previous studies using spheres
[35, 26, 36] where the bed is assumed to be homogeneous. However, for the case of polyhedra we see that there is a
significant variation through the depth of the bed with the largest variation belonging to the HexP particle. This
result demonstrates that the assumption of homogeneity in packed beds is not valid for polyhedral particle shapes.

The contact network is illustrated in Figure 13 where the colors indicate the relative normalized contact area over
all cases while the thickness indicates the strength of the contact relative to that particular shapes contacts. We
firstly notice that the most uniform and co-incidentally dense contact networks belong to the Cubic and TTet
shapes respectively which both have the highest ETC values while the BiLuna and Sphenome shapes have a less
dense network with weaker contacts. The HexP shape on the other-hand has strong contacts which take the form
of vertical “zig zags”, which lends support to the assertion of islands forming due to vertical stacking as supported
by 12 (a) which significantly reduces the ETC. Finally we observe that for the spherical particles the network is
very ordered with contacts typical of a Hexagonal Close Packing (HCP) as expected for mono-sized spheres.

Next we quantify the microstructural properties presented in Figure 12 for convex polyhedra by finding corre-
lations to the ETC. Figure 14(a) shows the ETC as a function of the contact area, we notice a linear relationship
with contact area, except for the HexP shape. However the HexP shape is the most dis-similar of convex polyhedra
due to its high aspect ratio resulting in large flat faces along its principal axis which is indicative that the aspect
ratio of the particle also has an effect on the packing micro structure. Figure 14 (b) shows the ETC as a function
of contact angle isotropy θ (Figure 2) weighted by the contact area. We observe that all convex shapes now fit an
exponential curve (fitting parameters in the text box within the figure), which illustrates that both the contact area
and the orientation of the contacts is needed to provide a more holistic correlation.
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Distribution of Heat within the bed While the ETC characterizes heat conduction in a packed bed at steady
state it is also important to understand transient behavior. Figure 15 (b) depicts the time to ready steady state
(here termed the relaxation time) for each convex polyhedral shape. The Sphenome and HexP with the lowest
ETC values require a longer time to reach steady state reflecting the slower rate of heat conduction through the
particle networks. The slower conduction rate thru the contact network is a result of having lower isotropy and
weaker contacts than the other convex polyhedra as shown in Figure 12 (a) where the peak of the Sphenome shape
is shifted from the others and is closer to the HexP shape. This lack of isotropy and the preference to have stronger
contacts in the vertical direction results in the aniostropic distribution of heat in the bed in line with the findings
of the micro-structural analysis that contact area and isotropic dictates the flow of heat in the bed. Figure 15(b)
shows the plot of ETC as a function of the relaxation time for all convex shapes. The relationship is exponential
(fitting parameters in the text box within the figure) which is in contrast to the linear relationship found for packed
beds composed of spherical particles [35, 26, 36].

The steady state vertical temperature profile of the stationary packed bed is depicted in Figure 16 (a) for convex
polyhedra shapes. For a uniform continuous material this temperature profile is linear as shown by the solid line in
the plot. However this is not the case for a granular material due to the complex network for conduction which is
anisotropic containing dead ends and bottle necks depending on the local micro-structure of the packing. Thus in
Figure 6 we observe that the temperature profiles mimic parabolas with the turning point occurring at the vertical
distance at which the mean temperature occurs. The HexP and Sphenome shapes which have the lowest ETC values
have the largest deviation from a linear temperature distribution at steady state, with the curvature becoming less
prominent for shapes having larger ETC values. This parabolic behavior is attributed to the non-uniformity of
contacts resulting from variations on the local packing structure which can be seen in Figure 16 (b). In Figure 16
(b) we observe that at the top the packing is the least dense resulting in a lower conductivity while the packing in
middle is more dense with a plateau resulting in a higher conductivity and finally the bottom having the highest
packing density and conductivity. The TTet shape has the most uniform packing density and thus requires the
shortest time to reach steady state. Although the TTet shape does not have the highest packing density, it has the
least variation in packing density and contact area, coincidentally it also has the largest contact area and is the
most isotropic. The HexP shape with has the lowest packing density and largest variations of both packing density
and contact area, has the lowest ETC, longest relaxation time and is the least isotropic.

Finally Figure 17 depicts the temperature profile graphically where particles are colored by their temperatures
at steady state. We notice that the Cubic and TTet shapes have the most uniform spacing of color bands with
the temperature at the middle been almost the mean of the two boundary temperatures. While the other convex
shapes have a much lower mean temperature thus resulting in a larger spectrum of colder bands from the bottom.

5 Conclusion
This paper demonstrated that by calculating the intersection volume between contacting polyhedra an accurate
estimate of the contact area, for which there are no closed-form solutions can be obtained. It was then demonstrated
that this estimates area can be used in the well known heat conduction equations for spherical particles by calibrating
the heat transfer coefficient using theoretical or experimental data. The code was then validated against experiment
using the calibrated coefficient values, demonstrating the predictability of the model used in the code. This is
important as there are currently no models for the conduction of heat between polyhedral particles having a uniform
temperature (no gradient). In addition, the volume overlap method proved suitable for both convex and non-convex
shaped polyhedral particles. In total, seven particle shapes were considered, five convex polyhedra which are the
focus of this study, one non-convex polyhedron used to demonstrate the flexibility of the code as well as a sphere
which is used as the baseline particle in this study.

It was found that the relationship of linear scaling between ETC and packing density present for spherical
particles does not hold for convex polyhedral shapes. The importance of this finding is that it eludes to the fact
that we cannot readily use simple laboratory scale experiments which provide a measure of the bulk packing density
to make predictions when dealing with polyhedral particles, thus making simulation the most viable tool for the
understanding of thermal conductivity within packed beds.

The key finding of this study is that the micro-structural quantities of contact area and contact angle isotropy
are required to characterize polyhedra packed beds rather than the bulk packing density. We found an exponential
relationship between the ETC and contact angle isotropy (weighted by the contact area) for the convex shapes used
in this study. This finding is supported by following observations:
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1. Large variations in the packing density over the height of the bed effects the conduction networks resulting
on deadzones (islands) and hotspots.

2. Shapes with the largest variations in per particle contact area had the lowest ETC values as well as requiring
the longest to reach steady state.

3. Shapes with larger contact isotropy have higher ETC values.

Thus it can be concluded that particle shape significantly influences micro-mechnical topology and force chain
variations, which in turn effects the thermal conductivity of the static packed bed. The ETC was observed to vary by
500% from the baseline spherical particle system with the time to reach steady state been two times less for the most
conductive polyhedral case and 1.5 times larger in the case of the least conductive polyhedral case. These findings
are also in contrast to the previously reported linear relationship with the packing density found for ellipsoidal
shaped particles which are non-spherical. This demonstrates that the key aspect of irregularly shaped particles in
reality contacting at a surface rather than at single points which is the case for spheres and ellipsoids significantly
alters the thermal conductive behavior of the bed by causing variations in the micro-mechanical topography.
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Figure 1: Illustration of common shape representations in DEM (a) sphere, (b) ellipsoid, (c) superquadric, (d)
convex polyhedra , (e) multi-sphere (compound of (a)) and (f) non-convex polyhedra (compound of (d)).

Figure 2: Contact resolution (a) between two intersection polyhedra by resolving the (b) contact points from which
the (c) convex hull is constructed to compute the contact volume and (d) contact normals.
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Figure 3: Normal and tangential contact force models represented by a spring dashpot system.

Figure 4: Two dimensional sketch of contact angle θ and contact area A between contacting particles.
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(a) (b)

Figure 5: (a) Solid composed of 144060 tightly packed cubic (0.25 cm) particles and (b) plot of ETC vs α for the
tightly packed particles setup.

(a) (b)

Figure 6: (a) Temperature distribution over vertical slices (1 cm) and (b) simulation steady state of packed cubic
particles at 500s .
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(a) (b)

Figure 7: (a) Schematic of the experimental setup and (b) aluminum square particle with milled finish used in the
experiment.

(a) (b)

Figure 8: (a) Experimental and simulation plot of temperature for a single cube on a constant (71 deg) temperature
source and (b) the corresponding thermal camera captured image showing heating uniformity as well as heat sensor
location and values.
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(a) (b)

Figure 9: (a) Experimental and simulation plot of temperature for a single cube on a constant (71 deg) temperature
source and (b) he corresponding thermal camera captured image showing heating uniformity as well as heat sensor
location and values.

(a) (b)

Figure 10: (a) packed bed schematic illustrating filling and (b) particles shapes used in the simulation ( i=Cube,
ii=TTET, iii=BiLuna, iv=Sphenome, v=HexP and vi=CrossP).
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Figure 11: Packed state of particles in a 5 cm cubic region extracted from the middle of the bed (a) cubes, (b)
truncated tetrahedron, (c) bilunabirotunda, (d) sphenomegacorona , (e) flattened augmented hexagonal prism and
(f) non-convex cross prism.
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(a) (b)

Figure 12: (a) contact angle relative to vertical direction and (b) average contact area over the height of the bed .
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Figure 13: Normalized force chain network for (a) cubic, (b) truncated tetrahedron, (c) bilunabirotunda, (d)
sphenomegacorona , (e) flattened augmented hexagonal prism and (f) spherical particle shapes
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(a) (b)

Figure 14: Effective thermal conductivity for convex polyhedra as a function of (a) contact area and (b) contact
angle isotropy.

(a) (b)

Figure 15: (a) ETC as a function of the time to reach steady state and (b) time to reach steady state for the various
shapes.
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(a)

(b)

Figure 16: (a) Plot of average temperature and (b) solid packing fraction in vertical slices (1 cm)
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Figure 17: The temperature distribution comparison of (a) cubic, (b) truncated tetrahedron, (c) bilunabirotunda,
(d) sphenomegacorona , (e) flattened augmented hexagonal prism particles.
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Tables

Physical property Notation Value
particle density (kg.m−3) ρ 2700

volume (cm3) Vp 0.125
friction coefficient µ 0.40

normal stiffness (N.m−1) Kn 4000
gravity acceleration (ms−2) g 9.81
thermal conductivity ( W

m.K ) λp 240
specific thermal capacity J

kg.K . cp 921
Poisson’s ratio of particle ν 0.32
restitution coefficient e 0.45

time step (s) 4t 1× 10−5

Table 1: Particle material properties.

Shape (Figure) SA (cm2) #P #Faces #Edges SVF ETC ( w
m.k ) Avg CArea Isotropy

TTet (b) 1.5381 94,305 8 18 0.5859 73 0.1530 0.8634
Cube (a) 1.5003 92,706 6 12 0.6351 65 0.1208 0.8537
Biluna (c) 1.4445 90,831 14 26 0.5986 46 0.0527 0.8191

Sphenome (d) 1.4280 89,961 18 28 0.5763 30 0.0172 0.7072
HexP (e) 2.2863 81,517 11 22 0.5373 26 0.1250 0.3784
CrossP (f) 3.384 102,136 16 36 0.6725 25 0.0049 0.9062

Sphere (r=0.310) 1.2109 96,858 - - 0.6358 15 0.0047 1.0000

Table 2: Particle shapes and packed bed ETCs.
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